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Preface

This volume contains the papers presented at ABZ 2018 (6th International ABZ
Conference on ASM, Alloy, B, TLA, VDM, and Z) held during June 5–8, 2018, in
Southampton, UK. This conference records the latest research developments in
state-based formal methods, abstract state machines, Alloy, B, Circus, Event-B, TLS+,
VDM, and Z. The 2018 edition followed the success of the previous ABZ conferences
in London, UK (2008), Orford, Canada (2010), Pisa, Italy (2012), Toulouse, France
(2014), and Linz, Austria (2016).

Four keynotes were presented at ABZ 2018. Janet Barnes and Angela Wallenburg
from Altran, UK, jointly gave a talk on making the use of formal methods mainstream
within industrial practice and outlined some of the successes and challenges for Altran
in using formal methods. Klaus-Dieter Schewe from the Software Competence Centre
Hagenberg, Austria, gave a talk on a formal characterization of adaptive distributed
systems based on concurrent reflective abstract state machines. Daniel Jackson from
MIT gave a talk that argued for the importance of good design in software develop-
ment. Jean-Raymond Abrial gave a talk that reflected on principles, successes, and
challenges around the development and deployment of B and Event-B. We are grateful
to the invited speakers for contributing to the success of ABZ 2018.

ABZ 2018 coincided with the 25th anniversary of the first major industrial use of the
B Method on METEOR, a railway project for the Paris Metro Line 14, which com-
menced in 1993. In recognition of this, we organized a panel session at ABZ 2018,
with assistance from Laurent Voisin of Systerel, to discuss the evolution of the
industrial use of the B Method since 1993.

As successfully practiced at ABZ 2014 and ABZ 2016, the 6th edition of ABZ
included special sessions dedicated to a shared real-life case study. The objective of this
is to provide points of comparison between ABZ methods and to enrich the set of case
studies developed with the methods using a practical and real-life system. This time the
case study organizers, Thai Son Hoang and Klaus Reichl, defined a case study from the
railway domain with challenging safety requirements. The ABZ 2018 case study is
based on the Hybrid ERTMS/ETCS Level 3 standard. These proceedings include an
overview of the case study as well as several accepted papers outlining solutions to the
case study.

ABZ 2018 received 60 submissions covering a range of formal methods within the
scope of the conference. These papers ranged from fundamental contributions, appli-
cations in practical contexts, tool developments, and contributions to the case study.
Each paper was reviewed by four reviewers and the Program Committee accepted 13
regular research papers, seven papers on the Hybrid ERTMS case study, and 11 short
papers presenting work in progress.

We would like to thank the Program Committee members and the external reviewers
who carefully reviewed all submissions and selected the best contributions. This event
would not exist if authors did not submit their papers. We extend our thanks to all the



people who contributed to the success of ABZ 2018 – reviewers, authors, invited
speakers, panelists, Program Committee members, and local organizers. We also thank
EasyChair for providing a powerful platform for managing the submissions, reviews,
decisions, and proceedings production.

April 2018 Michael Butler
Alexander Raschke

Thai Son Hoang
Klaus Reichl
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How Bugs Led Us Astray
(Abstract of Invited Talk)

Daniel Jackson

MIT

Abstract.When the field of formal methods began, it had broad and noble goals.
But somehow, over time, these goals were eclipsed by a more reductionist view.
Nowadays, quality is measured by defect counts, and eliminating bugs has
become the central focus of our field. In this talk, I’ll explain how I think this
came about, why it’s insidious, and what we can do about it.

My key observation will be that bugs are not the causes of problems but are
instead symptoms. To improve our software—to make it more secure, safe and
usable—we need to move from symptoms to diagnosis, to determine the
underlying causes of poor software and fix those. I will argue that design is
essential to achieving this, and that we need to reinvigorate design as a central
activity in formal methods research and practice. I will give examples of
designs, good and bad, drawn from my ongoing work on conceptual design of
software.
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ABZ Languages and Tools
in Industrial-Scale Application

Janet Barnes, Jonathan Hammond, Angela Wallenburg(B),
and Thomas Wilson

Altran UK Limited, 22 St Lawrence Street, Bath BA1 1AN, UK
{janet.barnes,jonathan.hammond,angela.wallenburg,

thomas.wilson}@altran.com

Abstract. We give an early view of an ongoing evaluation of ABZ-style
languages and their accompanying tools. The target is specifications of
safety- and security-critical (software-rich) systems. Our perspective is
that of long-term users of formal methods in all parts of the development
life cycle. The evaluation’s scope is the production of specifications. We
list requirements for producing specifications, including semantic needs
and the resulting requirements on language expressiveness, as well as
requirements on tool support for writing, structuring, exploring, and val-
idating specifications. We define criteria for industrial suitability – in our
experience – of ABZ languages. We believe that specification structuring
is a major discriminating factor for industrial scale-up. So we present
an (informal) classification of such mechanisms and illustrate their use
by reference to the largest formal specification written by Altran. Our
lack of industrial-scale experience in some languages means we are still
learning the best mechanisms to use in some cases. We welcome input
on this. Finally we discuss remaining work.

1 Background

The SECT-AIR project [6] is a consortium of UK universities and companies with
the aim of delivering a step-change improvement in the affordability of aerospace
software. The project is looking at how advanced techniques and tooling, includ-
ing formal methods, can increase productivity across the whole lifecycle.

Altran UK has nearly 30 years of industrial formal methods experience across
the lifecycle, including specification in various languages (e.g. VDM, Z, CCS and
CSP) and software formal verification and static analysis (e.g. SPARK [5]).

2 Scope: Production of Specifications

One SECT-AIR project workpackage is to reduce barriers to the use of formal
specification. Although Altran successfully uses formal methods across the life-
cycle, we have more challenges with high-level1 formal specifications. So as part
1 By high-level we mean expressed in customer/domain, not software, terms and

concepts.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-91271-4_1
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4 J. Barnes et al.

Fig. 1. Specifications sit at the centre of several key data flows. The colouring high-
lights artefacts produced by, and tools driven by, stakeholders, rather than more
autonomously. The arrows show the main work flows. Note: the figure shows a wider
scope than this paper has space to discuss (e.g. auto-generation of natural language
text). The focus of this paper is on the Spec. Tools used by the Specification Writer(s)
to produce the Formal Specification, an activity that is beneficial almost regardless of
how the formal specification is used later. (Color figure online)
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of the SECT-AIR workpackage, Altran is over-hauling its specification solution
to improve communication and automation. This solution is to cover the full
gamut of specification-related activities, including: writing (editing), exploring
(reading, animating, navigating), verifying (e.g. static semantics), validating etc.

Figure 1 summarises the specification solution data flows, showing: (1) stake-
holders, (2) artefacts, and (3) tools. The formal specification is at the centre.

An initial downselection of potential solutions has chosen both reactive con-
trol and ABZ languages as key parts of meeting SECT-AIR needs. The rest of
this paper: makes observations about our industrial formal specification expe-
rience (Sect. 3); defines the requirements for our ideal specification solution
(Sect. 4); describes our criteria for evaluating possible solutions (Sect. 5); sum-
marises our evaluation process (Sect. 6); discusses ABZ language structuring
mechanisms (Sect. 7); finishes with concluding remarks and future work.

3 Observations on Industrial Formal Specification

This section describes our observations based on informal interviewing and dis-
cussion with specification writers about their experience of producing specifi-
cations over decades at Altran UK, formerly Praxis. (For a wider, including
non-engineering, perspective see Sect. 4.) In this section we focus on the nota-
tion that we have most commonly used: Z.

3.1 Cultural Setting: Formal Methods Usage Is Normal

Altran UK enjoys a long tradition of substantial industrial use of formal methods.
It is regarded as a normal part of multiple stages in the life cycle. Formal methods
are used daily by many engineers, not just by a small group of experts.

3.2 Reading Versus Writing Formal Specifications

Altran trains both specification and implementation (coders and verifiers) engi-
neers, using our customised 4 day-long Z courses. Over 100 have been trained
to read Z and in our experience the majority learn to read the core Z language
fairly well. Where appropriate we have also trained customers to read Z.

A much smaller number are needed, and thus trained, to write Z. However,
only about a dozen have become productive writers, fewer than we’d ideally like.

3.3 Some Observations About Specification Writers

Our most productive specification writers exhibit the following:

1. Particularly skilled in balancing an overview perspective with attention to
detail. Unfortunately, this seems to be a rare skill. Most people seem to be
good at one or other, but cannot swiftly change between the two.
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2. 85% have a PhD, although this is not an Altran job requirement. The PhDs
are varied but all in STEM subjects.

3. Not an academic expert in ABZ notations and theories, although one excep-
tion has a PhD in CSP.

The above sample of writers is too small to draw significant conclusions from.
Furthermore, while we are confident that (1) above is a core required skill, we
are not sure what to conclude from (2) and (3). Regardless, our observations
help illustrate the challenge to find sufficient productive specification writers.
We want a specification solution that more people can use to write productively.

3.4 Specification Style and Structure

The largest formal specification produced by Altran is for an air traffic manage-
ment (ATM) system, called iFACTS [3,17], developed for NATS (UK National
Air Traffic Services).

In style, the iFACTS specification – written in Z – bears much resemblance
to the detailed specification (called formal design) of the Tokeneer system (also
in Z) [4], which is openly available [2]. Each of these specifications:

– Has a high-integrity aspect (safety for iFACTS and security for Tokeneer)
– Specifies software that has a user interface (UI) and receives inputs from users

and the wider system environment (other complex ATM software systems for
iFACTS and sensors for Tokeneer)

– Is model-based with: data model, initial state, operations and partial opera-
tions.

However, iFACTS’ main specification is over 3,000 pages of Z and English and
is an order of magnitude larger than the Tokeneer specification. So we use the
iFACTS specification to illustrate the structuring discussions in this paper.

Why Is the iFACTS Specification so Large? The level of abstraction is a
big factor. However, with the exception of some core algorithm details, it is a
high-level specification written in ATM domain terms. The domain is a complex
one, due to the variety and richness of its data and to the substantial operational
rules governing users’ responsibilities and thus what iFACTS does. Furthermore,
the UI’s role in safe and efficient ATM, led to the modelling of individual UI
functions, such as buttons and menu items, as distinct Z operations.

Our view is that the specification’s content is not implementation detail to
be left for software architects and developers (see also refinement Sect. 7.7).

iFACTS Capability. To help explain the iFACTS specification structure, and
illustrate it with examples, a basic understanding of what iFACTS does is useful.

iFACTS provides air traffic controllers with advanced support tools based
on predictions of the trajectories flights will take up to 18 min into the future.
These predictions are used to:
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– Detect potential conflicts (with respect to physical separation) between pairs
of flights up to 15 min into the future

– Monitor aircraft and if they deviate from a controller’s instructions, alert and
identify any potential conflicts that result

– Enable a controller to assess in advance the consequences of different instruc-
tions they could issue but have not yet issued

The introduction of iFACTS has in the customer’s view [17]: “... revolutionised
our operation, freeing up capacity and improving safety, while at the same time
reducing delays and cutting carbon emissions.”.

Data Model Packages. The data model is divided into packages (as per the
UML term). Each package describes a group of related data items, with the aim
to have high cohesion of items within each package and low coupling between
packages.

There are a couple of dozen iFACTS packages in the following groupings:

– UI : each major UI element (such as each tool) is a separate package.
– Core algorithms: each different type of algorithmic processing iFACTS per-

forms (trajectory prediction, deviation monitoring and conflict detection) has
its own package.

– Live domain data: iFACTS receives and uses a wide range of data that changes
in real-time. Each type of data has its own package, for example:
• Radar data
• Flight plans
• Clearances (the ATM term for instructions issued by controllers)
• Weather forecasts

– Configured domain data: such as airspace definitions and aircraft performance
models that are fixed at run-time.

The packages form a hierarchy (strictly a partial ordering) where data items in
a package may depend on data items in packages beneath it in the hierarchy.
The groupings are listed above in top-down order, as elements of the UI present
data generated by the core algorithms which in turn use live domain data etc.

The data items in a package are primarily described as classes and relevant
associations. UML class diagrams are used to give an overview, with Z schema
types, relations and invariants specifying the detail. There is a wide range of
package sizes. For example, the radar data package class diagram has two classes,
whereas the trajectory prediction package class diagrams total over thirty classes.

Operations and Partial Operations. An operation specifies the state change
for the entire data model that results from a single external stimulus (such as
a user input). A partial operation specifies the state change of a single package.
An operation is specified as a particular combination (conjunction) of partial
operations (plus Ξ-schema predicates for unchanged packages).
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The iFACTS specification has approximately 165 operations. Each represents
a distinct, discrete piece of functionality that iFACTS provides. About 120 oper-
ations can be user initiated and about 50 by either the receipt of data from an
external system or due to the expiry of a timer. Note therefore that a handful of
the 165 operations have multiple stimuli. For example, a cancel operation may
occur either due to user action or because a timer has expired. For iFACTS the
number of partial operations varies significantly between packages. For example,
the radar data package has just four partial operations, whereas the clearances
and some of the UI packages have over thirty each.

4 Specification Solution Requirements

Drawing on our above experience and wider business context (including input
from managers as well as engineers), Altran’s ideal specification solution would:

R1. Have a sufficiently low adoption hurdle. Particularly for specification users,
e.g. non-technical readers, for whom minimal/no training should be needed.

R2. Be amenable to translation to a format suitable for sign-off. Specifications
must be accessible to customers.

R3. Be amenable to tool assisted validation. Both readers and writers need ways
to check their understanding is correct.

R4. Have a mathematical underpinning. Vital to enable meaningful analysis.
R5. Be expressive enough to capture high-level concepts easily. Drives ease of

understanding and productivity.
R6. Be scalable to very large systems. Applies to both tool support and read-

ability.
R7. Execute as a test oracle or facilitate code generation. A key business driver

to avoid separately duplicating semantics in all of specification, code and
test.

R8. Have a minimum number of languages and tools for the required domains.
We work across domains and cannot afford to maintain competency in a
wide range of languages/tools.

There is deliberately no requirement for formal proof support. Although we have
had notable success with (informal) specification proof [14], we do not believe
the cost vs benefit is worthwhile in most cases. That would change if significant
automation is possible, for the scale of systems we build.

5 Evaluation Criteria

To evaluate whether languages and tools achieve the above requirements, we have
derived the evaluation criteria below. Tracing is given back to the requirements.
The weighting reflects the relative importance we place on the criteria.
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Evaluation criteria Weight Rationale

Format suitable for sign-off
(R2)

10 Top requirement to reduce risk with client and enable
more use of spec. as basis for contract/warranty

Be amenable to tool assisted
validation (R3)

5 Examples: type checking, animation, example
generation, consistency checking

Be scalable to very large
systems (R6)

8 Both for tools and readability. Often overlooked, key
for exploitation

Execute as a test oracle or
facilitate code generation
(R7)

10 Main cost driver

Writers’ satisfaction w.r.t.
semantics, expressiveness,
abstraction mechanisms (R5)

8 Writing formal specifications pays off by the activity
itself, providing writing is sufficiently productive

Have a sufficiently low
adoption hurdle (R1)

5 More important for organisations with less
experience in applying formal methods

Have a mathematical
underpinning (R4)

8 A must for disambiguation, risk reduction, and
reliable tools

Be applicable to reactive
control systems (R8)

8 Control software projects, often embedded, for
example: safety control, engine control, brake control,
power control, fly-by-wire, alarm handling, etc.

Be applicable to state based
systems (R8)

8 Data and history-rich projects, for example: systems
for database and configuration validity, tracking, and
book-keeping

Evidence of successful
adoption (R1, R6)

8 Is there evidence of repeat and/or widespread
(industrial) use (beyond case studies)? Technologies
with significant tool building efforts but without
repeated use score low. This helps balance any
“hyped” technologies. New technologies also score
low. Note: this does not exclude new technologies as
alternatives, but the reduced score is intended to
reflect risk

Tools cost, development and
maintenance (R6, R8)

6 Cost matters but has lower weight than most criteria
due to expected benefits being worth the investment

These criteria come from both our own experience (e.g. [10]) and business
drivers, as well as others’ published experiences, such as [16].

6 Evaluation Process

6.1 DAR Process

We are using a Decision Analysis and Resolution (DAR) process to choose our
specification solution. DAR is part of Capability Maturity Model Integration
(CMMI) [8]. Its purpose is to analyse and document possible decisions using a
structured process with evaluation against established criteria.
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6.2 First Pass: Creating and Choosing from a Short-List

Based on the requirements (Sect. 4) and an assessment of available language
classes, a short-list of 5 possible solutions was created. Grid analysis combined
with balanced pairwise comparison led to a preferred solution: a combination
of natural language (English) with significant auto-generation from a formal
language – either a reactive control or ABZ language, depending on domain.
The possible language choices, for more detailed evaluation, are:

1. Reactive control language: Lustre, SCADE, ArgoSim.
2. ABZ language: Event-B, Z, TLA+, VDM

The rest of this paper focuses on the ABZ languages.

6.3 Second Pass: More Detailed Evaluations

Each of the above possible languages is now subject to a more detailed evalu-
ation. This includes trying the languages and associated toolsets on both tuto-
rial examples and real specifications (such as Tokeneer [2]). The final language
choices will then be made from the results of these more detailed evaluations.

7 Discussion of Structuring Mechanisms

The ABZ languages have a lot in common; most use standard mathematical
notation from axiomatic set theory, lambda calculus, and first-order predicate
logic. With regards to typing, they differ. Event-B, Z and VDM are all strongly-
typed, unlike TLA+. We find automated type-checking very cost-effective.

Most of all, ABZ languages differ in their structuring mechanisms. In our
experience the structuring features are the most discriminating for being able
to scale-up to large industrial projects (such as iFACTS). Fundamentally this
is because the readability, and thus usability, of a large specification is highly
dependent on how it is structured. As Jackson says in his essay [13] on abstraction
in software development:

An abstraction can be represented in more than one way. Whether it is
comprehensible depends not only on its formal content but also – vitally
– on its representation.

We discuss below some ABZ language structuring concepts and relate them to
our experience (e.g. iFACTS). We welcome input from the ABZ community.

7.1 Vertical and Horizontal Abstractions

Jackson [13] distinguishes the concepts of vertical and horizontal abstraction. A
vertical abstraction introduces a new (higher-level) concept that corresponds to
a particular collection of (lower-level/more detailed) phenomena. For example,
a circle, with centre and radius, abstracts a specific class of closed curves. A
horizontal abstraction simply selects those concepts or phenomena that are sig-
nificant for the purpose in hand. For example, the London Underground map
preserves connectivity and ordering but eschews geographical accuracy.
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7.2 Aggregations

A very common idiom in object-oriented systems development is aggregation,
which encapsulates tightly-coupled state. This is used to group sub-components
into a whole component. A classical example would be to model a Car, as an
aggregation of its components e.g. Wheels, Engine, Seats, and so on. Typically
encapsulation is achieved by not allowing the outside of the main component
to tamper with its subcomponents, for example disallowing the outside of Car
to manipulate the Engine that is owned by that car. Aggregation is therefore a
kind of vertical abstraction. The concept of a Car is very useful when discussing
relationships with other objects, such as owners, passengers, other traffic etc,
without needing to refer to its components.

Aggregation (strictly, composition in UML) is commonly used in our for-
mal specifications. For example, UI elements are sometimes defined as a hier-
archy of constituent components. More complex data types may also be aggre-
gations. Two iFACTS examples are trajectories and clearances. Encapsulation
is partially, and purely stylistically, enforced by operations only specifying state
changes by using the defined partial operations on the packages containing the
aggregations.

7.3 Generalization and Specialization

Supertypes (generalization) and subtypes (specialization) are frequently used in
our data models. Subtypes tend to arise from specific (specialised) needs, but
supertypes can have a useful role as a horizontal abstraction, particularly when
specifying the relationships (associations) with other concepts. Each subtype’s
schema type in Z ‘inherits’ the supertype’s schema type via schema inclusion.

For example, in iFACTS there are several specific types of flight predictions
that are natural subtypes of a unifying prediction supertype. The supertype
can be used to relate to concepts like a conflict (which arises between a pair of
predictions) or to define the different predictions that may be needed for the
same flight (such as current expected behaviour and potential future behaviour
if a controller were to issue a different clearance).

7.4 Partial Operations

It is very natural to specify separately the effects of an external stimulus on
different data model packages and then combine those separate pieces to specify
the complete effects. In our Z style the pieces are the partial operations. Event-B
has a similar concept for sharing, or splitting, an event between machines [1,12].

If the state changes in two packages are truly independent then decomposi-
tion into separate pieces presents no problem. Of course, in general, such inde-
pendence is not the case. The data model package hierarchy often means that
one package’s state change depends on another package’s state change lower in
the hierarchy. This is true in the iFACTS specification. For example, the state
changes triggered by receiving new radar data for a flight include:
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1. Updating the stored radar data associated with the flight
2. Generating an updated prediction using the new radar data
3. Checking for any unacceptable deviation from the flight’s clearance
4. Potentially generating new predictions if deviations are found
5. Displaying the appropriate results of all the above items in the tools

Each item from 2 onwards depends on the results of at least one earlier item.
Specifying such dependencies is straightforward if the lower-level package after
state variables are visible in higher-level package partial operations (as in the
iFACTS specification). Event decomposition may be another approach, see
Sect. 7.7.

7.5 Condition Hierarchies

Another important vertical abstraction in our experience is the ability to specify
hierarchies of conditions (predicates). Such conditions may be guards, at either
whole operation or partial operation level, or the definition of cases or alternative
courses of action within an operation or partial operation. Being able to abstract
cases/groups of conditions, by naming combinations of predicates, makes the
overall logic much clearer than a long list of potentially complex predicates.

The iFACTS specification makes extensive use of Z schemas as predicates to
build up complex logic hierarchically. For example, deviation monitoring schemas
check a flight conforms to a clearance’s altitude. There are different cases for
flying level, climbs and descents. Each case has subcases, such as if a descent
needs to be now, or only in time to reach the required altitude at a defined point.

7.6 Abstract Data Types

An effective use of abstract data types (ADTs), in the specification of a train
control system, is described in [9]. A key motivation for this ADT use is ease of
refinement proof. Event-B contexts are used to give abstract types that embody
domain concepts of rail network connectivity and train occupancy. Subsequent
successive instantiations of the ADT, by more concrete representations, enables
formal refinement to a practical implementation.

In our usage of Z, abstract data types (ADTs) are not a central concept.2

Some schemas could be viewed as ADTs, but only by convention because encap-
sulation is not enforced. Typically our specifications have not required ADTs.
We wrote a Z specification [15] without ADTs in the same domain as the train
control system, but we had no intention to refine as far as implementation.

7.7 Role and Use of Refinement

What Is Being Refined? Refinement is the main exploiter of vertical abstrac-
tion in formal development. It is important to consider what is being refined:
2 We refer here to use of ADTs for elements of a specification. Of course an entire

model-based Z specification can be viewed as an ADT, particularly when refining it.
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1. The environment of the system being developed (particularly its interface
with the system), or

2. The internals of the system (such as its architecture and data formats)

We think this distinction is important due to the different degrees of freedom typ-
ically involved. Significant parts of the environment are normally a given, or at
least require negotiation with various stakeholders. However, there is often much
more freedom to choose system internals. The former type of refinement tends
to be dominated by requirements and/or systems engineering skills, whereas the
latter relates more to architecture and/or software design.

Consequently, in our experience, different people/teams need to do the dif-
ferent refinements. Environment refinement is part of our specification process,
whereas internal refinement is part of system development. Depending on the
domain this can result in large specifications, like iFACTS, due to the amount
of information to be negotiated and captured to use as a basis for development.

Role of Decomposition. To avoid too much detail at once, it seems to us
that Event-B uses refinement to decompose and add detail [1,12]. This includes
event decomposition, which allows an atomic event to be decomposed into a
series of events. This could be used to specify iFACTS’ radar update example
(Sect. 7.4), as the listed steps appear to be a natural sequence. However, we
see such decomposition as an internal refinement issue, best left to software
architects and developers, not specifiers. There may be factors other than logical
dependencies, such as performance, that affect how best to decompose the event.

Either way, event decomposition clearly supports internal refinement, such as
an architecture of communicating subsystems implementing a system-level event.
Event decomposition could also apply to environment refinement. However, when
an environment interface is known in advance (e.g. it already exists) it is harder
to justify the cost of constructing more abstract models, to be able to refine down
to the already known interface, even if insights are gained (such as discussed
in [7]) through the abstraction.

Where Is Refinement Beneficial? Our experience is that the major sources
of error are things like significant domain misunderstandings and missing stake-
holders. (For example, see the e-commerce security case study in [11].) Our
impression is that formal refinement methods have limited value in eliminating
these.

Conversely, formal refinement clearly assists critical property preservation,
such as Tokeneer security requirements. Although we routinely do informal
(especially internal) refinement, formal refinement has not been found cost-
effective on our projects so far. This has been due to (1) the large effort required
for formal proof of refinement steps, (2) not enough benefit given (insights or
issues found) from the typically small refinement steps that have been required
for proof, and (3) the cost of maintaining several descriptions of the same sys-
tem, which can be seen as redundant in the feature-oriented more than insight-
oriented industrial setting.
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Currently we are devising approaches to do bigger refinement steps, formally
stated, but verified by dynamic means. With this we hope to gain meaningful
insights during the process of formalising the refinement, as well as increase the
productivity of the V&V process.

8 Conclusions and Future Work

We have discussed how scalability, to the kinds of systems we build, is a key
discriminating factor between languages and tools. We are still learning the
appropriate language mechanisms in the various ABZ languages to manage the
amount and detail of information needed for some of our domains. We welcome
the ABZ community’s input on the structuring idioms discussed in this paper.

We will complete the evaluations of the possible languages and toolsets (see
Sect. 6.3). A comparison table will be produced to show the assessment of each
against the evaluation criteria. This will drive the selection for our specification
solution. Case studies will then be written using this solution, which will be
published – as with all key SECT-AIR project outputs – in appropriate fora.
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Abstract. A distributed system can be characterised by autonomously
acting agents, where each agent executes its own program, uses shared
resources and communicates with the others, but otherwise is totally
oblivious to the behaviour of the other agents. In a distributed adap-
tive system agents may change their programs, and enter or leave the
collection at any time thereby changing the behaviour of the overall sys-
tem. This article first develops a language-independent axiomatic defini-
tion of distributed adaptive systems and then presents concurrent reflec-
tive Abstract State Machines (crASMs), an abstract machine model for
their specification. It can be proven that any distributed adaptive sys-
tem as stipulated by the axiomatisation can be step-by-step simulated
by a crASM. Proofs about crASMs can be grounded in a multiple-step
logic, which extends known complete one-step logics for deterministic
and non-deterministic ASMs.

1 Introduction

A distributed system can be characterised by autonomous agents, where each
agent executes its own program, uses shared resources and communicates with
the other agents, but otherwise is totally oblivious to the behaviour of others.
Thus, the asynchronous concurrent execution of the agents’ programs is the
most important characteristic. There are numerous models of concurrency in the
literature or implemented in current hard- and software systems and underlying
distributed algorithms, specification and programming languages: distributed
algorithms [19], process algebras [16,22,23,27], actor models [15], trace theory
[20,41], Petri nets [24,25,40], etc.
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Abstract State Machines (ASMs) have been used since their introduction
to model sequential and concurrent systems (see [7, Chaps. 6, 9] for references),
but only recently the theory counterpart of the celebrated sequential ASM thesis
[13] has been discovered [4]. This concurrent ASM thesis provides an axiomatic
characterisation of concurrency based on the intuitive understanding of compu-
tations of multiple autonomous agents, which execute each a sequential process,
run asynchronously, each with its own clock, and interact with (and know of)
each other only via reading/writing values of designated locations. It shows that
concurrent algorithms are captured by concurrent Abstract State Machines, i.e.
families of agents each equipped with a sequential ASM, the semantics of which
is defined by concurrent ASM runs, which overcome the limitations of Gurevich’s
distributed ASM runs [12] and generalise Lamport’s sequentially consistent runs
[18]. This consitutes a behavioural theory that provides a foundation for con-
current sequential algorithms and their rigorous specification, refinement and
verification. Exploiting the behavioural theory of unbounded parallelism [1,2,8]
the concurrent ASM thesis extends naturally to families of agents, each executing
a parallel algorithm.

Adaptive systems have attracted a lot of interest in research, in particular
in connection with systems of (cyber-physical) systems [26], biologically-inspired
systems [39] or observer/controller architectures [36,38]. Adaptivity refers to the
ability of a system to change its own behaviour. In [9] a behavioural theory for
reflective, sequential algorithms was proven. The integration of the theories of
unbounded parallelism, reflection and concurrency (a proof was sketched in [33])
provides a uniform behavioural theory for distributed adaptive systems.

Besides rigorous design and stepwise refinement-based development verifica-
tion is a key concern for rigorous systems development. All rigorous methods
are supported by appropriate logics such as the logic for Event-B [35], the logic
for ASMs [37], and the logic for TLA+ [21]. These logics support primarily the
verification of properties for a single machine step exploiting also concepts from
dynamic logic [14], though extensions in temporal logic (see e.g. [28] for ASMs
and [17] for TLA+) have also been investigated to enable the reasoning about
complete runs. In order to reason about distributed adaptive systems we inves-
tigate an extension of the one-step logic for ASMs to capture concurrency and
reflection.

This logic has been extended in [10] to deal with non-deterministic ASMs, for
which the unsolved problem of non-determinism and the handling of multi-set
functions for synchronisation had to be solved. This was further streamlined,
partly corrected and extended to concurrent ASMs in [11] based on the obser-
vation that concurrent runs can be mimicked by non-deterministic ASMs. To
obtain full reasoning power, we will show how to move from a one-step logic to
a multiple-step logic, as a single step of an agent in a concurrent system may
correspond to multiple steps of the whole concurrent system. Furthermore, we
will substitute the extra-logical rules that are used in the ASM logic by variables
that are to be interpreted in a state, but yield rules, by means of which we can
capture reflection.
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In this paper we first revisit the behavioural theory of distributed adaptive
systems. In Sect. 2 we first emphasise the motivation leading to the language-
independent axiomatisation. In Sect. 3 we briefly present concurrent reflective
Abstract State Machines, which capture distributed adaptive system. For the
proofs of the behavioural theory we refer to the literature [1,4,8,9,13,33].
Section 4 is then dedicated to the development of a logic for concurrent reflective
ASMs, where we first consider concurrency [11], and then integrate reflection into
the logic. We conclude with an outlook on further research directions in Sect. 5.

2 Axiomatic Definition of Distributed Adaptive Systems

In this section we provide a language-independent, axiomatic definition of dis-
tributed adaptive systems, which integrates the postulates for parallel [8], reflec-
tive [9] and concurrent algorithms [4]. Naturally, in a distributed system we
combine different (parallel, reflective) algorithms, each associated with a local-
ity (which we may consider as an abstraction from physical processors).

Postulate 1 (Distribution Postulate). A distributed adaptive system
(DAS) is given by a set A of agents a, each equipped with a parallel, reflec-
tive algorithm alg(a). Furthermore, there is a set L of localities and assignment
loc : A → L.

We write D = {(a, alg(a)) | a ∈ A} for a DAS D. For our further discussion
the localities L will be of minor importance, as we emphasise behaviour only.
The most important aspect is that the algorithms alg(a) work together asyn-
chronously using shared locations and messages, but otherwise are oblivious
to each other. In the sequential we will develop an axiomatisation for parallel,
reflective algorithms and concretise the meaning of asynchronous, concurrent
behaviour.

2.1 Sequential Time

Ignoring non-deterministism, sequential or parallel algorithms operate in sequen-
tial time, i.e. they operate on a set S of states together with a subset I of initial
states, such that an algorithm proceeds by means of a transition function S → S,
which map states S ∈ S to successor states τ(S). This defines the notion of a run
as sequences of states S0, S1, S2, . . . with S0 ∈ I and Si+1 = τ(Si). Algorithms
are called behaviourally equivalent iff they have exactly the same runs.

Extending this to include reflection, i.e. the ability of an algorithm to modify
its own behaviour, we may think of pairs (Si, Pj) comprising a state Si and a par-
allel, reflective algorithm Pj , so we obtain transitions τ : (Si, Pi) �→ (Si+1, Pi+1).
The algorithm Pi defines a state transition τPi

that can be applied to state
(Si, Pi), but we may also consider just the restriction to proper states Si for
which we use the notation P |Si

. As observed in [9] we can capture the state-
algorithm pairs by an extension of the states themselves, so for sequential time
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the only extension we need to emphasise that the extension represents an algo-
rithm, there is a unique algorithm in initial states, and the transition in state
(S, P ) is defined by P .

Postulate 2 (Sequential Time Postulate). A parallel, reflective algorithm
A consists of

– a non-empty set Sext of extended states, such that each Ŝ ∈ Sext can be
written as a pair (S, P ) with a proper state S and a representation of a
(parallel, reflective) algorithm P ,

– a non-empty subset I ⊆ Sext of initial states such that for all (S, P ), (S′, P ′) ∈
I the algorithms P and P ′ are behaviourally equivalent, and

– a one-step transformation function τ : Sext → Sext such that τ(S, P ) =
τP (S, P ) holds for all extended states.

We preserve the notion of behavioural equivalence for algorithms with the
same runs, and in addition call two algorithms P and P ′ essentially equivalent
iff their restrictions P |S and P ′|S to proper states are behaviourally equivalent.

2.2 Abstract States

For sequential and parallel algorithms states are meta-finite Tarski structures
defined over a fixed signature Σ, i.e. a set of function symbols, by means of
interpretation in a base set B. States, initial states and transitions are closed
under isomorphisms. As extended states include (an encoding of) a parallel,
reflective algorithm, we cannot simply require the set of states and the one step
transformation function to be closed under isomorphisms, as that would interfere
with the concept of behavioural equivalence.

Therefore, we say that two states (S, P ) and (S′, P ′) are essentially isomor-
phic if S and S′ are isomorphic first-order structures of some vocabulary Σ and
P |Σ , P ′|Σ are behaviourally equivalent.

Postulate 3 (Abstract State Postulate). For a parallel, reflective algo-
rithm A there exist signatures Σ ⊆ Σext such that

– extended states of A are structures of signature Σext ,
– for every extended state (S, P ) of A the proper state S is a structure of

signature Σ, and the algorithm P is represented as a structure of signature
Σwt = Σext − Σ,

– the one-step transformation τ of a RSA A does not change the base set of
any extended state,

– the sets Sext and I of extended states and initial states, respectively, are
closed under essential isomorphisms, and

– if two extended states (S, P ) and (S′, P ′) are essentially isomorphic via an
isomorphism ζ from S to S′, then τ(S, P ) and τ(S′, P ′) are also essentially
isomorphic via ζ.
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The sequential time and abstract state postulates together allow us to define
the notion of update set. If f is an n-ary function symbol in the signature Σext,
and b̄ = (b1, . . . , bn) is an n-tuple of values from some base set B, then the
pair (f, b̄) is called a location. A pair (�, b) with a location � and a value b ∈ B
is called an update, and an update set is a set Δ of updates. For later use,
an update multiset is a multiset of updates. An update set Δ is consistent iff
(�, b) ∈ Δ ∧ (�, b′) ∈ Δ ⇒ b = b′ holds for all locations � and all values b, b′ ∈ B.

If S is an (extended) state defined over the base set B, and Δ is an update
set with values in B, then S + Δ denotes another state, where the value at a
location � is defined by

valS+Δ(�) =

{
b if (�, b) ∈ Δ

valS(�) else

In addition, for an inconsistent Δ we set S + Δ = S. Then it is easy to see
that for each (extended) state S there exists a unique, consistent update set such
that tau(S) = S + Δ(S) holds. Consequently, each run defines to a sequence of
update sets.

Note that the postulates do not impose any restriction on the size of update
sets. Algorithms that simultaneously update many locations are captured in
the same way as algorithms with minimal update sets containing only a single
update.

2.3 Concurrency

Returning to DAS we may abstract from details of how the agents interact
by assuming that there are certain shared locations that can be updated by
several agents, that is while each algorithm alg(a) has its own extended signature
Σa,ext, any function symbol f appearing in at least two of these signatures is
considered to be shared. Locations defined by f are then shared locations. As
emphasised in [4] this covers also interaction through messages, for which we may
assume mailboxes as shared locations. A mailing subsystem can be left abstract
or explicitly described by some agent(s).

To perform a step in some state S, an agent a computes an update set Δa(S).
Actually, while S is defined over the union of signatures of all agents, the update
set Δa(S) is built on top of the substructure defined by the signature of alg(a),
and consequently, Δa(S) only contains updates to locations accessible by alg(a).
The fact that the agents act asynchronously means that while an agent executes
its step, other agents may already complete a step that has started earlier or
later than the current step of agent a. This leads to the following postulate
capturing the asynchronous concurrent behaviour of a DAS.

Postulate 4 (Concurrency Postulate). A DAS D = {(a, alg(a)) | a ∈ A}
defines concurrent D-runs S0, S1, . . . starting in some initial state S0, such that
each state Sn (n ≥ 0) yields a next state Sn+1 by a finite set An of agents
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simultaneously completing the execution of their current alg(a)-step they had
started in some preceding state Sj (j ≤ n depending on a), i.e.

Sn+1 = Sn +
⋃

a∈An

Δa(Sj).

Note that by taking the union of update sets we emphasise simultaneous
updates in the same way as state transitions by a single algorithm permits update
sets of arbitrary size. The concept of interleaving is covered by the special case,
where the sets An of agents interacting in state Sn is restricted to contain only
a single agent.

2.4 Bounded Exploration

An algorithm must have a finite description, so whatever is needed to determine
the update set in some state must be contained in this finite description. For
sequential algorithms it is thus obvious that in every step only finitely many
locations can be evaluated in a state S to determine the update set Δ(S). In the
behavioural theory of sequential algorithms [13] it is therefore postulated that
there is a fixed, finite set of ground terms W , called bounded exploration witness,
such that whenever two states S, S′ coincide on W , the update sets Δ(S) and
Δ(S′) are equal.

For parallel algorithms there may be an arbitrary number of parallel branches
in a computation step—these branches were called proclets in [1]—and their
number may depend on the state, but nonetheless the finite description of the
algorithm must contain the means to determine the update set. It has therefore
been concluded that instead of ground terms a bounded exploration witness W
for a parallel algorithm should comprise multiset comprehension terms. When
a multiset comprehension term is evaluated in a state, it will yield a multiset
of arbitrary size, and each combination of elements of the multisets interpreting
terms in W should correspond to a proclet. This justifies the bounded exploration
postulate in [8].

Regarding reflective algorithms the problem is that in general we must expect
that each algorithm Pi represented in state (Si, Pi) has its own bounded explo-
ration witness Wi. However, from the construction of Wi in [8] we know that
Wi is somehow contained in the finite representation of Pi. So there must exist
a finite set of terms W such that its interpretation in an extended state yields
both values and terms, and the latter represent Wi. Consequently, terms over
the subsignature Σ must be allowed as values in an extended base set Bext,
and then the interpretation of W and of its interpretation (removing non-logical
constants such as keywords by using an operator raise) in an extended state
suffice to determine the update set in that state. This will lead to our bounded
exploration postulate for reflective algorithms. Thus, we need an extension of the
notion of strong coincidence over a set of multiset comprehension terms.

If (S, P ) and (S′, P ′) are states of signature Σext , Wst is a set of multi-
set comprehension terms over subsignature Σ and Wwt is a set of multiset
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comprehension terms over signature Σext − Σ, then (S, P ) and (S′, P ′) strongly
coincide over Wst ∪ Wwt iff the following holds:

– For every t ∈ Wst we have val (S,P )(t) = val (S′,P ′)(t).
– For every t ∈ Wwt we have val (S,P )(t) = val (S′,P ′)(t) and val (S,P )(raise(t)) =

val (S′,P ′)(raise(t)), where raise(t) denotes the interpretation of t as a term of
signature Σ.

Postulate 5 (Bounded Exploration Postulate). For every parallel, reflec-
tive algorithm A of signature Σext there is a finite set Wst of multiset compre-
hension terms over signature Σ and a finite set Wwt of multiset comprehension
terms over signature Σext − Σ such that Δ(S, P ) = Δ(S′, P ′) holds, whenever
extended states (S, P ) and (S′, P ′) of A strongly coincide on Wst ∪ Wwt.

If a set of multiset comprehension terms W = Wst∪Wwt satisfies the reflective
bounded exploration postulate, we call it a bounded exploration witness for the
algorithm A.

2.5 Background

Each computation uses some background [3], which is usually left implicit for
sequential algorithms [13]. In this case it contains the reserve of values not used
in a current state, but available to be added to the active domain in any state
transition, truth values and their connectives, and the value undef used to cap-
ture partial functions. When dealing with parallel algorithms we have to add at
least a pairing constructor and a multiset constructor together with necessary
operators on tuples and multisets. Also reflection requires some background, as
it must be possible to refer to tuples to capture terms that represent algorithms,
which may comprise extra-logical constants such as keywords.

Most important, reflection requires the presence of a raise function that
takes values in the extended domain that are terms and removes all extra-logical
elements, so that raise(t) can be interpreted to yield a value in the domain.

Postulate 6 (Background Postulate). A distributed adaptive system D is
associated with a background class K comprising at least a binary tuple con-
structor and a multiset constructor of unbounded arity, and a background sig-
nature ΣB comprising at least the following function symbols (all static except
reserve):

– nullary function symbols true, false, undef and �,
– unary function symbols reserve, atomic, Boole, ¬, first, second, {{·}},

⊎
and AsSet,

– binary function symbols =, ∧, ∨, →, ↔, � and ( , ), and
– raise mapping terms over the extended signature Σext to terms over Σ.
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The background class must also provide the means for the representation of
algorithms by terms, but the postulate leaves open, which representation is used.
If a representation using relations is used, this can be subsumed by the extended
signature. If instead tree structures are exploited (as emphasised in [31]), then a
sophisticated tree background structures including operators on trees and hedges
as in [34] is required. For a more detailed discussion of the background see [8,
Sect. 3].

To summarise, a distributed adaptive system (DAS) is a system D satis-
fying the distribution, concurrency and background postulates such that, if
D = {(a, alg(a)) | a ∈ A}, then fir every a ∈ A alg(a) satisfies the sequen-
tial time, abstract state and background postulates.

3 Concurrent Reflective ASMs

We define a concurrent reflective ASM (crASM) as a family {Ma}a∈A of reflec-
tive, parallel ASMs indexed by a set of agents A together with a common back-
ground structure to deal with the self-representation of an ASM, for which we
exploit the tree algebra from [34] (for more details see [31]). We further let the
reserve contain infinitely many function names of arity r ≥ 0 and the background
satisfy the minimum requirements as set out by the background postulate.

Each reflective parallel ASM Ma has a signature Σa,ext = Σa ∪ {self a}
with a nullary function symbol self a, which is used to store the signature and
rule of the machine. As usual function symbols in Σa have an arity r; they are
static, dynamic or derived, and dynamic function symbols may be controlled,
monitored or shared [7]. We may also distinguish between function symbols for
finite and algorithmic parts, and for bridge functions, respectively, to emphasise
meta-finite structures.

Each reflective parallel ASM Ma has a rule, for which we adopt common
ASM rules with extensions for partial updates [30], communication [6] as well
as location operators for synchronisation [29]. Rules are composed inductively
using the following constructors:

assignment. f(t1, . . . , tarf
) := t0 with terms ti built over Σa,ext ,

partial update. f(t1, . . . , tarf
) ⇔op t0 with terms ti and an operator op,

branching. IF ϕ THEN r+ ELSE r−,
parallel composition. FORALL x WITH ϕ(x) r(x),
bounded parallel composition. r1 . . . rn,
sequence. r1; . . . ; rn,
let. LET x = t IN r(x),
location operator. USE loc(t) = ρ IN r,
send. SEND(〈message〉, from:〈sender〉, to:〈receiver〉),
receive. RECEIVE(〈message〉, from:〈sender〉, to:〈receiver〉), and
consume. CONSUME(〈message〉, from:〈sender〉, to:〈receiver〉).
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Each rule, when applied in an extended state S yields an update set Δ(S). For
assignments, branching, let, bounded and unbounded parallelism and sequence
the definition of Δ(S) is defined in [7]. The communication rules send, receive
and consume maintain updates to mailboxes [6]: send places a message in the
outbox of the sender, receive takes a message in the inbox of the receiver and
manipulates it, and consume deletes a message in an inbox. For this in- and out-
mailboxes must be part of the signature. A partial update f(t1, . . . , tarf

) ⇔op t0
evaluates the values of f(t1, . . . , tarf

) and t0 in state S, say that these are
bS and b0. However, instead of assigning directly op(bS , b0) to the location
(f, (valS(t1), . . . , valS(tarf

))), all these partial updates at this location are com-
bined into a single update at this location [30]. Finally, the use-rule takes an
update multiset produced by r and applies the multiset function ρ to all terms
matching t, which reduces the update multiset to an update set [29].

With respect to concurrency the semantics of a crASM is then easily defined
by concurrent ASM runs as defined in [4], i.e. we have

Sn+1 = Sn +
⋃

a∈An

Δ(Ma, SlastRead(a,n)) ,

where SlastRead(a,n) denotes the state in which a performed its reads of all mon-
itored and shared locations it uses for the current step (so that lastRead(a, n)
≤ n).

The main extension to concurrent ASMs is that the individual machines Ma

are now reflective, i.e. in each step the rule to be applied is the one stored in
self a, and this location may be updated by the rule like any other location. Note
that the definition allows the variable selfa to be itself shared. This permits the
modification of Ma by a different agent. In particular, it enables a complete
separation of agents for monitoring and adaptation.

4 A Logic for Concurrent Reflective ASMs

To support logical inferences on distributed adaptive systems we can exploit that
they are captured by crASMs. It suffices to develop a logic for crASMs, which is
what this section will address.

4.1 A Logic for Non-deterministic ASMs

In [10] we developed a complete logic for database ASMs. Different to the logic
for ASMs developed by Stärk and Nanchen [37] the logic makes explicit use
of meta-finite states, solves the problem of non-determinism, and adds multiset-
based synchronisation terms. We then observed in [8] that meta-finite states were
also present in parallel ASMs, so the logic actually captures non-deterministic
parallel ASMs [11].
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Let Υ = Υf ∪Υa∪Fb be a signature comprising function symbols for the finite
and algorithmic parts, and for bridge functions, respectively. Fix a countable set
Xf of first-order variables, denoted with standard lowercase letters x, y, z, . . .,
that range over the primary finite part of the states (i.e. the finite set Bf ). The
set TΥ,Xf

of first-order terms of vocabulary Υ is defined as usual in meta-finite
model theory [10]. That is, TΥ,Xf

is constituted by the set Tf of state terms and
the set Ta of algorithmic terms. The set of terms Tf is the closure of the set Xf of
variables under the application of function symbols in Υf . The set of algorithmic
terms Ta is defined inductively: If t1, . . . , tn are terms in Tf and f is an n-ary
bridge function symbol in Fb, then f(t1, . . . , tn) is an algorithmic term in Ta; if
t1, . . . , tn are algorithmic terms in Ta and f is an n-ary function symbol in Υa,
then f(t1, . . . , tn) is an algorithmic term in Ta; nothing else is an algorithmic
term in Ta.

If S is a meta-finite state of signature Υ , then a valuation or variable assign-
ment ζ is a function that assigns to every variable in Xf a value in the base set
of the finite part Bf of S. The value valS,ζ(t) of a term t ∈ TΥ,Xf

in the state S
under the valuation ζ is defined as usual in first-order logic. The first-order logic
of meta-finite states is defined as the first-order logic with equality which is built
up from equations between terms in TΥ,Xf

by using the standard connectives and
first-order quantifiers. Its semantics is defined in the standard way. The truth
value of a first-order formula of meta-finite states ϕ in S under the valuation ζ
is denoted as [[ϕ]]S,ζ .

Without loss of generality, a variable assignment ζ as previously defined for
first-order variables that range over Bf , can be extended to first-order variables
that range over Ba as well as to second-order variables that range over finite
sets. We use fr(t) to denote the set of (both first-order and second-order) free
variables occurring in t.

The set of terms in the logic for non-deterministic ASMs is constituted by
the set Tf and the set Ta of algorithmic terms expressed as follows:

– x ∈ Tf for x ∈ Xf and fr(x) = {x};
– x ∈ Ta for x ∈ Xa and fr(x) = {x};
– f(t) ∈ Tf for f ∈ Υf , t ∈ Tf and fr(f(t)) = fr(t);
– f(t) ∈ Ta for f ∈ Fb, t ∈ Tf and fr(f(t)) = fr(t);
– f(t) ∈ Ta for f ∈ Υa, t ∈ Ta and fr(f(t)) = fr(t);
– ρx(t | ϕ(x, ȳ)) ∈ Ta for a location operator ρ ∈ Λ, a formula ϕ(x, ȳ) of the

logic (see the definition below), x a variable in Xf , ȳ a tuple of arbitrary
variables, and t ∈ Ta.

In the last line we require fr(t) ⊆ fr(ϕ(x, ȳ)) = {xi | xi = x or xi

appears in ȳ} and fr(ρx(t|ϕ(x, ȳ))) = fr(ϕ(x, ȳ)) − {x}.
We use the notion ρ-term for a term ρx(t|ϕ(x, ȳ)) and pure term for a term

that does not contain ρ-terms, i.e. a term that does not contain any formulae.
ρ-terms are built upon formulae; on the other hand they can also be used for
constructing formulae.
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The formulae of the logic for non-deterministic ASMs are those generated
by the following grammar:

ϕ,ψ ::= s = t | sa = ta | ¬ϕ | ϕ ∧ ψ | ∀x(ϕ) | ∀x(ϕ) | ∀M(ϕ)

| ∀X(ϕ) | ∀X (ϕ) | ∀Ẍ(ϕ) | ∀Ẍ (ϕ) | ∀F (ϕ) | ∀G(ϕ)

| upd(r,X) | upm(r, Ẍ) | M(s, ta) | X(f, t, t0)

| X (f, t, t0, s) | Ẍ(f, t, t0, ta) | Ẍ (f, t, t0, ta, s)
| F (f, t, t0, ta, t′, t′0, t

′
a, s)

| G(f, t, t0, ta, t′, t′0, t
′
a, sa) | [X]ϕ

where s, t and t′ denote terms in Tf , sa, ta and t′a denote terms in Ta, x ∈ Xf and
x ∈ Xa denote first-order variables, M , X, X , Ẍ, Ẍ , F and G denote second-
order variables, r is an ASM rule, f is a dynamic function symbol in Υf ∪ Fb,
and t0 and t′0 denote terms in Tf or Ta depending on whether f is in Υf or Fb,
respectively.

In the logic, disjunction ∨, implication →, and existential quantification ∃
are defined as abbreviations in the usual way. ∀M(ϕ), ∀X(ϕ), ∀X (ϕ), ∀Ẍ(ϕ),
∀Ẍ (ϕ), ∀F (ϕ) and ∀G(ϕ) are second-order formulae in which M , X, X , Ẍ, Ẍ ,
F and G range over finite relations.

When applying forall and parallel rules, updates yielded by parallel compu-
tations may be identical. Thus, we need the multiset semantics for describing a
collection of possible identical updates. This leads to the inclusion of upm(r, Ẍ)
and Ẍ(f, t, t0, ta) in the logic. upd(r,X) and upm(r, Ẍ) respectively state that
a finite update set represented by X and a finite update multiset represented
by Ẍ are generated by a rule r. X(f, t, t0) describes that an update (f, t, t0)
belongs to the update set represented by X, while Ẍ(f, t, t0, ta) describes that
an update (f, t, t0) occurs at least once in the update multiset represented by Ẍ.
If (f, t, t0) occurs n-times in the update multiset represented by Ẍ, then there
are n distinct a1, . . . , an ∈ Ba such that (f, t, t0, ai) ∈ Ẍ for every 1 ≤ i ≤ n and
(f, t, t0, aj) �∈ Ẍ for every aj other than a1, . . . , an. We use [X]ϕ to express the
evaluation of ϕ over a state after executing the update set represented by X on
the current state. The second-order variables X and Ẍ are used to keep track of
the parallel branches that produce the update sets and multisets, respectively.
Finally, we use M to denote binary second-order variables which are used to
represent the finite multisets in the semantic interpretation of ρ-terms, and F
and G to denote second-order variables which encode bijections between update
multisets.

A formula of the logic is pure if it does not contain any ρ-term and is gener-
ated by the following restricted grammar:

ϕ,ψ ::= s = t | sa = ta | ¬ϕ | ϕ ∧ ψ | ∀x(ϕ) | ∀x(ϕ)

As defined before the formulae occurring in conditional, forall and choice
rules are pure formulae of this logic. A formula or a term is static, if it does
not contain any dynamic function symbol. In [10] a proof system for this logic
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was developed, for which soundness and completeness with respect to Henkin
semantics was proven.

4.2 Reasoning About Reflection

The logic for non-deterministic ASMs sketeched above does not yet handle reflec-
tion, which concerns rules r in the logic. In the logic above the main rule r is
given as part of the specification and treated as extra-logical constant, while in
a reflective ASM the main rule is the value in a location self . Consequently,
we have valS(self ) = rS , i.e. the interpretation of the term self in a state S
yields the rule that is to be applied in S. This has to be taken into account for
formulae of the form upd(r,X) and upm(r, Ẍ). For a single machine step this
change is rather irrelevant, as in a reflective ASM the main rule does not change
within a single step. Thus, we have to take multiple steps into account. For these
introduce two additional predicates r-upd and r-upm with the following informal
meaning:

– r-upd(n,X) means that n steps of the reflective ASM yield the update set X,
where in each step the actual value of self is used.

– r-upm(n,X) means that n steps of the reflective ASM yield the update mul-
tiset X.

In the light of the axioms definition of upd(r,X) and upm(r, Ẍ) for sequence
rules we can inductively define axioms for r-upd and r-upm. Clearly, we have
r-upd(1,X) ↔ upd(self ,X). Analogously, define r-upm(1,X) ↔ upm(self , Ẍ).
Then we further define

r-upd(n + 1,X) ↔
(
r-upd(1,X) ∧ ¬conUSet(X)

)
∨(

∃Y1Y2(r-upd(1, Y1) ∧ conUSet(Y1) ∧ [Y1]r-upd(n, Y2)∧∧
f∈Fdyn

∀xy(X(f, x, y) ↔ ((Y1(f, x, y) ∧ ∀z(¬Y2(f, x, z))) ∨ Y2(f, x, y))))
)

as well as

upm(n + 1, Ẍ) ↔
(
r-upm(1, Ẍ)∧

∀X
( ∧

f∈Fdyn

∀x1x2(X(f, x1, x2) ↔ ∃x3(Ẍ(f, x1, x2, x3))) ∧ ¬conUSet(X)
))

∨

(
∃Ÿ1Ÿ2

(
r-upm(1, Ÿ1) ∧ ∀Y1

( ∧
f∈Fdyn

∀x1x2(Y1(f, x1, x2) ↔

∃x3(Ÿ1(f, x1, x2, x3))) ∧ conUSet(Y1) ∧ [Y1]r-upm(n, Ÿ2)
)
∧∧

f∈Fdyn

∀x1x2x3
(
Ẍ(f, x1, x2, x3) ↔ (Ÿ2(f, x1, x2, x3)∨

(Ÿ1(f, x1, x2, x3) ∧ ∀y2y3(¬Ÿ2(f, x1, y2, y3))))
))



28 K.-D. Schewe et al.

4.3 Reasoning About Concurrent Reflective ASMs

Finally, in order to capture also concurrency we make a very simple, but also
powerful observation that a concurrent ASM can always be mimicked by a non-
deterministic ASM. For each agent a replace its rule r by

IF ctl = idle THEN CHOOSE r
OR local(r) ‖ ctl := active ENDIF

IF ctl = active THEN CHOOSE skip
OR final(r) ‖ ctl := idle ENDIF

In an initial state the “control-state” location ctl is set to idle. If this is the
case the agent executes either immediately its rule or executes a local version of
it, i.e. all updates will be written to a local copy. In the second case the control-
state becomes active. If the control-state is active, the agent may either do noth-
ing or finalise the execution by copying all updates to the shared locations and
returning to an idle control state. In doing so, the multi-step logic sketched above
for reflective, non-deterministic ASMs can be used to reason about concurrent,
reflective ASMs. Details concerning this are subject to ongoing research.

5 Further Directions

In this paper we first presented a behavioural theory for distributed adaptive
systems (DAS), which integrates the corresponding theories of (synchronous)
parallel algorithms [8], reflective algorithms [9] and concurrent algorithms [4].
DAS are captured by concurrent, reflective ASMs (crASMs), which we presented
in more detail. The theory lays the foundations for rigorous development using
crASMs, but due to the independence of the axiomatisation of any particular
language it is not restricted to the context of ASMs. The second part of the
paper presented a logic for crASMs that is based on a one-step logic for non-
deterministic ASMs [10,11]. Concurrency can be mimicked by non-determinism,
and reflection can be added by considering a multi-step extension, in which
the so-far extra-logical rules can be replaced by rule terms that are subject to
interpretation. This logic enables to formally reason about DAS and to rigorously
verify desirabe properties.

We envision that in general distributed adaptive systems it will be desirable to
capture also non-determinism or preferably randomised behaviour. The theory
requires further extensions in this direction, which are subject of our current
research (see [32] for first steps in this direction). Furthermore, for rigorous
development extensions to the refinement method for ASMs [5] will be necessary.
These problems are addressed in ongoing research.
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After more than 20 years since the publication of the book on B [1], and almost
10 years since the publication of the book on Event-B [2], the purpose of this
short paper is to present some key points of these technologies. Note that this
presentation might be incomplete as I am certainly not aware of many develop-
ments which have taken place around B and Event-B in recent years.

This paper is organised around four topics. Section 1 is devoted to the listing
of the basic principles on which B and Event-B have been developed. Section 2 is
devoted to differences and similarities between B and Event-B. Section 3 explains
where B and Event-B are spread around the world. Finally, Sect. 4 contains
various issues and challenges encountered by these technologies.

1 Basic Principles

In this section, I study the main principles forming the basis of B and Event-B,
i.e. developing systems which are intended to be correct by construction, using
classical logic and mathematical notations, and developing various tools. Note
that many information about B can be found in this website [3], whereas many
information about Event-B can be found in this website [4].

1.1 Being Correct by Construction

The main purpose of B and Event-B is to help engineers developing systems
that will be correct by construction. It means that B and Event-B are not pro-
gramming languages of any kind. They are modelling systems. In case of B,
modelling and developing software systems and in case of Event-B, modelling
and developing global complex systems, involving not only software, but also
physical environments and even human users.

1.2 Using Refinement

In order to achieve gradually a correct by construction approach, it is fundamen-
tal to handle refinements. This means that a development is made of a series of
steps starting at a very abstract level and aiming at a final concrete one. This is
simply incorporating in B and Event-B a classical approach used in many other
engineering disciplines.

c© Springer International Publishing AG, part of Springer Nature 2018
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1.3 Mathematical Notation

The correct by construction approach together with the usage of refinement
imply that each constructing steps be guaranteed by some theorems to be suc-
cessfully proved. The goal of such theorems is to ensure that each step is valid
and does not depart from the previous one. For doing so, it is important that
statements of these theorems be expressed using a very classical mathematical
notation, i.e. that of predicate calculus and of typed set theory.

1.4 Tools for Developing Models

It was necessary to develop tools for analysing and checking models for B (Atelier
B, developed and maintained by the software house Clearsy) and for Event-B
(Rodin, developed and maintained by the software house Systerel). As a matter
of fact, a pen and paper approach is not possible any more as systems are
becoming very complex these days.

1.5 Tools for Generating Theorems

It is out of the question that human users of B and Event-B generate directly
mathematical statements to be proved at each steps of a development. This is far
too much error prone to leave this in the hands of human users. An important
tool called the Proof Obligation Generator has thus been developed for that
purpose for B (in Atelier B) and for Event-B (in Rodin). Such a tool has been
strongly influenced by what had been developed before for VDM [5].

1.6 Tools for Proving

Once some mathematical statements have been generated by the Proof Obliga-
tion Generator, it is important to be able to prove them in a mechanical way.
For doing this, some proving tools have been constructed for B (in Atelier B)
and for Event-B (in Rodin). With such tools, both automatic and interactive
proofs can be performed.

1.7 More Tools

Other tools were developed in Universities (Southampton, Duesseldorf, Turku)
and Industries (Siemens Transport, Clearsy, Systerel). With such tools, it is pos-
sible to perform model checking, automatic refinement, model decomposition and
structuring, data validation and various translations to classical programming
languages, etc.
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2 Comparing B and Event-B

The book on B [1] was first published in 1996, whereas that on Event-B [2]was
published in 2010. Consequently, Event-B had been able to take advantage of
issues encountered in the usage of B. Also note that Event-B has been strongly
influenced by the development of Action systems [6]. Event-B contains some
simplifications over B. This has allowed us to extend the usage of Event-B to
the modelling of systems that are not restricted to software. In what follows, I
explain differences and similarities between B and Event-B.

2.1 Differences

One of the main differences between B and Event-B concerns operations (in B)
and events (in Event-B). Each operation in B is usually defined together with a
pre-condition containing a predicate that must be true for the operation to be
able to be called. On the other hand, each event in Event-B is usually defined
together with a guard containing a predicate that must be true for the event to
be able to occur.

This results in having both pre-conditions or guards being assumptions when
doing a proof on an operation or on an event (e.g. invariant preservation proofs).
So far thus, there are no differences between the two. However, both differs
strongly when dealing with refinement: pre-conditions can be weakened only,
whereas guards can be strengthened only. This possibility of guard strengthening
is particularly important as it allows users to build models starting from very
abstract cases down to more realistic ones.

In fact, proof obligations are far simpler for events than for operations. In
the case of operations one has always two rules: one for pre-conditions and one
for post-conditions. In the case of event, one has always a single rule.

Another important distinction between the two concerns parameters. In the
case of an operation, such parameters cannot be refined, whereas event param-
eters can be freely refined (removed, added or modified).

Basic sets, constants and their properties are handled differently in B and
Event-B. In B, basic sets, constants and their properties are defined in the
abstract machine where operations are defined. In Event-B, sets, constants and
their properties are defined in separate structures called contexts. This gives
users more flexibilities in Event-B than in B.

Event-B does not contain any programming constructs such as conditionals,
choices, sequencings or loops as B does. This greatly simplifies proof obligations
generated for Event-B with comparison to those generated for B. This simpli-
fication is particularly important in the case of sequencing. In fact, all such
constructs can be handled in Event-B by using events only. Of course, code gen-
eration is simpler in B because of the presence of such constructs. To do the
same in Event-B one has to apply some specific rules.
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2.2 Similarities

Both B and Event-B use the mathematical notation of predicate calculus and
typed set theory. This means that proof obligations stated for both approaches
can be handled by similar provers. In fact, the prover of Atelier B (called PP) is
used successfully in the Rodin toolset. Other external provers (e.g. SMT provers)
are used in both Atelier B and Rodin.

In both cases, there is a notion of machine acting as an encapsulation for
operations (in B) or events (in Event-B). However there is an important dis-
tinction between the two. The list of input-output definitions of the operations
of a B machine (its signature) is fixed once and for all, although it is not the
case for the events of an Event-B machine. Notice that events have no output
parameters. But there are more: such a list of events can be further extended
with new events in a refinement. This very important feature has been bor-
rowed from Action Systems [6]. It allows users to be very flexible in the gradual
construction (with refinement) of an event system.

In fact such similarities allows one to use Event-B within the Atelier B tool
which is used for B. Some proof obligations which are specific to Event-B have
been developed for that purpose in B.

3 Spreading

3.1 Spreading in Industry

B is extensively developed in Industry by the software house Clearsy, claiming
that more than 30% of its business is devoted to B. A very rich and well docu-
mented article [7] presents the development of B at Clearsy. The main activity is
with train systems in many places around the world: North and South America,
Europe, Asia. Some information about the industrial use of B can be found in
the Clearsy web site [3].

3.2 Spreading in Academia

Event-B (more than B) is widely spread in Universities in Europe (France, United
Kingdom, Finland, Germany, Spain), in America (Canada, Brazil, Columbia),
in Asia (China, Japan), etc.

4 Challenges

One of the main challenge of these technologies is the poor spreading of B in
Industry: as said in Sect. 3.1, B is essentially used in train systems. There are
clearly other industries where such a formal modelling approach could be used
successfully, e.g. energy, automotive, aeronautics, space, etc. However, people in
charge there claim that it is not possible, essentially because it is too difficult
to modify engineering approaches which have been established for many years.
The paper cited above [7] makes a very fine analysis of these difficulties.
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There has been no development where both Event-B and B are used one
after the other. First Event-B for the system analysis, then B for the software
development. I think it could be quite possible. However, most of the time,
system engineers and software engineers have different cultures.
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Abstract. The Abstract State Machine (ASM) theory is a well-known
formal method, which can be used to specify arbitrary algorithms, appli-
cations or even whole systems. Over the past years, there have been
many approaches to implement concrete ASM-based modeling and spec-
ification languages. All of those approaches define their type systems
and operator semantics differently in their internal representation, which
leads to undesired or unexpected behavior during the modeling, the exe-
cution, and code generation of such ASM specifications. In this paper,
we present CASM-IR, an Intermediate Representation (IR), designed to
aid ASM-based language engineering which is based on a well-formed
ASM-based specification format. Moreover, CASM-IR is conceptualized
from the ground up to ease the formalization of ASM-based analysis and
transformation passes. The feasibility of CASM-IR solving the uniform
ASM representation problem is depicted. Based on our CASM-IR imple-
mentation, we were able to integrate a front-end of our statically inferred
Corinthian Abstract State Machine (CASM) modeling language.

Keywords: CASM · Type system · Instruction · Register machine
Abstract State Machine · Intermediate Representation
Modeling and specification language

1 Introduction

In 1995 the Abstract State Machine (ASM) theory has been described by Gure-
vich [1] as a formal method based on transition rules, states and algebraic func-
tions. ASMs are used to describe formally the evolving of function states in a
step-by-step manner. This also explains why ASM theory was formerly called
Evolving Algebra [2]. Based on the ASM programming language model from
Gurevich, several tools with Domain-Specific Languages (DSLs) were created to
solve application-specific problems, which were summarized by Börger [3].
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The diversity of ASM-based applications1 is widespread, ranging from for-
mal specification semantics of programming languages, such as those for Java by
Stark et al. [4] or VHDL by Sasaki [5], compiler back-end verification by Lezuo
[6], software run-time verification by Barnett and Schulte [7], software and hard-
ware architecture modeling e.g. of Universal Plug and Play (UPnP) by Glässer
and Veanes [8], or even Reduced Instruction Set Computing (RISC) designs by
Huggins and Campenhout [9].

Despite this diversity in applications, over the past years, different ASM-
based language dialect were created to cover single or multiple application spe-
cific problem domains. This might not be perceived as a problem, as many
language users [10] like to choose among multiple language dialects. The prob-
lem however is that the language engineers [10] craft and design those languages
according to the needs of the language user and bind their implementations to
a specific execution environment technology, instead of generalizing the mathe-
matical foundation of the ASM-based languages in an independent model rep-
resentation. This, in turn, means that those languages are difficult to integrate
with each other [11], cannot easily be based on a common execution environment
technology, and establishing a common set of language tools is difficult.

Moreover, the binding to various execution environment technologies intro-
duces undesired and unexpected behaviors, e.g. if the same algorithm so to say is
specified with different ASM modeling languages and the model execution leads
to different floating point values or depending on the Integer representation to
different overflow states. To overcome this uniform ASM representation problem
a clear, precise, and formal intermediate model has to be introduced, which has
the ability to represent various ASM language constructs of different contexts.

The major advantages of such an approach are the generalization of ASM-
related analyzes, optimization, and transformation capabilities – first envisaged
by Lezuo et al. [12] – in one single uniform model. Furthermore, another benefit
for existing ASM languages is to directly reuse the numeric as well as the –
proposed by Lezuo [6] – symbolic execution of specified ASM models. A huge
disadvantage in the perspective of a language engineer is to port existing ASM
language implementations to such a uniform ASM model.

This paper focuses on the design, implementation, and integration of an
ASM-based Intermediate Representation (IR) model named CASM Intermediate
Representation (CASM-IR) to address the uniform ASM representation problem.
The main contribution of this paper is the definition of a well-formed ASM-based
IR model which is independent of language front-ends and provides a well-defined
type system, operator and built-in semantics.

This work is organized as follows: In Sect. 2 we describe our research context
and the motivation of this paper. In Sect. 3 we describe our CASM-IR model.
Section 4 presents details about the current implementation and integration of
the CASM-IR. Section 5 gives an overview of the related work regarding IR’s of
other ASM languages and tools. Finally, in Sect. 6 we conclude the paper and
outline the future work.

1 For ASM applications of various domains, see: http://web.eecs.umich.edu/gasm.
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2 Motivation

The broader context of our research is the creation of a modern state-of-the-art
ASM modeling language implementation named the CASM, as well as trans-
formation and deployment of CASM specifications to executable artifacts2. The
primary application context of this work is the specification of embedded sys-
tems in a formal way. However, in the context of CASM, we not merely focus on
specific application contexts like embedded systems, but rather aim to describe
and specify arbitrary software and/or hardware applications. This overall idea is
not new, but our approach to achieve this goal of generic transformations is dif-
ferent from a language engineering perspective, because we set our ASM-based
IR into the center of the front-end language development. Other ASM language
approaches, which are described in Sect. 5, do not, because they implement a
forward directed transformation from ASM to the desired target language like
C or C++. The transformation of ASM source specifications to specific target
languages is by no means trivial. It involves the mapping of a mathematical-
based specification model to a real executable program, which for itself resides
in a specific execution environment.

ASM Source Modeling Language

ASM-aware Intermediate Representation

ASM-unaware Intermediate Representation

Software and/or Hardware Target Language

Fig. 1. CASM system abstraction layers

To overcome this complex transformation, we proposed and followed a model-
based transformation approach in our earlier work [13], which defines four
abstraction layers (illustrated in Fig. 1). At the top resides the ASM Source
Modeling Language layer that includes besides the language grammar definition
the lexer, parser, type inference, type checker, and Abstract Syntax Tree (AST)
representation. A parsed input specification gets translated to the next layer,
the ASM-aware Intermediate Representation layer. At this abstraction layer the
CASM-IR, proposed in this paper, is defined. It allows us to analyze, transform
and optimize the input specification for ASM related properties.

The CASM-IR gets further transformed in the next layer called ASM-
unaware Intermediate Representation. At this abstraction layer the transformed
specification has no longer any knowledge about the semantics or behavior of
ASMs. Therefore it can be analyzed, transformed and optimized for traditional
properties like execution speed or program size. In the final layer of Fig. 1,
the ASM-unaware Intermediate Representation is mapped to various Software

2 For CASM project website, see: http://casm-lang.org.

http://casm-lang.org
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and/or Hardware Target Languages. Those CASM system abstraction layers
describe a full transformation of an ASM specification to its desired target lan-
guage. Due to the proposed layered structure, it is possible to only use a sub-set
of the full functionality as well. For example, AST-based execution is used to
recursively walk over the in-memory AST representation and interpret the input
specification as it was parsed. In the context of AST-based execution, language
engineers can (re)use the type system from the ASM-aware IR layer and can
rely on its defined behavior and semantics. Therefore the CASM-IR can be used
not only for transformation and code generation purposes, but also for AST-
based interpreter applications. Furthermore, besides ASM-based languages, this
proposed IR and its functionality could be used for other functional program-
ming languages as well for their function definitions, type relations, numeric and
symbolic computations. The approach to address the uniform ASM representa-
tion problem – introduced and described in Sect. 1 – with the CASM-IR raises
several concerns regarding its existence and usefulness. First of all, the effort to
investigate into such an IR design arises from the fact that accordingly to the
state-of-the-art and to our knowledge no comparable IR for ASM languages with
the focus on well-formed, reusable, retargetable, and optimizable ASM specifi-
cations exist yet. Second, as presented by Lezuo et al. [12], the optimization
potential is huge of ASM languages regarding redundancy eliminations, but still
not covered and addressed by any ASM language implementation in a unified
manner.

3 CASM-IR

This section describes our ASM-based IR design that can be (re)used for design-
ing and building ASM-based and other possible functional related specification
languages. Before we go into the details of the model and the format of this IR, we
first outline the composition of our CASM system [13]. Figure 2 depicts a more
detailed overview of the sketched abstraction layers from Sect. 2 (see Fig. 1). A
parsed ASM source – in our case the CASM language – gets translated to an
AST representation and necessary type information gets inferred. In order to do
so, the CASM-IR – depicted as Model (IR) – needs to provide type information
for all possible operators and their type relations, which a language front-end
can use, to implement a type inference pass. Furthermore, the CASM-IR model
provides the ability to directly implement AST-based interpreter applications
on top of it, because language front-ends can access the implemented run-time
of the IR to evaluate expressions and terms.

If the execution shall be done directly using the IR model itself, a language
front-end just has to perform a model-to-model transformation from its AST-
based representation to an instance of this IR model. At this point the IR can
optimize the specification for ASM-related properties fully decoupled from the
original input specification in form of an AST representation. Some optimization
properties were proposed by Lezuo et al. [12]. Furthermore, then the IR instance
can be executed by the run-time implementation of the IR model.
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Fig. 2. CASM system design (high-level overview)

For further processing (code generation) of the specification to a specific pro-
gramming target language, the IR instance can be transformed into an Emitting
Language (EL) model, as proposed in our earlier work [13]. Details about the
EL model are out of the scope of this paper.

3.1 Motivating Example

To better understand the solving of the research question regarding the uniform
ASM representation problem that CASM-IR deals with, we describe a small
ASM specification and point out the issues, which are addressed by the CASM-
IR design and implementation. Listing 1.1 on Page 6 depicts a valid (high-level)
CASM specification of a modeled swap algorithm3. It defines a rule swap (Line
6) and two nullary functions x (Line 3) and y (Line 4) of result type integer.
The init (Line 1) defines a single execution agent with starting top-level rule
swap. Rule swap defines a parallel block rule (Line 7-11) and three update rules.
The first two update rules (Line 8-9) are producing updates to swap the function
values from x and y. In the last update rule (Line 10), the ASM program function
gets updated with an undefined value, which results into a termination of the
specification, because the single execution agent top-level rule gets set to an
undefined value and therefore the ASM execution concludes the model execution.

To get a feel for the expressed swap algorithm ASM specification in other
ASM languages, we depict three further examples of the same algorithm mod-
eled in AsmL [14] (Listing 1.2), CoreASM [15] (Listing 1.3), and Asmeta [16]
(Listing 1.4). Even in this small specification, several behaviors and definitions
are implicit and slightly different in the various ASM languages. E.g. the used
function program (Listing 1.1 at Line 10) is not an explicitly defined function
in this valid CASM specification, because this function definition is hidden from
the language user and it gets implicitly defined, because it depends on an agent
type domain. The type relation of this function would be a projection of the

3 For CASM concrete syntax description, see: http://casm-lang.org/syntax.

http://casm-lang.org/syntax
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1 CASM init swap
2

3 function x : -> Integer
4 function y : -> Integer
5

6 rule swap =
7 {
8 x := y
9 y := x

10 program( self ) := undef
11 }

Listing 1.1. Swap Example (CASM)

1 var x as Integer
2 var y as Integer
3

4 swap()
5 x := y
6 y := x
7

8 Main()
9 swap()

10 step
11 // terminates after this step

Listing 1.2. Swap Example (AsmL)

1 CoreASM swap
2 use StandardPlugins
3 init swap
4

5 function x : -> Integer
6 function y : -> Integer
7

8 rule swap =
9 par

10 x := y
11 y := x
12 program( self ) := undef
13 endpar

Listing 1.3. Swap Example (CoreASM)

1 asm swap
2 import ../ STDL/StandardLibrary
3

4 signature:
5 dynamic controlled x : Integer
6 dynamic controlled y : Integer
7

8 definitions:
9 main rule swap =

10 par
11 x := y
12 y := x
13 endpar

Listing 1.4. Swap Example (Asmeta)

current agent type domain to a stored top-level rule, which is similar in the
CoreASM specification (Listing 1.3 at Line 12). Furthermore, the initialization
of this program function to the rule swap is implicit as well. In CASM and
CoreASM this is achieved by setting the underlying agent through the init def-
inition (Listing 1.1 at Line 1, and Listing 1.3 at Line 3). Similar behavior can be
achieved in Asmeta by setting a certain rule to a main rule (Listing 1.4 at Line
9) or in AsmL which forces the uses to define a Main() rule (Listing 1.2 at Line
8) which controls the computation directly. Moreover, it can be observed that
the swap examples of CASM and CoreASM explicitly define the termination of
the specification whereas the swap examples written in AsmL and Asmeta do
not.

In order to implement e.g. an AST-based interpreter to execute this specifi-
cations a language engineer would have to implement a run-time kernel, which
handles those implicit defined behaviors. Furthermore, if we think about opti-
mizing such specifications, implicitly defined behaviors cannot be optimized and
addressed by transformation passes in a generic way.

Generally speaking we have discovered two implicit behaviors – initialization
of functions and agent life cycle handling. Latter is very important if we consider
synchronous and asynchronous multi-agent ASM specifications. To express ASM
specifications in a well-formed IR we present in the following sub-sections the
definition of our CASM-IR model and its textual representation.
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3.2 Types, Constants, and Functions

Due to the fact that every ASM-based language will eventually be executed by a
real machine a term, expression or even a value will have a concrete type. Even
Gurevich [2] suggested his ASM language definition lacks explicit typing, and
it would be more practical to introduce such. Therefore, in the center of our
CASM-IR model stands the type system with all of its possible type domains,
which we will call from now on just types4. An overview is depicted in Fig. 3.
We can observe that the type system defines very basic (Primitive) types like
Boolean or Integer up to very abstract ones (Template) like List or File.

TypeSynthetic

Composed
Primitive

Template

Reference

Location RelationLabelVoid

IntegerBinaryBoolean Rational Decimal String

Rule Function

Record

Enumeration

Tuple
List

Range

File

Port

Fig. 3. CASM-IR type system (inheritance tree)

Notable to mention here in contrast to other ASM languages is that CASM-
IR always tries to be as close as possible to the mathematical foundation of a
type. This means e.g. the Integer representation is represented as an arbitrary
precise Integer with range ]−∞,∞[. There is even the possibility – similar to the
Ada programming language – to restrict the type to a certain sub-range. Fur-
thermore, CASM-IR introduces a Binary type which can be used to represent
any binary bit-precise value with defined bit-size. Along with this type CASM-IR
features a set of Binary built-in5 arithmetic operations. In the implementation
of Lezuo et al. [12] this type was indirectly specified with Integer types by lim-
iting built-in operations over a predefined bit-size values and the language itself
was not aware of these operations. Another novel type in CASM-IR compared to
other languages is that it features a Reference type. All references to rules, func-
tions, and derived functions have to be typed to ensure type safety for indirect
calls. Due to the mathematical foundation of ASMs, all typed CASM-IR con-
stants6 can have besides the type-specified (domain) content, an undefined value.
Furthermore, we directly include in CASM-IR the notion of symbolic values that
enable a clear definition of numeric as well as symbolic execution, whereas the
symbolic values are its own domain value as suggested by Lezuo [6].
4 For CASM-IR type specification, see: http://casm-lang.org/ir/types.
5 For CASM-IR built-in specification, see: http://casm-lang.org/ir/builtins.
6 For CASM-IR constant specification, see: http://casm-lang.org/ir/constants.

http://casm-lang.org/ir/types
http://casm-lang.org/ir/builtins
http://casm-lang.org/ir/constants
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1 ;; integer constant ’123’
2 @c0 = i 123
3 ;; ’undefined ’ rule reference
4 ;; constant of relation : -> Void
5 @c1 = r< -> v > undef
6 ;; function definition ’foo ’
7 ;; with relation:
8 ;; Boolean * Rational -> Integer
9 @foo = < b * q -> i >

Listing 1.5. Constants and Functions

1 ;; enumeration type definition
2 bar = { A, B, C }
3 ;; setting agent type domain
4 ;; to enumeration type ’bar ’
5 .agent = bar
6 ;; function definition ’program ’
7 ;; with relation:
8 ;; bar -> RuleRef < -> Void >
9 @program = < bar -> r< -> v > >

Listing 1.6. Enum. and Agents

States are modeled through the function definitions7. As defined in [17] every
ASM function has a name and an arbitrary type relation. By default every
function – accordingly to the ASM definition – is undefined over its type relation
domain and needs to be explicitly initialized in CASM-IR. Listing 1.5 on Page
8 depicts a constant @c0 of type Integer and value 123, a constant @c1 of type
Rule Reference with relation :→ V oid and an undefined value, and a function
foo with relation : Boolean ∗ Rational → Integer.

3.3 Agents, Rules, and Deriveds

ASM specifications can either be single or multi execution agent-based systems
[1]. Therefore we provide a model instance to declare only the agent type domain
that directly results in the desired behavior. For instance, if we would define
the agent type domain to a Boolean type, we would define two operational
agents. The agent type domain has an important role in the execution of all
ASM specifications because starting from a defined agent rule the nested rules
get called and so on. Furthermore, the defined agent domain is also used in a
special internal function named program to store the current agent top-level
rule as a rule reference. Listing 1.6 depicts how to set the model instance of
the current agent type domain. In Line 2 an enumeration type bar gets defined
with enumerators A, B, and C, and in Line 5 the agent type domain gets set to
the type bar. Therefore we have specified in this example a multi-agent ASM
with three agents. As already mentioned in Sect. 3.1 there is a special function
named program that controls the execution of the agents in its kernel of ASM
specifications which heavily depends on the agent type domain. Line 9 shows
the corresponding program function definition with the agent type domain bar.
The actual computation in ASMs is specified through transition rules. CASM-IR
also has the notion of rules, but only for the named rule definitions. Other ASM
rules like Update, Conditional, Forall, Choose, etc. are represented in CASM-IR
through nested blocks and instructions (see Sect. 3.4).

Another important specification component in CASM-IR are derived func-
tions or deriveds for short. It can be seen as a kind of typed macro to reuse
state-less or side-effect free calculations. This means, that in deriveds, no state

7 For CASM-IR function specification, see: http://casm-lang.org/ir/functions.

http://casm-lang.org/ir/functions
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1 %r0 = ;; ... calculation which yields result of type ’i’
2 %r1 = location < i -> i> @foo , i %r0 ;; yields type ’loc ’
3 %r2 = lookup loc %r1 ;; yields type ’i’
4 %r3 = ;; ... calculation which yields result of type ’i’ and uses ’%r2 ’
5 update loc %r1, i %r3 ;; produces an update to function ’foo ’

Listing 1.7. Location-, Lookup-, and Update-Instruction

changes are allowed to be performed; ergo, no Update rules are allowed in derived
function definitions.

3.4 Blocks, Instructions, and Registers

All basic expressions and state-modifying rules are represented in CASM-IR as
Instructions in a Single Static Assignment (SSA) form. So produced results of
instructions are stored in registers and the type is directly yielded from the spec-
ified instruction. This conceptual idea is borrowed from the Low Level Virtual
Machine (LLVM) compiler IR design by Lattner and Adve [18]. So any instruc-
tion call can be specified by a resulting unique register name, an instruction name
and possible instruction operands with explicit types. This also indicates that
the CASM-IR follows a register machine design and implementation approach.

Basic ASM rules like skip, choose, or the definition of execution semantics
(fork and merge) are represented as single instructions. Novel in CASM-IR is
that it explicitly models the reading (lookup) and writing (update) of ASM func-
tion states by dedicated instructions. This allows to analyze and optimize CASM-
IR specifications as suggested by Lezuo et al. [12]. A location instruction performs
the function location calculation. How the location is calculated is not fixed and
has to be decided in the run-time implementation. E.g. a common technique
would be the calculation of a function location by a certain hashing algorithm.
The lookup instruction determines at a certain point in the specification, which
state value is assigned to a certain function depending on the nested parallel
and sequential execution semantics. The argument needed to perform a lookup
is a location constant. An update instruction produces a new location and value
pair, which gets applied to the surrounding (local) function state also known
as pseudo state [12]. Therefore, an update instruction needs, besides the exact
calculated function location, a value operand.

Listing 1.7 depicts an example usage of the location, lookup, and update
instruction. In Line 2 a location calculation is performed for the function foo
which has accordingly to the type one Integer argument. At Line 3 the actual
lookup of the function value is performed. And in Line 5, a new update is per-
formed to the same location were the lookup was performed. Similar to tradi-
tional assembler languages, the CASM-IR includes a call instruction as well, but
this call instruction is used for multiple invocation types. It is used to call speci-
fied rules, derived functions, and pre-defined built-ins either directly by its name
or indirectly through a register value of a reference type. Besides the generic call
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instruction there exist several instructions to perform intermediate calculations
of arithmetic, logical, and comparison operations8.

Multiple instructions are compound to a Statement Block (SB) whereas the
execution semantics of the instructions is always sequential. Several blocks are
grouped together and form an Execution Semantics Block (ESB) which can
either have a parallel or sequential execution semantics. Additionally, every ESB
contains, besides the sub-blocks, an entry and an exit SB, in which the actual
execution semantics is specified by appropriate fork and merge instructions.
Figure 4 on Page 10 depicts the composition of rules, the ESB and SB blocks as
well as instructions.

Rule Exec. Sem. Block Statement Block Instruction
1..* 1..*

entry

exit

Fig. 4. CASM-IR rules, blocks, and instructions

3.5 Motivating Swap Example in CASM-IR

In this section we present an example output of the transformed motivating
example swap CASM specification from Listing 1.1 to our CASM-IR. The per-
formed model-to-model transformation is implemented in the CASM front-end
(see Sect. 4). It shall summarize several of the presented concepts and sketch
some optimization possibilities, which can be obtained through the represen-
tation of ASM specifications in the CASM-IR. Note that this presented trans-
formed motivated example is valid for the other presented ASM swap specifica-
tions as well (Listing 1.2, Listing 1.3, and Listing 1.4).

Listing 1.8 on Page 10 visualizes a CASM-IR instance, where the missing
definitions and implicit behaviors from Listing 1.1 are explicitly specified. In
the transformed specification we can observe that first of all the agent type
domain gets set to a enumeration type named a (Line 3) with the name $ (Line
2). This means that the agent type domain consists of only one concrete value
and hence we have a single execution agent ASM specification. Thereafter, a
forward declaration of the rule swap is specified (Line 4) because the next listed
constants (Line 5-8) contain the symbol of the swap rule to define a rule reference
constant. Next, three functions are defined. The program function (Line 9) with
the previous defined agent type domain that stores the ASM agent top-level
rule reference. After that the functions x (Line 10) and y (Line 11) are defined
accordingly to the originally input specification. Before the definition of the
swap rule gets defined, the initialization of the ASM state has to be specified,
which at least has to set the correct starting rule of the agents. Note that all
8 For CASM-IR instr. specification, see: http://casm-lang.org/ir/instructions.

http://casm-lang.org/ir/instructions


CASM-IR: Uniform ASM-Based Intermediate Representation 49

1 CASM -IR ;; CASM -IR specification header
2 a = { $ } ;; definition of enum. type ’a’
3 .agent = a ;; set agent type domain to type ’a’
4 @swap < -> v> ;; declaration of rule ’swap ’
5 @c0 = r< -> v> @swap ;; ’swap ’ rule reference
6 @c1 = a $ ;; agent constant of single agent
7 @c2 = r< -> v> undef ;; undefined rule reference
8 @c3 = a $ ;; agent constant of single agent
9 @program = <a -> r< -> v>> ;; ’program ’ function definition

10 @x = < -> i> ;; definition of function ’x’
11 @y = < -> i> ;; definition of function ’y’
12 @init -> v = { ;; definition of ’init ’ rule
13 lbl0: entry ;; ESB entry block of lbl0
14 fork par ;; fork instruction parallel
15

16 lbl1: %lbl0 ;; SB lbl1 in ESB lbl0
17 %r0 = location <a -> r< -> v>> @program , a @c1
18 update loc %r0, r< -> v> @c0
19

20 exit: %lbl0 ;; ESB exit block of lbl0
21 merge par ;; merge instruction parallel
22 }
23 @swap -> v = { ;; definition of ’swap ’ rule
24 lbl2: entry ;; ESB entry block of lbl2
25 fork par ;; fork instruction parallel
26

27 lbl3: %lbl2 ;; SB lbl3 in ESB lbl2
28 %r1 = location < -> i> @y
29 %r2 = lookup loc %r1 ;; lookup of function ’y’
30 %r3 = location < -> i> @x
31 update loc %r3, i %r2 ;; update of function ’x’
32

33 lbl4: %lbl2 ;; SB lbl4 in ESB lbl2
34 %r4 = location < -> i> @x
35 %r5 = lookup loc %r4 ;; lookup of function ’x’
36 %r6 = location < -> i> @y
37 update loc %r6, i %r5 ;; update of function ’y’
38

39 lbl5: %lbl2
40 %r7 = location <a -> r< -> v>> @program , a @c3
41 update loc %r7, r< -> v> @c2
42

43 exit: %lbl2 ;; ESB exit block of lbl2
44 merge par ;; merge instruction parallel
45 }

Listing 1.8. Swap Example (CASM-IR)

function states in ASMs are by default undefined. Last but not least the rule
swap gets defined. It contains a parallel execution semantics block with three
trivial statements and several location, lookup and update instructions.

Regarding the optimization potential in this revised example we can detect
several possible ASM-related optimizations. The most obvious one would be a
hoisting optimization of redundant location calculations, because the location of
nullary functions will always be the same. The calculation e.g. of the location of
function y at register %r1 (Line 28) could be moved up before the fork instruction
of the entry section at lbl2 (Line 24). And the location calculation of function
y at the register %r6 (Line 36) can be removed and all its uses can be replaced
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by %r1. The same applies for the location of function x and register %r3 and %r4
(Line 30, Line 34).

IR
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(CASM)
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(CASM)

Run-Time
(CASM)
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(CJEL)
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(CJEL)
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depends

depends
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depends
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Fig. 5. CASM system implementation (library dependency graph)

4 Implementation and Integration

Figure 5 depicts the CASM system implementation libraries visualized as a
library dependency graph. The CASM run-time and back-end libraries are
based on corresponding CASM unaware Just-in-time Emitting Language (CJEL)
libraries (situated one layer below the CASM libraries). The CJEL layer is not
described in this paper. All libraries are implemented in C++11/14 standard.

The implementation of the CASM-IR model consists of two major base
classes - Type and Value. The type system and type hierarchy is implemented
according to the definition presented in Sect. 3.2. All other model instances are
sub-classes of the Value class. This design approach was borrowed again from
the LLVM compiler project where everything is a value [18]. Furthermore, every
value has a type. The CASM-IR implementation provides a rich Application
Programming Interface (API) to provide certain information to front-end imple-
mentations. To be more precise here, for every instruction and built-in, it is
possible to fetch all defined type relations through an internal type map struc-
ture. This enables a clean separation between a front-end language definition
and the IR internals.

Based on the CASM-IR, we have designed our CASM language front-end.
Compared to the CASM language implementations from Lezuo et al. [12] the
AST has resulted in a much simpler and clearer design then before, because all
type, operator, and built-in design decisions were already made in the CASM-
IR implementation. Therefore the AST only focuses on the input language
itself. CASM is a statically strong inferred typed language. Hence, the difference
between the front-end CASM input specification language and the CASM-IR
model is that the front-end language requires a symbol resolver, type checker
and type inference pass to fully type the parsed input specification AST rep-
resentation. In the analyzer passes we use the provided API of the CASM-IR
to query and check if certain types, built-ins, and operators exist. Furthermore,
during type inference, the front-end can infer the correct type through the pre-
defined type relations of the specified CASM-IR operators. E.g. if a type is not
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possible to be inferred in the front-end, the possible types can be retrieved from
the CASM-IR and used as helpful debugging information for language users.

Besides type inference and other analyzes done by the front-end implemen-
tation, the most important benefit of targeting the CASM-IR is that a language
front-end engineer can directly call evaluation instrumentation functions of the
CASM-IR to perform calculations of operator instructions and built-ins.

5 Related Work

One of the best-known ASM implementations is the Asmeta9 tool-set with the
AsmetaL language [16]. The core of Asmeta is designed and implemented using
the Eclipse Modeling Framework (EMF) Ecore meta-model10. Based on the
Ecore meta-model, the ASM language model of Asmeta is directly described
as an instance (model). Therefore, the execution and precise calculation of the
implemented ASM simulator is bound to the run-time implementation of the
Ecore meta-model and its EMFs Java interface realizations.

Another notable ASM design and implementation is CoreASM 11 originally
developed by Farahbod et al. [15]. The focus of CoreASM is to provide a flex-
ible and extensible ASM implementation and to be as near as possible to the
described ASM method by Börger [17]. CoreASM is implemented in Java and its
IR and run-time is directly bound to the Java Virtual Machine (JVM). Microsoft
research designed and implemented an ASM language named AsmL12 [14]. AsmL
is implemented and based to the .NET framework.

Besides CASM-IR, which solves a uniform ASM intermediate representation
to be language front-end independent, Arcaini et al. [19] proposed a Unified
Abstract State Machines (UASM) language syntax. Their approach is to unify
the front-end ASM syntax representation and this is in the perspective of CASM-
IR yet another ASM front-end input specification. Similar to the ASM language
proposed by Anlauff [20], the eXtensible ASM (XASM) language13, which com-
piles XASM specifications to C.

Lezuo and Krall [21] introduced in 2013 the CASM language. The origin
of this language was that all the (publicly available) existing ASM tools were
impracticable for industrial sized applications [22]. The tool-chain presented by
Lezuo et al. [12] focuses like the other ASM designs only on the input specifi-
cation itself, thus those research results were not directly usable by other ASM-
based language frameworks. The latter motivated, as already stated in Sect. 2,
to rethink the proposed ASM language engineering designs and implementa-
tions, leading to our model-based transformation approach [13] for the CASM
language14.

9 For Asmeta project, see: http://asmeta.sourceforge.net.
10 For EMF project, see: http://eclipse.org/modeling/emf.
11 For CoreASM open-source project, see: http://github.com/coreasm.
12 For AsmL documentation and project, see: http://asml.codeplex.com.
13 For XASM documentation, see http://sourceforge.net/projects/xasm.
14 For CASM open-source project, see: http://github.com/casm-lang.

http://asmeta.sourceforge.net
http://eclipse.org/modeling/emf
http://github.com/coreasm
http://asml.codeplex.com
http://sourceforge.net/projects/xasm
http://github.com/casm-lang
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Different representation and transformation approaches have been investi-
gated in the AsmGofer language by Schmid [23], which is based on the pro-
gramming language Gofer (similar to Haskell), and the ASM Workbench with
the ASM-SL language introduced by Del Castillo [24], which is implemented in
Standard ML. The ASM-SL has been explored further by Schmid [25] to rep-
resent and encode specifications in C++. The translation (compilation) scheme
was limited to a double buffering concept and therefore unable to encode mixing
sequential and parallel rules. CASM-IR solves this by using block-level nested
fork and merge instructions to control the update-set behavior.

Another transformation scheme for ASMs was presented by Bonfanti et al.
[26] to represent and encode AsmetaL specifications in C++ code targeting
Arduino platforms. Their code generator directly converts the ASM specifica-
tion to the desired target language and run-time environment. By targeting a
different target run-time environment, platform, or architecture the encoded and
implement ASM behavior would have to be re-implemented in every code gen-
erator.

Important to point out is that CASM-IR tries to establish a mid-end IR for
ASM-based languages similar to the approach for classical programming lan-
guage IR models such as GCCs GENERIC and GIMPLE by Merrill [27] or the
LLVM IR by Lattner and Adve [18].

6 Conclusion

We have presented in this paper CASM-IR, a statically and strongly typed, well-
formed ASM-based IR, to provide the ability for ASM-based language engineers
to specify the internals of their ASM language in a well-defined representation
model. Besides the type system, agent, functions, deriveds, rules, blocks, and
instruction semantics, we discussed ASM properties, which are indirectly repre-
sented in ASM source languages and made explicitly and typed in the CASM-IR.
There are several other issues regarding implicit behavior in ASM-based high-
level languages we could point out, but it would go beyond of the scope of this
paper. We have given a short overview of our implementation, corresponding
libraries, and discussed the usefulness of our approach.

Regarding the CASM-IR itself, there is a lot of future work in the direction
of the type system. The providing of types like trees, sets, bags, and so on,
is still an open topic. We are already working on the implementation, formal
definition and verification of ASM-related optimization transformations based on
the gained knowledge from Lezuo et al. [12] for our CASM-IR. Another research
direction we are working on is the byte-code representation of the CASM-IR.
This would allow the implementation of very compact virtual machines for ASM-
based specifications.
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Abstract. This paper is about the extension of the SysML/KAOS
requirements engineering method with domain models expressed as
ontologies. More precisely, it concerns the translation of these ontolo-
gies into B System for system construction. The contributions of this
paper are twofold. The first one is a formal semantics for the ontology
modeling language. The second one is the formal definition of translation
rules between ontologies and B system specifications in order to provide
the structural part of the formal specification. These translation rules
are modeled in Event-B. Their consistency and completeness are proved
using Rodin. We show that they are structure preserving (two related ele-
ments within the source model remain related within the target model),
by proving various isomorphisms between the ontology and the B System
specification.

Keywords: Event-B · B system · Domain modeling · Ontologies
SysML/KAOS

1 Introduction

Our study, part of the FORMOSE project [5], focuses on an approach for design-
ing systems in critical areas such as railway or aeronautics. The development
of such systems, in view of their complexity, requires several verifications and
validation steps, more or less formal, with regard to the current regulations.
In [17], rules have been defined in order to produce a formal specification from
SysML/KAOS goal models [11,16]. Nevertheless, the generated specification did
not contain the system state. This is why in [16], we have presented the use of
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ontologies and UML class and object diagrams for domain properties representa-
tion; we have also introduced rules to derive the system state from these domain
representations. Unfortunately, the proposed approach raised several concerns
such as the use of several modeling formalisms for the representation of domain
knowledge or the disregard of the variability aspect of domain models. In addi-
tion, the proposed rules were incomplete and informal. We have therefore pro-
posed in [24] a language for domain knowledge representation through ontologies
that meets the shortcomings of [16]. The language allows a high-level modeling
of domain properties. This enables the expression of more precise and complete
properties. In this paper, we propose rules for translating SysML/KAOS domain
models into B System specifications. These rules have all been defined and the
most relevant ones have been formally specified with Event-B [1] and verified
with Rodin [8]. The formalisation activity is necessary to assess the quality of the
SysML/KAOS domain metamodel and of the translation rules, given the criti-
cality of application domains. The Event-B method has been chosen because it
involves intuitive mathematical concepts and has a powerful refinement logic. It
has also been chosen because it is supported by industrial-strength tools. This
work contributes to define a formal semantics for the SysML/KAOS domain
modeling language, through the definition of its metamodel and its associated
constraints in the form of Event-B specifications. In the paper, we provide the
formal definition of some translation rules, chosen because they are representa-
tive of our work and summarise the benefits and difficulties of their expression
and verification with Rodin. The approach has been used to deal with the Hybrid
ERTMS/ETCS level 3 case study [12]. It has also been applied on the landing
gear system case study [7] and on other case studies (see [28]). The presentation
of the work done on the case studies is out of the scope of this paper, but we
use an excerpt from the landing gear system case study to illustrate our work.
The remainder of this paper is structured as follows: Sect. 2 briefly describes the
key concepts related to the study. This is followed by a presentation, in Sect. 3,
of the specification in Event-B, of the B System and SysML/KAOS domain
metamodels. In Sect. 4, we describe some representative translation rules and
we provide their formal definition. Section 5 underlines the benefits of using the
Event-B method for the expression and validation of rules and some challenges
encountered. It ends with a positioning of our work with regard to the state of
the art. Finally, Sect. 6 reports our conclusions and discusses future work.

2 Context

2.1 SysML/KAOS

SysML/KAOS [11,16] is a requirements engineering method which extends the
SysML UML profile with a set of concepts from KAOS [15] allowing to represent
functional and non-functional requirements. It combines the traceability features
provided by SysML with goal expressiveness provided by KAOS. SysML/KAOS
goal models allow the representation of requirements to be satisfied by the system
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and of expectations with regard to the environment through a goal hierarchy.
The hierarchy is built through a succession of refinements using different oper-
ators: AND and OR. An AND refinement decomposes a goal into subgoals,
and all of them must be achieved to realise the parent goal. An OR refine-
ment decomposes a goal into subgoals such that the achievement of only one
of them is sufficient for the accomplishment of the parent goal. The formalisa-
tion of SysML/KAOS goal models is detailed in [17]. The proposed rules allow
the generation of a formal model whose structure reflects the hierarchy of goal
diagrams: one component is associated with each level of the goal hierarchy;
this component defines one event for each goal. Proof obligations are defined to
formalise the semantics of refinement links between goals.

In this paper, we use the landing gear system case study to illustrate some
elements of our approach [7,28]. Figure 1 is an excerpt from its goal diagram
focused on the purpose of landing gear expansion (makeLGExtended). To
achieve it, the handle must be put down (putHandleDown) and landing gear
sets must be extended (makeLSExtended).

Fig. 1. Excerpt from the landing gear
system goal diagram

Fig. 2. Excerpt from the ontology associ-
ated with the root level of the goal model

2.2 Domain Modeling in SysML/KAOS

The SysML/KAOS domain modeling language [24,27] uses ontologies to repre-
sent domain models. It is based on OWL [21] and PLIB [19], two well-known and
complementary ontology modeling languages. Figure 3 is an excerpt of its meta-
model. The parent association represents the hierarchy of domain models. Each
domain model corresponds to a refinement level in the SysML/KAOS goal model.
A concept (instance of metaclass Concept) represents a collection of individuals
with common properties. A concept can be declared variable (isVariable= true)
when the set of its individuals can be updated by adding or deleting individuals.
Otherwise, it is constant (isVariable= false). Figure 2 gives an excerpt from the
domain model associated to the root level of the landing gear system goal model.

In the rest of this paper, source is used in place of SysML/KAOS domain
model.
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DomainModel

+ name : string

Concept

+ name : string
+ isVariable : boolean

Individual

+nameparent

0..1

0..1
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*
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parentConcept
0..1

*

 individualOf

1

 type

Fig. 3. Excerpt from the metamodel associated with the domain modeling language

2.3 Event-B and B System

Event-B [1] is an industrial-strength formal method for system modeling. It is
used to incrementally construct a system specification, using refinement, and to
prove useful properties. B System is an Event-B syntactic variant proposed by
ClearSy, an industrial partner in the FORMOSE project [5], and supported by
Atelier B [9]. Event-B and B System have the same semantics defined by proof
obligations [1].

Fig. 4. Metamodel of the B System specification language

Figure 4 is a metamodel of the B System language restricted to concepts that
are relevant to us. A B System specification consists of components (instances of
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Component). Each component can be either a system or a refinement and it may
define static or dynamic elements. A refinement is a component which refines
another one in order to access the elements defined in it and to reuse them for
new constructions. Constants, abstract and enumerated sets, and their proper-
ties, constitute the static part. The dynamic part includes the representation of
the system state using variables constrained through invariants and initialised
through initialisation actions. Properties and invariants can be categorised as
instances of LogicFormula. Variables can be involved only in invariants. In our
case, it is sufficient to consider that logic formulas are successions of operands
in relation through operators. Thus, an instance of LogicFormula references its
operators (instances of Operator) and its operands that may be instances of
Variable, Constant, Set or SetItem. Operators include, but are not limited to1,
Inclusion OP which is used to assert that the first operand is a subset of the
second operand ((Inclusion OP, [op1, op2]) ⇔ op1 ⊆ op2) and Belonging OP
which is used to assert that the first operand is an element of the second operand
((Belonging OP, [op1, op2]) ⇔ op1 ∈ op2).

In the rest of this paper, target is used in place of B System.

3 Specification of Source and Target Metamodels in
Event-B

As we have chosen Event-B to express and verify the translation rules between
the source and target metamodels, the first step is to specify them in Event-B.
This also allows us to formally define the semantics of SysML/KAOS domain
models. Figure 5 represents the structure of the whole Event-B specification. This
specification can only be split into two abstraction levels because all the trans-
lation rules use the class LogicFormula, except those related to the class Domain-
Model. The first machine, Ontologies BSystem specs translation, contains
the rules for the translation of instances of DomainModel into instances of
Component. The other rules are defined in the machine Ontologies BSystem -
specs translation ref 1. We have defined static elements of the target meta-
model in a context named BSystem Metamodel Context and static elements of

Fig. 5. Structure of the Event-B specification

1 The full list can be found in [26].
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the source metamodel in the one named Domain Metamodel Context. The two
machines have access to the definitions of the contexts. For the sake of con-
cision, we provide only an illustrative excerpt of these Event-B specifications.
For instance, the model Ontologies BSystem specs translation ref 1 con-
tains more than a hundred variables, a hundred invariants and fifty events and
it gives rise to a thousand proof obligations. The full version can be found in
[25,26].

For the translation of some metamodel elements, we have followed the rules
proposed in [14,22], such as: classes which are not subclasses give rise to abstract
sets, each class gives rise to a variable typed as a subset and containing its
instances and each association or property gives rise to a variable typed as
a relation. For example, in the following specification, class DomainModel of
the source metamodel and class Component of the target metamodel give rise
to abstract sets representing all their possible instances. Variables are intro-
duced and typed (inv0 1, inv0 2 and inv0 3) to represent sets of defined
instances.

CONTEXT Domain Metamodel Context
SETS DomainModel Set
END

CONTEXT BSystem Metamodel Context
SETS Component Set
END

MACHINE Ontologies BSystem specs translation
VARIABLES Component System Refinement

DomainModel
INVARIANT
inv0 1: Component ⊆ Component Set
inv0 2: partition(Component, System,Refinement)

inv0 3: DomainModel ⊆ DomainModel Set
END

UML enumerations are represented as Event-B enumerated sets. For exam-
ple, in the following specification, defined in BSystem Metamodel Context, class
Operator of the target metamodel is represented as an enumerated set containing
the constants Inclusion OP and Belonging OP.

SETS Operator

CONSTANTS Inclusion OP Belonging OP

AXIOMS axiom1: partition(Operator, {Inclusion OP}, {Belonging OP}

Variables are also used to represent attributes and associations [14,22] such
as the attribute isVariable of the class Concept in the source metamodel (inv1 5)
and the association definedIn between the classes Constant and Component in
the target metamodel (inv1 7). To avoid ambiguity, we have prefixed and suf-
fixed each element name with that of the class to which it is attached (e.g.
Concept isVariable or Constant definedIn Component). Furthermore, for
better readability of the specification, we have chosen to add “s” to the name of
all Event-B relations for which an image is a set (e.g. Constant isInvolvedIn -
LogicFormulas or Invariant involves Variables).
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MACHINE Ontologies BSystem specs translation ref 1
VARIABLES Concept isVariable Constant definedIn Component Invariant involves Variables

Constant isInvolvedIn LogicFormulas
INVARIANT

inv1 5: Concept isV ariable ∈ Concept → BOOL
inv1 7: Constant definedIn Component ∈ Constant → Component
inv1 11: Invariant involves V ariables ∈ Invariant → (N1 �→ V ariable)
inv1 12: ran(union(ran(Invariant involves V ariables))) = V ariable
inv1 13: Constant isInvolvedIn LogicFormulas ∈ Constant → P1 (N1 × LogicFormula)
inv1 14: ∀co·(co ∈ Constant ⇒ ran(Constant isInvolvedIn LogicFormulas(co)) ∩

Property 
= ∅)
END

An association r from a class A to a class B to which the ordered con-
straint is attached is represented as a variable r typed through the invari-
ant r ∈ (A → (N1 �→ B)). This is for example the case of the asso-
ciation Invariant involves Variables of the target metamodel (inv1 11). If
instances of B have the same sequence number, then the invariant becomes
r ∈ (A → P1 (N1 × B)). This is for example the case of the associa-
tion Constant isInvolvedIn LogicFormulas of the target metamodel (inv1 13).
Invariant inv1 12 ensures that each variable is involved in at least one invariant
and inv1 14 ensures the same constraint for constants.

4 Translation Rules

4.1 Overview of Translation Rules

Table 1 summarises the translation rules. They are fully described in [26]. These
rules cover the formalisation of all elements of the source metamodel, from
domain models with or without parents to concepts with or without parents,
including relations, individuals or attributes. It should be noted that o x des-
ignates the result of the translation of x and that abstract is used for “without
parent”.

We are not interested in validating the transformation rules of predicates
because both source and target metamodels express them using first-order logic
notations. The translation of a predicate is a syntactic rewrite. The rules are
outlined in [26].

The translation of the ontology of Fig. 2 produces the specification below:

SYSTEM landing gear system ref 0
SETS LandingGear
CONSTANTS LG1

PROPERTIES
LG1 ∈ LandingGear ∧ LandingGear = {LG1}

The root domain model is translated into a system component named landing -
gear system ref 0 (line 1 of Table 1). The abstract set LandingGear appears
because LandingGear is an instance of the class Concept (line 3). The indi-
vidual LG1 gives rise to a constant LG1 ∈ LandingGear (line 8). The property
LandingGear = {LG1} translates the fact that the isVariable property of Land-
ingGear is set to false.
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Table 1. Summary of the translation rules

Domain model B system

Element Constraint Element Constraint

1 Abstract
domain
model

DM DM ∈ DomainModel
DM /∈ dom(DomainModel -
parent DomainModel)

o DM o DM ∈ System

2 Domain
model with
parent

DM
PDM

{DM,PDM} ⊆ DomainModel
DomainModel parent -
DomainModel(DM) = PDM

PDM has already been translated

o DM o DM ∈ Refinement
Refinement refines -
Component(o DM) =

o PDM

3 Abstract
concept

CO CO ∈ Concept
CO /∈ dom(Concept parentConcept Concept)

o CO o CO ∈ AbstractSet

4 Concept
with
parent

CO
PCO

{CO,PCO} ⊆ Concept
Concept parentConcept -
Concept(CO) = PCO

PCO has already been translated

o CO o CO ∈ Constant
o CO ⊆ o PCO

5 Relation RE CO1
CO2

{CO1, CO2} ⊆ Concept
RE ∈ Relation
Relation domain Concept(RE) = CO1

Relation range Concept(RE) = CO2

CO1 and CO2 have already been
translated

o RE IF (RE �→ FALSE) ∈
Relation isV ariable
THEN o RE ∈ Constant

ELSE o RE ∈ Variable

END

o RE ∈ o CO1 ↔
o CO2a

6 Attribute AT CO
DS

CO ∈ Concept
DS ∈ DataSet
AT ∈ Attribute
Attribute domain Concept(AT ) = CO

Attribute range Concept(AT ) = DS

CO and DS have already been
translated

o AT IF (AT �→ FALSE) ∈
Attribute isV ariable
THEN o AT ∈ Constant

ELSE o AT ∈ Variable

END

o AT ∈ o CO ↔ o DSb

7 Concept
variability

CO CO ∈ Concept
Concept isV ariable(CO) = TRUE

CO has already been translated

X CO X CO ∈ Variable
X CO ⊆ o CO

8 Individual Ind CO Ind ∈ Individual CO ∈ Concept
Individual individualOf Concept(Ind) =

CO (CO has already been translated)

o Ind o Ind ∈ Constant
o Ind ∈ o CO

aAs usual, this relation becomes a function, an injection, ... according to the cardinalities of RE.
bDepending on attribute properties, this relation may become a partial or total function.

4.2 Event-B Specification of Translation Rules

The correspondence links between instances of a class A of the source metamodel
and instances of a class B of the target metamodel are captured in a variable
named A corresp B typed by the invariant A corresp B ∈ A �� B. It is an
injection because each instance, on both sides, must have at most one corre-
spondence. The injection is partial because all the elements are not translated
at the same time. Thus, it is possible that at an intermediate state of the system,
there are elements not yet translated. For example, correspondence links between
instances of Concept and instances of AbstractSet are captured as follows

INVARIANTS inv1 8: Concept corresp AbstractSet ∈ Concept �� AbstractSet

Translation rules have been modeled as convergent events, this guarantees that
each rule will be triggered a finite number of times [1] (see Sect. 5.1). Each
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event execution translates an element of the source into the target. Variants and
event guards and type have been defined such that when the system reaches a
state where no transition is possible (deadlock state), all translations are done
(see Sect. 5.1). Up to fifty events have been specified. The rest of this section
provides an overview of the specification of some of these events in order to
illustrate the formalisation process and some of its benefits and difficulties. The
full specification can be found in [25,26].

Translating a Domain Model with Parent (Line 2 of Table 1). The corre-
sponding event is called domain model with parent to component. It states that
a domain model, associated with another one representing its parent, gives rise
to a refinement component.

MACHINE Ontologies BSystem specs translation
INVARIANT

inv0 6: Refinement refines Component ∈ Refinement � Component
inv0 7: ∀xx, px·( ( xx ∈ dom(DomainModel parent DomainModel) ∧ px = DomainModel -

parent DomainModel(xx)∧ px ∈ dom(DomainModel corresp Component)∧xx /∈dom(Domain-
Model corresp Component) ) ⇒ DomainModel corresp Component(px) /∈ ran(Refinement -
refines Component) )

Event domain model with parent to component 〈convergent〉 =̂
any DM PDM o DM
where
grd0: dom(DomainModel parent DomainModel) \ dom(DomainModel corresp Component) �= ∅
grd1: DM ∈ dom(DomainModel parent DomainModel) \ dom(DomainModel corresp Component)

grd2: dom(DomainModel corresp Component) 
= ∅
grd3: PDM ∈ dom(DomainModel corresp Component)
grd4: DomainModel parent DomainModel(DM) = PDM
grd5: Component Set \ Component 
= ∅
grd6: o DM ∈ Component Set \ Component

then
act1: Refinement := Refinement ∪ {o DM}
act2: Component := Component ∪ {o DM}
act3:

Refinement refines Component(o DM) := DomainModel corresp Component(PDM)
act4: DomainModel corresp Component(DM) := o DM

END
END

The refinement component must be the one refining the component correspond-
ing to the parent domain model. Guard grd1 is the main guard of the event. It
is used to ensure that the event will only handle instances of DomainModel with
parent and only instances which have not yet been translated. It also guarantee
that the event will be enabled until all these instances are translated. Action
act3 states that o DM refines the correspondent of PDM. To discharge, for this
event, the proof obligation related to the invariant inv0 6, it is necessary to
guarantee that, given a domain model m not translated yet, and its parent pm
that has been translated into component o pm, then o pm has no refinement
yet. This constraint is encoded by invariant inv0 7.

Translating a Concept with Parent (Line 4 of Table 1). This rule leads to
two events: the first one for when the parent concept corresponds to an abstract
set (the parent concept does not have a parent: line 3 of Table 1) and the second
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one for when the parent concept corresponds to a constant (the parent concept
has a parent: line 4 of Table 1). Below is the specification of the first event2.

Event concept with parent to constant 1 〈convergent〉 =̂
any CO o CO PCO o lg o PCO
where
grd1: CO ∈ dom(Concept parentConcept Concept) \ dom(Concept corresp Constant)
grd2: PCO ∈ dom(Concept corresp AbstractSet)
grd3: Concept parentConcept Concept(CO) = PCO
grd4: Concept definedIn DomainModel(CO) ∈ dom(DomainModel corresp Component)
grd5: o CO ∈ Constant Set \ Constant
grd6: o lg ∈ LogicFormula Set \ LogicFormula
grd7: o PCO = Concept corresp AbstractSet(PCO)

then
act1: Constant := Constant ∪ {o CO}
act2: Concept corresp Constant(CO) := o CO
act3: Constant definedIn Component(o CO) := DomainModel corresp Component(

Concept definedIn DomainModel(CO))
act4: Property := Property ∪ {o lg}
act5: LogicFormula := LogicFormula ∪ {o lg}
act6: LogicFormula uses Operators(o lg) := {1 �→ Inclusion OP}
act7: Constant isInvolvedIn LogicFormulas(o CO) := {1 �→ o lg}
act8: LogicFormula involves Sets(o lg) := {2 �→ o PCO}
act9: Constant typing Property(o CO) := o lg

END

The rule asserts that any concept, associated with another one, with the
parentConcept association, gives rise to a constant, typed as a subset of the B
System element corresponding to the parent concept. We use an instance of
LogicFormula, named o lg, to capture this constraint linking the concept and its
parent correspondents (o CO and o PCO). Guard grd2 constrains the parent
correspondent to be an instance of AbstractSet. Guard grd4 ensures that the
event will not be triggered until the translation of the domain model containing
the definition of the concept. Action act3 ensures that o CO is defined in the
component corresponding to the domain model where CO is defined. Action
act6 defines the operator used by o lg. Because the parent concept corresponds
to an abstract set, o CO is the only constant involved in o lg (act7); o PCO, the
second operand, is a set (act8). Finally, action act9 defines o lg as the typing
predicate of o CO.

The specification of the second event (when the parent concept corresponds
to a constant) is different from the specification of the first one in some points.
The three least trivial differences appear at guard grd2 and at actions act7
and act8. Guard grd2 constrains the parent correspondent to be an instance
of Constant: PCO ∈ dom(Concept corresp Constant). Thus, the first and the
second operands involved in o lg are constants:

act7: Constant isInvolvedIn LogicFormulas := Constant isInvolvedIn LogicFormulas �− {
(o CO �→ {1 �→ o lg}),
o PCO �→ Constant isInvolvedIn LogicFormulas(o PCO) ∪ {2 �→ o lg}}

act8: LogicFormula involves Sets(o lg) := ∅

2 Some guards and actions have been removed for the sake of concision.
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This approach to modeling logic formulas allows us to capture all the infor-
mation conveyed by the predicate which can then be used to make inferences and
semantic analysis. It is especially useful when we deal with rules to propagate
changes made to a generated B System specification back to the domain model
(ie, propagate changes made to the target into the source). The study of these
propagation rules will be the next step in our work.

5 Discussion and Experience

The rules that we propose allow the automatic translation of domain proper-
ties, modeled as ontologies, to B System specifications, in order to fill the gap
between the system textual description and the formal specification. It is thus
possible to benefit from all the advantages of a high-level modeling approach
within the framework of the formal specification of systems: decoupling between
formal specification handling difficulties and system modeling; better reusabil-
ity and readability of models; strong traceability between the system structure
and stakeholder needs. Applying the approach on case studies [28] allowed us
to quickly build the refinement hierarchy of the system and to determine and
express the safety invariants, without having to manipulate the formal specifica-
tions. Furthermore, it allows us to limit our formal specification to the perimeter
defined by the expressed needs. This step also allowed us to enrich the domain
modeling language expressiveness.

5.1 Benefits

Formally defining the SysML/KAOS domain modeling language, using Event-B,
allowed us to completely fulfill the criteria for it to be an ontology modeling for-
malism [4]. Furthermore, formally defining the rules in Event-B and discharging
the associated proof obligations allowed us to prove their consistency, to animate
them using ProB and to reveal several constraints (guards and invariants) that
were missing when designing the rules informally or when specifying the meta-
models. For instance: (1) if an instance of Concept x, with parent px does not
have a correspondent yet and if px does, then, the correspondent of px should not
be refined by any instance of Component (inv0 7 defined inOntologies BSys-
tem specs translation and described in Sect. 4.2); (2) elements of an enumer-
ated data set should have correspondents if and only if the enumerated data set
does; (3) if a concept, given as the domain of an attribute (instance of Attribute),
is variable, then the attribute must also be variable; the same constraint is needed
for the domain and the range of a relation. In case of absence of this last con-
straint, it is possible to reach a state where an attribute maplet (instance of
AttributeMaplet) is defined for a non-existing individual (because the individual
has been dynamically removed). These constraints have been integrated in the
SysML/KAOS domain modeling language in order to strengthen its semantics.

There are two essential properties that the specification of the rules must
ensure and that we have proved using Rodin. The first one is that the rules
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are isomorphisms and it guarantees that established links between elements of
the ontologies are preserved between the corresponding elements in the B System
specification and vice versa. To do this, we have introduced, for each link between
elements, an invariant guaranteeing the preservation of the corresponding link
between the correspondences and we have discharged the associated proof obliga-
tions. This leads to fifty invariants. For example, to ensure that for each domain
model pxx, parent of xx, the correspondent of xx refines the correspondent of pxx
and vice versa, we have defined the following invariants:

inv0 8: For each domain model pxx, parent of a domain model xx, when xx and pxx
will be translated, then the correspondence of xx will refine the correspondence of pxx :

∀xx, pxx·( (xx ∈ dom(DomainModel parent DomainModel)
∧ pxx = DomainModel parent DomainModel(xx)
∧{xx, pxx} ⊆ dom(DomainModel corresp Component))

⇒(DomainModel corresp Component(xx)∈dom(Refinement refines Component)
∧Refinement refines Component(DomainModel corresp Component(xx))

= DomainModel corresp Component(pxx)) )

Its dual version is defined by

inv0 9: For each component o xx, which refines a component o pxx, if o xx and o pxx
are introduced by translation rules, then the domain model corresponding to o pxx is
the parent of the domain model corresponding to o xx:

∀o xx, o pxx·( (o xx ∈ dom(Refinement refines Component)
∧ o pxx = Refinement refines Component(o xx)
∧{o xx, o pxx} ⊆ ran(DomainModel corresp Component))

⇒(DomainModel corresp Component−1(o xx)∈dom(DomainModel parent DomainModel)

∧DomainModel parent DomainModel(DomainModel corresp Component−1(o xx)) =

DomainModel corresp Component−1(o pxx)) )

The second essential property is to demonstrate that the system will always reach
a state where all translations have been established. To automatically prove it,
we have introduced, within each machine, a variant defined as the difference
between the set of elements to be translated and the set of elements already
translated. Then, each event representing a translation rule has been marked as
convergent and we have discharged the proof obligations ensuring that each of
them decreases the variant. For each rule, the number of elements to be trans-
lated is defined and finite; since we are sure, regarding the event convergence,
that each triggering of the rule translates an untranslated element, we are guar-
anteed that in a finite number of triggerings, all elements will be translated. For
example, in the machine Ontologies BSystem specs translation containing
the definition of translation rules from domain models to B System compo-
nents, the variant was defined as DomainModel\dom(DomainModel corresp -
Component). Thus, at the end of system execution, we will have dom(Domain-
Model corresp Component) = DomainModel, which will reflect the fact that
each domain model has been translated into a component.
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5.2 Challenges

There is no predefined type for ordered sets in Event-B. This problem led us to
the definition of composition of functions in order to define relations on ordered
sets. Moreover, because of the size of our model (about one hundred invariants
and about fifty events for each machine), we noted a rather significant per-
formance reduction of Rodin during some operations such as the execution of
auto-tactics or proof replay on undischarged proof obligations that have to be
done after each update in order to discharge all previously discharged proofs.
Table 2 summarises the key characteristics of the Rodin project corresponding
to the Event-B specification of metamodels and rules. The proof obligations
have been discharged using the Rodin tool extended with Atelier B provers [20]
and SMT solvers [23]. The automatic provers seemed least comfortable with
functions ( �→, ��,→, �→→) and become almost useless when those operators are
combined in definitions as for ordered associations (r ∈ (A → (N1 �→ B))).

Table 2. Key Characteristics of the Event-B specification rodin project

Characteristics Root level First refinement level

Events 3 50

Invariants 11 98

Proof obligations (PO) 37 990

Automatically discharged POs 27 274 (86 for the INITIALISATION event)

Interactively discharged POs 10 716 (Most used provers: ML, PP, SMTs)

5.3 Related Work

The study of correspondence links between domain models or ontologies and
formal methods has been the subject of numerous works. The work presented
in [6] is interested in describing entities, their mereology, their behaviours and
their transformations. Rules are provided for the formalisation of these elements.
On the other hand, our study is focused on the description of entities of a sys-
tem application domain and their instances, of their constraints and of their
attributes and associations. Moreover, our modeling is done through successive
refinements and the translation rules integrate the refinement links between mod-
ules. In [29], an approach is proposed for the automatic extraction of domain
knowledge, as OWL ontologies, from Z/Object-Z (OZ) models. A similar app-
roach is proposed in [10], for the extraction of DAML ontologies from Z models.
These approaches are interested in correspondence links between formal methods
and ontologies, but their rules are restricted to the extraction of domain model
elements from formal specifications. Furthermore, all elements extracted from
a formal model are defined within a single ontology component, while in our
approach, each ontology refinement level corresponds to a formal model com-
ponent. Some rules for passing from an OWL ontology representing a domain
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model to Event-B specifications are proposed in [2,3] and through a case study
in [16]. The approaches in [2,3] require a manual transformation of the ontology
before the possible application of translation rules to obtain the formal specifi-
cations. In [2], it is necessary to convert OWL ontologies into UML diagrams.
In [3], the proposal requires the generation of a controlled English version of
the OWL ontology which serves as the basis for the development of the Event-
B specification. Furthermore, for this to be completed, the names of ontology
elements must necessarily be expressed in English. Moreover, since the OWL
formalism supports weak typing and multiple inheritance, the approaches define
a unique Event-B abstract set named Thing. Thus, all sets, corresponding to
OWL classes, are defined as subsets of Thing. Our formalism, on the other hand,
imposes strong typing and simple inheritance; which makes it possible to trans-
late some concepts into Event-B abstract sets. Several shortcomings are common
to these approaches: the provided rules do not take into account the refinement
links between model parts. Furthermore, they are provided in an informal way
and they are not supported by tools. Finally, the approaches are only interested
in static domain knowledge: they do not distinguish what gives rise to formal
constants or variables.

Many studies have been done on the translation of UML diagrams into B
specifications such as [14,22]. They inspired many of our rules, like those dealing
with the translation of concepts (classes) and of attributes and relations (asso-
ciations). But, our work differs from them because of the distinctions between
ontologies and UML diagrams: within an ontology, concepts or classes and their
instances are represented within the same model as well as the predicates defin-
ing domain constraints. Moreover, these studies are most often interested in the
translation of model elements and not really in handling links between mod-
els. Finally, in the case of the SysML/KAOS domain modeling language, the
variability properties (attributes characterising the belonging of an element to
the static or dynamic knowledge) are first-class citizens, as well as association
characteristics. As a result, they are explicitly represented.

6 Conclusion and Future Works

This paper proposes an Event-B formalisation of translation rules between
domain ontologies and B System specifications. Their consistency has been
proved through Rodin [8], which allowed us to prove some properties regard-
ing rules such as isomorphisms and to determine some guards and invariants
that were missed during their initial specification. The translation rules have
been implemented within an open source tool [28], allowing the construction
of domain models and the generation of the corresponding B System specifi-
cations. It is built through Jetbrains Meta Programming System [13], a tool
to design domain specific languages using language-oriented programming. It
has been used to apply the approach on three significant case studies [28]. Our
work allows the complete extraction of the structural part of the system formal
specification from domain models. We also extract the initialisation of system
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variables. The specification obtained completes models resulting from the for-
malisation of SysML/KAOS goal diagrams. However, it remains necessary to
manually provide the body of events, which can lead to updates on the structure
of the system.

Work in progress is aimed at evaluating the impact of updates on formal
specifications within domain models. We are also working on integrating the
translation rules within the open-source platform Openflexo [18] which federates
the various contributions of FORMOSE project partners [5] and which currently
supports the construction of SysML/KAOS goal diagrams and domain models.

Acknowledgment. This work is carried out within the framework of the FORMOSE
project [5] funded by the French National Research Agency (ANR). It is also partly sup-
ported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
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Abstract. In this paper, we introduce a translation of the specifica-
tion language Alloy to classical B. Our translation closely follows the
Alloy grammar, each construct is translated into a semantically equiva-
lent component of the B language. In addition to basic Alloy constructs,
our approach supports integers and orderings. The translation is fully
automated by the tool “Alloy2B”. We evaluate the usefulness by apply-
ing AtelierB and ProB to the translated models, and show benefits for
proof and solving with integers and higher-order quantification.

1 Introduction

Both B [1] and Alloy [10] are specification languages based on first-order logic.
The languages share several features, such as native support for integers, sets
and relations as well as user-defined types. However, there are also considerable
differences. For instance, one of B’s key concepts is to encode state changes by
means of transitions, effectively computing successor states featuring all vari-
ables. In contrast, Alloy allows to define orderings over certain types.

Another difference between Alloy and B is tool support, especially when it
comes to available backends for constraint solving. For Alloy, the Alloy Ana-
lyzer [10] is used to compute models by translating Alloy predicates to SAT
using Kodkod [30]. The most prominent constraint solver for B, ProB [16–18],
however mainly relies on constraint logic programming [11]. In particular, it uses
the CLP(FD) library of SICStus Prolog [2] and extends it to support constraints
over infinite domains [12]. Additionally, ProB allows to use other backends, such
as SMT solvers [13] or, again, Kodkod [28].

The different constraint solving techniques show different performance char-
acteristics [29]. Certain predicates can be solved faster by using a particular
backend or combination of backends; others cannot be handled by a particular
solving technique at all. We thus suppose that a translation from Alloy models
to B models serves different purposes:

– It provides Alloy users access to a set of new backends, and might enable
constraint solving for Alloy models that can not be handled efficiently by the
Alloy Analyzer,

c© Springer International Publishing AG, part of Springer Nature 2018
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Listing 1. Own grandpa (Alloy)

1 module SelfGrandpas

2 abstract sig Person {

3 father : lone Man ,

4 mother : lone Woman

5 }

6 sig Man extends Person { wife : lone Woman }

7 sig Woman extends Person { husband : lone Man }

Listing 2. Own grandpa (B - signatures)

1 MACHINE SelfGrandpas

2 SETS

3 Person

4 CONSTANTS

5 Man , Woman , father , mother , wife , husband

6 PROPERTIES

7 father : Person +-> Man &

8 mother : Person +-> Woman &

9 Man <: Person &

10 wife : Man +-> Woman &

11 Woman <: Person &

12 husband : Woman +-> Man &

13 Man /\ Woman = {} &

14 Man \/ Woman = Person

15 END

– it enables the application of the Atelier-B provers [3] to Alloy models,
– it enables the usage of ProB as a second toolchain to validate the results of

the Alloy Analyzer,
– it provides new test cases and benchmarks to the B community and should

aid in improving ProB,
– it helps communication between the Alloy and B communities.

Details about installing and using our translation can be found at: https://
www3.hhu.de/stups/prob/index.php/Alloy

2 Translation Example

In the following section, we will introduce our translation on a simple Alloy model
taken from [10]. The model is given in Listing 1 and Listing 3, the translation
is given in Listing 2 and Listing 4. Our translation will only use the following
concepts of a B machine:

https://www3.hhu.de/stups/prob/index.php/Alloy
https://www3.hhu.de/stups/prob/index.php/Alloy
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1. Deferred sets, introducing new types for Alloy signatures in the SETS clause
2. Constants, introduced in the CONSTANTS clause,
3. Predicates about the constants and deferred sets in the PROPERTIES clause,
4. DEFINITIONS, aka B macros, to ease translating certain Alloy concepts,
5. B Operations for Alloy assertion checks.

In particular, our translation does not use variables, invariants or assertions.

2.1 Translating Signatures

We first concentrate on the translation of Alloy’s signatures and fields in Listing 1
to B types. An overview of the signatures and fields can be found in Fig. 1.

In order to translate the Alloy module SelfGrandpas, we create a B machine
with the same name. Inside, the basic signature Person, defined in line 2 of the
Alloy model, is represented as a user-given set in line 3 of the B machine in
Listing 2.1 Deferred sets in B can have any size, just like signatures in Alloy. (In
Sect. 3.3 we show how a limit on the size of the signature is translated.)

The signature features two fields, father and mother, each representing a
relation of members of Person to members of Man and Woman. The keyword
lone states that the relation is in fact a partial function, i.e., a 1-to-at-most-1
mapping. This can be encoded into B using a partial function, as created by the
+-> operator in lines 7 and 8 of Listing 2.

The extending Man and Woman are subsets of Person. As user-given sets in
B are distinct, we introduce constants Man and Woman and assert the subset
property in lines 9 and 11 of Listing 2. As above, the fields wife and husband
are translated into partial functions in lines 10 and 12.

Since Person was declared abstract, two additional properties have to hold
for the sub-signatures: each element of Person has to be in one of the sub-
signatures and the two sub-signatures have to be disjoint. This partitioning of
Person is encoded in B’s set theory in lines 13 and 14 of Listing 2.

Fig. 1. Signatures and fields in the own grandpa model

1 For the sake of readability, the example translation uses the same identifiers as the
Alloy module. Of course, one has to ensure the translation is valid, e.g., identifiers
do not collide with B’s keywords.
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Listing 3. Own grandpa (Alloy - facts and predicates)

1 ...

2 fact Terminology { wife = ~husband }

3 fact SocialConvention {

4 no wife & *( mother + father).mother

5 no husband & *( mother + father).father

6 }

7 fact Biology {

8 no p : Person | p in p.^( mother + father)

9 }

10 fun grandpas[p : Person] : set Person {

11 let parent = mother + father + father.wife + mother.

husband

12 | p.parent.parent & Man

13 }

14 pred ownGrandpa[m : Man] {

15 m in grandpas[m]

16 }

17 run ownGrandpa for 4 Person

2.2 Translating Facts and Predicates

Alloy facts are added to the B machine’s PROPERTIES clause. For example, the
Alloy fact Terminology of Listing 3, stating that wife is the inverse of husband,
can be encoded in B using the relational inverse, see line 11 of Listing 4.

The first fact in SocialConvention states that your wife cannot be your
mother or the mother of any of your ancestors. The second fact asserts the same
property for husband and father. Both can be translated directly as far as set
union, intersection and closure computation are concerned. The dot join in this
case is interpreted as the composition of the two relations, which is available in
B as using the ; operator. Other interpretations of the dot join operator will be
discussed later. The no keyword enforcing the emptiness of a set is translated to
equalities to the empty set in lines 12 and 13.

The Alloy fact Biology, stating that nobody can be its own ancestors, intro-
duces a quantified local variable p. We translate the fact into a set comprehen-
sion, which again is able to introduce the variable. Again, no enforces emptiness
of the set comprehension. Observe, that quantification in Alloy is over single-
ton sets only. More generally, we translate the quantification no p : S | P into
{p|{p} ⊆ S ∧ P} = ∅.

The function definition grandpas and the predicate definition ownGrandpa,
both with a parameter, are encoded as B definitions to allow their reuse through-
out the model. ownGrandpa only includes the application of grandpas as well as
a membership check and can thus be translated directly.
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Listing 4. Own grandpa (B - facts and predicates)

1 MACHINE SelfGrandpas

2 ...

3 DEFINITIONS

4 parent == mother \/ father \/

5 (father ; wife) \/ (mother ; husband);

6 ownGrandpa(m) == {m} <: Man & ({m} <: grandpas(m));

7 grandpas(p) == {tmp | {p} <: Person &

8 tmp : (parent[parent [{p}]] /\ Man)}

9 PROPERTIES

10 ...

11 wife = husband~ &

12 wife /\ (closure (( mother \/ father)) ; mother) = {} &

13 husband /\ (closure (( mother \/ father)) ; father) = {} &

14 {p | {p} <: Person &

15 {p} <: closure1 (( mother \/ father))[{p}]} = {} &

16 card(Person) <= 4

17 OPERATIONS

18 run_ownGrandpa = PRE #(m).( ownGrandpa(m)) THEN skip END

19 END

Translating grandpas however is not straightforward, as it includes a let
expression, which is not available in B.2 As an alternative to inlining, we again
create a definition named parent in order to hold the value of the newly intro-
duced variable. Note that this changes the scope in which the variable resides
and might make renaming necessary to avoid conflicts. Furthermore, observe
that there are no free variables in the definition of parent. Otherwise, those
would be passed to the B definition as parameters. As grandpas returns a set
of Persons, the definition again uses a set comprehension.

3 Translating Alloy to B

In this section, we will outline how to translate the components of an Alloy
model into semantically equivalent B components. Each Alloy module is trans-
lated into a corresponding B machine. As of now, our translation supports all
basic Alloy constructs, i.e., everything that is not inside a library. In particu-
lar, this includes integers and the corresponding operations. Regarding libraries,
we support orderings, because they are closely related to state transitions in B.
Further libraries will be considered in the future.

3.1 Signature Declarations

Since a signature declaration can be quite complex, let us start with the most
simple one, omitting everything optional, i.e., we only add a named signature

2 Let expressions are available in an extended version of B understood by ProB.
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to the model. A signature has the properties of a set, containing atoms of the
signature’s type. For the translation to B, we will create a new deferred set for
each signature.

Additionally, a signature can extend another signature by making use of
either the in or the extends keyword. In this case, we set up a subset of an
already existing set, i.e., for each sub-signature s extending base signature sb we
define a constant s and add s ⊆ sb to the PROPERTIES clause.

For the extends keyword, we ensure that extending signatures are pairwise
disjoint by adding s1 ∩ s2 = ∅ for each combination of extending signatures
s1, s2 to the B machine’s PROPERTIES clause.

Next, base signatures can be declared as abstract: Abstract signatures are
used for the sole purpose of being extended by other signatures. They do not
contain elements which are not also elements of other sets [10]. In B, this property
can be modeled by adding the following constraint to the PROPERTIES section:

sb =
⋃

s extends sb

s.

Alloy allows to state the cardinality of signatures by using one of the quan-
tifiers no (empty), lone (at most one), one (exactly one), some (at least one)
or set (any number). The quantifiers can be translated straightforwardly using
cardinality constraints as well as existential and universal quantification.

An Alloy signature may contain a list of fields, i.e., relations defined over
the signature’s elements. Since B natively supports relations, the translation is
straightforward - for a signature s with fields fi, each mapping an element of s
to si, we add a constant fi and state that fi is a relation between s and si by
the B constraint fi ∈ s ↔ si.

It is also possible to make use of quantifiers when declaring field variables:
In this way we can decide on the number of elements that are mapped to. The
default quantification for relations in Alloy is a 1-to-1 mapping (Alloy quantifier
one) while in B it is an 1-to-n mapping (Alloy quantifier set). Therefore, if no
quantifier is given in the Alloy model, the translation to B has to be adapted,
i.e., we add the constraint fi ∈ s → si, stating that f is a total function.

The translation of the remaining quantifiers is analogous, e.g., the quantifier
lone results in a partial function. In case of set, no additional property is
needed, since it is the default of B. Alloy allows to provide additional constraints
on signature elements together with the signature definition. However, aside of
syntactical sugar, they do not differ from regular constraints stated via fact
declarations and are thus not considered further in this article.

3.2 Fact, Function and Predicate Declaration

Alloy’s fact declaration has an optional name and contains any number of
expressions, which pose additional constraints to be added to the model. The
translation of these expressions will be discussed in Sect. 3.4. The results are
conjoined and added to the PROPERTIES section of our B model.
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Alloy allows to declare functions and predicates for later reuse. As usual, a
function declaration takes a name, a (possibly empty) list of parameters and a
body containing the actual computation. Parameters are scoped and can only
be referred to by the function itself. Furthermore, they are typed as subsets of
an Alloy signature and can again be quantified to constrain the set sizes.3

Functions will be listed in the DEFINITIONS section of the B model, if the
model contains at least one invocation. Each function is translated into a single
definition with matching parameters, consisting of a set comprehension wrap-
ping the actual body to account for the expected return type, e.g., the function
declaration fun f [p : S] : S { body } is translated into the B definition
f(p) == {x|p ∈ S ∧ body}. We include the translation of parameter types con-
joined with the translated body.

Syntax and functionality of the predicate definition is slightly different. For
the predicate to evaluate to true or false instead of computing a value, we omit
the set comprehension.

3.3 Assertion Declaration and Run and Check Commands

In Alloy, assertions can be stated using the assert declaration. An assertion
does not immediately enforce further constraints. Rather it can later be verified
or falsified in a given variable scope, using the run and check commands. To do
so, assertions are named and contain any number of predicates to be checked.
The predicates are translated and added to the DEFINITIONS clause of the model
once they are used inside a run or check command.

The run command instructs the Alloy Analyzer to search for variable states
that satisfy the model’s constraints. It can either refer to a named predicate
introduced by one of the declarations above or include an explicit Alloy predicate.
The check command is used to check an assertion.

We introduce an operation to the B machine for each run and check com-
mand having the translated instructions of the command as its precondition.
The operation’s substitution is a skip, i.e., we only test if the operation can be
executed, without any effect on the model. If the translated model satisfies the
predicate to be checked, its specific operation is enabled.

Together with the predicate to be checked, both run and check include a
scope, used to control the search space. By default, the scope defines an upper
bound for the cardinality of a signature. The size can be set to a fixed value by
using the keyword exactly. We define the translated scope in the precondition
of the corresponding operation. For instance, the command run p for 3 S, for
a predicate p and an unordered signature S, results to card(S) ≤ 3 in B.

To run the Alloy check with ProB one can either use model checking, i.e., try
all possible ways to instantiate the constants of the B translation and examine
whether the operation is covered, or use constraint-based checking, e.g., using
the cbc sequence command of ProB, which will send the operation’s guard
and the properties to ProB’s constraint solver.

3 Quantifiers are used for typing but do not enforce restrictions on possible models.
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3.4 Expressions

Numbers, Identifiers and Blocks. The most basic expressions in Alloy are
numbers, identifiers and blocks. Renaming aside, numbers and identifiers can
simply be copied to the B machine.

Integer arithmetic is available both in Alloy and in B. Operators have direct
counterparts and no involved translation is needed. However, the Alloy Ana-
lyzer’s approach of translating to SAT is limited: bit width has to be restricted
and overflows might occur. We discuss several implications in Sect. 6.1.

Two kinds of blocks can be used for grouping and to manage precedences:
( expr ) and , where the list of expressions in the second case is
connected conjunctively. Both can directly be translated.

Operations. Aside of basic expressions mentioned above, Alloy expressions can
be operations on expressions. As usual, the Alloy grammar distinguishes between
unary, binary and comparison operators. For the sake of brevity, we will only
discuss operators, that have no direct correspondence in B.

One such special case is the implication operation: ifExpr (implies | =>)
thenExpr else elseExpr. B does not include a native if-then-else. However, we
can achieve the same behavior using two implications: ifExpr ⇒ thenExpr ∧
¬ifExpr ⇒ elseExpr.

The translation of the join operation is the most challenging one. Since all
variables are tuples - either unary or binary ones - this operator can be used
on any two variables (with the exception of two unary variables, which would
always result in an empty set). Joining a field variable (binary tuples) with a
signature variable (unary tuples), returns a set of unary tuples. Joining a field
variable with another field variable, returns a set of binary tuples.

Unfortunately, there is no universal operator to achieve this behavior in B.
Thus, we have a different translation for each of the three possibilities:

– Join of unary tuple eu with binary tuple eb is translated as the relational
image eb[eu],

– Join of binary tuple eb with unary tuple eu is translated as the relational
image of the inverse binary tuple (eb∼)[eu],

– Join of two binary tuples b1, b2 is translated as the sequential substitution
(b1; b2).

In order to select the correct translation for the join operation, we compute the
arity of the expressions involved.

Universe and Identity. Alloy features two special constants: univ, referring
to the set of all instances of all signatures and ident, the identity relation over
the universe. Both are unavailable in B. To translate univ, we create a top-
level set UNIVERSE and ensure that all base signatures implicitly extend it. This
negatively impacts ProB’s solving capabilities: without distinct sets for differ-
ent signatures, techniques such as symmetry reduction cannot be applied as
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efficiently. ProB’s kernel becomes unable to reason on types and thus has to
perform more involved case distinctions. In consequence, we only create the uni-
versal type if necessary. Translation can be avoided in several typical use cases,
e.g., left and right joins with the universe can be translated into domain and
range computation.

Using UNIVERSE, we could translate ident to id(UNIVERSE). However, as
we want to avoid the universal type as much as possible, we again chose a
more specialized translation wherever possible, i.e., instead of translating into
the identity over the universe, we rely on Alloy’s type checking information and
translate into a more restricted identity relation.

Let, Quantified Expressions and Set Comprehensions. As discussed in
the introductory example in Sect. 2, classical B does not feature a let expression.
This can either be resolved by using a definition as done in the example, inlining
or by using the extended version of B understood by ProB.

Alloy features two types of quantified expressions, one that constrains the
cardinality of sets and one that allows to introduce quantified variables. The
first one uses the quantifiers introduced in Sect. 3.1 followed by a set expression,
e.g., no Number & Letter, and is translated accordingly. In the second case,
quantified variables are introduced and translated to B using set comprehensions
as well as universal and existential quantification.

Both Alloy and B feature set comprehensions, consisting of local identifiers
and a constraining predicate. Translation is straightforward, as only the predi-
cate has to be translated according to the rules given above.

4 Translating Orderings

Alloy data types are universally based on relations. For instance, sets are unary
relations while scalars are singleton sets. Signatures are not ordered by default.
However, Alloy allows to declare a total order on signature elements.

Alloy offers the operations first , last , next , prev , nexts(s) and prevs(s) for
element access on ordered signatures. For an ordered Signature so, so/nexts(s)
returns the set of all successors of s ∈ so.

Initially, we translated ordered signatures to B sequences. Sequences are
ordered sets of couples whose domains are finite and enumerated from 1..n,
where n is the number of elements. Usually, we translate an Alloy signature
to a deferred set in B having the same name as described in Sect. 3.1. The
ordered signature can then be represented by a sequence of type so, i.e., a set
of couples of integer and so. B directly offers the operations first , last , next ,
prev for sequences while nexts(s) and prevs(s) can be implemented using set
comprehensions.

However, ProB’s performance on predicates involving sequences can be lack-
ing when compared to (sets of) integers. In consequence, we tried a different
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translation: The scope of a signature is defined within the run or check state-
ment of an Alloy model. Assuming the ordered signature so has size k ∈ N, we
translate it to an interval 1, . . . , k in B.

However, we have to consider that ordered signatures can interact, e.g., when
computing the union. In consequence, we ensure that ordered signatures are
distinct by translating them into disjoint intervals.

Besides that, ordered signatures might interact with unordered ones in Alloy.
We then have to define the unordered signature as a set of integer too to avoid
type errors in B. To do so, we check an Alloy model for interactions between
ordered and unordered signatures prior to the translation.

Using integer intervals, we can define the operations provided by Alloy order-
ings using set comprehensions. For first and last we memorize the bounds of
each defined set in B which are constant values. We then define so/next and
so/nexts(s) (and prev and prevs(s) analogously) for a signature so as

next(s) == {x|x = s + 1 ∧ x ∈ so} nexts(s) == {x|x > s ∧ x ∈ so}.

5 Empirical Evaluation

To validate the correctness of our translation we have applied it to a variety of
mathematical laws and have checked that ProB does not find counter exam-
ples to those laws on the translated B models. In this section we will give a
brief empirical evaluation, comparing the Alloy Analyzer and ProB applied to
Alloy models. Since the Alloy Analyzer translates models to SAT, we assume it
to be efficient for mostly relational models. However, for integers SAT encod-
ing is often inefficient, e.g., one has to encode arithmetic using binary adders.
ProB on the other hand has native support for integers, hopefully leading to
better performance for arithmetic calculations. In contrast, relations often cause
a combinatorial explosion, which results in a weaker performance compared to
the Alloy Analyzer.

To explore both extremes, we chose two different models: First, we translate
an Alloy model of the river crossing puzzle, a type of transport puzzle with
the goal to carry several objects from one river bank to another. There are
constraints defining which objects are safe to be left alone, e.g., a fox can not be
left alone with a chicken. The model uses an ordered signature for states.

Second, we translate a model of the n queens problem. Here, the goal is to
place n queens on a n∗n chess board without two queens threatening each other.
The chess board is represented as tuples of row and column, encoded as integers.

Benchmarks were run on an Intel Core I7-7700HQ CPU (2.8 GHz) and 32 GB
of RAM. We use the median time of five independent checks where the runtime
of the Alloy analyzer includes generating the conjunctive normal form.

For the river crossing puzzle, the Alloy analyzer finds a solution in 10 ms.
The translated model is valid, yet ProB fails to find a solution in <5 min.

The B model defines three relations, two of which have an ordered signature
for a domain. Using a total function instead of a relation improves performance:
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Fig. 2. Find a single solution for the n queens puzzle with varying N

ProB now finds a solution in ∼7 s. After rewriting the model in idiomatic B
style by hand, ProB can solve it in about 80 ms. However, this translation
is a manual optimization using background knowledge and cannot simply be
generalized. An exact opposite to our translation is [28], which uses the Alloy
Analyzer’s Kodkod API [30] to translate B to SAT. When we use this backend
within ProB, the unmodified Alloy translation is solved in about 0.3 s. Note
that in recent work [15], we have shown that an integration of the Alloy and
ProB backend can be very useful for complex constraint satisfaction problems.

We evaluated the n queens model for n ∈ 4..20 using ProB and the Alloy
analyzer with the MiniSat and SAT4J backend. The evaluation in Fig. 2 shows
that ProB is the fastest solver for the chosen model. The runtime of the Alloy
analyzer gets worse when increasing the bit-width for n ≥ 8 and n ≥ 16.

6 Improvements over Existing Alloy Tools

Even though our translation cannot always compete with the Alloy Analyzer as
we have demonstrated in Sect. 5, it provides several interesting improvements
and applications.

6.1 Integers

Mathematically speaking, integers in Alloy are unsound due to overflows. In
contrast, ProB has multi-precision integers without overflows4. Using [24] the
Alloy Analyzer can detect models with overflows, but to our knowledge cannot
detect where an overflow has prevented a model being found. For this purpose,
an alternative to translation is to use an SMT-based backend, e.g., [7,31] or [22].

4 CLP(FD) overflows are caught and handled by custom implementation.
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For example, for the following model Alloy 4.2 finds a counter example, while
ProB correctly determines that no counter example exists. If overflows are per-
mitted (the default), the Alloy Analyzer finds a counter example for the first
formula. If overflows are forbidden, no counter example is detected by the Alloy
Analyzer for the first formula, but then a counter example is found for the second
one. With higher integer ranges the translation fails.

open util/integer

abstract sig setX { }

one sig V {

SS: setX -> setX

}

assert Bug {

#(V.SS)>1 implies #(V.SS->V.SS) >3

#(V.SS->V.SS)=0 iff no V.SS

}

check Bug for 3 setX, 7 int // for 8 int Translation capacity exceeded

6.2 Higher-Order Quantification

The universal quantification below, using the same signatures as in Sect. 6.1
above, causes an error5, while ProB can check the validity of this assertion. An
extension of Alloy called Alloy* [25] might be able to handle this example. In
future, we would like to investigate translating Alloy* models to B.

assert HO {

V.SS + V.SS = V.SS

all xx : V.SS | (xx in V.TT implies xx in V.SS & V.TT)

}

check HO for 3 setX

6.3 Proof

Finally, our translation to B also makes it possible to apply its provers, such
as [3]. One could thus try and develop a proof assistant for Alloy, similar to the
work pursued in [32] by a translation to Key.

In the example below, we can prove the assertion using AtelierB’s prover for
any scope, by applying it to the translated B machine. We check that the move
predicate preserves the invariant src+dst=Object.

sig Object {}

sig Vars {

src,dst : Object

}

5 Analysis cannot be performed since it requires higher-order quantification that could
not be skolemized.
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pred move (v, v’: Vars, n: Object) {

v.src+v.dst = Object

n in v.src

v’.src = v.src - n

v’.dst = v.dst + n

}

assert add_preserves_inv {

all v, v’: Vars, n: Object |

move [v,v’,n] implies v’.src+v’.dst = Object

}

check add_preserves_inv for 3

Note that our translation does not (yet) generate an idiomatic B encoding,
with move as a B operation and src+dst=Object as an invariant: it generates
a check operation encoding the predicate add preserves inv with universal
quantification. Below we show the B machine we have input into AtelierB. It
was obtained by pretty-printing from ProB, and putting the negated guard of
the add preserves inv into an assertion (so that AtelierB generates the desired
proof obligation).

MACHINE alloytranslation

SETS /* deferred */

Object_; Vars_

CONCRETE_CONSTANTS

src_Vars, dst_Vars

PROPERTIES

src_Vars : Vars_ --> Object_

& dst_Vars : Vars_ --> Object_

ASSERTIONS

!(v_,v__,n_).(v_ : Vars_ & v__ : Vars_ & n_ : Object_

=>

(src_Vars[{v_}] \/ dst_Vars[{v_}] = Object_ &

v_ |-> n_ : src_Vars &

src_Vars[{v__}] = src_Vars[{v_}] - {n_} &

dst_Vars[{v__}] = dst_Vars[{v_}] \/ {n_}

=>

src_Vars[{v__}] \/ dst_Vars[{v__}] = Object_)

)

END

7 Related Work, Future Work and Conclusions

Translations to Alloy directly have been pursued from B [21,23] and also Z [20].
Other formal languages have previously been translated to B as well [8,27]. A
comparison between TLA+ and Alloy can be found in [19].

The original paper [9] (notably Fig. 2 in [9]) provides a semantics of the kernel
of Alloy in terms of logical and set-theoretic operators. Our translation rules can
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be seen as an alternate specification of this semantics, using the B operators and
also using B quantification.

While our translation of orderings, as given in Sect. 4, allows to translate
arbitrary Alloy models, the resulting B machine is often suboptimal for ProB’s
solving kernel. To improve performance, we want to investigate a translation
into a (bounded or explicit) model checking rather than a constraint problem.
In particular, we intend to translate predicates over states and their successors
into B operations. While this is not possible in general, e.g., in the presence
of predicates relating more than two states, it would allow us to use symbolic
model checking algorithms [14] to find solutions. [26] presents an imperative
extension of Alloy, i.e, making a step towards B and its operations. In a similar
fashion, [5,6] extended Alloy with actions or bounded model checking [4]. It
would be interesting to extend our translation and produce idiomatic B machines
with B operations from such Alloy models.

In summary, we have presented an automatic translation of Alloy to B, which
provides an alternative semantic definition of Alloy, enables proof and constraint
solving tools of B to be applied, and can serve as a vehicle of communication
between the Alloy and B community.
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Abstract. In TLA
+, a system specification is written as a logical for-

mula that restricts the system behavior. As a logic, TLA
+ does not have

assignments and other imperative statements that are used by model
checkers to compute the successor states of a system state. Model check-
ers compute successors either explicitly — by evaluating program state-
ments — or symbolically — by translating program statements to an
SMT formula and checking its satisfiability. To efficiently enumerate
the successors, TLA’s model checker TLC introduces side effects. For
instance, an equality x ′ = e is interpreted as an assignment of e to the
yet unbound variable x .

Inspired by TLC, we introduce an automatic technique for discovering
expressions in TLA

+ formulas such as x ′ = e and x ′ ∈ {e1, . . . , ek} that
can be provably used as assignments. In contrast to TLC, our technique
does not explicitly evaluate expressions, but it reduces the problem of
finding assignments to the satisfiability of an SMT formula. Hence, we
give a way to slice a TLA

+ formula in symbolic transitions, which can
be used as an input to a symbolic model checker. Our prototype imple-
mentation successfully extracts symbolic transitions from a few TLA

+

benchmarks.

1 Introduction

TLA is a general language introduced by Leslie Lamport for specifying temporal
behavior of computer systems. It was later extended to TLA

+ [18], which pro-
vides the user with a concrete syntax for writing expressions over sets, functions,
integers, sequences, etc. TLA

+ does not fix a model of computation, and thus
it found applications in the design of concurrent and distributed systems, e.g.,
see [2,12,22–24].

A specification alone brings almost no guarantees of system correctness. As
it is an untyped language, TLA

+ allows for expressions such as 1 ∪ {2}, which
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Fig. 1. A simple producer-consumer

are considered ill-typed in statically-typed programming languages. To formally
prove specification properties such as safety and liveness, one can use TLAPS —
a proof system for TLA

+ [8]. Although progress towards proof automation was
made in the last years [20], writing formal proofs is still a challenging task [23,24].

On the other side of the spectrum are model checkers that require little user
effort to run. Indeed, TLA

+ users debug their specifications with TLC [26].
Beyond simple debugging, TLC found serious bugs in specifications of dis-
tributed algorithms [23]. Although TLC contains remarkable engineering solu-
tions, its core techniques enumerate reachable states and inevitably suffer from
state explosion.

Instead of enumerating states, software model checkers run SAT and SMT
solvers in the background to reason about computations symbolically. To name
a few, CBMC [15] and CPAChecker [3] implement bounded model checking [4]
and CEGAR [9]. Domain-specific tools ByMC and Cubicle prove properties of
parameterized distributed algorithms with SMT [10,14].

A simple example in Fig. 1 illustrates the problems that one faces when devel-
oping a symbolic model checker for TLA

+. In this example, we model two pro-
cesses: Producer that inserts a subset of {“A”, “B”, “Z”, “1”, “8”} into the set S ,
and Consumer that removes from S its arbitrary subset. The system is initialized
with the operator Init . A system transition is specified with the operator Next
that is defined via a disjunction of operators Produce and Consume. Both Pro-
ducer and Consumer maintain the state invariant empty ⇔ (S = ∅). We notice
the following challenges for a symbolic approach:

1. The specification does not have types. This is not a problem for TLC, since
it constructs states on the fly and hence dynamically computes types. In the
symbolic case, one can use type synthesis [20] or the untyped SMT encod-
ing [21].

2. Direct translation of Next to SMT would produce a monolithic formula, e.g.,
it would not analyze Produce and Consume as independent actions. This is
in sharp contrast to translation of imperative programs, in which variable
assignments allow a model checker to focus only on the local state changes.

In this paper, we focus on the second problem. Our motivation comes from
the observation on how TLC computes the successors of a given state [18,
Chap. 14]. Instead of precomputing all potential successors — which would be
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anyway impossible without types — and evaluating Next on them, TLC explores
subformulas of Next . The essential exploration rules are: (1) Disjunctions and
conjunctions are evaluated from left to right, (2) an equality x ′ = e assigns the
value of e to x ′ if x ′ is yet unbound, (3) if an unbound variable appears on
the right-hand side of an assignment or in a non-assignment expression, TLC

terminates with an error, and (4) operands of a disjunction assign values to the
variables independently. In more detail, rule (4) means that whenever a disjunc-
tion A ∨ B is evaluated and x ′ is assigned a value in A, this value does not
propagate to B ; moreover, x ′ must be assigned a value in B .

In our example, TLC evaluates the actions Produce and Consume inde-
pendently and assigns variables as prescribed by these formulas. As TLC is
explicit, for each state, it produces at most 22

5
successors in Produce as well as in

Consume.
We introduce a technique to statically label expressions in a TLA

+ formula φ
as assignments to the variables from a set V ′, while fulfilling the following:

1. For purely Boolean formulas, if one transforms φ into an equivalent formula∨
1≤i≤k Di in disjunctive normal form (DNF), then every disjunct Di has

exactly one assignment per variable from V ′.
2. The assignments adhere the following partial order: if x ′ ∈ V ′ is assigned a

value in expression e, that uses a variable y ′ ∈ V ′, then the assignment to y ′

precedes the assignment to x ′.
3. In general, we formalize the above idea with the notion of a branch.

As expected, the following sequence of expressions is given as assignments
in our example: (1) empty ′ = true, (2) S ′ = S ∪ {X }, (3) S ′ ∈ subsetS ,
and (4) empty ′ = (S ′ = ∅). Using this sequence, our technique constructs two
symbolic transitions that are equivalent to the actions Produce and Consume.

In general, finding assignments and slicing a formula into symbolic transi-
tions is not as easy as in our example, because of quantifiers and if-then-else
complicating matters. In this paper, we present our solution, demonstrate its
soundness and report on preliminary experiments.

2 Abstract Syntax α-TLA+

TLA
+ has rich syntax [18], which cannot be defined in this paper. To focus only

on the expressions that are essential for finding assignments in a formula, we
define abstract syntax for TLA

+ formulas below. In our syntax, the essential
operators such as conjunctions and disjunctions are included explicitly, while the
other non-essential operators are hidden under the star expression �.

We assume predefined three infinite sets:

– A set L of labels. We use notation �i to refer to its elements, for i ∈ N.
– A set Vars ′ of primed variables that are decorated with prime, e.g., x ′ and a ′.
– A set Bound of bound variables, which are used by quantifiers.
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The abstract syntax α-TLA
+ is defined in terms of the following grammar:

expr ::= exα | � :: false
| � :: v ′ ∈ exα | � :: expr ∧ · · · ∧ expr | � :: expr ∨ · · · ∨ expr
| � :: ∃x ∈ exα : expr | � :: if exα then expr else expr

exα ::= � :: � (v ′, . . . , v ′)
� ::= a unique label from the set L
v ′ ::= a variable name from the set Vars ′

x ::= a variable name from the set Bound

Next
Δ= �1 :: �2 :: �3 :: empty ′ ∈ �4 :: � ∧ �5 :: ∃X ∈ �6 :: � : �7 :: S ′ ∈ �8 :: �)

∨ �9 :: (�10 :: � ∧ �11 :: S ′ ∈ �12 :: � ∧ �13 :: empty ′ ∈ �14 :: �(S ′)
))

)

Fig. 2. The Next operator of producer-consumer in α-TLA
+

A few comments on the syntax and its relation to TLA
+ expressions are in

order. We require every expression to carry a unique label �i ∈ L. Although this
is not a requirement in TLA

+, it is easy to decorate every expression with a
unique label. The expressions of the form � :: v ′ ∈ expr are of ultimate interest
to us, as they are treated as assignment candidates. Under certain conditions,
they can be used to assign to v ′ a value from the set represented by the expres-
sion expr . Perhaps somewhat unexpectedly, expressions such as v ′ = e and
unchanged〈v1, . . . , vk 〉 are not included in our syntax. To keep the syntax min-
imal, we represent them with � :: v ′ ∈ expr . Indeed, these expressions can be
rewritten in an equivalent form: v ′ = e as v ′ ∈ {e}, and unchanged〈v1, . . . , vk 〉
as v ′

1 ∈ {v1} ∧ · · · ∧ v ′
k ∈ {vk}. Every non-essential TLA

+ expression e is pre-
sented in the abstract form � :: � (v ′

1, . . . , v
′
k ), where v ′

1, . . . , v
′
k are the names of

the primed variables that appear in e. When no primed variable appears in an
expression, we omit parenthesis and write � :: �. TLA

+ expressions often refer
to user-defined operators, which are not present in our abstract syntax. We sim-
ply assume that all non-recursive user-defined operators have been expanded,
that is, recursively replaced with their bodies. All uses of recursive operators are
hidden under �; hence, recursive operator definitions are ignored when searching
for assignment candidates.

It should be now straightforward to see how one could translate a TLA
+

expression to our abstract syntax. We write α(e) to denote the expression in α-
TLA

+, that represents an expression e in the complete TLA
+ syntax. With γ

we denote the reverse translation from α-TLA
+ to TLA

+ that has the property
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that γ(α(e)) = e. Figure 2 shows the abstract expression α(Next) of the opera-
tor Next defined in Fig. 1.

Discussions. Notice that α-TLA
+ is missing several fundamental constructs per-

mitted in TLA
+, such as case expressions, universal quantifiers, and negations.

They are all abstracted to �. The primary purpose of α-TLA
+ is to allow us

to determine whether a given expression containing set inclusion — or equality
— can be used as an assignment. If such an expression occurs under a universal
quantifier, it is not clear which value should be used for an assignment. Hence,
we abstract the expressions under universal quantifiers. For similar reason, we
abstract the expressions under negation. The latter is consistent with TLC,
which produces an error when given, for example, Next == ¬(x ′ = 1). Finally,
we abstract case, due to its semantics, which is defined in terms of the choose

operator [18, Ch. 6]. In practice, there are no potential assignments under case
in the standard TLA

+ examples.

3 Preliminary Definitions

Every TLA
+ specification declares a certain finite set of variables, which may

appear in the formulas contained therein. Let φ be an α-TLA
+ expression. We

assume, for the purposes of our analysis, that φ is associated with some finite set
Vars ′(φ), which is a subset of Vars ′, containing all of the variables that appear
in φ (and possibly additional ones). This is the set of variables declared by the
specification in which γ(φ) appears.

Since the labels are unique, we write lab(� :: ψ) to refer to the expression
label � and expr(�) to refer to the expression that is labeled with �. We refer to
the set of all subexpressions of φ by Sub(φ). See [16] for a formal definition.

The set Sub(φ) allows us to reason about terms that appear inside an expres-
sion φ, at some unknown/irrelevant depth. We will often refer to the set of all
labels appearing in φ, that is, Labs(φ) = {lab(ψ) | ψ ∈ Sub(φ)}.

Of special interest to us are assignment candidates, i.e., expressions of
the form � :: v ′ ∈ φ1. Given a variable v ′ ∈ Vars ′(φ) and an α-TLA

+ expres-
sion φ, we write cand(v ′, φ) to mean the set of labels that belong to assign-
ment candidates for v ′ in subexpressions of φ. More formally, cand(v ′, φ) is
{� | (� :: v ′ ∈ ψ) ∈ Sub(φ)}. An exhaustive definition is included in [16]. We use
the notation cand(φ) to mean

⋃
v ′ ∈ Vars′(φ) cand(v ′, φ).

Finally, we assign to each label � in Labs(φ) a set frozenφ(�) ⊆ Vars ′(φ). Intu-
itively, if a variable v ′ is in frozenφ(�), then no expression of the form �̂ :: v ′ ∈ ψ
can be treated as an assignment inside expr(�). Formally, for every � ∈ Labs(φ)
the set frozenφ(�) is defined as the minimal set satisfying all the constraints in
Table 1.
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Table 1. The constraints on frozenφ

α-TLA
+ expression φ Constraints on frozenφ

� :: � (v ′
1, . . . , v

′
k ) {v ′

1, . . . , v
′
k} ⊆ frozenφ(�)

� :: v ′ ∈ φ1 frozenφ(�) = frozenφ(lab(φ1))

� ::
∧s

i=1 φi or � ::
∨s

i=1 φi frozenφ(�) ⊆ frozenφ(lab(φi)) for i ∈ {1, . . . , s}
� :: ∃x ∈ φ1 : φ2 frozenφ(�) ⊆ frozenφ(lab(φ1)) ⊆ frozenφ(lab(φ2))

� :: if φ1 then φ2 else φ3 frozenφ(�) ⊆ frozenφ(lab(φ1))

frozenφ(lab(φ1)) ⊆ frozenφ(lab(φi)) for i = 2, 3

The sets frozenφ naturally lead to the dependency relations �v ′ on Labs(φ),
where v ′ ∈ Vars ′(φ). We will use �1 �v ′ �2 to mean that �1 is an assignment
candidate for v ′, which also belongs to the frozen set of �2. Formally:

�1 �v ′ �2 ⇐⇒ �1 ∈ cand(v ′, φ) ∧ v ′ ∈ frozenφ(�2)

Intuitively, if �1 �v ′ �2 we want to make sure that expr(�1) is evaluated before
expr(�2), if possible.

Example 1. Let us look at the following α-TLA
+ expression:

�1 :: [∃i ∈ [�2 :: �(y ′)] : �3 :: x ′ ∈ [�4 :: �]]

Take the subexpression �3 :: x ′ ∈ [�4 :: �], which we name ψ . By solving the con-
straints for frozenψ(�3) we conclude that frozenψ(�3) = ∅. However, if we take
the additional constraints for frozenφ(�3) into consideration, the empty set no
longer satisfies all of them, specifically, it does not satisfy the condition imposed
by the existential quantifier in �1. The additional requirement {y ′} ⊆ frozenφ(�3)
implies that frozenφ(�3) = {y ′}. This corresponds to the intuition that expres-
sions under a quantifier, like ψ, implicitly depend on the bound variable and the
expressions used to define it, which is expr(�2) in our example. �

4 Formalizing Symbolic Assignments

As TLC evaluates formulas in a left-to-right order, there is a very clear notion
of an assignment; the first occurrence of an expression v ′ ∈ S is interpreted as
an assignment to v ′. In our work, we want to statically find expressions that can
safely be used as assignments. If we were only dealing with Boolean formulas, we
could transform the original TLA

+ formula to DNF,
∨s

i=1 Di , and treat each Di

independently. However, we also need to find assignments, which may be nested
under existential quantifiers. To transfer our intuition about DNF to the general
case we first introduce a transformation boolForm, that captures the Boolean
structure of the formula. Then, we introduce branches and assignment strategies
to formalize the notion of assignments in the symbolic case.
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Table 2. The definition of boolForm(φ)

α-TLA
+ expression φ boolForm(φ)

� :: false or � :: � (v ′
1, . . . , v

′
k ) or � :: v ′ ∈ φ1 b�

� ::
∧s

i=1 φi

∧s
i=1 boolForm(φi)

� ::
∨s

i=1 φi

∨s
i=1 boolForm(φi)

� :: ∃x ∈ φ1 : φ2 boolForm(φ2)

� :: if φ1 then φ2 else φ3 boolForm(φ2) ∨ boolForm(φ3)

Boolean Structure of a Formula and Branches. The transformation boolForm
maps an α-TLA

+ expression to a Boolean formula over variables from {b� |
� ∈ L}. The definition of boolForm can be found in Table 2. As boolForm(φ) is a
formula in Boolean logic, a model of boolForm(φ) is a mapping from {b� | � ∈ L}
to B = {true, false}. Take S ⊆ L. The set S naturally defines a model induced
by S , denoted M[S ], by the requirement that M[S ] � b� if and only if � ∈ S .

The boolForm transformation allows us to formulate the central notion of a
branch: A set Br ⊆ L is called a branch of φ if the following constraints hold:

(a) The set Br induces a model of boolForm(φ), i.e., M[Br ] � boolForm(φ),
and

(b) The model M[Br ] is minimal, that is, M[S ] � boolForm(φ) for every
S ⊂ Br .

Then, Branches(φ) is the set of all branches of φ.

Example 2. Let us look the α-TLA
+ expression φ given by

�1 :: [[�2 :: x ′ ∈ �] ∧ [�3 :: [[�4 :: x ′ ∈ �] ∨ [�5 :: x ′ ∈ �]]]]

We know that boolForm(φ) = b�2 ∧ (b�4 ∨ b�5). The set S = {�2, �4, �5} induces
a model of boolForm(φ), but it is not a branch of φ because M[S ] is not a
minimal model. It is easy to see that φ has two branches Br1 = {�2, �4}, and
Br2 = {�2, �5}. Therefore, we see that Branches(φ) = {Br1,Br2}. �

As our goal is to reason about the side-effects of variable assignments, the
remainder of this section looks at how we can achieve this with the help of
branches.

Assignment Strategies. We want to statically mark some expressions as assign-
ments, that is, pick a set A ⊆ Labs(φ). Below, we formulate the critical properties
we require from such a set, which we will later call an assignment strategy.

Most obviously, we want to consider only assignment candidates:

Definition 1. A set H ⊆ Labs(φ) is homogeneous if all the labels in H are
assignment candidates. Formally, H ⊆ cand(φ).
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If we choose an arbitrary homogeneous set H , it might lack assignments
on some branches or have multiple assignments to the same variable on oth-
ers. Formally, we say that H has a covering index d ∈ N0 if there is a branch
Br ∈ Branches(φ) and a variable v ′ ∈ Vars ′(φ) for which d = |Br ∩ H ∩
cand(v ′, φ)|. Now we define sets, that cover all branches with assignments:

Definition 2. A homogeneous set C is a covering of φ, if it does not have 0 as
a covering index. It is a minimal covering of φ, if it only has 1 as a covering
index.

Consider the TLA
+ formula x ′ = y ′ ∧ y ′ = 2x ′. Its corresponding α-TLA

+

expression �0 :: (�1 :: x ′ ∈ �2 :: � (y ′)∧ �3 :: y ′ ∈ �4 :: � (x ′)) has a minimal cov-
ering {�1, �3}. However, there is no way to order the assignments to x ′ and y ′.
To detect such cases, we define acyclic sets:

Definition 3. A homogeneous set A is acyclic, if there is a strict total order
≺A on A, with the following property: For every variable v ′ ∈ V , every branch
Br ∈ Branches and every pair of labels �i and �j in A∩Br the relation �i �v ′ �j
implies �i ≺A �j .

Having defined homogeneous, minimal covering, and acyclic sets, we can
formulate the notion of an assignment strategy.

Definition 4. Let φ be an α-TLA
+ expression. A set A ⊆ L is an assignment

strategy for φ, if it is an acyclic minimal covering.

Static Assignment Problem. Given an α-TLA
+ expression φ, our goal is to find

an assignment strategy, or prove that none exists.

5 Finding Assignment Strategies with SMT

For a given α-TLA
+ expression φ, we construct an SMT formula θ(φ), that

encodes the properties of assignment strategies. Technically, θ(φ) is defined as
θH (φ) ∧ θC (φ) ∧ θA(φ), and consists of:

1. A Boolean formula θH (φ), that encodes homogeneity.
2. A Boolean formula θC (φ), that encodes the minimal covering property.
3. A formula θA(φ), that encodes acyclicity. This formula requires the theories

of linear integer arithmetic and uninterpreted functions (QF UFLIA).

In the following, Propositions 1, 3, and 4 formally establish the relation
between φ and its three SMT counterparts. Together, the propositions allows
us to prove the following theorem:

Theorem 1. For every α-TLA
+ formula φ and A ⊆ Labs(φ), it holds that

M[A] � θ(φ) if and only if A is an assignment strategy for φ.
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Table 3. The definition of δv′(φ)

α-TLA
+ expression φ δv′(φ)

� :: false or � :: � (v ′
1, . . . , v

′
k ) false

� :: w ′ ∈ φ1

{
b� ;w ′ = v ′

false ; otherwise

� ::
∧s

i=1 φi

∨s
i=1 δv′(φi)

� ::
∨s

i=1 φi

∧s
i=1 δv′(φi)

� :: ∃x ∈ φ1 : φ2 δv′(φ2)

� :: if φ1 then φ2 else φ3 δv′(φ2) ∧ δv′(φ3)

5.1 Homogeneous Sets

We introduce a Boolean formula, whose models are exactly those induced by
homogeneous sets. To this end, take the set of labels corresponding to expressions
that are not assignment candidates, N (φ), given by N (φ) := Labs(φ)\cand(φ).
Then, we define the following:

θH (φ) :=
∧

� ∈ N (φ)

¬b�

Proposition 1. For every α-TLA
+ expression φ and A ⊆ Labs(φ), it holds

that M[A] � θH (φ) if and only if A is homogeneous.

5.2 Minimal Covering Sets

Next we construct a Boolean formula θ∗
C (φ), whose models are exactly those

induced by covering sets. To this end, we define, for each v ′ ∈ Vars ′(φ), the
transformation δv ′ as shown in Table 3. Intuitively, δv ′(φ) is satisfiable exactly
when there is an assignment to v ′ on every branch of φ. We then define

θ∗
C (φ) :=

∧

v ′ ∈ Vars′(φ)

δv ′(φ)

Formally, the following proposition holds:

Proposition 2. For every α-TLA
+ expression φ and A ⊆ Labs(φ), it holds

that M[A] � θH (φ) ∧ θ∗
C (φ) if and only if A is a covering set for φ.

It is easy to restrict coverings to the minimal coverings. To do this, we define
the set of collocated labels, denoted Colloc(φ), as

Colloc(φ) := {(�1, �2) ∈ L2 | ∃Br ∈ Branches(φ) . {�1, �2} ⊆ Br}
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We can use this set to reason about minimal coverings: A minimal covering
may contain, per variable, no more than one label from each pair of collo-
cated assignments to that variable. We describe these labels by using the sets
Collocv ′(φ) := Colloc(φ) ∩ cand(v ′, φ)2 and

CollocVars′(φ) :=
⋃

v ′ ∈ Vars′(φ)

Collocv ′(φ)

Then, the following SMT formula, in addition to θ∗
C (φ), helps us find minimal

covering sets:
θ∃!(φ) :=

∧

(i,j ) ∈ CollocVars′ (φ)
i<j

¬(bi ∧ bj )

We denote by θC (φ) the formula θ∗
C (φ) ∧ θ∃!(φ).

Proposition 3. For every α-TLA
+ expression φ and A ⊆ Labs(φ), it holds

that M[A] � θH (φ) ∧ θC (φ) if and only if A is a minimal covering set for φ.

5.3 Acyclic Assignments

The last step is reasoning about acyclicity. Recall that, for �1, �2 ∈ L, the relation
�1 �v ′ �2 holds if and only if �1 ∈ cand(v ′, φ) ∧ v ′ ∈ frozenφ(�2). It is prudent to
see that �v ′ is not, in general, a strict total order (possibly not even irreflexive).
However, the acyclicity property states that we can find a strict total order,
which agrees with all relations �v ′ , on all branches.

Take Colloc�(φ) to be the filtering of Colloc(φ) by the relations �v ′ , i.e. the
set {(i , j ) ∈ Colloc(φ) ∩ cand(φ)2 | ∃v ′ ∈ Vars ′(φ) . i �v ′ j}. The SMT formula
describing acyclicity is as follows:

θ∗
A(φ) :=

∧

(i,j ) ∈ Colloc�(φ)

bi ∧ bj ⇒ R(i) < R(j )

where R is an uninterpreted L → N function, capturing assignment order. In
practice, we take L = N. Unlike the previous formulas, θ∗

A(φ) extends beyond
Boolean logic, requiring both linear integer arithmetic and uninterpreted func-
tions. Thus, a model for θ∗

A(φ) is a pair (M , r), where M models the Boolean
part of the formula, i.e. assigns truth values to each bi , and r : N → N is the
interpretation of R.

To simplify the analysis, we force R to be injective, when it is restricted
to Labs(φ). Otherwise we could always construct an injective function from R,
which respects the required inequalities. The formula we therefore consider is as
follows:

θA(φ) := θ∗
A(φ) ∧

∧

�1,�j ∈ Labs(φ)
�i<�j

R(�i) �= R(�j )

Proposition 4. For every α-TLA
+ expression φ and A ⊆ Labs(φ), there is a

function r : N → N, for which (M[A], r) � θH (φ) ∧ θA(φ) if and only if A is
acyclic.
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6 Soundness of Our Approach

In this section, we show the relation between assignment strategies and the
original TLA

+ formulas. To this end, we introduce the notion of a slice. Together,
branches allow us to rewrite a TLA

+ formula into an equivalent disjunction of
slices.

In TLA
+, there are two kinds of variables: rigid variables that correspond to

the variables declared with constant, and flexible variables whose values change
during the course of an execution. Primed versions of the variables exist only
for flexible variables and are used in transition formulas. Transition formulas in
TLA

+ are first-order terms and formulas with flexible variables (unprimed and
primed ones). We give the necessary definitions of TLA

+ semantics, whereas
details can be found in [19]. An interpretation I defines a universe |I| of values
and interprets each function symbol by a function and each predicate symbol by
a relation. A state s is a mapping from unprimed flexible variables to values, and
a state s ′ is a similar mapping for primed variables. A valuation ξ is a mapping
from rigid variables to values. Given an interpretation I, a pair of states (s, s ′),
and a valuation ξ, the semantics of a TLA

+ transition formula E is the standard
predicate logic semantics of E with respect to the extended valuation of s, s ′, ξ.
With these definitions, M = (I, ξ, s, s ′) is a model for E , if E is equivalent to
true under M . Let φ be a formula and S ⊆ L. We define φ sliced by S , denoted
slice(φ,S ) in Table 4.

Table 4. The definition of slice(φ,S)

α-TLA
+ formula φ slice(φ,S)

� :: false � :: false

� :: � (v ′
1, . . . , v

′
1) or � :: v ′ ∈ φ1

{
φ ; � ∈ S

� :: false ; otherwise

� ::
∧s

i=1 φi � ::
∧s

i=1 slice(φi ,S)

� ::
∨s

i=1 φi � ::
∨s

i=1 slice(φi ,S)

� :: ∃x ∈ φ1 : φ2 � :: ∃x ∈ φ1 : slice(φ2,S)

� :: if φ1 then φ2 else φ3 � :: if φ1 then slice(φ2,S) else slice(φ3,S)

Below, we show that the branches and slices induced by them naturally
decompose a TLA

+ formula. Let φ be an α-TLA
+ expression and γ (φ) its

corresponding TLA+ formula. Then, the following holds:

Proposition 5. Let φ be an α-TLA
+ expression and M = (I, ξ, s, s ′) a model

of the TLA
+ formula γ (φ). There exists a branch Br of φ such that M is also

a model of γ (slice(φ,Br)).

Proposition 6. Let φ be an α-TLA
+ expression and M = (I, ξ, s, s ′) a model

of the TLA
+ formula γ (slice(φ,Br)). Then, M is also a model of γ (φ).
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Proposition 7. Let φ be an α-TLA
+ expression. For every S ,T ⊆ Labs(φ),

every model M of the TLA
+ formula γ (slice(φ,S )), is also a model of

γ (slice(φ,S ∪ T )).

It is easy to see that Proposition 7 does not hold in the other direction. For
instance, take the empty set as S and Labs(φ) as T . This implies the following:

γ(slice(φ,S )) = false and slice(φ,S ∪ T ) = φ.

Obviously, false cannot have a model, regardless of whether γ(φ) has one or
not.

Since Propositions 5 and 6 hold, it would suffice to consider the set
Branches(φ), together with an assignment strategy, to generate symbolic transi-
tions. However, it is often the case that, for two distinct branches Br1 and Br2,
the same assignments in A are chosen, that is, the intersections Br1 ∩ A and
Br2 ∩ A are the same. We show that one can reduce the number of considered
symbolic transitions, by analyzing how various branches intersect A.

An assignment strategy A naturally defines an equivalence relation ∼A on
Branches(φ), given by Br1 ∼A Br2 if and only if Br1 ∩ A = Br2 ∩ A. We use
the notation [Br ]A to refer to the equivalence class of Br by ∼A, that is, the set
{X ∈ Branches(φ) | Br ∼A X }.

Definition 5. Let φ be an α-TLA
+ expression, A an assignment strategy for

φ and Br a branch of φ. Using X = [Br ]A and Y =
⋃

Z ∈ X Z , we define the
symbolic transition generated by Br and A to be slice(φ,Y ).

Example 3. Let us look Example 2 again. The formula φ has two assignment
strategies A1 = {�2}, and A2 = {�4, �5}. If the first assignment strategy A1 is
chosen, we have that Br1 ∩ A1 = Br2 ∩ A1 = {�2}. This implies that Br1 and
Br2 are in the same equivalence class, or Br1 ∼A1 Br2. Therefore, we have only
one symbolic transition which is exactly φ. However, if A2 is selected, branches
Br1 and Br2 are not equivalent because Br1 ∩ A2 = {�4} and Br2 ∩ A2 = {�5}.
Therefore, we have two symbolic transitions:

T1 = �1 :: [[�2 :: x ′ ∈ �] ∧ [�3 :: [[�4 :: x ′ ∈ �] ∨ �5 :: false]]]
T2 = �1 :: [[�2 :: x ′ ∈ �] ∧ [�3 :: [�4 :: false ∨ [�5 :: x ′ ∈ �]]]]

The first assignment strategy A1 seems to be better than A2 because A1 gen-
erates fewer symbolic transitions than A2. However, in this paper, we do not
introduce any metric, by which we could compare assignment strategies. In the
implementation, we use any strategy found by the SMT solver. �

The equivalence relation ∼A allows us to define a counterpart to Proposi-
tion 7:

Proposition 8. Let φ be an α-TLA
+ expression. For any selection

Br1, . . . ,Brk from the branches of φ, the following holds: If there exists a model
M of the formula γ(slice(φ,Br1 ∪ · · · ∪ Brk )), then M must be a model of
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γ(slice(φ,Br)), for some branch Br ∈ Branches(φ). Additionally, if there is an
assignment strategy A for φ, such that Br1, . . . ,Brk all belong to the same equiv-
alence class [B ]A, then M must be a model of γ(slice(φ,Br)), for some branch
Br ∈ [B ]A.

The following result allows us to use symbolic transitions, not individual
branches:

Theorem 2. Let φ be an α-TLA
+ expression and A an assignment strategy

for φ. There is a model M of the TLA
+ formula γ(φ) if and only if there exists

a Br ∈ Branches(φ), such that M is a model of γ(ψ), where ψ is the symbolic
transition generated by Br and A.

7 Preliminary Experiments and Potential Applications

Implementation and Evaluation. Based on the theory presented in this paper,
we have implemented a procedure to find assignment strategies and their cor-
responding symbolic transitions from TLA

+ specifications, or report that none
exist. It uses Z3 as the background SMT solver.

We have chose specifications both from publicly available sources, e.g.
EWD840 and Paxos from [1], and from a collection of algorithms we have
encoded in TLA

+ ourselves. For each specification, we focus on the Next formula.
We report the number of subexpressions in α(Next), that is, |Sub(α(Next))|, the
number of assignments in the strategy found by our procedure, the number of
symbolic transitions computed and the total runtime. The results are presented
in Table 5. Note that the results for the specification in Fig. 1 are as expected;
all assignment candidates must be part of the strategy and we find two symbolic
transitions corresponding to Produce and Consume. We also see that the number
of symbolic transitions is generally much smaller than the number of transitions
an explicit-state model checker would find, as even simple specifications, like in
Fig. 1, would generate numerous transitions in explicit state model checking, but
only two symbolic transitions.

Table 5. Experimental results

Specification #Subexpressions Size of
strategy

#Symbolic
transitions

Time (ms)

aba [6] 86 48 8 271

nbacg [13] 126 82 13 205

EWD840 [11] 47 16 4 25

prodcons (Fig. 1) 12 4 2 19

Paxos [17] 60 16 4 29

nbac [25] 47 15 14 26

bcastFolklore [7] 41 17 4 28
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Applications. We illustrate an application of our technique for bounded model
checking [4] by the means of the example in Fig. 3. In this example, three pro-
cesses pass a unique token in one direction, with the goal of computing the
largest process identifier.

Our technique extracts three symbolic transitions T1, T2, and T3, each Ti

being equivalent to P(i)∧ id ′ = id for 1 ≤ i ≤ 3. As common in bounded model
checking, with �F �i,i+1 we denote the SMT encoding of a transition by action F
from an ith to an (i + 1)-th state. For instance, �Next�0,1 and �T3�0,1 encode
the transitions from the state 0 to the state 1 by Next and T3. Likewise, �Init�0
encodes SMT constraints by Init on the initial states. One can use the SMT
encodings introduced in [20,21].

Fig. 3. A distributed maximum computation in a ring of three processes in TLA
+

Fig. 4. SMT formulas that are constructed when checking the executions up to length 4:
using the action Next (left), and using symbolic transitions (right). The gray formulas
are excluded from the SMT context during the exploration.

Figure 4 shows the SMT formulas that are constructed by a bounded model
checker when exploring executions up to length 4. (For the sake of space, we
omit the formulas that check property violation.) On one hand, the monolithic
encoding that uses only Next has to keep all the formulas in the SMT context.
On the other hand, by incrementally checking satisfiability of the SMT con-
text, the model checker can discover that some formulas — for example, �T2�0,1

and �T3�1,2 — lead to unsatisfiability and prune them from the SMT context.
Similar approach improves efficiency of bounded model checking C programs
[5, Chap. 16], hence, we expect it to be effective for the verification of TLA

+

specifications too.

8 Conclusions

We have introduced a technique to compute symbolic transitions of a TLA
+

specification by finding expressions that can be interpreted as assignments.
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Importantly, we designed the technique with soundness in mind. Detailed proofs
can be found in the report [16]. We believe that our results can be used as a first
preprocessing step when developing a symbolic model checker or a type checker
for TLA

+.
As in the case of TLC, one can find TLA

+ specifications, for which no
assignment strategy exists. However, TLA

+ users are systematically checking
their specifications with TLC, in order to find simple errors. Hence, most of
the benchmarks already come in a form compatible with TLC. Thus, we expect
our approach to also work in practice. Based on these ideas, we are currently
developing a symbolic model checker for TLA

+.

Acknowledgments. We are grateful to Stephan Merz for insightful discussions on
semantics of TLA

+. We thank anonymous reviewers for their helpful suggestions.
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Abstract. Relational algebra forms the semantic foundation in multi-
ple domains, e.g., Alloy models, OCL constraints, UML metamodels, and
SQL queries. Synthesis and repair techniques in such domains require an
efficient procedure to generate (non-equivalent) expressions subject to
relational constraints, e.g., the types of sets and relations, their cardinal-
ity, size of expressions, maximum arity of the intermediate expressions,
etc. This paper introduces the first generator for relational expressions
that are non-equivalent with respect to the semantics of relational alge-
bra. We present the algorithms that define our generator, its embodiment
based on the Alloy tool-set, and an experimental evaluation to show the
effectiveness of its non-equivalent generation for a variety of problems
with relational constraints.

1 Introduction

Relational algebra forms the semantic foundation in multiple domains, e.g., Alloy
models [16], OCL constraints [39], UML metamodels [42], and SQL queries [25].
Developing program synthesis [6,14,22,36,37,46] or program repair [10,20,23,
24,40,57] methods in such domains requires an efficient technique to generate
(non-equivalent) expressions subject to relational constraints, e.g., the types of
sets and relations, their cardinality, size of expressions, maximum arity of the
intermediate expressions, etc.

While syntactically different expressions can be generated by simple standard
bottom-up [54] or top-down [6] grammar-based generation techniques, generat-
ing expressions that way can produce an infeasibly large number of expressions
even for relatively small expression sizes. (In this paper, we measure the size of
an expression by the number of AST nodes in that expression.) For example,
for just one binary relation r ⊆ S × S on some set S and expression size up to
7, there are 17109 syntactically different expressions that can be built using the
operators from Alloy [16]: 5 standard binary operators (relational join, Cartesian
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product, set union, intersection, difference) and 3 unary operators (transpose,
transitive closure, reflexive transitive closure). Reducing this number of expres-
sions requires reasoning about semantic equivalences in relational algebra. Some
such equivalences are well-known, e.g., associativity and commutativity (AC) for
set union and intersection. While AC rules reduce the number of expressions to
11191 in this example, there are actually only 771 non-equivalent expressions.
We need more advanced equivalences to prune out equivalent expressions.

We introduce RexGen, the first generator for semantically non-equivalent
relational expressions. We present the algorithms that define our generator, its
embodiment based on the Alloy tool-set, and an experimental evaluation to show
the effectiveness of its non-equivalent generation for a variety of problems with
relational constraints.

Our choice of Alloy is driven by its foundation in relational, first-order
logic [16], its focus on analyzability, and its wide application in various domains,
e.g., software design [7,17], analysis [4,9,18], testing [31], and security [21].
Alloy’s tool-set includes an automatic analysis tool [53] for checking the satisfi-
ability of formulas written in Alloy using off-the-shelf propositional satisfiability
(SAT) solvers. The analyzer performs scope-bounded analysis, which checks the
properties within a given scope, i.e., bound on the universe of discourse. While
the Alloy analyzer could be used to check semantic equivalences of all expressions
during generation, it results in an impractically slow generation.

Our key insight is that the Alloy analyzer enables a systematic method
for creating and evolving an optimized generator for non-equivalent relational
expressions. Our method first uses the analyzer (with its expensive, semantic
equivalence checks) to discover likely equivalences of expressions that already
get generated. We then generalize and validate these likely equivalences using
manual reasoning, and incorporate them in the expression generator as equiv-
alence rules. These rules directly prune equivalent expressions based on quick,
(mostly) syntactic checks without expensive, semantic equivalence checks.

RexGen offers three automatic pruning modes for bottom-up generation of
relational expressions. One mode, static pruning, directly prunes from generation
many equivalent expressions based on a fixed suite of equivalence rules, which
include well-known equivalences and also dozens more that we discovered using
the Alloy analyzer. Another mode, dynamic pruning, uses the analyzer during
generation to prune equivalent expressions incrementally by comparing each new
expression to a representative from each equivalence class formed thus far, while
forming new equivalence classes as needed. The third mode, modulo-instance
pruning, allows the user to provide AUnit test valuations [50,51], and prunes
an expression if it is equivalent to some generated expression with respect to all
given test valuations (even if not equivalent for some other valuations [3]).

We perform an experimental evaluation of RexGen using expression genera-
tion problems derived from 12 Alloy models. We evaluate the number of expres-
sions that RexGen generates and the time that RexGen takes to generate those
expressions for each problem under different settings. The experimental results
show that static pruning offers the best trade-off, creating mostly semantically
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different expressions, substantially reducing the number of expressions from
simple grammar-based generation, while not increasing the generation time—
in fact, often having smaller generation time than not using any equivalence
pruning rules. In comparison, using only AC rules, as done by some state-of-the-
art systems for expression generation [23] (albeit not for relational expressions,
so we added appropriate extensions for comparison), generates a larger number
of expressions, while not substantially reducing the time. Using dynamic pruning
removes all equivalent expressions w.r.t. the scope but takes substantially more
time. Finally, pruning equivalences based on a relatively small but diverse suite
of test valuations works similarly to dynamic pruning.

This paper makes the following contributions:

Problem: We are the first to study the problem of expression generation for
relational algebra.

Optimizations: We introduce a suite of equivalence pruning rules for relational
expressions to improve the efficacy of expression generation.

Experiments: We present an experimental evaluation based on problems
derived from 12 Alloy models; the results show that RexGen with static pruning
offers a promising approach for generating non-equivalent relational expressions.

2 Example

We next present an example model to motivate relational expression genera-
tion and introduce the basic concepts of our approach. Consider this small but
illustrative Alloy model of directed trees, adapted from a recent paper [32]:

sig Node { edges: set Node }
pred Acyclic { no iden & ^edges }
pred Injective { edges.~edges in iden }
pred Connected { (Node -> Node) in ^(edges + ~edges) }
pred isDirectedTree { Acyclic and Injective and Connected }
run isDirectedTree for 4 Node

The model declares a set (called signature in Alloy) of nodes with a field
called edges that is a binary relation of type Node×Node. The keyword set declares
an arbitrary relation; Alloy also has keywords one and lone to constrain the
relation to be a total or partial function, respectively. The predicate (pred) is
a named formula that can be invoked elsewhere. The conjunction of Acyclic,
Injective, and Connected would precisely represent directed trees. The binary
operator & is set intersection; + is set union; in is subset; . is relational join
(and relational image); and -> is Cartesian product. The (prefix) unary operator
^ is transitive closure, and ∼ is transpose; Alloy also has reflexive transitive
closure (*). The keyword iden represents the identity relation. The formula no

E for expression E constrains E to be the empty set. The run command runs a
given formula, and presents an instance of the given formula if the formula is
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satisfiable. The scope of 4 instructs the analyzer to create an instance with at
most 4 nodes.

To illustrate expression generation using our approach, consider the signa-
ture declaration in this model, which introduces one set (Node) and one binary
relation (edges). Given those declarations, a user may want to generate various
expressions, e.g., in synthesis or repair tasks. For example, many Alloy beginners
write pred Acyclic’ { all n: Node | n !in n.^edges } and may want to know
if there is a semantically equivalent formula without any quantified variables (as
in Acyclic). In that case, the user may want to systematically try {UO E} where
UO represents any unary operator (no, some, lone, one) and E represents any valid
expression, such that the formula {UO E} is equivalent to Acyclic’.

Assume we set the maximum size of any generated expression to 5, which suf-
fices to generate even the largest relational expressions in this particular model.
RexGen generates 581 expressions with no pruning, 438 with AC pruning (i.e.,
associativity and commutativity), 116 with static pruning, 105 with dynamic
pruning, and 102 with modulo-instance pruning (for 14 tests). The generation
time is largest for dynamic pruning, which uses Alloy analyzer to check each
equivalence and takes 2.8 s; in all other cases, no constraint solving is used,
and the generation time is <1 s. The following shows some of the equivalences
discovered with dynamic pruning (where univ denotes the universe of discourse,
which is equal to Node in the example model):

Node->Node = univ->univ (~edges)&(^edges) = (~edges)&(*edges)

(~edges).Node = Node.edges *((^edges)-edges) = *((*edges)-edges)

edges.(Node.edges) = edges.Node ^(edges.(^edges)) = edges.(^edges)

To illustrate generation of larger expressions, consider size 7. RexGen gen-
erates 17109 expressions with no pruning, 11191 with AC pruning, 1464 with
static pruning, 771 with dynamic pruning, and 691 with modulo-instance prun-
ing (for 14 tests). The generation time for dynamic pruning increases to 82.3 s, for
modulo-instance pruning increases to 1.7 s, and for the other techniques remains
<1 s. Thus, for this example, static pruning reduces the number of expressions by
86.9% over AC pruning while taking a similar amount of time; dynamic pruning
reduces the number by 47.3% over static pruning but takes much longer due to
many SAT calls. Moreover, modulo-instance pruning creates a similar number of
expressions as dynamic pruning, which indicates the diversity of the tests, but
takes less time due to not making SAT calls.

3 RexGen Framework

We next present our Re lational Expression Generator (RexGen) approach for
generating non-equivalent relational expressions. We first describe the technique
input and then the expression generation techniques.

3.1 Technique Input

RexGen takes as input (1) a number of sets (signatures), relations (fields), and
variables declared in an Alloy model (in the context in which the expressions
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should be generated), (2) a limit on the size of generated expressions, (3) option-
ally a target arity of expressions to generate, and (4) optionally a number of test
valuations, i.e., values for the input sets and relations (but not for the bound
variables). RexGen generates expressions using the following grammar:

expr ::= expr binOp expr | expr∗ | expr+ | expr−1 | terminal

binOp ::= ∪ | ∩ | \ | × | ��

terminal ::= set | relation | variable

The grammar captures a subset of syntactically possible Alloy expressions,
which cover a large space of candidate expressions likely to be intended by Alloy
users. For example, we do not consider rarely used Alloy operators such as
domain restriction (<:). We use standard notation of relational algebra: ∪ is
set union, ∩ is set intersection, \ is set difference, × is Cartesian product, �� is
the relational join; e∗, e+, e−1 denote the reflexive transitive closure, transitive
closure, and transpose of e, respectively. Additionally we use the empty set ∅,
the universal set univ, and the identity iden = {(x, x)|x ∈ univ}.

To systematically generate expressions, RexGen limits: (1) the size of
expressions and (2) the maximum arity of expressions. There are different
ways to define expression size; we consider the number of AST nodes in the
expression: size(terminal) = 1, size(e1 binOp e2) = size(e1) + size(e2) +
1, size(exprunOp) = size(expr) + 1.

3.2 Generating Expressions

We next describe how RexGen enumerates expressions within the given limits.
In the spirit of synthesis tools [3], enumeration works bottom-up, starting from
terminal expressions (sets, relations, and variables given as inputs) and then
iteratively combining smaller expressions to generate larger ones.

Our key contribution is pruning that aggressively removes expressions to
increase the efficiency of the generation and/or reduce the number of generated
expressions. The goal of pruning is to eliminate expressions that are semanti-
cally equivalent with previously generated expressions. Pruning has three modes:
static, dynamic, and modulo pruning.

Expression Generation Algorithm. The generation algorithm maintains a
list of expressions, exprs[arity], indexed by the arity. The list maintains a total
order among expressions of the same arity; we use ind(e) to denote the index of
the expression e in the list, and some pruning rules use this index.

The lists are instantiated with the terminal expressions (i.e., sets, relations,
and variables declared in the model), based on their arity. The size of these
expressions is 1. Then, until a limit is reached, the algorithm iteratively increases
size and combines every operator and every combination of expressions of appro-
priate smaller sizes to generate expressions of the larger size. Each generated
expression is then added to exprs if it is (1) within the limits given for the gen-
eration, (2) well typed in Alloy, and (3) not pruned by the current pruning mode.
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Note that, by construction, expressions in exprs are syntactically different. The
rest of this section explains in detail well typedness and the three pruning modes.

Well Typedness. RexGen tracks type information for generated expressions,
typically using the default Alloy type system, which includes subset/subtyping
and union types [16]. However, for some expressions, RexGen tracks a more
precise type than the default type system. The main reason is the semantics of
reflexive transitive closure (∗). In Alloy, reflexive transitive closure is a superset of
the identity relation for the union of all sets (univ) and thus has type univ×univ.
For example, if a model has two sets, Node and V alue, and a relation, edges, of
type Node×Node, then edges∗ is not of type Node×Node but univ×univ, where
univ = Node ∪ V alue. However, this type is too broad; it allows for arbitrary
applications of other operators and makes expression generation intractable,
producing expressions that are not intended in practical use.

For example, consider the expression a∗ + b, where a has type A × A. Intu-
itively, we want to allow only expressions of type A×A for b; however, we cannot
track this precisely if we allow a∗ to have type univ × univ. On the other hand,
we cannot consider a∗ to have type A × A because that would make a∗ a sub-
set of A × A, causing the static pruning to incorrectly prune expressions like
a∗ + A × A. Therefore, RexGen conceptually uses a special type system to type
intermediate generated expressions, but uses Alloy type for static pruning.

Static Pruning. Static pruning removes expressions that are known to be
semantically equivalent with other generated expressions. This pruning considers
equivalence with respect to all possible valuations not only given test valuations.
To prune equivalent expressions, we derive a comprehensive suite of equivalence
rules specific to relational algebra. Other generation systems [36] use similar
pruning rules for other domains, but our work is the first to provide rules spe-
cific to relational algebra.

Table 1 presents the static pruning rules of RexGen. The first column gives
the pattern of equivalent expressions that the rule intends to eliminate. RexGen
prunes the expression whose syntactic shape is the left-hand side of the equiva-
lence. The second column specifies the condition for pruning. Note that almost
all rules use only syntactic information or type (and arity) information for the
involved expressions, which makes the rules easily checkable. An exception are
a few rules that check the subset property between two sets/relations; because
subset is a semantic property and not easily checkable, we approximate it con-
servatively, as shown in Table 2. Another exception is the rule for commutativity.
To avoid generating both a op b and b op a, where op is a commutative operation,
we use the total order defined for each arity by exprs: we prune the expression
with ind(a) > ind(b), where ind(e) is the index of e in the list exprs.

Dynamic Pruning. Dynamic pruning removes equivalent expressions by using
the Alloy analyzer to check whether an expression is equivalent to another one
already generated. Unlike static pruning, dynamic pruning considers (1) all sig-
nature/field constraints (e.g., that a relation must be a function) and (2) bound
variables in the scope of the generated expression. To our knowledge, no previous
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Table 1. Static pruning rules

Equivalence (lhs = rhs) Condition if needed; otherwise true

a op (b op c) = (a op b) op c op associative

a op b = b op a op commutative and ind(a) > ind(b)

a ∪ b = b and b ∪ a = b �a� ⊆ �b�

– Similar for ∩ and ⊇
a \ b = ∅ �a� ⊆ �b�

a ∪ b = c ∪ b ∃c.a ∼= c ∪ b or a ∼= b ∪ c or a ∼= c \ b

a ∪ b = b ∃c.a ∼= c ∩ b or a ∼= b ∩ c or a ∼= b \ c

– Also symmetrically – where ∼= is syntactic pattern matching

(a op1 b) op2 (a op1 c) = a op1 (b op2 c) op1 ∈ {��, ×, ∩}, op2 ∈ {∪, ∩}
– Similar for (a op1 b) op2 (c op1 b)

a−1 op b−1 = (a op b)−1 op ∈ {∪, ∩, \, ��}
⋃

ei =
⋃

i�=j ei, ej ∼= ek for some j 
= k

– Similar for
⋂

a \ (b ∪ c) = (a \ b) \ c

a \ (a ∩ b) = a \ b

– Similar for a \ (b ∩ a)

a \ (a \ b) = a ∩ b

a \ (b \ a) = a

(a ∪ b) \ a = b \ a

(a op b) \ (a op c) = a op (b \ c) op ∈ {×, ∩}
(a ∩ b) \ c = a ∩ (b \ c)

a �� (a × b) = b card(a) ≥ 1

– Similar for (b × a) �� a

a �� b−1 = b �� a arity(a) = 1

A �� b∗ = A b : A × A

– Similar for b∗ �� A – where b : A × A means that b has type A × A

A �� b+ = A �� b b : A × A

b+ �� A = b �� A b : A × A

b �� b∗ = b+

– Similar for b∗ �� b

a∗+ = a∗

– Similar for a+∗

a−1−1
= a

a∗−1 = a−1∗

a+−1
= a−1+

(a op b−1)
−1

= a−1 op b op ∈ {∪, ∩, \, ��}
(a × b)+ = a × b

a �� (b × c) = (a �� b) × c arity(a) + arity(b) > 2

– Similar for (a × b) �� c

b−1 �� a = a �� b arity(a) = 1

a+ �� a = a �� a+

a∗ �� a∗ = a∗

a∗ �� a+ = a+

– Similar for a+ �� a∗

a+ �� a+ = a �� a+

(a \ b) �� (b × c) = ∅
– Also symmetrically

a �� ((b \ a) × c) = ∅
– Also symmetrically

A �� (A × b) = b arity(A) = 1

– Similar for (b × A) �� A b : B1 × ... × A × ... × Bn for some Bi = A
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Table 2. Syntactic approximation for a ⊆ b. ∼= means syntactic match.

1. b ∼= A, a : A 5. a ∼= b \ c

2. a ∼= b 6. a ∼= c+, b ∼= c∗

3. b ∼= a ∪ c or b ∼= c ∪ a 7. a ∼= c �� c �� . . . �� c, b ∼= c+ or b ∼= c∗

4. a ∼= b ∩ c or a ∼= c ∩ b 8. a ∼= c × c, b ∼= d∗, a has cardinality 1, c has arity 1

work handles variables locally bound by a quantifier in the scope of the generated
expression.

For a new expression, E, and a previously generated expression, E′, Rex-
Gen creates a new Alloy model that includes all signature/field declarations
from the RexGen input plus check { all v1: D1 |...| all vn: Dn | E = E′ },
where v1 . . . vn are variables used in the two expressions (except for sigs/fields
from the model) and D1 . . . Dn are their corresponding domains. For example, if
E is n. ^edges and E′ is Node.*edges, then the equivalence checking command
is check { all n: Node | n. ^edges = Node.*edges }. This check is issued for
every previously generated expression in exprs until either the new expression
is found equivalent to some previously generated one, or the new expression
is found not equivalent to any previously generated one and is thus added to
exprs. Dynamic pruning can be applied to all expressions for every arity or only
expressions of the target arity.

Modulo Pruning. Modulo pruning [54] removes equivalent expressions based
on their values for the user-given valuations of the input test suite. Specifically,
modulo pruning builds equivalence classes of expressions by grouping together
all expressions that evaluate to the same value across all test valuations, and
keeping only one expression per equivalence class.

Modulo pruning determines an expression’s equivalence class without con-
straint solving, by utilizing the Evaluator feature of the Alloy Analyzer to per-
form constraint checking. The Evaluator takes as input an Alloy instance and an
Alloy expression, and returns the concrete value of the expression for the given
instance. For a new expression E, modulo pruning evaluates E for every test
valuation in the suite, building a map of E’s concrete values. If E contains any
free variable(s), modulo pruning evaluates E for each element in the variable’s
domain, or more generally, for the cross product of domain elements if E contains
multiple variables. If E’s concrete-value map matches a previous expression, then
E is pruned out; otherwise, E is kept. Modulo pruning only determines equiva-
lence based on the user-given test suite, not guaranteeing equivalence across all
instances in scope as dynamic pruning does.

4 Experimental Evaluation

We next present our experimental evaluation of RexGen. We use 12 diverse Alloy
models for evaluation (Sect. 4.1). We evaluate the number of expressions RexGen
generates and the time it takes for each model under different settings (Sect. 4.2).
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4.1 Evaluation Models

We evaluate RexGen using 12 models comprised of a wide variety of exam-
ple, educational, and “real-world” specifications. Address book (addr), Dijk-
stra mutual exclusion algorithm (dijkstra), farmer crossing-river puzzle (farmer),
Halmos handshake problem (hshake), and genealogy (gene) are from the Alloy’s
distribution examples. Bad employee (bempl), colored tree (ctree), directed tree
(dtree), and grade book (grade) are Alloy translations of access-control specifica-
tions used to evaluate existing scenario-finding work [32,43]. Binary tree (btree)
constrains the graph to be a binary tree. Propositional resolution (resfm) is from
Torlak et al. [52]. Singly linked list (sll) models acyclic lists.

Table 3 shows the basic information of these models. Model is the name.
#AST is the number of AST nodes in each model. #Sig is the number of
signatures declared in each model. #Rel is the number of relations declared in
each model. For each model, we find all identifiers in scope, including signatures,
relations, and bound variables, for the largest expression (w.r.t. our measure of
size). #Var is the number of all identifiers in scope to generate expressions. In
our experiment, we first find the expression with the largest size in each model
and then use all sigs, relations, and variables in the scope of that expression
to generate more expressions. #PrimVar is the number of primary variables
when we run an empty command (run {}) without test-specific constraints; it
represents the basic complexity of signature declarations and constraints that
always hold in each model. #Test is the number of tests; we use the same
number of tests for each model so that the results do not depend on the number
of tests. We chose the number of tests based on the sll model, where we create
tests such that modulo pruning generates the same number of expressions of
size 4 as dynamic pruning for this model. We iteratively add tests until modulo
pruning and dynamic pruning create the same set of expressions. In the end, we
obtain 14 tests for sll and use the same number of tests for other models.

Our experiments are performed on a MacBook Pro running OS X El Capitan
with 2.5 GHz Intel Core i7-4870HQ and 16 GB of RAM.

4.2 RexGen Results

Table 4 shows the performance of RexGen across different expression pruning
environments: No Pr. uses no pruning rules, AC Pr. uses just associativity and
commutativity pruning rules, Static Pr. uses all static pruning rules, Dynamic
Pr. uses dynamic pruning, and Modulo Pr. uses modulo-instance pruning. Note
that both dynamic pruning and modulo-instance pruning are applied on expres-
sions after they are pruned by static pruning. Column Problem shows the Alloy
model and the corresponding size used for generation. For each pruning envi-
ronment, #expr shows the number of expressions generated and time shows the
time duration in milliseconds to generate all expressions, with a time-out of one
hour. The number of generated expressions shown in the table is for expressions
of all arities up to 3.
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Table 3. Basic information of models used to evaluate RexGen

Model #AST #Sig #Rel #Var #PrimVar #Test

addr 114 4 2 8 45 14

bempl 46 6 3 11 38 14

btree 53 2 2 6 24 14

ctree 71 4 2 8 18 14

dijkstra 385 3 1 10 57 14

dtree 49 1 1 2 12 14

farmer 169 6 3 14 24 14

gene 139 5 2 8 20 14

grade 64 5 4 11 48 14

hshake 127 3 2 6 19 14

resfm 285 8 7 19 101 14

sll 33 2 2 5 15 14

Expression generation using No Pr., AC Pr., and Static Pr. is fast, taking at
most 7.9 s (farmer and size 7 using No Pr.), but frequently finishing in under a
second. Accordingly, both AC Pr. and Static Pr. have negligible overhead. How-
ever, the number of expressions generated can vary greatly, as seen in Table 4.
No Pr. generates all possible expressions and provides a means of measuring
the effectiveness of different pruning environments. Compared to No Pr., AC
Pr. reduces the number of expressions generated by 8.7–54.7%, while Static Pr.
reduces the number of expressions generated by 36.6–91.4%. Compared directly,
Static Pr. generates 28.4–86.9% fewer expressions than AC Pr.. In other words,
Static Pr.’s additional pruning rules highlight that associativity and commu-
tativity are not strong enough to prune relational expressions on their own.
Moreover, Table 4 shows that the pruning rules for AC Pr. and Static Pr. reduce
the space of possible expressions by a large enough degree that both techniques
often finish faster than No Pr., despite the time they spend on applying equiv-
alence rules to check expressions. Although Static Pr. has 40 more rules than
AC Pr., the difference in runtime between AC Pr. and Static Pr. is often less
than a second. Therefore, Static Pr.’s rules are inexpensive to run but effective
at reducing the number of generated expressions.

We can analyze expressions to prune out more equivalences. Dynamic Pr. fur-
ther prunes expressions generated by Static Pr.; Dynamic Pr. is motivated by
using Alloy to find all equivalences (within a given scope), thus capturing equiv-
alences which cannot be captured by generic static pruning rules. As expected,
Dynamic Pr. reduces the number of expressions from Static Pr., by 3.6–71.4%.
Dynamic Pr. gives the minimum number of non-equivalent expressions for each
model, showing the lower bound of what Static Pr. could achieve.
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Table 4. RexGen performance. Times are in ms. ⊥ indicates a timeout (>1 hour).

Problem No Pr. AC Pr. Static Pr. Dynamic Pr. Modulo Pr.

#expr time #expr time #expr time #expr time #expr time

addr 4 231 2 199 4 129 25 118 1259 108 279

5 3984 18 2374 19 1335 56 823 15869 600 1396

6 7913 27 5563 29 2034 64 1193 19359 900 1879

7 139971 204 65346 131 24839 189 7116 635296 3546 7902

bempl 4 427 5 377 6 261 29 246 1939 237 343

5 7027 27 4369 25 2463 64 1708 25098 1424 2999

6 15396 50 11144 41 4096 80 2588 43840 2198 3814

7 254843 363 128706 274 47747 296 15363 1555983 10309 29174

btree 4 415 4 355 6 223 29 215 6247 196 484

5 3264 18 2391 18 1032 51 915 62153 740 1920

6 17956 42 12919 41 4553 93 3424 999892 2227 6221

7 139882 204 88578 148 25031 195 ⊥ ⊥ 8505 26140

ctree 4 369 4 327 6 202 27 185 2773 144 754

5 4625 21 3031 21 1446 59 996 28674 737 5282

6 14315 37 10707 38 3473 79 2143 192314 1169 9584

7 168181 221 93805 175 27660 213 ⊥ ⊥ 5530 60968

dijkstra 4 287 2 251 4 140 26 135 2235 133 264

5 4661 19 2763 20 1397 53 1097 20544 1069 2185

6 9939 30 7159 39 2175 60 1637 36446 1552 3083

7 138703 213 65991 139 17976 180 7007 670275 5704 17820

dtree 4 111 1 95 3 40 21 38 680 37 144

5 581 4 438 6 116 30 105 2809 102 401

6 2957 15 2130 14 376 39 250 11247 234 841

7 17109 40 11191 34 1464 61 771 82268 691 1686

farmer 4 1077 8 939 8 654 39 619 28327 454 695

5 41007 73 24322 53 16969 141 ⊥ ⊥ 5116 8992

6 96607 140 68468 124 33097 215 ⊥ ⊥ 9247 22555

7 3666499 7942 1661501 4581 923952 3985 ⊥ ⊥ 80553 2156722

gene 4 641 5 551 6 376 32 348 10853 242 916

5 12055 31 7653 29 4597 83 3228 632913 1675 8614

6 42897 76 30703 64 14621 145 ⊥ ⊥ 4324 20490

7 763031 1998 393015 1150 177920 665 ⊥ ⊥ 26222 326804

grade 4 421 4 373 6 267 30 244 2570 229 447

5 6533 25 4168 25 2342 65 1496 28995 1105 2450

6 14930 45 11033 42 4141 89 2321 52542 1740 3446

7 234482 373 122012 258 45312 311 13166 1858565 7300 19416

hshake 4 471 3 403 5 260 31 244 8543 173 1131

5 5625 20 3805 22 1936 61 1505 164478 1020 8180

6 25523 51 18319 46 7640 112 5378 2570827 3031 21775

7 286661 355 163874 247 58505 318 ⊥ ⊥ 16149 222019

resfm 4 1030 8 940 12 652 38 625 10051 510 767

5 18692 50 12250 42 7337 99 5705 336197 3626 5634

6 47128 111 35984 94 13384 146 9406 938031 5026 9076

7 822434 2107 449935 653 175337 845 ⊥ ⊥ 24997 181425

sll 4 209 2 183 4 104 25 98 1468 98 283

5 1549 10 1100 13 397 40 331 6868 330 987

6 6267 25 4694 25 1203 58 808 37988 803 2593

7 45527 86 28622 64 5463 95 2712 429769 2671 9391
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Modulo Pr. also filters expressions generated by Static Pr.; specifically, Mod-
ulo Pr. reduces the expressions from Static Pr. by 5.0–91.3%. Dynamic Pr. can
be viewed as Modulo Pr. if the input test suite covered all instances in scope.
However, since we use only 14 tests per model for Modulo Pr., Modulo Pr. may
even prune expressions that are semantically non-equivalent up to a given scope
but equivalent over all 14 tests. For example, Modulo Pr. prunes 10 more size 4
expressions and 223 more size 5 expressions for addr compared to Dynamic Pr..
Therefore, as expected, Modulo Pr. can reduce the number of generated expres-
sions compared to Dynamic Pr., by as much as 50.2% (addr), or Modulo Pr. can
generate the same number of expressions (sll and size 4) but 5.2× faster. The
trade-off is that, while Dynamic Pr. is guaranteed to not prune expressions that
are semantically non-equivalent within a given scope, it is slower than Modulo
Pr.; Dynamic Pr. times out on 7 different problems, while Modulo Pr. frequently
finishes in under a minute, with the longest runtime being 2156.7 s. While Mod-
ulo Pr. provides a practical, lighter-weight alternative to Dynamic Pr., Modulo
Pr. still has a high overhead over Static Pr.. For instance, for farmer and size
7, Static Pr. can generate expressions in 4.0 s, while Modulo Pr. needs 2156.7 s
to finish.

In our experiment, applying Dynamic Pr. or Modulo Pr. on expressions gen-
erated with No Pr. or AC Pr. takes significantly longer. Static Pr.’s ability to
significantly reduce the number of generated expressions, with a negligible over-
head, makes Static Pr. the recommended approach for relational expression gen-
eration (even when considering more advanced pruning techniques like Dynamic
Pr. or Modulo Pr.). To check that our static pruning rules are correct, we ran
dynamic pruning on expressions generated using AC Pr. and Static Pr.: we found
that the numbers of non-equivalent expressions generated after dynamic pruning
for both AC Pr. and Static Pr. are exactly the same, which indicates that Static
Pr. does not incorrectly prune any non-equivalent expression.

5 Related Work

Enumeration Algorithms include bottom-up enumeration [3,54], used by
RexGen, and top-down enumeration [6]. EuSolver [3] has been one of the most
prominent solvers in Syntax-Guided Synthesis (SyGuS) competitions. Flash-
Meta [38] uses version-space algebra to concisely represent a large number of
programs. Neither EuSolver nor FlashMeta focus on relational expressions, which
can generate a large number of equivalent expressions. Our work proposes a num-
ber of pruning rules that substantially reduce the number of equivalent expres-
sions, thus providing basis for practical synthesis with relational expressions.

Search Space Pruning of expression generation is important because search
spaces for any realistic programming language quickly become intractable. Prun-
ing techniques include indistinguishability of expressions modulo a set of inputs
[3,54] and partial evaluation of incomplete expressions [6]. Knowledge about
operator properties has also been used to explore equivalent expressions, either
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after expression generation [36] or by applying an automated transformation
to the grammar which represents candidate programs [23]. However, most tech-
niques have only been explored in the domains of integers, booleans, and abstract
data types, all of which have less comprehensive sets of equivalence rules than
our work with the domains of sets and relations.

Applications of Expression Generation are quite common. For example,
program synthesis has attracted attention for a few decades [28], and researchers
have applied it in a variety of domains [5,6,8,12,22,27]. Program sketching [46] is
another example, which demonstrated the opportunities to apply modern solver
technology to the synthesis problem, and introduced the counter-example guided
inductive synthesis paradigm to program synthesis. Sketch requires the user to
provide generators of expressions for expression holes [2,14,19,45]. While most
work on sketching is in the context of synthesis, SketchRep [13] applies sketching
to the problem of program repair [10,20,24,40,57], i.e., correcting faulty lines
of code. Synthesis from examples, the inspiration behind test valuations, has
also been extensively studied [1,35]. Notably, synthesis from examples has been
successfully employed in commercial products [11]. EdSketch [14] introduced an
optimized backtracking search for completing Java sketches using test execu-
tions for pruning. SketchFix [15] used EdSketch as the backend synthesis engine
for program repair. EdSynth [58] builds on EdSketch and synthesizes method
sequences for given sketches that may contain conditional branches. SyPet [5]
introduced a novel use of Petri nets in synthesizing straightline sequences of
method invocations for complex APIs using tests. The key enabler of all of the
above applications is efficient expression generation; ours is the first work that
addresses generation for relational algebra.

Alloy is a well studied lightweight modeling approach that has been applied in
various domains, including software design [29,30], networking [41], and secu-
rity [26,34]. This paper is the first to study expression generation for Alloy and
more generally for relational algebra. Our work leverages the AUnit [48,51] app-
roach for writing tests for Alloy models. Various approaches assist Alloy users
to build their models correctly, e.g., by improving scenario exploration [32,33],
supporting state modeling [7,17,18,31,49], highlighting UNSAT cores [44,52,53],
and creating tests [50,55]. RexGen provides a novel basis of a synthesis or sketch-
ing engine for Alloy in particular and relational logic in general [47,56].

6 Conclusions

We introduced RexGen, the first generator for non-equivalent relational expres-
sions. We presented a set of equivalence rules for relational expressions, used
them for pruning in our generator, embodied the generator based on the Alloy
tool-set, and presented an experimental evaluation of the effectiveness of our
non-equivalent generation for a variety of problems with relational constraints.
RexGen provides the key step to address the broader problems of synthesis and
repair of declarative models in Alloy. Our companion paper on ASketch [56]



118 K. Wang et al.

shows how to use the generated expressions to synthesize Alloy models from
sketches. We hope our work inspires the development of a broader tool-set to
support software models and eventually leads to more reliable software systems.
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Abstract. We introduce ASketch, the first framework for sketching
models in the Alloy language. The Alloy Analyzer is a SAT-based con-
straint solver that allows users to create valuations for relations with
respect to given constraints and bound on the universe of discourse. Alloy
users routinely use the valuations to validate their models: enumerate
some valuations and inspect them to detect underconstraints or over-
constraints. Our key insight is that valid and invalid valuations enable
sketching Alloy models where the user writes a partial model with holes
and provides some valuations, and the sketching infrastructure completes
the model by synthesizing Alloy fragments for the holes.

ASketch offers the following extensions to Alloy: (1) it expands the
Alloy grammar, allowing users to write holes in an Alloy model; (2) it can
parse regular expressions and automatically generate pools of matching
fragments to replace the holes; (3) it includes a solver-based technique
that encodes the model with holes, the fragments for each hole, and the
expected valuations to a meta-model which completes the holes when
solved. Experimental results show that ASketch works well for different
Alloy models with various number of holes, providing a promising app-
roach to bring the success of traditional program sketching for imperative
and functional programs to declarative, relational logic.

1 Introduction

Building software models plays an important role in building reliable systems.
Alloy [11] is a well-known, relation-based modeling language that has been used
in academic and industrial settings [8,12,22,45]. Alloy has a SAT-based analyzer
that performs automatic analysis over a user-defined scope, i.e., bound on the
universe of discourse. Specifically, the analyzer finds instances, i.e., valuations
for relations in the model such that the formulas in the model evaluate to true.
The analyzer can also find counterexamples that refute properties of interest; an
instance for the negation of the property formula serves as a counterexample.
While Alloy’s expressive notation allows succinct formulation of complex prop-
erties, reasoning about the correctness of Alloy formulas, e.g., in the presence
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of quantification and transitive closure, requires much care. Because Alloy mod-
els are effectively logical constraints, they can have two basic kinds of faults:
overconstraints that rule out valid valuations and underconstraints that permit
invalid valuations.

We introduce the first approach for sketching Alloy models, where the user
does not need to write complete models. Instead, the user writes a partial model
with holes and also provides (1) some regular expressions that encode possible
fragments for each hole and (2) some valid and invalid valuations that serve as
test cases [35,38] for the desired model. Our key insight is that these test valu-
ations enable sketching Alloy models, where the sketching framework completes
the partial model with respect to the given fragments and valuations.

Our sketching framework, called ASketch, focuses on sketching several con-
structs of Alloy models, including relational expressions, logical operators, and
quantifiers. Given a partial model and the corresponding test valuations, ASketch
first parses the user-provided regular expressions and generates pools of match-
ing fragments that can replace the holes. Then, ASketch systematically explores
the resulting search space of candidate Alloy models, to find a model that sat-
isfies all test valuations. Specifically, ASketch uses constraint solving to explore
the space of candidate models by creating one Alloy meta-model that encodes
the model to sketch along with the fragments for holes and test valuations all at
once. The meta-model effectively encodes multiple Alloy models, i.e., all models
from the entire candidate space. Finally, ASketch uses the Alloy Analyzer to find
solutions that can fill in the holes.

We perform an experimental evaluation of ASketch using 24 sketches derived
from 5 core Alloy models. Experimental results show that ASketch can com-
plete sketches that can simultaneously have up to 3 expression holes and 3
non-expression holes. To highlight the complexity of the underlying problem,
one example sketch, BinaryTree with 6 holes, has a search space of over 4 bil-
lion candidate Alloy models (3 expression holes with 400 expression fragments
each and 3 non-expression holes with 4 fragments each). ASketch finds a solu-
tion Alloy model (w.r.t. 16 test valuations) in 12min, and the Alloy meta-model
generated by ASketch creates a SAT problem with 1,378 primary variables and
1,188,735 clauses.

While ASketch introduces a new technique for writing Alloy models in gen-
eral, a particular application that we envision for ASketch is for education about
Alloy and more broadly, software modeling using relational specifications. Our
experience with beginner Alloy users shows that they often struggle to make
their formulas “just right”. They have a general idea for a formula skeleton, and
they can tell whether certain instances should or should not satisfy a formula,
but they still make mistakes that overconstrain or underconstrain their models.
We expect that beginners could greatly benefit from an iterative methodology
where the user could start from some skeleton formula with holes, use ASketch
to complete the formula, obtain some valuations, label them as valid or invalid,
and repeatedly iterate until getting all (and only) the valuations that the user
expects. In fact, our evaluation subjects are inspired by the example models that
beginners often struggle with.
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This paper makes the following contributions:

Idea: We introduce the idea of sketching Alloy models using test valuations.

ASketch: We introduce a technique for completing Alloy sketches based on
constraint solving.

Experiments: We present an experimental evaluation with small but intricate
Alloy formulas; the results show that ASketch introduces a promising approach
for sketching Alloy models.

2 Example

To illustrate our ASketch approach, consider the following partial Alloy model
for an acyclic singly linked list:

one sig List { header: lone Node } sig Node { link: lone Node }
pred Acyclic() { \Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ }
q := {| all|no|some|lone|one |}
co := {| =|in|!=|!in |}
e := {| (List.header|n).(~?)(*|^)link |}

The signature (sig) declaration introduces a set of atoms and a user-defined
type. A signature may declare fields, i.e., relations. List declares a set of list
atoms; one makes the set singleton, i.e., have exactly 1 atom, which represents
the list we are modeling. The field header declares a binary relation of type
List×Node; lone declares header to be a partial function, i.e., each List atom
maps to at most one Node atom. Node declares a set of nodes and introduces the
field link, which is a partial function of type Node×Node. The predicate (pred)
Acyclic introduces a named formula (which may have parameters).

The body of the predicate is a formula sketch with three different kinds of
holes: \Q,q\ (quantifier hole), \CO,co\ (comparison operator hole), and \E,e\
(expression hole). For the sake of illustrative example, we create several holes
of different kinds (potentially more than a user would actually create), and we
explicitly list all potential fragments for each hole. Each hole states the syntactic
kind of the hole followed by an identifier, e.g., E followed by e. Each identifier
refers to a regular expression (within {| ... |}, following [30]), e.g., e refers to
(List.header|n).(�?)(*|^)link, which encodes a set of eight Alloy expres-
sions in this example, including expressions List.header.*link and n.^link.
ASketch extends the Alloy grammar [39] with these holes. The variable n is
introduced by the quantifier (to be sketched) and is of type Node; the operator
=> denotes logical implication.

The goal is to fill in the holes such that the formula constrains the nodes
in the list to form an acyclic structure. Figure 1 graphically illustrates four test
valuations for the model. Three valuations—T0, T1, and T3—are valid with
respect to the expected acyclicity constraint. One valuation, T2, is invalid. Note
that T3 is valid although N1 links to itself: N1 is not in the list, and the
formula we are sketching should constrain only the nodes that are in the list,
i.e., reachable from the header.
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Fig. 1. Four test valuations shown graphically: T0, T1, and T3 are valid for the
expected acyclicity; T2 is invalid. L0 is the list atom; N0 and N1 are node atoms.

The user can provide the test valuations simply as Alloy predicates. For
example, the following represent test valuations T0 and T2 from Fig. 1:

pred Test0() {
some L0: List {

List = L0 and no header and no Node and no link and Acyclic[] }}
pred Test2() {

some L0: List | some disj N0, N1: Node {
List = L0 and header = L0->N0 and Node = N0+N1 and link = N0->N1 + N1->N0 and !Acyclic[] }}

The predicate Test0 uses an existentially quantified (some) formula to assign
a value to the List set. Using the Alloy keyword no, Test0 declares the other
signatures and relations to be empty. The predicate invocation Acyclic[] labels
the valuation as valid for the expected acyclicity constraint. The predicate Test2
uses existentially quantified formulas to assign values to the List and Node
sets. The keyword disj requires the variables in the declaration to represent
disjoint sets (i.e., unique nodes), the operator -> denotes Cartesian product, the
operator + denotes set union, and the predicate invocation !Acyclic[] labels
the valuation as invalid for the expected acyclicity constraint.

Consider using ASketch to complete all five holes. Two are expression holes
\E,e\ with the same given regular expression assigned for the fragment space,
and each expression hole has eight syntactically different expression fragments.
Alloy also allows five quantifiers for \Q,q\ (all, no, some, lone, and one) and
four comparison operators for \CO,co\ (=, in, !=, and !in). In total, there are
5×4×8×4×8 = 5, 120 candidate Alloy models. For our example, we use 8 test
valuations to obtain the expected solutions (4 shown in Fig. 1 plus 4 more). To
complete the sketch, ASketch takes less than 1 s when solving the entire Alloy
meta-model that encodes all 5,120 models and 8 valuations at once. Here is a
solution ASketch finds:

all n: Node | n in List.header.*link => n !in n.^link

The Alloy keyword in represents the subset, and ! denotes logical negation.
The operator * denotes reflexive transitive closure, and ^ denotes transitive clo-
sure. The expression List.header.*link represents the set of all nodes reach-
able from the list’s header (following zero or more traversals of the field link).
The expression n.^link represents the set of all nodes reachable from n (follow-
ing one or more traversals of the field link). Thus, this universally quantified
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formula states that for any node that is in the list, the node is not reachable
from itself, which correctly characterizes our expected acyclicity constraint.

3 ASketch Framework

We next present the ASketch grammar for Alloy models with holes and describe
how ASketch determines which fragments complete the sketch to produce an
Alloy model that satisfies all the given test valuations.

3.1 Input Language

The input to ASketch is an Alloy model with holes. For lack of space, we do not
show the full grammar for ASketch’s input language, but it effectively extends the
Alloy grammar with new syntactic constructs that represent holes. The current
Alloy grammar is available at http://alloy.csail.mit.edu/alloy/documentation/
alloy4-grammar.txt; we follow an older exposition [11] that included the seman-
tics of the kernel Alloy language. Consider this part of the ASketch grammar:

quant ::= "all" | "no" | "some" | "lone" | "one" | "\Q," identifier "\"
expr ::= "*"expr | expr "+" expr | ... | "\E," identifier "\"
compareOp ::= "=" | "in" | "!=" | "!in" | "\CO," identifier "\"
formula ::= quant v ":" type "|" formula | ...
regExDecl ::= identifier ":=" "{|" regex "|}"
regex ::= nonSpecial | regex "?" | "(" regex ")" | regex regex | regex "|" regex

We extend quant so the quantifier can be a hole \Q,i\ where Q indicates the
quantifier hole kind and i is an identifier that maps to a regular expression via
regExDecl. The expr options include the expressions from Alloy, formed with
unary (e.g., *) or binary operators (e.g., +), and we add a hole (\E,i\) that can
replace an entire expression. Comparison operators include all operators from
Alloy and also a hole \CO,i\. The formula options include the Alloy first-order
logic formulas. regExDecl has the form i:={|e|} where i is referred from a
hole and e is a regular expression. We follow the design of popular sketching
system [13,30,32] that include a few regular expression operators: options (e?),
concatenations (e1 e2), and choices (e1 | e2). nonSpecial is any character
that Alloy supports except for ?, (, ), and |; to use those, requires escaping them
as \(, \), and \|. Finally, ASketch generates all possible fragments that match e
using a standard backtracking algorithm [20]. ASketch supports all fragments for
non-expression holes, as shown in Table 1. Our current implementation requires

Table 1. Supported fragments for non-recursively defined holes

Sketch kind Hole Candidates Sketch kind Hole Candidates

Quantifier \Q\ all, no, some, lone, one Unary operator formula \UOF\ !, ␣

Logical operator \LO\ ||, & &, <=>,=> Unary operator expression \UOE\ ~, *, ^

Compare operator \CO\ =, in, !=, !in Binary Operator \BO\ &, +, −
Unary operator \UO\ no, some, lone, one

http://alloy.csail.mit.edu/alloy/documentation/alloy4-grammar.txt
http://alloy.csail.mit.edu/alloy/documentation/alloy4-grammar.txt
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an explicit regular expression for every hole, although a default could be set
up such that non-expression holes implicitly get all possible fragments without
listing them explicitly.

3.2 Solver-Based Sketching

ASketch reduces the sketching problem to a constraint-solving problem in the
Alloy language itself, which is then solved by the Alloy Analyzer. Effectively,
ASketch generates one meta-model in Alloy that encodes multiple potential
solutions (i.e., concrete models) to the sketch. To represent the fragments for
each hole, two constructs are added to the meta-model: (1) an Alloy atom that
names a specific fragment for the hole, and (2) constraints that characterize the
semantics of the different fragments for the sketch.

Because ASketch uses the Alloy tool-set itself to encode Alloy expressions
and formulas, their semantics need not be explicitly modeled in Alloy; rather,
they just need to be stated—indeed, the Alloy tool-set understands the seman-
tics of Alloy. Therefore, we can use a shallow embedding of Alloy fragments in
the model. Specifically, to represent the expression fragments, ASketch creates
new Alloy functions, i.e., parameterized expressions. To represent the operator
fragments, ASketch creates new Alloy predicates, i.e., parameterized formulas.
Moreover, to encode multiple given test valuations in the same meta-model,
ASketch parameterizes formulas with respect to user-defined relations, which are
extracted out of their declaring signatures and added as new parameters. Our
encoding allows constraining the model with respect to all valuation constraints
at once—without causing an unnecessary increase in the number of proposi-
tional variables in the resulting SAT formula and without requiring higher-order
solving [22].

We use the linked-list example from Sect. 2 to describe how ASketch sketches
the body of a predicate and completes five holes of three kinds—quantifiers
(\Q,q\), comparison operators (\CO,co\), and expressions (\E,e\). ASketch
uses the following steps to create an Alloy meta-model whose solutions com-
plete the sketch: (1) parameterize Alloy construct (Sect. 3.2.1); (2) create Alloy
meta constructs to encode holes (Sect. 3.2.2); (3) translate test valuations to
facts (Sect. 3.2.3); and (4) invoke the Alloy Analyzer to complete the holes
(Sect. 3.2.4).

3.2.1 Parameterize Alloy Constructs
In the first step, ASketch parameterizes all predicates, functions, and facts. To
parameterize an Alloy fact, ASketch first converts it to a semantically equivalent
predicate. Without loss of generality, we only present how ASketch parameter-
izes predicates. The goal is to allow multiple test valuations to be encoded in
the same meta-model. ASketch constructs a meta-model which includes (1) all
signature declarations from the partial model, but without any of the declared
relations, and (2) all predicates. Moreover, all predicates in the meta-model get
additional parameters: one new parameter per signature and one new parameter
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per field; parameters that represent signatures have fresh variable names gener-
ated, whereas those that represent fields use the same names as in the partial
model. In the body of the predicates, any reference to a declared signature is
replaced by the corresponding fresh variable name.

For our acyclic linked-list example from Sect. 2, we get the following:

one sig List {} sig Node {}
pred Acyclic(ls: one List, header: List -> Node, ns: set Node, link: Node -> Node) {

\Q,q\ n: ns | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ }

3.2.2 Create Alloy Meta Constructs to Encode Holes
ASketch creates Alloy meta constructs that encode concrete values for every
hole in Alloy predicates. We present how to encode only quantifier holes, com-
parison operator holes, and expression holes in Alloy predicates. The algorithm
takes as inputs a mapping from expression holes to the corresponding expression
fragments and a mapping from holes to all Alloy variables (sigs, fields, predi-
cate parameters, let-bound variables, and quantified variables) in scope of the
holes. The algorithm iterates over each Alloy predicate in the meta-model and
updates the predicate body by recursively replacing ASketch holes with predi-
cate/function calls, and creating and adding the predicate/function declarations
to the meta-model. Note that any reference to a declared signature in the gen-
erated predicate/function is replaced by the corresponding fresh variable name
as described in Sect. 3.2.1, e.g., List with ls.

After this step, ASketch constructs the following meta-model (note that the
two comparison operator holes share the same operator fragments, and the two
expression holes share the same expression fragments):

pred Acyclic(ls: one List, header: List -> Node, ns: set Node, link: Node -> Node) {
q1[RQ1, ls, header, ns, link] }

abstract sig Q {} one sig RQ1 in Q {}
one sig Q_All, Q_No, Q_Some, Q_Lone, Q_One extends Q {}
pred q1(h: Q, ls: one List, header: List -> Node, ns: set Node, link: Node -> Node) {

h = Q_All => all n: ns | co2[RCO2, n, expr3[RE3, ls, header, ns, link, n]] =>
co2[RCO4, n, expr3[RE5, ls, header, ns, link, n]]

h = Q_No => no n: ns | co2[RCO2, n, expr3[RE3, ls, header, ns, link, n]] =>
co2[RCO4, n, expr3[RE5, ls, header, ns, link, n]]

... }
abstract sig CO {} one sig RCO2 in CO {} one sig RCO4 in CO {}
one sig CO_Eq, CO_In, CO_NEq, CO_NIn extends CO {}
pred co2(h: CO, e1, e2: set univ) {

h = CO_Eq => e1 = e2
h = CO_In => e1 in e2
... }

abstract sig E3 {} one sig RE3 in E3 {} one sig RE5 in E3 {}
one sig E3_1, E3_2, E3_3, E3_4, E3_5, E3_6, E3_7, E3_8 extends E3 {}
fun expr3(h: E3, ls: one List, header: List -> Node,

ns: set Node, link: Node -> Node, n: one Node): univ {
(h = E3_1 => ls.header.*link else
(h = E3_2 => n.^link else
... else none)) }

For quantifier holes, ASketch creates a unique abstract sig Q and declares
5 disjoint singleton sigs that represent all possible values for the hole (all, no,
some, lone, and one). For each quantifier hole, ASketch translates the quantified
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formula to a predicate call. The predicate has the following parameters: (1) one
parameter of the new abstract sig type that allows evaluating the predicate to
one of the 5 quantifiers; and (2) one parameter for each variable in scope: signa-
tures and fields from the original model, and optionally, predicate parameters,
let-bound variables, and/or quantified variables in case of nested quantified for-
mulas. The corresponding predicate declaration, q1 in our example, is added to
the meta-model. The predicate body is a conjunction of implications that model
different quantified formulas corresponding to the hole. ASketch also introduces
a result sig, RQ1 in our example, that will obtain one of the 5 values (Q_All,
Q_No, Q_Some, Q_Lone and Q_One) to represent the quantifier to fill in the hole.

For comparison operator holes, ASketch creates a unique abstract sig CO and
declares 4 disjoint singleton sigs that represent all possible values for the hole (=,
in, !=, and !in). Unlike for quantifier holes where each hole requires a new pred-
icate, all comparison operator holes (of the same arity) can be encoded using a
single predicate if they share the same set of fragments. ASketch creates a pred-
icate, co2 in our example, which encodes a formula that contains a comparison
operator. The predicate contains 3 parameters: (1) one parameter of the new
abstract sig type that allows evaluating the predicate to one of the 4 comparison
operators (CO_Eq, CO_In, CO_NEq, and CO_NIn); (2) left operand; and (3) right
operand. For each comparison operator hole, ASketch introduces a result sig,
RCO2 and RCO4 in our example, similar as for quantifier holes. (ASketch treats
the other non-expression holes similar to comparison operator holes, but we do
not present details due to space limits.)

To model values of expression holes, ASketch creates one new abstract sig,
E3 in our example, for all holes that share the same set of expression fragments
and declares k singleton sigs that partition the new sig, where k is the number
of expression fragments for the corresponding expression hole, 8 in our example.
ASketch also introduces result sigs, RE3 and RE5 in our example, that will obtain
one of the k values to represent which fragment fills the hole. Next, ASketch cre-
ates an Alloy function that can select from these choices. The function has these
parameters: (1) one parameter of the new abstract sig type that allows evalu-
ating the function to one of the expression fragments based on the invocation
context; and (2) one parameter for each Alloy variable in scope. The function
body is a nested if-then-else expression where exactly one choice is true for any
invocation, and the function evaluates to the value of the expression fragment
corresponding to that choice.

3.2.3 Express Test Valuations as Facts
To complete the sketch with respect to the given test valuations (labeled as valid
or invalid), ASketch automatically translates the test valuations (expressed as
predicates in Sect. 2) to facts, which forces any solution that is created (in the
final meta-model) to conform to all given valuations. Because valuations from
different tests may contradict one another, ASketch uses Alloy’s let construct
to introduce the necessary names for sets and relations that are assigned values.
Then, ASketch passes these sets and relations to the parameterized predicates
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(described in Sect. 3.2.1) so that the final sketched model satisfies all the tests
at once. For example, Test0 from Sect. 2 becomes the following fact:

fact Test0 {
some L0: List {

let ls = L0 | let header = none->none | let ns = none | let links = none->none |
Acyclic[ls, header, ns, links] }}

3.2.4 Invoke Alloy Analyzer to Complete Holes
The final meta-model consists of all pieces generated in Sects. 3.2.1, 3.2.2, and
3.2.3. ASketch invokes the Alloy Analyzer to execute an empty run command
(run {}) on the final meta-model. The analyzer searches for possible valu-
ations of the result R sigs so that they conform to all tests. In our exam-
ple, RQ1 evaluates to Q_All, RCO2 to CO_In, RE3 to E3_1, RCO4 to CO_NIn,
and RE5 to E3_2. Finally, ASketch maps result values to the corresponding
Alloy fragments and reports concrete values of all holes to the user, e.g.,
〈all, in, List.header.*link, !in, n.ˆlink〉 in our example. The com-
pleted, sketched model becomes this:

one sig List { header: lone Node } sig Node { link: lone Node }
pred Acyclic() { all n: Node | n in List.header.*link => n !in n.^link }

Our example used only 8 expressions, but realistic ASketch models may have
hundreds of expressions, which results in much larger meta-models. Our exper-
iments show that the above encoding technique still works relatively well even
for a large number of expressions. It also works much better than all other meta-
model encoding techniques we tried.

4 Experimental Evaluation

We next present our experimental evaluation of ASketch. We use five small but
intricate Alloy problems to derive 24 sketching models for evaluation (Sect. 4.1).
We evaluate how much time ASketch takes to find complete Alloy models that
satisfy all test valuations (Sect. 4.2).

4.1 Sketching Problems

We use 24 sketches derived from five core Alloy models: LinkedList from Sect. 2,
BinaryTree models the acyclicity constraint of a binary tree, Contains checks
whether a list contains an element, Remove models removing an element from a
list, and Dijkstra models Dijkstra’s mutual exclusion algorithm.

For each core model, we picked one predicate to create several sketches by
increasing the total number of holes in the body of the predicate, from left to
right. This process enables us to systematically create model variants to explore
how the number of holes affects our techniques. For example, for LinkedList, we
identified 3 non-expression holes and 2 expression holes in the Acyclic predicate
and produced these 5 variants:
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\Q,q\ n: Node | n in List.header.*link => n !in n.^link // LinkedList 1H
\Q,q\ n: Node | n \CO,co\ List.header.*link => n !in n.^link // LinkedList 2H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n !in n.^link // LinkedList 3H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ n.^link // LinkedList 4H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ // LinkedList 5H

Our experiments are performed on a MacBook Pro running OS X El Capitan
with 2.5GHz Intel Core i7-4870HQ and 16GB of RAM.

4.2 ASketch Results

Table 2 shows the results of ASketch for various sketching problems. The column
Model shows the model variants for each core model; columns #N and #E
show the number of non-expression holes and expression holes, respectively; the
column Search Space shows the number of fragments combinations for all holes;
and the columns #Primary Vars, #Clauses, and Solving Time show the number
of primary variables, clauses, and solving time in seconds for the meta model,
respectively. The Search Space is computed as the product of the number of
fragments for each hole in the model. For example, if the LinkedList model with
5 holes has 1 quantifier hole with 5 fragments, 2 comparison operator holes with
4 fragments each, and 2 expression holes with 400 fragments each, then the
sketching problem has a search space of 5 × 42 × 4002 = 12, 800, 000 ∼= 1.3e7.

The columns 50, 100, 200, 300, and 400 show the number of expression frag-
ments in the experiment, e.g., 50 means that we use 50 syntactically different
expressions for each expression hole in the model variant. We generate regular
expressions for expression holes using RexGen1 [43] such that two properties
hold. First, the set of expressions contains the expected solutions. Second, the
larger set of expressions contains all expressions from the smaller set, e.g., the
set of 100 expressions includes the set of 50 expressions and adds 50 more. We
ensure the first property as follows. Suppose we have H expression holes and
E expected expressions to fill the holes. We run RexGen to get X expressions
and exclude E expected expressions from X expressions. Next, we run ASketch
to find all solutions w.r.t. the test valuations and exclude any expression in the
solutions that is non-equivalent to any of the E expected expressions. The idea
is to remove all expressions that could lead to a solution that passes all tests
but is incorrect. Then, to form a set of expressions with size Y (where Y is
50, 100, 200, 300, or 400), we sample the remaining expressions to obtain Y − E
expressions, and add the E expected expressions back.

Dijkstra has two expression holes with different variables in scope, so each
expression hole uses a different set of expression fragments (but with the same
number of expressions). Expression holes for each of LinkedList, BinaryTree,
Contains, and Remove share the same set of expression fragments. In the experi-
ments, we use 16 test valuations for each core model, and all model variants of the
1 Note that RexGen can work in the mode where it prunes out equivalent expression

fragments. We do not use that mode because we want to generate a large number
of expression fragments for our experiments. All expressions that we generate are
syntactically different but some may be semantically equivalent.
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same core model share the same test suite. All experiment settings, with various
fragments and test valuations, yield solutions that are semantically equivalent
to the correct solutions.

If a sketch has no expression hole, then increasing the number of the expres-
sion fragments does not increase the search space, primary variables, or clauses in
the generated meta-model. For example, BinaryTree model with 1 hole has only
a comparison operator hole, and the search space (4), the number of primary
variables (170), and clauses (7,957) remain unchanged as the number of expres-
sion fragments increases. If the sketch has expression holes, then the search space,
primary variables, and clauses increase when we use more expression fragments.
In our experiment, the search space goes up to 4.1e9 (BinaryTree), the number
of primary variables goes up to 1420 (Remove), and the number of clauses goes
up to 2.3e6 (Dijkstra). Overall these numbers show that the sketching problems
are non-trivial.

The solving time depends on various factors, including the number of primary
variables and clauses, the size of each clause, the complexity of the expression
fragments, the search strategy of the SAT solver, etc. In general, the solving time
increases with the size of the search space and the number of holes. However,
there are exceptions. For example, in LinkedList with 4 holes, the solving time
decreases as the size of expression fragments grows from 300 to 400. The reason is
that multiple expression fragments are correct and equivalent. We cannot control
how the Alloy Analyzer generates CNF clauses from the meta-model, so some
solutions are found sooner than the others even if we increase the search space.
Another exception is when BinaryTree goes from 4 holes to 5 holes using 400
expression fragments. Again, the solving time decreases as the number of holes
increases. The reasons are that (1) adding an operator hole does not increase the
number of primary variables or clauses by much; (2) it can make the sketching
problem easier to solve as more equivalent correct solutions can be found; and
(3) the Alloy Analyzer encodes the problem such that the solver is able to find
the solution fast. Overall, ASketch’s encoding is relatively efficient and works
well for large search spaces.

5 Related Work

We introduce the first approach to sketching Alloy models. Program sketching [1,
13,28–33] is a form of program synthesis, which is a mature yet active research
topic [2,5–7,9,17,19,21,25,28]. Researchers have proposed program synthesis
techniques for a number of languages, including synthesis of logic programs, e.g.,
using inductive synthesis based on positive and negative examples [3]. However,
prior work has not addressed the complexity of synthesis in the presence of
quantifiers, transitive closure, relational operators, and more generally, formulas
that express structurally complex properties, which are the focus of our work.

The Sketch system [30] takes as input a partial program in the Java-like
Sketch language, and uses SAT and inductive synthesis in a counterexample-
guided loop. Sketch requires users to provide generators for expression fragments
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for expression holes. The JSketch tool translates Java to Sketch to allow sketching
Java programs [13]. Some tools focus on specific kinds of programs to sketch,
such as PSketch for concurrent data structures [32].

Previous work on program synthesis has also used user-provided tests, albeit
for imperative code, to guide synthesis. SyPet [5] introduced a novel use of
Petri nets in synthesizing sequences of method invocations for complex APIs
using tests. EdSketch [10] and EdSynth [44] introduced an optimized back-
tracking search for completing Java sketches using test executions for pruning.
Test-Driven Synthesis iteratively builds a C# program such that it satisfies all
tests [26]. Component-based synthesis builds programs by combining compo-
nents from given libraries, e.g., work in this line used I/O oracles to synthesize
loop-free programs [14].

Our approach also shares the spirit of storyboard programming, which uses
user-provided graphical representations of data structures to synthesize imper-
ative code that performs desired data structure manipulations based on the
insight that it can be easier and more intuitive for a user to provide concrete
data structure manipulations than to write the code [29]. Our test valuations
make use of a similar insight.

An approach for creating Alloy models using instances was introduced by
aDeryaft [15] in the spirit of Daikon [4] that uses a collection of known properties
to check which hold with respect to given inputs. Alchemy [18] defined a trans-
lation to database update operations and integrity constraints. AUnit [37,38]
recently defined the concepts of test case, test execution, and model coverage
for unit testing of Alloy models in the spirit of popular xUnit frameworks for
imperative languages. AUnit has also enabled the adoption of other traditional
imperative testing infrastructures to Alloy such as mutation testing [37,42]. The
test valuations that ASketch uses in the context of synthesis follow AUnit’s defi-
nition of a test case. ASketch’s solver-based approach for sketching also inspired
a way to model state and state transitions in Alloy [36].

While this paper focuses on sketching for Alloy, one of the earliest approaches
for helping Alloy users build their models correctly was based on identifying
unsatisfiable cores in overconstrained models [27,40,41], which aids in automated
debugging. More recent work introduced different strategies for scenario explo-
ration for better understanding of the properties modeled [23,24].

6 Conclusions and Future Work

We introduced ASketch, the first approach for sketching Alloy models. Given a
model with holes and some (valid and invalid) valuations for the desired model,
ASketch completes the given model with respect to the valuations. ASketch
performs two key steps: it generates a pool of fragments (e.g., expressions) for
each hole from user-provided regular expressions, and it creates a meta-model to
explore the resulting space of candidate (completed) models to find a model that
conforms to the valuations. An experimental evaluation using a suite of sketches
shows that ASketch introduces a promising approach for sketching Alloy models.
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ASketch brings the spirit of traditional program sketching [1,10,13,16,28–33]—
often regarded as the breakthrough approach in program synthesis for imperative
and functional programs during the last decade—to a declarative, relational
logic. We hope ASketch serves as a sound basis for a highly effective methodology
for synthesizing Alloy models, which ultimately increases the use of analyzable
models and leads to better software.

Future work can build on ASketch for solving other problems, such as auto-
mated debugging of faulty Alloy models. To illustrate, consider a model that
is erroneously overconstrained. To repair it, first identify its unsat core using
SAT to localize likely faulty expressions or formulas, and then create a sketch
and complete it using ASketch. Future work can also evaluate the usability of
ASketch via a user study; as common in sketching [30], we start first from the
algorithmic foundations for sketching and leave actual user evaluations for later.
An alternative to ASketch, which is a solver-based technique, is to employ an
enumeration-based technique [34]; future work can rigorously compare the two
techniques and combine them for a likely more effective synergistic approach.
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Abstract. Type-2 Theory of Effectivity is a well established theory of
computability on infinite strings, which in this paper is exploited to define
a data type Real as part of the background structure of Abstract State
Machines. Real numbers are represented by rapidly converging Cauchy
sequences, on top of which standard operations such as addition, mul-
tiplication, division, exponentials, trigonometric functions, etc. can be
defined. In this way exact computation with real numbers is enabled.
Output can be generated at any degree of precision by exploring only
sufficiently long prefixes of the representing Cauchy sequences.

1 Introduction

Many computations including the bulk of algorithms in numerical mathematics
require the use of real arithmetic, but in general, functions on real numbers are
not computable in the classical Turing sense, aka type-1 computability. The com-
mon approach in numerical mathematics (see e.g. [17]) is to nonetheless specify
algorithms using common operations on real numbers, as if these were exactly
computable, and to investigate in depth the propagation of errors, if real num-
bers are replaced by floating point numbers. The alternative is to deal with exact
representations of real numbers by Dedekind cuts, Cauchy sequences, nested
intervals, etc. to enable exact real arithmetic. There are various approaches and
implementations in this direction (see e.g. the survey in [10]). Early work in
[19] and in [2] exploit continued fractions and nested intervals, respectively. In
[7], implementations in the programming languages Python, C and C++ are
described, similarly in [16] for C++. In [3], the integration of exact real arith-
metic into the functional programming language Curry is handled, and in [14]
the validation of algorithms for exact real arithmetics is investigated. In [15],
the semantics of sequential languages with integrated exact real arithmetic is
studied. Exact real arithmetics is also supported by theorem provers such as
Coq, HOL and PVS.

A precise theoretical foundation of computations with exact real arithmetic is
provided by type-2 theory of effectivity (TTE) developed by Weihrauch for com-
putable analysis [20]. In a nutshell, TTE is a theory of computability on infinite
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 139–154, 2018.
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strings over an arbitrary alphabet. Prefixes of an input string (or of several input
strings) are used to compute output strings, and while processing longer prefixes
the already computed outputs persist, i.e. the final output string(s) result from
concatenation. This can well be realised using non-termination Turing machines
that scan infinite strings on input tapes and continuously produce output on
separate output tapes [18]. Using TTE, several numerical problems have been
proven to be computable, e.g. TTE has been applied for Jordan decomposition
[21] and for computation of specific derivatives [12]. In Sect. 2 we briefly describe
some aspects of TTE as we use them.

For many application problems, in particular in connection with scientific
computations and hybrid systems, it would be desirable to support specifica-
tion, refinement and reasoning with exact real arithmetic in common rigorous
methods. As emphasised in numerical mathematics [17] the correctness of an
algorithm using real numbers requires not only the exploitation of an axiomatic
theory of real numbers, as for instance provided for B and Event-B by the RODIN
theory plug-in [1], but also reasoning about the precision of the computation, as
every implementation can only lead to approximate results. Instead of reasoning
about the propagation of errors for a fixed finite representation of real numbers,
TTE enables computations up to any desired precision.

In this paper we investigate the integration of exact real arithmetic into
Abstract State Machines (ASMs) [6]. Naturally, this requires to precisely define
a data type Real together with common operations in the background struc-
ture of an ASM [4]. This will be done in Sects. 3 and 4. We follow the principle
idea employed in [3,13] using a representation of real numbers by rapidly con-
verging Cauchy sequences. Common operations on real numbers such as addi-
tion, multiplication, division, exponentials, trigonometric functions, etc. can be
defined on Cauchy sequences [20]. As equality of real numbers is not exactly TTE
computable and thus cannot be decided, we use a data type MultiBool (corre-
sponding to the Curry type Fuzzybool in [3,13]) as functions assigning truth
values to rational numbers. The meaning is that for a given precision r ∈ Q

the equality check yields the associated truth value. This supports the mod-
elling of non-deterministic functions, called multi-functions in [20], which may
yield different single values, a set of values or no value at all, e.g. in the case
of a non-terminating computation. Multi-functions are an essential ingredient of
TTE. In Sect. 5 we show how the datatype Real can be used in ASMs focussing
on a simple numerical algorithm. This includes a discussion of the handling of
streams representing the rapidly converging Cauchy sequences with algorithms
that exploit prefixes of these streams, i.e. the algorithm is executed as often as
required to obtain a desired precision for the final result. In Sect. 6 we conclude
with a brief summary and outlook emphasising among others how to support
the integration of exact real arithmetics in common ASM tools such as ASMeta
[9] and CoreASM [8].

In [11] Gurevich, Leinders and van den Bussche showed how to capture TTE
in general in ASMs. Similar to Turing machine-based computations, arbitrary
input streams are considered with the extension that elements in the streams
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can stem from arbitrary domains defined in a background structure [4]. A key
result is that abstract computable stream queries are exactly defined by con-
tinuous functions on streams with respect to a topology defined by generalised
Cantor metric considering strings to be closer the longer they coincide on pre-
fixes. Furthermore, all such queries, i.e. the type-2 computations, are captured
by stream ASMs. This can be combined with the Real background structure
we develop in this paper. In case the input Cauchy sequences result from input
streams, the exact output will be computed in a streaming way. Hence, while
in principle the exact computation of an infinite output stream from an infinite
input stream will run forever, the decisive property of TTE guarantees that the
ASM will effectively compute the resulting number up to any desired precision
in finite time.

2 Type-2 Theory of Effectivity

Type-1 computability theory considers (partial) functions f : Σ∗ → Σ∗ on
finite words over an arbitrary alphabet Σ. One of the many equivalent ways to
characterise type-1 computable functions is by means of Turing machines. Com-
putations over arbitrary sets such as rational numbers, arrays, or trees require
an encoding1 of elements of these sets by finite words. This notion of com-
putability cannot be applied to functions on real numbers, as these cannot be
represented by finite words. The type-2 theory of effectivity extends type-1 com-
putability by taking (possibly partial) functions f : Σω → Σω on infinite words
into account. A computable function is given by a type-2 machine transforming
infinite sequences into infinite sequences [20].

Such a type-2 machine is a Turing machine M with k one-way, read-only
input tapes, finitely many, two-way work tapes, and a single one-way, write-
only output tape. The partial function fM computed by M is specified by the
following two cases for values y1, . . . , yk ∈ Σ∗ ∪ Σω on the input tapes:

(1) fM (y1, . . . , yk) = y0 ∈ Σ∗, if M stops with y0 on the output tape;
(2) fM (y1, . . . , yk) = y0 ∈ Σω, if M does not stop and writes y0 onto the output

tape.

Of course, infinite computations cannot be finished in reality, but finite com-
putations on finite initial parts of inputs producing finite initial parts of outputs
can be realised up to any precision. Increasing the precision of a computation
requires to extend the initial part of the input that is used for the computation,
and to produce a longer output.

It is well known that decimal representations of real numbers cannot be used
for exact real arithmetic with TTE. Instead, we may use rapidly converging

1 As remarked in [5] there is no known way to encode structures such as trees or graphs
by finite words such that isomorphisms are preserved. ASMs, however, deal directly
with structures as states that are preserved under isomorphisms.
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Cauchy sequences2 to represent real numbers, i.e. sequences r0, r1, r2, . . . of
rational numbers ri ∈ Q satisfying | rk − ri |≤ 2−k for all non-negative integers
i, k ∈ N with k < i. Note that this condition implies | rk − x |≤ 2−(k+1) for the
limit x = lim

i→∞
ri of the Cauchy sequence.

Example 1. Let r0, r1, r2, . . . and r′
0, r

′
1, r

′
2, . . . be two rapidly converging Cauchy

sequences representing x and x′, respectively. Then for all i, k with k < i we
obtain

| rk+1+r′
k+1−ri+1−r′

i+1 | ≤ | rk+1−ri+1 | + | r′
k+1−r′

i+1 | ≤ 2·2−(k+1) = 2−k.

Thus, r1 + r′
1, r2 + r′

2, r3 + r′
3, . . . is a rapidly converging Cauchy sequence

representing x + x′.

For the definition of addition in Example 1 we had to drop the first element
r0 + r′

0 to guarantee the required rapid convergence property. We say that in
this case a look-ahead of 1 is required for the result. Different values for such a
look-ahead are needed for other operations on R [20]. While the look-ahead for
addition is a constant, the look-ahead in general depends on the given arguments.

Example 2. Given the two Cauchy sequences as in Example 1, then rm·r′
m, rm+1·

r′
m+1, rm+2 · r′

m+2, . . . is a Cauchy sequence representing the product x · x′,
where the look-ahead is determined as the smallest number m ∈ N such that
|r0| + 2 ≤ 2m−1 and |r′

0| + 2 ≤ 2m−1 hold, or equivalently
(1

2

)m

≤ 1
2 · (max{|r0|, |r′

0|} + 2)
. (1)

Here we have (for k < i)

|rk+m · r′
k+m − ri+m · r′

i+m| = |(rk+m − ri+m) · ((r′
k+m − r′

0) + r′
0)+

(r′
k+m − r′

i+m) · ((ri+m − r0) + r0)| ≤ 2 · 2−(k+m) · 2m−1 = 2−k.

In the case of multiplication in Example 2 the look-ahead is not a constant,
but it only depends on the first elements of the two given Cauchy sequences. We
will later see examples, where the determination of the look-ahead is significantly
more complicated.

When comparing two real numbers one has to take into account that the
relations =,≤, < between two real numbers are not exactly computable. Many
other relations and functions on the real numbers are likewise not computable
[18]. Therefore, TTE employs the crucial notion of a multi-function that permits
sets of values as results. For instance, the equality on real numbers corresponds
to a multi-function eq : R×R ⇒ {true, false}, which may yield true, false, both
or no result at all. The equality check has to be based on the rational numbers
in the Cauchy sequences, so even if the comparison of the k-th elements in the
2 Note that the condition of rapid convergence is essential here, whereas just using

Cauchy sequences would not be sufficient [20].
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sequence yields equality, the knowledge that the following elements are close is
insufficient for a certain decision, so both truth values are possible. However, if
the comparison of the k-th elements in the sequence yields inequality, then this
may suffice for a certain decision. In general, a multi-function f : A ⇒ B is
interpreted as a partial function f : A → 2B into the powerset.

In the sequel we will present a high-level specification as ASM background
structure of exact real arithmetic based on TTE and rapidly converging Cauchy
sequences. Our choice of using Cauchy sequences is motivated by the observa-
tion that this approach is quite intuitive and close to the underlying concepts.
For instance, it uses rational numbers at the core of the representation, and
functions on real numbers can often be defined via componentwise application
of the corresponding function on rational numbers, as illustrated in Examples 1
and 2 above for addition and multiplication. In addition, for many real-valued
functions there are well-established definitions via limits of sequences of function
applications on rational numbers.

3 An Abstract View on the Data Type Real

We start with introducing a new data type Real. As the rational numbers are
a proper subset of the real numbers, there is a function embedding rational
numbers into reals

realq : Rat → Real

where Rat is the type for rational numbers. For illustrating basic computation
functions on real numbers, we will consider for instance

add : Real × Real ⇒ Real
neg : Real ⇒ Real
mul : Real × Real ⇒ Real

dvd : Real × Real ⇒ Real
power : Int × Real ⇒ Real
exp : Real ⇒ Real

realising addition, additive inverse, multiplication, division, power, and the expo-
nential function. Further prominent examples of functions on real numbers that
are available in the ASM background structure are the transcendental functions
like logarithm and the trigonometric functions.

The crucial requirement for multi-functions as non-deterministic functions
available in the ASM background structure is that for any arbitrary desired
precision that can be given as an additional parameter, the correct result is
among the returned results. In order to add a precision parameter when mod-
elling e.g. TTE’s multi-function eq : R × R ⇒ {true, false}, we introduce a new
data type MultiBool (corresponding to the type Fuzzybool in [3,13]) taking a
rational number as precision parameter into account:

datatype MultiBool = MBool(Rat ⇒ Bool)

The equality relation on real numbers is then modelled by

eq : Real × Real ⇒ MultiBool
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where for eq(x, y) = MBool(f) the function f is a non-deterministic function
mapping rational numbers to Booleans. Evaluating eq(x, y) with respect to pre-
cision r is done by the non-deterministic function:

selBool : Rat × MultiBool ⇒ Bool
selBool(r,MBool(f)) = f(r)

It will always be guaranteed that for any r, the correct result is among the results
returned by selBool(r, eq(x, y); thus, if selBool(r, eq(x, y) returns a unique result,
then this result is the unique correct result. Furthermore, if x and y are Cauchy
sequences representing different real numbers x̃ and ỹ, then there is a precision
r ∈ Q with 0 < r < |x̃− ỹ| such that selBool(r, eq(x, y) returns the unique result
false. If x and y represent the same real number, then selBool(r, eq(x, y) may
return both true and false for any precision r > 0. Note that this does not mean
that two reals can be both equal and unequal at the same time; it is just not
possible to refine selBool to a deterministic function since at least in the TTE
framework, equality on R is undecidable, not just when using Cauchy sequences,
but for any representation [20, Theorem 4.1.16]. Similarly, the functions

lt : Real × Real ⇒ MultiBool
leq : Real × Real ⇒ MultiBool
isPositive : Real ⇒ MultiBool
isZero : Real ⇒ MultiBool

realise the predicates less than, less or equal, is a positive number, and is zero
on R that are also not exactly computable.

4 Function Definitions in ASM Background Structure

In this section we show how the operations listed in the previous section are
defined in the background structure. We emphasise the basic operations and
predicates on real numbers, and then choose the exponential function as a more
sophisticated example.

4.1 Auxiliary Types and Functions

Rational Numbers. We introduce the datatype Rat representing rational
numbers as quotients of integers such that the denominator is positive. The
function ratn embeds integers into the rational numbers, and ratf normalizes a
pair of integers to an element of Rat with a positive dominator.

datatype Rat = Rat(Int ,Nat)

ratn : Int → Rat
ratn(n) = Rat(n, 1)

ratf : Int × Int → Rat
ratf (n, d) = if d > 0 then Rat(n, d) elsif d < 0 then Rat(−n,−d)
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Addition, subtraction, multiplication, division, and additive and multiplicative
inverse on Rat are given by the functions addRat , subRat , mulRat , dvdRat ,
negRat , and invRat defined as expected, e.g.:

mulRat : Rat × Rat → Rat
mulRat(Rat(n1, d1),Rat(n2, d2)) = Rat(n1 ∗ n2, d1 ∗ d2)

invRat : Rat → Rat
invRat(Rat(n, d)) = if n �= 0 then ratf (d, n)

For comparing rational numbers, we employ the standard mathematical notion
and use =, <, and ≤. Furthermore, for convenience, we may also use the stan-
dard notations for functions on rational numbers, allowing us to write, e.g., x

2+y

instead of mulRat(x, addRat(2, y)). Note that as expected, invRat is a partial
function because invRat(Rat(n, d)) is undefined for n = 0.

For computing the look-ahead of functions defined on Real (cf. Sect. 2) we
will use the auxiliary function minexp:

minexp : Rat × Rat → Nat
minexp(x, b) = if 1 ≤ x then 0 else minexp(dvd(x, b), b) + 1

The function call minexp(x, b) returns the smallest natural number n such that
x ≥ bn holds. For instance, minexp(Rat(1, 1000),Rat(1, 2)) = 10 since 1/1000 �≥
(1/2)9 and 1/1000 ≥ (1/2)10.

MultiBool. The data type MultiBool and the function selBool have already
been given in Sect. 3. In addition, we need logical operators:

andMB : MultiBool × MultiBool ⇒ MultiBool
andMB(a, b) = MBool(λr.(selBool(r, a) ∧ (selBool(r, b))))

orMB : MultiBool × MultiBool ⇒ MultiBool
orMB(a, b) = MBool(λr.(selBool(r, a) ∨ (selBool(r, b))))

notMB : MultiBool ⇒ MultiBool
notMB(a) = MBool(λr.¬(selBool(r, a)))

Thus, these operators on MultiBool are defined to correspond to the usual
definitions. While selBool(r, b) might return true, false, or both Boolean values,
the correct value is always among the returned results; note that for any precision
r, this property is preserved by the logical operations on MultiBool , e.g., if b is
a conjunction like andMB(b1, b2).

Intervals. Intervals of rational numbers are used for checking the required
precision when computing and comparing real numbers and thus provide a basis
for realising not exactly computable functions. An interval is valid only if its
lower bound is less or equal to its upper bound.

datatype Interval = Interval(Rat ,Rat)

isValid : Interval → Bool
isValid(Interval(a, b)) = a ≤ b
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The computation of relations on real numbers will be reduced to three non-
deterministic functions on intervals. The function maybeZero yields true if 0 is in
the interval, and it yields false if the interval contains a number that is not equal
to 0. The function maybePos yields true if the given interval contains a positive
number, and it yields false if the interval contains a number that is not positive.
The function maybeNeg yields true if the given interval contains a negative
number, and yields false if the interval contains a non-negative number.

maybeZero : Interval ⇒ Bool
maybeZero(Interval(a, b)) = if a ≤ 0 ∧ 0 ≤ b then true
maybeZero(Interval(a, b)) = if a < 0 ∨ 0 < b then false

maybePos : Interval ⇒ Bool
maybePos(Interval(a, b)) = if 0 < b then true
maybePos(Interval(a, b)) = if a ≤ 0 then false

maybeNeg : Interval ⇒ Bool
maybeNeg(Interval(a, b)) = if a < 0 then true
maybeNeg(Interval(a, b)) = if 0 ≤ b then false

Note that these functions are indeed proper multi-functions. For instance,
while maybeZero(Interval(14 , 1

2 )) yields the unique value false, maybeZero
(Interval(0, 1

2 )) yields both true and false. Also maybePos(Interval(0, 1
2 )) yields

both true and false, while maybeNeg(Interval(0, 1
2 )) yields the unique value false.

For I = Interval(−1
2 , 1

2 )), the three function calls maybeZero(I), maybePos(I),
and maybeNeg(I) all yield both true and false.

4.2 Representing Real Numbers and Basic Functions on Them

The approach of representing real numbers as Cauchy sequences is achieved by
the datatype Real :

datatype Real = Cauchy(Int → Rat)

The embedding of Rat into Real is then given by:

realq : Rat ⇒ Real
realq(a) = Cauchy(λr.a)

For addition, we employ componentwise operation, observing that the look-ahead
is 1 (cf. Sect. 2); subtraction and additive inverse are also easily defined:

add : Real × Real ⇒ Real
add(a, b) = Cauchy(λk.get(a,m + 1) + get(b,m + 1))

sub : Real × Real ⇒ Real
sub(a, b) = add(a,neg(b))

neg : Real ⇒ Real
neg(a) = Cauchy(λk. − get(a, k))

get : Real × Int ⇒ Rat
get(Cauchy(f), k) = f(k)
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Using the auxiliary function minexp (Sect. 4.1), the computation of the look-
ahead m for multiplication mul as achieved by the auxiliary function lahmul
that mirrors exactly the condition given by (1):

mul : Real × Real ⇒ Real
mul(a, b) = let x = max (abs(get(a, 0))(abs(get(b, 0)))) in

let m = lahmul(x) in Cauchy(λk.get(a, k + m) × get(b, k + m))

lahmul : Rat → Nat
lahmul(x) = minexp( 1

2×(x+2) ,
1
2 )

When computing the multiplicative inverse of a real number, we can use the
function for the multiplicative inverse on rational numbers, but there is a par-
ticular subtlety to be taken into account. In the function definition for rational
numbers, we can easily check that x �= 0 for an argument x, and leave the func-
tion application undefined for x = 0; cf. the definition of invRat in Sect. 4.1.
However, for a real value x ∈ R, the relation x �= 0 is not exactly computable.
Before applying invRat to the elements of a Cauchy sequence representing x, we
therefore have to determine an appropriate look-ahead m:

inv : Real ⇒ Real
inv(a) = let m = lahinv(a) in Cauchy(λk. 1

get(a,k+m) )

lahinv : Real → Nat
lahinv(a) = let h = λz, k . if z ≤ get(a, k) then k else h( z

2 , k + 1)
in 2 × h(3, 0)

Thus, if inv is applied to r0, r1, r2, . . ., the look-ahead for inv is m = 2n where n is
the smallest natural number n such that 3 × 2−n ≤ |rn| holds (cf. [20, Theorem
4.3.2]). Note that also inv is a partial function: If for x ∈ R represented by
r0, r1, r2, . . . the relationship x �= 0 holds, then the condition z ≤ get(a, k) in the
recursive calls of the auxiliary function h will eventually be true, causing the call
of lahinv as well as the call of inv to terminate and to yield the correct result.
If x = 0 holds, then the call of inv will not terminate since equality on reals is
undecidable [20].

Using inv , it is now easy to define division on Real as a/b = ab−1 holds:

dvd : Real × Real ⇒ Real
dvd(a, b) = mul(a, inv(b))

The basic relations on R discussed in Sect. 3 are implemented by reducing them
to the question of checking whether a number is 0 or positive:

eq : Real × Real ⇒ MultiBool
eq(x, y) = isZero(sub(y, x))

lt : Real × Real ⇒ MultiBool
lt(x, y) = isPositive(sub(y, x))

leq : Real × Real ⇒ MultiBool
leq(x, y) = notMB(isPositive(sub(x, y))
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The two functions isZero and isPositive are in turn reduced to the corre-
sponding functions on intervals. To do so, the resulting object of type MultiBool
contains a function that for any precision uses an interval realising this precision
with respect to the given x of type Real .

isPositive : Real ⇒ MultiBool
isPositive(x) = MBool(λr.maybePos(toInterval(r, x)))

isZero : Real ⇒ MultiBool
isZero(x) = MBool(λr.maybeZero(toInterval(r, x)))

isNegative : Real ⇒ MultiBool
isNegative(x) = MBool(λr.maybeNeg(toInterval(r, x)))

Given numbers r of type Rat and x of type Real , the auxiliary function toInterval
determines an interval containing the real number in R represented by x and
approximating that number with precision r.

toInterval : Rat × Real ⇒ Interval
toInterval(r, x) = let y = approx ( r

2 , x) in Interval(y − r
2 , y + r

2 )

approx : Rat × Real ⇒ Rat
approx (r, x) = get(x, prec(r))

prec : Rat → Int
prec(r) = if 0 < r then minexp(r, 1

2 )

The approximation given by approx determines the smallest natural number n
such that (1/2)n ≤ r holds in order to determine the position in the Cauchy
sequence to be used for obtaining the bounds of the interval.

4.3 Further Functions

On the basis of the data type Real providing a representation for the real numbers
in the sense that any given precision can be obtained, together with the set of
background functions defined so far, further functions on real numbers can be
defined. As a core function providing the key for defining many other functions
on R we will present the realization of the exponential function ex. For this, we
will use the power function xn which we define first.

Similarly as for addition or multiplication, computing the nth power xn of a
real number x and an integer n can be done by componentwise computations on
the representing Cauchy sequence. For negative exponents, the equality x−n =
(1/x)n is used, and for n > 1, the required look-ahead is (n − 1)-times the look-
ahead for multiplication of x with itself:

power : Int × Real ⇒ Real
power(n, x) = if n = 0 then realq(ratn(1))
power(n, x) = if n = 1 then x
power(n, x) = if n < 0 then power(−n, inv(x))
power(n, x) = if n > 0 then let lah = (n − 1) ∗ lahmul(abs(get(x, 0))

in Cauchy(λk.power(n, get(x, lah + k)))
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In many cases, real numbers or functions on real numbers are defined using a

power series. For instance, for the exponential function we have ex =
∞∑

k=0

1
k!

xk.

In general, a function given by a power series
∞∑

k=0

ak xk is well-defined for any

|x| < RK where RK = (lim sup
n→∞

n
√|an|)−1 is the radius of convergence. The

computation of the power series for x ∈ R can be approximated by a finite
sum a0y

0 + . . . aNyN with y ∈ Q. The error of this approximation depends on
the coefficients ak, on the number of summands N , and on |x − y|. In order
to eliminate the dependence on the ak, we will require |ak| ≤ 1 for all k ≥ 0.
This restriction is satisfied for many power series expressions defining functions
like exp, sin, cos, etc. Furthermore, because it implies RK ≥ 1, for any r ∈ Q

with 0 < r < 1, the power series converges for all x ∈ R with |x| ≤ r. If a is a
sequence (ak)k≥0 of rational numbers with |ak| ≤ 1 and r is a rational number
with 0 < r < 1, then a call powerser(a, r, x) of the auxiliary function

powerser : (Int → Rat) × Rat × Real ⇒ Real

computes the power series for x̃ if x represents x̃ ∈ R and |x̃| ≤ r. The argument r
is used in the estimation of the error of the approximation and in the determina-
tion of the number of summands needed in order to meet the rapid convergence
condition (cf. [20, Chap. 4.3], [14]); a smaller r means fewer summands, but also
a smaller function domain. Thus, by choosing r = 1/2, the function

exp1 : Real ⇒ Real
exp1 (x) = powerser((λk. 1

k! ),
1
2 , x)

can be used for computing the exponential function for any values |x| ≤ 1/2.
A straightforward method to extend the computation of ex to values |x| > 1/2

which is also used in e.g. [14] is to exploit the property ex =
(
e

x

m
)m

and to
choose m to be an integer such that |x/m| ≤ 1/2 This allows us to use exp1 for the
inner and power for the outer exponentiation in order to obtain a full realization
of the exponential function exp given by the following:

exp : Real ⇒ Real
exp(x) = let m = 2 × estimate(abs(x)) + 1

in power(m, exp1 (mul( 1
m , x)))

estimate : Real ⇒ Int
estimate(x) = floor(get(x, 2) + 1

2 )

abs : Real ⇒ Real
abs(x) = Cauchy(λk . |get(x, k)|)

where for a rational number x, the auxiliary function floor : Rat → Int returns
the largest integer less or equal to x. Having available the exponential function
on real numbers, further functions can defined using exp, e.g. a general root
function, the trigonometric functions, and many others.
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To give a further illustration that the functions realzing exact real arith-
metic in the framework of TTE are typically multi-functions, assume that sqrt2
is of type Real , denoting

√
2. Assume further that we have a binary function

dec that takes an element x of type Real and a natural number k and returns
the value of x as a string containing k decimal places, such that the returned
decimal representation is correct with precision 10−k, but without any rounding
being applied; these functions are also available in the Curry implementation
described in [3,13]. Then the function call dec(sqrt2 , 20) will give the unique
result 1.41421356237309504880. On the other hand, the decimal representation
obtained by dec for the multiplication of sqrt2 with itself and for k = 20 yields
two results, 1.99999999999999999999 and 2.00000000000000000000, which are
finite prefixes of the exactly two different infinite decimal representations of the
real value 2, illustrating that dec : Real × Nat ⇒ String is a multi-function.

5 Computations with Exact Real Arithmetics

In this section we briefly show how to use the background structure defined in
the previous sections in an ASM. We use a simple algorithm for the solution of an
inhomogeneous set of linear equations as example. Basically, the use of the data
type Real together with its operations is applied in the same way as an other
data type such as Int or Rat . We simplify the presentation for functions on Real ,
writing, e.g., A · B for mul(A,B). We will discuss a streaming interpretation of
the algorithm, i.e., input data is assumed to be represented by Cauchy sequences
that can be read one element after the other from input streams.

The signature of our ASM comprises function symbols A, k,B, r, C and D
with arities 3, 0, 2, 0, 1 and 2, respectively. k denotes an integer constant with
the meaning that the system of linear equations comprises k +1 indeterminates.
A and B represent the Real -valued input matrix and vector, for an integer
counter r (initially 0) A(i, j, r) is the entry in row i and column j in round
r, and likewise B(i, r) is the i’th entry in the righ-hand-side vector in round r. C
represents a Real -valued vector taking a solution of the inhomogeneous system,
while the first k +1 columns of D represent a basis for the corresponding homo-
geneous system (excluding zero vectors). The algorithm first creates an upper
triangular matrix, then a diagonal matrix to keep the determination of C and
D as simple as possible. The rule of the ASM is given as follows:

if r < k
then if A(r, r, r) �= 0

then
forall i, j with 0 ≤ i ≤ k ∧ 0 ≤ j ≤ k

if i ≤ r ∨ j ≤ r − 1
then A(i, j, r + 1) := A(i, j, r) B(i, r + 1) := B(i, r)

forall i with r + 1 ≤ i ≤ k A(i, r, r + 1) := 0
forall i with r + 1 ≤ i ≤ k

forall j with r + 1 ≤ j ≤ k
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A(i, j, r + 1) := A(i, j, r) − A(i, r, r)
A(r, r, r)

· A(r, j, r)

B(i, r + 1) := B(i, r) − A(i, r, r)
A(r, r, r)

· B(r, r)

r := r + 1
else if ∃i.i > r ∧ A(i, r, r) �= 0

then choose i with i > r ∧ A(i, r, r) �= 0
forall j with r ≤ j ≤ k

A(i, j, r) := A(r, j, r) A(r, j, r) := A(i, j, r)
B(i, r) := B(r, r) B(r, r) := B(i, r)

else r := r + 1
forall i, j with 0 ≤ i ≤ k ∧ 0 ≤ j ≤ k

A(i, j, r + 1) := A(i, j, r) B(i, r + 1) := B(i, r)
if k ≤ r < 2k
then if A(2k − r, 2k − r, r) �= 0

then forall i, j with 0 ≤ i ≤ k ∧ 0 ≤ j ≤ k
if i > 2k − r ∨ i ≥ j ∨ j > 2k − r
then A(i, j, r + 1) := A(i, j, r) B(i, r + 1) := B(i, r)

forall i with 0 ≤ i ≤ 2k − 1 − r A(i, 2k − r, r + 1) := 0
forall i with 0 ≤ i ≤ 2k − 1 − r

forall j with i < j ≤ 2k − 1 − r
A(i, j, r + 1) := A(i, j, r)

− A(i, 2k − r, r)
A(2k − r, 2k − r, r)

· A(2k − r, j, r)

B(i, r + 1) := B(i, r) − A(i, 2k − r, r)
A(2k − r, 2k − r, r)

· B(2k − r, r)

r := r + 1
else forall i, j with 0 ≤ i ≤ k ∧ 0 ≤ j ≤ k

A(i, j, r + 1) := A(i, j, r) B(i, r + 1) := B(i, r)
r := r + 1

if r = 2k
then forall i with 0 ≤ i ≤ k

if A(i, i, r) �= 0

then C(i) :=
B(i, r)

A(i, i, r)
forall j with 0 ≤ j ≤ k D(j, i) := 0

else if B(i, r) = 0 then C(i) := 0
forall j with 1 ≤ i ≤ k ∧ 1 ≤ j ≤ k

if j = i then D(j, i) := 1
if j > i then D(j, i) := 0
if j < i then

if A(j, j, r) �= 0

then D(j, i) := −
∑i

j′=j+1 A(j, j′, r)
A(j, j, r)

else D(j, i) := 0
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In this specification the fact that the matrix and vector entries are real
numbers remains transparent. For exact real arithmetic we can assume that for
r = 0 we have input streams providing members of rapidly converging Cauchy
sequences. Therefore, in order to be able to access still incoming members of
the sequences, we used copies in every round r for the results to separate the
incoming stream for the operations from the streams computed by the opera-
tions, where the look-ahead has to be taken into account. Combining the view of
incoming streams with the algorithm above actually means that the algorithm
runs arbitrarily many times computing as many members of the result Cauchy
sequences as desired. In this way the computation adopts a two-dimensional
structure, as for each i the algorithm will be executed on finite prefixes of the
input to determine the ith elements in the Cauchy sequences result, and with
increasing value of i the precision of the result increases. In principle this can run
forever. However, the specification in the background enables to reason about
the desired level of precision. Of course, the higher the precision is, the higher
will also be the complexity of the algorithm. Thus, the background specification
enables also the analysis, up to which level of precision a computation with the
specified algorithm is tractable.

6 Conclusions and Further Work

Using the concept of background structure for Abstract State Machines, we
specified a data type Real together with basic operations and predicates, which
support exact real arithmetic based on TTE [20]. We exploited representations of
real numbers by rapidly converging Cauchy sequences and the concept of multi-
functions required for TTE-based exact real arithmetic. We further showed how
to specify the important exponential function. This can be naturally extended to
many other mathematical functions on real numbers such as logarithms, trigono-
metric functions and many more.

Such operations and functions are important for many algorithms in science
and engineering, in particular, when arbitrarily high precision is required. We
illustrated this for the specification of an ASM for the solution of systems of
linear equations. We further sketched that the approach can be combined with
streaming computations, where higher precision of the result can be obtained
by longer prefixes of the input streams, i.e. the Cauchy sequences. However, the
computation might yield more than one result, but the correct result will be
among the obtained results. In doing so, reasoning of the precision of specified
computations will be enabled, which is highly important for scientific computing.
It opens a perspective for system verification that so far is largely neglected in
the field of rigorous methods.

Exploiting the experience with implementations of TTE, e.g. the implemen-
tation in Curry [3], the integration of exact real arithmetic as defined in this
paper into common ASM tools such as ASMeta [9] or Core-ASM [8] appears
as a straightforward exercise. The TTE-based definition of the data type Real
provides also an alternative for the support of real numbers in other rigorous
methods, e.g. for the RODIN theory plug-in for the Event-B [1].
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Abstract. The design of hybrid systems controllers requires one to han-
dle both discrete and continuous functionalities in a single development
framework. In this paper, we propose the design and verification of such
controllers using a correct-by-construction approach. We use proof-based
formal methods to model and verify the required safety properties of the
given controllers. Both Event-B with Rodin, and hybrid programs and
dynamic differential logic with KeYmaera are experimented on a com-
mon case study related to the modelling of a car controller. Finally, we
discuss the lessons learnt from these experiments and draw the first steps
towards a generic method for modelling hybrid systems in Event-B.

Keywords: Hybrid systems · Event-B · Hybrid programs
Differential dynamic logic · Proofs · Refinement

1 Introduction

Hybrid systems are present in many safety-critical applications. Thus, the formal
verification of hybrid systems is a key issue in system engineering. Contrary to
classical discrete systems, the formal specification and verification of hybrid sys-
tems require taking into account continuous features like differential equations
to characterise plant behaviours and the appropriate logic and proof system.
Several research works addressed the formal verification of hybrid systems [4].
Hybrid model-checking, proof based approaches, program analysis and simula-
tion have been proposed. These approaches consider a hybrid system as the tight
integration of discrete and concrete features defining models for controllers and
for the plant to be controlled.

However, addressing formal verification at the model level allows for the
abstraction of some implementation details, and in particular floating point
arithmetic. The verification of the defined models and the synthesis of controllers
guarantees the satisfaction of system requirements independently of any imple-
mentation. Only implementation requirements like floating point computation
will remain to be addressed once code is obtained from the verified models.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 155–170, 2018.
https://doi.org/10.1007/978-3-319-91271-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91271-4_11&domain=pdf


156 G. Dupont et al.

Our paper deals with correct-by-construction approaches with refinement
and proof-based techniques. We propose to handle the integration of continu-
ous and discrete behaviours in Event-B [1] and in the Rodin [2] platform to
develop hybrid systems models. This approach requires the modelling of contin-
uous mathematical concepts which are not currently available in Event-B. For
this purpose we use the Theory plug-in developed for Rodin [13] to define a the-
ory for continuous functions and differential equations that we need to handle
in our Event-B models.

In order to position our work, we select the approach of Platzer as a second
formal development technique. This choice is motivated by the defined proof-
based approach and the availability of a tool. Hence, we show how dynamic
differential logic [15] and KeYmaeara [16] are set up for the same objective as
ours. A case study of a car controller, borrowed from Platzer’s work, is used to
illustrate both approaches. As a second step, we present a generalisation of our
approach with Event-B in order to reduce the effort needed for feasibility proofs
during model instantiation.

This paper is organised as follows. The next section presents the case study
we have chosen to illustrate our approach. Event-B and dynamic differential logic
are summarised in Sect. 3 and their use for the development of the case study is
described in Sect. 4. The methodological lessons learnt from these developments
are discussed in Sect. 5. Finally, the last section is devoted to concluding remarks
and a research agenda.

2 Case-Study

The chosen case study deals with a stop sign controller proposed by Quesel
et al. in [17] (Sect. 5.3). It consists in modelling a car controller that automati-
cally stops a car at a stop-sign (SP ).

Behavioural Requirements. The car is modelled through its horizontal posi-
tion and behaves according to three modes, each of which corresponds to a
particular acceleration. The given accelerations are constant and, as a matter of
simplification, wrap every potential physical phenomena (air and road friction
for instance). These modes are defined as follows.

– Accelerating: the car increases its velocity. In this case, the associated accel-
eration, denoted by A, is positive.

– Braking: the velocity of the car decreases. In this case, the associated accel-
eration is −B, where B denotes the braking power (positive).

– Stabilizing: the velocity of the car does not change. In this case, the associ-
ated acceleration is 0.

The system is modelled by its position (p), velocity (v) and acceleration (a),
which evolve according to the differential equation: ṗ = v, v̇ = a, where the dot
stands for time derivative.

At initialisation, the system is in stabilizing mode. The car is given an arbi-
trary initial position and velocity denoted as p0 and v0, respectively.
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Safety Requirements. The system shall observe two invariant properties.

– SAF1. The velocity of the car cannot be negative.
– SAF2. The position of the car never exceeds the stop sign position SP .

Note that the two safety requirements are of different nature. SAF1 has a
purely physical origin whereas SAF2 is a behavioural system requirement.

3 Two Proof-Based Methods

To address the case study presented in Sect. 2 we considered two different
approaches. A first one is based on differential logic (dL) and KeYmaera to
express and prove an hybrid controller, and the second one uses Event-B and
Rodin to express the system using events and invariants.

3.1 Hybrid-Programs/Dynamic Logic with KeYmaera

The seminal work of [15] led to the definition of a rigorous method to model con-
trollers for hybrid systems integrating both continuous and discrete behaviours.
The approach revolves around three components: hybrid programs to model
system behaviours, differential dynamic logic dL to specify properties and the
KeYmaera tool that supports system behaviour specification and verification
using a theorem prover for dL. Below we give the required information to under-
stand the development conducted in this paper. More details can be found in
the abundant bibliography published by the authors.

Modelling: Hybrid Programs. According to Platzer [15], hybrid programs
(HP) define a program notation for hybrid systems. These HP offer a structural
decomposition to support dL reasoning. Additionally to classical programs, HP
support the definition of variables that evolve along a differential equation. Some
basic constructs of such programs are discrete assignments (:=), sequential com-
position (;), choice (∪), state assertion or condition (?H), iteration (*) and con-
tinuous evolution of a continuous variable along differential equation (x’=t &
H) in an evolution domain H (optional).

Property Specification and Verification: Differential Dynamic Logic.
Differential dynamic logic dL is a first order logic with built-in statements deal-
ing with hybrid systems. Similarly to first order logic which supports reasoning
on classical programs using weakest precondition or substitution calculi, dL sup-
ports reasoning on hybrid programs. Operators of first order logic together with
the modalities [] and 〈〉 are defined in dL. [α] φ and 〈α〉 φ assert respectively that
φ holds after all runs and after at least one run of the HP α.

For example, Init −→ [plant] (req) defines an uncontrolled system where
plant is a HP, Init is the dL predicate characterising the initial state and
req is a dL predicate defining a safety property. Init −→ [(ctrl; plant)∗] (req)
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defines another system where the HP is made of instantaneous control events
ctrl sequentially composed with the plant HP with a possible modification of
its behaviour. The definitions of ctrl and plant are built using the constructs of
HP, and req is again a safety property. We will use this template to model our
case study.

Tool: KeYmaera. KeYmaera [16] is the theorem prover associated with dif-
ferential logic. It supports proof of properties of hybrid programs. Additionally
to the classical proof rules associated to first order logic, KeYmaera implements
a set of specific proof rules defined for dL, including differential invariants, dif-
ferential auxiliary and ODE-related tactics. In particular, differential invariants
give an induction proof principle on differential equations.

3.2 Event-B with Rodin

Event-B [1] is a correct-by-construction approach to design an abstract model
and a series of refined models for developing any large and complex system.

Modelling: Event-B Machines. The Event-B language uses set theory and
first order logic. It has two main components, context and machine, to charac-
terise systems. A context describes the static structure of a system using carrier
sets s, constants c, axioms A(s, c) and theorems Tc(s, c), and a machine describes
the dynamic structure of a system using variables v, invariants I(s, c, v), theo-
rems Tm(s, c, v), variants V (s, c, v) and events evt. A list of events can be used
to model possible system behaviour to modify the state variables by provid-
ing appropriate guards in a machine. A set of invariants and theorems can be
used to represent relevant properties to check the correctness of the formalized
behaviour. To define the convergence properties, variants can be used.

Refinement of Event-B Models. Refinement decomposes a model (thus a tran-
sition system) into another transition system containing more design decisions
while moving from an abstract level to a less abstract one. It supports the mod-
elling of a system gradually by introducing safety properties at various refine-
ment levels. New variables and new events may be introduced. These refinements
preserve the relation between the refining model and the refined one while intro-
ducing new events and variables to specify more concrete behaviour of the sys-
tem. The defined abstract and concrete state variables are linked by introducing
gluing invariants.

Property Verification: Proof Obligations (PO). To verify the correctness
of an Event-B model (machine or refinement) the generated POs (issued from
the calculus of substitutions) need to be proved. A proof system allows to prove
the POs. The main proof obligations are listed in Table 1, in which the prime
notation is used to denote the value of a variable after an event is triggered.
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Table 1. Proof obligations

Theorems
A(s, c) ⇒ Tc(s, c)

A(s, c) ∧ I(s, c, v) ⇒ Tm(s, c, v)

Invariant

preservation

A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v′)
⇒I(s, c, v′)

Event

feasibility

A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x)

⇒∃v′.BA(s, c, v, x, v′)

Variant

progress

A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

These POs require to
demonstrate that the theo-
rems hold, each event pre-
serves the invariant (induc-
tive), each event can be
triggered (feasibility) and
if a variant is declared, it
shall decrease.

Regarding refinement, two more relevant proof obligations need to be dis-
charged. First, the simulation PO to show that the new modified action in the
refined event is not contradictory to the abstract action and the concrete event
simulates the corresponding abstract event. Second, in the refined events, we can
strengthen the abstract guards to specify more concrete conditions. More details
on proof obligations can be found in [1].

Tool: Rodin Platform. Rodin [2] is an open source tool based on the Eclipse
framework for developing Event-B models. It is a collection of different tools
including project management, model development, refinement and proof assis-
tance, model checking, and code generation.

The Theory Plug-In. A recent development of the Event-B language allows
to extend it with theories [3] similar to algebraic specifications. In the Rodin
Platform, this development is provided by the Theory plug-in [13]. In our work,
we extend the theory of Reals, written by Abrial and Butler1, for developing the
required theories for modelling hybrid systems. In particular, all the relevant
definitions, theorems and proof rules related to continuous functions, Ordinary
Differential Equations (ODEs), Cauchy-Lipschitz conditions, etc. are defined in
the developed theories.

4 Development of the Case Study

In this section, we describe how the approaches presented in Sect. 3 can be used
to address the case study exposed in Sect. 2. As for the section presenting the
tool, we first describe what has been done by Quesel et al. to design a solution
using dL and KeYmaera, and then we move on to how we dealt with this problem
using Event-B and Rodin.

4.1 HP/dL/KeYmaera

Model. Table 2 shows the dL formula (Eq. (1)) specifying the behaviour and
requirements of the system described in the case study of Sect. 2. In Eq. (2), an
initial condition is defined for velocity v, acceleration A and breaking power B. It
also describes the safe condition which defines the safety envelope (or evolution
domain) for the car regarding the stopping point SP .

1 http://wiki.event-b.org/index.php/Theory Plug-in#Standard Library.

http://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library
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Equation (1) states that given the initial condition and after any run of non-
deterministic iteration composing sequentially the controller (4) and the plant
(5) hybrid programs, the safety requirement req (6) stating that the position is
always ([ ]) before the stopping point SP . Finally two equations define con-
troller and plant. Equation (4) models the control.

Table 2. Hybrid program for the self-driven carFirst, when the safe con-
dition holds, the accelera-
tion is unchanged, otherwise
it is set to −B for break-
ing. Second, Eq. (5) sets up
the ODEs associated to the
position and velocity with
respect to the reachability of the stopping point SP .

Property Verification. The hybrid program of Table 2 is given to the KeY-
maera prover. The user must then prove the global formula (1), and the proof
is conducted by applying inference rules in a natural deduction style. Simi-
larly to other provers, several proof rules and tactics are available. Figure 1
shows an extract of the proof tree associated to the dL formula init →[
(ctrl; plant)∗] (req).

Fig. 1. Example of KeYmaera proof tree (J ≡ v ≥ 0 ∧ p + v2

2B
≤ SP )

The power of the KeYmaera prover resides in the availability of several proof
rules and tactics dealing with continuous aspects, ODEs and induction using
differential equations (loop proof rule in Fig. 1).

4.2 Event-B/Rodin

Model. To build our Event-B model of the case study, our approach encodes a
classical hybrid automaton [4,5] where transitions are events and states are sim-
ply stored as variables. Similar to the approach of [8], two types of variables are
considered: (1) control variables (discrete) used for the controller (e.g. to record
mode changes) and (2) variables (continuous) recording continuous state of the
plant (e.g. to record the physical state of the plant). However, this is not enough
to address all the complexity of hybrid systems. Namely, nothing is done to con-
vey the “internal” evolution of the system (the time-step transitions), to handle
the changes of the continuous variables with respect to time. So, additionally,
we introduce events to reflect the overall continuous progress of the system.
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Last, the core Event-B modelling language is not equipped with the formal
material related to the definition of continuous mathematics required to model
the physics of the controlled plant. To overcome this drawback, instead of re-
designing a language, we used the so-called Event-B theories. Several theories
have thus been defined and used for the development of the case study. The
remainder of this section describes the whole Event-B development which can
be downloaded from yamine.perso.enseeiht.fr/HS eventb models.pdf.

The Derivative Global Context to Manipulate Continuous Functions.
Concept such as continuous functions, derivative, differential equations etc.
required to model the physics of a plant are introduced in a generic context
Derivative holding various (axiomatic) mathematical definitions. In particu-
lar, it gives the sets of continuous, once- and twice- differentiable functions as
well as a basic “derivation” operator.

Beside that, we also defined a weak and simple version of the Cauchy-
Lipschitz theorem, in order to be able to express the condition of existence of a
solution to the given differential equation. Observe that the derivation operator
D is used to define time derivation operation of the form d

dt .

CONTEXT Derivative
. . .
AXIOMS

axm1: D ∈ ((R → R) → (R → R)) -- derivative operator

axm2: C0(R+) ⊂ (R+ → R) -- continuous functions

axm3: D1(R+) ⊂ (R+ → R) -- once-differentiable functions

axm4: D2(R+) ⊂ (R+ → R) -- twice-differentiable functions
axm5: D1(R+) ⊂ C0(R+)

axm6: D2(R+) ⊂ D1(R+)
. . .
cauchy lipschitz:

∀f, t0, x0 · f ∈ (R+ → R) ∧ f ∈ C0(R+) ∧ t0 ∈ R
+ ∧ x0 ∈ R

⇒ ∃x · x ∈ (R+ → R) ∧ D(x) = f ◦ x ∧ x(t0) = x0
. . .

The Car Context C1 Context for Car Behaviours. It extends Derivative and
declares the required concepts needed to build the Event-B model of the stud-
ied system. The constants defining the states of the controller (acceleration,
braking, stabilizing, nearing stop and stopped) are introduced together
with A (acceleration), B (breaking power), v0 (initial velocity) and SP (stop-
ping point) used in the differential equations throughout the model.

This context also introduces the particular structure Plant for the character-
istics of the plant (i.e.: the car). It is a 7-tuple with a differential equation (with
its initial condition) for a (acceleration), v (velocity) and p (position) functions
on time. They represent the state of the plant. k denotes the constant value
of the acceleration, ti, vi and pi represent the initial condition (v(ti) = vi and
p(ti) = pi). axm10 defines the Plant structure, which holds every properties the
elements of the model should satisfy with regards to the plant behaviour (type
of the functions and differential equation). It also enforces SAF2 (by indicating
that whenever the velocity v becomes 0, the acceleration becomes 0 as well). Last,
CL extension entails the Cauchy-Lipschitz condition for this specific plant.

http://yamine.perso.enseeiht.fr/HS_eventb_models.pdf
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CONTEXT Car Context C1
EXTENDS Derivative
SETS STATES
CONSTANTS B, A, v0, SP, P lant
AXIOMS

axm1: partition(STATES, {accelerating}, {braking}, {stabilizing}, {nearing stop},
{stopped})

axm2 9: A ∈ R ∧ B ∈ R ∧ 0 < A ∧ 0 < B ∧ SP ∈ R ∧ 0 < SP ∧ v0 ∈ R ∧ 0 ≤ v0

axm10: ∀a, v, p, k, ti, vi, pi · a ∈ R
+ → R ∧ v ∈ R

+ → R ∧ p ∈ R
+ → R ∧ k ∈ R ∧ ti ∈ R

+

∧vi ∈ R ∧ pi ∈ R ∧ (a, v, p, k, ti, vi, pi) ∈ Plant
⇔ (v ∈ D1 ∧ p ∈ D2 ∧ D(v) = a ∧ D(p) = v ∧ v(ti) = vi ∧ p(ti) = pi∧
(∃t0 · t0 ∈ R

+ ∧ v(t0) = 0

⇒ (∀t · t ∈ R
+ ⇒ ((t < t0 ⇒ a(t) = k) ∧ (t ≥ t0 ⇒ a(t) = 0))))∧

(∀t0 · t0 ∈ R
+ ∧ v(t0) �= 0 ⇒ (∀t · t ∈ R

+ ⇒ a(t) = k))
)

CL extension: ∀k, ti, vi, pi · k ∈ R ∧ ti ∈ R
+ ∧ vi ∈ R ∧ pi ∈ R ⇒

(∃a, v, p · a ∈ R
+ → R ∧ v ∈ R

+ → R ∧ p ∈ R
+ → R ∧ (a, v, p, k, ti, vi, pi) ∈ Plant)

END

The Plant structure is handled as a whole in the Event-B model. From a
methodological point of view, it shall be defined for each modelled plant.

inv1 2 : t ∈ R
+ ∧ current state ∈ state

inv3 5 : a ∈ R
+ → R ∧ v ∈ R

+ → R ∧ p ∈ R
+ → R

inv6 7 : ∀t0 ∈ R
+ : p(t0) ≥ 0 ∧ ∀t0 ∈ R

+ : p(t0) ≤ SP
inv8 11 : v ∈ D1 ∧ p ∈ D2 ∧ D(v) = a ∧ D(p) = v

Variables and Invariants.
We use the relevant contexts
and model the system’s state
with five variables. A read

only variable t for time is introduced. current state defines the current state
of the controller, and the three variables are associated to the controlled plant
(p position, v speed and a acceleration).

INITIALISATION =̂
THEN
act1 : current state := stable
act2 : t := 0

act3 : a, v, p : |a′ ∈ R
+ → R ∧ v′ ∈ R

+ → R∧
p′ ∈ R

+ → R∧
(a′, v′, p′, 0, t, v0, p0) ∈ Plant

END

Initialisation. The initialisation
event defines the initial state and
the starting read time value as
well as the initial values of each
variables. act3 defines, using the
Plant structure, the initial condi-
tions and the differential equation
governing the evolution of the variables p, v and a. It sets the acceleration a to
0 and initialises the position and velocity with p0 and v0.

Progress =̂
THEN
act1 : t : | t′ ∈ R

+ ∧ t < t′

END

Time Handling: The Progress Event. In order
to model the progress of time independently of any
other event (i.e. for the other events, time can only
be read), the Progress event is introduced. This

event occurs continuously in parallel with the other model events. A before-after
predicate describes strictly increasing time using a positive real variable t.

Behaviour of the Plant. The remainder of the model contains two categories
of events: sensing and actuating events. Sensing events are split into command
events (user or driver orders) and the actual sensing (coming from the envi-
ronment through sensors) events. To keep the paper at a reasonable length,
we only describe one event of each category. The whole model is available on
yamine.perso.enseeiht.fr/HS eventb models.pdf.

http://yamine.perso.enseeiht.fr/HS_eventb_models.pdf
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ctrl sense usr input stabilize =̂
WHERE

grd1 : p(t) +
v(t)2

2B < SP
THEN
act1 : currentstate := stabilizing

END
ctrl sense usr input accel =̂ . . .
ctrl sense usr input brake =̂ . . .

Command-Sensing Events. The
command-sensing events observe, through
sensing, the state of the car (plant) and
trigger state changes on the controller
(state-transition system). For example,
under the condition that the veloc-
ity is positive, the ctrl sense usr
input stabilize records that the driver
decided to stabilize her speed.

ctrl sense near stop =̂
WHERE

grd1 : p(t) +
v(t)2

2×B ≥ S

THEN
act1 : current state

:= nearing stop
END

ctrl sense stopping =̂ . . .

ctrl actuate stabilize =̂
WHERE
grd1 : current state ∈ {stabilizing, stopped}

THEN
act1 : a, v, p : |a′ ∈ R

+ → R ∧ v′ ∈ R
+ → R∧

p′ ∈ R
+ → R∧

(a′, v′, p′, 0, t, v(t), p(t)) ∈ Plant
END

ctrl actuate accelerating =̂ . . .
ctrl actuate brake =̂ . . .

Control-Sensing Events. These events are triggered when information from
the external environment (typically: coming from sensors) is available. For exam-
ple, the ctrl sense near stop event is triggered when the stop sign needs to be
taken into account. The physics of the car provides the model with the relevant
trigger condition, used as a guard (grd1).

Control-Actuating Events. Whenever the controller changes state, it sets
the right actuation on the car (plant). Using a before-after predicate, it changes
the differential equation characterizing the plant behaviour (car) to a new one
(change of acceleration a), ensuring that the past behaviour is preserved. This
change occurs at the current time and holds until the next actuation. For exam-
ple, the ctrl actuate stabilze event modifies the variables a, v and p in act1
when the controller is in either stabilizing or stopped mode.

Property Verification. The theory defined for continuous features and ODEs
generated several proof obligations, in particular those related to the theorems
and thus to the proof rules. Then, other proof obligations are generated from
the Event-B model. Due to our extensive use of the theory plug-in, most of
these proofs have numerous manual steps, particularly the ones related to the
continuous features. Even simple proofs, such as well-definedness, need to access
real type operators via interactive theorem instantiation.

Obtained Results. The Event-B development of Sect. 4.2 shows that it is pos-
sible to model both continuous and discrete behaviours, using an event-based
modelling style, within Event-B on the Rodin platform. It also shows that Event-
B can handle modelling of hybrid systems modelled by hybrid automata.
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5 A Development Method for Hybrid Systems

Taking the development carried out in Sect. 4.2 one step further, we present, in
this section, the methodological lessons learnt from this development.

5.1 The Approach

The development of Sect. 4.2 is a direct formalisation of the requirements pre-
sented in the case study. However, when observing how the events are defined
in the Event-B machine, one can identify a set of methodological rules that help
to produce such models in a systematic way.

Required Theories. First, the global set of axioms and theorems, CONTEXT
Derivative, related to the manipulation of continuous functions (derivation,
Lipshitz condition, etc.) is used for all the Event-B developments. Second, the
specific context with all the concepts needed to model the specific case study
shall be introduced. This context defines the control states of the mode automa-
ton associated to the control together with the continuous functions associated
to the plant to be controlled. It also defines the global structure representing
both continuous and discrete elements manipulated by the behavioural model
through variables and events (definition of the Plant 7-tuple structure). Regard-
ing the case study developed in this paper, this context corresponds to the
Car Context C1 context.

xs : Ctrl State
xp : Plant State

INVARIANT
Inv : Inv Exp(xs, xp)

INITIALISATION
xs, xp : |Init Pred(xs, xp, x′

p, x′
s)

Modeling Hybrid Systems. The next steps concern the design of the model
itself using an Event-B machine. First, state variables are declared. xs and xp are
the variables associated to the controller and to the plant respectively. They shall
conform to the invariant defined by the Inv Exp predicate. They are initialised
with initial conditions defined by the predicate Init Pred. Two categories of
events are needed to handle sensing and actuation. They are defined by two
templates. CTRL Sense events for the sensing events (user commands or plant
sensing) that may modify the state (Exp Next for s before-after predicate)
of the controller while CTRL Actuate defines the actuation events to modify
(Exp Next for p before-after predicate) the plant behaviour.

EVENT CTRL Sense
WHEN
grd : Cond Exp p(xp)

THEN
act : xs : |Exp Next for s(xs, xp)

END

EVENT CTRL Actuate
WHEN
grd : Cond Exp s(xs)

THEN
act : xp : |Exp Next for p(xp, xs)

END

The steps described above have been followed, in Sect. 4.2, to develop the
Event-B models of the case study.
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5.2 Deep Modelling: Generalisation

As mentioned previously, the approach described in the previous section sets up
some methodological steps without any restriction on the resulting development.
Encoding the previous steps in a generic deep Event-B model makes it possible
to introduce more oversight and rigour into the design of models for hybrid
systems.

In this section, we present a generalisation of the previous approach. We pro-
pose a generic Event-B model that explicitly formalises the different methodolog-
ical steps defined in the previous section. We also show that a particular system
can be modelled by instantiating this generic model and supplying witnesses.

A Theory for ODEs. Continuous functions, ODEs together with their relevant
properties are defined with an Event-B theory. Listing 1.1 shows an extract of the
theory of ODEs with ode as a constructor for differential equations. The oper-
ators solutionOf , Solvable and CauchyLipschitzCondition define predicates
that states respectively that a given function is a solution of an ODE (with
initial conditions), that an ODE admits a solution and that the given equation
fulfill a Cauchy-Lipschitz condition. The bind operator returns an expression
that links generic plant variables to a pair of variables associated to a particular
plant. It has been introduced to ease instantiation.

Listing 1.1. Elements of the differential equations theory

TYPE PARAMETERS E, F, G
DATATYPES

DE(F)
Constructors

ode (f : P(R+ × F × F ) , f0 : F , t0 : R
+ )

OPERATORS
solutionOf <pred icate> ( eta : R

+ → F , eq : DE(F ))
WHEN eq ≡ ode (f ,f0 ,t0 ) THEN

eta ∈ R
+ → F ∧ eta ∈ D1(R+, F ) ∧ D(eta) = f(eta) ∧ eta(t0) = f0

Solvable <pred icate> ( eq : DE(F ))∃x · x ∈ (R+ → F ) ∧ (x solutionOf eq)
CauchyLipschitzCondition <pred icate> ( eq : DE(F ))

WHEN eq ≡ ode (f ,f0 ,t0 ) THEN
f0 ∈ F ∧ t0 ∈ R

+ ∧ f ∈ (R+ × F → F ) ∧ f ∈ C0(R+ × F, F )∧
(∀t∗ · t∗ ∈ R

+ ⇒ lispchitzContinuous(F, F, (λy · y ∈ F | f(t∗, y)))
bind <expres s ion> (A :P(E) , B :P(F ) , C :P(G) , fab :A → B , fac :A → C )

(λx · x ∈ A | (fab(x), gac(x)))
. . .

AXIOMATIC DEFINITIONS
C0 , Cn , D1 , Dn ,
. . .
lipschitzContinuous <pred icate> (A : P(E) , B : P(F ) , fab : A → B )
. . .

THEOREMS
CauchyLipschitz : ∀eq · eq ∈ DE(F ) ∧ CauchyLipschitzCondition(eq) ⇒ Solvable(eq)

A Generic Model. The following model elements defined in MACHINE System
gives a generalisation of the approach. We consider that the plant variable xp
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belongs to S = R×R. It is indexed on time (xp ∈ R
+ → S) and evolves according

to any ODE e in the actuate event. The controller models state transitions
belonging to the set of states STATES using the Transition event.

MACHINE System
. . .
INVARIANTS

inv1 : t ∈ R
+

inv2 : xp ∈ R
+ → S

EVENTS
INITIALISATION =̂

THEN
act1 : t := 0
act2 : xp :∈ R

+ → S
act3 :

current state :∈ STATES
END

Progress =̂
THEN

act1 : t : |t′ ∈ R
+ ∧ t′ > t

END

Actuate =̂
ANYe, s
WHERE
grd1 : e ∈ DE(S)
grd2 : Solvable(e)
grd3 : s = current state

THEN
act1 : xp : |x′

p ∈ R
+ → S∧

(x′
p solutionOf e)

END
Transition =̂
ANYs
WHERE
grd1 : s ∈ STATES

THEN
act1 : current state := s

END

Instantiation of the Generic Model: Two Steps. To get the specific model
associated to the system corresponding to the case study of Sect. 2, two steps
are required.

The first step consists of defining the Event-B context for the relevant infor-
mation of the system by introducing acceleration, velocity etc. and the different
ODEs describing plant evolution. It uses the constructors defined in the theory
presented in Listing 1.1. The CONTEXT Car C0 shows such instantiation.

CONTEXT Car C0
CONSTANTS B, A, v0, SP, P lant
AXIOMS

axm1: partition(STATES, {stabilizing}, {braking}, {accelerating},
{nearing stop}, {stopped}

. . .

axm12: fstable ∈ R
+ × S → S

axm13: fstable = (λt, (p, v) · t ∈ R
+ ∧ (p, v) ∈ S|(v, 0))

. . .

axm16: ∀t0 · t0 ∈ R
+ ⇒ lipschitzContinuous(S, S, (λx · fstable(t0, x)))

. . .

The second step consists of supplying witnesses to the actuating and sensing
events. The MACHINE Car M0 shows a witness for the plant variable x and v
evolving according to an ODE for function fstabe. It also shows an actuating
event ctrl actuate stabilize where the actuation sets the plant variables to
evolve according to the defined ODE.
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MACHINE Car M0
REFINES ControlledSystem
. . .
INVARIANTS

inv1 : v ∈ R
+ → R

inv2 : x ∈ R
+ → R

inv3 : triggers ⊆ STATES

inv4 : xp = bind(R+,R,R, v, x)
EVENTS

INITIALISATION=̂
WITH

x′
p : x′

p = bind(R+,R,R, v′, x′)
THEN

act1 : t := 0
act2 : current state := stabilizing
act3 : v, x : |

x′ ∈ R
+ → R ∧ v′ ∈ R

+ → R∧
bind(R+,R,R, v′, x′)
solutionOf ode(fstable, (v0, 0), 0)

END

ctrl actuate stabilize =̂
REFINES Actuate
WHERE
grd1 : current state ∈

{stabilizing, stopped}
WITH

e : e = ode(fstable, (v(t) �→ x(t)), t)
s : s = stabilizing

x′
p : x′

p = bind(R+,R,R, v′, x′)
THEN
act1 : v, x : |

x′ ∈ R
+ → R ∧ v′ ∈ R

+ → R∧
bind(R+,R,R, v′, x′)
solutionOf ode(fstable, (v(t) �→ x(t)), t)

END

The previous models are extracts of a generic development that can be down-
loaded from yamine.perso.enseeiht.fr/HS eventb models.pdf.

5.3 About KeYmaera and Rodin: Assessments

The case study presented in Sect. 2 has been developed in both differential
dynamic logic with KeYmaera and Event-B with Rodin. In both cases, the model
of the system has been designed and the requirements have been proved. How-
ever, we have observed several differences in the use of these two modelling
techniques.

KeYmaera supports the definition and verification of hybrid systems models
expressed using dL and hybrid programs. The logic is built-in and fixed once
and for all and the proof rules are hard-coded into the KeYmaera prover. The
advantage of such an approach is the availability of very powerful proof rules
associated to the manipulation of differential equations (see Fig. 1), and in par-
ticular the differential invariant rule that defines an inductive proof schema (loop
rule in Fig. 1) for differential equations.

To model hybrid systems in Event-B, we define the operational behaviour
using the events. Invariants and other properties are defined at the same time.
The model is seen as a set of events that perform either sensing or actuations.
Proof by induction is obtained by proving invariant preservation by each event
while KeYmaera advocates proof of invariant preservation on the whole hybrid
program without a possibility of decomposing this hybrid program (as Event-
B does for events). The specific proof rules for ODEs (like Cauchy-Lipschitz
theorem) need to be added in the defined theories while they are built-in in
KeYmaera. This task is cumbersome but should only be done once.

Our experiments with Event-B have been conducted in two manners. First,
we have encoded directly the case study as an Event-B model in the spirit of dL
and KeYmaera. Contrary to KeYmaera, this process requires the definition of
all the material related to the manipulation of continuous functions and ODEs.

http://yamine.perso.enseeiht.fr/HS_eventb_models.pdf
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Compared to KeYmaera, this process may be time-consuming due to the impor-
tant proof effort just to set up the different functions and ODEs.

Secondly, we have developed an abstract model that generalises the theory
of hybrid controllers. This model is designed and proved once and for all. It
may be instantiated, using Event-B refinement, for specific cases by providing
witnesses and proof of existence. Indeed, these feasibility proof obligations convey
a technical point of differential equation theory; that is: the existence of solutions
to a given problem. However, KeYmaera proofs seem to rely on the ad hoc
existence of those solutions.

The definition of the generic model makes explicit definitions of all the con-
cepts manipulated by the model. These definitions can be customised for specific
kinds of controllers and ODEs (for example, we can add more constraints on
ODEs to admit only linear ones). The Rodin theory plug-in helps to define the
proof rules associated to the use of these definitions.

Finally, some issues still need to be solved. For example, the difficulty to
define inductive Cartesian products (S × · · · × S or Sn for an arbitrary n) to
define vectors of state variables. We have to use an inductive structure for this
purpose and thus rewrite the bind generic operator. Secondly, the definition of
a condition to assert the non-zeno property of the system described by ODEs
must be addressed. This can be done by adding a condition on the existence
of a piecewise decomposition of an ODE in a finite set of arbitrary intervals.
KeYmaera makes this assumption but does not make it explicit.

Other Proof-Based Approaches. Here we briefly review three main contri-
butions in formal modelling and proof based verification of hybrid systems.

As described above, differential dynamic logic using KeYmaera and KeY-
maeraX tool suite have been used to model several cases of hybrid systems.

Additionally to the approach presented in this paper, other Event-B contri-
butions can be mentioned. [12,18] use Event-B and the Rodin Platform [14] to
model hybrid systems in a closed-loop model. Time is explicitly modelled using a
specific state variable. The authors consider continuous functions and they define
discrete and continuous transitions preserving invariants which characterise the
correct behaviour of the described hybrid system.

[9] proposes the Hybrid Event-B extension of Event-B with built-in concepts
for continuous behaviours, differential equations discrete and continuous (pliant)
events. Several hybrid systems models (e.g. [8]) have been developed. A similar
approach has been proposed to define continuous abstract state machines in [10].
For both approaches, there is no available supporting tool.

Last, we mention the work of [11] using a proof-based approach with COQ
for the analysis of C hybrid systems programs. The approach uses formal anno-
tations on discrete and continuous program elements as input to a set of provers.

Finally, we recall that several other approaches based on model checking of
hybrid systems modelled as hybrid automata [5]. Due to space limitations these
approaches are not discussed in this paper.
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6 Conclusion and Future Work

The formal development of hybrid systems requires modelling of both discrete
and continuous behaviours. In this paper, we have presented two formal devel-
opments of a case study related to a stop-sign controller of a car. The first one
is based on differential dynamic logic with KeYmaera and the second one uses
Event-B and Rodin. Both approaches proved useful to model such a system and
refer to interactive proofs involving proof rules on differential equations. Besides,
using the theory plug-in to extend Rodin’s capabilities, Event-B proved to be
well adapted for generalisation.

This work opens several research paths. First the generalisation we have pre-
sented in Sect. 5.2 can be improved in order to formally handle more features
like invariants, guards or different kinds of ODEs. Offering such a possibility will
allow us to produce generic templates of hybrid models that correspond to dif-
ferent types of hybrid systems (for example a non-linear system, or a polyhedral
invariant). The ultimate objective is to hide the development details through
the definition of development/proof patterns. Second, following our preliminary
results in [6,7], the synthesis of a discrete controller from hybrid models similar
to those presented in this paper is also a key issue. Last, we will address the
simulation aspect related to the modelling of hybrid systems.

Finally, we advocate that Event-B together with the plug-in associated to
powerful provers will allow us to achieve these goals.
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Rodin’s Theory plug-in.
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Abstract. Normally, the passengers on urban rail systems remain fairly
stationary, allowing for a relatively straightforward approach to control-
ling the dynamics of the system, based on the total rest mass of the
train and passengers. However when a mischievous rugby club board an
empty train and then run and jump-stop during the braking process, they
can disrupt the automatic mechanisms for aligning train and platform
doors. This is the rugby club problem for automated urban train control.
A simple scenario of this kind is modelled in Hybrid Event-B, and suf-
ficient conditions are derived for the prevention of the overshoot caused
by the jump-stop. The challenges of making the model more realistic are
discussed, and a strategy for dealing with the rugby club problem, when
it cannot be prevented, is proposed.

1 Introduction

With profuse apologies to Clement Clarke Moore: ‘Twas early in the morning,
when all thro’ the house, Not a creature was stirring, not even a mouse. . . aside,
that is, from the stout adherents of a rugby club, who were bent on making their
way to the Métro station, to board the otherwise empty first service of the day
on the fully automated, unmanned line.1

As the train pulls out of the station, the dynamical variables are measured
by the train system,2 in order to gauge the weight of the passengers that have
got on board—this, in order to be able to accurately predict the braking force
that will be needed when the train pulls into the next station. The train becomes
cognisant of the weight of the rugby club, at this point standing at the back of
the train.

As the train starts to approach the next station, the rugby club start a run
up the empty train towards the front. The velocity feedback control law gov-
erning the train’s travel detects a shortfall in velocity and commands additional
acceleration to bring the train up to speed, thereby adding to the momentum of

1 Such as the Paris Météor Line 14, engineered using the B-Method.
2 Acceleration, time taken to reach cruising speed, etc.
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the whole train. The train starts to brake as it enters the next station. As the
train is coming to a stop, the rugby club complete their run with a jump-stop,
impulsively imparting their momentum to the train body. The train has calcu-
lated its braking force on the basis of the earlier, stationary rugby club, and has
not taken into account the additional momentum. As a result of the jump-stop,
the train’s braking force is inadequate, and the train overshoots its intended
stopping point . . . by a sufficient distance for the misalignment with the plat-
form side doors to exceed the permitted safety margin. The only option for such
excess misalignment (taking into account the demands of rush-hour throughput)
is that the train does not stop but continues to the next station. Having given a
cheer, the rugby club make their way to the back of the train, which still works
on the basis of the original weight estimate. As the next station is approached,
they start a run . . . you can guess the rest. On a circular line,3 the rugby club can
amuse themselves this way all day long, with the train never stopping until the
end of service. This is the Rugby Club Problem for automated urban railways.4

The problem of a moderate, but nevertheless unacceptable overshoot of the
door position by an automated urban train is easily solved if the train doors are
equidistantly spaced. Then, it is enough to have an additional door or two at
the front end of the platform. The train then aims for its normal position, and
if an overshoot happens, the train can carefully, but quite quickly, inch along to
the next spare door position, the equidistant spacing guaranteeing that all train
doors will thereby be correctly aligned.5 But the equidistant design is not widely
adopted. To have enough doors per carriage to cope with a busy rush hour in
an urban environment that is populated enough to justify an urban rail solution
in the first place, puts considerable demands on the structural integrity of the
carriages, leading to additional costs.6

Putting aside levity, the aim of this paper is to demonstrate that Hybrid
Event-B [8,9] can deal fluently with the problem of modeling the kind of impul-
sive physics exhibited by the Rugby Club Problem. By now there are quite a
number of existing case studies using Hybrid Event-B [2–7,11], but none of the
ones published hitherto has focused on impulsive physics.

The remaining sections of the paper are as follows. In Sect. 2, we outline Hybrid
Event-B, emphasising the elements that are useful in modelling impulsive physics.
In Sect. 3, for lack of space, we present a very simple model of the Rugby Club
Problem, displaying its essential characteristics, including how the impulsive ele-
ments are handled. In Sect. 4, we consider various alternatives and enhancements,
which we discuss more briefly. Section 5 discusses how the Rugby Club Problem
might be solved in the context of the modelling of this paper. Section 6 concludes.

3 O. K. The Météor line is not circular, but you get the idea.
4 I am indebted to Thiérry Lecomte of ClearSy [14] for this delightful story [19].
5 Such a design is visible on the Shanghai Metro’s circular line 4, as well as on some

other, older Shanghai Metro lines, built when train door alignment control was less
precise than today.

6 The robustness of the carriages on the Shanghai line 4 would put much heavy rail
to shame.
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Fig. 1. A schematic Hybrid Event-B machine.

2 Hybrid Event-B, and Modelling Impulsive Physics

In this section, we outline Event-B and Hybrid Event-B for a single machine.
Because it is more complex, we describe Hybrid Event-B first via Fig. 1, and
show how it reduces to Event-B (which of course came earlier) by erasing the
more recently added elements.

Figure 1 shows a schematic Hybrid Event-B machine. It starts with decla-
rations of time and of a clock. Time is a first class citizen in that all variables
are functions of time (which is read-only), explicitly or implicitly. Clocks are
assumed to increase like time, but may be set during mode events. Variables are
of two kinds. There are mode variables (like u) which take their values in discrete
sets and change their values via discontinuous assignment in mode events. There
are also pliant variables (such as x , y), declared in the PLIANT clause, which
typically take their values in topologically dense sets (normally R) and which are
allowed to change continuously, such change being specified via pliant events.

Next are the invariants. These resemble invariants in discrete Event-B, in that
the types of the variables are asserted to be the sets from which the variables’
values at any given moment of time are drawn. More complex invariants are
similarly predicates that are required to hold at all moments of time during a
run.

Then, the events. The INITIALISATION has a guard that synchronises time
with the start of any run, while all other variables are assigned their initial values
as usual.

Mode events are analogues of events in discrete Event-B. They can assign all
machine variables (except time). The schematic MoEv of Fig. 1, has parameters
i?, l , o!, (input, local, and an output), and a guard grd . It also has the after-value
assignment specified by the before-after predicate BApred , which can specify the
after-values of all variables (except time, inputs and locals).

Pliant events are new. They specify the continuous evolution of the pliant
variables over an interval of time. Figure 1 has a schematic pliant event PliEv .
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There are two guards: iv , for specifying enabling conditions on the pliant vari-
ables, clocks, and time; and grd , for specifying enabling conditions on the mode
variables (in [8] there is a detailed discussion justifying such a design).

The body of a pliant event contains three parameters i?, l , o!, (input, local,
and output, again) which are functions of time, defined over the duration of the
pliant event. The behaviour of the event is defined by the COMPLY and SOLVE
clauses. The SOLVE clause contains direct assignments, e.g. of y and output o!
(to time dependent functions); and differential equations, e.g. specifying x via
an ODE (with D as the time derivative).

The COMPLY clause is used to express any additional constraints that are
required to hold during the pliant event via the before-during-and-after predicate
BDApred . Typically, constraints on the permitted ranges of the pliant variables,
can be placed here. The COMPLY clause can also specify at an abstract level,
e.g. stating safety properties for the event without going into detail.

Briefly, the semantics of a Hybrid Event-B machine consists of a set of system
traces, each of which is a collection of functions of time, expressing the value of
each machine variable over the duration of a system run.

Time is modelled as an interval T of the reals. A run starts at some ini-
tial moment of time, t0 say, and lasts either for a finite time, or indefinitely.
The duration of the run T , breaks up into a succession of left-closed right-open
subintervals: T = [t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . .. Mode events (with their dis-
continuous updates) take place at the isolated times corresponding to the com-
mon endpoints of these subintervals ti , and in between, the mode variables are
constant, and the pliant events stipulate continuous change in the pliant vari-
ables.

We insist that on every subinterval [ti . . . ti+1) the behaviour is governed
by a well posed initial value problem D xs = φ(xs . . .) (where xs is a relevant
tuple of pliant variables). Within this interval, we seek the earliest time ti+1 at
which a mode event becomes enabled, and this time becomes the preemption
point beyond which the solution to the ODE system is abandoned, and the next
solution is sought after the completion of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a
suitable initial assignment to variables, a system run is well formed, and thus
belongs to the semantics of the machine, provided that at runtime:7

• Every enabled mode event is feasible, i.e.has an after-state, and on its
completion enables a pliant event (but does not enable any mode event). (1)

• Every enabled pliant event is feasible, i.e. has a time-indexed family of after-
states, and EITHER: (2)

7 If a mode event has an input, the semantics assumes that its value only arrives at a
time strictly later than the previous mode event, ensuring part of (1) automatically.
By this means we can ensure a mode event executes asynchronously—and if the only
purpose of having an input would be to ensure this asynchronous scheduling, we can
introduce the ‘async’ status and omit the input altogether, as in Fig. 2.
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(i) During the run of the pliant event a mode event becomes enabled. It pre-
empts the pliant event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination.
ORELSE

(iii) The pliant event continues indefinitely: nontermination.

Thus in a well formed run mode events alternate with pliant events. The
last event (if there is one) is a pliant event (whose duration may be finite or
infinite). In reality, there are several semantic issues that we have glossed over
in the framework just sketched. We refer to [8] for a more detailed presentation
(and to [9] for the extension to multiple machines). The presentation just given
is quite close to the modern formulation of hybrid systems. See e.g. [22,23], or
[13] for a perspective stretching further back.

The mode events of Hybrid Event-B, which permit the discontinuous state
changes of the computational world to be represented, also allow impulsive
physics to be conveniently modelled. For example, a billiard cue strikes a ball,
changing its velocity discontinuously, or a capacitor discharges, instantaneously
reducing the electrical potential across its plates to zero. However, unlike the
computational world in which the programmer is at liberty to decide what dis-
continuous state changes take place, the physical world is governed by immutable
laws, which must be adhered to yield a useful model. Thus, in the billiard ball
example, it is the conservation of momentum that determines the relationship
between the physical states before and after the strike. We might say that ‘Hybrid
Event-B cannot do your physics for you; but it can faithfully represent the physics
that you know from elsewhere.’

Connected with the preceding is the fact that discontinuous state changes
in the physical world are stimulated by forces which are ‘pure impulses’. And
whereas discontinuous change can be represented quite directly in Hybrid Event-
B, these pure impulses cannot. Physicists and engineers speak of such impulses
as ‘delta functions’—‘zero everywhere except at a single point, were they are
infinite, but with a finite integral’. Mathematically, that last phrase is mean-
ingless; delta functions are not functions, but so-called distributions [18,24,25].
The nearest we get in Hybrid Event-B (or any other similar formalism) to the
representation of a pure impulse is the (syntactic) description of the mode event
that encapsulates the discontinuous change that results from the impulse. The
occurrence of the mode event (at runtime) corresponds to the occurrence of the
physical impulse causing the discontinuous change of state.

3 A Simple Rugby Club Problem Scenario

In this section, we present a very simple model of the rugby club scenario,
formalised in Hybrid Event-B and, in particular, utilising the insights about
impulsive physics just discussed. The model itself is in Fig. 2.
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Fig. 2. A simple Hybrid Event-B model of the urban rail Rugby Club Problem.
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The model depends on a number of constants (which would be declared in a
CONTEXT, which we do not show). There are: the phases of the model stored in
the mode variable: STAT ionary; ACCELerating; CRUISE ing; DECELerating.
There is also: BIGT , an initial value for a clock that is bigger than any value
that could trigger the enabledness of any mode event; MT , the mass of the train;
Mrc , the mass of the rugby club; Vcr the cruising speed of the train; Vrcr the
rugby club’s running speed relative to the train’s speed (when the members of
the rugby club are, in fact, running).

A number of variables contain the state of the model. There is mode, already
mentioned. There are a number of variables representing mass: min , the inertial
mass of the system at any time; mpcv , the mass perceived by the train at any
time (based on the dynamical properties that it measures and the moments in
time that it does so); vrcr , the rugby club’s running speed relative to the train
at any time (regardless of whether the rugby club are, in fact, running or not at
that time); brTime, the train’s concept of the needed duration for the braking
period, at the start of the braking period. These variables are mode variables,
because they only need to get updated via mode events.

There are also pliant variables: meff , the effective mass of the system, i.e.
the point mass which, when traveling at the train’s velocity, would possess the
same momentum as the whole train plus rugby club system, thus offering the
same resistance to change in momentum as the whole system—it changes con-
tinuously when the rugby club is running during acceleration or braking, due to
the continuously changing relative proportions that the train and the rugby club
contribute to the overall momentum during the accelerating or braking episodes;
vT , the speed of the train at any time; brDist , the current remaining distance
during the braking period until the train comes to a standstill, as computed by
the train according to the dynamical properties that it measures.

In reality, not all of these variables are strictly necessary. Many can be dis-
pensed with as they can be re-expressed in terms of constants and other variables.
The variables in this category are: min , mpcv , vrcr , meff and brTime. We never-
theless retain them in order to make the ensuing explanation of the model easier
to follow.

The invariants are trivial typing invariants in this simple model: mode is as
described earlier, and the others are all either reals or non-negative reals. We
discuss some possibilities for more complex invariants later.

We turn to what the model actually does. In order to save space in Fig. 2, we
have economised on some notational matters. Thus: We have decanted events’
STATUS declarations to a decoration at the end of the line containing the event
name (where the STATUS is not ‘ordinary’). We have used the ‘async’ STATUS
to ensure a mode event does not execute eagerly.8 We have slightly generalised
the CONST declaration of [2] to cover a list of (pliant) variables that are to stay
constant during the execution of a pliant event.

8 Thus, ‘STATUS async’ is an abbreviation for the semantic device of giving the mode
event an external input which is not used in the event’s body. See footnote 7.
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INITIALISATION starts the model with the train stationary in a station
with no one on board. A clock clk A, is set to an innocuous value BIGT ; the
mode is STAT ; all the masses are set to be the train’s inertial mass MT ; the
train’s velocity and the rugby club’s relative velocity are set to zero; and all
other variables are of no interest and are also set to zero.

The ensuing pliant event TrainStationary just perpetuates this state of
affairs—all mode variables cannot change, and the pliant variables are held con-
stant via the CONST declaration.

At some point during this phase the async eventRugbyClubBoards is executed.
Although boarding clearly does not take place instantaneously, only the overall
change in mass makes any difference, and so there is no harm in modelling the
process as an impulsive change to the mass during this event. The inertial mass
min becomes MT + Mrc , as does the effective mass meff (since the train system
behaves as a single mass at this stage). Everything else stays the same. In par-
ticular, the train’s perceived mass mpcv remains unchanged since the train is, as
yet, unaware of the rugby club. After this the TrainStationary event resumes, all
variables maintaining their values, whether old values or newly acquired values.9

At some point after this the dynamics starts, and for this, we assume an
conventionally idealised setup. Thus we assume the track is straight and level,
the movement of the train is frictionless and suffers no other impediment (such
as air resistance), and the train can be treated as one (or several) point mass(es)
for the purpose of dynamical calculations.

In complex situations, dynamics is best treated via the d’Alembert-Lagrange
approach, or an equivalent. See e.g. [15,17]. The foundations are not in fact as
uncomplicated as the ancient pedigree of this subject might suggest; [12] gives a
good discussion, not to mention the gargantuan [21]. For us, it will suffice to stick
to a fairly low-level approach, provided we remember that Newton’s Second Law
equates force to rate of change of momentum, and not to mass times acceleration,
as is usually stated, and to which the more accurate form usually reduces.

So, async event TrainStarts executes. It changes the mode to ACCELerating
and starts the clock. It thus enables the TrainAccelerating pliant event which
states how the pliant variables change. Since the rugby club are station-
ary, the effective mass meff remains CONSTant at its value at the start of
TrainAccelerating . The braking distance variable brDist is not needed yet, so
is kept at zero.10 The nontrivial element of the TrainAccelerating event is the

9 In fact,RugbyClubBoards remains enabled during the resumed TrainStationary event,
so could execute again. But RugbyClubBoards is async and idempotent, so no harm
would be done.

10 This could also have been handled via a CONST declaration. In fact, that would have
been more convenient, since assignment to a (time dependent, in general) expression
generates a verification condition to check that the initial value of the expression
agrees with the value on entry to the pliant event, in order to ensure right continuity
of the variable’s history at the entry point to the pliant event, as required by the
semantics [8]. Not mentioning brDist at all would entail the default behaviour for
pliant variables during pliant events, namely of constraining them to simply obey
any relevant invariants. This would be inappropriate here.
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ODE that equates the rate of change of the train’s momentum D (min vT ) to the
force applied by the train. The latter is assumed to be a constant accelerating
force FA. Since there is no relative motion between the train and rugby club,
and all the train and rugby club mass is treated as concentrated at the centre
of gravity, we can take the mass element to be the intertial mass min , and we
derive the statement found in Fig. 2.

Acceleration continues until the train achieves cruising velocity, detected by
the guard vT = Vcr of the mode event TrainAtSpeed . This turns off the acceler-
ating force and changes the mode to CRUISE ing. This also enables the train to
calculate its overall perceived mass mpcv from the information it has, namely
clock value clk A, applied force FA and cruise velocity Vcr . Of course, since the
motion has been so simple thus far, a straightforward application of Newtonian
mechanics (namely, that change of momentum mpcv × Vcr equals duration of
applied force FA × clk A) shows that the answer mpcv , is min , as noted in the
accompanying comment, but the train can only use the information available to
it, so we show the assignment to mpcv expressed using those quantities.

TrainAtSpeed enables the TrainCruising pliant event. brDist is still not
needed, so is assigned as previously. The train velocity vT is controlled by a
linear constant coefficients ODE, impelling vT towards the stable equilibrium
value Vcr . Since vT = Vcr immediately after TrainAtSpeed , there is no change
in velocity at this time. Similarly, the effective mass meff remains as before, which
is easy to see in the direct assignment to meff when we notice that vrcr = 0 during
this period.

During TrainCruising , async mode event RugbyClubStartsRun is enabled,
and at some point is executed. Now the dynamics gets more interesting. Again
we idealise the change of state as an impulsive change, since only the overall
change in momentum matters, and the dynamics is completely lossless. The
rugby club’s relative velocity with respect to the train vrcr , becomes Vrcr . Since
momentum is conserved, using primes for after-values, we can write:

(MT + Mrc)vT = (MT + Mrc)v ′
T + MrcVrcr (3)

from which, noting that vT = Vcr , we derive the assignment to vT that we see
in RugbyClubStartsRun. The train effective mass meff becomes the mass that
is needed to generate the momentum on either side of (3) when the velocity is
the new train velocity. A slightly longer calculation, equating (3) to m ′

effv
′
T , is

needed to derive the expression for meff (given in terms of the cruise velocity
Vcr ) that appears in RugbyClubStartsRun.

After RugbyClubStartsRun, TrainCruising is still enabled. Since the train
velocity is no longer Vcr , the feedback control law in TrainCruising now has
work to do. Implicitly, an accelerating force is applied to impel the train velocity
vT towards Vcr , and it does work that adds to the total momentum of the system.
Note that as vrcr is non-zero, having become Vrcr , and given that vT changes,
so does meff , as can be derived from (3), reflecting the changing proportion of
the overall momentum that the rugby club’s relative run velocity contributes.
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When vT has returned close enough to Vcr , the async mode event
TrainBrakes becomes enabled—we are assuming that the train velocity has
recovered before the train starts to brake. We assume the train knows where it
is relative to the next stopping position, and initiates braking at a point where,
according to the train’s perception about its dynamics, applying its fixed brak-
ing force FD for an appropriate time will bring it to a halt just where needed.
We assume that the train still imagines its overall mass is the originally calcu-
lated mpcv , and taking the velocity to be Vcr , a simple Newtonian mechanics
calculation of the (quadratic) displacement generated by a constant force yields
the brDist value assigned in TrainBrakes, assuming further that the next stop-
ping position is the origin of distance measurements, and that positive distances
are oriented beyond the stopping position. The time taken to come to a halt is
recorded in brTime—it is just the time needed to consume all of the assumed
momentum mpcvVcr by applying a force of magnitude FD .

TrainBrakes changes the mode to DECELerating, and thus enables pliant
behaviour TrainDecelerating . During this period, it is the laws of physics, and
not the train’s perceptions, that determine what happens. Thus, the rate of
change of velocity is governed by the momentum form of Newton’s Law:

D ((MT + Mrc)vT + MrcVrcr ) = −FD (4)

In (4), only vT can vary, the other symbols being constants. Thus we derive
the ODE for vT in TrainDecelerating . And vT gives the time derivative of brDist .
The effective mass meff is given by the same formula as in TrainCruising , for
exactly the same reasons.

At some point during TrainDecelerating , but while the velocity is still pos-
itive, the rugby club come to the end of their run. The momentum that they
‘stole’ from the train when they initiated their run, and which was unknowingly
made up by the feedback control law during TrainCruising , is now suddenly
dumped back into the train when they do their jump-stop.

The physical consequences of this process are described in the async mode
event RugbyClubJumpStop. The rugby club relative run velocity vrcr changes
from Vrcr to zero. Since the train system now behaves once more like a point
mass, the effective mass must likewise become min . The process is governed by
conservation of momentum, which, using primes for after-values as usual, yields
the following:

meffvT = minv ′
T = mpcvv ′

T = m ′
effv

′
T (5)

This explains the assignments to the variables in RugbyClubJumpStop.
Once RugbyClubJumpStop has executed, TrainDecelerating is enabled once

more.11 But now, the train velocity which the decelerating phase has to deal with
is suddenly greater than before. So the braking phase is extended compared with
its previously anticipated duration.
11 While TrainDecelerating executes, RugbyClubJumpStop is (more or less) always

enabled, but as in other cases, it is an async event and its effect is idempotent,
so executing it again would have no discernible effect.
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It is intuitively clear that if the rugby club consists of extreme lightweights,
and that if they run extremely slowly, the effect on the braking episode will be
small due to the small amount of momentum at issue. Equally, if the rugby club
are all very heavy, and they run very fast, then the effect on the braking episode
will be more appreciable.

Mode events TrainStopSucceed and TrainStopFail handle these two possi-
bilities. One or other is triggered when vT hits zero (and the mode is still
DECELerating). The ideal stopping position is at brDist = 0. So if the dis-
crepancy between the ideal and actual stopping positions when vT hits zero
does not exceed BRakingTOLerance, then TrainStopSucceed executes, and the
train stops at the station, as it should. The state returns to its initial config-
uration and the rugby club can alight (presumably disappointed). The whole
scenario can then repeat.

However, if the discrepancy between the ideal and actual stopping posi-
tions when vT hits zero exceeds BRakingTOLerance, then the train returns
to ACCELerating mode, and the train moves towards the next station, with the
(presumably elated) rugby club on board. In this case we have the classic rugby
club problem which can then also repeat.

3.1 Analysis of the Jump-Stop Phenomenon

In this section we analyse more precisely the distinction between the
TrainStopSucceed and TrainStopFail cases.

During an execution of TrainDecelerating , if the intial velocity of the train
is vIN and the pliant event executes for a time tEX , then after this period, the
velocity and distance travelled become:

vIN − FD tEX

(MT + Mrc)
and vIN tEX − FD t2EX

2(MT + Mrc)
(6)

respectively. To work out the implications of the jump-stop, we need to consider
two such episodes, separated by a RugbyClubJumpStop.

The braking period starts with the train moving forward with velocity Vcr .
Suppose the rugby club do their jump-stop tJS later than the start of braking.
Then, substituting into (6), after the first braking episode, the velocity and
distance travelled become:

vJS = Vcr − FD tJS
(MT + Mrc)

and dJS = Vcr tJS − FD t2JS
2(MT + Mrc)

(7)

Then comes the jump-stop. According to RugbyClubJumpStop, the velocity
needs to be rescaled by meff/min , which increases the velocity expression in (7)
to:
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vJS

[
min +

Mrc Vrcr

vJS

]/
min = Vcr − FD tJS

(MT + Mrc)
+ Vrcr

[
1 +

MT

Mrc

]−1

= v ′
JS

(8)

Braking is then completed by another TrainDecelerating episode. This time
the initial velocity is v ′

JS . Using (6) with this intial value, the pliant behaviour
executes until the velocity drops to zero. Naming this duration tHALT , it is given
by:

v ′
JS − FD tHALT

(MT + Mrc)
= 0 thus tHALT =

(MT + Mrc) v ′
JS

FD
(9)

and therefore, the distance covered in the second TrainDecelerating episode is,
by (6):

dHALT = v ′
JS tHALT − FD t2HALT

2(MT + Mrc)
(10)

The total distance travelled during braking is therefore dTOT = dJS + dHALT ,
subject to the constraint that vJS > 0. If we call brDistTOT , the value of brDist
assigned by TrainBrakes, it is the discrepancy between dTOT and brDistTOT

that must be compared to BRTOL to determine whether TrainStopSucceed or
TrainStopFail will be enabled. We find:

dTOT = Vcr tJS − FD t2JS
2(MT + Mrc)

+ v ′
JS tHALT − FD t2HALT

2(MT + Mrc)

= Vcr tJS − FD t2JS
2(MT + Mrc)

+
(MT + Mrc) v ′2

JS

FD
−

FD ( (MT+Mrc) v
′
JS

FD
)2

2(MT + Mrc)

= Vcr tJS − FD t2JS
2(MT + Mrc)

+
(MT + Mrc) v ′2

JS

2FD

= Vcr tJS − FD t2JS
2(MT + Mrc)

+
(MT + Mrc)

2FD

(
Vcr − FD tJS

(MT + Mrc)
+ Vrcr

[
1 +

MT

Mrc

]−1
)2

(11)

After a bit more working we get:

dTOT =
(MT + Mrc)

2FD

[
V 2

cr + V 2
rcr

[
1 +

MT

Mrc

]−2

+ 2VrcrVcr

[
1 +

MT

Mrc

]−1

− 2Vrcr
FD tJS

(MT + Mrc)

[
1 +

MT

Mrc

]−1
]

(12)

So

dTOT <
(MT + Mrc)

2FD

[
V 2

cr + V 2
rcr

[
1 +

MT

Mrc

]−2

+ 2VrcrVcr

[
1 +

MT

Mrc

]−1
]

(13)
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The last step follows, because in the last two terms of (12), the negative one
cannot exceed the positive one in magnitude because of the constraint on tJS
coming from vJS > 0, which implies that tJS reaches its maximum when vJS = 0,
at which point these last two terms cancel.

Therefore, if we can arrange it that | brDistTOT + dTOT |< BRTOL, we
will always execute TrainStopSucceed at the end of the braking process, and will
never execute TrainStopFail . We will have surmounted the rugby club problem.

We can express this insight as an additional, nontrivial invariant, where HYP
denotes the relationships between the various constants of the model that have
to be true in order that | brDistTOT + dTOT |< BRTOL holds:

HYP � mode = DECEL ∧ vT = 0 ⇒ | brDist | ≤ BRTOL (14)

Thus, the enabledness of TrainStopSucceed at the crucial moment becomes
provable.

Regarding brDistTOT+dTOT , which equals the last two terms of (13), we note
that the V 2

rcr term will be negligible in magnitude compared with the VrcrVcr

term. This enables us to derive a simple criterion that will be adequate for most
engineering purposes:

brDistTOT + dTOT <
Vrcr Vcr Mrc

FD
(15)

4 The Rugby Club Problem—Further Discussion

The details of the control strategy actually used for urban rail control are com-
mercially confidential, for obvious reasons. Nevertheless, it seems clear that the
fact that there is a rugby club problem at all, signals a likely cause of it as being
the discrepancy between a control strategy based on pure kinematics and one
based on the complete dynamics. In this section, we briefly some discuss issues
for more realistic modelling.

Several factors would need to be taken into account in a more realistic model:
the track will not be straight and level; it will not sustain frictionless train travel;
the train’s wheels will not always make perfect rolling contact with the track
(there will be some skidding at times); the control laws will not be as simple
as we have chosen them to be in our models; in the confines of an underground
tunnel, air resistance will cause significant drag on the train. And so on.

All these things will soak up some of the momentum of the train as it travels,
requiring work from the engine to maintain speed. Simple realistic models of
these phenomena will not be available. The best one might hope for, would be
phenomenological models that predicted the relevant losses, based on tabulated
data taken over many journeys under a variety of conditions. These data would
have to be specific to each section of the route, and dealing with these aspects
could seriously complicate the design of the critical code controlling the train’s
motion.
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5 ‘Tackling’ the Rugby Club Problem

Above, we suggested that if appropriate relationships could be made to hold
between the various constants that characterised our model, then the rugby
club problem might be overcome. In this section, we discuss how the rugby
club problem may be addressed when such choices of constants are not available
for whatever reason, while remaining within the simple modelling framework of
Fig. 2.

In our model, the principal cause of the loss of coherence between the train’s
view of the dynamics and the physical reality could be attributed to the fact that
the control law for the cruise phase was based exclusively on the train’s velocity,
whereas the true physics of the situation requires the accounting of momentum.

The obvious suggestion then, would be to change the control laws for the
various phases of the dynamics to account for momentum more accurately. In our
extremely idealised models this would not be hard to do, because in such simple
models, the relationships between velocity and momentum are straightforward,
and the cruise phase could easily detect how much momentum it had given away
as it brought the train back up to speed. The train could then approach the
stopping point more cautiously, knowing that the momentum it had given away
would have to be given back soon.

However, when we consider doing the same thing in the context of the more
realistic models contemplated in Sect. 4, this is easier said than done. The rugby
club steals momentum from the train, but so do all the other sources of non-ideal
motion that we mentioned. Distinguishing between ‘natural losses’ and ‘unnat-
ural losses’ becomes nontrivial. Nevertheless, if natural and unnatural could be
distinguished clearly enough, an optional ‘more cautious stopping strategy’ offers
a potential way forward.

6 Summary and Conclusions

In the preceding sections we outlined the essentials of Hybrid Event-B, with a
special focus on how impulsive physics can be handled. Then we constructed
a Hybrid Event-B model of the rather engaging rugby club problem scenario
described in the Introduction. For the purposes of arriving at a reasonably clear
exploration of the rugby club problem which nevertheless fitted in a fairly short
paper, our model had to simplify and idealise the situation rather severely. It
was thus suffused with point mass and lossless dynamics in the familiar style of
classical mechanics. The precision of the model allowed us to derive conditions
that distinguished between the non-disruptive and disruptive case of the rugby
club dynamics, and we discussed some options for adding more complex invari-
ants to the model, based on these. We then discussed possibilities for reducing
the degree of idealisation in the model, and thus the prospects for making it
more realistic, thereby bringing it closer to applicability in practice.

It is worthwhile, at this point, making an observation about how the stated
provability of the additional invariants that were mentioned came about. Most of
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the analysis of this paper was performed in a fairly ad hoc manner. When dealing
with a situation described by physical theories, this is, more or less, unavoidable.
It follows in turn because physical theories are almost always expressed using a
family of equalities. As such, any of the participating variables may (in the given
situation) carry input values, with the other variables acquiring their values from
the demanded equalities, as outputs. So the derivation process is not structured
in a manner that is fixed at the outset, in the way that formal development
processes tend to be. However, once the ad hoc reasoning has yielded its fruits,
we can take a step back, and restructure what has been discovered in a manner
that better fits a formal development process. It is in this manner that the
provability that is claimed of the additional invariants emerges.

In the last section, we addressed how this modelling exercise could be used
to overcome the rugby club problem, in cases where it could not be prevented
by choosing appropriate constants. The crux of the matter would be to centre
the control system for the train more firmly on the momentum dynamics of the
physical system, than on purely kinematic aspects. Confidence in this assertion
is supported by the fact that although a rugby club may be able to outwit a
train control system whose design is insufficiently suspicious, they cannot cheat
the laws of physics.

It is instructive to note the very major role played by physics knowledge in
the exercise undertaken in this paper. Although computer scientists often find
it convenient to downplay or neglect the influences of non-computing disciplines
in the design of cyberphysical systems [13,16] (see, for example, the balance of
content in references such as [1,20]), the importance of such influences cannot be
denied, and the present exercise shows this eloquently. Cyberphysical systems
are truly multidisciplinary and it is unwise to neglect any of the disciplines that
contribute to a given system while emphasising just one (e.g. just the computing
viewpoint). See [10] for a review of some of the less obvious elements that impact
cyberphysical systems, discussed from a mathematical viewpoint.

References

1. Alur, R.: Principles of Cyberphysical Systems. MIT Press, Cambridge (2015)
2. Banach, R.: Pliant modalities in hybrid event-B. In: Liu, Z., Woodcock, J., Zhu, H.

(eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 37–53.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4 3

3. Banach, R.: The landing gear system in multi-machine hybrid Event-B. Int. J. Soft.
Tools for Tech. Trans. 19, 205–228 (2017)

4. Banach, R.: Formal refinement and partitioning of a fuel pump system for small
aircraft in hybrid Event-B. In: Bonsangue, M., Deng, Y. (eds.) Proceedings of IEEE
TASE-16, pp. 65–72. IEEE (2016)

5. Banach, R.: Hemodialysis machine in hybrid event-B. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 376–393. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 32

6. Banach, R., Butler, M.: A hybrid Event-B study of lane centering. In: Aiguier,
M., Boulanger, F., Krob, D., Marchal, C. (eds.) Complex Systems Design & Man-
agement, pp. 97–111. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
02812-5 8

https://doi.org/10.1007/978-3-642-39698-4_3
https://doi.org/10.1007/978-3-319-33600-8_32
https://doi.org/10.1007/978-3-319-02812-5_8
https://doi.org/10.1007/978-3-319-02812-5_8


186 R. Banach

7. Banach, R., Butler, M.: Cruise control in hybrid Event-B. In: Liu, Z., Woodcock,
J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 76–93. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39718-9 5

8. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

9. Banach, R., Butler, M., Qin, S., Zhu, H.: Core hybrid Event-B II: multiple coop-
erating hybrid Event-B machines. Sci. Comput. Program. 139, 1–35 (2017)

10. Banach, R., Su, W.: Cyberphysical systems: a behind-the-scenes foundational view.
In: Mashkoor, A., Thalheim, B., Wang, Q. (eds.) Proceedings of Klaus-Dieter
Schewe Festschrift 2018. College Publications (2018, to appear)

11. Banach, R., Van Schaik, P., Verhulst, E.: Simulation and formal modelling of yaw
control in a drive-by-wire application. In: Proceedings of FedCSIS IWCPS-15, pp.
731–742 (2015)

12. Bloch, A., Krishnaprasad, P., Murray, R., Baillieul, J., Crouch, P., Marsden, J.,
Zenkov, D.: Nonholonomic Mechanics and Control. Springer, New York (2015).
https://doi.org/10.1007/b97376

13. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and
tools for hybrid systems design. Foundations and Trends in Electronic Design
Automation, vol. 1, pp. 1–193 (2006)

14. ClearSy. http://www.clearsy.com/
15. Fasano, A., Marmi, S.: Analytical Mechanics. Oxford University Press, Oxford

(2013)
16. Geisberger, E., Broy, M. (eds.): Living in a networked world. In: Integrated

Research Agenda Cyber-Physical Systems (agendaCPS) (2015). http://www.
acatech.de/fileadmin/user upload/Baumstruktur nach Website/Acatech/root/
de/Publikationen/Projektberichte/acaetch STUDIE agendaCPS eng WEB.pdf

17. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Addison Wesley, Boston
(2001)

18. Horvarth, J.: Topological Vector Spaces and Distributions. Dover, Mineola (2012)
19. Lecomte, T.: Atelier B has Turned 20. In: Proceedings of ABZ-16, LNCS, vol. 9675,

p. XVI. Springer (2016)
20. Lee, E., Shesha, S.: Introduction to Embedded Systems: A Cyberphysical Systems

Approach. 2nd edn (2015). LeeShesha.org
21. Papastavridis, J.: Analytical Mechanics: A Comprehensive Treatise on the Dynam-

ics of Constrained Systems, 2nd edn. World Scientific, Singapore (2014)
22. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex

Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14509-
4

23. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4419-0224-5

24. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Dover, Mineola
(2007)

25. Zemanian, A.: Distribution Theory and Transform Analysis: An Introduction to
Generalized Functions, with Applications. Dover, Mineola (2003)

https://doi.org/10.1007/978-3-642-39718-9_5
https://doi.org/10.1007/b97376
http://www.clearsy.com/
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf
http://leeseshia.org/
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-1-4419-0224-5


Refinement



Clarification of Ambiguity for the Simple
Authentication and Security Layer

Farah Al-Shareefi(B), Alexei Lisitsa, and Clare Dixon

Department of Computer Science, University of Liverpool,
Liverpool L69 3BX, UK

{F.M.A.Al-Shareefi,lisitsa,cldixon}@liverpool.ac.uk

Abstract. The Simple Authentication and Security Layer (SASL) is a
framework for enabling application protocols to support authentication,
integrity and confidentiality services. The SASL was originally specified
in RFC 2222, and later updated in RFC 4422, using natural language.
However, due to the richness of natural language this involves ambiguities
and imprecision. Whilst there is an Oracle implementation of SASL,
its documentation also contains informal descriptions and under-defined
specifications of the RFCs. This paper provides clarification of ambiguity
in SASL using Abstract State Machines (ASMs). This clarification is
based on two ASM essential notions: a ground model to capture the
intended SASL behavior in an understandable way, and a refinement
notion to accurately explicate the ambiguous parts of the behavior. We
also show some differences between RFCs and the description of the
Oracle implementation. We believe our work can serve as a basis for
further implementation and for formal analysis.

Keywords: Ambiguity · Simple Authentication and Security Layer
Abstract State Machines

1 Introduction

The Simple Authentication and Security Layer (SASL) is a framework that can
be used by application protocols to perform authentication, and to optionally
supplement it with what is called security layer services, including integrity and
confidentiality. SASL was firstly described in Requests for Comments (RFC)
2222 [14], and then in RFC 4422 update [13], using natural language. Unfortu-
nately, the RFCs, being stated in natural language that intrinsically has associ-
ated informality and imprecision, are sometimes ambiguous. Despite that, there
is an Oracle implementation of SASL [15], its documentation also includes tex-
tual explanations and some unclear specification of the RFCs. In addition, this
implementation involves hidden details about the functions which are called to
achieve specific tasks.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 189–203, 2018.
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To overcome the imprecision and ambiguity problems, formal methods can be
used as they are based on mathematical foundations [8]. Among these methods,
we choose the Abstract State Machine (ASM) method [11], since it can be used
to specify systems in a rigorous mathematical, understandable, and scalable
way [6].

In this paper, the ambiguities of the SASL textual explanations in the RFCs
and Oracle implementation documents, are analyzed formally using the ASM
method. This is achieved by implementing two strategies of the ASM method.
First, the ground model directly captures the informal SASL behavior in an
understandable and concise but precise enough manner. Second, the refine-
ment strategy allows us to precisely explicate and re-elaborate the under-defined
notions in the ground model. The refined specification is written in the exe-
cutable ASMETA Language (AsmetaL) [10], since it is close to the ASM math-
ematical concepts, and it directly permits us to test specification errors.

The main contributions of this paper are:

– clarifying the ambiguities of the SASL informal descriptions in RFCs and
Oracle implementation documents clearly in terms of ASMs;

– presenting a methodology for clarifying ambiguity that starts with the RFC
document to capture its informal description, via the ASM ground model,
then it explicates the potential description ambiguities depending on other
document sources by using ASM refinement;

– highlighting the main differences between RFCs and the Oracle documents.

The rest of this paper is organized as follows. Section 2 presents background
knowledge about the SASL framework and the ASM method. Section 3 describes
the ASM formal specification, and highlights how this specification elucidates
the main ambiguities of SASL. Section 4 discusses our results. Section 5 presents
some related work. Finally, Sect. 6 concludes the paper.

2 Background

In this section, we describe both the Simple Authentication and Security Layer
framework and the Abstract State Machine Method.

2.1 Simple Authentication and Security Layer

The Simple Authentication and Security Layer (SASL) was initially intro-
duced in RFC 2222 [14], and later updated in RFC 4422 [13], as a frame-
work for providing authentication support with an optional security layer ser-
vice, such as integrity or confidentiality, to connection-oriented protocols, via
substitutable mechanisms. Providing these services is achieved through using a
shared abstraction layer which has a structured interface between intended pro-
tocols and mechanisms. With this layer, any SASL supported protocol, such as
IMAP [18], SMTP [19], etc., can exploit any SASL supported mechanism, such
as PLAIN [20], DIGEST-MD5 [12], etc.
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Based on RFC 2222/4422 [13,14], the client and server of the SASL protocol
application launch a negotiation about the selection of a suitable mechanism,
then they negotiate the authentication. Basically, the client requests to connect
with the server using SASL. Then, the server replies with a list of supported
authentication mechanisms. Next, the client selects the best mechanism. After
that, the authentication is started by the client via sending an authentication
command, which involves the selected mechanism and optionally authentication
data, to the server. The authentication exchange continues until the authen-
tication succeeds, fails, or is aborted by the client or the server. During the
authentication exchange, when the selected mechanism supports the security
layer, the client and server negotiate the use of a security layer. If they both
agree about using it, then both sides must negotiate the maximum size for the
cipher text buffer, that each side is able to receive. The RFCs specification, how-
ever, leaves open a number of questions, in particular: how the server advertises
its mechanisms’ list, how the client selects the best mechanism, when the client
and server agree about using the security layer and how it can be used, and how
they negotiate the maximum cipher text buffer size. Some of these questions
relate to the ambiguity and missing details of the informal description for the
API routines in the Oracle implementation documentation [15].

According to the Oracle implementation [15], the application communicates
with the structured interface by calling a suitable API routine, which in turn
calls a mechanism plug-in interface. One of these routines is: the sasl client
start() which is called by the client to select the best mechanism depending on
the security properties. The main properties that restrict mechanism selection
are: the security policies, such as noplaintext, noactive, noanonymous,
etc., and the maximum Security Strength Factor (SSF) [15] for the client,
server, and mechanism. The SSF is an integer that denotes the security layer
strength. When it is zero, it indicates only authentication, if it is one, it means
both authentication and integrity, while if it is greater than one, it denotes
authentication, integrity, confidentiality, and at the same time the key length
for encryption. Also the server calls the sasl listmech() routine to obtain the
mechanisms’ list that satisfies the security policies.

2.2 Abstract State Machines

Abstract State Machines (ASMs) [11] were first introduced by Gurevich as a
versatile machine to model any algorithm at an appropriate level of abstrac-
tion. ASMs have been developed to a practical and mathematically well-founded
method for high-level system design and analysis [6]. The ASM method is con-
structed from three essential notions: ASMs, a ground model, and stepwise refine-
ment [6].

ASMs are transition systems which are based on abstract states, to model
the system’s structure, and on transition rules, to model the system’s dynamic
behavior. The ASM states are multi-sorted first-order structures, i.e, domains of
objects coming with functions and relations defined on them. The functions in
ASM states can be static, which are never updated, controlled, which are updated
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by the machine itself, or monitored, which are updated by the machine’s environ-
ment. ASM transition rules describe the modification of function interpretations
from one state to the subsequent one. The basic transition rule is a function
update: f( t1, ..., tn):=t. f is an arbitrary n-ary function and t1, ..., tn, t are first-
order terms, which are simultaneously updated to yield a new ASM state. There
are some rule constructors, such as: if then (conditional rule), par (parallel exe-
cution of the grouped rules), choose (non deterministic selection), and switch
case (extension of the conditional rule). ASMs can capture the formalization
of a procedural single-agent and distributed multiple agents interacting in a
synchronous and asynchronous way.

Fig. 1. Control state ASMs

There is a specific class of ASMs
called control state ASMs [6]. They can
be employed for describing various system
modes. Figure 1 shows a graphical repre-
sentation of control states and the form of
their transition rules.

Ground model ASMs are con-
ceptual models for capturing informal
requirements of a system in a precise, con-
cise, flexible, and understandable way. The ground model can be represented
graphically using control state ASMs. From a concise ground model, by step-
wise refinement, a more detailed model can be obtained, through changing
the states definition, or the flow of operations, or both of them.

Several projects have been developed around ASMs to make them executable,
such as CoreASM [1], the ASMETA1 [9] framework, etc. In this paper, we have
chosen the ASMETA framework, that includes integrated tools, in particular
the ASMETA Language (AsmetaL) and the ASMETA Simulator (AsmetaS) for
writing and executing ASM models [10], respectively. The AsmetaL supports
encoding of ASM models which is close to the ASM mathematical concepts.

3 The Formal SASL Specification

In this section, we show how the ASM method has been used to provide formal
specifications for SASL. The main aim is to clarify precisely: how the server
advertises the available mechanisms, how the client selects the best mechanism,
how the client determines the maximum size for the cipher buffer, and how
and when the security layer is negotiated. As the SASL framework has detailed
and complex behavior, we separate the SASL into three phases: the mechanism
negotiation phase, the authentication negotiation phase, and the security layer
negotiation phase. In each phase, we will present (if necessary) the ground model
for both client and server sides, that is depicted via the control state ASM,
then we will focus only on refining the rules to clarify ambiguities in the RFCs

1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/
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and Oracle implementation documentation2. Each refined rule is expressed in
AsmetaL. The mapping from the graphical notation of the control state ASM
to the AsmetaL notation is done according to the mapping shown in Fig. 1.

3.1 The Mechanism Negotiation Phase

Figure 2 shows the ground model at the client side for this phase. This figure is a
direct interpretation of RFC 2222/4422. The client starts this phase by sending
a request to ask the server to send its mechanisms’ list. Whenever this list is
received, the guard At least one mechanism in the list is supported checks if the
client allows any mechanism in the list. If so, the client selects an acceptable
mechanism from the server list and reaches the final state for this phase Sending
authentication request. Otherwise, the client will send an abort response to the
server, and waits for an abort reply from it. When the abort reply is received,
the client aborts this exchange, by entering the Abort state.

Fig. 2. Client side for mechanism selection phase - ground model

The server side for this phase is also based on RFC 2222/4422, see Fig. 3.

Fig. 3. Server side for mechanism selection phase - ground model

The ground model depicted in Fig. 3, schedules the main steps taken by
the server for this phase. Initially, the server keeps waiting at the Waiting for
mechanisms list request state until it receives a mechanism list request from the
client. When this request arrives, the server obtains the available mechanisms’
list to send it to the client. After sending this list, the server goes to the final
state for this phase, which is Waiting for authentication request.
2 All the rules for the refined model that is based on RFC 2222/4422 are available

online at https://doi.org/10.5281/zenodo.1204257, while for the refined model which
is based on the description of Oracle implementation documentation are available
at https://doi.org/10.5281/zenodo.1204242.

https://doi.org/10.5281/zenodo.1204257
https://doi.org/10.5281/zenodo.1204242
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It is not clear from Fig. 2, how the client chooses the desired mechanism. As
stated by RFC 4422 [13], determining the best mechanism is the client’s choice.
This is specified in the r selectmech rule shown in Code 1(a). In this Code,
the mechanism selection is performed in an interactive manner with the client
via the monitored function insertMechanism. The selected mechanism should
be any mechanism in the arrived mechanisms’ set, which is represented by the
arrivedMechList. An arbitrarily chosen mechanism is stored in selMech.

rule r s e l e c tmech=
i f conta in s ( arr ivedMechList , insertMechanism ) then

selMech := insertMechanism
endif

(a) The r selectmech rule according to RFC 4422

function mHasGreatestSSF ($m in Mechanisms , $c in Cl i en t )=
f o ra l l $x in arr ivedMechList with

( ( $x!=$m) and a l l i n ( p o l i c i e s ( $x ) , p o l i c i e s ( $c ) ) implies
s s f ($m)>=s s f ( $x ) )

rule r s e l e c tmech=
choose $m in arr ivedMechList with

a l l i n ( p o l i c i e s ($m) , p o l i c i e s ( s e l f ) ) and
mHasGreatestSSF ($m, s e l f )=true do

selMech :=$m

(b) The refined r selectmech rule according to Oracle implementation document

Code 1: The r selectmech rule

On the other hand, the explanation of the Oracle implementation documenta-
tion [15] states that the client selects the best mechanism, depending on the max-
imum mechanism SSF and client’s security policy. This can be re-elaborated by
refining the rule in Code 1(a) into the one shown in Code 1(b). In the refined rule,
we added further modelling vocabulary. Precisely, let the ssf($m) function be the
SSF value for each mechanism $m in the Mechanisms domain, and policies($m)
be the security policies set for each mechanism $m, while policies(self)
is the security policies’ set for client. The 0-ary function self is interpreted
by the client agent as itself. Each policies set can be one or more ele-
ments from the domain Policies={noplaintext, noanonymous, noactive,

mutualauth, nodictionary}. The mHasGreatestSSF function returns true if
the selected mechanism has the greatest SSF value. The refined rule picks the
best mechanism from the arrivedMechList, such that the security policies set
of the selected mechanism includes all the elements in the client’s set, and this
mechanism has SSF value, which is greater than all the SSF values of the mech-
anisms that their sets include the client’s policies set.

On the server side in Fig. 3, getting the available mechanisms’ list needs elu-
cidation. As indicated by RFC 4422 [13], the server just advertises the available
mechanisms’ list. This is specified in the r getmechs rule shown in Code 2(a).
In this code, let the mList($c, self) be a set of the advertised mechanisms
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which will be sent to the $c client. The saslmechs(self) set contains one or
more SASL mechanisms for server use. The server, in the r getmechs rule, will
simply make a copy of all the elements in the saslmechs(self) set and pass it
to the mList($c, self), which is initially empty set, to represent the advertised
mechanisms’ list.

rule r getmechs ( $c in Cl i en t )=
mList ( $c , s e l f ) := sas lmechs ( s e l f )

(a) The r getmechs rule according to RFC 4422

rule r getmechs ( $c in Cl i en t )=
l et ( $ i =0) in

while $i<s i z e ( sas lmechs ( s e l f ) ) do
seq
let ($m=at ( asSequence ( sas lmechs ( s e l f ) ) , i t on ( $ i ) ) ) in

i f ( exist $p in p o l i c i e s ( s e l f ) with
conta in s ( p o l i c i e s ($m) , $p )=true ) then

mList ( $c , s e l f ) := inc lud ing (mList ( $c , s e l f ) ,$m)
endif

endlet
$ i := $ i+1

endseq
endlet

(b) The refined r getmechs rule according to Oracle implementation document

Code 2: The r getmechs rule

Obtaining the available mechanisms’ list is described in the Oracle imple-
mentation documentation [15], as “The server can call sasl listmech() to get a
list of the available SASL mechanisms that satisfy the security policy”. In this
quoted statement, it is not obvious whether there is a specific policy for the SASL
mechanisms and what is meant to satisfy this policy. In the Java security guide
provided by Oracle [16], it says that there is a particular policy set for each SASL
mechanism, such as the {nonanonymous}, {noplaintext, noactive, nod-
ictionary}, and {nonanonymous, noplaintext} for the PLAIN, EXTER-
NAL, and DIGEST-MD5 mechanisms, respectively. As an attempt to under-
stand the exact meaning of ‘satisfy the security policy’, we analyse the server’s
reply (sending the available mechanisms’ list to the client) in some SASL mecha-
nism examples. For instance, in the DIGEST-MD5 mechanism example [12], the
server sends the {PLAIN, DIGEST-MD5} list. We can see that these two mech-
anisms share the nonanonymous policy. This means that the server adopts
the nonanonymous policy and it sends the mechanisms which satisfy this pol-
icy. Similarly, in the EXTERNAL mechanism example [13], the server sends
the {DIGEST-MD5, EXTERNAL}. Again, these mechanisms in the list share
the noplaintext policy, which is supported by the server. Accordingly, the
r getmechs rule in Code 2(a) can be refined into the rule in Code 2(b).

In the refined r getmechs rule, the server gets a mechanism from the
saslmechs for the server use, which satisfies the following condition: the policy



196 F. Al-Shareefi et al.

set for this mechanism contains a policy of the server’s policies set. In other
words, the policy set for every mechanism in the advertised mechanisms’ list
supports at least one server’s policy.

3.2 The Authentication Negotiation Phase

This phase is the longest phase in SASL. As a result, we divide the ground model
for both client and server into two parts: one for achieving an initial step in this
phase, and one for performing the later step(s). The number of the later steps
is determined by the selected mechanism. Due to space restrictions we do not
provide all of these constructed models3. The ground model for the client agent
of the initial and later step(s) includes (if necessary) the Get response rule to
get the required authentication data to the server. While, the ground model for
the server agent of the initial and later step(s) includes (if necessary) the Get
challenge rule to get the required authentication data to the client.

One underspecified aspect of this phase, is the negotiation about using the
security layer and the maximum cipher buffer size, which are involved in the Get
response and Get challenge rules on the client and server sides, respectively.
In RFC 4422 [13], it was stated that when the selected mechanism supports a
security layer, then a negotiation about using this layer must be carried out,
but how this negotiation takes place is not defined. However RFC 2222 [14]
defines this by stating that the negotiation includes exchanging a bit-mask (1:
no security layer, 2: integrity, and 4: privacy), which corresponds to a security
layer level. This bit-mask defines the unstated privacy service and ignores the
confidentiality service.

On the other hand, in the explanation of the Oracle implementation docu-
mentation [15], the SSF value (0: authentication, 1: authentication and integrity,
and >1: authentication, integrity, confidentiality and the key length), is used
instead of a bit-mask. However, it is not clear how the client and server agree
about using a security layer.

The Java security guide provided by Oracle [16] states that the selected
mechanism, when its SSF value is greater than or equal to 1, tells the server to
send its supported Quality of Protection (QOP) list, which includes one or
more items from the following: auth (authentication), auth-int (authentication
and integrity), and auth-conf (authentication, integrity, and confidentiality).
Later, the client selects a protection value from this list according to its SSF
value, and sends it to the server. The server verifies that the client’s protection
value is within its list, to save the session SSF value which is equivalent to the
client’s protection value. The saved SSF value represents the agreed security
layer service. However, in this guide, there is insufficient detail about how the
client and server determine the maximum buffer size when they agree about
using the confidentiality service.

3 The full ground models are available online at https://doi.org/10.5281/zenodo.
1200216.

https://doi.org/10.5281/zenodo.1200216
https://doi.org/10.5281/zenodo.1200216


Clarification of Ambiguity for the SASL 197

In the DIGEST-MD5 SASL mechanism example [12], it was stated that when
the server sends its supported maximum buffer size (if desired), the client will
check the availability of buffer size value in the received challenge. If it exists, the
client will determine that the buffer size for this session is equal to subtracting
16 bytes from the minimum size of the received one and the client’s supported
one. If it is not available, the client will determine that the buffer size is equal
to the default value 65536. Following this description, we present in Code 3 the
specification of how the client determines the maximum buffer size.

i f conta in s ( rece ivCh ( s e l f ) , ”maxbuf ”)=true then
choose $max in Maxbuf with
eq ( at ( rece ivCh ( s e l f ) , i t on ( indexOf ( rece ivCh ( s e l f ) , ”maxbuf ”)+1) ) ,
t oS t r i ng ($max) ) do

i f $max<maxBuf ( s e l f ) then
maxBufDetermined:=$max−16

else
maxBufDetermined:=maxBuf ( s e l f )−16

endif
e lse

maxBufDetermined :=65520
endif

Code 3: Specifying the maximum buffer size in the client side

In Code 3, the receivCh(self) is a sequence of String that represents the
received challenge from the server, the integer domain Maxbuf contains the fol-
lowing possible values for the buffer’s size {65535, 131071, 262143, 16777215},
and the maxBuf(self) is the client’s maximum buffer size. First of all, the client
checks if the receivCh(self) contains the server’s maximum buffer size, to cal-
culate the buffer size, or to set it to the default value. At the calculation, the client
chooses an integer value from the Maxbuf domain, since the receivCh(self)
is a sequence of String, which is equal to the string value contained in the
receivCh(self). Then the chosen value is compared with the client’s buffer
size to determine the buffer size, which is stored in maxBufDetermined.

3.3 The Security Layer Negotiation Phase

This phase is an optional phase. Performing this phase depends on the nego-
tiation in the previous phase. This negotiation includes exchanging a bit-mask
according to RFC 2222 [14], while it includes exchanging SSF value according to
the Oracle documentation [15]. As we stated previously that the bit-mask does
not define the confidentiality service, we specify this phase relying on the Oracle
implementation documentation [15], as well as the RFC 4422 [13]. Furthermore,
the specification for integrity and confidentiality protected messages are based
on the RFC 2831 for the DIGEST-MD5 SASL mechanism [12], because the RFC
2222/4422 and the Oracle implementation documentation do not illustrate this
specification. We annotate the main information for specifying this phase in
Fig. 4.



198 F. Al-Shareefi et al.

Fig. 4. Client side for security layer negotiation phase - ground model

Figure 4 illustrates the ASM ground model for negotiating the security layer
service on the client side. The client starts this phase by checking the SSF value,
that was agreed by both client and server in the authentication phase. If this
value is zero, then the client will reach the final state Successful. This state indi-
cates that the client has been authenticated successfully, and there is no security
layer. If the SSF value is one, this means that the subsequent protocol messages
must be integrity protected. Therefore, the flow goes to execute the Get client
integrity protected message, to obtain a test message that appends with the com-
puted Message Authentication Code (MAC) for the message sequence number
and the message itself [12]. While if the SSF value is greater than one, then the
following protocol messages must be confidentiality protected (encrypted). As
a result, the client executes the Get client confidentiality protected message, to
encrypt a test message together with its computed MAC [12]. The encryption
is done according to the selected cipher, which is one of the following: rc4-40
(40 bit key), rc4-56 (56 bit key), rc4 (128 bit key), and aes-ctr (128 bit key).
Later, the client sends the protected message to the server, and changes its state
to Waiting for server test message. Whenever the client receives a protected
message from the server, it will check the agreed SSF value. When this value is
greater than one, the client will perform confidentiality verification (decrypt the
message, compute the MAC and compare it with the received one). While, if the
SSF value is one, the client will perform integrity verification (compute the MAC
and compare it with the received one). In case that the verification succeeds, the
client reaches the final state Continue, which means the client can continue the
interactions after SASL. Whereas, the client terminates the connection with the
server and changes its state to Close, when the verification fails.

As the ground model in Fig. 4, clearly shows how the client uses a security
layer service, and how the SSF value guides the client to determine whether a
security layer has been negotiated, we do not show the refinement for this model.
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Furthermore, we do not present the server ground model for this phase, since it
is similar to the client one, except that the server keeps waiting for a protected
message from the client before sending its message.

As in this phase we need to encrypt and decrypt the message with regards to
a suitable cipher, we specify the encryption and decryption actions in an abstract
manner based on the ASM features, see Code 4.

dynamic abstract domain CipherText
controlled key : CipherText −> St r ing
controlled plainMsg : CipherText −> Seq ( St r ing )
controlled pla inText : Seq ( St r ing )
controlled c iphe r : CipherText
controlled method : CipherText −> St r ing
rule r enc rypt ( $msg in Seq ( St r ing ) , $key in Str ing , $method in St r ing )=

choose $e in CipherText with plainMsg ( $e )=$msg do
c iphe r :=$e

ifnone
extend CipherText with $ciph do
par

plainMsg ( $ciph ) :=$msg
key ( $ciph ) :=$key
method ( $ciph ) :=$method
c iphe r :=$ciph

endpar
rule r dec rypt ( $c ipher in CipherText , $key in Str ing , $method in

St r ing )=
choose $c iphtext in CipherText with ( $c iphtext=$c ipher ) and

( key ( $c iphtext )=$key ) and (method ( $c iphtext )=$method ) do
pla inText :=plainMsg ( $c iphtext )

ifnone
pla inText :=””

Code 4: Abstract specification for encryption and decryption

In Code 4, first, we introduce the specification signature. The CipherText
is an infinite domain for the cyphertext. The unary function key represents the
key for a given CipherText element. The nullary function name plainMsg is a
sequence of Strings for the plain text. The cipher is an element of CipherText
domain. The method is a cipher method that has been used to encrypt the plain
message.

After the signature we specify two rules: the r encrypt rule for converting
the presented plain message into an encrypted one using the determined key and
method, and the r decrypt rule which transforms the encrypted message into
a plain text one using a specific key and method. The r encrypt rule, firstly,
chooses an element in the CipherText domain, such that the plain text for this
element is equal to the given message. This element represents the cyphertext for
the message. When choosing an element returns nothing (the presented message
has not been encrypted previously), this rule will generate a new cyphertext,
given its plain text, key, and method, by extending the CipherText domain.
While r decrypt rule choose a cyphertext item from the CipherText domain,
in such a way that this item equals to the given cyphertext, to return the plain
text of this item. If there is no such item, this rule will return the empty string.
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4 Results and Discussion

The main aim of this paper is to provide clarification of ambiguities in SASL
using ASMs. Our methodology starts with reflecting the textual description in
RFCs, using ground model notion, then it re-elaborates this description using
other document sources by exploiting the refinement notion. Table 1 outlines
the main ambiguities that have been investigated, and the source documents for
both the ambiguity itself and its formal clarified specification.

From Table 1, we can see the following:

(1) selection of the best mechanism is ambiguous in RFC 4422 [13], as it just
states that the client selects the best one. We try to elucidate this using the
description of the Oracle implementation [15], which states that the client
selects the best mechanism with the maximum SSF, and according to its
security policy;

(2) advertising the available mechanisms’ list is not clear in both RFC 4422,
which only states that the server advertises the list, and the Oracle imple-
mentation, which states that the server advertises the mechanisms that sat-
isfy the security policy. We convert the informal description of Oracle into
a formal one, based on analysing the server reply in the document sources
shown in Table 1. We conclude that satisfying the security policy means
at least one server’s policy must be supported by every mechanism in the
advertised list;

(3) determining the maximum buffer size is under-defined in RFC 4422 [13] and
the Oracle implementation. For explicating that, we use the explanation that
is provided by the DIGEST-MD5 SASL mechanism [12];

(4) using the security layer in RFC 2222 needs more explication, as it states
that using this layer relates to the agreed bit-mask, which does not consider
the confidentiality service. Therefore, we rely on the Oracle implementation,
that uses the SSF instead of a bit-mask, to show when this layer is used.
Also, we rely on the DIGEST-MD5 SASL mechanism [12], to show how the
client and server negotiate this layer.

This paper shows how the ASM formalism is valuable in clarifying the ambiguity,
especially with its ground model and the refinement notions. The ground model
can first capture the informal specification in understandable way and at the
desired level of details. Then, it can be evolved via stepwise refinement into a
precise and enhanced mathematical specification.

As we construct a formal specification and provide links between it and infor-
mal or underdefined resources, we could prove properties of the development
specification using the ASMETA framework in a similar way to [2].

We present an executable AsmetaL specification for private key encryption
and decryption, in an abstract style.

In our ASM specification, the timing aspects for SASL are not considered,
since neither of RFC 2222/4422 and Oracle implementation documents give
specification for that.
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Table 1. The source document for each ambiguity and its formal clarified specification

No. The ambiguity The document
source for
ambiguity

The clarified
specification

The document source
for clarification

1 The client selects
the best
mechanism

RFC 4422 [13] Code 1 (b) Oracle implementation
document [15]

2 The server
advertises the
available
mechanisms’ list

RFC 4422 [13],
and Oracle
implementation
document [15]

Code 2 (b) DIGEST-MD5 SASL
mechanism [12], Oracle
implementation
document [15], and its
Java security guide [16]

3 Determining the
maximum cipher
text buffer size

RFC 4422 [13],
and Oracle
implementation
document [15]

Code 3 DIGEST-MD5 SASL
mechanism [12]

4 How and when
the security layer
is negotiated

RFC 2222 [14] Ground model
in Fig. 4

Oracle implementation
document [15],
DIGEST-MD5 SASL
mechanism [12], and
RFC 4422 [13]

5 Related Work

Our work elucidates ambiguities in the informal description for SASL, based on
the ASM method. Therefore, we will now discuss other work related to either
elucidating ambiguity or to the ASM method.

In [4], the ASM formalism is used to get a formal model of the Kerberos
Authentication System which is based on the Needham and Schroeder authen-
tication protocol. The formal model is used as a basis to locate the minimum
assumptions to guarantee the correctness of the system and to analyse its secu-
rity weaknesses.

In [7], the ASM ground models of a content adaptation system employed
for the interactions between different client devices and the Cloud, is presented.
This work is extended in [3], by refining the initial model into a more detailed
one, through focusing on the interactions between the client and the middleware
server to retrieve information relating to the client’s device. Furthermore, the
modelling process has been supported by validation and verification activities
which are integrated within the ASMETA framework.

In [17], abstract encryption and decryption is specified using the language
AsmL. This specification is based on the object-oriented features and constructs,
and thus it diverts from the theoretical model of ASMs.

The researchers in [5] use Higher-order logic (HOL4) to develop a rigor-
ous post-hoc specification for TCP, UDP, and the Sockets API, that reflects
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the behavior of different implementations, include: FreeBSD 4.6, Linux 2.4.20-8,
and Windows XP SP1. They validate their specification against several thou-
sand traces captured from these implementations, to test whether they meet
this specification. This paper is notable in the context of our work as its authors
are motivated by increasing clarity and precision over ambiguous informal spec-
ifications of the RFC, that may result in inconsistent implementations. In this
paper, we do not consider validating that the implementation meets the spec-
ification. We focus on clarifying ambiguities in the RFC description, and on
elucidating uncertainty in the textual explanation of the implementation. Fur-
thermore, our specification is expressed using the ASM method, because it is
accessible, as it requires a minimum of notational coding, unlike HOL4, which
requires extensively annotating the mathematical definitions side-by-side with
informal specification [5].

6 Conclusion and Future Work

We have provided the ASM specifications that elucidate ambiguities in the SASL
framework. We have focused on the ambiguous parts in RFC 2222/4422 and Ora-
cle implementation documents, including mechanism selection, providing mech-
anisms’ list, defining when and how the security layer can be used, and deter-
mining the maximum cipher buffer size.

We have showed how the comprehensible specification has been achieved
based on two ASM notions: a ground model and stepwise refinement. The ground
model enabled us to reflect the desired behavior, which is explained in RFCs, in
an understandable way. While the stepwise refinement helped us to explicate the
ambiguous part of the desired behavior in an accurate way, using other document
sources to inform us.

We convert the informal specification into formal one by expressing it in
the ASM formalism, which is mathematically well-defined, precise, and easily
understood.

To further our research we are planning to consider the security of the SASL,
to show whether the SASL specification is secure. We intend to use a suitable
security analysis technique to elicit security requirements for the SASL and to
verify them at the verification level.

Acknowledgments. The third author was partially supported by the EPSRC funded
RAI Hub FAIR-SPACE (EP/R026092/1).
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Flavio Ferrarotti1, Senén González1(B), Klaus-Dieter Schewe2,
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Abstract. Graph algorithms that involve complex conditions on sub-
graphs can be specified much easier, if the specification allows expressions
in higher-order logic to be used. In this paper an extension of Abstract
State Machines by such expressions is introduced and its usefulness is
demonstrated by examples of computations on graphs, such as graph
factoring and checking self-similarity. In a näıve way these high-level
specifications can be refined using submachines for the evaluation of the
higher-order expressions. We show that refinements can be obtained in
an automatic way for well-defined fragments of higher-order logic that
collapse to second-order, by means of which the näıve refinement is only
necessary for second-order logic expressions.

1 Introduction

There are many examples of graph computation problems that involve com-
plex conditions such as graph colouring [3], topological subgraph discovery [14],
recognition of hypercube graphs [13], and many others (see also [6,11]).

Such graph algorithms are difficult to specify in common rigorous methods
such as Abstract State Machines (ASMs) [7], B [1], Event-B [2] or TLA+ [19],
because the algorithms require the definition of characterising conditions for
particular subgraphs that lead to expressions beyond first-order logic, which are
supported in TLA+ as well as in provers such as Coq and Isabelle, but not in
B, Event-B or ASMs, where the logical expressions supported by the methods
are intrinsically first-order (for good reasons). Therefore, for the sake of easily
comprehensible high-level specifications it is advisable to extend rigorous meth-
ods to support also higher-order logic (HOL) and to investigate strategies for
refinement to first-order. In this paper we propose such an extension for ASMs,

The research reported in this paper was partially supported by the Austrian Sci-
ence Fund (FWF) [I2420-N31] for the project: Higher-Order Logics and Struc-
tures.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 204–218, 2018.
https://doi.org/10.1007/978-3-319-91271-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91271-4_14&domain=pdf


Systematic Refinement of Abstract State Machines with Higher-Order Logic 205

which we present in Sect. 2. In Sect. 3 we further contribute a demonstration of
the usefulness of such an extension by graph computation examples.

An analogy is the integration of weak monadic second-order logic and sophis-
ticated tree background structures [5] into DB-ASMs defining XML machines
[24]. Due to the behavioural theory of database transformations [23] this exten-
sion does not increase expressiveness. That is, the problems of XML computa-
tions can also be solved without the extension, so there must exist refinements
to lower-level DB-ASM specifications that do not use second-order logic.

The same applies to the HOL-extended ASMs. A näıve refinement strategy
would be to simply define ASMs that evaluate HOL sentences. However, based
on results in descriptive complexity theory quite often HOL sentences collapse
at least to second-order. Examples are the characterisation of hypercube graphs,
which can be easily expressed in third-order logic, but as the problem is in
the complexity class NP, an equivalent formula in existential second-order logic
exists [9]. Another example is the formula-value query [4]. A general treatment
of query computation, i.e. evaluation of sentences, was presented in [16], the
capture of fixed-point queries in HOL was handled in [22].

Another contribution in this paper are conditions, under which HOL sen-
tences collapse naturally to second-order following our recent research in [12].
We show that in these cases we can obtain an automatic refinement of the HOL-
extended ASM to a SOL-extended ASM, to which the näıve refinement strategy
consisting on non-deterministically guessing the quantified relation variables can
be applied. We describe this refinement strategy in Sect. 4. Note that for well
known cases of SOL sentences the evaluation can be done quite efficiently, but
this is not within the scope of this paper. We conclude the paper with a brief
summary and outlook in Sect. 5.

2 Abstract State Machines with Higher-Order Logic

We assume familiarity with the essential concepts of Abstract State Machines
(ASMs) as defined in [7]. At its core an ASM consists of a signature Σ and a
rule r. A signature is a finite set of function symbols f , each associated with an
arity ar(f). For a fixed universe U (aka as base set) we consider structures S,
i.e. a function symbol f ∈ Σ of arity n is interpreted by a function fS : Un → U .
A state is such a structure.

Terms over Σ are built in the usual way, i.e. variables x drawn from a set V
of variables are terms, and for terms t1, . . . , tn and a function symbol f ∈ Σ of
arity n also f(t1, . . . , tn) is a term. For convenience we allow all values v ∈ U
to be used as constants, i.e. function symbols of arity 0, with vS() = v for all
states S. For simplicity we always write simply v instad of v(). Terms t are
interpreted in a state S by a value valS(t) subject to a variable assignment
σ : V → U in the usual way, i.e. valS(x) = σ(x) and valS(f(t1, . . . , tn)) =
fS(valS(t1), . . . , valS(tn)). A location � is composed of a function symbol f and
a tuple (v1, . . . , vn) of values in U , where n is the arity of f . The evaluation of
� in state S is valS(�) = fS(v1, . . . , vn) ∈ U . ASM rules over Σ are composed in
the usual way using
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assignments. f(t1, . . . , tarf
) := t0 (with terms ti over Σ),

branching. if ϕ then r+ else r− endif,
parallel composition. forall x with ϕ(x) do r(x) enddo,
bounded parallel composition. r1 . . . rn, and
choice. choose x with ϕ(x) do r(x) enddo.

with variables x and formulae ϕ and ϕ(s), respectively, i.e. terms that evaluate
to true or false. An update is a pair (�, v) composed of a location � and a value
v ∈ U . As defined in detail in [7] for each state S a rule r (without free variables)
yields an update set Δ(S), i.e. a (finite) set of updates1. If this update set is
consistent, i.e. there are no two updates (�, v1), (�, v2) ∈ Δ(S) with v1 �= v2, then
in consequence it determines the succesor state S′ = S +Δ(S) with valS′(�) = v
for (�, v) ∈ Δ(S) and valS′(�′) = valS(�′) for all other locations �′.

This standard definition of ASMs tacitly exploits a background structure [5],
i.e. a set of domains that are either ground domains {Di}i∈I or constructed from
these by domain constructors, plus function symbols that denote operators on
these domains. All values in these domains are used as constants and all function
symbols in the background are used in the definition of terms with the difference
that their interpretation is fixed and does not depend on the state. In this way
the universe, the set of states, the set of terms and the ASM rules are extended
by a fixed background structure, but updates still only affect locations with a
function symbol in Σ.

The minimum requirement for ASMs that permit unbounded parallelism is
that the background structure captures truth values, operations on truth val-
ues, constructors for records and multisets and the corresponding operators (for
details see [10]). As in [24], where tree structures, a hedge algebra and weak
monadic second-order logic was defined as part of the background structure, we
define next an appropriate extension of this minimum background structure to
capture HOL constructs in ASMs. For this we need to build finite relations over
U in a hereditarily finite way, and extend the set of formulae to capture HOL.

The set Rn(U) of n-ary relations over U is defined as set of all finite sub-
sets of Un. Then R(U) =

⋃
n∈N

Rn(U) defines the set of relations of order 1,
Rk(U) = R(Rk−1(U)) defines the set of relations of order k, and

⋃
k∈N

Rk(U)
defines all higher-order relations over U . A more general definition of higher-
order relations can be found in [11,20] among others. Such a definition does not
alter the expressive power of the higher-order logics [16] and would unnecessarily
complicate our presentation.

Then assume that the set of variables is partitioned as V = {Vi | i ∈ N},
where Vi is the set of variables of order i. So far, in the definitions above we
only exploited V0. Accordingly, terms of order i can be variables x ∈ Vi−1, or
they can have the form f(t1, . . . , tn) or X(t1, . . . , tn) with terms tj of order i− 1
and either a function symbol f of arity n or a variable X ∈ Vi. The formulae of
HOLi are then defined in the standard way:

1 In the case of non-determinsm using the choice rule we actually obtain a set of
update sets.
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(i) Every well-formed formula in HOLi−1 is a well-formed formula of HOLi;
(ii) X(t1, . . . , tn) with terms tj of order i − 1 and a variable X ∈ Vi is a well-

formed formula of HOLi;
(iii) If ϕ and ψ are well-formed formulae of HOLi, then also ¬ϕ, ϕ∧ψ and ϕ∨ψ

are well-formed formula of HOLi;
(iv) If ϕ is a well-formed formula of HOLi and X ∈ Vi, then ∃X(ϕ) and ∀X(ϕ)

are well-formed formula of HOLi.

We omit the standard interpretation of HOL formulae. In a HOL-extended
ASM the conditions ϕ and ϕ(x), respectively, in branching, parallel composition
and choice rules can be HOL formulae, and the variables used in such rules can
be higher-order variables.

3 Specification of Graph Algorithms with HOL-Extended
ASMs

In this section we show the usefulness of HOL-extended ASMs for the high
level formal specification of graph algorithms. We focus first in writing an HOL-
extended ASM that decides whether a graph is self-similar. Afterwards, we con-
sider the intricate problem of graph factoring. In this second case, we provide
a detailed third-order sentence which decides this problem over finite relational
structures. Due to space restrictions, we leave as an easy exercise for the reader
the construction of an equivalent HOL-extended ASM.

In the examples, we make use of some additional notation. Tuples of the form
〈r1, . . . , rs〉, where ri ≥ 0 for i = 1, . . . , s, denote types of third-order variables.
Upper case calligraphic letters such as V denote the actual third-order variables.
A third-order variable Vτ of type τ = 〈r1, . . . , rs〉 is a third-order variable which
range over sets of s-tuples, where each element in position 1 ≤ i ≤ s of a given
s-tuple is either a relation of arity ri if ri > 0 or an atom if ri = 0.

3.1 Self Similarity of Graphs

Graphs are a powerful tool to study properties of theoretical and real life complex
networks. A prime example is that of self-similarity of complex networks [25]
(aka scale invariance) which has practical applications in diverse areas such as
the world-wide web [8], social networks [15] and biological networks [21].

Given a network represented as a finite graph G, it is relevant to determine
whether G can be built starting from some graph pattern Gb by recursively
replacing nodes in the pattern by new, “smaller scale”, copies of Gb. If this holds,
then we say that G is self-similar. Examples of self-similar graphs are shown in
Fig. 1. Note that they are constructed using a triangle as graph pattern.

Generalizing our example, we say that a graph G = (V,E) is self-similar
w.r.t. a graph pattern Gp = (Vp, Ep) of size k, if there is a sequence of graphs
G0, G1, . . . , Gn such that G0 is isomorphic to Gp, Gn is isomorphic to G and, for
every pair (Gi, Gi+1) of consecutive graphs in the sequence, there is a partition
{P1, . . . , Pk} of the set of nodes of Gi+1 which satisfies the following conditions:
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1. For every j = 1, . . . , k, the sub-graph induced by Pj in Gi+1 is isomorphic to
Gi.

2. There is a graph Gt isomorphic to Gp with set of nodes Vt = {a1, . . . , ak} for
some a1 ∈ P1, . . . , ak ∈ Pk and set of edges

Et = {(ai, aj) | there is an edge (x, y) of Gi+1 such that Pi(x) and Pj(y).}.

3. For very 1 ≤ i < j ≤ k, the closed neighborhoods NGi+1 [Pi] and NGi+1 [Pj ] of
Pi and Pj in Gi+1, respectively, are isomorphic.

Fig. 1. Self-similar graphs.

We build a HOL-extended ASM M of signature Σ={V,E, Vp, Ep,Accepts , k}
which, given a graph pattern of a fixed size, decides the self-similarity problem.
V, Vb are unary and E,Ep binary static relation symbols. k is a constant symbol
and accept a nullary function symbol. In every initial state S of M , we have
that (V,E) and (Vp, Ep) are interpreted as the node and edge relations of the
simple graphs G and Gp, respectively. Further, the set of nodes interpreting Vp

has cardinality k. The main rule of M is as follows:

choose V E with αlinear (V, E) do
if αfirst(V, E , Vp, Ep) ∧ αlast(V, E , V, E) ∧ ϕ(V, E) then

Accept := True
else

Accept := False
endif

enddo
where:

– V and E are third-order variables of types 〈1, 2〉 and 〈1, 2, 1, 2〉, respectively,



Systematic Refinement of Abstract State Machines with Higher-Order Logic 209

– αlinear (V, E) is a third-order logic formula which states that V is a set of
simple graphs and that E is a third-order relation which defines a linear order
of V (i.e., (V, E) is third-order linear graph whose nodes are simple graphs),

– αfirst(V, E , Vp, Ep) states that the first graph in (V, E) is isomorphic to Gp,
– αlast(V, E , V, E) states that the last graph in (V, E) is isomorphic to G, and
– ϕ(V, E) states that for every pair (Gi, Gi+1) of consecutive graphs in (V, E),

there is a partition {P1, . . . , Pk} of the set of nodes of Gi+1 which satisfies
conditions 1–3 above.

The formulae αlinear , αfirst , αlast and ϕ are described below. To simplify the
presentation, we frequently abuse the notation writing Gi instead of (Vi, Ei),
where Vi is a unary relation variable and Ei is a binary relation variable. For
instance, we write ∀Gi(V(Gi) → ∀xy(Ei(x, y) → Vi(x) ∧ Vi(y))) instead of the
wff ∀Vi∀Ei(V(Vi, Ei) → ∀xy(Ei(x, y) → Vi(x) ∧ Vi(y))). Sometimes we further
abuse the notation writing for instance ∀Gi(V(Gi) → Ei ⊆ Vi × Vi) instead
of the previous formula, G = G′ instead of ∀x∀y(V (x) ↔ V ′(x) ∧ E(x, y) ↔
E′(x, y)), and G ∼= G′ instead of the formula stating that (V,E) and (V ′, E′)
are isomorphic graphs. We omit this last formula since it is already well-known
(see for instance [13]).

– αlinear (V, E)≡ ∃O
(
O ⊆ V × V ∧ ∀G

(¬O(G,G)
) ∧

∀GiGj

(
V(Gi) ∧ V(Gj) → (O(Gi, Gj) ∨ O(Gj , Gi) ∨ Gi = Gj

)) ∧
∀GiGj

(
¬(O(Gi, Gj) ∧ O(Gj , Gi)

)) ∧
∀GiGjGz

(
O(Gi, Gj) ∧ O(Gj , Gz)→O(Gi, Gz)

)
∧

∀GiGj

(
E(Gi, Gj) ↔ (O(Gi, Gj) ∧ ∀G

(¬(O(Gi, G) ∧ O(G,Gj))
))))

– αfirst(V, E , Vp, Ep) ≡ ∃G′
(
V(G′) ∧ ∀G′′(V(G′′) → ¬E(G′′, G′)

) ∧ G′ ∼= Gp

)

– αlast(V, E , V, E) ≡ ∃G′
(
V(G′) ∧ ∀G′′(V(G′′) → ¬E(G′, G′′)

) ∧ G′ ∼= G
)

– ϕ(V, E) ≡ ∀GiGi+1

(

V(Gi) ∧ V(Gi+1) ∧ E(Gi, Gi+1) →

∃P1 . . . Pk

(
Vi+1=

k⋃

l=1

Pl ∧ ∧

1≤l<m≤k

Pl∩Pm=∅∧

ψ1(P1, . . . , Pk, Gi, Gi+1) ∧ ψ2(P1, . . . , Pk, Gi+1) ∧ ψ3(P1, . . . , Pk, Gi+1)
))

where the formulae ψ1, ψ2 and ψ3 express conditions 1–3 above, respectively.

• ψ1(P1, . . . , Pk, Gi, Gi+1) ≡ ∃GP1 · · · ∃GPk

( k∧

l=1

Pl = VPl
∧

∀xy
(
EPl

(x, y) ↔ (Ei+1(x, y) ∧ VPl
(x) ∧ VPl

(y))
) ∧ GPl

∼= Gi

)
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• ψ2(P1, . . . , Pk, Gi+1)≡ ∃Gt∃x1 . . . xk

(

P1(x1) ∧ · · · ∧ Pk(xk) ∧

Vt = {x1, . . . , xk} ∧ ∀xy
(
Et(x, y) ↔ ∃x′y′(Ei+1(x′, y′) ∧

k∧

l=1

Pl(x) ↔ Pl(x′) ∧
k∧

l=1

Pl(y) ↔ Pl(y′)
)) ∧ Gt

∼= Gp

)

• ψ3(P1, . . . , Pk, Gi+1) ≡ ∀Ga∀Gb

((( l∨

l=1

Va=Pl ∪ {y|∃xPl(x)∧Ei+1(x, y)})

∧( l∨

l=1

Vb=Pl ∪{y|∃xPl(x)∧Ei+1(x, y)})∧∀xy
(
Ea(x, y)↔(Ei+1(x, y)∧Va(x)∧

Va(y))
) ∧ ∀xy

(
Eb(x, y)↔(Ei+1(x, y) ∧ Vb(x) ∧ Vb(y))

))→Ga
∼= Gb

)

Note that r is an accepting run of our HOL-extended machine M on an initial
state S with input graph G of size n, only if r has length logk n.

We next refine M into a standard ASM M ′ which does not make use of
higher-order expressions. The signature of M ′ extends the signature Σ of M
with the nullary function Mode and the disjoint set of dynamic relation sym-
bols Σaux = {P1, . . . , Pk, VP1 , . . . , VPk

, EP1 , . . . , EPk
, Vt, Et, Vi, Ei, Vi+1, Ei+1}.

M ′ roughly works by unfolding the “third-order” choose of M into several steps.
Instead of guessing a third-order linear digraph, M ′ starts with the pattern graph
Gp and tries to reach G by non-deterministically guessing a path.

if Mode = 0 then
Accept := False Mode := 1
forall x ∈ Vp do Vi(x) := True enddo
forall (x, y) ∈ Ep do Ei(x, y) := True enddo endif

if Mode = 1 then GuessRel Mode := 2 endif
if Mode = 2 ∧ ψ′

1 ∧ ψ′
2 ∧ ψ′

3 then
if ∀xy(Vi+1(x) ↔ V (x) ∧ Ei+1(x, y) ↔ E(x, y)) then Accept := True
else Mode := 1

forall x ∈ Vi+1 do Vi(x) := Vi+1(x) enddo
forall (x, y) ∈ Ei+1 do Ei(x, y) := Ei+1(x, y) enddo endif endif

where ψ′
1 and ψ′

2 are obtained by simply deleting the second-order quantifica-
tion from ψ and ψ2, respectively, ψ′

3 is the formula equivalent to ψ3 obtained
by replacing the second-order universal quantification by a conjunction with k
first-order expressions (which is possible since these quantifiers just range over
the set of closed neighborhoods of P1, . . . , Pk in Gi+1), and GuessRel non-
deterministically assign a relation to each symbol in Σaux (in exactly the same
way as GuessRelationS does for S1, . . . , Sl in Definition 4.3).

3.2 Graph Factoring

Given two connected and loop-less undirected graphs, G1 = (V1, E1) of m nodes
and G2 = (V2, E2) of n nodes, their (Cartesian) product is a graph G3 = (V3, E3),
of m · n nodes. G3 consists of m copies of G2. Every sub-graph induced in G3
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by the set of m copies of a node of G2 is isomorphic to G1. As this operation is
commutative, we can also define it as n copies of G1.

An alternative definition that is easier to express in second-order logic is the
following: V3 is the set of nodes (u, v) s.t. u ∈ V1, and v ∈ V2, and E3 is the set
of edges ((u1, v1), (u2, v2)) s.t. either (u1, u2) ∈ E1 and v1 = v2, or (v1, v2) ∈ E2

and u1 = u2.
We consider an input structure A of signature σF = 〈VI , EI ,FI〉 consisting

of a finite domain DA, a connected and loop-less undirected graph (V A
I , EA

I ),
and a third-order relation FA

I of type 〈1, 2, 1, 2〉, which in turn consists of a set
of pairs of graphs (V A

FI
, EA

FI
), and (V A

KFI
, EA

KFI
). The first graph of each pair is

a connected and loop-less undirected graph, and the second graph is a clique.
We define graph factoring as a decision problem. A σF -structure A is in the
class GraphFactoring iff the third-order relation FA

I is a factoring2 of the graph
(V A

I , EA
I ), where the first graph of each pair in FA

I is a factor of the graph
(V A

I , EA
I ), and the size of the corresponding clique is the exponent.

Our formula roughly says that there is a third-order circuit C = (VC , EC)
whose gates compute the graph product of the two input graphs, whose roots
are the factor graphs in the third-order relation FA

I , where the fan-out of each
factor graph in the circuit is the size of its corresponding clique (V A

KFI
, EA

KFI
)

in the input structure A, and whose output graph is the graph (V A
I , EA

I ) in
A. A straightforward consequence of the definition of graph product is that the
size of any factoring circuit C for a structure A is at most 2 · �log(|V A

I |)�, and
the size of the third-order relation FI

A on any given A ∈ GraphFactoring is at
most �log(|V A

I |)�. At the first abstraction level, the following pseudo third-order
formula ϕF expresses graph factoring:

∃VCEC
(
FactoringCircuitForGI(VC , EC) ∧ NodesConnLooplessUgraphs(VC , EC)

∧ RootsPrimeGraphsC ∧ RootsInFIC ∧ SingleOutputGIC
)

where

– (VC , EC), is a third-order graph, whose nodes are graphs, and whose edges are
pairs of graphs, that is, VC is a third-order relation of type 〈1, 2〉, and EC is a
third-order relation of type 〈1, 2, 1, 2〉, and

– NodesConnLooplessUgraphs says that each node in the third-order graph
(VC , EC) is an undirected (i.e., symmetric) graph, which is connected and
loop-less.

We present next the third-order pseudo-formulae for the main sub formulae in
ϕF :

FactoringCircuitForGI(VC , EC) ≡ Digraph(VC , EC) ∧ Acyclic(VC , EC)∧
Connected(VC , EC) ∧ InDegree2C ∧ ProductOfParentsC∧

LinearNonRootsC ∧ NonIsomorphicRootsC
2 Note that even when the factoring of a graph is unique up to isomorphism, the
third-order relation FA

I provides one of the possible set of graphs which are factors
of (V A

I , EA
I ).
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In turn:

InDegree2C ≡ ∀V1E1V2E2V3E3V4E4

(
[EC(V1, E1, V4, E4) ∧ EC(V2, E2, V4, E4)∧

EC(V3, E3, V4, E4)] → [EqualGraphs(V1, E1, V2, E2)∨
EqualGraphs(V1, E1, V3, E3) ∨ EqualGraphs(V2, E2, V3, E3)]

)

ProductOfParentsC ≡ ∀V3E3

[(
∃V1E1[EC(V1, E1, V3, E3)∧

∀V2E2(EC(V2, E2, V3, E3) → EqualGraphs(V1, E1, V2, E2))] →
Product(V1, E1, V1, E1, V3, E3)

)
∧

(
∃V1E1V2E2[NotEqualGraphs(V1, E1, V2, E2) ∧ EC(V1, E1, V3, E3)∧

EC(V2, E2, V3, E3)] → Product(V1, E1, V2, E2, V3, E3)
)]

Product(V1, E1, V2, E2, V3, E3) ≡ ∃V×E×
((∀v1w1v2w2

[
(V×(v1, w1) ↔ (V1(v1)∧

V2(w1))) ∧ (E×(v1, w1, v2, w2) ↔ [(v1 = v2 ∧ E2(w1, w2))∨
(w1 = w2 ∧ E1(v1, v2))])

]) ∧ Isomorphic(V×, E×, V3, E3)
)

LinearNonRootsC ≡ ∃VClECl

(
EqualMonadicTO

(VCl, {non root nodes in C})∧

EqualBinaryTO
(ECl, EC � {non root nodes in C}) ∧ LinearDigraph(VCl, ECl)

)

where EC � {non root nodes in C} is the restriction of the third-order binary
relation EC to the subset {non root nodes in C} of the set VC3.

NonIsomorphicRootsC ≡ ∀V1E1V2E2

(
[RootC(V1, E1) ∧ RootC(V2, E2)] →

[EqualGraphs(V1, E1, V2, E2) ∨ ¬Isomorphic(V1, E1, V2, E2)]
)

RootsPrimeGraphsC ≡ ∀V1E1

(
[VC(V1, E1) ∧ ¬∃V2E2(EC(V2, E2, V1, E1))] →

PrimeGraph(V1, E1)
)

where PrimeGraph(V1, E1) ≡ ¬∃V2E2V3E3

(
Product(V2, E2, V3, E3, V1, E1)

)
.

SingleOutputGIC ≡ VC(VI , EI) ∧ ¬∃V1E1(EC(VI , EI , V1, E1))∧
∀V2E2

(
[VC(V2, E2) ∧ ¬∃V3E3(EC(V2, E2, V3, E3))]

→ EqualGraphs(V2, E2, VI , EI)
)

3 To make this subformula more understandable we chose to use a standard algebraic
notation mixed with the syntax of third-order.
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RootsInFIC ≡ ∀V0E0

(
RootC(V0, E0) ↔ ∃VK0EK0(FI(V0, E0, VK0, EK0))

)
∧

∀V0E0VK0EK0

(
FI(V0, E0, VK0, EK0) → [Clique(VK0, EK0)∧

NumbOfProductsC(V0, E0, VK0)]
)

NumbOfProductsC(V0, E0, VK0) ≡ ∃H∀x1V1E1V2E2V3E3

([
VK0(x1) →

∃V4E4(H(x1, V4, E4))
]

∧
[
(H(x1, V1, E1) ∧ H(x1, V2, E2))

→ EqualGraphs(V1, E1, V2, E2)
]
∧

[
EC(V0, E0, V3, E3) → ∃x1(H(x1, V3, E3))

]
∧

[
EC(V0, E0, V3, E3) →

([
(InDegree1C(V3, E3) ∧ ∃x4x5

(
VK0(x4) ∧ VK0(x5)

∧x4 �= x5∧H(x4, V3, E3)∧H(x5, V3, E3) ∧ ∀x6[(VK0(x6)∧H(x6, V3, E3))
→ (x6 = x4 ∨ x6 = x5)]

)
)
] ∨ [

InDegree2C(V3, E3) ∧ ∃x4

(
VK0(x4)∧

H(x4, V3, E3) ∧ ∀x5[(VK0(x5) ∧ H(x5, V3, E3)) → (x5 = x4)]
)])])

The “quasi” injectivity of the function H : VK0 �→ ChildrenC(V0, E0) in the
formula above (expressed in the last five lines of the formula) is due to the fact
that we avoid allowing multiple edges between two given nodes in the circuit
C, to make the formula simpler. Note that the only possible case where one
single edge means that a (factor) graph is actually being used twice in the same
product is at the (unique) node at depth one in the circuit. An example for this
situation is the factoring circuit for an hypercube of order n, where the same
factor graph (K2) is used n times.

As to the sub formulae for Acyclic, Connected and LinearDigraph, they are
rather standard and can be found among other sources in [13]. The other sub
formulae not included in the present article are trivial.

4 Fragments of HOL that Collapse to Second-Order

We define a general schema of existential third-order logic (∃TO) formulae that
describes a sequence of structures representing a computation by explicitly stat-
ing, which operations can be involved in the construction of a given structure
in the sequence, when applied to the previous one. We then show that formu-
lae under this general schema collapse to SOL plus transitive closure, SO(TC),
and can be systematically refined into standard ASMs which do not use HOL
formulae. If the length of the sequence of structures is further bounded by a
polynomial in the size of the input, then this class of formulae collapses to plain
SOL as per the results in [12].

Definition 4.1. Let Σ be a relational vocabulary, which may include constant
symbols. We define T[Σ] as the class of ∃TO formulae of the form:

∃CO(
TotalOrder(C,O) ∧ ∀X̄

(
First(X̄) → αFirst(X̄) ∧ Last(X̄) → αLast(X̄)

)∧
∀X̄Ȳ

(C(X̄) ∧ C(Ȳ ) ∧ Succ(X̄, Ȳ ) → ϕ(X̄, Ȳ )
))

,
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where

– C is a third-order variable of type s̄ = (s1, . . . , sl, sl+1, . . . , sl+k) with l > 0,
k ≥ 0, si > 0 for i = 1, . . . , l and si = 0 for i = l + 1, . . . , l + k,

– O is a third-order variable of type s̄s̄,
– X̄ = (X1, . . . , Xl, x1, . . . , xk) with Xi of ariy si for i = 1, . . . , l,
– Ȳ = (Y1, . . . , Yl, y1, . . . , yk) with Yi of ariy si for i = 1, . . . , l,
– TotalOrder(C,O), First(X̄), Last(X̄) and Succ(X̄, Ȳ ) denote fixed second-

order formulae with third-order free variables which express that O is a total
order over C, that X̄ is the first tuple (relational structure) in O, that X̄ is the
last tuple in O, and that Ȳ is the immediate successor of X̄ in O, respectively,

– αFirst(X̄) and αLast(X̄) are arbitrary second-order formulae of vocabulary
Σ ∪{X̄} which express the properties that the first and last tuples (relational
structures) in the order O should satisfy,

– ϕ(X̄, Ȳ ) is an arbitrary second-order formula of vocabulary Σ ∪ {X̄} ∪ {Ȳ }
which expresses the transition from X̄ to Ȳ , i.e., the operations that can be
used to obtain Ȳ from X̄.

It is easy to see that using this schema we can express many interesting
queries in a clear and natural way, e.g. the examples in Sect. 3 and in [12,13].

The class of Boolean queries expressible by ∃TO formulae in T corresponds
exactly to that definable in SO(TC). The following definition of SO(TC) is
from [18].

Definition 4.2. Let ϕ(X̄, x̄, Ȳ , ȳ) be a formula of second-order logic of some
vocabulary Σ with free second-order (relation) variables X̄ = (X1, . . . , Xl), Ȳ =
(Y1, . . . , Yl) and free first-order variables x̄ = (x1, . . . , xk), ȳ = (y1, . . . , yk). Let
arity(Xi) = arity(Yi) = ri for 1 ≤ i ≤ l. Given a structure A of vocabulary Σ,
interpret ϕ as the third-order relation

ϕA = {(R̄, ā, S̄, b̄) | Ri, Si ⊆ Ari ; ā, b̄ ∈ Ak andA |= ϕ(R̄, ā, S̄, b̄)}.

We write [TCX̄,x̄,Ȳ ,ȳϕ] to denote the reflexive, transitive closure of the binary
third-order relation defined by ϕ(X̄, x̄, Ȳ , ȳ). We define SO(TC) as the closure
of second-order logic with arbitrary occurrences of TC.

Theorem 4.1. The class of Boolean queries definable in T coincides with the
class of Boolean queries definable in SO(TC).

Proof (Sketch). We first show that SO(TC) ⊆ T. Let ψ ∈ SO(TC). We assume
that ψ is in the following normal form:

ψ ≡ ∃R̄S̄v̄w̄
(
[TCX1,...,Xl,x1,...,xk,Y1,...,Yl,y1,...,yk

β](R̄, v̄, S̄, w̄)∧
∀z̄(¬R1(z̄) ∧ · · · ∧ ¬Rl(z̄) ∧ S1(z̄) ∧ · · · ∧ Sl(z̄))

)
(1)

where β is a quantifier-free SO formula, and the second-order variables Xi and Yi

all have the same arity r. Every SO(TC) formula can be written in this normal
form (see [18, Exercise 10.23, p. 166]). We can translate ψ into an equivalent
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formula in T of the form described in Definition 4.1 by defining the sub-formulae
αFirst ≡ ∀z̄(¬X1(z̄) ∧ · · · ∧ ¬Xl(z̄)), αLast ≡ ∀z̄(X1(z̄) ∧ · · · ∧ Xl(z̄)) and ϕ ≡ β.

Finally, we show that T ⊆ SO(TC). Each ϕ ∈ T has the form of the formula
in Definition 4.1 and it is clearly equivalent to the following SO(TC)-formula:
∃X̄Ȳ x̄ȳ(αFirst(X̄, x̄)∧αLast (Ȳ , ȳ)∧TCR̄v̄S̄w̄ϕ′](X̄, x̄, Ȳ , ȳ)), where ϕ′ is obtained
by substituting in ϕ the variables X̄, x̄, Ȳ , ȳ by R̄, v̄, S̄, w̄, respectively. ��
As PSPACE = SO(TC) (see [17,18]), T also provides a descriptive characteriza-
tion of PSPACE. Its expressive power equals that of first-order logic extended
with a partial fixed-point operator and a linear order (see [18,26]).

Corollary 4.1. PSPACE = FO(PFP,≤) = T.

Note that any partial fixed point formula of the form [PFPX,x̄ϕ(X, x̄)](t̄) can
be rewritten as an equivalent T-formula where αFirst ≡ ∀z̄(¬X(z̄)), i.e. initially
X is empty, ϕ ≡ ∀z̄(Y (z̄) ↔ ϕ(X, z̄)), where Y is obtained by applying the
operator defined by ϕ to X, and αLast ≡ ∀z̄(X(z̄) ↔ ϕ(X, z̄)) ∧ X(t̄), i.e. fixed
point have been reached and t̄ belongs to it.

Furthermore, in Definition 4.3 we describe how any formula in T can be sys-
tematically refined into an equivalent standard ASM that does not use higher-
order expressions.

Definition 4.3. Let ϕ be a SO(TC) sentence in the normal form described
in (1). The corresponding ASM Mϕ is an ASM with signature Σ′ = Σ ∪ {R̄} ∪
{S̄} ∪ {v̄} ∪ {w̄} ∪ {w̄′} ∪ {D,Mode,Accept}, where D,Mode,Accept /∈ Σ and
Mode = 0 in every initial state of Mϕ. Let the following be the main rule of Mϕ:

if Mode = 0 then Accept := False Mode := 1
forall x̄ ∈ Dr do R1(x̄) := False enddo...
forall x̄ ∈ Dr do Rl(x̄) := False enddo
choose x̄ ∈ Dk do v̄ := x̄ enddo
choose x̄ ∈ Dk do w̄ := x̄ enddo endif

if Mode = 1 then GuessRelationsS Mode := 2
choose x̄ ∈ Dk do w̄′ := x̄ enddo endif

if Mode = 2 then
if β(X̄/R̄, x̄/v̄, Ȳ /S̄, ȳ/w̄′) then

if ∀x̄(S1(x̄) ∧ · · · ∧ Sl(x̄)) ∧ w̄′ = w̄ then Accept := True
else Mode := 1 v̄ := w̄′

forall x̄ ∈ Dr do R1(x̄) := S1(x̄) enddo...
forall x̄ ∈ Dr do Rl(x̄) := Sl(x̄) enddo endif endif endif

GuessRelationsS =
forall x̄ ∈ Dr do

choose y with y = True ∨ y = False do S1(x̄) := y enddo...
choose y with y = True ∨ y = False do Sl(x̄) := y enddo enddo
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Since we know from the proof of Theorem4.1 that every T sentence can be
translated to an equivalent SO(TC) sentence and that every SO(TC) sentence
can in turn be translated to the normal form described in (1), we get the following
result.

Proposition 4.1. Let ϕ be a third-order T sentence (recall Definition 4.1). Then
there is an equivalent ASM machine Mϕ which has the form of the ASM in
Definition 4.3 and can be built systematically starting from ϕ.

Finally, we recall a result from [12] by which we can do better when the
higher-order variables range over higher-order relations that are polynomially
bounded in size, as in the case of the two examples in Sect. 3 and those mentioned
in Sect. 1 (see also further examples in [12]). Let HOi,P be the restriction of the
HOL of order i to quantifiers that can only range over higher-order relations of
total size bounded by a polynomial on the size of the input, then we have the
following:

Theorem 4.2 ([12]). For every order i ≥ 3, every HOi,P formula α can be
algorithmically translated into an equivalent second-order formula α′.

5 Conclusion

We presented an extension of ASMs by HOL and demonstrated its usefulness by a
glimpse on graph algorithms that exploit complex conditions for subgraphs such
as self-similarity and graph factoring. The extension permits easier high-level
specifications of such algorithms. We then characterised fragments of HOL that
can be transformed to second-order by automatic ASM refinement. Thus, the
refinement strategy for HOL-extended ASMs is to first exploit such an automatic
refinement followed by the definition of ASMs for the evaluation of second-order
sentences.

A similar extension targeting computations over tree structures in connec-
tion with XML was handled previously. We believe that it will be helpful for the
specification of comprehensible ground models, if more domain-specific exten-
sions of ASM were investigated and tailored refinements for these extensions
could be discovered. An open problem in this context are proofs, where it would
be preferable not to have to deal with HOL. As näıve refinements in a standard
way are always possible, we believe that proofs could be conducted on such auto-
matic, though not optimal refinements. This has to be studied more carefully in
follow-on research.

References

1. Abrial, J.R.: The B-Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

2. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)



Systematic Refinement of Abstract State Machines with Higher-Order Logic 217

3. Abu-Khzam, F.N., Langston, M.A.: Graph coloring and the immersion order.
In: Warnow, T., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 394–403.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45071-8 40

4. Beaudry, M., McKenzie, P.: Circuits, matrices, and nonassociative computation. In:
Proceedings of the Seventh Annual Structure in Complexity Theory Conference,
pp. 94–106 (1992)

5. Blass, A., Gurevich, Y.: Background of computation. Bull. EATCS 92, 82–114
(2007)

6. Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184.
Springer, Heidelberg (2002). https://doi.org/10.1007/978-1-4612-0619-4

7. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

8. Dill, S., Kumar, R., Mccurley, K.S., Rajagopalan, S., Sivakumar, D., Tomkins, A.:
Self-similarity in the web. ACM Trans. Internet Technol. 2(3), 205–223 (2002)

9. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) Complexity of Computations. SIAM-AMS Proceedings, vol. 7,
pp. 27–41. American Mathematical Society (1974)

10. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016)

11. Ferrarotti, F.: Expressibility of higher-order logics on relational databases: proper
hierarchies. Ph.D. thesis, Massey University, Wellington, New Zealand (2008).
http://hdl.handle.net/10179/799
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Abstract. Event-B is a refinement-based formal method that is used
for system-level modeling and analysis of concurrent and distributed
systems. Work has been done to extend Event-B with discrete time
constraints. However the previous work does not capture the commu-
nication and competition between concurrent processes. In this paper,
we distinguish task-based timing properties with scheduler-based tim-
ing properties from the perspective of different system design phases. To
refine task-based timing properties with scheduler-based timing prop-
erties based on existing trigger-response patterns, we introduce a non-
deterministic queue based scheduling framework to schedule processes
under concurrent circumstances, which addresses the problems of refin-
ing deadline constraint under concurrent situations. Additional gluing
invariants are provided to this refinement. To demonstrate the usability
of the framework, we provide approaches to refine this framework with
FIFO scheduling policy as well as deferrable priority based scheduling
policy with aging technique. We demonstrate our framework and refine-
ment with a timed mutual exclusion case study. The model is proved
using the Rodin tool.

Keywords: Event-B · Refinement · Timing · Concurrency
Scheduling

1 Introduction

Cyber Physical Systems (CPS) have received much attention in recent years due
to their capabilities with advanced processors, sensors and wireless communi-
cation. Timing and concurrency are two key features of CPS [4]. The physical
world evolves with time and this needs to be taken into account of within the
computing devices in CPS. Real-time constraints need to be introduced to com-
puting devices to ensure that the devices are interacting with the physical world
correctly. What’s more, with the advanced processors of CPS, multiple threads
of computation are executing concurrently to achieve the goal of computation
as a whole. For this reason understanding models and design principles for tim-
ing and concurrency is critical for CPS. In addition, it is difficult to model a
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complicated CPS with all the detailed features in one step. An abstraction and
refinement approach can be adapted to manage complexity by modeling the
system from abstract level to more concrete levels with reasoning to verify the
consistency between refinement levels [7].

Event-B is a formal method for system-level modeling and analysis that is
based on predicate logic and set theory [2]. Apart from its ability to model sys-
tems with precise mathematical abstractions, it also provides notions of abstrac-
tion and refinement. However, an explicit notion of real-time is not supported
in Event-B, while real-time performance is critical for CPS. Existing work that
extends Event-B models with timing properties uses a trigger-response pattern
to model discrete time [16]. The pattern sets timestamps for trigger and response
events and uses a tick event to prevent the global clock proceeding to a point
where time constraints between trigger and response events would be violated.
This pattern, however, does not distinguish timing properties for different system
design phases. We define task-based timing properties as high level timing prop-
erties from system requirement specification phase, which place discrete time
constraint on individual processes or tasks. These task-based timing properties
can not describe the concurrent behaviour of tasks precisely. In real time systems,
there are always several tasks running concurrently. High level time constraints
for each task cannot guarantee the timing behaviour of the whole system. To
model the behaviour of these concurrent processes, we define scheduler-based
timing properties as concrete timing properties for the system design phase,
which place discrete time constrains on the scheduler which schedules the con-
current tasks. Fairness can be imposed to restrict the nondeterministic behaviour
of concurrent tasks. In many real-time applications, the weak guarantee of even-
tual occurrence of some event with weak/strong fairness assumption may be
insufficient [11]. Alur and Henzinger proposed the definition of finitary fairness
to impose a bound on the relative frequency in scheduling a set of events [3]. This
definition of weak fairness requires that there is an unknown bound k for every
computation of a system such that no enabled transition is postponed more than
k consecutive steps.

We propose a nondeterministic queue based scheduling framework based on
the idea of finitary fairness. Processes are placed in a nondeterministic position
in the queue and once a process enters the queue, it cannot be postponed for
more than k consecutive times. Additional gluing invariants are provided to use
the framework to refine task-based deadline constraints with scheduler-based
deadline constraints. Our approach is demonstrated by a timed mutual exclusion
case study. Two alternative refinements from the nondeterministic queue to a
FIFO scheduling policy as well as a deferrable priority based scheduling policy
with aging technique are used to demonstrate the usability of the framework. In
addition, we only need to prove the timing is satisfied by the nondeterministic
queue since any refinement of the nondeterministic queue will also satisfy the
same timing deadlines.
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Section 2 introduces some related work on modeling discrete time in Event-B
with trigger-response patterns. We also discuss some additional fairness assump-
tions on the tick event introduced in the trigger-response pattern. In Sect. 3 we
introduce task-based deadlines used in the requirement specification phase. We
use a timed mutual exclusion case study to illustrate the usage of task-based
timing property. Section 4 refines the task-based deadlines to scheduler-based
deadlines with a nondeterministic queue based scheduling policy as well as some
additional gluing invariants. Section 5 gives two different implementations of the
nondeterministic queue based scheduling policy. Section 6 gives the conclusion
and some future work.

2 Related Work

2.1 Event-B

Event-B [2] is a formal modeling method based on set theory and first-order logic,
which is usually used for system-level modeling and analysis with abstraction,
refinement and reasoning on the model. Formal modeling is used to address
the problem of lack of precision of specifications. However, formality on its own
does not handle the problem of complex requirements and specifications [7].
Refinement helps to simplify the process of modeling with a stepwise approach.
Gluing invariants which refer to variables of abstract and concrete machines are
used to relate the states of concrete and abstract machines during refinement
steps [14].

2.2 Time Modeling

Timing issues are critical in cyber physical systems. Timing analysis should be
carried out together with the development of the system to improve the real-
time performance as well as guarantee the safety of the whole system. Timed
automata [5] that are supported by the UPPAAL [15] model checker have been
used in industrial modeling of real time systems. It is challenging to model a
complex system with the timed automata formalism and UPPAAL as it does
not support refinement of the model. Some approaches such as counter example
guided abstraction refinement have been brought up to add abstraction and
refinement when modeling a complex system [12]. This approach uses a model
checker to get the counter examples from the abstract model and uses these
counter examples as guides to refine the system. However it is difficult to find
the missing part from the model just from counter examples.

Event-B is a general purpose modeling language that lacks explicit support
for expressing and verifying timing constraints [19]. Work has been done to
add time constraints to Event-B. Butler and Falampin proposed an approach
to model and refine timing properties in classical B [1], which adds a clock
variable representing the current time and an operation which advances the
clock [9]. The approach ensures the timing properties are satisfied by preventing
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behaviours in which the clock advances to a point where deadlines would be
violated. More work concerning time constraints such as delay, expiry, deadline
and interval are presented recently [10,16,19]. These approaches define timing
properties between different events, while Graf and Prinz introduce time to state
transition systems [13].

2.3 Trigger-Response Pattern

To formally model the timing properties for the trigger-response pattern in con-
trol systems, Sarshogh and Butler proposed an approach that categorizes timing
constraints in three groups: delay, expiry and deadline [16], which are denoted
in (1a), (1b), (1c) below. All these three timing constraints follows a trigger-
response pattern where trigger and response events are modeled as events in
Event-B. (1a) shows that the Response event can only happen if the delay
period has passed following the occurrence of the Trigger event. (1b) shows
that if the expiry period has passed then the Response event can never happen.
(1c) denotes that if the Trigger event occurs, then one of the events Response1
to Responsen must occur before deadline passes. To model these three timing
properties in Event-B, a global clock as well as tick events are added to model
the discrete time.

Delay(Trigger,Response, delay) (1a)
Expiry(Trigger,Response, expiry) (1b)

Deadline(Trigger,Response1 ∨ .. ∨ Responsen, deadline) (1c)

Figure 1 shows the trigger response pattern as an Event-B machine for the delay
and deadline constraints, where trigger and response are modelled as events.
The response event response must occur within time ddl of trigger event trigger
occurring and can only occur if the delay period has passed. We use tT to
refer to the time that trigger event happens, and we use tR to refer to the
time that response event happens. Invariant @inv1 and @inv2 specify the delay
and deadline timing property between trigger and response respectively. Guard
@grd3 of the response event guarantees that the response is disabled when
the global clock has not passed the delay period thus preserving @inv1. Guard
@grd1 of the Tick event constrains the global clock not to tick when the response
event is missing its deadline thus preserving @inv2. @inv3 is needed to prove
invariant @inv2. When modeling the expiry time constraint, @grd3 of response
event should be clk < tT + expiry to guarantee that the response is disabled
when the global clock has passed the expiry period.

There are several patterns developed by Sarshogh to refine deadlines, delay
and expiry. For example, to refine an abstract deadline D to sequential sub-
deadlines D1..Dn, there should be invariants to ensure the order of sequential
sub-deadlines and the sum of the duration of sub-deadlines should be less than
the abstract deadline duration [16].
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Fig. 1. Model timing properties of trigger-response events with delay and deadline

Sarshogh’s approach only handles the system with trigger and response pat-
tern without specifying some possible interrupt events from the environment. To
model a more complex system that supports interrupt events to interrupt current
time intervals, Sulskus et al. brought up the notion of time interval constraints
in Event-B [19].

The trigger-response pattern only models discrete time constraints, while the
real-world events do not always happen at integer-value times. Continuous time
can be modelled approximated by choosing the granularity of the global clock,
which model the timed system with an approximate sense. Banach et al. presents
the Hybrid Event-B extension which accommodates continuous behaviours in
between discrete transitions [6]. Based on this extension, Butler et al. outlines an
approach to modeling and reasoning about hybrid systems which uses continuous
functions over real intervals to model the evolution of continuous values over
time [8].

The trigger-response pattern also introduces a Tick event to proceed the
global clock without any fairness assumption. Without fairness, a valid event
trace may repeat trigger and response events without executing any Tick event,
which makes the global clock never proceed. Guard @grd1 of Tick event from
Fig. 1 shows that the only event that disables Tick event is itself. With weak
fairness assumption on the Tick event, the Tick event is guaranteed to proceed
the global clock in the system if the Tick event is enabled.
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3 Task-Based Deadline Constraint

During the system design level, requirement specification are used to specify
some high level specifications. We define task-based timing properties as high
level timing properties to specify time constraints of individual tasks or processes.
To better explain the definition, we use a simple timed mutual exclusion case
study to demonstrate the usage of the framework. The timed mutual exclusion
case study has two minimum requirements:

– No more than one process can be in its critical section at any time.
– If a process wishes to enter its critical section, it will enter the critical section

within a certain deadline.

In the most abstract level, a mutual exclusion model is proposed which guaran-
tees no two processes can be in the critical section at the same time. However
a process can enter the critical section multiple times without allowing other
process to proceed. Figure 2 gives the abstract mutual exclusion model. Here we
use quantified variable p to represent one process. The event wish(p) models
the point at which process p wishes to enter the critical section. Event enter(p)
models the process entering the critical section while event leave(p) models the
process leaving the critical section. We add a task-based deadline constraint for
each process in the first refinement, which ensures that if a process wishes to
enter its critical section, it will enter the critical section within a certain dead-
line. The specification of the task-based deadline is presented in (2), which states
that any process that wishes to enter the critical section, will enter the critical
section within ddl. Figure 3 shows the refinement with task-based deadline for

Fig. 2. Abstract model with timed mutual exclusion problem
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each process. t1(p) models the timestamp at which process p wishes to enter the
critical section. r1(p) models the timestamp process entering the critical section.
@inv4 captures the task-based deadline constraint, and @inv5 is needed to prove
that @inv4 is preserved. @grd1 of Tick event ensures @inv5 is preserved.

∀p·p ∈ wait ⇒ Deadline(wish(p), enter(p), ddl) (2)

Fig. 3. First refinement with task-based deadline constraint

4 Scheduler-Based Deadline Constraint with
Nondeterministic Queue Based Scheduling

In concurrent computing, concurrent processes are executed by interleaving the
execution steps of each process, which models processes in the outside world
that happen concurrently. In real time systems, scheduling is used to make sure
that all processes meet their deadlines [4]. A scheduler is used to allocate the
resource to a process for some time.

In this case study, we specify two scheduler-based deadlines: (3a) and (3b).
(3a) requires that when the system is idle, one of the requesting processes will
enter the critical section within ddl3. Specifically, there are two cases that trig-
ger the scheduling of the enter event: (1) a process wishes to enter and both the
queue and the critical section are empty, and (2) some process leaves the critical
section and there is some other process waiting in the queue. Observe here that
events can act as timing triggers only under certain conditions, e.g., the wish
event is only a timing trigger when the queue and critical section are empty.
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To deal which such conditional triggers, we split the event into separate refine-
ments representing separate cases. We refine the wish event into a wish empty
event, enabled when condition 1 is true, and a wish nonempty event, enabled in
all other cases. Similarly, we split the leave event into a leave nonempty event,
enabled when condition 2 is true, and a leave idle event, enabled in the other
cases (see Fig. 5). The events wish empty and leave nonempty are therefore
used as trigger events in (3a), whereas the response event enter is the event
modeling entering the critical section.

(3b) requires that, once a process enters the critical section, it will leave
the critical section within ddl2. Therefore the trigger event is the enter event,
whereas the response events should correspond to leaving the critical section. As
the latter is now captured by two events, there are two response events in (3b).

Deadline({wish empty, leave nonempty}, enter, ddl3) (3a)
Deadline(enter, {leave empty, leave nonempty}, ddl2) (3b)

To refine the task-based deadline constraint with scheduler-based deadline
constraints, we propose a nondeterministic queue based scheduling framework
to address the schedule order of the sequential execution of a set of events. In
this framework, a queue is used to manage the ready processes. Each process is
assigned a position in the queue, formally: queue ∈ wait � (0..N − 1). When
one process is ready, it is nondeterministically assigned a natural number that
is not in the range of the queue. Only the process in the front of the queue
(min(ran(queue))) can get the resource to run. The dequeue operation will
decrease the indexes of all the other processes in the queue by the index of the
front process plus one (min(ran(queue)) + 1) to guarantee that once a process
is added to the queue, it will eventually get the chance to run. In the second
refinement, we use this nondeterministic queue based framework to impose an
order on the execution of the concurrent tasks. This refinement prevents a process
from entering the critical section forever without allowing other processes to enter
the critical section. The second refinement is shown in Fig. 4.

Fig. 4. Second refinement with queue based scheduling framework
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In order to prove that the scheduler deadlines refine the task-based deadlines,
invariants capturing the relation between task-based deadlines and scheduler-
based deadlines are needed. Assume that in the abstract machine the trigger
event of one process p occurs at timestamp t1, and the deadline is ddl. In the
refined machine the trigger event (wish empty/wish nonempty) starts at times-
tamp t3 and its deadline is ddl3. The trigger event (enter) starts at timestamp t2
and its deadline is ddl2. We assume that all processes have the same maximum
possible deadline to enter and leave the critical section ddl23 = ddl2+ddl3. The
process p has to wait for all the processes ahead of it in the queue to enter and
leave the critical section. The total waiting time is proportional to its index in
the queue, which is queue(p) ∗ ddl23. If the critical section is empty and the
time that last process leaves the critical section is t3, p should enter the critical
section within t3 + queue(p) ∗ ddl23 + ddl3. If the critical section is not empty
and the time that last process enters the critical section is t2, p should enter
the critical section within t2 + queue(p) ∗ ddl23 + ddl23. Based on different con-
ditions, the sum of the refined sequential deadline should be less than abstract
deadline t1 + ddl1, which is shown in @inv9 and inv10 in Fig. 6. @inv9 and
inv10 present these two conditions as required gluing invariants. Assume there
are N processes, the worst case is N −1 processes in the waiting list. As @axm8
presents, in the worst case the refined deadline is less than the abstract dead-
line. Figure 6 shows the required axioms and invariants to refine the task-based
deadlines to scheduler-based deadlines. @inv5 and @inv8 present the invariant
for scheduler-based deadlines (3b), @inv6 and @inv7 present the invariants for
scheduler-based deadlines (3a).

5 Two Implementation of Nondeterministic Queue-Based
Framework

The nondeterministic queue based scheduling framework is a general framework
that assign indexes to processes nondeterministically. By applying additional
rules on the assignment of these indexes, the queue based scheduling framework
can be refined to some scheduling policies such as First In First Out (FIFO) and
deferrable priority based scheduling policy with aging technique.

First In First Out. FIFO is one of the scheduling policies that guarantee that
the resources are assigned to each process with the order that they require the
resource. The FIFO scheduling policy handles all processes without priorities.
The queue based scheduling framework assigns each process with a corresponding
natural number k ∈ N, and FIFO scheduling policy limits this natural number to
the current size of the queue. And when the critical section is empty, the process
that is in the front of queue leaves the queue and enters the critical section. The
indexes of all the other processes in the queue are reduced by one.

The refinement from the scheduler-based model is shown in Fig. 7. Initially
the queue is empty and qsize is zero. Whenever some process is added to the
queue, it is assigned with the number of queue size and the queue size increases
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Fig. 5. Third refinement to scheduler-based deadline constraint

Fig. 6. Axioms and invariants needed to refine task-based deadline to scheduler-based
deadline

by one. When the critical section is empty, the process in the front of queue
queue(0) is removed from the queue, the indexes of all the other processes in the
queue are reduced by one. The queue size also decreases by one. wish nonempty
uses the same refinement strategy as wish empty.
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Fig. 7. Refinement with FIFO queue

Deferrable Priority Based Scheduling with Aging Technique. Fixed
priority scheduling policies assign the tasks with fixed priorities: priorities ∈
event → N. The scheduler will select the tasks with higher priorities to access
the system resources before those with lower priorities. However there is a dis-
advantage of these scheduling policies that tasks with lower priorities may be
starved when the tasks with higher priorities keep coming and jumping the
queue. An aging technique is used to ensure that tasks with lower priorities
eventually complete their execution. The general way to implement aging tech-
nique is to increase the priorities of the tasks with lower priorities while they
are waiting in the ready queue. However with the increasing priorities of some
processes, it will occupy the positions of some other processes. Deferrable prior-
ity based scheduling allows that when the position of one process is occupied by
some other processes, this process is deferred with a random position after its
assigned position. Using the timed mutual exclusion problem as an example, our
approach to refine the scheduling framework to priority based scheduling with
aging technique is to define a pindex ∈ PROCESS �� 0..N − 1, where pindex
is a bijection function from PROCESS to natural numbers. Equation (4) shows
that the higher priority of a process is, the lower its index is.

∀a, b·a ∈ PROCESS ∧ b ∈ PROCESS ∧ priority(a) < priority(b)
⇒ pindex(a) > pindex(b)

(4)

To avoid the starving problem of processes with lower priorities, we add a rule to
the priority based scheduling that when the position of some process is occupied
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by some other process with lower priority, which means that the lower priority
one has waited some time in the queue, the high priority one is deferred by some
higher random index. Specifically, the indexes of the processes are decreasing
by min(ran(queue)) + 1 when the process at the front queue, whose index is
min(ran(queue)), leave the queue and enter the critical section. The enqueue
operation will assign the process with its corresponding index in the queue.
However, this would cause a conflict as this operation will make some processes
occupy the spaces of some other processes. For example, process a’s level is 3
and process b’s level is 2. One process c is at the front of queue. When c leaves
the queue, the index of a is reduced to 2. When b wishes to enter the queue,
its position is taken by a. Here we choose the next available space available
in the queue i = min(k|k ∈ ran(pindex) ∧ k /∈ ran(queue) ∧ k > pindex(p)).
When the position is not taken by other processes, the process takes its assigned
position pindex(p). The dequeue operation is the same as the basic queue based
scheduling framework. Figure 8 shows the refinement from scheduler-based model
with a deferrable priority based scheduling policy with aging technique.

Fig. 8. Refinement with deferrable priority based scheduling with aging technique

Proof Statics. Table 1 shows the proof statics of the model. Here m0 is the
abstract machine with a simple mutual exclusion problem. m1 refines m0 with
the task-based deadline for each process. m2 refines m1 with a nondeterministic
queue based scheduling policy. m3 refines m2 to the scheduler-based deadline
with additional gluing invariants. m4 fifo and m4 priority are two different
implementations of the nondeterministic queue. FIFO queue has more proof
obligations than priority queue because additional invariants @inv1 and @inv2
of Fig. 7 are needed for the FIFO queue refinement.
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Table 1. Proof statistics

Machine Number of
generate PO

Automatically
proved

Automatically
proved %

m0 7 7 100

m1 18 18 100

m2 9 7 77.8

m3 49 43 87.8

m4 fifo 17 12 70.6

m4 priority 9 7 77.8

6 Conclusions and Future Work

Based on a trigger-response approach to modeling deadlines in Event-B, we dis-
tinguish the concept of task-based timing properties and scheduler-based timing
properties from the perspective of different system design phases. We define
timing properties that place discrete time constraints on individual processes or
tasks as task-based timing properties, which describe high level timing properties
from system requirement specification phase. These task-based timing properties
can not describe the concurrent behaviour of tasks precisely. In real time sys-
tems, schedulers are used to schedule concurrent tasks. To model the behaviour
of these concurrent processes, we define scheduler-based timing properties as
concrete timing properties for the system design phase, which place discrete
time constrains on the scheduler which schedules the concurrent tasks. To refine
task-based timing properties to scheduler-based timing properties, we introduce
a nondeterministic queue based scheduling policy with some additional gluing
invariants. The queue based scheduling policy can also be implemented as a
FIFO queue scheduling policy or a deferrable priority based scheduling policy
with aging technique. We prove that the two refinements of the nondeterministic
queue satisfy the same deadlines with the mutual timed exclusion case study.

This paper does not address the possible time deadlock caused by the trigger-
response pattern. For example, if the delay is larger than the deadline between
the same trigger-response pair, there would be a point where the global clock
cannot proceed as it is constrained by the deadline constraint not to proceed
but also constrained by the delay constraint to proceed, a deadlock will occur
in the model. Additional conditions to avoid these deadlocks and formal spec-
ifications of the enabledness and weak fairness assumptions on response events
with proofs are left for future work. In addition, the mutual exclusion case study
assumes no intermediate events between trigger and response events, while inter-
mediate events are common in real systems such as CPS. More exploration is
needed for the enabledness of intermediate and response events under different
situations. Fairness and convergence assumptions on intermediate events and
response events will help with the scaling of the proposed approach.
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In the cases that the system does not require explicit mention of time, the
notion of bounded fairness and finitary fairness allows one to express eventual
occurrence of a set of events. Some work has been done to model fairness in
Event-B [17,18]. Bounded fairness modeling as well as finitary fairness model-
ing can be researched further with some addition prove rules and refinement
frameworks.

In order to explicitly represent timing properties in a cyber physical system,
there are three typical time constraints to look into: period, deadline, worst-case
execution time. More work can be done to apply some scheduling policies such
as Rate-Monotonic (RM) and priority inheritance protocol based on the queue
based scheduling framework to analyze real-time performance of CPS together
with the mentioned time constraints in Event-B.
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Abstract. Scheduled Event-B (SEB) augments Event-B with a schedul-
ing language to make the control flow in an Event-B model explicit
and facilitate derivation of algorithmic structure in Event-B refinement.
A concrete SEB model has a concrete algorithmic structure associated
with it. Although this structure reduces the difficulty of code genera-
tion, there is still some gap between the model and executable code.
This work formulates the translation of SEB models to a programming
language called Dafny and proposes an approach in which a number of
assertions are generated from the model that allows the verification of
the generated code in a static program verifier.

1 Introduction

Event-B is a general purpose formal method which is designed to target a set
of different domains including distributed systems, sequential programs, and
embedded systems. This generality is achieved by not fixing the behavioural
semantics of Event-B models [11]. Although this approach provides a great
degree of freedom in using the method, the process of using Event-B in some
domains (e.g. sequential program development) remains underdeveloped and not
always easy to follow. In our previous work [6] we introduced Scheduled Event-
B (SEB). SEB augments Event-B with a scheduling language and provides a
number of refinement rules to facilitate derivation of algorithmic structure in
Event-B refinement. It allows the modeller to introduce the algorithmic struc-
ture using the scheduling language from the very abstract level. The model,
together with its algorithmic structure, is then refined towards a concrete level.
The final refinement step results in a concrete Event-B model (i.e. a model with
concrete data structures and no non-determinacy) and a concrete algorithmic
structure (i.e. a deterministic algorithmic structure). It is assumed that this
final refinement level is the closest possible model to the final implementation,
i.e. a one to one mapping between the model constructs and the target language
constructs exists. The most basic building block of a SEB model is an event. An
event may have multiple actions (i.e. assignments) which model state changes
and are executed simultaneously. If we consider assignments to be the most basic
executable building blocks of an executable program, then each event should be
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 234–248, 2018.
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broken down to a number of assignments in the target language. Since event
actions are considered to be executed at the same time, the syntactic ordering
between them is not important. However, in a programming language, the order
in which the assignments are sequentially executed may change the final state
of the program. Due to this fact, when an event is sequentialised (i.e. its actions
are translated to sequentially composed assignments), then the imposed order-
ing on assignments should be verified to prove that the sequential execution of
the assignments will change the state in the same way that the execution of the
atomic event changes it. This verification task can be carried out at the Event-
B level. However, the problem with doing this in Event-B is a huge overhead
caused by the introduction of new auxiliary variables, program counters, new
invariants and events required for modelling and verification of the sequential
execution of the actions of a single event. To avoid the aforementioned overhead,
we can delegate this verification task to a program verifier which is much more
sequential composition friendly than Event-B. This can be achieved by placing
assertions in the program generated from an Event-B model in a way that prov-
ing the assertions implies that the sequentialised assignments change the state
in the same way that the original atomic event does.

The above proposed approach takes advantage of abstraction and refinement
offered by Event-B in developing an algorithm correctly and also benefits from
modern and powerful program verifiers for verification of low level properties
of the final implementation in order to prove that the final generated program
implements the Event-B model correctly. In this paper we use the Dafny pro-
gramming language and its verifier as our target language for implementing
Event-B models.

This paper has two main contributions. First, it provides a set of rules for
transforming a SEB model to an executable code in Dafny. Second, it introduces
an approach for sequentialisation of atomic events and verifying its correctness
using Dafny verifier. The rest of this paper is organised as follows: Sect. 2 pro-
vides background information required for understanding this work including an
introduction to Event-B, Scheduled Event-B, and Dafny. Section 3 provides a set
of transformation rules for transforming a SEB model to Dafny code. Section 4
discusses the verification of sequentialised model using Dafny verifier. Finally
Sect. 5 discusses the future work and concludes the paper.

2 Background

2.1 Event-B

Event-B is a formal modelling language based on set theory and predicate logic
for modelling and reasoning about systems, introduced by Abrial [2]. Event-B
is greatly inspired by Action Systems [4] and the B-Method [1]. Modelling in
Event-B is facilitated by an extensible platform called Rodin [3]. A model in
Event-B usually has two main parts: a context and a machine. A context is the
static part (types and constants) of a model which is specified using carrier sets,
constants and axioms. A machine is the dynamic part (variables and events)
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of a model which is specified by means of variables, invariants and events. An
event models the state change in the system. Each event may have a number of
assignments called actions which are executed simultaneously. Each event may
also have a number of guards. Guards are predicates that describe the necessary
conditions which should be true before an event can occur. An event can be
parametrised by means of event parameters. A general Event-B event has the
following form:

Evt � any t when P(t,v) then S(t,v) end

where Evt is the name of the event, t is a set of parameters, v is the set of model
variables, P (t, v) is a set of guards and S(t, v) is a set of actions. Modelling a
complex system in Event-B can largely benefit from abstraction and refinement.
Refinement is a stepwise process which starts from an abstract level and contin-
ues towards a more concrete level by a series of successive steps in which new
details of functionality are added to the model in each step [5]. The abstract
level models the general purpose of the system by specifying what the system is
supposed to achieve. Each refinement level adds more details on how the goal of
the system can be achieved. It is essential that the correctness of each refinement
is proved, i.e. proving that each refinement “displays the same behaviour” as the
abstract one [15].

Refinement of an Event-B model may consist of refining existing events
and/or adding new events, variables and invariants. The new events must not
diverge. This means that they should not be enabled for ever. Each refinement
may involve introducing new variables to the model. This usually results in
extending abstract events or adding new events to the model. It is also possible to
replace abstract variables by newly defined concrete variables (data refinement).
Concrete variables are related to abstract variables through gluing invariants.
A gluing invariant associates the state of the concrete machine with that of its
abstraction. All invariants of a concrete model including gluing invariants should
be preserved by all events. All abstract events may be refined by one or more
concrete event.

2.2 Scheduled Event-B

In Event-B the control flow between events are implicitly encoded using event
guards. Whenever the guards of an event are true, the event is considered to be
enabled and can be executed. The lack of explicit control flow in Event-B can
make algorithm and sequential program development difficult. To deal with the
problem of control flow, in our previous work we introduced Scheduled Event-B
(SEB) [6]. SEB augments Event-B with an explicit control flow construct called
a schedule. Each refinement level has an associated schedule. A schedule provides
the modeller with a set of abstract and concrete programming-like control con-
structs and allows the introduction of the control flow to a model from the very
abstract level. SEB also provides a number of rules for schedule refinement. The
rules allow the modeller to refine the abstract schedule along with the abstract
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model to a more concrete level. The final level of refinement will result in a
concrete algorithm with only deterministic control constructs left in it. Figure 1
shows the abstract and concrete control structures provided by SEB.

Fig. 1. The scheduling language. The language is presented in EBNF [18].

The simplest form of a schedule is a single event. Event denotes an event in
the schedule. A schedule may contain one or more Event-B events. A sequen-
tial order can be imposed by the sequential composition operator (;). Non-
deterministic choice (S1 � S2) and iteration (S∗) are the abstract control struc-
tures. Iteration is required to be finite. This is enforced by proving convergence of
events. The aforementioned control structures allow us to retain the event struc-
ture (guards and actions together) so that data refinement reasoning is localised
to pairs of corresponding abstract and refining events using the standard defi-
nition of the Event-B refinement. The concrete control structures include deter-
ministic if..else branches and while loops with explicit conditions (Cond).
The branch and loop conditions should be valid Event-B predicates as defined
in [2]. Non-deterministic choices and iterations can be refined to deterministic
branches and loops, respectively. Schedule refinement rules are defined in [6].
Figure 2 depicts how a schedule is refined alongside with the Event-B model. To
illustrate scheduled Event-B, we use the binary search algorithm presented in [6]
here. We only provide the most concrete Event-B model of the search algorithm:

Machine m3 refines m2 Sees c0
Variables r, k, i, j
Initialisation r := 0, k := (n − 1)/2, i := 0, j = n − 1

Event search inc
refines search
where

grd1: f(k) < v
then

act1: k := (k+j+1)/2
act2: i := k + 1

End

Event search dec
refines search
where

grd1: f(k) > v
then

act1: k := (i+k−1)/2
act2: j := k − 1

End

Event found
refines found
where

grd1: f(k) = v
then

act1: r := k
End
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In the above model, f represents an array modelled as a total function in Event-
B (f ∈ 0. . .n − 1 → Z). The concrete schedule associated with the above model
is as follows:

initialisation;
while(f(k) �= v){if(f(k)<v){search inc} else{search dec}};

found

The above schedule defines the control flow of the Event-B model. The schedule
contains a while loop and an if..else branch with explicit conditions. The
explicit conditions in the schedule allow the guards in the events to be eliminated
when generating the code (see Sect. 3). Variables r, k, i, and j are of type integer.
f is a sorted array defined in the context c0. The above model does not include
the context c0 or any of the abstract machines.

Fig. 2. Event-B and schedule refinement

2.3 Dafny

Dafny is an imperative, class-based language [13], which allows both strong and
weak typed variables. Dafny implements the verification method of Hoare logic
where a program can be specified with pre- and post-conditions. In the Dafny
language, pre- and post-conditions are influenced by the Eiffel language [16] and
the concept of design-by-contract [17]. Dafny is an object-oriented programming
language with generic classes and allows creation of objects which gives rise to
pointers [14]. Despite the fact that Dafny is a class-based language, it does not
support subclasses and inheritance. However, there is a built-in object type
that is a super-type of all class types. Dafny supports inductive datatypes and
has its own specification constructs. Standard pre- and post-conditions, framing
constructs and termination metrics are included in the specifications. In this
paper we call these specification constructs, code contracts. The language also
offers recursive functions, sets, sequences and some other features to support
specification. Dafny allows the definition of ghost variables. A ghost variable is
a variable that is used by the Dafny verifier and ignored at run time. A ghost
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variable is used for specification purposes only and does not appear in any part
of the implementation. Specifications and ghost variables are omitted by the
compiler and are used just during the verification process.

The Dafny verifier attempts to verify different parts of a program locally
(modular verification) and infer the correctness of the whole system from those
locally verified parts. The Dafny verifier translates a Dafny program to an imme-
diate verification language known as Boogie 2 [12]. This is done in a way that
the correctness of the generated Boogie program implies the correctness of the
Dafny program. First-order verification conditions then are generated by the
Boogie tool and passed to the Z3 SMT solver [8].

3 Translating Concrete SEB Models to Dafny

A scheduled Event-B model, in its final refinement level, has a concrete schedule
(i.e. the schedule has only events, ;, while and/or if..else) associated with
it. It is assumed that all constructs in the model are refined to a concrete level
and all non-deterministic assignments are replaced with deterministic ones. The
concrete schedule is assumed to be a correct refinement of the abstract one with
respect to the refinement rules introduced in [6]. This section explains how a
SEB model is translated to Dafny implementation. We will use the model of the
binary search algorithm presented in Sect. 2.2 as an example to illustrate the
translation. To formulate the translation of SEB models to Dafny, we define a
function called SEB2DFY . The function accepts an Event-B model (M) (con-
sisting of a machine and the context it sees) and a schedule (S) and returns
generated code and contracts:

SEB2DFY (M,S) � SEB2DFYclass(M,S) (1)

Function SEB2DFYclass defines a class including a method implementing
the algorithm. They are discussed in the following sections. The input model M
and schedule S are expected to be refined to a concrete level as explained earlier.

3.1 Dafny Method Generation

The focus of SEB is on development and verification of sequential algorithms.
SEB does not yet cover concepts like method calls or recursions. With this in
mind, for the purpose of code generation, it would be an appropriate decision to
map a SEB model to a class with a method implementing the algorithm based
on the provided schedule S. Based on this decision, function SEB2DFYclass will
return a class with a single method with the same name as the model which was
passed to it:

SEB2DFYclass(M,S) � class mchn{
SEB2DFYmtd(M,S)

}
(2)
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Function SEB2DFYmtd(M,S) defines the way that the method should be
generated:

SEB2DFYmtd(M,S) � method mchn(SEB2DFYargs(M))
SEB2DFYpre(M)

{
SEB2DFYvar(v1, invv1)
SEB2DFYvar(v2, invv2)
...
SEB2DFYvar(vn, invvn)
SEB2DFYalg(M,S)

}

(3)

In the above class and method mchn is a placeholder for the name of the machine
being translated. If there is a value that the algorithm needs to receive in order
to perform a specific task on it such as an unsorted array to be sorted, it is
usually declared and specified in the model context using constants and axioms.
In this case the constant is mapped to an input argument which is passed to the
method and the axioms specifying it are transformed to method pre-conditions.
Functions SEB2DFYargs(M) and SEB2DFYpre(M) are used to generate the
method’s input arguments and its necessary pre-conditions. Assume that we have
a model containing machine mchn and a context with constants a1, . . ., ak where
each constant is of type T1, . . ., Tk, respectively. Function SEB2DFYargs(M) has
the following definition:

SEB2DFYargs(M) � a1 : T1, . . ., ak : Tk (4)

If the context of model M has n axioms specifying input arguments then function
SEB2DFYpre(M) has the following definition:

SEB2DFYpre(M) � requires SEB2DFYpred(axm1)
...
requires SEB2DFYpred(axmn)

(5)

The requires keyword is used in Dafny to declare method pre-conditions. The
function SEB2DFYpred transforms an Event-B predicate to its Dafny equiv-
alent. Function SEB2DFYvar gives rise to generation of variable declarations
including typing invariants. Finally, SEB2DFYalg(M,S) generates the imple-
mentation and necessary contracts. This function will be discussed in detail in
the rest of this paper.

3.2 Algorithm Generation

An important step in transforming a SEB model to Dafny code is the gener-
ation of the code implementing the algorithm. Function SEB2DFYalg(M,S)
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formulates this step. Schedule S contains key information about the algorithmic
structure of model M . A schedule is usually comprised of a number of sub-
schedules (which are either a control structure or a single event) ordered using
sequential composition operator:

S � S1 ; . . . ; Sn

If a schedule is comprised of a number of sub-schedules like the above, then
function SEB2DFYalg(M,S) is defined as follows:

SEB2DFYalg(M,S) � SEB2DFYalg(M,S1)
...
SEB2DFYalg(M,Sn)

(6)

As mentioned before, a sub-schedule may be a control structure (branch or
loop) or an event. The general form of a branch sub-schedule is as follows:

Si � if(c1){ s1 } elseif(c2){ s2 } . . . else{ sn }
where c1, . . ., cn−1 are branch conditions (in the form of Event-B predicates) and
s1, . . ., sn are schedules. In this case the definition of SEB2DFYalg(M,Si) is as
follows:

SEB2DFYalg(M,Si) � if(SEB2DFYpred(c1)){
SEB2DFYalg(M, s1)

}
elseif(SEB2DFYpred(c2)){

SEB2DFYalg(M, s2)
}
...
else{

SEB2DFYalg(M, sn)
}

(7)

If sub-schedule Sj is a loop then it has the following general form:

Sj � while(c){ s }
where c is the loop condition and s is a schedule representing the body of the
loop. The definition of SEB2DFYalg(M,Sj) is as follows:

SEB2DFYalg(M,Sj) � while(SEB2DFYpred(c)){
SEB2DFYalg(M, s)

}
(8)
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Now that we defined SEB2DFYalg for branches and loops, we need one more
definition for the case that a (sub-)schedule is a single event. This case will be
discussed in the next section in detail.

3.3 Events to Sequential Statements

The most basic component of a schedule is an event. Event-B events usually have
a number of guards and actions. In [6] we showed that a correct schedule allows us
to eliminate event guards because guards should follow explicit schedule guards.
Elimination of event guards is facilitated through a number of guard propagation
and elimination rules. These rules allow us to propagate explicit schedule guards
(loop or branch conditions) to events and eliminate event original guards safely.
As an example consider the following schedule:

while(a){if(b){evt}}
where a and b are predicates and evt is an event. If the control reaches event evt
then the schedule guarantees that the following condition holds right before the
execution of evt:

a ∧ b

Guards of evt can be eliminated safely in the program if the following con-
dition holds:

a ∧ b ⇒ grd(evt)

where grd(evt) denotes evt guards. Guard propagation and elimination rules are
discussed in detail in [6].

If we eliminate event guards then we are left with event actions. Since event
actions are assumed to be executed simultaneously in Event-B, no ordering is
assumed between them. Translation of an event to code involves sequentialisation
of event actions and imposing a suitable sequencing on execution of them using
sequential composition.

As explained before, since Event-B events are executed atomically, the syn-
tactic ordering between the actions are not important. However when actions of
an event are translated to a series of assignments in a programming language,
the order in which they appear in the program can change the outcome. For
instance, consider the following event from the model of binary search algorithm
introduced earlier:

Event search inc
refines search
where

grd1: f(k) < v
then

act1: k := (k+j+1)/2
act2: i := k + 1

End
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If the actions of the event are translated to sequentially composed assign-
ments in Dafny with the same order that they have in the event, the resulting
program will change the state in a different way than the event. This is due
to the fact that the right-hand side of action act2 is dependent on variable k
whose value is being updated by action act1. In this case the problem disappears
if we re-order the actions since act1 is independent of variable i. However this
is not a general solution since action may be mutually dependent. We can use
auxiliary variables to make the right-hand side of actions independent from the
left-hand side of the other actions. To do this, one auxiliary variable should be
introduced for each variable that is being modified and used by the event. The
auxiliary variable needs to be initialised with value of its associated variable. All
the occurrences of the left-hand side variables in the right-hand side expressions
of the actions should then be replaced by the auxiliary variables. For instance,
the actions of the above event should be translated to the following code:

var aux k := k ;
k := ( aux k + j + 1) / 2 ;
i := aux k + 1 ;

As can be seen in the above code, the ordering between third and fourth assign-
ments, with the help of auxiliary variables, does not matter any more. To for-
mulate this, assume that we have the following general event:

Event evt
where

G(v)
then

act1: v1 := E1(v)
...
actn: vn := En(v)

End

The definition of SEB2DFYalg(M,S) when S is a single event evt (S � evt)
is as follows:

SEB2DFYalg(M, evt) � SEB2DFYghost(M, evt)
SEB2DFYaux(v1)
...
SEB2DFYaux(vn)
SEB2DFYact(v1 := E1[v\aux v])
...
SEB2DFYact(vn := En[v\aux v])
SEB2DFYpost(M, evt)

(9)

where v and aux v are sets of model variables and auxiliary variables, respec-
tively. E[v\aux v] is the result of substituting aux v for all occurrences of v in
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E. Functions SEB2DFYghost and SEB2DFYpost which appeared on the first
and last lines of the above definition, are used for contract generation purposes
which will be discussed in the next section. Function SEB2DFYaux receives a
variable and generates an auxiliary variable declaration and initialisation:

SEB2DFYaux(v) � var aux v := v; (10)

Function SEB2DFYact receives an action (a) in the form of v := E(v) and
has the following definition:

SEB2DFYact(a) � v := SEB2DFYexp(E); (11)

SEB2DFYexp transforms an Event-B expression to Dafny based on a set
of translations rules for translating Event-B expressions to Dafny. Due to space
limitation, we omit expression and predicate translation rules here.

4 Verification of Event Sequentialisation

In the previous section we discussed the sequentialisation of an event in detail.
This section discusses how we can prove its correctness. In order to be able
to verify the sequentialisation, along with the translation of the actions of each
event, we generate assertions representing the expected behaviour of the program
based on before-after predicate of those actions.

Before we continue to explain our approach for verifying the correctness of
event sequentialisation, we justify why this step is done at Dafny level. Although
it is possible to sequentialise an event in Event-B and to impose a sequential
order on the execution of its actions and prove its correctness, it involves the
overhead of adding a number of new events, guards, and program counters and
also extending the scheduling language and refinement rules proposed in [6] to
accommodate sequentialisation. Due to this, performing event sequentialisation
in a programming language designed for development of sequential programs
seems to be a more appropriate choice than trying to sequentialise actions in
Event-B level which involves the aforementioned overhead.

Previously, we discussed how an event is translated to a number of sequen-
tial statements in Dafny. A program (or part of a program) in Dafny may be
specified (annotated) using code contracts (method’s pre- and post-conditions
and assertions). The Dafny verifier checks an annotated program text against its
specification in order to prove that the program behaves as intended. In order
to prove that an event is correctly transformed to Dafny code (sequentialised
correctly), a number of code contracts should be generated from the event in the
form of assertions.

The way that the state is changed by an Event-B event can be expressed
by a before-after predicate. By transforming an event’s before-after predicate to
Dafny assertions, we will be able to verify the correctness of event sequentialisa-
tion. Functions SEB2DFYghost and SEB2DFYpost will generate the necessary
ghost variables and assertions for verification of sequentialisation.
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To illustrate the generation of required assertions, recall event search inc
from the model of the binary search algorithm introduced in the previous
sections:

Event search inc
refines search
where

grd1: f(k) < v
then

act1: k := (k+j+1)/2
act2: i := k + 1

End
After the execution of the above event, the value of variables k and i are

changed in the following way:

k′ = (k + j + 1)/2 ∧ i′ = k + 1 (12)

where k′ and i′ are the value of variables k and k after the execution of the event
and k and i are the value of variable k and i before the execution of search inc.
A block of code implements event search inc correctly, if it has the same
behaviour as the event, i.e. it changes the state in the same way. If we want to
verify that a block of code sequentialises the event actions correctly, then we need
to generate assertions like (12) in Dafny based on event before-after predicates.

The challenge here is how to refer to the before and after values (unprimed
and primed variables) in an assertion in Dafny. A variable in a Dafny assertion
always refers to the current value of the variable. So to be able to transform a
before-after predicate like (12) to an assertion, we need to have access to the value
of variables before execution of the block of code implementing the event. We
transform the event search inc and its before-after predicate to Dafny code and
assertions using ghost variables for storing the before values (unprimed variable)
of variables k and i:

1 ghost var o ld k = k ;
2 ghost var o l d i = i ;
3 var aux k := k ;
4 var aux i := i ;
5 k := ( aux k + j + 1) / 2 ;
6 i := aux k + 1 ;
7 a s s e r t k == ( o ld k + j + 1) / 2 ;
8 a s s e r t i == o l d i + 1 ;

Variables old k and old i are ghost variables and are used to keep the before
value of variables k and i, respectively. A ghost variable is a variable that is
used by the Dafny verifier and ignored at run time. Function SEB2DFYghost

facilitates the generation of the required ghost variables. It receives the model
and a specific event, and works directly on the event before-after predicate and
generates one ghost variable for every unprimed variable that appeared in the
event before-after predicate and initialises it with the value of the unprimed
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variables. For practical reasons, we decided to generate one assert statement
per each action. The assertions are yielded by replacing unprimed variables in the
before-after predicate with their ghost counterparts and primed variables with
the original variables. Function SEB2DFYpost generates assertions required for
verification.

In the above code, lines 1–2 and 7–8 are required for verification only. Lines
3–6 are the code implementing the event. The guard of the event is not used
here. This is because the guard is available to the Dafny verifier since it would
be a condition in the if statement generated based on the schedule given in
Sect. 2.2. Any code that can satisfy the assertions (lines 7–8) can replace lines
3–6.

Apart from the verification of sequentialisation, having assertions in the gen-
erated code is useful for another purpose as well. The embedded assertions make
it possible to verify further amendments to the implementation at the code level
to prove that the new code complies with its abstract specification (event). For
instance in the above code, any implementation that satisfies the assertions (lines
7–8) can replace the code implementing the abstract event (lines 3–6).

5 Conclusion and Future Work

In this paper, we proposed an approach for generation of verifiable implemen-
tation from Scheduled Event-B [6] models. The paper outlined the necessary
rules for translating the algorithmic structure of a model together with rules
for sequentialisation of Event-B atomic events in Dafny. We also introduced a
way for generating Dafny assertions that allows us to verify the correctness of
the sequentialisation phase. Overall, our approach benefits from combining the
verification power of Dafny together with abstraction and refinement offered by
Event-B. We have applied this approach to a number of examples, including
the model of Schorr-Waite algorithm introduced in [6] and generated code and
contracts required for verification.

In our previous work [7], we introduced another approach for generating
Dafny code contracts from Event-B models. The proposed approach generates
Dafny method pre- and post-conditions from a group of atomic Event-B events
in a way that any implementation that satisfies the generated pre- and post-
conditions is considered to be a correct implementation of the Event-B abstract
model. There are two main differences between the approach presented in this
paper and the one presented in our previous work. First, the previous approach
only focuses on contract (method’s pre- and post-conditions) generation and no
implementation is generated while in this work, both implementation and code
contracts (i.e. assertions) are generated. The second difference is the granularity
of generated contracts. In the previous work we generated contracts at method
level in a way that the overall behaviour of the method was annotated, while in
this work, the contracts are generated in a lower granularity where the behaviour
of small blocks of code (sequentially composed assignments) inside a method are
annotated.
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In [10], we extended Event-B code generation tool [9] and applied it to an
Event-B model of a learning-based RTM (Runtime Management system) in
embedded system design to generate C implementation from the model. The code
generation tool supports portability of the platform-independent model from
which platform-specific implementations are automatically generated. However,
our experience shows that there are a number of limitations with the current
Event-B code generation tool. The first limitation is that the algorithmic struc-
ture of the program can only be introduced at the final level of refinement and the
modeller cannot benefit from refinement in derivation of algorithmic structure.
The other limitation is that the current structuring language is too restrictive
and does not allow the modeller to define nested programs. Another limitation
is that the verification is only done at the Event-B level and no verification is
performed on the generated code.

In future, we want to mechanise the process of generation of the code and
contracts from scheduled Event-B models. We also envisage to apply the app-
roach presented in this paper to other case studies including the Event-B model
of RTM introduced in [10] to further validate our approach.

Acknowledgments. This work was funded in part by the EPSRC PRiME Project
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Abstract. This document presents a description of the European Rail
Traffic Management System (ERTMS) case study. ERTMS is a system of
standards for management and interoperation of signalling for railways
by the European Union (EU). The case study focuses on the ERTMS
Level 3 Hybrid principle, which accommodates different types of trains
including ERTMS trains equiped with the Train Integrity Monitoring
System (TIMS), ERTMS trains without TIMS, and non-ERTMS trains.

Keywords: ERTMS · ETCS · Level 3 Hybrid

1 Introduction

The case study concerns the European Rail Traffic Management System
(ERTMS)1, the system of standards for management and interoperation of sig-
nalling for railways by the European Union (EU)2. The aim of ERTMS is to
replace the different national train control and command systems in Europe
with a seamless European railway system. The advantages of ERTMS include
increased capacity, higher reliability rates, improved safety, and open supply
market.

There are three signaling levels for ERTMS3.

Level 1. Communication between trains and trackside equipment by means of
transponders called Euro-balises. Trackside equipment is needed for detecting
train location and train integrity4 and lineside signals are required.

Level 2. Communication between trains and trackside equipment is provided by
the Global System for Mobile Communications - Railway (GSM-R). Trackside
equipment is needed for determining train location and integrity while lineside
signals are optional.

1 http://ertms.net.
2 http://en.wikipedia.org/wiki/European Rail Traffic Management System.
3 http://ec.europa.eu/transport/modes/rail/ertms/what-is-ertms/levels and modes

en.
4 Train integrity means the train is complete and has not been accidentally split.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 251–261, 2018.
https://doi.org/10.1007/978-3-319-91271-4_17
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Level 3. The train determines its location using fixed positional transponders and
supervises its integrity using the on-board Train Integrity Monitoring System
(TIMS). This means that trackside detection equipment is not required.

There are different options depending on levels of maturity in terms of defini-
tion and development, leading to several ERTMS Level 3 types. Our case study
focuses on Level 3 Hybrid which is the most mature and is developed using
existing technology solution augmented for optimisation [3].

Abbreviations. Figure 1 shows the list of abbreviations used in this document. A
more complete glossary of terms and abbreviations referenced here can be found
in [2].

EoA End of Authority
ERTMS European Rail Traffic Management System
EU European Union
GSM-R Global System for Mobile Communications - Railway
MA Movement Autority
TIMS Train Integrity Monitoring System
TTD Trackside Train Detection
VSS Virtual Sub-Section

Fig. 1. List of abbreviations

Requirements Taxonomy. In this document, we use ASM to indicate an assump-
tion and REQ to indicate a requirement of the system. The list of requirements
in this document is intended to provide a high level view of the system and does
not cover all system details. We refer the reader to [1] for the detailed principles
of the system under consideration.

Structure. The rest of this document is as follows. Section 2 gives an overview
of the system. Section 3 presents a more detailed description of various aspects
of the system under consideration. We briefly review the state machine for the
Virtual Sub-Section (VSS), the key idea for the ERTMS Level 3 Hybrid principle,
in Sect. 4. Section 5 gives a short conclusion on our expectation for the case study.

2 System Overview

It is expensive and challenging to fit trains with ERTMS and the Train Integrity
Monitoring System (TIMS) so Level 3 Hybrid copes with different train con-
figurations (TIMS-equipped, ERTMS without TIMS, and non-ERTMS). Level
3 Hybrid uses a limited amount of trackside detection. In the case of TIMS-
equipped trains, the capacity of the line can be increased using fixed virtual
blocks. In order to achieve this purpose, each Trackside Train Detection (TTD)
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is divided into several VSSes. The scope of the case study is the management of
the VSSes (more detailed specification is in [1]). We will not consider the inter-
locking system, e.g., how train routes are set and unset. More specifically, we
can consider that the trains travel on a straight line and in the same direction.

ASM 1 The trains travel along a straight line track and
in the same direction.

ASM 2 The train track is partitioned into several fixed
TTD sections.

ASM 3 Each TTD is partitioned into one or more fixed
VSS.

The overview of the relevant part of the system can be seen in Fig. 2. The
trackside has a sub-system for managing the VSS, which communicates the VSS
status information to the Movement Authority (MA) authorisation sub-system.
The MA authorisation sub-system sends information related to the MAs to the
trains and also informs the VSS management sub-system about the issued MAs.
In order to decide the VSS status, the VSS management sub-system receives
the TTD status from the interlocking system and the position reports from the
trains (depending on the trains’ type).

Interlocking Trains

VSS
management

MA
authorisation

VSS status

MAs

Trackside

TTD status MAs
Position
reports

Fig. 2. System overview
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We describe in more detail the various aspects of the system in the next
section.

3 Level 3 Hybrid with Fixed Virtual Blocks

3.1 TTD Sections and VSSes

We consider the TTD information as reliable and safe. In particular, a TTD
section is reported as free only if there are no trains or no part of a train located
on the TTD. Subsequently, the VSS on a free TTD can be regarded as “free”.

ASM 4 A TTD can be reported as “free” or “occupied”

ASM 5
A TTD is reported as free if and only if there

are no trains or a part of a train located on the
TTD.

Due to the discrepancy of the timing and spatial information of the trackside
detection, two additional (internal) statuses of VSS are specified: “ambiguous”
and “unknown”. Status “ambiguous” indicates that a train is present but its
status is not known, whereas status “unknown” indicates that the occupancy
sub-section is not proven.

REQ 6
A VSS can have one of the following statuses:

“free”, “occupied”, “ambiguous”, or
“unknown”

REQ 7
A VSS is free when there are no trains or no

part of a train located on the VSS.

REQ 8
A VSS is occupied if there is exactly one train

or a part of a train located on the VSS.

REQ 9
A VSS is ambiguous if there is a train

occupying the VSS but its status is not known.
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REQ 10
A VSS is unknown if the occupancy of the VSS

is not proven.

3.2 Types of Trains

Depending on the train’s equipment, the status of a VSS is computed differently
based on the train position information and the TTD information:

– A TIMS-equipped ERTMS train (an integer train) precisely occupies the
relevant VSS in which it is located.

– An ERTMS train not fitted with TIMS also occupies the sections in the rear
(until the end of the trackside detection section).

– A non-ERTMS train occupies the whole TTD section.

As a result, a non-TIMS train can follow an integer train on VSS sections, but
other trains can only follow it on a separate trackside detection section. Capacity
gain for Level 3 Hybrid can be achieved only for ERTMS trains and full gain is
achieved only for TIMS-fitted trains.

REQ 11
The system should accomodate three types of
trains: TIMS-equipped ERTMS, ERTMS not

fitted with TIMS, and non-ERTMS.

REQ 12 A TIMS-fitted ERTMS train occupies the
relevant VSSes that it is located on.

REQ 13

An ERTMS train without TIMS occupies the
relevant VSSes that it is located on, and also
all the VSSes in the rear until the end of the

TTD section.

REQ 14 A non-ERTMS train occupies the whole TTD
section that it is located on.

The status of a VSS is computed based on the TTD status and the train
position reports.
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3.3 Movement Authority

We will not need to consider how the MAs of the trains are computed or how they
are related to routes. (A route is a contiguous sequence of connected sections.)
The MA of a train defines (beside other information) a position on the track,
called the End of Authority (EoA), which must not be passed by the train.
Depending on the type of a train and its location within the track, the EoA can
be defined in terms of a VSS or of the trackside sections. However, since VSS
status depends on a train’s MA, we will need to consider what has been set as
the train MA with the assumption that the trains will be safe from collision if
they respect the provided MAs. For the purpose of issuing MAs, only “free” state
of VSSes is required to be distinguished from the other states, i.e., “occupied”,
“ambiguous”, or “unknown” (which will be treated as “occupied”).

ASM 15 For non-ERTMS trains, their EoAs are defined
in terms of TTD sections.

ASM 16 For ERTMS trains, their EoAs are defined in
terms of the VSSes.

ASM 17
The MAs are disjoint, i.e., trains will be safe

from collision if they respect the provided MAs.

3.4 Timers

A timer can have one or more start events and zero or more stop events. Any
start/stop event of a timer will start/stop the corresponding timer. A timer
without a stop event once started will run until it is expired. Once expired, this
timer will stay in the same state until it is reset when the start condition is met
again.

REQ 18 A timer has one or more start events.

REQ 19 A timer has zero or more stop events.
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REQ 20

A timer without a stop event once started will
run until expired and stay in the “expired”
state until reset when the start condition is

met again.

There are two main types of timers implemented in the trackside, namely,
waiting timers and propagation timers. The waiting timers are to avoid unneces-
sary changes of VSS status due to the delay in communication of train position,
train integrity information, etc. The propagation timers are to avoid unnecessary
propagation of the “unknown” state to the VSS sections with no immediate risk
of having a train or a part of a train located on them. We describe some of the
important timers here. The complete list of the timers is in [1, Sect. 3.4].

Mute timers. A waiting timer called “mute timer” is assigned to each train. Each
mute timer runs continually and whenever some information is received from
the train, the timer is reset. This timer is used to decide if communication
between the trackside and the train is lost.

REQ 21 A mute timer is assigned to each train.

REQ 22 Each mute timer runs continually.

REQ 23 A mute timer is reset whenever some
information is received from the train.

Wait integrity timers. A waiting timer called a “wait integrity timer” is assigned to
each train. Each wait integrity timer runs continually and whenever integrity
confirmation is received from the train and no change of train length has been
reported since the previous position report, the timer is reset. This timer is
used to decide if the train has lost integrity.

REQ 24 A wait integrity timer is assigned to each train.

REQ 25 Each wait integrity timer runs continually.
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REQ 26

A wait integrity timer is reset whenever
integrity confirmation is received from the train

and no change of train length has been
reported since the previous position report.

Disconnected propagation timers. A “disconnected propagation timer” is assigned
to each VSS. The start event for a “disconnected propagation timer” is that
the “mute timer” of a train located on the VSS expired. The stop event for
this timer is when the connection of the train is reestablished. This timer is
used to propagate the “unknown” status of VSS due to train disconnection.

REQ 27 A disconnected propagation timer is assigned to
each VSS.

REQ 28
The start event of a disconnected propagation
timer is when the mute timer of a train located

on the VSS expires.

REQ 29
The stop event of a disconnected propagation

timer is when connection of the train is
restored.

Ghost train propagation timers. A “ghost train propagation timer” is assigned to
each TTD. The start event for a “ghost train propagation timer” is either (1)
the TTD become “occupied” without any train on it or (2) the TTD become
“occupied” without any MA associated with it. There is no stop event for
this timer. This timer is used to propagate the “unknown” status of VSS due
to ghost trains (see Sect. 3.5).

REQ 30 A ghost train propagation timer is assigned to
each TTD.

REQ 31
The start event of a ghost train propagation
timer is when the TTD becomes “occupied”
without any train or MA associated with it.
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REQ 32
There is no stop event for a ghost train

propagation timer.

3.5 Ghost Trains and Shadow Trains

In some situation, objects might be detected by the TTD but are unknown to the
trackside system (this could due to some physical objects occupied the track or
some virtual objects due to trackside failure). They are called ghost trains. For
example, when a train is split, the rear part will become a ghost train. When a
ghost train is following a normally operated Level 3 train (i.e., an integer train),
it is called a shadow train.

REQ 33 Ghost trains are objects detected by the TTD
but are unknown to the trackside.

REQ 34 A ghost train following an integer train is
called a shadow train.

To protect the system against ghost trains, the VSS status “unknown” is
used and propagated according to the “ghost train propagation timer” (see [1,
Sect. 4.2.2]). To protect the system against a shadow train hazard, the VSS status
“ambiguous” is used (more information is in [1, Sect. 4.5]).

3.6 Train Connectivity

The communication between the trackside and a train is considered to be lost
when the mute timer for the train expires. When the train is disconnected from
the trackside, the VSS sections within the train’s MA up to either the limit of
the first free TTD or the first VSS of the MA are set to“unknown” (they are
propagated according to the “disconnected propagation timer”). A disconnected
train can reconnect, i.e., the trackside receives a position report from the train
after its mute timer has expired. In this case, the status of different VSSes are
updated depending on whether they are occupied by the train or in the front of
the train or in the rear of the train. Also, the updated VSS status will depend
on whether or not the train confirms its integrity with no change in its length.
In any situation, the unknown VSSes in rear of the train would become “free”
if the TTD section is released. More information is in [1, Sects. 3.8 and 4.2.1]

REQ 35
The communication between the trackside and
a train is considered to be lost when the mute

timer for the train expires.
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REQ 36

When the trackside receives a position report
from a disconnected train, the communication

between the trackside and the train is
reestablished

4 The State Machine for VSS

For a VSS, its state machine can be seen in Fig. 3. Depending on the situation,
the status of a VSS can be changed between any two of the four states, i.e., “free”,
“unknown”, “ambiguous”, “occupied”. Extensive details of the transitions can be
found in [1, Sect. 5] and are not repeated here. In particular, for each transition,
there are several situations where the VSS status is changed according to the
transition.

Fig. 3. The state machine of a VSS [1]

5 Conclusion

We have given an overview of the ERTMS Level 3 Hybrid principles. We are
looking for solutions that address the various challenges of the case study, and
also provide insights into the case study and/or the formal methods used. For the
case study, we expect the solutions will illustrate what can be guaranteed by the
system (e.g., in terms of collision-free), and/or explanation about various hazard-
mitigating mechanisms of the system. Regarding formal methods, we expect to
see a justification of the “need” and the “value” of the methods and/or tools in
addressing a complex industrial challenge.

Acknowledgements. The organisers would like to thank the EEIG ERTMS Users
Group (EUG) for the Principles on “Hybrid ERTMS/ETCS Level 3” document [1]
released on 14/07/2017.
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Abstract. This paper presents a specification of the hybrid ERTM-
S/ETCS level 3 standard in the framework of the case study proposed
for the 6th edition of the ABZ conference. The specification is based on
the method and tools, developed in the ANR FORMOSE project, for the
modeling and formal verification of critical and complex system require-
ments. The requirements are specified with SysML/KAOS goal diagrams
and are automatically translated into B System specifications, in order
to obtain the architecture of the formal specification. Domain proper-
ties are specified by ontologies with the SysML/KAOS domain modeling
language, based on OWL and PLIB. Their automatic translation com-
pletes the structural part of the formal specification. The only part of the
specification, which must be manually completed, is the body of events.
The construction is incremental, based on the refinement mechanisms
existing within the involved methods. The formal specification of the
case study is composed of seven refinement levels and all the proofs have
been discharged with the Rodin prover.

Keywords: Requirements engineering · Goal diagrams
Domain modeling · Ontologies · SysML/KAOS · B System

1 Introduction

In this paper, we are interested in using the FORMOSE approach [2] on the case
study proposed for the 6th edition of the ABZ conference [7]. This case study
deals with the specification of the hybrid ERTMS/ETCS level 3 standard [5,14].
The case study is described in two main documents. The first one, [7], describes
the hybrid ERTMS/ETCS level 3 protocol in a general way and restricts the
scope of the study. The second one, [5], offers a technical and detailed description
of the protocol specification. It provides the safety requirements that the system
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 262–276, 2018.
https://doi.org/10.1007/978-3-319-91271-4_18
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must guarantee. The FORMOSE method includes the SysML/KAOS require-
ments engineering language [6,11] for modeling requirements with goal diagrams.
Domain properties are modeled with ontologies, using the SysML/KAOS domain
modeling language [20,22]. Once done, translation rules [13,21,23], supported by
tools [13,23], allow the automatic generation of the B system specification. The
goal diagrams give the set of B System components, each goal gives an event.
As the refinement links defined between these components have to represent the
SysML/KAOS refinements, new proof obligations are generated. The domain
model gives the structural part of the specification. It consists of variables, con-
strained by an invariant, and constants, constrained by properties. The Rodin
tool [3] has been used to support the verification and the validation of the B
System specification, especially to prove the safety invariants and the refinement
logic. The complete specification can be found in [24]. Compared to direct spec-
ification approaches using only plain Event-B such as [10,12], the FORMOSE
method provides a more structured and methodological process to the formal
specification of the system. It allows a decoupling between formal specification
handling difficulties and system modeling, a better reusability and readability
of models, and a strong traceability between the system formal specification
and SysML/KAOS models, which are abstractions of the system and domain
descriptions.

The remainder of this paper is structured as follows: Sect. 2 briefly describes
the B System formal method, the SysML/KAOS goal and domain modeling
languages and the rules for obtaining the B System specifications. Follows a
presentation, in Sect. 3, of the work done on the case study and in Sect. 4, of
the discussion related to it. The discussion includes a short comparison with a
companion paper on the same case study, but specified using only plain Event-B.
Finally, Sect. 5 reports our conclusions.

2 Context

2.1 B System

Event-B is an industrial-strength formal method for system modeling [1]. It is
used to incrementally construct a system specification, using refinement, and to
prove properties. Proof obligations are defined to prove invariant preservation
by events (invariant has to be true at any system state), event feasibility, con-
vergence and machine refinement [1]. B System is an Event-B syntactic variant
proposed by ClearSy, an industrial partner in the FORMOSE project [2], and
supported by Atelier B [4]. A B System specification consists of components.
Each component can be either a system or a refinement and it may define static
or dynamic elements. Constants, abstract and enumerated sets, and their prop-
erties, constitute the static part. The dynamic part includes the representation
of the system state using variables constrained through invariants and updated
through events. Each event has a guard and an action . The guard is a condi-
tion that must be satisfied for the event to be triggered and the action describes
the update of state variables. Although it is advisable to always isolate the static
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and dynamic parts of the B System formal model, it is possible to define the
two parts within the same component. In the following sections, our B System
models will be presented using this facility.

2.2 SysML/KAOS Goal Modeling

SysML/KAOS [6,11] is a requirements engineering method which extends the
SysML UML profile with a set of concepts from KAOS [8] to represent functional
and non-functional requirements. It combines the traceability features provided
by SysML with goal expressiveness provided by KAOS. SysML/KAOS goal mod-
els allow the representation of requirements to be satisfied by the system and
of expectations with regard to the environment through a goal hierarchy. The
hierarchy is built through a succession of refinements using different operators:
AND , OR and MILESTONE . An AND refinement decomposes a goal into
subgoals, and all of them must be achieved to realise the parent goal. An OR
refinement decomposes a goal into subgoals such that the achievement of only
one of them is sufficient for the accomplishment of the parent goal. A MILE-
STONE refinement is a variant of the AND refinement which allows the
definition of an achievement order between goals. A SysML/KAOS goal can be
functional or non-functional. The scope of this document is limited to functional
goals. A functional goal describes the expected behaviour of the system once a
certain condition holds [11]: [if CurrentCondition then] sooner-or-later Tar-
getCondition . SysML/KAOS allows the definition of a functional goal with-
out specifying a current condition. In this case, the expected behaviour can be
observed from any system state.

2.3 Formalisation of SysML/KAOS Goal Models

The formalisation of SysML/KAOS goal models is the focus of the work done
by [13]. The proposed rules allow the generation of a formal model whose struc-
ture reflects the hierarchy of the SysML/KAOS goal diagram: one component
is associated with each hierarchy level; this component defines one event for
each goal. The semantics of refinement links between goals is expressed in the
formal specification with a set of proof obligations which complement the stan-
dard proof obligations for invariant preservation and for event actions feasibility
[1]. It could also have been expressed using control variables. However, control
variables make the formal specification less readable and maintainable. In addi-
tion, each action of a formal event that updates a control variable generates new
proof obligations, which complicates the formal verification process. Regarding
the new proof obligations, they depend on the goal refinement operator used.
For an abstract goal G and two concrete goals G1 and G2:1

1 For an event G, G Guard represents the guards of G and G Post represents the post
condition of its actions.



Modeling the Hybrid ERTMS/ETCS Level 3 Standard 265

– For the AND operator, the proof obligations are
• G1 Guard ⇒ G Guard • G2 Guard ⇒ G Guard
• (G1 Post ∧ G2 Post) ⇒ G Post

– For the OR operator, they are
• G1 Guard ⇒ G Guard • G2 Guard ⇒ G Guard
• G1 Post ⇒ G Post • G2 Post ⇒ G Post
• G1 Post ⇒ ¬G2 Guard • G2 Post ⇒ ¬G1 Guard

– For the MILESTONE operator, they are
• G1 Guard ⇒ G Guard • G2 Post ⇒ G Post
• �(G1 Post ⇒ ♦G2 Guard) (each system state, corresponding to the

post condition of G 1, must be followed, at least once in the future, by a
system state enabling G 2)

Nevertheless, the generated specification does not contain the system struc-
ture, composed of variables, constrained by an invariant, and constants, con-
strained by properties.

2.4 SysML/KAOS Domain Modeling

The SysML/KAOS domain modeling language [20,22] uses ontologies to repre-
sent domain models. It is based on OWL [18] and PLIB [16], two well-known
ontology modeling languages. Each domain model corresponds to a refinement
level in the SysML/KAOS goal model. The parent association represents the
hierarchy of domain models. A domain model can define multiple elements. For
this case study, a domain model can define concepts, attributes, datasets and
predicates. A concept represents a collection of individuals with common prop-
erties. It can be declared variable (isVariable = TRUE ) when the set of its
individuals can be dynamically updated by adding or deleting individuals. Oth-
erwise, it is constant (isVariable = FALSE ). A data set represents a collection of
data values. An attribute captures links between concepts and data sets. It can
be variable or constant, functional or total. A predicate expresses constraints
between domain model elements, using the first order logic. Each predicate has
a body which represents its antecedent and a head which represents its conse-
quent. The head can be omitted if it is always TRUE. Gluing invariants represent
links between variables defined within a domain model and those appearing in
more abstract domain models. They are extremely important because they cap-
ture relationships between abstract and concrete data during refinement and are
used to discharge proof obligations.

2.5 From SysML/KAOS Domain Models to B System Specifications

The translation rules are fully described in [21]. They allow the extraction of the
structural part of the system formal specification from domain models. Table 1
represents some rules that are relevant for our purposes. It should be noted that
o x designates the result of the translation of x and that abstract is used for
“without parent”.
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Table 1. Summary of the translation rules

Domain model B System

Element Constraint Element Constraint

Abstract

domain model

DM DM ∈ DomainModel o DM o DM ∈ System

DM is not associated to a parent domain

model

Domain model

with parent

DM {DM ,PDM} ⊆ DomainModel o DM o DM ∈ Refinement

PDM DM is associated to PDM through the

parent association

o DM refines o PDM

PDM has already been translated

Abstract

concept

CO CO ∈ Concept o CO o CO ∈ AbstractSet

CO is not associated to a parent concept

Attribute AT CO CO ∈ Concept o AT IF the is Variable property

of AT is set to FALSEDS DS ∈ DataSet

AT ∈ Attribute THEN o AT ∈ Constant

CO is the domain of AT ELSE o AT ∈ Variable

DS is the range of AT END

CO and DS have already been translated o AT ∈ o CO ↔ o DS1

Data value Dva DS Dva ∈ DataValue DS ∈ DataSet o Dva o Dva ∈ Constant

Dva is a value of DS o Dva ∈ o DS

DS has already been translated

1 Depending on attribute properties, this relation may become a partial or total function.

3 Specification of the Hybrid ERTMS/ETCS Level 3
Standard

3.1 Main Characteristics of the Standard

The Hybrid ERTMS/ETCS level 3 protocol (HEEL3) has been proposed to opti-
mize the use and occupation of railways [5,7,14]. It thus proposes the division of
the track into separate entities, each named Trackside Train Detection (TTD).
In addition, each TTD is subdivided into sub-entities called Virtual Sub-Sections
(VSS). A TTD has two possible states: free and occupied with a safety invariant
stating that if a train is located on a TTD, then the state of the TTD must be set
to occupied. In addition to these two states, a VSS may have the unknown or the
ambiguous state. The ambiguous state is used when the information available
to the system suggest that two trains are potentially present on the VSS. The
unknown state is used when the system can guarantee neither the presence nor
the absence of a train on the VSS. For an optimal safety, Movement Authorities
(MA) are evaluated and assigned to each connected train. The MA of a train des-
ignates a portion of the track on which it is guaranteed to move safely. ERTMS
(European Rail Traffic Management System) designates a protocol and a set of
tools that allow a train to know and report its position. Similarly, TIMS (Train
Integrity Monitoring System) designates the component that allows a train to
know and report its integrity and its size. HEEL3 considers trains equipped
with TIMS (TIMS trains), which can report themselves as integer or not; trains
equipped with ERTMS (ERTMS trains), which can report their position (con-
nected trains) or not (unconnected trains); and finally, trains that are equipped
neither with a ERTMS nor with a TIMS (unconnected trains).
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Trackside Train Detection 
Section 1

Trackside Train Detection 
Section 2

Trackside Train Detection 
Section 3

VSS11 VSS12 VSS13 VSS14 VSS21 VSS22 VSS23 VSS24 VSS31 VSS32 VSS33 VSS34

Train B

Non-TIMS Train

Train C

TIMS Train

Train A

Non-ERTMS Train

Fig. 1. Overview of the dependence between the capacity exploitation and the presence
of ERTMS and TIMS [14]

Fig. 2. The SysML/KAOS goal diagram

Figure 1 is an overview of the influence of the presence of ERTMS and TIMS
on the track capacity exploitation [14], considering trains that behave normally.
A TIMS train, is considered to occupy a whole VSS. A non-TIMS train (that is
ERTMS) is considered to occupy all the VSSs from its front to the rear end of
the TTD section where it is located. Finally, a non-ERTMS train (unconnected
train) is considered to occupy the whole TTD section where the system guesses
it is.

3.2 The Goal Diagram

The SysML/KAOS requirements engineering method allows the progressive con-
struction of system requirements from refinements of stakeholder needs. Thus,
even if the management of VSSs is the purpose of the case study, we need to
put it into perspective with more abstract objectives that will explain what
VSSs are useful for. Figure 2 is an excerpt from the SysML/KAOS functional
goal diagram focused on the main system purpose: move trains on the track
(MoveTrainOnTrack). To achieve it, the system must ensures that the train has
a valid MA (ComputeTrainMA). If the MA has been recomputed, then the sys-
tem must assign the new MA to the train (AssignMAtoTrain). Finally, the train
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has to move following its assigned MA (MoveTrainFollowingItsMA). The sec-
ond refinement level of the SysML/KAOS goal diagram focuses on the infor-
mations needed to determine the MA of a train: the MA computation can
be based only on TTD states (ComputeTrainMAFollowingTTDStates) or fol-
lowing VSS states (ComputeTrainMAFollowingVSSStates) [5]. When the com-
putation is only based on TTD states, it corresponds to the ERTMS/ETCS
Level 2 protocol. When VSS states are involved, it corresponds to the ERTM-
S/ETCS Level 3 protocol. The MA computation based on VSS states requires
the update of the states of VSSs (ComputeVSSStates) and the computation
of the MA (ComputeTrainMAUsingVSSStates). Finally, depending on the type
of the ERTMS/ETCS level 3 implementation, it is possible to use or not the
TTD states when computing the VSS states (Table 1 of [14]). If TTD states
are not required (virtual (without train detection) level 3 type), it corresponds
to ComputeVSSStateswoTTDStates, with the disadvantage of only allowing the
circulation of trains equipped with TIMS. If TTD states are used (hybrid level
3 type), it corresponds to ComputeVSSStatesFollowingTTDStates.

Fig. 3. SysML/KAOS goal diagram of the VSS state computation purposes

Figure 3 is an excerpt from the SysML/KAOS functional goal diagram
focused on the purpose of VSS state computation with the use of TTD
states (ComputeVSSStatesFollowingTTDStates). The computation of the cur-
rent VSS states can be split into the determination of the current states of
VSSs previously in the unknown state (ComputeStatesOfVSSinUnknownState),
in the occupied state (ComputeStatesOfVSSinOccupiedState), in the ambigu-
ous state (ComputeStatesOfVSSinAmbiguousState) and in the free state
(ComputeStatesOfVSSinFreeState) (Fig. 7 of [5]). The last refinement level is
focused on VSSs previously in the free state. Its goals come from the require-
ments of the transition #1A of Table 2 of [5]. When the TTD is free, then the
VSSs remain free (ComputeStatesOfVSSinFreeStateWhenTTDisFree). When
the TTD is occupied and no train is located on it or no MA is issued, then the
VSSs move in the unknown state (ComputeStatesOfVSSinFreeStateWhenTTDis
OccupiedandNoTrainisLocatedonTTD, ComputeStatesOfVSSinFreeStateWhen
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TTDisOccupiedandNoMAisIssued). The other transitions are the purpose of
ComputeStatesOfVSSinFreeStateWhenTTDisOccupiedandTrainisLocatedand
MAisIssued.

The rest of this section consists of a presentation of the SysML/KAOS
domain models associated with the most relevant refinement levels of the goal
diagrams and of a description of the B System specifications obtained from goals
and ontologies. From the goal model, we distinguish seven refinement levels which
are translated into seven B System components. The formal specification has
been verified using Rodin [3], an industrial-strength tool supporting the Event-B
method [1]. We have in particular discharged all the proof obligations associated
with the safety invariants that we have identified and with the SysML/KAOS
refinement operators that appear in the goal diagram. For the sake of concision,
we will present here only the first three refinement levels. The full specification
can be found in [24].

3.3 The Root Level

Figure 4 represents the domain model associated with the top most goal
MoveTrainOnTrack of the diagram of Fig. 2. It represents the entities needed
for the specification of the movement of a train on the track and their charac-
teristics. For instance, the concept TRAIN models the set of trains. The attribute
connectedTrain models the subset of TRAIN that broadcast their location at
least once and for each, the current connection status. The attribute front
models the estimated position of the front of each connected train. For each con-
nected train equipped with a TIMS, the attribute rear models the estimated

Fig. 4. SysML/KAOS domain modeling of the goal diagram root level
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position of its rear2. Thus, dom(front) \ dom(rear) represents the set of trains
equipped with a ERTMS and not equipped with a TIMS. Predicates repre-
sent constraints on domain model elements. Each predicate is prefixed with an
identifier p<i>.<j> where <i> designates the refinement level number and <j>
designates the number of the predicate of this refinement level. For example, the
predicate p0.2 defines TRACK as the data range a..b.

Fig. 5. B System specification of the root level of the goal diagram of Fig. 2

Figure 5 represents the B System model obtained from the translation of
the root level of the goal diagram of Fig. 2 and of the associated domain model
of Fig. 4. The domain model gives rise to sets, constants, properties, variables
and invariants of the formal specification. Predicates involving variables give
rise to invariants and the others to properties. The isFunctional and isTotal
characteristics of attributes, are used to guess if an attribute should be translated
into a partial or total function. The root goal is translated into an event for which
the body has been manually specified: the movement of a connected train (grd1)
results in the incrementation of the position of its front (act1) and its rear (act2
in the case of an INTEGER train) of the value corresponding to the movement.
Of course, the movement can only be done if the train stays on the track (grd3).

3.4 The First Refinement Level

Figure 6 represents the domain model associated with the first refinement level of
the SysML/KAOS goal diagram of Fig. 2. It refines the one associated with the
root level and introduces an attribute named MA representing the MA assigned
to a connected train. The MA of a train is modeled as a contiguous part of
the track (p1.1), containing the train (p1.2 and p1.3). Finally, the predicate
p1.4 asserts that the MA assigned to two different trains must be disjoint. The
predicates p1.2 and p1.3 are gluing invariants, linking the concrete variable MA
with the abstract variables front and rear.

2 The rear is deduced from the front and length of the train, since a train equipped
with a TIMS broadcast its length and its integrity.
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Fig. 6. SysML/KAOS domain modeling of the goal diagram first refinement level

Fig. 7. B System specification of the first refinement level of the diagram of Fig. 2

Figure 7 represents the B System model obtained from the translation of
the first refinement level of the goal diagram of Fig. 2 and of the associated
domain model of Fig. 6. Each refinement level goal is translated into an event
for which the body has been manually specified: the current MA of the train
is computed and stored into a variable named MAtemp (event ComputeTrainMA).
Because the computation of the MA is out of the scope of the case study [7],
the event simply nondeterministically choose an MA, with respect to the safety
invariants. This MA is then assigned to the train by updating the variable MA
(event AssignMAtoTrain) and taken into account for the train displacement
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(event MoveTrainFollowingItsMA). Theorems s1, s2, s3 and s4 represent the
proof obligations related to the usage of the MILESTONE operator between
the root and the first refinement levels. Since each proof obligation has been
modeled as an Event-B theorem, it has been proved based on system properties
and invariants. To deal with the fact that Event-B does not currently support
the temporal logic, we have used the proof obligation G1 Post ⇒ G2 Guard for
the invariants s2 and s3, instead of �(G1 Post ⇒ ♦G2 Guard) (Sect. 2.3), since
(G1 Post ⇒ G2 Guard) ⇒ (�(G1 Post ⇒ ♦G2 Guard)). By using this trick,
we replace the proof obligation involving operators of the temporal logic with a
more constraining proof obligation. The trick is only useful if it is possible and
easier to discharge the newly introduced proof obligation. The full specification
of s1 is given below:
theorem s1: ∀ tr , p, q, len ·(((tr ∈ connectedTrain−1[{TRUE}]) ∧ (p. .q ⊆ TRACK ∧ p ≤ q) ∧
(front(tr) ∈ p . . q) ∧ (tr ∈ dom(rear) ⇒ rear(tr) ∈ p . . q) ∧ (p . . q ∩ union(ran({tr} �− MA)) =

∅) ∧ (len ∈ N1) ∧ (front(tr)+ len ∈ TRACK ) )⇒ ( (tr ∈ connectedTrain−1[{TRUE}]) ∧ (len ∈
N1) ∧ (front(tr) + len ∈ TRACK ) ))

It expresses the fact that the activation of the guard of ComputeTrainMA for cer-
tain parameters is sufficient for the activation of the guard of MoveTrainOnTrack
for this same group of parameters.

3.5 The Second Refinement Level

Figure 8 represents the domain model associated with the second refinement level
of the diagram of Fig. 2. It refines the one associated with the first refinement
level and introduces two concepts named TTD and VSS. The attributes stateTTD
and stateVSS represent the states of the corresponding concepts. The predi-
cates p2.1..p2.8 define each TTD as a contiguous part of the track and each
VSS as a contiguous part of a TTD. The predicates p2.9 and p2.10 are used to
state that if a train is located on a TTD, then its state must be occupied: a train
tr ∈ TRAIN is located on ttd ∈ TTD if front(tr) ∈ ttd (p2.9) or if tr is equipped
with a TIMS (tr ∈ dom(rear)) and (rear(tr)..front(tr)) ∩ ttd �= ∅ (p2.10).
Finally, the predicates p2.11..p2.13 states that two different trains must be in
disjoint parts of the track: for two trains tr1 and tr2, if they are equipped
with TIMS, then the track portions that they occupy should just be disjointed
(p2.11); if they are on the same TTD and one of them, (tr2), is not equipped
with a TIMS, then, the second, (tr1), must be equipped with a TIMS and tr2
must be in the rear of tr1 (p2.12); if none of them is an INTEGER train, then
they must be in two distinct TTDs (p2.13). The predicates p2.9 and p2.10
are gluing invariants, linking the concrete variable stateTTD with the abstract
variables front and rear. The B System specification raised from the transla-
tion of the second refinement level includes the result of the translation of the
domain model of Fig. 8, two new events (ComputeTrainMAFollowingTTDStates,
ComputeTrainMAFollowingVSSStates), an extension of the event MoveTrain
FollowingItsMA taking into account the new safety invariants and the theo-
rems representing the proof obligations related to the usage of the OR operator
between the first and second refinement levels.
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Fig. 8. SysML/KAOS domain modeling of the goal diagram second refinement level

4 Discussion

Benefits. This case study allowed us to benefit from the advantages of a high-
level modeling approach within the framework of the formal specification of the
hybrid ERTMS/ETCS level 3 requirements: decoupling between formal speci-
fication handling difficulties and system modeling; better reusability and read-
ability of models; strong traceability between the system formal specification
and the goal model, which is an abstraction of the case study description. Using
the FORMOSE approach, we have quickly built the refinement hierarchy of the
system and we have determined and formally expressed the safety invariants.
The approach bridges the gap between the system textual description and its
formal specification. Its use has made it possible to better present the specifica-
tions, excluding predicates, to stakeholders3 and to better delineate the system
boundaries. Using Rodin [3], we have formally verified and validated the safety
invariants and the goal diagram refinement hierarchy. Through ProB [9], we have

3 Stakeholders, here, include the co-authors of this paper and the members of the
FORMOSE project involved in the study. We plan an assessment on more external
entities.
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animated the formal model. The full specification can be found in [24]. One con-
clusion of our work is that the description of the standard, as it exists in the
documents [5,7,14], does not guarantee the absence of train collisions. Indeed,
since the standard allows the movement of unconnected trains on the track,
nothing is specified to guarantee that an unconnected train will not hit another
train (connected or not). The animation of the specification allows the observa-
tion of these states. The only guarantee that the safety invariants expressed in
[5,7,14] bring is that a connected train will never hit another train.

Comparison. We have also specified in a companion paper [10] the case study
using plain Event-B, in the traditional style. Two distinct specifiers (first author
of [10] and first author of this paper) wrote each specification without inter-
acting with each other during specification construction. Critical reviewing by
the team was then conducted after the specifications were built. The specifica-
tion in [10] includes four refinement levels. The TTDs and trains are introduced
in the root level and the VSSs are introduced in the second refinement level,
as refinements of TTDs. The MAs and VSS states are introduced in the third
refinement level (M3), for train movement supervision. A strategy is proposed
to prove the determinism of the transitions of VSS states. The state variables of
[10] are partitioned into environment variables and controller variables, and sim-
ilarly for events. Environment events only modify environment variables. Con-
troller events read environment variables and update controller variables. In this
paper, we only model controller events; state variables represent the controller
view of the environment. The execution ordering and the refinement strategy are
enforced using proof obligations expressed as theorems, whereas in [10] there is
no proof about these aspects. In [10], the safety properties are introduced in the
last refinement level; here, we introduce them in the first (predicate p1.4) and
second (predicates p2.9..p2.13) refinements. In [10], all trains equipped with
ERTMS are equipped with TIMS, so they broadcast their front and rear; here,
we consider ERTMS trains with or without TIMS, so a ERTMS train may or
may not broadcast its rear. The FORMOSE approach makes it possible to trace
the source and justify the need for each formal component and its contents, in
relation with the SysML/KAOS goal and domain models. The FORMOSE app-
roach therefore represents a more structured and methodological process to the
formal specification of the system.

Difficulties. The expression of theorems representing proof obligations associ-
ated to SysML/KAOS refinement operators was difficult because there is no way
in Rodin to designate the guard and the post condition of an event within predi-
cates. Table 2 summarises the key characteristics related to the formal specifica-
tion. The proof obligations have been discharged using the Rodin tool extended
with Atelier B provers [17] and SMT solvers [19]. Customised auto-tactic/post-
tactic profiles, including the added provers, with extended timeouts, have been
defined. It seemed that the provers have a lot of trouble with data ranges such
as p..q and with conditional actions such as rear := ({TRUE �→ rear �− {tr �→
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rear(tr) + len},FALSE �→ rear})(bool(tr ∈ dom(rear))) defined in the compo-
nent ertms etcs case study to simulate an if-then-else in order to avoid the
definition of a second event.

Table 2. Key characteristics related to the formal specification

Refinement level L0 L1 L2 L3 L4 L5 L6

Invariants 4 11 13 4 6 5 9

Proof obligations (PO) 20 40 50 13 5 5 14

Automatically discharged POs 17 30 30 11 0 0 4

Interactively discharged POs 3 5 20 2 5 5 10

5 Conclusion and Future Work

This paper focusses on the use of the FORMOSE approach for the high level
modeling of system requirements, of domain properties and of safety invariants
related to the hybrid ERTMS/ETCS level 3 standard [5,7,14]. Translation rules,
supported by tools [13,23], have then been applied to obtain a formal specifica-
tion containing the system structure and the skeleton of events. The Rodin tool
[3] has been used to verify and validate the formal specification, especially to
prove the safety invariants and the refinement logic, after the completion of the
body of events. The full specification can be found in [24]. A comparison with a
companion paper on the same case study, but specified using only plain Event-B,
has been done.

Work in progress aims at improving the representation of domain predicates
(to make them more user-friendly) and at evaluating the impact of updates on
B System specifications within SysML/KAOS models. We are also working on
integrating the approach within the open-source platform Openflexo [15] which
federates the various contributions of FORMOSE project partners [2].

Acknowledgment. This work is carried out within the framework of the FORMOSE
project [2] funded by the French National Research Agency (ANR). It is also partly sup-
ported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
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Abstract. The Spin model checker has been successfully applied to the
modelling, validation, and verification of different safety-critical systems.
In this paper, we model and validate the Hybrid ERTMS/ETCS Level 3
Case Study using Spin; in particular, we show the assumptions we made
to keep the state space limited, and present the problems and ambiguities
that arose during the modelling. Although Spin offers several advantages
in terms of validation and verification facilities, its modelling language
Promela is limited if compared to higher level notations of other for-
mal methods. Therefore, we discuss the advantages and disadvantages
of using the tool, and how it could be improved in terms of modelling
facilities.

1 Introduction

In the context of the ABZ 2018 conference, the Hybrid ERTMS/ETCS Level
3 Case Study [6] has been proposed as benchmark for comparing the strengths
(and weaknesses) of different state-based formal methods. The solutions provided
for the case study should demonstrate the modelling, validation, and verification
facilities of different methods.

The aim of the Hybrid ERTMS/ETCS Level 3 [6] is to increase the through-
put of railway tracks, by integrating the physical information coming from
the trackside detection system with information transmitted by the train itself
regarding its position and integrity. In pre-Level 3 systems the railway track
is divided in TTD (trackside train detection) sections and entering and exiting
each TTD is physically detected; in such a situation, a whole TTD section is
blocked when there is a train inside (i.e., no two trains can be in a single TTD1).
In Hybrid ERTMS/ETCS Level 3 the train also periodically sends information
about its position and integrity to the trackside system; in this situation, each
TTD is further divided into several virtual sub-sections (VSSs) and the system

The research reported in this paper has been partially supported by the Czech
Science Foundation project number 17-12465S.

1 Actually, two trains can be in a TTD if they are operating in on-sight mode in which
the drivers are fully responsible for the train movement; this setting, however, is an
exceptional case that is not a part of normal operational mode.
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should avoid presence of two trains on the same VSS. We remind to [6] for the
complete description of the requirements.

As widely demonstrated in literature [14], there is no golden method for
system analysis, and each particular method can provide a better support for
some aspects (e.g., modelling), but be deficient on some others (e.g., scalability
in verification). High-level notations as Abstract State Machines [4] and B [1]
provide a wide support for modelling and refining the model and can be also used
for documentation purposes when discussing with the stakeholders. In addition,
they also provide different facilities for verification in terms of model checking [2,
15]; they usually translate their models into the notation of an existing model
checker [2,7,16,17] and use this for the verification. The problem of this approach
is that the mapping usually introduces a non-trivial overhead that limits their
scalability.

On the other hand, implementing the problem directly in the notation pro-
vided by the model checker (e.g., Promela for Spin [12] or the input notation of
NuSMV [8]) usually allows one to obtain a more simple model that scales better.
This is due to the fact that the notation provided by model checkers is rather
limited and allows to get a better understanding of the consumed resources.
However, such notations are usually less readable than notations as ASMs and
B. Therefore, there is a trade-off between readability and scalability.

In this paper, we propose a solution of the aforementioned case study in
Spin. In developing the system, we tried to abstract as much as possible from
all the unnecessary details, but still preserving the soundness of the verification.
Since we have taken the approach of modelling the system directly in the input
language of an explicit model checker, our solution can be taken as a baseline
comparison for evaluating the performances of solutions developed in higher level
notations. Such comparison could be used to assess the overhead introduced by
mapping tools (and eventually bring to their improvement). On the other hand,
we also aim at identifying those features that are missing in Promela (e.g.,
logging and visualization facilities) and that could be added to the language
without compromising the performance.

Section 2 illustrates how we modelled the case study in Promela, and Sect. 3
describes the experiments we conducted. Section 4 discusses some problems we
faced during the development of the model and some lessons learned. Finally,
Sect. 5 reviews some related work and Sect. 6 concludes the paper.

2 Model

2.1 Spin Modelling Platform

The Promela language is the input language for the Spin model checker [12].
A Promela model consists of global variables and definitions of process types.
Each process type can be instantiated resulting in a process (instance), which
becomes the active entity of the model. A process consists of local variables and
a sequence of statements, which are executed basically in the order in which
they are written. The value of local variables and the process program counter
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define the state of the process. The model is then defined as all allowed inter-
leavings of particular processes’ statements; in turn, the (global) model state is
the composition of states of all processes and the values of global variables.

Spin allows for both simulation and verification of the models. While during
verification, the entire state space, i.e., all states of the model are explored, the
simulation can be seen as one particular execution, i.e., one particular inter-
leaving of processes’ statements, similarly to an execution of a multi-threaded
program.

Spin provides several means for specifying, and also verifying specific model
properties. They include asserts (as known from imperative programming lan-
guages, such as Java and C/C++), LTL formulae, checking for deadlocks and
non-progress cycles, and so-called “never claims” [12]. While asserts can be used
in a similar way as in common programs to check variable values at particular
model places (i.e., expressing safety properties), LTL and non-progress cycles
allow the developer for expressing and checking more complex properties, includ-
ing both safety and liveness ones. Never-claims provide even more precise way for
specification of the properties in an imperative way (complementary to declara-
tive LTL).

2.2 Description of Model

In this section, we give a general overview of the model we developed.
The model (the model.pml file) consists of two main parts, each one rep-

resented by a Promela process—a reality process and a trackside process.
On the other hand, each train is represented by a data structure (Train), thus
being a passive entity in our model.

The reality process represents the real situation. It manipulates an array
of VSS (real[]) representing the actual position of the trains and updates the
fields of the Train structure accordingly.

The trains are moved either according to their movement authority in a
random manner, or according to a defined scenario. The operation mode and
the particular scenario to be executed is determined by the value of the sce
variable; if none is defined, random mode takes place. The scenarios are specified
in a separate file scenarios.pml.

The trackside process represents the behaviour of the trackside infrastruc-
ture. It receives the information reported by trains (by means of reading the
fields of the Train structure) and changes the state of particular VSSs accord-
ingly. The VSSs and their states are stored in an array (vss[]), similarly to the
real state (real[]).

Code 1 shows an excerpt of the data structures used in the model. Each VSS
(i.e., a VSS) can be in one of the four states FREE, OCCUPIED, AMBIGUOUS, and
UNKNOWN as described in the case study document [6]. The VSSs of the real
array, instead, can be set just either to FREE or to OCCUPIED; the real array is
not accessed by the trackside detection system, but it is only used for debugging
and verification purposes to compare the assumed state with the real one.
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mtype = {REAL, TRACKSIDE};
mtype schedule = REAL;

mtype = {FREE, OCCUPIED, AMBIGUOUS, UNKNOWN};
typedef VSS {

mtype state;
byte ttd;

}

VSS vss[VSSCOUNT];
VSS real[VSSCOUNT];

mtype = {TTDFREE, TTDOCCUPIED};
typedef TTDSection {

byte firstVSS;
mtype state;
bool ghost;

}

TTDSection ttd[TTDCOUNT];

typedef Train {
byte front;
byte rear;
bool connected;
bool integer;

byte eom;
byte eoma;
bool hasreported;
byte reportedposition;
byte reportedintegrity;
...

}

Train trains[TRAINCOUNT];
’

Code 1. Data structures

Array ttd represents the real state of each TTD section; note that the TTD
information is always considered safe by the trackside, and so there is only
one copy of the array. In order to model the division of TTDs in VSSs, each
TTDSection stores the index of the first VSS in the section. Similarly, each VSS
stores an index of the TTDSection of which it is a part.

The Train structure involves fields both representing the real situation (e.g.,
position of the train) and those communicated to the trackside (e.g., reported
position). The most important Train fields are:

– front and rear representing the real VSSs containing the front end and the
rear end of the train (either the same one, or two consecutive ones)—see
Sect. 2.3;

– eoma is the end of movement authority that the trackside grants to the train;
– eom is the destination of the train (i.e., “end of mission”);
– hasreported tells whether the train has reported in its last step;
– reportedposition, reportedintegrity, . . . represent the information

reported by the train through the PTD; for example, reportedposition
is the last reported position of the front end of the train.

Often, we use high values (254, 255) to model “unknown” or “invalid” values.
For example, if a train has never reported, the last reported position is set 255.

The behaviour of the model is specified by the rules partially shown in Code 2.
The model alternatively executes two processes: the reality process models the
movement of the train, while the trackside process models the trackside system.
The scheduling is determined by the value of the schedule variable. An alter-
native approach would be using the d step or atomic blocks, but this solution
brings several issues: (1) when using d step blocks, the non-deterministic choices
would not be explored, (2) a statement inside an atomic block can become
blocked (by mistake in the model), so the other process would get executed
(unexpectedly), and (3) when experimenting with d step blocks, spin reported
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#define rule2A (ttdstate == TTDOCCUPIED) && (trainidonvss != 255) && ...
#define rule7A trainidonvss != 255 && ((mutetimer[0] == 2 && trainidonvss == 0) || ...

...
inline updateVSS(i) {

...
if

:: vss[i].state == FREE −>
if

...
:: rule2A −> vss[i].state = OCCUPIED; log(”transition #2A taken\n”);
...

fi
:: vss[i].state == OCCUPIED −>

if
...
:: rule7A −> vss[i].state = UNKNOWN; log(”transition #7A taken\n”);
...

fi
:: vss[i].state == AMBIGUOUS −> ...
:: vss[i].state == UNKNOWN −> ...

fi
}

proctype trackside() {
do
:: schedule == TRACKSIDE −>

...//set timers
atomic {

for (i : 0 .. VSSCOUNT − 1) {
updateVSS(i);

}
}
...//update end of movement authority
schedule = REAL;

:: timeout −> break;
od;

}

...

proctype reality() {
do
::schedule == REAL −>

if
:: (vss[0].state == FREE) && (alive < 2) −> spawntrain(alive); alive++;
:: trains[0].alive −> move(0); // train 0 moves
:: trains[1].alive −> move(1); // train 1 moves
...

fi;
trainreport(0); // train 0 can either report or not
trainreport(1); // train 1 can either report or not
schedule = TRACKSIDE;

od;
}

Code 2. Rules

artificial deadlocks. We assume that the last issue is caused by too many state-
ments inside a single d step block.

When executed, the reality process non-deterministically performs one of
the following actions:
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– spawn of a new train (up to the fixed maximum train number of 2);
– progress of the spawned trains. Each train can perform one of the following

actions:
• if the train occupies only one VSS, it can either move only the front in

the next VSS (so occupying two VSSs), or move entirely in the next VSS.
The type of movement is chosen non-deterministically;

• if the train spans over two VSSs, the rear of the train can be moved to
the VSS containing the front;

• the train disappears if it reaches eom, or the end of the modelled part2;
• the train can decide not to move from the current position. This mod-

els the situation in which the train moves while staying inside the same
VSS(s);

• the connected train can disconnect and vice versa;
• the train can also split into two trains, if there is just one train in the

system so far.

Moreover, at each step, the train can either report or not. The report always
includes information about the position of the train, but may or may not involve
integrity information.

At each step, the trackside process:

1. non-deterministically sets the starting and expiration of timers;
2. updates the states of the VSSs according to the rules of the case study doc-

ument;
3. updates the eoma of the trains up to the first free VSS.

2.3 Abstractions

One of the main difficult aspects in modelling is to decide which details of the
requirements can be abstracted away as not necessary for checking the correct-
ness of the system. Leaving out details of the model has two advantages: the
model is simpler to understand and maintain, and can be handled by verifica-
tion tools (i.e., to tackle the state explosion problem). In the following, we report
on the abstractions we applied to the case study requirements.

Train Length. We do not explicitly model the train length. We assume that a
train can fit in a VSS and, therefore, during its journey, it can span at most over
two VSSs. This decision is motivated by the specification document [6] (including
the scenarios) that only considers these train lengths.

Number of Trains. The scenarios also report at most two trains. We assume this
situation to be general enough to capture situations with a greater number of
trains. As in the case of the train length, we were inspired by the specification
document and the motivation to keep the model state space smaller.
2 Note that the case study assignment [11] considers movement only in one direction,

i.e., no backward moves.
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Train Behaviour. We assume that the train can do at most one action at a
time: move the front end, move the rear end, move entirely to the following
VSS, disconnect, or reconnect. Therefore, for example, it is not possible that the
reality process moves and disconnects a train in a single step. However, we can
still model a given combination of train actions in several consecutive steps; for
example, the simultaneous train movement and disconnection is captured by two
steps, in which the train first moves and then disconnects. Our experiments with
scenarios show that this approach includes also all the one-step VSS updates,
so we consider it an over-approximation. In addition to that, the train can also
disappear after reaching either its eom or the end of the modelled railway track.

Timers. The timers are modelled in quite a precise way. Each timer is started
and stopped when the conditions for it [6] are met. Since Promela does not
provide any real time support, the timers in our model non-deterministically
expire after they are started. This can lead to unrealistic situations in the model,
which would not appear in practice. For example, a train can move over several
VSS without reporting its position and without expiring its mute timer. On the
other hand, there is no precise relation between the timer expiration time, train
speed and VSS lengths in the requirements document [6], which we consider its
particular deficiency3. Our approach also allows us not to explicitly model the
wait integrity timers, since they can be covered by the integrity loss propagation
timers.

3 Experiments

We run all the experiments on a Linux blade server with Xeon X5687 CPU
with 192 GB RAM. The model file together with the scenario definitions and
output of scenario simulations are available at http://d3s.mff.cuni.cz/∼kofron/
abz18casestudy.html. Modelling the whole case study took about one month:
two weeks for creating the model and other two weeks for debugging it.

In order to validate our approach, we simulated the nine scenarios reported
in the requirements [6]; in order to automatize the approach, we had to specify
in the model itself a mechanism for forcing some particular steps: more details
are given in Sect. 4. In almost all the steps of all the scenarios, we were able to
reproduce the exact VSSs configuration, using the same rules reported in the
requirements to update the single VSSs. In some particular steps, instead, our
simulation differs because of errors and/or ambiguities in the specification; we
detail all of them in Sect. 4.

In addition to validation, we performed a more detailed analysis in terms
of formal verification. We ran several verification runs with different settings
(stack size limits, storage modes—exhaustive vs. bitstate hashing) to cover as
large part of the state space as possible. We learned that the state space is
branching a lot and so that it makes sense to run the verifier with both large
3 Formulations in [6] such as “A value between 5–10 s would seem to be practical” and

“. . . this timer could be set to a value of at least 27 s . . . ” are not of much use.

http://d3s.mff.cuni.cz/~kofron/abz18casestudy.html
http://d3s.mff.cuni.cz/~kofron/abz18casestudy.html
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and small stack sizes. In sum, we ran the verification over more than a week,
being able to explore over 6 × 1011 states. Of course, we are not aware of the
total size of the state space, however, several bitstate hashing verifications were
successfully accomplished. Even though being just approximative method, no
error was found this way.

We attempted at proving a set of safety properties (assertions in the model)
regarding the correct movement of trains:

– In order to avoid train collision, we check that a train does not move in a
VSS occupied by another train. We actually found a violation of this property
when the mute timer of the first train is started and does not expire while the
train is moving over several VSSs; in this case, the chasing train can proceed
and enter the VSS of the first train4. The violation is due to the fact that, as
explained in Sect. 2.3, we do not put any constraint on the timer expiration
(for example, a timer can start and never expire or it can take arbitrarily
long). We think that there should be a relation between the train speed,
timers duration, and the lengths of VSSs that, however, is not articulated in
the requirements. The assertion violation was found in about 30 s, using the
stack size of 4,000 states.

– We also check that a train does not move beyond its end of movement author-
ity (EoMA) nor beyond its end of mission (EoM). This property can be vio-
lated (and we assume that in practice it is—c.f. step 2 of scenario 8) in the
“on-sight mode”, which we do not attempt to model. The reason for this is
that the safety requirements of the system cannot be guaranteed in this mode.

In addition to functional correctness of the modelled system, we checked
whether the requirements are consistent. The conditions specified in the state
machine for the VSS (see Sect. 5 in [6]) should guarantee that, for a VSS, it
is not possible that two rules bringing to different target states are applicable
at the same time; when this is possible, the requirements explicitly specify the
priority among the rules. Therefore, the update of VSSs should be deterministic.
However, it could still be that the requirements document is not correct or
that we wrongly implemented the rules. In order to check that the update of
VSSs is deterministic, we performed an additional check. Before updating a
VSS (by non-deterministically selecting one rule that is applicable), we count
all the rules that are actually applicable and, if more than one applies, we raise
an assertion violation. In this way, we found that in a particular scenario two
rules are applicable: in step 5 of scenario 8, both rules #10A (the one reported
in the requirements document) and #9A can be applied for VSS12. The VSS
is the last one of TTD10, it is in state AMBIGUOUS, and a train has just
left it and crossed the TTD border. Rule #10A is applicable when “VSS is
left by all reporting trains”, while #9A when “TTD is free”; both conditions
are clearly satisfied in the current situation. The same problem appears in the
update of VSS 12 in step 7 of scenario 9. We believe that the problem is due to

4 The simulation output of the assertion violation can be found at http://d3s.mff.cuni.
cz/∼kofron/abz18casestudy.html.

http://d3s.mff.cuni.cz/~kofron/abz18casestudy.html
http://d3s.mff.cuni.cz/~kofron/abz18casestudy.html
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an ambiguous description of rule #10A in the requirements document; indeed,
the description of the rule refers to paragraphs 3.6 and 3.7 that regard non-
integer trains; however, in scenarios 8 and 9 both trains are always integer, and,
therefore, it is not clear why rule #10A should apply. Also, it is not clear to us
what “all reporting trains” refers to—all reporting trains at the same TTD or
all reporting trains in the system?

4 Discussion

In this section, we discuss the problems we faced during the model development.
In particular, we focus on the problems that are caused by the deficiencies of the
adopted modelling language (see Sect. 4.1), and on those that arise when reading
the requirements (see Sect. 4.2).

4.1 Missing Facilities

Promela provides a limited support to debug/log the model by means of stan-
dard printing to the standard output. In order to visualize the train movement,
we had to add suitable printing outputs into the model. Figure 1 shows an excerpt
of the simulation of a scenario5. For each simulation step, we report events related
to trains and signals, which VSSs have been updated and by which rule, and
EoMAs of existing trains. Moreover, we also visually depict the real position
of the trains in the first line (A, a, B, b for the first train connected, for the
first train disconnected, for the second train connected, and for the second train
disconnected, respectively), the VSSs statuses in the second line, and the TDDs
statuses in the third line. The last line shows the TTD number.

Although the implemented solution worked pretty well for our purposes, some
formal methods provide nicer ways to visualize the model evolution; for example,
for the B method, ProB provides an animator [13] that allows to visualize specific
pictures associated with model states. The advantages of this method are several:
first of all, the visualization can be much nicer and understandable than that
obtainable by standard text printing; moreover, since the visualization is defined
in a separate function, there is a clear separation of concerns (specification of
the behaviour and logging) in the model. As future work, we could consider to
add some animation facilities to Promela/Spin.

Another feature that we missed during the development is a proper support
for guided simulation. Spin allows to simulate the model by choosing, at each
step, which state to take as next state (by selecting the values of variables that
are non-deterministically updated); however, if the model is big, doing a manual
simulation can be particularly cumbersome. Some formal methods allow to spec-
ify scenarios of the model execution by writing script in which non-deterministic
5 Note that in Spin, we sometimes need to perform multiple steps in order to model a

single step of a scenario reported in the requirements document; therefore, the step
numbers (6 and 7) reported in the figure are different from the corresponding steps
of the requirements document (steps 3 and 4).
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Step 6 of scenario 9
Train 1 disconnects
Train 0 reported having left VSS3
Train 0 reported with integrity
Train 1 NOT reported
Timer ghosttimer expired
VSS2: transition #1F taken
VSS3: transition #1F taken
VSS4: transition #8B taken
Train A - eoma: 9
Train B - eoma: 3

Ab
U U U U A F F F F F
O O O O O F F F F F
0 0 1 1 1 2 2 2 3 3
____________________________________________________________________________

Step 7 of scenario 9
Moving front of train 0 forward
Moving both front and rear of train 1 forward
Train 0 reported having left VSS3
Train 0 reported with integrity
Train 1 NOT reported
VSS5: transition #3A taken
Train A - eoma: 9
Train B - eoma: 3

AAb
U U U U A A F F F F
O O O O O O O O F F
0 0 1 1 1 2 2 2 3 3
____________________________________________________________________________

Fig. 1. Two steps (steps 3 and 4) of simulation of scenario 9

choices are fixed and the model is forced to perform a given number of steps (in
a kind of test script). The main advantage of these tools is that scenarios can
be executed as many times as necessary (usually, after the model update) in
order to check the correctness of the model in that particular situation. In our
model, we provided a basic support for scenarios. A scenario is described by
means of an array of steps (typedef Step shown in Code 3) that specifies the
non-deterministic choices to perform at each step. A Step is constituted by
some variables as train[] and mutetimer[]; the train[] array, for example,
encodes which actions should be performed by each train (moving, disconnect-
ing, reporting, etc.). When running the model, we can specify whether it must
be run randomly (if variable sce is not defined) or if it must read the choices
specified in a given scenario sce. In order to drive the simulation according to
the scenario commands, we had to modify the model such that, in all the points
in which a non-deterministic choice is done, the choice specified in the scenario
is chosen. Since a scenario variable can encode multiple commands, in the model
we use proper masks to extract the commands.

Such approach allowed us to easily specify all the scenarios reported in the
case study document. The main drawback of the approach is that the reading of
the scenario had to be hard-coded in the model itself, decreasing the readability



Modelling the Hybrid ERTMS/ETCS Level 3 Case Study in Spin 287

typedef Step {
byte train[2];
byte mutetimer[2];
byte disconnecttimer[VSSCOUNT];
byte integritylosstimer[VSSCOUNT];
byte shadowtimerA[TTDCOUNT];
byte shadowtimerB[TTDCOUNT];
byte ghosttimer;
byte eoma[2];
byte eom[2];

}

typedef Scenario {
Step step[SIMULATIONSTEPS];

}

inline initScenarios() {
...
//step 3
scenarios[9].step[6].train[0] = 48;//train 0 reports
scenarios[9].step[6].ghosttimer = 2;//ghost timer expires
scenarios[9].step[6].train[1] = 5; //trains 1 disconnects
//the end of movement authority of train 1 is extended to VSS3
scenarios[9].step[6].eoma[1] = 3;
//step 4
//train 0 moves front and reports
scenarios[9].step[7].train[0] = (2 | 48);
//train 1 moves entirely without reporting
scenarios[9].step[7].train[1] = (8);
...

}

Code 3. Excerpt of scenario 9 specification

and maintainability of the model. As future work, we plan to develop a higher
support for scenario (e.g., a DSL for writing scenarios) as, for example, that
provided for the ASM method [5].

4.2 Issues in Modelling the Requirements

One of the advantages of adopting formal methods is that they allow to highlight
the inconsistencies and/or ambiguities contained in the requirements. Although
the case study document [6] is already quite detailed, there are still some parts
that we had problem in understanding. In the following, we review all these
issues and describe how we handled them.

Delay in TTD Processing. According to the requirements [6], the “TTD infor-
mation is considered as safe”, i.e., it reports “free only if no train is present on
the TTD section”. Therefore, on the base of this requirement, we always consider
the TTD information trustworthy; however, step 7 of scenario 5 reports a case in
which “due to the delay time of the TTD detection system, the TTD is still con-
sidered occupied”. We agree that the information provided in the requirements
is not stating that the TTD is occupied only if the train is present; however, we
think that the requirement is ambiguous and can bring to this misunderstanding.
We are not sure about the length of the delay with respect to the train speed,
report frequency, etc., to understand if it is important to consider this particular
delay in the model. Therefore, since we are still not sure about which should be
the correct behaviour, we decided to keep the model that we produced starting
from the reading of the requirements and so we free the TTD section as soon as
the train leaves it; therefore, we do not support step 7 of scenario 5.

Updating the End of Movement Authority. The requirements [6] do not exactly
specify how and when the end of movement authority (EoMA) is modified and
by whom. In the model, we assumed that the EoMA is modified by the track
side authority after each update of the VSSs states: the EoMA is extended as
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long as the VSSs are free or unknown or end of movement EoM is not reached.
This is also motivated by the specification scenarios and it seems to be the most
permissive choice that still preserves the safety of the system.

Order of Update. At first, we assumed that the update of VSSs depends on the
previous state of the other VSSs; actually, this seems to be not true. In step 3 of
scenario 9, VSS23 must become ambiguous if the previous VSS is unknown; how-
ever, the previous VSS becomes unknown in the same step. Therefore, we update
the VSSs from left to right; however, we are not sure whether this assumption
is correct.

Loosing the Integrity After Train Split. The requirements do not specify which
is the integrity status of a train (actually the integrity status of the two parts
of the train) when it splits. At first, we assumed that the train can be either
integer (if it splits on purpose and it is aware of its integrity) or non-integer (if
it splits accidentally). However, from scenario 5, it seems that the train always
looses its integrity when it splits, and so we modelled this behaviour.

On Sight Mode. Requirements [6] mention the possibility for a train to operate
in on sight (OS) mode “that gives the driver partial responsibility for the safe
control of his train” [9]. We do not support the OS mode in the model, because
handling it would not allow any kind of safety check regarding the correct oper-
ation of trackside detection system (as the driver could bring the train in an
unsafe situation). However, we support the OS mode in scenarios, in which we
can force the train to perform a given not allowed movement, as proceeding after
its eoma; in this way, we have been able to reproduce step 2 of scenario 8.

Inconsistencies in the Scenarios. We identified some inconsistencies in some
scenarios that report wrong rules for the reported state transitions of the VSS.
In particular, in steps 6 and 7 of scenario 8, rule #2A is used to modify VSS22
and VSS23 from UNKNOWN to OCCUPIED; however, rule #2A goes from
FREE to OCCUPIED. In other cases, instead, we think that the scenarios are
not precise and they do not mention an additional transition that must be taken
before the reported one:

– in step 8 of scenario 6, rule #6A is used to modify VSS23 from AMBIGUOUS
to FREE (however, rule #6A goes from OCCUPIED to FREE); we think that
the requirements imply that rule #11 must be taken before.

– in step 5 of scenario 8, rule #11A is used to modify VSS21 from UNKNOWN
to OCCUPIED (however, rule #11A goes from AMBIGUOUS to OCCU-
PIED); we think that the requirements imply that rule #5 must be taken
before. The same issue appears in step 7 of scenario 9 for VSS21.

5 Related Work

At the time of writing, we are not aware of any formalization and/or validation
and verification of the Hybrid ERTMS/ETCS Level 3 system.
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Regarding the Spin model checker, it has been applied to the modelling and
verification of different safety-critical systems6; Havelund et al. [10], for example,
applied it to the verification of the multithreaded plan execution module of an
artificial intelligence-based spacecraft control system architecture part of the
DEEP SPACE 1 mission.

A common approach in model checking models developed in high-level nota-
tions is to exploit existing model checkers as Spin, NuSMV, UPPAAL, etc. For
example, in [3], the authors discuss the advantages of using high-level notations
in hardware design. They observe that HW designers are used to high level
notations as Bluespec and they have problems when dealing with the lower level
notations; the authors claim that the notation of the verification tool should
be transparent to the designer, who should specify the model and the proper-
ties in the same high level notation, without caring about the intricacies of the
notation of the verification language. With this aim, a common approach is to
automatically translate high level models in models of existing model checkers;
this requires to define the mapping from the source notation to the target nota-
tion, and also a reverse translation of the counterexamples returned by the model
checkers in concepts of the source notation.

However, such translation often introduces an overhead that affects the scal-
ability of the verification; for example, this is reported for translation of ASMs
to NuSMV [2], of UML models to Promela [7], and of Simulink models to
NuSMV [16].

On the other hand, a more recent approach is to develop model checkers
directly handling the high level notation, as ProB that directly model checks
B models. In [14], the model checker ProB is compared with Spin. The author
notices that, whenever the number of states of a B model and a Promela model
are the same (models developed for the same problem), Spin outperforms ProB
of several orders of magnitude, as Spin performs verification directly in C and
it employs several optimizations (e.g., partial order reduction, bitstate hashing),
while ProB uses an interpreter written in Prolog. On the other hand, the author
also shows that, in some cases, the ProB model checker behaves better as it avoids
the state explosion occurring in Spin (if the atomic construct is not used), it
employs a mixed depth-first breadth-first strategy, and it exploits symmetries
present in high-level models.

6 Conclusions

In this paper, we proposed the modelling, validation, and verification of the
Hybrid ERTMS/ETCS Level 3 Case Study in Spin. The tool allowed us to model
all the requirements of the case study, reproduce all the scenarios reported in the
case study document, and verify the model. We have shown that, although very
powerful in terms of verification, Spin misses some facilities (logging and scenario
specification) that could help in debugging and validating the model. For this
work, we devised an approach to encode scenarios that, however, requires to
6 http://spinroot.com/spin/success.html.

http://spinroot.com/spin/success.html
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modify the model itself; as future work, we plan to design a language for writing
scenarios (as test cases) and implement a tool that, given a model and a scenario
for it, drives the Spin simulation over the model as specified in the scenario.
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Abstract. In this article, we present a concrete realisation of the ETCS
Hybrid Level 3 concept, whose practical viability was evaluated in a field
demonstration in 2017. Hybrid Level 3 (HL3) introduces Virtual Sub-
Sections (VSS) as sub-divisions of classical track sections with Track-
side Train Detection (TTD). Our approach introduces an add-on for
the Radio Block Centre (RBC) of Thales, called Virtual Block Function
(VBF), which computes the occupation states of the VSSs according to
the HL3 concept using the train position reports, train integrity infor-
mation, and the TTD occupation states. From the perspective of the
RBC, the VBF behaves as an Interlocking (IXL) that transmits all sig-
nal aspects for virtual signals introduced for each VSS to the RBC. We
report on the development of the VBF, implemented as a formal B model
executed at runtime using ProB and successfully used in a field demon-
stration to control real trains.

Keywords: B-method · Animation · Model-based testing · ETCS

1 Introduction and Requirements

The specification “Hybrid ERTMS/ETCS Level 3” (HL3) [1] describes a novel
train control concept, incorporating classical trackside train detection, radio-
based position reports, and train integrity information. The main difference
between the HL3 concept and a solution without any trackside train detection
(pure Level 3) is that not all trains need to be equipped with an ETCS on-board
unit and a TIMS (Train integrity monitoring system). In addition, the informa-
tion from the underlying trackside train detection system can be used as fall
back to, e.g., handle degraded situations and to improve the performance.

In June 2017 the Heinrich Heine University Düsseldorf (HHU) was asked by
Thales Deutschland GmbH to contribute to a field demonstration of feasibility of
the ETCS Hybrid Level 3 principles. The call for tender was initiated by ProRail
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 292–306, 2018.
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Netherland, with a demonstration planned on a test track at the ETCS National
Integration Facility (ENIF), provided by Network Rail (UK) for December 2017.

This resulted in the present cooperation between Thales and HHU, with
additional support provided by ClearSy. The goal was to develop an executable
version of the HL3 specification, called Virtual Block Function (VBF), which is
an add-on for the existing Thales Radio Block Centre (RBC) without adapting
the RBC core functionalities. The main idea is that the VBF partitions each
Trackside Train Detection section (TTD) into Virtual Sub-Sections (VSS). For
the RBC, the track is thus decomposed into finer grained sections compared
to the TTDs. The VBF computes the occupation status of each VSS by using
the TTD occupation status and train position reports including train integrity
information. For example, in Fig. 1 at the bottom you can see that we have
two areas each with a trackside detection device (realised by axle counters or
track circuits). The VBF knows that the left one is occupied and the right one
is free. However, for the RBC it simulates the existence of six areas and six
trackside detection devices. Based on the train position information, the VBF
can already free part of the occupied left track for following trains, enabling
higher throughput without having to install additional trackside equipment.

occupied free TTD

occupied free free free VSSfreefree

Interlocking (IXL)

Radio Block Centre (RBC)

Virtual Block Function (VBF)

Train

TTD Status

VSS Signal Status
Train Position 

& Integrity,
MA

OBU

Fig. 1. The role of the VBF (Virtual Block Function)

In the following sections, we will report on our experience building a software
product for the VBF based on a formal B model. In Sect. 2 we outline our tasks
and early design decisions. Section 3 provides an overview of the formal B model
and the modelling challenges, along with some ambiguities and inconsistencies
we found in the HL3 specification. Section 4 describes the architecture of VBF
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software which embeds the B model. Visualisation was important in our project
and we discuss it Sect. 5. We conclude with discussion about practical results
and insights gained in Sect. 6.

2 Project Constraints and Design Decisions

Due to the strict deadline and the very short time span for the project, it was
decided to use off-the-shelf RBC and interlocking systems and use a formal B
model [2] of the VBF as an executable demonstrator. More precisely:

– The Thales RBC core was to be used as is, without modifications for HL3.
(Thales owns a product line for the RBC software to configure the generic
software to the project specific requirements).

– The interlocking was used as is, without modifications for HL3.1

– The VBF had to be developed from scratch as an add-on for the RBC, which
was to mimic an interlocking and transmits the signal aspects for the virtual
signals to the RBC. The VBF contains a VSS state machine, with four possible
states (free, occupied, unknown and ambiguous) for each VSS, exactly as
required by the HL3 specification.

The following main tasks are the focus of this paper:

T1: Providing evidence that the HL3 principles are consistent and complete to
handle possible hazards and to allow the desired operational behaviour.

T2: Implementation of the VBF as an independent software unit by supporting
the given interfaces to the other components. The implementation should
be conform to the HL3 principles.

To accomplish the first task, we decided to derive a formal B model from the
HL3 specification. The decision was based on diverse work (e.g., [3–9]) which
provided evidence that B is well suited for the railway domain. Moreover, first
experiments were very promising: in a few days it was possible to model some
simpler transitions of the HL3 specification.

For task T2, we intended to implement all interfaces (boundaries) to other
components by hand and to use a classical testing approach to ensure their
correct functioning. To reuse the formal model from task T1 for task T2, we had
three options:

1. Using the model as a template to implement the VBF core by hand.
2. Generating code from the model and combine this code and the handwritten

boundaries.
3. Executing the model at runtime by incorporating the execution engine and

the handwritten boundaries.

1 Except for the TTD occupation status which has to be send from the IXL to the
VBF/RBC.
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The first option would require us to maintain both the model and the code.
This could be time-consuming if there were changes to the specification (due to
feedback from ProRail, the specification was changed considerably). With the
second approach, we would have to use an existing code generator (there was no
time to develop our own) and thus have to refine our abstract B model down to
implementation level B0—also time-consuming. Concerning the third option, we
had already gained some experience of integrating ProB [10] as the execution
engine in different software products [11,12]. Given our time constraints, the
third option was the only feasible option, but it also posed the biggest research
challenge: using a formal model at runtime interacting with various hardware
and software components.

3 The Formal B Model

Below, we present some relevant aspects of our B model along with some source
code snippets. Due to space limitations we cannot cover all interesting aspects,
such as the modelling of timers and time.

3.1 Basic Datatypes

The modelling of the track was relatively straightforward, which is not surpris-
ing since B’s relations can be used to represent graphs and B provides many
convenient operators on relations and functions, which are just a special case of
graphs (see, e.g., Chap. 14 of “Modeling in Event-B” [13]).

However, for pragmatic reasons, we did not use Event-B [13] but rather clas-
sical B [2] for modelling the VBF. For example, we have modelled the VSSs,
TTDs and trains as classical B strings. For simulation and execution purposes,
we had to read topology and configuration data from XML files. The conversion
of the XML file into B data structures for the VBF model is also done in clas-
sical B using records and strings.2 Finally, we have used other features, such as
machine composition and operation calls (see Sect. 3.2), not readily available in
Event-B.

Below, we try to give a flavour of our modelling by showing some derived
data structures for the track topology.

PROPERTIES

VSS : POW(STRING)

& TTD : POW(STRING)

& VSS /\ TTD = {}

& next_vss : VSS +-> VSS

& vss_ttd: VSS --> TTD // maps VSS to their TTD

& TTD_STATE = {free,occupied} // TTDs only have two states

& next_ttd : TTD +-> TTD

& last_vss: TTD --> VSS

2 The conversion is not shown in this paper since the XML data format is proprietary.
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& /*@label "the last vss is part of its TTD" */

!t.(t:TTD => vss_ttd(last_vss(t)) = t)

& /*@label "a successor of a last vss is in another TTD" */

!(t,n).(t:TTD & last_vss(t)|->n : next_vss => vss_ttd(n) /= t)

...

For example, the next vss constant is a partial function which links VSS to
their successor VSS. The direction of the track is thus constant for any given
execution run.3 However, the direction of the track can be toggled, since the
conversion of the XML data is parameterised. Observe that we allow the IF-
THEN-ELSE to be applied to expressions and use an external B function (see
Sect. 6.3 in [11]) to read in the track data from an XML file.

PROPERTIES

TRACK_DATA = READ_XML("./resources/prj_ENIF_01@STR.xml")

...

& C_VSSSequence = DeriveVSSSequence(TRACK_DATA)

...

& next_vss = UNION(i, ii).(

i : dom(C_VSSSequence) & ii : dom(C_VSSSequence) & ii = i + 1

| {IF RUNNING_DIRECTION = "LEFT_TO_RIGHT"

THEN C_VSSSequence(i) |-> C_VSSSequence(ii)

ELSE C_VSSSequence(ii) |-> C_VSSSequence(i) END

} )

Train Status. Modelling the integrity state of trains revealed some ambigui-
ties and inaccuracies within the HL3 specification. The concept “integer” (for
a train) is used in different contexts within the specification. We try to explain
the differences with the aid of our model:

SETS

REPORTED_TRAIN_INTEGRITY = {lost_integrity, confirmed_integrity,

no_integrity_information}

; INTERNAL_TRAIN_INTEGRITY = {integer, not_integer}

PROPERTIES

TRAIN_INTEGRITY_MAPPING = {

"TRAIN_INTEGRITY_CONFIRMED_BY_INTEGRITY_MONITORING_DEVICE"

|-> confirmed_integrity,

"TRAIN_INTEGRITY_CONFIRMED_BY_DRIVER" |-> confirmed_integrity,

"NO_TRAIN_INTEGRITY_AVAILABLE" |-> no_integrity_information,

"TRAIN_INTEGRITY_LOST" |-> lost_integrity}

...

INVARIANT

3 Every scenario in the HL3 specification only has a single linear track with trains
running in one direction. Points are not considered by the current version of the
HL3 specification and they were not required for the field tests at ENIF.
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registeredTrains : POW(STRING) &

& train_reportedTrainIntegrity

: registeredTrains --> REPORTED_TRAIN_INTEGRITY

& train_integrity : registeredTrains --> INTERNAL_TRAIN_INTEGRITY

...

According to the ERTMS/ETCS specifications [14], a train can send four
possible integrity status values within a train position report, which are rep-
resented by the domain of the constant TRAIN INTEGRITY MAPPING. Within
the VBF, we only need to distinguish between three, which are represented
by the enumerated set REPORTED TRAIN INTEGRITY. The surjective function
TRAIN INTEGRITY MAPPING defines the respective mapping.

Moreover, the HL3 specification [1, Sect. 3.5] defines a further integrity state
by using the terms “integer” and “not integer” which is represented by the
enumerated set INTERNAL TRAIN INTEGRITY.4 Yet, an unambiguous mapping
from the reported train integrity to the internal train is missing in the HL3
specification [1]. Thus, we were forced to find a sensible interpretation; we defined
the following two conditions as triggers for the transition from “integer” to “non-
integer”:

– “train reports ‘lost integrity”’
– “PTD [Positive Train Detection] with no integrity information is received
outside of the integrity waiting period”

Both conditions are part of the transitions #7B and #8A [1, Sect. 5.1.1.6]. The
change of the train length (the remaining condition of #7B and #8A) does not
affect the internal integrity status of a train but can have a consequence for VSS
states as it triggers the “train integrity propagation timer” of the VSSs where
the train is located.

The following operation manipulates the internal train integrity variable in
our model:

Train_SetIntegrityStatus(train, integrityStatus) =

PRE integrityStatus : REPORTED_TRAIN_INTEGRITY

THEN

train_reportedTrainIntegrity(train) := integrityStatus ||

IF integrityStatus=lost_integrity

THEN train_integrity(train) := not_integer

ELSIF integrityStatus = confirmed_integrity

THEN StartTimerDelta(train|->WAIT_INTEGRITY_TIMER)

|| train_integrity(train) := integer

ELSIF // no information available

train |-> WAIT_INTEGRITY_TIMER : expiredTimers

THEN train_integrity(train) := not_integer

END

END

4 The term “internal” refers to the internal state of the VBF.
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However, the model checker ProB directly reported an invariant violation.
This is because a train does not register itself by a train position report, thus
the variable train reportedTrainIntegrity is not a total function with the
registered trains as its domain. As a consequence, we had to make a further
decision by treating a train as non integer before the VBF receives the first
position report (interpretation to the safe side). We always tried to avoid partial
functions as it would mostly introduce handling of special cases. Moreover, the
description in the HL3 specification is imprecise regarding when to start the first
“wait integrity timer”: “A ‘wait integrity timer’ runs continuously for every train
[. . . ]” [1, Sect. 3.4.1.3.1]. We decided to start the timer with first train position
reported but not with the registration.

We found a further inaccuracy with regard to the integrity status in the
specification: “For an integer train the confirmed rear end location of the train is
derived from [. . . ]” [1, Sect. 3.3.3.1]. Here, the term “integer train” is used which
corresponds to the internal train integrity of our model. However, in Sect. 3.3.3.4
it is stated that “the confirmed rear end of the train location is never updated
by position reports with integrity status ‘Lost’ or ‘No information available”’
[1, Sect. 3.3.3.4]. Thus, Sect. 3.3.3.1 of the specification should rather start with
“For a train which reports confirmed integrity” since a train can be integer while
reporting “No integrity information available”.

Train Location. Another essential concept in HL3 specification is the definition
of the train location (in our case the image of the train location seen by the
VBF) which is frequently referred within the state machine transitions of the
HL3 specification. We mapped each registered train to a set of VSS within our
model:

INVARIANTS

...

& train_location : registeredTrains --> POW(VSS)

& /*@label The train location must not have any gaps */

!loc.(loc: ran(train_location)

=> #s.(s : iseq(loc)

& !i,ii.(i : 1..size(s-1) => s(i) |-> s(i + 1) : next_vss)))

In most cases, we just want to know if a certain train is located on a certain
VSS. For these cases, the data structure for train location is very convenient.
Alternatively, we could have used a relation but we prefer functions over relations
except for the next vss constant which is frequently inverted in our model.
The order of the VSS is not incorporated into the location definition as this
information is already contained in the next vss constant. The condition that a
train location must not have any gaps (which is not explicitly mentioned in the
HL3 specification) can also easily be expressed with the aid of this constant.

While the modelling of the train location data structures was relatively
straightforward, the updates to this variable are, in our opinion, the most under-
specified part of the HL3 specification. Some issues referring to the location are:
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– Minor: “As long as the TTD where the max safe front end is reported is free,
the train location is not extended onto the VSS which are part of this free
TTD” [1, Sect. 3.3.2.1.2]. This is imprecise as the condition should be: only
if the max safe front is reported to be on the next free TTD but not the
estimated front of the train.

– Fundamental: “[. . . ] the train location is derived from the estimated front end
[...] of the last position report [. . . ] as well as from TTD information [. . . ].” Is
the train location only updated/changed by processing train position reports
(in this case the TTD information will of course be considered)? Or does a
single TTD change event without a train position report also update the train
location? We had tried both alternatives and in the end we decided to use a
train position report as the only trigger to update the train location. (The
other alternative, forced us to adapt several transitions in order to be able to
replay all scenarios of the HL3 specification.)

3.2 State Machine Transitions and Priorities

Below, we show the B translation of the state machine transition (#9A) of the
HL3 specification.

DEFINITIONS

Guard9A(vss) == vss:VSS & vss_state(vss) = ambiguous

& /*@label "(TTD is free)" */

ttd_state(vss_ttd(vss)) = free

...

OPERATIONS

VSS_Ambiguous_Free_9A(vss) =

SELECT

Guard9A(vss)

THEN

vss_state(vss) := free ||

// state of the virtual signal which protects the vss

vss_signalState(vss) := PROCEED ||

...

END

The reason for separating out the guards into DEFINITIONS (in a separate
file) is to encode the priorities of the HL3 specification. We have experimented
with various ways of encoding the priorities, and have finally pursued a solution
based on using a large IF-THEN-ELSE with the guards as conditions, calling
respective operations of a subsidiary machine. The IF-THEN-ELSE ensures that
the priorities of the transitions are respected, e.g., that transition 2A has priority
over 3. A return variable out stores the exact VSS transition taken for debugging
and analysis.

out <-- VSSUpdateStep(vss) = PRE vss : VSS

THEN

IF Guard1A(vss) THEN VSS_Free_To_Unknown_1A(vss) || out := "1A"
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ELSIF Guard1B(vss) THEN VSS_Free_To_Unknown_1B(vss) || out := "1B"

...

ELSIF #train.( train : registeredTrains & Guard11B(vss, train) )

THEN

ANY train WHERE train : registeredTrains & Guard11B(vss, train)

THEN

VSS_Ambiguous_Occupied_11B(vss, train) || out := "11B"

END

ELSE

out := "NONE"

END

END

Execution of all VSS updates in a VBF cycle is done by a B WHILE loop
calling VSSUpdateStep.

3.3 Animation of Scenarios

The HL3 document describes a number of scenarios in addition to the VSS state
machine. We used these scenarios as test specifications, i.e., to check that these
scenarios are feasible in our model (detection of inconsistencies).

To animate the scenarios with ProB, we developed an environment model
and composed it with the VBF core model (software model) to obtain a system
model. The environment model has knowledge of the “real” (physical) position
of a train, which allows it to move the train and to send train positions reports
which are inputs of the VBF. Figure 2 shows a system state where the “real”
position differs from the train position within the VBF. In this case, the physical
train has already moved to VSS21 and the VBF still sees the train in VSS12.
Note that this is a very common situation as trains usually only send its position
cyclically (e.g., each 6 s). Otherwise, this state can be seen as the situation where
Train1 has already sent its position report but the VBF has not yet received it
due to the delays of the communication interface.

Fig. 2. Environment Model: “physical” train position ($Train1) vs. train position image
in the VBF (Train1)

In summary, with the environment model it is possible to trigger all interfaces
of the VBF by generating the following inputs:
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– Train position reports including train integrity information
– Train registration message
– Train deregistration message
– Train data message (includes the train length)
– TTD occupation status
– Movement Authorities (MA) for trains

The environment model can make use of different tracks. For example, we
used the track snippet from the HL3 specification to validate its scenarios and
used the real track for onsite execution and to define a test plan for onsite
execution.

While animating the scenarios of the HL3 specification, we detected more
issues.5 One issue, which is easy to understand but hard to find without tool
support, is the following: in scenario 4 (Start of Mission/End of Mission) at step
8, it is stated that all VSS of TTD 20 go to “unknown” because the discon-
nect propagation timer of VSS 22 has expired. This is wrong because after the
deregistration of the train in step 7, the train will be immediately treated as a
ghost train and the corresponding transition #1A will apply. The result for the
remaining VSSs of TTD20 is the same but at a different point in time; the VSSs
go directly to “unknown” and not just after the disconnect propagation timer
(of VSS22) has expired. As an aside, we think that transition #1A is erroneous,
too: there should be an “and” instead of the “or” in “(no FS MA is issued or
no train is located on this TTD)”. Otherwise, a connected train (with a FS MA)
which physically enters a free TTD would always be treated as a ghost train
because the TTD occupation usually arrives before a new train position report.
In this case, the second condition “no train is located on this TTD” would be
fulfilled which would allow applying transition #1A.

Besides the validation of the scenarios, the environment model permitted us
to specify system level invariants. For example, the system state shown in Fig. 3
should never occur. Here, a physical train ($Train2), which is not connected, is
located on a VSS which is seen as “free”. The threat in this situation is that
another train (not displayed in the figure) in rear of the non-connected train
could receive a movement authority (FS MA) for VSS31 and VSS32. We were
able produce a scenario which finally led to this state caused by an invalid
stopping criterion for the ghost train propagation.6

Replaying Recorded Runs with ProB. Simulations runs (with On-Board-
Unit simulators) as well as demonstration runs (with real trains) were logged by
the VBF and could be replayed in the animator. This was vital, as it allowed us
to analyse defects without inspecting (huge) RBC, IXL and Java log files. Log
replay was also used to define timer values of the HL3 specification.

5 Overall we detected more than 30 issues which we reported to authors of the HL3
specification.

6 The scenario is too complex to be presented in this paper.
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Fig. 3. Invalid system state: Non-connected train ($Train2) is located on a VSS with
state “free”.

4 Architecture

The VBF model described above is part of a larger application developed to con-
duct the field demonstration. The application embeds the VBF model using the
ProB Java API [15] (often referred to as ProB2) and manages all the model’s
interactions with the outside world. The Java API exposes all of ProB’s ani-
mation and model checking features to programs running on the Java Virtual
Machine. This approach has been successfully used in several applications that
use B models at runtime [12] and is the basis for a new ProB UI that is currently
being developed.

The responsibilities of the application are: firstly, to interact with external
input sources such as the RBC and others that provide information about the
current state of the track, of physical and of simulated trains, etc. Secondly, to
process these inputs and forward them to the model. And lastly, to act on the
newly computed state of the model to update the visualisation and send updates
to the RBC.

Figure 4 provides an overview of the application’s architecture. The external
inputs are provided via a variety of inputs, such as UDP packages, XML-RPC
calls, plain files, etc. These inputs represent train information from the RBC
as well as TTD information from real and simulated trains. These events are

Fig. 4. Application architecture
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received by the application, normalised and dispatched to the model. In case
there are no external events, the application will, after a given delay, begin
sending idle events to the model in specific intervals until it receives new external
events. These events are used to update the timers in the model and compute
an updated system state even in the absence of external events. Each type of
input event is dispatched to a corresponding operation of the B machine by
executing one guided animation step and computing a new state of the model.
From each new model state computed by ProB, we derive an application-level
state representation. This representation is based on the state variables of the
model. These variables are exposed through the ProB Java API and extracted
from the state, mapped to Java structures and used to compute the application’s
outputs. From this application-level state the signal aspect changes are extracted
and sent to the RBC. The state is provided to the visualisation layer to update
the track diagram and information tables. Lastly, the delta between two states
is logged for debugging purposes.

5 Visualisation

One requirement for the actual onsite field demonstration was to provide a visu-
alisation for checking the correct functioning of the VBF. Additionally, our expe-
rience has shown [16–18] that a visualisation combined with an interactive ani-
mator can be especially useful in early stages of the development such as the
modelling and analysis stage.

Thus, our intention was to develop one visualisation that could be used in
the early stages and during the field demonstration. As a consequence, the visu-
alisation was developed as a separated software component with clearly defined
interfaces for it to be integrated both into the ProB-Animator and the final
VBF product. In both cases, the state information is extracted from the same
(core) model. The only difference is that within the ProB-Animator the model
is interactively controlled via an environment model by a user and in the final
VBF software, the model is controlled via the real interfaces of the VBF.

Having the visualisation in the early stages of the project provided the fol-
lowing benefits:

– We quickly spotted mistakes in the specification and the model.
– We used the visualisation to communicate the model within our team and to

the domain experts.
– We were able to replay the scenarios in the HL3 specification and detected

inconsistencies between them and the state machine description.
– The visualisation enabled us to let a domain expert act as a tester by inter-

actively inspecting the model.

For the project, we have also developed a new feature in ProB, namely
to export an entire animation trace into an HTML file with one visualisation
per state. This feature was useful to send entire animation scenarios to domain
experts.
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For the main application, we created a custom visualisation using the JavaFX
UI framework. The visualisation is linked to the B model’s state, and updates
itself as soon as a new state is provided. As such, the same visualisation could
be used as a plugin in the ProB-Animator during development.

Figure 5 shows a screenshot of the VBF visualisation running as a plugin in
the ProB-Animator.

Fig. 5. Screenshot of the visualisation running as a ProB-Animator plugin

6 Practical Results, Discussion, Conclusion

Building upon the Thales domain knowledge, the formal B model was developed
from July until the end of October (including the embedding application), with
fine-tuning performed afterwards. A first integration with the Thales RBC was
carried out in the beginning of November. The field demonstrations were carried
out in November and December 2017. The VBF demonstrator was finished on
time and on budget, and the demonstration of the HL3 principles using the
Thales RBC was successful. The VBF model (without environment) consists
of 13 B Machines, 14 definition files and has 45 constants and 28 variables.
The required scenarios were demonstrated, with simulated and real trains. Five
persons from HHU worked on the VBF demonstrator (two on the formal B
model, three on the boundaries and the visualisation). Also, within the project,
some ProB extensions were developed.
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ProB had two different roles in our project. Its first role was, as described in
Sect. 4, the execution engine for our B model. From the formal methods perspec-
tive, it is interesting to note that the B model can be used to control simulated
and real trains in real time. Moreover, no problems with ProB occurred at
runtime, performance and memory consumption were no issues.7 In addition,
the ProB Java API turned out to be a flexible way to link a formal model to
external data sources or components.

In its second, more common role, ProB was the central tool in the validation
process of the model and specification. Animation combined with visualisation
were crucial for the success of the project, in particular to replay and validate the
scenarios of the HL3 specification. We think this approach, of using animation
and custom visualisations at every stage of development – especially the early
ones – should be more widely used for safety critical (e.g., SIL 4) projects in
industry. For example, the specification engineer can take over some work of the
testing team as he is able to interactively derive test cases from the model8,
which are much more precise and consistent compared to the description of the
scenarios contained in the HL3 specification.

From the project, we can conclude that formal models can be useful and
cost-effective for demonstrators. Animation with forward/backward stepping and
visualisation were extremely useful in the development process. We were able to
develop a complete formalisation of the HL3 specification: the B formal model
can now serve as an executable reference specification, for understanding the
HL3 principles, for deriving test cases from it or possibly to generate code using
Atelier-B.
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Abstract. This paper reports on the development of a formal model for
the Hybrid ERTMS/ETCS Level 3 concept in Electrum, a lightweight for-
mal specification language that extends Alloy with mutable relations and
temporal logic operators. We show how Electrum and its Analyzer can be
used to perform scenario exploration to validate this model, namely to
check that all the example operational scenarios described in the refer-
ence document are admissible, and to reason about expected safety prop-
erties, which can be easily specified and model checked for arbitrary track
configurations. The Analyzer depicts scenarios (and counter-examples) in
a graphical notation that is logic-agnostic, making them understandable
for stakeholders without expertise in formal specification.

1 Introduction

The European Rail Traffic Management System (ERTMS) is a system of stan-
dards for management and interoperation of signalling for railways by the EU,
that aims to replace the various national systems with a seamless European rail-
way system1. The European Train Control System (ETCS), the ERTMS con-
trol command part, defines 3 levels of signalling that a system can operate on,
depending on the trackside equipment used, how the on-board systems commu-
nicate with the trackside, and on which functions are processed on-board or by
the trackside. In Level 3, positive train detection (PTD) information, including
the train position and integrity information, is detected and reported by the
on-board system directly to the trackside, which, based on logical rather than
physical track block sections, decides whether it is safe to issue movement author-
ities (MA), reporting them back to the on-board system via radio. By removing
the need for physical trackside detection, the implementation cost is reduced,
while the use of virtual blocks allows for arbitrarily small sections, improving
the performance and adaptability of the system.

For Level 3 to be feasible, PTD information must be reliable and the com-
munication between the on-board and trackside systems guaranteed at all times.
These pre-conditions are not easily met, which has led to the proposal of a Hybrid
Level 3 concept [2], that combines PTD information with limited trackside detec-
tion. These trackside train detection sections (TTD) are then broken into smaller
1 http://www.ertms.net/.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 307–321, 2018.
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virtual subsections (VSS). Each of these VSSs, besides being identified as free
or occupied, may also become ambiguous or unknown, whenever discrepancies
in the information are detected. This allows for trains with non-ideal equipment
or with communication problems to still use the line, albeit below full capacity.

This paper reports on the modelling and subsequent validation and verifica-
tion of the Hybrid ERTMS/ETCS Level 3 (HL3) concept in Electrum [5], and
was developed as an answer to the ABZ 2018 call for case study contributions.
Electrum is a lightweight formal specification language that extends Alloy [4]
with mutable relations and temporal logic operators. The result is a language
as simple and flexible as Alloy, but with improved support for the specifica-
tion of reactive systems and for the model checking of safety and liveness LTL
properties. Its Analyzer [3] provides support for both bounded (through SAT like-
wise Alloy) and unbounded (through SMV) model checking, whose solutions (or
counter-examples) are presented back to the user in a unified graphical interface.

The resulting HL3 model, as well as relevant design decisions, are presented
in Sect. 2. Electrum concepts are presented as needed. Section 3 describes how
the model was validated using the Analyzer, including the encoding of the oper-
ational scenarios, while Sect. 4 explores some desirable safety properties that
can be automatically verified. Section 5 discusses the results and some identified
challenges, and Sect. 6 points directions to future work. It should be noted that
the authors had no a priori domain knowledge, and that this work was mainly
based on the provided “Principles” document for the HL3 [2].

2 Modelling

The section presents an Electrum model for the HL3 concept, which is available
online2. Proper abstraction is key to achieve a model that is representative of the
system under study but that is still prone to being automatically analysed for
relevant properties and easily understood by all interested parties. In the HL3,
the main abstraction points arise from the mismatch between certain continuous
aspects of the rail traffic management domain and the necessarily discrete nature
of state-based modelling languages like Electrum. These include concerns with
train length changes, as well as real-time issues related to communication delays
and the use of timers to optimize the performance of the system. Relevant design
decisions regarding such issues are explained as the model is presented. The
Electrum language is also presented by example throughout the section. The
formal presentation of its syntax and semantics are presented elsewhere [5].

2.1 Static Structural Components

In Electrum, likewise Alloy, structure is introduced through the declaration of
signatures, that represent sets of uninterpreted atoms, and fields, that create
relationships between multiple atoms. In Electrum such signatures may either

2 http://haslab.github.io/Electrum/ertms.ele.

http://haslab.github.io/Electrum/ertms.ele
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Fig. 1. Excerpt of the structure of the HL3 model.

be static (by default) or variable (those marked as var), and can be restricted
by simple multiplicity constraints. Static signatures represent the possible con-
figurations on which a system can act, and although they can still be loosely
defined and solved during the analysis process, they stay frozen throughout the
evolution of the system. In the HL3 model, as shown in Fig. 1, these represent
the available trains (signature Train) and the valid configurations of trackside
train detection sections (signature TTD) and virtual subsections (signature VSS).
Tracks are simply comprised by discrete sequences of VSS atoms, which in Elec-
trum can be achieved by imposing a total order. Fields start and end simply
register exactly one VSS in which a TTD starts and ends, respectively. This rep-
resentation does not consider any particular dimension of the blocks or trains,
which essentially affects reasoning about the minimum safe rear end position
that occurs in transition #11A and the start event of the ghost propagation
timer [2].

Relational expressions combine such signatures and fields (and other con-
stants) using standard relational operators like union (+), intersection (&), dif-
ference (-), join (.) or the binary converse (∼), or with transitive (^) or reflexive-
transitive (*) closure operators. Primed expressions refer to their value in the
succeeding state. Relational expressions can also be constructed by comprehen-
sion. Primitive relational formulas are either inclusion (in) or equality (=) tests,
or basic multiplicity tests, which can be combined through common Boolean
operators, first-order quantifications or future and past LTL operators. Such
formulas can be imposed as axioms that always hold in a model through facts
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such as trackSections, which universally quantifies over TTD elements to guaran-
tee that the complete track is partitioned. Functions and predicates can be used
for reusable expressions and formulas, respectively. For instance, function VSSs

calculates all the subsections of a TTD through transitive closure operations, pos-
sible due to the imposed total order on VSS. This declarative definition allows for
the analysis of properties over every valid track partition within a finite universe,
a cumbersome task in languages without support for first-order logic.

2.2 Dynamic Structural Components

The dynamic structure of a model consists of the mutable elements of the system,
those whose state evolves in time. In Electrum such signatures and fields are
declared as var. In the HL3 model, as depicted in Fig. 1, these regard the physical
state of the trains and the state of the trackside and the on-board systems.

Each train has an exact physical position (not necessarily known by the
trackside) for its front and rear ends, represented by variable fields pos_front

and pos_rear, that point to exactly one VSS at each time. Variable sub-signatures
are used to represent the state of the PTD communication between each train
and the trackside. Variable signature connected represents trains connected to
the trackside at each instant, which will be modified by start (SoM) and end of
mission (EoM) events, while report_front and report_rear denote which trains
reported front and rear information at that instant, respectively. Dynamic aux-
iliary function mute identifies all trains not communicating in each instant, while
function disintegrated identifies trains that failed to report their integrity (no
rear report). Other auxiliary functions combine this information to retrieve the
currently known information about a train. For instance, knownFront retrieves
the last reported front position of a train using the past operator since.

Besides PTD information, an optimization is implemented in HL3 to detect
the position of trains transitioning between TTDs, in order to avoid delays due
to “jumping trains” [2, p. 12]. This information is assumed to exist by the VSS
state machine (namely transition #2B). The field jumping on VSSs registers
such occurrences and is also used when retrieving train position information; its
content is fixed by a fact omitted from the excerpt.

HL3 proposes a state machine for VSSs, that combines the TTD and PTD
information to determine the current state of a VSS, which is then used to issue
MAs. This is encoded by field state that at each instant assigns to each VSS
an element from the enumeration State. Unlike PTD information, the state of
TTDs is considered safe: if there is a train located within it, it is reported as
being occupied. Although this communication may have delays, we have opted
to make it instantaneous and exact, as defined by function occupied. Implement-
ing such delay would be straight-forward, by encoding an action that denotes
whether TTD information has been received in each state, likewise the train
PTD reporting predicates that will be presented in Sect. 2.3. However, this would
increase the complexity of the model considerably and have little impact in the
behaviour specified in [2] (it slightly affects Scenario 5 as there is no delay on
detecting the free state of TTD20). Finally, the trackside system registers the
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Fig. 2. Excerpt of the timers specification in the HL3 model.

end of the current MA for each train. All the VSSs that comprise a train’s MA
are calculated by the dynamic functions MAs using transitive closure operators.

To avoid performance deterioration due to communication fluctuations, HL3
implements a set of timers to avoid unnecessary state transitions. Each of these
timers has start and end events, and is assigned to either a VSS, a TTD or a
train. To model whether such timers have expired, for each of these elements
variable sub-signatures were introduced, as depicted in Fig. 2. For instance, vari-
able sub-signature mute_timer contains at each instant the trains for which that
timer is expired. A predicate for each type of timer denotes whether the start
conditions have been met. For those with dual start and stop events, this is
straight-forward. For instance, a mute_timer may be triggered if a train is mute.
Other timers, like the shown shadow_timer_A, must query over every previous
state whether the start condition was met using the past operator once. Predicate
set_timers aggregates all these predicates. The reference document states that,
once expired, timers remain so until the start conditions are met again [2, p. 14].
Yet, this behaviour renders some of the scenarios inconsistent (see Sect. 3.3), so
we have opted not to implement it. No particular time duration was imposed
on timers, so only the possibility of expiration is modelled, and not its enforce-
ment. Since each step does not represent any particular real-time interval, the
free expiration allows for the designer to test different interleavings. Electrum has
limited support for integers, which could allow for the eventual codification of
real-time timers. However, during analysis these are translated into their bitwise
representation so that they can be handled by the SAT solvers, which encumbers
the process for complex integer expressions or larger integer values.

2.3 System Evolution

The system evolves as the trains move and report PTD information, and the
trackside updates the states of the VSSs and the trains’ MAs. Actions that model
this behaviour can easily be represented in Electrum as declarative predicates
that relate the current state of variable elements with the succeeding one using
primed expressions. More advanced actions may freely use LTL operators.
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Fig. 3. Excerpt of the train evolution of the HL3 model.

Fig. 4. Excerpt of the VSS state machine specification in the HL3 model.

A train in the developed model can be updated by 4 events, some of which
are presented in Fig. 3. SoM (som) and EoM (eom) actions simply connect or
disconnect a train to the trackside. A split action models the breaking up of
a train into two, affecting its integrity. A two-carriage train is modelled by two
trains that have had exactly the same state up to that point; during break up, the
front one will fail to report the rear position, resulting in lost integrity, and the
rear one will be disconnected from the trackside. Finally, the move action updates
the physical position of the train and may or not report PTD information to the
trackside. To keep the evolution of the system manageable, the train is allowed to
move forward at most one subsection in each step, and the rear is always kept at
most one subsection away from the front, although these restrictions could easily
be relaxed. A disconnected train never reports to the trackside, while connected
ones may or not do so; reports lacking rear information will model integrity loss
events. Although MA policies are beyond the HL3 concept, it is assumed that
trains may move outside assigned MA for operational reasons [2, p. 6]. Our model
assumes that a connected train moves within its MA, while disconnected ones
may disregard it. Notice that most of these actions are encoded as declarative
predicates that allow for a range of behaviours at each instant. For simplicity
purposes, all trains are assumed to be in the track at all times (multiplicity
one on positions), so trains may not enter or leave the track. Modelling such
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Fig. 5. Excerpt of the MA assignment and trace specification in the HL3 model.

behaviour is easily done by creating additional “dummy” VSSs at the beginning
or end of the track, as in Scenarios 8 and 9.

When processing PTD reports, [2, p. 11] assumes that the front and rear
end reports are independent events, with the front one always being processed
first in case of simultaneous reports. Forcing this behaviour at all times would
however double the number of steps in the generated traces, which would possi-
bly encumber the solving process. Thus, besides the independent processing of
front information (represented by reports without rear information), our model
also allows the simultaneous processing of front and rear reports. In fact, in
the operational scenarios, PTD reports are collapsed into a single step, and the
only scenario where this phenomenon is relevant is Scenario 9; in this case the
reporting event was forced to be split into two steps in its encoding, the first
missing rear information. Lastly, there are 3 events in [2] related to the integrity
of the train that trigger the same VSS state transitions (#7B and #8A) and
the integrity loss propagation timer (a train reports lost integrity, changed train
length or its wait integrity timer expired); as these always occur in conjunc-
tion, they were abstracted into a single condition where the train fails to report
the rear information, which simplified the model without affecting the overall
behaviour.

Predicate states in Fig. 4 updates the state of the VSSs by encoding the state
machine defined in [2, p. 6]. Depending on the current state of each VSS and on
the available PTD and TTD information, each transition condition is tested in
an order that preserves the imposed priorities. As an example, the condition for
transition #9 between ambiguous and free states is depicted in Fig. 4. Due to
the complexity (and occasional ambiguity) of these conditions, this construction
process was iterative with the encoding of the operational scenarios (Sect. 3.2).
Section 3.3 discusses some potential issues detected in [2] in this process.

The assignment of MAs is outside the scope of the HL3 concept [2], but the
validation of the model requires that some reasonable, even if loose, policy is
encoded. Its declarative definition (predicate MAs at Fig. 5) allows for alterna-
tive behaviours. For connected trains, either the MA remains unchanged or is
updated to a VSS that is only separated from the front end of the train by free
VSSs. To model the on-sight (OS) operational mode, that gives full privileges
to the driver, the MA may also be set to the last VSS of the track (used in
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Fig. 6. 3 succeeding steps of the HL3 operational Scenario 2.

Scenarios 6 and 8). For disconnected trains, either the MA is preserved, or
removed altogether (by assigning it the currently known position of the train).

All the actions are enforced through a fact trace (Fig. 5) that guarantees
that all solution traces are created from the application of these actions. These
usually encode interleaving semantics of actions, but since this would lead to an
explosion of steps in each trace, we allow all trains to move in each step.

3 Validation

A conceptual model must be validated against the requirements and with other
relevant stakeholders. The Electrum Analyzer provides support to generate solu-
tions to the model that satisfy provided properties, allowing for the specification
and exploration of scenarios, as well as providing a logic-agnostic graphical visu-
alizer.

3.1 Scenario Visualisation

The Electrum Analyzer provides a graph visualiser for depicting the found
instances, whose appearance can be customisable through themes. This is essen-
tially an extension to the Alloy Analyzer to natively support infinite temporal
traces through loopbacks. These logic-agnostic graphical instances are under-
standable for stakeholders without expertise in formal specification, and have
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previously proven to be suitable for establishing a common interpretation of the
requirements [7]. We focused on providing a visualisation theme that allowed
both software designers and ERTMS/ETCS domain experts to communicate
through a common scheme.

The Analyzer’s theme editor provides basic customisation functional-
ities (e.g., changing the shape, colour and border of different signa-
tures and fields). Additional customizations can be performed by defin-
ing functions that return sets of elements, whose result is calculated at
static time by the visualizer. This enables, for instance, drawing a VSS
according to its current state, by creating functions that for each state
retrieves, by comprehension, VSSs elements for which that state holds, e.g.,
fun occupied : set VSS {{vss:VSS | vss.state = Occupied}}.

Given the theme customizations, the Alloy Analyzer applies a graph represen-
tation algorithm and distributes nodes among layers, a process that is oblivious of
the underlying semantics of the nodes and edges. The only mechanism available
to the user to change the shape of this graph is to reverse the direction of edges.
In our HL3 model, this resulted in a graph that, although layered into TTDs,
VSSs and trains, did not preserve the order on TTD and VSS blocks, hindering
the readability of scenarios. To overcome this, we implemented a small modifi-
cation of the Electrum Analyzer where information regarding totally ordered sets
(TTD and VSS in HL3) is passed down to the visualizer and, when possible, used
to order such elements in the same graphical layer.

Using the developed theme3, the appearance of HL3 instances and counter-
examples in the Electrum Analyzer is that of the snapshot in Fig. 6 for the oper-
ational Scenario 2. Both TTD sections and VSS subsection appear layered and
ordered, with different colours depending on their current state (a textual label
is also present). A train representation depicts (textually and graphically) its
position, reporting status and MA. Expired timers are also depicted. Figure 6 in
particular denotes a split event, where two trains with a shared state break up,
leaving one disconnected (Train$0) and the other moving forward.

3.2 Modelling the Operational Scenarios

Electrum specifications can be animated through run commands that, given a
desirable property and a finite scope for the declared signatures, automatically
search for satisfying instances. Each signature scope denotes the maximum (or
exactly the) number of elements that will be considered by the Analyzer. When
performing bounded model checking, the maximum trace length that will be
considered is imposed by a scope on Time. Once a solution is found, additional
non-isomorphic solutions can be efficiently navigated through the Analyzer.

The HL3 concept [2] provides a set of operational scenarios that proved essen-
tial to validate the model during development. All 9 scenarios were encoded
as predicates in Electrum in order to guarantee that our model was not over-
constrained, and were used as regression tests for any succeeding modifications.

3 http://haslab.github.io/Electrum/ertms.thm.

http://haslab.github.io/Electrum/ertms.thm
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Fig. 7. Excerpt of the Scenario 2 specification in the HL3 model.

These can be automatically generated by the bounded model checking proce-
dures of the Analyzer through the run commands available in the provided Elec-
trum model. Using the provided theme, these can visualized in a style similar to
the one presented in Fig. 6 for Scenario 2. The outcome of all 9 scenarios can
be consulted in Electrum’s website4. Some inconsistencies between the VSS state
machine and the operational scenarios were also detected during this process,
which are discussed in Sect. 3.3.

Specifying concrete instances with several steps in Electrum is verbose, since
LTL does not allow the reference to concrete time instants, requiring the creation
of formulas with nested after operators. This was manifest when developing the
HL3 model, where every scenario has at least 8 steps. This led us to explore
potential language extensions to help specifying such scenarios, including the
introduction of a new operator that acts as syntactic sugar during the speci-
fication of the traces: rather than p and after (q and after r) one can now
simply write p;q;r. Figure 7 presents an excerpt of the predicate encoding Sce-
nario 2, with rear information encoded with standard LTL operators and front
information with the new operator. Running this predicate, which results in the
trace depicted in Fig. 6, can be done through the following command:

run S2 for 8 Time, exactly 2 Train, exactly 3 TTD, exactly 8 VSS

All operational scenarios have 3 TTD sections and 8 VSS subsections and
either 1 or 2 trains, so the scopes can be bound exactly in the commands. At
the beginning of the development of HL3, scope Time denoted the maximum
trace lengths that would be explored by the bounded analysis procedures, such
that a scope n on Time would launch an iterative process where traces up to
n are checked. This is important, since the absence of a counter-example for
length n does not entail its absence for some m < n. However, in the HL3 model
we are aware of the exact number of steps that comprises each scenario, and,
since this number is not particularly small (at least 8 states), the incremental
iterative process encumbers the solving process. Thus, the Analyzer was adapted
to support ranges or exact bounds for trace lengths, allowing for the faster
generation of scenarios. It should also be noted that according to bounded model
checking semantics [1], evidences for always constraints (or counter-examples
to eventually ones) require infinite traces, represented as a finite prefix that

4 https://github.com/haslab/Electrum/wiki/ERTMS.

https://github.com/haslab/Electrum/wiki/ERTMS
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loops back into itself. Thus, scenarios must not deadlock at the last state, but
somehow loop back into a previous state. This is not possible for every state (e.g.,
Scenario 9), meaning that the trace length scope may need to be increased.

Notice that the scenario predicates do not completely fix the states. Instead,
they focus on establishing the movement of the train (as well as some timer
and MA events) and leave the VSS state machine act freely, whose state will be
solved by the Analyzer.

Electrum is also useful to explore scenarios with looser restrictions, when
the user wants to reason about model instances that satisfy certain properties.
For instance, to explore whether the existence of jumping trains is problematic
(recall that field jumping registers the occurrence of jumping trains) one can
simply run:

run {eventually some jumping} for 8 Time, 3 Train, 3 TTD, 8 VSS

Alternative solutions, with arbitrary track configurations within the scope, can
then be quickly iterated, helping the user detect problematic instances.

3.3 Possible Issues with the HL3 Concept

Model validation allowed us to detect possible ambiguities or under-specifications
in the HL3 concept. Note that this analysis is essentially based on [2] without any
a priori domain knowledge. Two of these issues regard the VSS state machine
triggering conditions, namely #1A and #5A, that when codified as described
in the document result in a behaviour that does not match that of the oper-
ational scenarios. Condition #1A triggers the transition between a free VSS
into unknown whenever the parent TTD is occupied without a train located or
without MA assigned. Yet some scenarios do not reflect this behaviour, like Sce-
nario 7, where VSS33 should transition to unknown since no train is located in
the occupied TTD30. Removing the second disjunct (or converting the condition
into a conjunction) results in the expected behaviour. Transition #5A between
unknown and ambiguous should be triggered whenever a train is located in the
VSS. For the remainder transitions, “located” was assumed to denote the last
known position of the train. Yet, several scenarios break under this interpre-
tation for #5A, like VSS22 at Scenario 4 that remains unknown even though
the last reported position of the train was that VSS. Only considering trains
reporting to be in that VSS in that instant matches the scenarios’ behaviour.

Another issue regards the indefinite expiration of timers. Although [2, p. 14]
states that expired timers remain expired until the start conditions are met
again, this behaviour does not seem to be followed in the operational scenarios.
For instance, in Scenario 9, if the ghost propagation timer remains expired, VSSs
at TTD30 should transition from free to unknown according to #1F.

4 Verification

Proper validation increased our confidence that the model effectively abstracts
the behaviour specified in the HL3 concept. The next logical step is to verify
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whether such model behaves as expected. Similar to the run commands, check

commands in Electrum instruct the Analyzer to search for instances that break
a certain assertion within a fixed scope. However, there is no explicit notion of
correctness defined in [2]. Moreover, this correctness is dependent on behaviour
that is outside the scope of [2], namely the policy for extending and shortening
MAs, as well as how the train acts upon those MAs. As a consequence, this
exercise was mainly exploratory, although we hope that these preliminary results
can foment the discussion among domain experts and lead to more formally
defined safety requirements for implementations of the HL3 concept.

A reasonable correctness property is that, if PTD communication never fails
and the integrity of the trains is never compromised, then no states other than
free or occupied are assigned to the VSSs. In fact, it should be the case that
every VSS with a train on it is set as occupied and the others as free. Recall
that we had already imposed two (reasonable, in our perspective) assumptions
regarding MAs in Sect. 2.3: (i) trains connected to the trackside always move
within the assigned MAs, and (ii) to connected trains, the trackside will assign
MAs between the currently known position and a succeeding free VSS or grant
an OS MA. Proving these properties required the additional restriction (iii) that
OS MAs are never assigned. This should be expected since this would allow trains
to freely move ignoring trackside information. Electrum allows the definition of
assertions as regular formulas, which given these pre-conditions can be encoded
as:

assert trains_Occupied {
(init and always

(no mute and no disintegrated and no t:Train | after OS[t])) =>
always Train.(pos_front+pos_rear).state = Occupied}

check trains_Occupied for 8 VSS, 3 TTD, 2 Train, exactly 12 Time

where state predicate init forces all trains to be reporting and the track to have
a consistent state in the initial state.

More interesting safety properties allow failures in communication or non-
integral trains, which necessarily involves reasoning about timers. Recall that
our model, in order to be flexible, did not impose any particular duration on the
timers, i.e., the number of steps that the starting condition must hold in order to
the timer to expire. Since timer duration necessarily affects the correctness of the
system, our safety assertions assumed a conservative approach where every timer
expires instantaneously (predicate auto_timer). Guaranteeing these properties
required however the additional pre-condition that (iv) disconnected trains do
not move outside the assigned MA. This allowed us to show that, even with
problematic trains, the state is correctly assigned to the VSSs, for instance, that
the free state is never assigned to a VSS with a train on it:

assert timers_Free {
(init and always (auto_timer and

(all t:Train | t.pos_front in MAs[t] and not (after OS[t]))) =>
always Train.pos_front.state != Free}
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More complex assertions could test alternative timer durations and reason about
possible interleaving issues among different kinds of timers.

5 Discussion

Being an extension to Alloy, it is important to compare the verbosity and read-
ability of Electrum models with those developed in standard Alloy. Thus, a similar
encoding of the HL3 concept was developed in Alloy as well5, which, given the
complexity of the case study, enabled us to clearly picture the cons and pros of
the two languages. The static structural components of the system are identi-
cal in either Electrum or Alloy. Differences arise when modelling the dynamic
components, as Alloy requires time, evolution and dynamic properties to be
explicitly modelled. This would require the explicit declaration of the signature
Time and the conversion of all variable signatures and fields to a state idiom [4],
where, e.g., field pos_train would be declared with type VSS one → Time. Then,
temporal formulas must explicitly quantify over time instants. For instance the
trains_Occupied assertion in Alloy would take the shape:

assert trains_Occupied {
(init[first] and all s:Time | no mute[s] and

no disintegrated[s] and no t:Train | OS[s.next,t])) =>
all s:Time | Train.((pos_front+pos_rear).s).(state.s) = Occupied}

The tradeoff is that Electrum does not allow quantification over time instants.
In most cases there is an alternative encoding for such expressions using stan-
dard LTL. For instance, in Alloy one can retrieve the last state s in which a
train reported, treat it as a first-level entity throughout relational formulas and
expressions, and use it to query the state of the system at that state, as in a
function that retrieves the VSSs currently known to be occupied by a train:

fun knownLoc[s:Time,t:Train] : set VSS {
let s1 = max[s.*prev&t.report_front] |
t.pos_front.s1 + t.pos_rear.s1}

Electrum does not allow explicit references to time instants, but the same
behaviour was encoded using the since past operator (Fig. 1). Other expres-
sions are necessarily more verbose in Electrum. For instance, evaluating a field r

over every instant except t can be encoded in Alloy as r.(Time-t) = a, while in
Electrum it would have to be expanded into a sequence of after expressions.

The Analyzer allowed for the automatic generation of scenarios and checking
of assertions through bounded and unbounded model checking. All analyses were
run in a quad-core Intel Core i5-4200U Haswell with 4GB RAM, the bounded
relying on MiniSAT 2.2.0 and the unbounded on nuXmv 1.1.1. All the 9 sce-
narios were generated by bounded model checking procedures, since their exact
trace length is known, with performance times ranging from 20 s for Scenario 1
to 276 s for Scenario 9. The safety properties presented in Sect. 4 were verified

5 http://haslab.github.io/Electrum/ertms.als.

http://haslab.github.io/Electrum/ertms.als
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through both bounded and unbounded model checking, since the latter provides
additional correctness guarantees but has worse scalability. For instance, prop-
erty trains_Occupied, for 5 VSS, 2 TTD and 2 Train elements is verified by the
bounded procedure in 49 s and by the unbounded in 1273 s. Note that such anal-
ysis considers every possible track configuration with that number of sections, 8
for this scope. Previously we proposed an automatic decomposed solving strat-
egy [6] that solves each of these configurations in parallel, which allowed the
unbounded performance to be cut down to 73 s. A larger scope, with 8 VSS and
3 TTD elements can be verified in 20m by the bounded procedure, analysing all
42 valid track configurations.

Bounded model checking can sometimes have unpredictable effects for those
unaccustomed with its semantics. As already reported, the infinite traces
imposed by global constraints forbid deadlocks at the last state, forcing the trace
to loopback into a previous state. Since this not necessarily true in every trace,
it may lead to unexpected unsatisfiable commands and longer traces. A related
issue regards the use of past-time operators which, due to the finite nature of
the trace and the alternative past state when reasoning at the loopback state,
can also lead to unpredictable behaviour.

6 Conclusions

The complexity of the HL3 concept has tested Electrum and its Analyzer to
their limits, allowing us to fully explore their potential and identify possible
improvements and future lines of research. Some improvements (minor changes
to the visualizer, a new temporal operator for formulas over traces, more control
on the scope of trace lengths) were also implemented throughout the development
of the HL3 model. The proposed model could still be further developed to allow
reasoning about some HL3 aspects that were abstracted in the current version,
including delays on TTD reports and forcing independent front and rear reports,
although we expect them to have a considerable toll on performance.

The definition of the operational scenarios was the most cumbersome task, so
we are currently exploring potential extensions to the language to ease that pro-
cess, including variants of temporal logic with support for intervals that would
allow the definition of properties over ranges of steps. It should be noted however
that Electrum’s (and Alloy for that matter) greatest strength is on the exploration
of scenarios, and not the specification of fixed instances. Although we advocate
that the current graphical feedback can be understood by stakeholders with-
out background on formal specification, we also believe that there is room for
improvement. We are currently working on techniques specifically tailored for
the visualization and animation of traces.

We hope that this preliminary work can help clarify some ambiguities in
the HL3 concept and motivate the ERTMS/ETCS community to explore the
potential of formal specification and analysis methodologies.
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1 Introduction

Usually, case studies dealing with train systems concentrate on the safety of
trains circulating on tracks equipped with points and crossings and protected
by means of traffic lights and speed limit sign postings as in [1–3]. Train drivers
are supposed to follow such indications. The goal of formal approaches used in
such case studies is to prove that trains may circulate safely on such tracks pro-
vided drivers act correctly. This is done by constructing models of such complex
systems and by using formal proof techniques.

The case study presented in this paper addresses different issues. Points and
crossings are not incorporated in this case study and there are no traffic lights
nor speed limit sign postings. In fact, drivers are still in charge of trains but some
centralised structures called tracksides ensure train protections. There are vari-
ous tracksides disposed along the track. Each of them is responsible for a certain
portion of the track. All this is made possible through some radio connections
between trains and tracksides and also by the presence of some on-board as well
as trackside numerical systems.

So far, so good. But, unfortunately such radio connections and numerical
systems might fail or be temporarily or permanently out of order. Moreover, it
is quite possible that trains without any connections nor numerical devices (e.g.
freight trains) be circulating on such tracks together with other well equipped
trains. The challenge then is to ensure that trains can circulate safely in spite of
these difficulties. This is the general purpose of this case study. A more precise
scope for this case study is presented in Sect. 2.5.

The system under study is called Hybrid ERTMS/ETCS Level 3 (European
Real Traffic Management System/European Train Control System). The adjec-
tive Hybrid is due to the presence of additional physical equipment along the
track in, so-called TTD sections (Trackside Train Detection sections). Such phys-
ical equipment are able to detect the presence of all trains on corresponding sec-
tions, in particular those which are not equipped with radio connections. Such
additional equipment are in principle not necessary for handling well equipped
connected trains. However, since they are there, tracksides use them as auxiliary
aids.

The reference document on which this case study is based is [4]. This docu-
ment is well written and apparently very complete. However, I found it rather
difficult to master, even after numerous reading sessions. This is the reason why
I propose a synthesis in the next section. This synthesis presents what I learned
from such readings. It is then quite sure that this corresponds to some simpli-
fications of the case study. It is also quite possible that my understanding is
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 322–337, 2018.
https://doi.org/10.1007/978-3-319-91271-4_22
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not correct in some places. Anyway, what I will present in this paper is exactly
what is written in the next section.

The rest of this paper is organised as follows: in Sect. 2, as I already said
above, I give my own informal explanations about the requirements of this sys-
tem, Sect. 3 contains the reference requirements, Sect. 4 gives an idea on how
refinements could be structured, Sect. 5 contains the development of the formal
model, finally Sect. 6 propose some highly subjective comments of mine on this
system.

2 Requirement Document: Explanations

In this section, I propose an informal synthesis of the information needed to
study this system. The reason for doing this synthesis is again that the refer-
ence document is very analytical. As a matter of fact, explanations for a given
information are often spread in many different places of the 48 pages of this
document. For example, details concerning the notion of train integrity can be
found in more than 40 different places in the reference document.

Again, I do not pretend that descriptions contained in this section are correct
according to the reference document. They just correspond to what I concluded
after careful readings of this document. The formalisation described in this paper
will correspond to what is presented in this section.

2.1 Main Components of the System

The system under study is made of three entities: the trackside, the track and
the trains. See details in the coming subsections.

2.1.1 Tracksides
The trackside is the entity in charge of determining precisely the position of trains
situated on the part of the track which the trackside is supposed to control. The
trackside has a second role: that of sending some information to connected trains.
Such information concern the ability of trains to proceed or not on the track.
Note that this second role of the trackside is not part of this case study. As
a matter of fact, I assume that safety is ensured by this information and that
trains will follow them.

The best positions of trains, as recorded by the trackside, are called VSS
(Virtual sub-sections). VSS are continuously ordered virtual sub-sections of con-
tinuously ordered physical TTD sections (Trackside Train Detection sections) of
the track. Each VSS belongs to a unique TTD section. The various VSS of a TDD
section are continuously numbered. Conversely, each TTD section has at least
one VSS in it. See more information on VSS and TTD sections in Sects. 2.1.2
and 2.1.3 below.

TTD and VSS are made free or occupied by the trackside depending on the
positions of trains on them. We shall see in Sect. 2.4 that VSS might have two
more states.

In the best case, where a train is connected to the trackside, VSS which
are occupied by a train are computed by the trackside from some information
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received from trains under the form of a, so-called, position. In other cases,
where trains are unable to send information to the trackside, such positions are
nevertheless known to the trackside by means of physical equipments situated
along the track within each physical TTD section. In this latter case, positions
of the train on the trackside are thus not given by VSS anymore but rather by
TTD sections.

2.1.2 Tracks
The track, under the control of the trackside, is made of various ordered physi-
cal TTD sections (Trackside Train Detection sections). As already explained in
Sect. 2.1.1 above, each TTD section contains a special physical equipment able
to check that a train resides on this section. Such special equipment are perma-
nently connected to the trackside and are considered to be safe.

2.1.3 Trains
There are three kinds of trains: (1) those equipped with ERTMS (European
Real Traffic Management System) and with TIMS (Train Integrity Monitoring
System) and connected to the trackside, (2) those also equipped with ERTMS and
TIMS but which are temporarily disconnected from the trackside, and finally (3)
those which are not equipped with ERTMS (and thus not equipped with TIMS):
such trains are not connectable, they are called ghost trains. Consequences of
these definitions can be seen below in 1, 2, 3 and 4. Note that ERTM and TIMS
are supposed to be unsafe equipment.

1. Trains which are equipped with ERTMS are able to communicate with the
trackside.

2. Trains which are equipped with ERTMS and also with TIMS allow such trains
to occupy precisely certain VSS within the trackside, in particular front end
and rear end VSS (see more on this in Sect. 2.6). Note that VSS occupied by
a given train are contiguous from the rear end to the front end of this train.
Likewise, TTD sections occupied by a given train are also contiguous.

3. The VSS occupied by trains which are equipped with ERTMS and TIMS
but which are not considered to be, so-called, integer trains, are computed
differently by the trackside (see more on this in Sect. 2.6).

4. The trackside records a train which is not equipped with ERTMS by the
TTD sections on which it resides. Note again that TTD sections occupied by
a given train are contiguous.

I suppose that two different trains have no common VSS. Again, this funda-
mental property is not part of this case study. I thus assume that it is always
respected. It is a slight simplification from the reference document where it is
said somewhere that two different connected trains can share a common VSS.

2.2 More on Train Information

In this section, I define more precisely the kind of information which is sent
regularly to the trackside by trains equipped with ERTMS and TIMS. Here are
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these information: train position, train length and train integrity. Such informa-
tion are detailed below in the following subsections. Note that more information
are sent by the train to the trackside. Such data help the trackside to position
the train with more precision. These data are the max safe front end, the min
safe rear end and the min safe front end. More details on this can be seen in
subsequent subsections.

2.2.1 Position
The exact nature of a train position, sent by trains to tracksides, is not made
precise in the reference document. Note that the position in question is that of
the front end of the train. The only thing which can be said about this position
is that the trackside, when receiving it, is able to transform it into the unique
VSS occupied by the front end of the train. As a simplification, I suppose that
trains are never running backwards and that the resulting occupied TTD section
or front end VSS numbers are not decreasing when trains move.

2.2.2 Length
By receiving the train length, the trackside is able to compute the VSS occupied
by the rear end of the train. Again, it should be noted that all VSS situated in
between the first (front end) VSS and the last (rear end) VSS of integer trains
(see Sect. 2.2.3 below) are all occupied by such trains.

2.2.3 Integrity
When the train integrity is confirmed, this ensures that the train length received
by the trackside is reliable. As a consequence, this length can be safely used in
order to compute the VSS of the rear end of the train (see more in Sect. 2.3).
When the train integrity is not confirmed, the VSS of the rear end of the train
is computed differently by the trackside (see more in Sect. 2.3).

I understand (but I am not sure) from my readings of the reference document
that train integrity and train length changes are independent notions. It would
be then quite possible that a train integrity is lost whereas the train length
remains unchanged. Conversely, it is quite possible that a train length change
occurs while the train integrity is unchanged. This is what I deduce from my
readings but I am not certain of this.

2.2.4 Max Safe Front End
The max safe front end is added by the trackside to the front end position
received from the train. The new position, extended in this way, is then the one
that is transformed by the trackside into a VSS.

2.2.5 Min Safe Rear End
The min safe rear end is subtracted by the trackside from the rear end position
of the train as computed by the trackside using the front end position of the train
and the train length. This usage of the min safe rear end is only made when the
train integrity is confirmed by the train. In this case, the rear end position is
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said to be confirmed. Note that explanations given here were not so explicitly
stated in the reference document: what I express here is my own conclusion from
what I have read in this document.

2.2.6 Min Safe Front End
The min safe front end is used by the trackside for computing the rear end
position of the train in case integrity is not confirmed by the train. The trackside
computes the rear end position of the train by subtracting the min safe front end
plus the length of the train from the front end position of the train. In this case,
the rear end position is only said to be assumed. Note again that explanations
given here were not so explicitly stated in the reference document: what I express
here is my own conclusion from what I read in this document.

2.3 Limits of the Trackside and of the Train Movements

The trackside I consider in this case study controls a certain maximum number
of TTD sections, therefore a certain maximum number of VSS. The connected
trains are supposed to have been given permission to circulate on some contigu-
ous VSS of the ones controlled by the trackside: the set of such contiguous VSS
for a given connected train is called its Movement Authority (MA). The last
VSS of this MA is called the End of Authority (EOA) of the train. In this paper,
I suppose to simplify that the EOA of connected trains are all the same and
equal to the maximum number of VSS. Moreover, I suppose that this assignment
of EOA is permanent.

2.4 State of a VSS in the Trackside

Here I almost quote directly some words seen in the reference document: “Besides
the two states (free, occupied) which at least exist for a TTD . . . two additional
states are needed for a VSS to cover all operational situations. State unknown
when there is no certainty if the VSS is occupied or not. State ambiguous when
the VSS is known to be occupied by a train but when it is unsure whether another
(not connected) train is also present in the same VSS”.

When the trackside computes the new VSS of the front end of a train some
VSS are modified from free to occupied. Note that all VSS contained in a free
TTD are necessarily free. Also note that all VSS are in state free initially. In
the reference document, the initial state of all VSS is unknown. I made a change
here because I do not understand how such VSS could become free.

A connected trains can only move forward within its MA. Moreover a con-
nected train can only move to a free VSS. These assumptions are not proved in
this case study: they are thus assumed to be always true.

2.5 Precise Scope of the Case Study

With a now precise definition in Sect. 2.4 of the various states which can be
associated with a VSS, we can make it clear what the main scope of this case
study is, namely the management of the VSS [5]. In other words, I want to
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formally study under which circumstances the status of a VSS in the trackside
stays as previously established or is modified and thus how it is modified.

At this point it is important to make precise the various circumstances under
which the state of a VSS could be modified. Here they are: move of connected
trains (Sect. 2.6), connected trains disconnections (Sect. 2.7), disconnected trains
reconnections (Sect. 2.8), detection of ghost trains (Sect. 2.9), and the move of
ambiguous trains (Sect. 2.10). Notice that I have not retained in this paper poten-
tiel disconnections and reconnections of ambiguous trains.

2.6 Moving Connected Trains

In this section, I synthesise the move of connected trains, as seen by the trackside.
Once a message from a connected train is received by the trackside, the new VSS
occupied by the train is computed. Let us suppose that the position of the train
is a number and, of course, the various auxiliary information as well. I also
suppose to have a function, vss, transforming a position into a VSS. Notice that
this function is necessarily tabulated in the trackside as VSS have different sizes.
Let new pos be defined as follows:

new pos = position + max safe front end

The front end vss of the train is defined as follows:

front end vss = vss(new pos)

The rear end vss of the train is defined as follows in case the integrity of the
train is confirmed:

rear end vss = vss(new pos− length− min safe rear end)

Finally, when the integrity of the train is not confirmed, the rear end vss of the
train is defined as follows:

rear end vss = vss(new pos− length− min safe front end)

a result of these computations, we have the following transitions on the state of
some VSS: from free to occupied and from occupied to free.

I think that what is said in this section is a simplification of the reference
document.

2.7 Connected Train Disconnections

The trackside contains seven kinds of timers: (1) mute timers, (2) wait integrity
timers, (3) shadow timers A, (4) shadow timers B, (5) disconnect propagation
timers, (6) ghost train propagation timers and (7) integrity lost propagation
timers.

In order to simplify, I will consider the first kind of timers only in this paper.
A mute timer is associated with each connected train by the trackside. This

timer is reset each time a message from a connected train is received by the
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trackside. When this timer expires without another message being received from
the same connected train, then this train is considered to be disconnected.

As a result, all VSS occupied by the train are made unknown. We have thus a
transition from occupied to unknown for such VSS. Likewise, all free VSS of the
MA of this train in front of it until a free TTD or an occupied VSS by another
train are encountered, are made unknown as well. We have thus a transition from
free to unknown for such VSS.

What is said here is at least what I understood from my readings of the
reference document, but I am not absolutely certain that this corresponds to the
intent of the reference document. It is probably a simplification of mine.

2.8 Reconnection a Disconnected Trains

We have seen in Sect. 2.7 how the disconnection of a connected train can be
detected by means of the expiration of a mute timer. After this mute timer has
expired, if the trackside receives again a message from the disconnected train
then it means that this train reconnects. In this case, we have to revert to the
situation that was present before the disconnection occurred. As a simplifica-
tion, I suppose that the information sent by the reconnecting train are simple:
integrity is preserved, there is no change in the train length and the train still
resides on the same TTD sections. The reconnection proceeds in two steps:

1. All VSS modifications occurring after the disconnection are reset as in their
previous states.

2. Then the VSS of the train are modified according to the just received infor-
mation.

After a train reconnection some VSS may enjoy the following transitions:
from unknown to occupied or unknown to free.

2.9 Ghost Trains

A ghost train is also called in the reference document a shadow train when it
follows a connected train. Such ghost trains are detected by the trackside when
a free TTD section becomes unexpectedly occupied. This is indicated by the
physical equipment in charge of this TTD section as explained in Sect. 2.1. This
discovery has two consequences as indicated below in 1 and 2:

1. All VSS of the TTD section concerned with a ghost train are made unknown.
2. If the next TTD section is occupied by a connected train t whose rear end

VSS is situated just after a sequence of free VSS from the beginning of this
TTD, then the state of all free VSS of the TTD section until the rear end
VSS of train t are made unknown. Moreover, the state of all VSS of the train
t are made ambiguous. I call such a train t an ambiguous train.

To summarise: the TTD section of the rear end VSS of such an ambigu-
ous train is preceded by a TTD section with a ghost train. Moreover, the
VSS situated behind the rear end VSS of such an ambiguous train are all
unknown. These are permanent properties of ambiguous trains. All this is
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what I deduced from my readings of the reference document although, to the
best of my knowledge, I have not seen this written as such in the reference
document.

All this corresponds to VSS transitions from free to unknown and from occupied
to ambiguous. I clearly simplified things here. This is more precisely described
in the reference document. I have taken this simple approach because I am not
sure to have fully understood what is written in the reference document.

2.10 Moving Ambiguous Trains

An ambiguous train t can be moved like any other connected train (see Sect. 2.6).
According to the properties of ambiguous trains (see Sect. 2.9), this move may
have various consequences as indicated below in 1, 2, 3 and 4:

1. If the rear end VSS of the ambiguous train t is moved forward but remains
in the same TTD section where it was previously, then the VSS that are nor-
mally made free when a connected train moves (Sect. 2.6), are made unknown
instead.

2. If the rear end VSS is moved forward and leaves the TTD section where it
was previously and if the left TTD section is not occupied after this move
of train t, then t is not ambiguous anymore and all its VSS become occupied
again. Moreover all VSS of its previous TTD section are made free again. We
have here transitions from unknown or ambiguous to free.

3. If the rear end VSS is moved forward and leaves the TTD section where it
was previously and if the left TTD section is still occupied, it means that the
ghost train has moved. As a consequence, all VSS of this TTD section are
made unknown and the train t remains ambiguous in the next TTD section.

4. If the front end of the ambiguous train t moves forward then some free VSS
become ambiguous.

What is said in this section is not written as such in the reference document.
It is something I concluded after my reading, thus it can be wrong according
to the reference document.

2.11 Disconnecting and Reconnecting Ambiguous Trains

Disconnections and reconnections of ambiguous trains, which are quite possible,
are not treated in this paper.

2.12 Synthesis of VSS State Transitions

The state of a VSS can be: free, occupied, unknown or ambiguous. Therefore we
might have twelve transitions. Here is a synthesis of such transitions:
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From To Section

free occupied 2.6

occupied free 2.6

occupied unknown 2.7

unknown free 2.8

unknown occupied 2.8

free unknown 2.9 2.7

From To Section

occupied ambiguous 2.9

free ambiguous 2.10

ambiguous occupied 2.10

ambiguous unknown 2.10

ambiguous free 2.10

unknown ambiguous

Transitions shown in the above table are not the same as those mentioned in the
reference document. This is because I simplified the case study in many places.

3 Requirement Document: Reference

There are two kinds of reference requirements: those dealing with the constant
environment (labeled ENV) and those concerned by the functionalities of the
system (labeled FUN).

The track is made of a sequence of physical
train detection sections, called TTD sections ENV-1

Each TTD section can be free or occupied ENV-2

Each TTD section is made of a sequence of
virtual sub-sections, called VSS ENV-3

Each VSS can be free, occupied, unknown
or ambiguous ENV-4
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A free TTD section can only contain free VSS ENV-5

Trains can be connected, disconnected or ghost ENV-6

Connected trains send messages to the trackside FUN-1

Messages contain the following information:
front end position, integrity, length,
max safe front end, min safe rear end
and min safe front end

FUN-2

From the received message, the trackside is able to
compute the VSS occupied by a connected train.
See section 2.6 for more details

FUN-3

A mute timer is associated with each connected train.
This timer is reset when a message is received FUN-4

After mute timer expiration, the corresponding
train is considered to be disconnected FUN-5

The VSS occupied by a disconnected train
are made unknown. Some other VSS too.
It is explained in section 2.7.

FUN 6

A disconnected train can be reconnected.
The situation of the train is reverted
as indicated in section 2.8

FUN-7

A ghost train can be detected on a
normally free TTD section FUN-8
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The VSS of the TTD section of a ghost train
are made unknown. Some other VSS are made
ambiguous as indicated in section 2.9

FUN 9

VSS are subjected to some transitions
as indicated in section 2.12 FUN-10

4 Refinement Strategy

The formal model presented in this paper is an abstraction only of the real
system. In this abstraction, I suppose that connected trains are able to send
directly their front end and rear end VSS to the trackside. This initial model
takes account of reference requirements ENV-1 to ENV-6 and FUN-6 to FUN-10.

A further refinement would thus be necessary to formalise the way the track-
side is able to compute such VSS. This corresponds to requirement FUN-3.

Another refinement would take account of the communication between trains
and trackside. This corresponds to requirements FUN-1 and FUN-2.

A final refinement would introduce the mute timer. This corresponds to
requirements FUN-4 and FUN-5.

I suppose that simplifications proposed in this paper could be overcome by
further refinements.

5 Formal Model

The formal model constructed and proved with the Rodin Toolset is freely avail-
able in [6]. I warmly recommend readers to access this formal model as only
part of it is shown in this paper. This formal model is entirely proven. It con-
tains 327 proof obligations among which 230 were proven automatically (70%).
The remaining proofs were done interactively. They were not difficult although
sometimes a bit hairy.

5.1 Constants

In this abstract model, the following constants are used:

1. train: this constant denotes the set of train.
2. maxttd: TTD section are named by means of a natural number interval from

1 to maxttd.
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3. maxvss: VSS are named by means of a natural number interval from 1 to
maxvss.

4. minvsst,maxvsst: these constants denote functions yielding the minimum
and maximum VSS of each TTD section.

5. ttdv: this constant denotes a function yielding the TTD section of each VSS.

5.2 Axioms

Axioms are shown in the following screen copy:
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5.3 Variables

In this abstract model, the following variables are used:

1. freet, occupiedt: these subsets partition the set of TTD sections.
2. freev, occupiedv, unknownv, ambiguousv, unknowng: these subsets partition

the set of VSS. Notice the presence of two unknown subsets. More precisely,
unknownv denotes the subset of unknown VSS resulting from a disconnection,
whereas unknowng denotes the subset of unknown VSS resulting from the
presence of a ghost train.

3. connected, disconnected, ghost, notrain: these subsets partition the set train.
4. frontv, rearv denote functions yielding the front end and rear end VSS of a

connected or disconnected train.
5. ambtrain: this variable denotes the subset of connected trains that are fol-

lowed by a ghost train.
6. lastU : this variable denotes the last VSS made unknown as a result of a

disconnection.

5.4 Invariants

Invariants are shown in the following screen copies. Besides the typing of the
variables, it is possible to see various properties and incompatibilities:
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5.5 Events

The initial abstract machine contains the following events:

1. Moving connected non-ambiguous trains (2 events).
2. Disconnecting connected non-ambiguous trains (2 events).
3. Reconnecting disconnected trains (1 event).
4. Introducing ghosts and ambiguous trains (2 events).
5. Moving ambiguous trains (4 events).

Some abstract events are missing: disconnection and reconnection of ambiguous
trains.

6 Some Comments

To the best of my knowledge (but I might be wrong), I did not find enough
information in the reference document on the following issues: moving ghost
trains, moving disconnected trains, the case of two or more ghost trains following
each other, the case of a ghost train following a disconnected train which is
reconnecting, the introduction of a new connected train within a trackside, the
cooperation between two successive tracksides.

Concerning the structure of the reference document: I found it too flat, result-
ing in difficult readings.
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Concerning this system in general, I found it a bit dangerous: I think it might
be very difficult for tracksides to master simultaneously the safety of ghost trains,
ambiguous trains, connected trains and disconnected trains. I cannot imagine
how the trackside could take good safety decisions in the presence of unknown or
ambiguous VSS. Another issue is that of traffic lights: they should be maintained
on tracks because of the presence of non-connected trains. But drivers are said to
be present in connected trains. It is well known fact that drivers are influenced
by such traffic lights in spite of the automatic behaviour of the trackside.

I suggest that non-connected trains are not allowed to circulate on tracks
where connected trains are under the controls of tracksides. Connected trains
should not be connected anymore when they reach normal tracks. The issue of
disconnected trains is, in my opinion, very rarely occurring. In this case, the
driver (or the train itself automatically) should stop the train immediately until
reconnection occur.

Acknowledgments. I would like to thank Asieh Salehi and Dominique Cansell for
their help in preparing this paper.
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Abstract. We demonstrate diagrammatic Event-B formal modelling of
a hybrid, ‘fixed virtual block’ approach to train movement control for the
emerging European Rail Traffic Management System (ERTMS) level 3.
We perform a refinement-based formal development and verification of
the no-collision safety requirement. The development reveals limitations
in the specification and identifies assumptions on the environment. We
reflect on our team-based approach to finding useful modelling abstrac-
tions and demonstrate a systematic modelling method using the UML-
like state and class diagrams of iUML-B. We suggest enhancements to the
existing iUML-B method that would have benefitted this development.

1 Introduction

Railway control systems are safety-critical, and it is common for railway safety
standards (e.g. CENELEC EN-50126, EN-50128/9) to recommend the use of
formal modelling and verification to certify their correctness. We present our
application of a diagrammatic formal modelling method to such a system.

The European Rail Traffic Management System (ERTMS)1 [6] will comprise
a single ATP (automatic train protection) system and a single GSM radio com-
munication system train-to-trackside, to replace the variety of current national
train control solutions. Hybrid ERTMS Level 3 [8] - a compromise between full
ERTMS Levels 2 and 3 - aims to increase network capacity at reduced cost, using
existing trackside train detection equipment together with radio communication.

This case study concerns a physical environment of trains, and communica-
tion by radio and trackside equipment. The case study concerns the control of
trains moving on a linear track which is part of a wider network controlled by
an interlocking system which is out of scope of this case study. A train move-
ment controller called the Radio Block Centre (RBC) manages the Movement
Authority (MA) granted to each train in mission. The focus of this work, called
the Virtual Block Detector (VBD), conservatively estimates train locations to a
finer granularity than physically detected track sections, and thus reports free

All data supporting this study are openly available from the University of Southamp-
ton repository at http://doi.org/10.5258/SOTON/D0403.

1 http://ertms.net.
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virtual track sub-sections available for train movement. Trains and trackside
report location data to the VBD. In turn the VBD reports free track sections to
RBC. The MA granted to each train consists of a set of sections that the train
is permitted to move into. A controlled train is instructed that the MA sections
are free; a trusted train is instructed that they might not be free. The key safety
property which we verify is that controlled trains do not run into trains that are
ahead of them.

Motivation and Contribution. The case study presents challenges - addressed
by our contribution - for a formal development method, typical of challenges
arising in safety-critical cyber-physical systems. First is the development of a
useful model reflecting the component architecture of the target system (VBD)
interacting with its physical environment and other system components. The
model enables us to verify functional safety properties of the specification. Sec-
ond, we need readable models so that domain experts are able to validate the
model. While we do not focus on validation in this paper (other than for our
own sanity checks of the model), future work will include running scenarios in
a form of model acceptance test. Third, we describe how we tackle the diffcult
process of turning a detailed and complex specification that contains ambiguity
and relies on tacit domain knowledge, into a formally precise model containing
useful abstractions. (We view this contribution as particularly useful for indus-
trial partners to enable them to adopt formal modelling techniques). Fourth, we
have the emergent critique of the specification document: assumptions on the
environment, omissions, ambiguities, errors etc.

The refinement-based Event-B modelling method [1] is an appropriate choice
since it allows us to verify key properties while leaving certain features, and
interacting components, abstract and underspecified. The architecture can be
layered through the refinement: each layer can focus on an abstract component
interface, the environment, or a specific feature of the target system. Event-B
has strong tool support [2] for verification and validation in the form of theorem
provers and model-checkers. Diagrammatic modelling notations and tools are
available which help in conceptual modelling: we use iUML-B class diagrams
and state-machines [14,16,17]. One of our goals is to show that using iUML-B
leads to a readable formal specification (or at least more readable than plain
Event-B), which is easier for domain experts to validate.

Structure. The paper is structured as follows. We next recall Event-B and iUML-
B basics in Sect. 2. Section 3 reviews our development process, and Sect. 4 gives
our system analysis. The refinement strategy is then summarised (Sect. 5), fol-
lowed by a detailed account of modelling in Sect. 6. Next is related work (Sect. 7),
followed by the conclusion in Sect. 8.

2 Event-B and iUMLB

Event-B [1,9] is a refinement-based formal method for system development.
An Event-B model contains two parts: contexts for static data, and machines
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for dynamic behaviour specified by variables v, invariant predicates I(v) that
constrain the variables, and events. An event comprises a guard denoting its
enabling-condition and an action describing how the variables are modified when
the event is executed. In general, an event e has the following form, where t are
the event parameters, G(t, v) is the guard of the event, and v := E(t, v) is
the action of the event.

e == any t where G(t,v) then v := E(t,v) end

Event-B is supported by the Rodin platform (Rodin) [2], an extensible toolkit
which includes facilities for modelling, verifying the consistency of models using
theorem proving and model checking techniques, and validating models with
simulation-based approaches.

iUML-B [14,16,17] provides a diagrammatic modelling notation for Event-B
in the form of state-machines and class-diagrams. The diagrammatic elements
share the repository of an Event-B model, and contribute to that model. For
example a state-machine will automatically generate the Event-B data elements
(sets, constants, axioms, variables, and invariants) to implement the states, and
contribute additional guards and actions to existing events. Class diagrams pro-
vide a way to visually model data relationships. Classes, attributes and associa-
tions are linked to Event-B data elements (carrier sets, constants, or variables)
and generate constraints on those elements.

3 Process

Formal models are often presented as if they were developed in perfect inexorable
steps when, in practice, they never are. We give an overview of our informal team-
based process illustrating the iterations that involved many misunderstandings
failures and re-work. Although we had some feedback from domain experts on
terminology and detailed clarifications, this was not substantial as we wanted the
case study to test our ability to use formal methods to understand and interpret
the specification. The domain experts were not involved in the process described
in this section. The team consisted of research and academic staff who had some
experience of formal modelling of railway applications such as interlockings and
crossings, but no previous experience of communications-based, virtual section
train control.

Systems Analysis. While the Hybrid ERTMS Level 3 (HLIII) specification
is quite well presented in terms of explanatory scenarios, its focus makes it a
detailed requirements specification for the VBD. It does not explain the overall
system aims and principles so well. We therefore started by reverse engineer-
ing our understanding of the system in order to understand its purpose and
the concepts that it is based on. This involved analysis of the information in
the specification, discussions and sketching whiteboard diagrams such as com-
ponents, entity relationship and state-machine diagrams. The diagram-based
analysis naturally led into the iUML-B modelling. The systems analysis identi-
fies the main components in the system and the information flow between them.



Diagram-Led Formal Modelling Using iUML-B for Hybrid ERTMS Level 3 341

This is necessary for the model to reflect the appropriate responsibilities of the
VBD verses assumptions it makes upon other components. As with most stages
of the modelling process, the analysis was iterative. The modelling helped our
understanding of the system and our new understanding helped us choose better
abstractions for modelling. For example initially we assumed that only connected
trains were ‘in-mission’. However, when modelling we realised that when a con-
nection is lost the system relies on the fact that the train will continue to respect
its MA and this implies that the train is still in-mission. This new understanding
of the system led us to revise our models so that the in-mission state-machine
was independent of (i.e. parallel with) the connected state-machine.

Refinement Strategy. The refinement strategy provides a plan for how we
intend to build the model, choosing abstractions, adding details in refinement
steps and introducing invariant properties at appropriate stages. We considered
two alternative approaches, (a) start from an abstract safe system or (b) start
from an unsafe system and make it safe. For this example we chose the second
approach. While the first approach is perhaps more traditional, in this case, the
safety properties were not so obvious and were complicated by unsafe, albeit mit-
igated, scenarios. So we wanted to capture the essence of train movement before
introducing assumptions and progressing towards details that can distinguish
between safe scenarios and mitigated unsafe scenarios. Again, the refinement
strategy evolved as we discovered difficulties and adapted our approach.

Modelling. In modelling we used iUML-B for its diagrammatic notation which
follows on from the diagrams used in our analysis and review stages. As usual,
we used the provers to verify models and when they fail, and we cannot be sure
why, the ProB model checker helps to find counter examples. We also animated
the models to check that the model behaves as expected.

Review. We held regular reviews to discuss problems with the modelling. As
indicated in the previous steps, the reviews led to significant iterations to our
understanding of the system, revisions to our refinement plan and consequent
changes to the model. Problems fell into the following categories:

– We cannot prove this PO - look for a better modelling approach. Example:
contiguity of next VSS relationship - We found it difficult to prove contiguity
properties about Virtual Sub-Section (VSS) using abstract properties. While
this should, in principle, be possible, we decided it was not worth the effort
and introduced numeric indexing of VSS (relying on the contiguity of a range
of integers). We retained the next function for elegance of expression in guards
and actions.

– This is not a useful refinement - change refinement strategy. Example: We
wished to introduce features such as timers as soon as it was possible to do so
(i.e. when the triggering functionality was available). However, we had not yet
introduced the relevant VSS state changes to utilise the timeout. To rectify
this we altered our refinement strategy to introduce abstract versions of VSS
states and associated transitions.



342 D. Dghaym et al.

– This is not a true data refinement - change systems analysis. Example: As we
modelled the flow of information through the control components we found
it difficult to reconcile the reported train positions and controlled MA with
the safety properties of the abstract environment. It seemed that we would
need to introduce some form of responsiveness assumptions to limit the differ-
ence between actual and control variables. However, the specification implied
that the VSS states were asynchronously updated. As our understanding of
the MA principle improved we realised that the position inaccuracy is of no
consequence and we adjusted our systems description.

4 System Analysis

The HLIII specification is a detailed description of one component (the VBD) of
a wider system that controls train movements. The other components involved
in the system are the trains and trackside equipment, which we refer to as
environment (ENV), and the RBC that calculates movement authorities limiting
the movement of trains.

The VBD receives messages from trains and train detectors. It also receives
information about the output of the RBC. It calculates a set of sections that it
believes to be free of any trains and sends these to the RBC. The RBC sends to
each train, a movement authority consisting of a set of sections that the train
may move into. The train is either instructed that the sections are all free or
that they might not be free. We wish to model and verify item 3, the VBD. To
do this we also need to consider (and model) the other 2 items.

The environment consists of a linear track divided into fixed sections (Vir-
tual Sub-Section (VSS)) with trains moving in one direction on the track. Detec-
tors (Trackside Train Detection (TTD)) report when a train is present. However,
there is only one TTD for a group of VSS. There are 2 kinds of trains; those
that communicate with the control system, and those that do not. Trains that
communicate send three items of information to the VBD:

– their current position (in finer granularity than track sections),
– the length of the train,
– whether the train is confirmed as integral.

Communicating trains are able to receive information about the range of sec-
tions they are allowed to move through and whether the authorised track is
guaranteed to be free (full-supervision) or not (on-sight). For the purpose of this
description we partition trains into three kinds: ghost trains (not communicat-
ing), controlled trains (communicating with guaranteed free sections authorised)
and trusted2 trains (communicating with possible non-free sections authorised).
Trains that do not communicate can only be detected by TTD and may move
freely according to some assumptions concerning physical limitations and those
imposed by train design regulations.
2 Controlled and trusted (trains) are terms that we have introduced, they are not

terms from the specification.
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The RBC grants movement authority (permissions) to the communicating
trains. The RBC uses information it receives from the VBD about which VSS are
free. An MA consists of a set of track sections that the train is allowed to move
through. The train is also instructed as to whether it needs to be responsible for
avoiding collisions with trains in front (On-Sight Movement Authority (OSMA))
or whether it can assume the track sections are free (Full Supervision Movement
Authority (FSMA)). We assume the RBC always issues safe FSMA in accordance
with the information it receives from the VBD. I.e all sections in an FSMA are
ones that the VBD has calculated to be free.

The VBD is responsible for deciding which VSS are free based on information
it receives from the TTD and from Positive Train Detection (PTD) communi-
cations received from communicating trains. It sends information about which
VSS it believes are free to the RBC. Since PTD reports may be intermittent or
interrupted and some trains do not communicate at all, the estimate of free VSS
is cautious in these circumstances.

The positions of trains that are communicating are known fairly accurately
(subject to some lag in communications) from the PTD data sent by the train
(position, length and integrity) as well as physical limits on possible train move-
ment in between communications. The position of the train may cover a range
of sections from that occupied by the rear to that occupied by the front. Some
robustness is necessary to accommodate limitations of the communication mech-
anisms such as temporary loss of communication etc.

The position of a train that is not communicating (i.e. a ghost train) is
difficult to determine. The possible positions of a ghost train are estimated as a
range of sections based on the following:

– its last known position (from a PTD or a loss of integrity),
– how far it could possibly have travelled since its position was known,
– information from trains and free TTD that delimits its movement range.

A ghost train is created in the VBD by one of the following means: a com-
municating train stops communicating, a TTD spontaneously and unexpectedly
detects a train, or a communicating train reports that it has lost integrity.

For loss of integrity, a ghost train is created just behind the communicating
train to represent the detached section of carriages. A communicating train is
converted to a ghost train if the train’s mute timer expires (after communication
is lost) or if it sends a mission end message and terminates communication. A
ghost train is removed (i.e. destroyed) by sweeping. Sweeping is the movement of
a trusted train (with OSMA) through the sections where the ghost train may be.
If the trusted train is able to pass through the sections the ghost train does not
exist. A ghost train may also be converted to a communicating train if it starts
communicating with the VBD (either by sending a mission start communication
or by re-starting previous communication).
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5 Refinement Strategy

Through system analysis and iterative modelling, the original outline refinement
strategy evolved into the following. The target VBD model interacts with the
physical environment of trains and trackside: the first refinement layers ENV.
Next is the RBC component, followed by lower layers which elaborate the VBD.

ENV-M-1 Trains: Defines a linked list of trains to keep track of train order
and prevent overtaking. Trains are created at the rear of the linked list and
removed from its front. We also allow adding a new train in the middle of the
linked list as a result of train split.

ENV-M0 Train movement, VSS: Introduces the train movement in terms
of VSS section updates, where a VSS section is either free or occupied by
a train. The train movement is modelled as an independent update of the
position of the train front and rear.

ENV-M1 Ghost vs connected trains: Distinction between connected and
ghost (i.e., non-connected) trains, where all new trains join as ghost.

ENV-M2 TTD: Introduces TTD sections which can be either free (no train
on any of its VSS) or occupied (a train on at least one of its VSS). The TTD
state is immediately updated by train movement events.

RBC-M3 RBC: RBC can grant trains MA. We call trains with MA inMission,
where the RBC may extend or shrink their MA while connected.

VBD-M4 Position reporting: Presents the VSS four states (free, occupied,
ambiguous, unknown). Also introduces the reported versus actual train posi-
tion with the associated MA trimming. Disconnection related timers are also
introduced.

VBD-M5 Controlled vs trusted trains: Fully supervised FS (controlled) vs
on-sight OS (trusted) trains are introduced. An OS train has unsafe MA and
is assumed not to crash into the back of other trains. An FS train has safe
MA and therefore cannot crash into the back of other trains. In addition to
Ghost train timers.

VBD-M6 Integrity loss: If a train reports either integrity loss or changed
length, the train is split. Additionally, integrity loss propagation timers to
control availability of adjacent VSS are introduced.

VBD-M7 Lower levels: Full VSS state transition as per specification, includ-
ing all timers.

6 Modelling

The model consists mainly of two parts: the ENV and the VBD. The RBC
provides an intermediate layer for moving from the ENV to the VBD.

Modelling the Environment. In the first part of the model, we focus on
modelling the ENV and the possible trackside events, such as train movement,
splitting and loss of communication.
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(a) VSS Properties (b) TTD Properties

Fig. 1. Class diagram representing the track in the context

In the context, we model the network topology using iUML-B class diagrams
(Fig. 1). First we introduce the TRAIN class (not shown in figures), then the
VSS with their linear layout enforced by indexing via attribute, VSS i , Fig. 1a.

At the abstract level, we introduce how trains can join and leave the network
or in other words how trains can be created and destroyed. The variable class
train, with superset TRAIN , represents the trains that currently exist in the
network. There are two cases for creating trains, either a train can join from
the beginning of the network or in the middle as a result of splitting behind an
existing train. An important property at this level is: trains cannot overtake,
which is why we introduce the relative ordering of the trains, represented by
the variable association next train in Fig. 2. Therefore, a train can only leave
the network if there is no train in advance, this is represented by the guard
tr /∈ dom(next train) added to the method ENV leave network of class train.

In the next refinement, we model train movement. A train’s position is given
by the VSS that it occupies: variable association occupiedBy in Fig. 2. We only
model trains moving forward, hence a train can only leave a VSS if it occupies
the next one. In order to ensure the no overtaking property, a train can only
move forward if it doesn’t share a VSS with its next train. Apart from splitting,
a train can only join the network from the first VSS and trains can only leave
from the last VSS. Since the no-overtaking property is fundamental to the safety
of the system, we ensure the model does not break it by introducing the following
invariant, which states that a train cannot occupy a vss with an index higher
than the lowest indexed VSS of the next train:

∀tr1 , tr2 · (tr2 �→ tr1 ) ∈ next train =⇒
max(VSS i [occupiedBy ∼ [{tr2}]]) ≤ min(VSS i [occupiedBy ∼ [{tr1}]])

To distinguish between trains that are communicating and those that are
not, we introduce sub-states connected and ghost , of train (Fig. 3).

Next, we introduce the TTD which group sets of contiguous VSS via asso-
ciation Sections (Fig. 1b). Class occupiedTTD , which is a sub-class of TTD ,
represents those TTD that have at least one of their VSS occupied by a train.
At this level, we distinguish two cases when a train is leaving the last VSS of the
TTD: (i) no other train occupies the TTD and the TTD becomes free (and is
removed from occupiedTTD) or (ii) it remains occupied and not free. The same
applies to a train leaving the network which can also free a TTD.
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Fig. 2. Class diagram representing dynamic aspects of the environment

Fig. 3. Train communication statemachine

In the final environment model, we introduce the RBC role which paves the
way for the VBD part. The RBC provides movement authorities (MA) which
we assume trains will respect. The MA is modelled as a variable association ma
between train and VSS . We refine the train statemachine further by introduc-
ing a parallel state-machine (Fig. 4). The sub-states, inMission and noMission,
distinguish the mission status of trains. inMission represents trains that have
performed a Start of Mission (SoM) (transition ENV start of mission), while
noMission represents trains that either did not start or performed an End of
Mission (EoM) (transition ENV end of mission). The mission state-machine was
introduced as a parallel state-machine to the communication state-machine so
that trains that lose communication retain their mission status. All connected
trains have a mission. This is ensured by the invariant: connected ⊆ inMission.

We also split the radio connection/disconnection transitions in Fig. 3 into
two cases to distinguish between SoM and reconnection and connection loss and
EoM. The transitions ENV start of mission and ENV end of mission are common
to the two statemachines. Note that when a train first joins a network, it joins
as a ghost train with no mission, and when leaving the network it also has to
leave as a ghost train with no mission.
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Fig. 4. Parallel statemachines for communication and movement authority

When a train performs SoM, it is immediately granted an MA for the VSS
it occupies. However, this does not allow the train to move to new VSS sections.
In order to move forward, the RBC should extend the MA as shown by the
self transition RBC extend ma of the connected state in Fig. 4. Our assumption
that trains with a mission respect their MA is enforced by the inMission class
invariant: occupiedBy ∼ [{tr}] ⊆ ma[{tr}]3. However, when the RBC shrinks the
ma (e.g. due to propagation of an unknown VSS state) the actual train position
may have progressed sufficiently to violate this invariant. We believe this is
a limitation of the system and therefore introduce a boolean attribute unsafe
of class train to indicate that the train has entered an unsafe scenario (to be
detailed in later refinements), and the invariant can be violated in this scenario:
occupiedBy ∼ [{tr}] ⊆ ma[{tr}] ∨ unsafe(tr) = TRUE. In Fig. 2, RBC trim ma
in the connected class plays the role of a garbage collector, removing the VSS
the train has left behind.

Modelling the VBD. The VBD cannot see directly what is happening in
the ENV; it depends on periodic reports (PTD) sent by the train and it then
asynchronously updates the VSS states. Similarly, the RBC receives information
about VSS state from the VBD. This asynchronous behaviour relies on the fact
that the actual position cannot be behind the reported position and is somewhere
within the MA. I.e. reported position is only used to free VSS after a train has
passed. This is embodied in the following invariants of class inMission which
relate the actual position occupiedBy with the reportedPosition seen by the VBD.
min(VSS i [reportedPosition[{tr}]]) ≤ min(VSS i [occupiedBy ∼ [{tr}]])
max(VSS i [reportedPosition[{tr}]]) ≤ max(VSS i [occupiedBy ∼ [{tr}]])
We also refine loss of connection with mute timer expiry. We model time
abstractly without introducing a clock, giving timeouts a non-deterministic
opportunity to expire. When a mute timer expires this will enable the disconnect
propagation timer whose expiry will affect the VSS state in later refinements.

In the next refinement of the VBD, we distinguish between the two different
modes of MA: FSMA and OSMA. In FSMA mode the RBC only uses free VSS
to extend ma. In OSMA mode, the RBC can extend ma with any VSS since
we trust the OSMA trains not to crash. This behaviour is modelled in Fig. 5
3 Note that class invariants are implicitly quantified over instances of the class, hence

the antecedent ∀tr · trεinMission is added automatically.
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by partitioning inMission into two different sub-states, controlled and trusted
representing FSMA and OSMA modes respectively. The choice between the two
transitions, RBC extend os ma and RBC extend fs ma, is non-deterministic and
determines the mode of the train.

Fig. 5. Introducing sub-states to represent FSMA and OSMA modes

We can now introduce a safety invariant concerning the separation of con-
trolled trains; the ma of controlled trains do not overlap:
∀tr1 , tr2 · tr1 εcontrolled ∧tr2 εcontrolled \{tr1} =⇒ ma[{tr1}]∩ma[{tr2}] = ∅

Hence, the RBC can only extend the ma of controlled trains using VSS sec-
tions that are free and not part of any ma. We introduce a sub-class availableVSS
of VSS to represent the free vss sections. This will be refined to the VSS state
free in future refinements as we introduce the state-machine of the specification.
However, extending the ma for trusted trains does not have these restrictions.

At this level we add and remove availableVSS abstractly with the general
conditions that apply for all cases. Therefore for adding a new availableVSS , it
either belongs to a free TTD or no train has reported its position in this VSS,
while for now the only condition for removing a VSS from availableVSS is that
it belongs to an occupied TTD.

Next we introduce the concept of train integrity. We partition connected
into two sub-states: integral and nonIntegral . We also refine the PTD posi-
tion reports to include integrity information. Therefore, we split the method
VBD receive position report into different cases for confirming integrity, integrity
loss, integrity not available and train length change. We also introduce the
integrity waiting and propagation timers.

At this stage, it became clearer to us that availableVSS is insufficient, and
it would have been better to introduce different sub-states of VSS as soon as we
started the VBD part. Most timers result in a change to state unknown when
they expire, hence there is no great benefit from having the timers without
showing their effect. Moreover, this would have the advantage of introducing
the different transitions of the VSS statemachine earlier, with the four states
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(free, unknown, ambiguous, occupied) and gradually building towards the spec-
ification. Such decision requires a new iteration of the Event-B modelling in
accordance with the refinement strategy described in Sect. 5.

Proof Statistics. The current modelling approach (before the next iteration
in accordance with Sect. 5) contains 8 machines. Our modelling resulted in 246
proof obligations, where about 66% (162) were proved automatically with the
default Rodin prover configuration. However, most of the proof obligations that
were not discharged automatically were related to well-definedness of min/max
operators. We then changed our Rodin configuration to include SMT solvers, this
increased the number of automatically discharged proofs to 226 (92%). Finally,
we added the relevance filter (but excluding newPP), which is a meta prover that
improves the efficiency of the predicate prover by selecting relevant theorems.
This improved our automatic percentage to about 99%. However, when recalcu-
lating auto-status, we found that this sometimes dropped to 97%. Presumable
this is due to fluctuations in the processor resources available to the prover. We
managed to get the auto-status back to 99% by increasing the timeout limits of
the provers. This high percentage of automation depends on the modelling style
applied. For example, we used indexing to avoid abstract models of sequences
whose transitive properties are difficult to prove. In our models, we used iUML-B
class diagrams and state-machines. The iUML-B state-machines plugin provides
two alternative translations, one representing the states as an enumerated set
and the other representing states as subsets of the statemachine instances. We
used the latter translation, lifting the state-machine to a set of instances (train).
Therefore, the generated state-machine type invariants are based on subsets of
the instance set (train). In future work we will assess whether the use of iUML-B
and the choice of state-machine translation affect the degree of automatic proof.

7 Related Work

Various approaches have been made during the development of the Event-B
method, to integrating it into the broader Software Engineering process. The
original interpretation of UML class diagrams and statemachines in classical B
[17] have been presented - and tool-supported - as iUML-B [16] for Event-B.
More recently Event-B refinement has been extended [14] to this diagrammatic
modelling method. Example applications - of which this work is one - include
[11]. CODA [3] is a tool-supported framework extending iUML-B for component-
based embedded systems.

Train control is a familiar domain for Formal Methods, and specifically for B
and Event-B-based approaches. Butler et al. [4] give a methodical treatment of
the diagrammatic modelling of the rail interlocking system Railground with both
iUML-B and Event Refinement Structures [15]. In [7], the authors present the
Event-B development of a Communications-based Train Control (CBTC) system
from Hitachi Ltd. Their focus is on the use of Abstract Data Types (ADTs) to
manage the complexity of modelling a graph-based rail network and its dynam-
ics. This example is comparable to ERTMS Level 3 and uses moving blocks. The
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authors further proposed [10] the extension of iUML-B to support diagrammatic
modelling of ADTs, using the same Railground case study as [4].

Other related work such as [13] on Hybrid ERTMS Level 3 is based on moving
blocks. These models are hybrid, being concerned with continuous modelling of
exact train position and speed reporting. This ABZ2018 case study is the first
formal examination of fixed virtual blocks that we are aware of.

8 Conclusion

The specification is a rich and detailed source of information but is written as
a functional specification of the VBD component rather than a systems require-
ments document. While trying to formalise and abstract a model of the system,
we discovered several ambiguities. For example, when modelling the mute and
disconnect propagation timers we found that Sect. 3.4.2.2 describes the start
event of the disconnect propagation timer to be expiry of the mute timer. How-
ever, in scenario 4, EoM also starts the disconnect propagation timer. One possi-
ble explanation is that the mute timer also operates for trains when they perform
EoM. On the other hand, transition 7 A in the VSS statemachine distinguishes
between mute timer expiry and EoM, implying that these are two different cases.
In addition, Sect. 3.4.2.2 states that the mute timer is stopped once the train
re-connects, but doesn’t describe the EoM case. Does the VBD need to keep a
history of train positions with ended mission? Or is the mute timer not stopped
in this case? This example illustrates how formal modelling can reveal ambi-
guities in the specification. Collaboration and interaction with domain experts
is crucial to resolve such questions as it would be dangerous to model our own
assumptions.

Formal modelling and the need to make abstractions and refine them, helped
to develop our understanding of the system and to gain insights into the princi-
ples of the design. The main example of this is the link between: what it does -
prevents certain kinds of collisions; how it does it - allocates movement authori-
ties; why it works - movement authorities cannot be entered by another train. It
also made us very aware of limitiations to the safety of the system such as the
case where carriages could roll backwards which could break the why it works.

We intend to continue developing and improving the formal model as part
of the Enable-S3 project4. The model will form a demonstrator for the Rail use
case and will be used in conjunction with MoMuT for test case generation [12].
An acceptance test specification will be developed using ‘Cucumber for iUML-
B’ [5] which is a formalised notation for describing test scenarios for iUML-B
models. The acceptance tests provide a rigorous, repeatable validation accessible
to domain-experts with limited formal methods expertise.

Some suggestions for improvements to the iUML-B notation and tools arose
from modelling the HLIII. For example, it is often convenient to initialise class
attributes/associations and have a complete mapping of their instances to val-
ues rather than specify a common value for each instance. Similarly, we often
4 https://www.enable-s3.eu/.

https://www.enable-s3.eu/
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needed to specify ‘class-wide’ invariants in which case the Event-B generator
adds an unnecessary universal instance quantifier. These improvements will be
incorporated in a future release.

Classes represent a set of instances with state represented by attributes and
associations and behaviour described in methods. Lifted statemachines represent
a set of instances with state represented by the statemachine state and behaviour
described in transitions. It is often useful to use both visualisations for the same
set of instances. While the diagrams can be linked to the same set of instances,
the integration is not very strong and the tooling sometimes conflicts in Event-
B generation. We experienced difficulties for example when modelling connected
(trains) as both a class and a state. A first improvement would be to allow state-
machines to be placed inside classes (an existing feature request) and rectify the
problems with generation. However, a more fundamental integration might be
possible: a common underlying record-based notation for the iUML-B model. In
this case the diagrams would be alternative views of a common model. A text
representation of the record-based model could also be provided. This would
align well with our plans to provide a text based version of iUML-B to improve
team-based development (where model diff and merge are essential).
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Abstract. This paper presents an Event-B model of the ABZ2018 case
study on the European Rail Traffic Management System (ERTMS) stan-
dard. The case study focusses on the management of fixed virtual sub-
sections (VSS). We model the hybrid level 3 of the standard, which
assumes that trains may be either equipped with an on-board train
integrity monitoring system (TIMS) and that they report their position
and integrity, ERTMS trains not fitted with TIMS that report only their
front position or non-ERTMS trains that do not report any information
about their position. We take into account most of the main features of
the case study. Our model is decomposed into four refinements. All proof
obligations have been discharged using the Rodin provers, except those
related to the computation of the VSS state machine, which was found to
be ambiguous (nondeterministic). Our model has been validated using
ProB. The main safety property, which is that ERTMS trains do not
collide, is proved.

Keywords: Hybrid ERTMS/ETCS level 3 · Event-B · ProB
Control system

1 Introduction

This paper proposes an Event-B model of the hybrid ERTMS/ETCS level 3
case study [5] proposed for ABZ2018. The case study concerns the European Rail
Traffic Management System (ERTMS), the system of standards for management
and interoperation of signalling for railways by the European Union. For the sake
of concision, we only provide a brief overview of the case study. The reader is
referred to [2] for more details.

This paper is structured as follows. In Sect. 2, we summarize the characteris-
tics of the standard that we have taken into account in our model. In Sect. 3, we
c© Springer International Publishing AG, part of Springer Nature 2018
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describe our modelling strategy, explaining how we take into account controller
and environment characteristics, while in Sect. 4, we present an overview of our
Event-B model. We describe the refinement strategy, explaining the order in
which the various features of the ERTMS were taken into account. In Sect. 5, we
describe each refinement. In Sect. 6, we discuss how the requirements and our
specification of it have been verified. We conclude in Sect. 7 with an appraisal
of this work. In the sequel, we suppose that the reader can read the case study
text, in order to avoid unnecessary repetitions.

2 Modelled Characteristics

We model the hybrid level 3 of the standard, which assumes that trains may
be equipped with an on-board train integrity monitoring system (TIMS) and
that they report their position and integrity to the train supervisor (the system
controller, called the trackside in the case study), ERTMS trains not fitted with
TIMS that report only their front position or non-ERTMS trains that do not
report any information about their position. We assume that trains move on a
single track, all in the same direction. We also take into account trains that can
enter and move on the track without reporting their position to the supervisor
(i.e., non-ERTMS trains).

A track is divided into sections called TTD (Trackside Train Detection). A
TTD is equipped with sensors that can detect the presence of an object, which
can be a train, or something else; it cannot identify a train with this sensor. A
TTD is further divided into subsections called VSS (virtual sub-section). The
TIMS can be used to determine the VSS occupied by the train and the train’s
integrity. A train can lose its integrity by splitting into several parts.

The supervisor periodically computes an MA (Movement Authority) and
sends it to ERTMS Trains. An MA specifies the VSS that the train can move
up to, but never beyond, in order to avoid collision with another train ahead.
As stated in the case study, the computation of MAs is out of scope; we simply
nondeterministically choose an MA that avoids a collision with the trains ahead.
Trains can be connected or disconnected with the supervisor. When connected,
a train reports its position and integrity to the supervisor on a regular basis.
Timers are used to detect disconnected trains and to manage ghost trains. A
ghost train is either a physical object that is present on the track and detected
by a TTD, but for which no position report has been received, or a failure of the
TTD sensors which incorrectly report the presence of an inexistant object.

3 Modelling Conventions

We reuse the terminology introduced in [8]. A control system interacts with
its environment using sensors and actuators. A sensor measures the value of
some environment characteristic m, called a monitored variable (e.g., train on a
track), and provides this measure (e.g., detection of an object on the track) to
the software controller as an input variable i. In a perfect world, we have m = i,
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but a sensor may fail. The software controller can influence the environment by
sending commands, called output variable o to actuators. An actuator influences
the value of some characteristics of the environment, call a controlled variable c.
Variables m and c are called environment variables. Variables i and o are called
controller variables. Finally, a controller has its own internal state variables to
perform computations. In this case study, we use Event-B state variables to
represent both environment and controller variables.

4 Model Overview

Event-B models are iteratively constructed using refinement. A model compo-
nent can either be a context or a machine. A context contains constants decla-
ration. A machine contains events that modify state variables. A machine can
refine another machine; a context can extends another context. A machine can
see contexts to have access to its constants. Each refinement adds new infor-
mation to the model; these could be new state variables, data refinement of
state variables, new events or new properties. Event-B refinement [1] allows for
guard strengthening, non-determinism reduction, and new events introduction.
New events of a machine M ′ that refines M are considered to refine the skip event
of M , hence they cannot modify a variable introduced in M . Consequently, all
events that need to modify a variable v are introduced where v is first declared.

Our model contains three contexts. Context C0 declares constants related
to the track. We consider a single track which is represented by an interval of
natural numbers minTTD .. maxTTD. A stronger typing using an abstract set
TTD would be more type safe, but it makes the proofs more cumbersome, as
we have experienced in the first drafts of our specification. This is why each
TTD is represented by a natural number of this interval. TTDs are ordered
using their number. The set of trains is partitioned into trains or cars (i.e., cars
that have accidentally split from a train). Constant trainKind indicates for each
actual train whether it is a TIMS train, a ERTMS train or a non-ERTMS train.
Only TIMS and ERTMS trains can connect and send their information to the
supervisor.

CONTEXT C0
SETS
TRAINS StateTTD TrainKind
CONSTANTS
freeT occupiedT Ttds minTTD maxTTD TimErtms Ertms NoErtms
Trains Cars
AXIOMS

axm1 : finite(TRAINS)
axm2 : partition(StateTTD, {freeT}, {occupiedT})
axm3 : partition(TRAINS, Trains, Cars)
axm4 : minTTD ∈ N1 ∧ maxTTD ∈ N1 ∧ minTTD ≤ maxTTD
axm7 : Ttds = minTTD ..maxTTD
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axm8 : partition(TrainKind, {TimErtms}, {Ertms}, {NoErtms})
axm9 : trainKind ∈ Trains → TrainKind

Context C1 declares the VSSs, which are also modelled as an interval of
naturals. We use a total, monotonic, surjective function TtdOfVss to associate
a VSS to its TTD.

axm4 : V ss = minV SS .. maxV SS
axm5 : TtdOfV ss ∈ V ss � Ttds
axm6 : ∀v1, v2 · {v1, v2} ⊆ V ss ∧ v1 < v2 ⇒ TtdOfV ss(v1) ≤ TtdOfV ss(v2)

Context C2 declares an abstract set StateVSS = {freeV, occupiedV, unknown,
ambiguous} to represent the states of a VSS from the supervisor view point. A
VSS in state freeV contains no train. A VSS in state occupiedV contains a single
train. State unknown denotes a VSS for which it is unknown whether there is a
train on it. State ambiguous denotes a VSS which contains at least one train; it
is not sure whether there are more than one train.

The specification is structured into four refinement steps (i.e., four machines).
Machine M0 introduces the trains, the supervisor and the unsupervised move-
ments of trains on TTDs. Machine M1 introduces the reporting of positions by
trains to the supervisor, but still without supervision of their movement. Machine
M2 introduces the VSS, still without supervision. Machine M3 introduces move-
ment supervision with MAs, and the computation of VSS states using timers
and other informations. A final refinement M4 is introduced to prove the main
safety property, namely that trains do not collide when following MAs.

5 Refinements

In this section, we briefly describe each refinement. The complete archive of the
Event-B project is available in [7].

5.1 Machine M0: Free Movement on TTDs

This machine contains five variables. Controller variable stateTTD faithfully
represents the real state of TTDs (i.e., the case study assumes m = i for
this variable). Environment variables trainOccupationTTDRear and trainOccu-
pationTTDFront respectively denote the first and last TTD occupied by a given
train. Environment variable isConnected denotes whether a train is connected to
the supervisor. This variable denotes a total function including the trains that
are not on track because some of them should be connected to receive the autho-
rization to enter on the track. Boolean variable trainMvt is used to guard train
movements to ensure that other events like train supervision are interleaved with
train movements. The following invariants type these variables. Symbols “→”
and “ 	→” respectively denote a total function and a partial function.
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inv1 : stateTTD ∈ Ttds → StateTTD
inv2 : trainOccupationTTDFront ∈ TRAINS �→ Ttds
inv3 : trainOccupationTTDRear ∈ dom(trainOccupationTTDFront) → Ttds
inv4 : ∀tr·tr ∈ dom(trainOccupationTTDFront) ⇒

trainOccupationTTDRear(tr) ≤ trainOccupationTTDFront(tr)
inv5 : isConnected ∈ trainKind−1[{Ertms, T imErtms}] → BOOL
inv6 : trainMvt ∈ BOOL

The set of trains on the track is represented by the domain of function trainOccu-
pationTTDFront (i.e., dom(trainOccupationTTDFront)). We consider events
that model the sensing of all the TTD states by the supervisor, the entering
and exiting of a train on the track, the movement of a train on the track, the
connection and disconnection of a train. The movement of a train is decomposed
into three events to distinguish between the cases where the train moves within
the same TTD, the front of the train enters a new TTD and the rear of the train
leaves a TTD. This decomposes the proofs for train movement into smaller ones.
Trains move freely and collisions can occur at this level. The supervisor does not
know the position of a train; it only knows the states of TTDs. Also, we have
defined an event to split a train into two parts, the train with the engine and
the cars left behind, to model the loss of integrity. As a simple illustration, we
provide below the specification of event trainSupervisor.

Event trainSupervisor =̂
any ttds active
where

grd1 : ttds = (
⋃

tr·tr ∈ dom(trainOccupationTTDFront) |
trainOccupationTTDRear(tr) .. trainOccupationTTDFront(tr))

grd2 : active ∈ BOOL
then

act1 : stateTTD := (ttds × {occupiedT}) ∪ ((Ttds \ ttds) × {freeT})
act2 : trainMvt := active

end

Guard grd1 constrains event local variable ttds to the set of TTDS which are
occupied by trains. Action act1 updates TTD states. Action act2 nondetermin-
istically gives controls to either the trains or the supervisor using the choice
made in guard grd2.

5.2 Machine M1: Trains Reporting Their Positions

This machine adds controller variables trainLocationTTDRear and trainLoca-
tionTTDFront to store in the supervisor train positions as reported by ERTMS
trains. The case study assumes that reports are accurate. The following invari-
ants provide the types of these variables. Note that the location of a train on a
track may be unknown to the supervisor. Thus, trainLocationTTDFront is mod-
eled as a partial function of the domain of trainOccupationTTDFront, which



358 A. Mammar et al.

denotes the real train position. Invariant inv3 states that the rear is known only
for TIMS ERTMS trains that have already provided their front positions.

inv1 : trainLocationTTDFront ∈
dom(Trains � trainOccupationTTDFront) 	→ Ttds

inv2 : trainLocationTTDRear ∈ dom(trainLocationTTDFront) 	→ Ttds
inv3 : trainKind−1[{TimErtms}] ∩ dom(trainLocationTTDFront)

⊆ dom(trainLocationTTDRear)
inv4 : ∀tr·tr ∈ dom(trainLocationTTDFront) ⇒

trainLocationTTDRear(tr) ≤ trainLocationTTDFront(tr)

This refinement introduces a new event, trainSnd, to report train positions. Exist-
ing events are refined (extended) to take into account the new variables. Event
trainSnd reports the position of a train by modifying controller variables train-
LocationTTDRear and trainLocationTTDFront using the environment variables
trainOccupationTTDRear and trainOccupationTTDFront. Train integrity is non-
deterministically chosen to reflect the possibility of loosing it at any point. When
train integrity is lost, the rear position of a train is not updated, in order to
ensure that its last known rear position remains and to avoid collision with the
preceding train when computing the MA. However, there is no provision in M1
to avoid collision; this is introduced in M3.

The specification of event trainSnd is provided below. Action act2 simulates
an if-then-else by using a set containing two tuples of the form {TRUE 	→
e1, FALSE 	→ e2}; hence this set is a function and it is evaluated with the
value of integ, acting like if integ then e1 else e2. Guard grd6 ensures that the
reported position does not decrease, since a train cannot move backward.

Event trainSnd =̂
any tr integ lengch
where

grd2 : tr ∈ dom(trainOccupationTTDFront)
grd3 : tr ∈ dom(isConnected) ∧ isConnected(tr) = TRUE
grd4 : integ ∈ BOOL
grd5 : tr ∈ trainKind−1[{TimErtms}]∧tr /∈ dom(trainLocationTTDRear)⇒
integ = TRUE

grd6 : tr ∈ dom(trainLocationTTDFront) ⇒
trainOccupationTTDFront(tr) ≥ trainLocationTTDFront(tr)

then
act2 : trainLocationTTDRear :=

{TRUE �→ trainLocationTTDRear �−
{tr �→ trainOccupationTTDRear(tr)},

FALSE �→ trainLocationTTDRear} (integ)
act3 : trainLocationTTDFront(tr) := trainOccupationTTDFront(tr)

end

5.3 Machine M2: Introducing VSSs

Recall that a TTD is divided into VSSs. This refinement data replaces (i.e., data
refines) the train position variables based on TTDs (i.e., trainOccupationTTDx
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and trainLocationTTDx ) with position variables based on VSSs. New environment
variables trainOccupationVSSRear and trainOccupationVSSFront represent the
real VSS position of a train. New controller variables trainLocationVSSRear and
trainLocationVSSFront represent the VSS positions computed by the supervisor
using train reports.

inv5 : trainLocationV SSFront ∈ dom(trainLocationTTDFront) → V ss
inv6 : trainLocationV SSRear ∈ dom(trainLocationV SSFront) → V ss
inv7 : trainOccupationV SSFront ∈ dom(trainOccupationTTDFront)→V ss
inv8 : trainOccupationV SSRear ∈ dom(trainOccupationV SSFront) → V ss

Four gluing invariants stating that the VSS positions and the TTD positions are
consistent, for both the controller and the environment, using function TtdOfVss,
are also added, like the following one.

inv11 : ∀tr·tr ∈ dom(trainOccupationV SSFront) ⇒
TtdOfV ss(trainOccupationV SSFront(tr))

= trainOccupationTTDFront(tr)

No new event is added. The existing events are refined to take into account
these new variables. As in M1, train collisions can occur in M2.

5.4 Machine M3: Computing VSS States and Assigning MAs

Introducing New Variables. This refinement is the most complex one. The
state of each VSS is computed and MAs are assigned to trains. At this level,
the integrity and the length information of a train are stored by two Boolean
variables since they are used in the VSS computation. Timers are introduced to
detect disconnected trains, the loose of integrity and ghost trains. New variables
are introduced and typed using the following invariants.

inv1 : MATrainRear ∈ dom(trainLocationV SSFront) 	→ V ss
inv2 : MATrainFront ∈ dom(MATrainRear) → V ss
inv3 : ∀tr·tr ∈ dom(MATrainRear) ⇒

MATrainRear(tr) ≤ MATrainFront(tr)
inv4 : ∀tr1, tr2·tr1 ∈ dom(MATrainFront) ∧

tr2 ∈ dom(MATrainFront) ∧ tr1 �= tr2 ⇒
MATrainRear(tr1) .. MATrainFront(tr1)

∩ MATrainRear(tr2) .. MATrainFront(tr2)
= ∅

Controller variables MATrainRear and MATrainFront define the MA of each
train that the supervisor knows. An MA is an interval of VSSs. Invariant inv4

states that the MAs of trains are disjoint, to avoid collisions.
The next invariants introduce timers; timers related to trains may be running

or expired while those associated with the VSS and TTD may be running or
expired but also inactive.
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inv5 : muteT imer ∈ dom(trainLocationV SSFront) → {running, expired}
inv6 : integrityT imer ∈ dom(trainLocationV SSFront) → {running, expired}
inv7 : disconnectT imer ∈ V ss → {inactive, running, expired}
inv8 : ghostT imer ∈ Ttds → {inactive, running, expired}

The muteTimer is used to detect that a train has failed to report its position
within the required time frame; in that case, the state of the VSSs in front of
that train and within the train’s MA becomes unknown.

Finally, the following variables are introduced to compute the VSS states.

inv9 : currentStateV SS ∈ V ss → StateV SS
inv10 : previousFront ∈ dom(trainLocationV SSFront) 	→ V ss
inv11 : previousFrontState ∈ dom(previousFront) 	→ StateV SS

Variables previousFrontState and previousFront respectively record the previous
value of currentStateVSS and the previous front position of the trains. They are
respectively updated when the supervisor computes the states of the VSS and
when the train reports its position; they are needed in the computation of some
VSS state transitions.

Fig. 1. The state machine of VSS reproduced from Fig. 7 of [2]

Modelling VSS State Machine Transitions. The main complexity of this
refinement is to compute the VSS states, which depend on several conditions.
These conditions are described by a state machine in Fig. 7 of [2] and repro-
duced here in Fig. 1. The guards of its transitions are described, using natural
language, in Table 2 of [2]. This table spans 3.5 pages (pp. 24–28). Figure 2 pro-
vides an excerpt of this table. The guard of a transition i in Fig. 1 is given by
the disjunction of the guards labeled #iX in Fig. 2. For example, the guard of
transition 1 is #1A ∨ #1B ∨ . . . #1F; only #1A and #1B are shown in Fig. 2. Some
transitions have priority over others (e.g., guards #2A and #2B have precedence
over transition 3).

Ideally, the computation of the state of each VSS should be done in a single
event, because the states must be all computed before assigning MAs. It also
ensures that Table 2 of [2] is deterministic, i.e., well-defined. Furthermore, it
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allows for taking into account the priority between transitions for a given VSS.
We have coded the state machine of Fig. 1 into a single event, namely trainSuper-
visor. We use guard numbers (e.g., #1A) to name local variables of the event (e.g.,
vss1A). Such a variable is constrained to contain the new state values for the
VSSs satisfying the corresponding guard. For instance, set vss1A contains the
VSSs satisfying guard #1A and their state will change from FREE to UNKNOWN.
The union of sets vss iX is used to update state variable currentStateVSS in event
trainSupervisor.

To illustrate our approach, we provide in Fig. 3 an excerpt of the guards
of event trainSupervisor that models guards #1A and #1B of Fig. 2. Guard grd4

of Fig. 3 represents guard #1A. We use a quantified union to identify the VSSs
satisfying #1A. It reads as follows: a VSS must currently be free, since transition
1 start from state FREE; it must also be on an occupied TTD (first conjunct of
guard #1A) and any VSS of this TTD must not be within an MA or occupied by a
train (second conjunct of #1A). The resulting state of these VSSs is UNKNOWN
as given by transition 1, which is represented by taking the Cartesian product
of the VSSs returned by the quantified union with the singleton set {unknown}.
In summary, guard #1A says that the TTD sensor detected an object, but the
supervisor has no record of a train on a VSS of that TTD, thus it’s status is
unknown.

Fig. 2. An excerpt of Table 2 in [2]

6 Requirements Verification and Model Validation

This section describes the verifications carried out using the provers of Rodin
(Event-B’s development platform) and the model checker/animator ProB [6]
plug-in for Rodin. ProB is an explicit state-based model checker for the B
methods (classic B and Event-B) and several others (TLA, CSP, Alloy). Our
strategy to verify the development and the requirements is as follows. We used
ProB mainly to discover possible invariant violations prior to the proof phase
that may be long and complex. ProB has proved to be a useful and effective tool
to check the sequencing of the events. We have also used it to play the scenarios
provided in the case study to validate our specification.
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Fig. 3. An excerpt of the guards of trainSupervisor corresponding to Fig. 2

6.1 Proving Safety Properties

We have stated one main safety property, which is that two TIMS/ERTMS trains
cannot be on the same VSS, and thus TIMS/ERTMS trains should not collide,
but non-ERTMS trains could. This property is expressed using the environment
variables trainOccupationVSSRear and trainOccupationVSSFront, which repre-
sent the real position of the trains (not the position as known by the supervisor).
This proof was conducted in a new refinement machine M4, for the sake of mod-
ularity.

inv1 : ∀tr1, tr2·tr1 ∈ Trains ∧ tr2 ∈ Trains ∧ tr1 �= tr2 ∧
tr1 ∈ dom(trainOccupationV SSFront) ∧
tr2 ∈ dom(trainOccupationV SSFront) ∧
trainKind(tr1) ∈ {TimErtms,Ertms} ∧
trainKind(tr2) ∈ {TimErtms,Ertms}

⇒
trainOccupationV SSRear(tr1) .. trainOccupationV SSFront(tr1)
∩
trainOccupationV SSRear(tr2) .. trainOccupationV SSFront(tr2)
= ∅

The guards of events that modify these variables are based solely on the con-
troller variables, and thus represent the fact that trains move according to their
MAs computed by the supervisor. If the invariant holds, it means that trains
following their MAs should not collide.

To prove this property, we needed to add and prove the following invariants,
which can be seen as lemmas required for the main proof.
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inv2 : ∀tr·tr ∈ dom(trainOccupationV SSFront) ∧
tr ∈ Train ∧ trainKind(tr) ∈ {TimErtms,Ertms} ⇒
tr ∈ dom(MATrainFront) ∧
trainOccupationV SSRear(tr) .. trainOccupationV SSFront(tr)
⊆
MATrainRear(tr) .. MATrainFront(tr)

inv3 : ∀tr·tr ∈ dom(trainOccupationV SSFront) ∧
tr ∈ dom(trainLocationV SSRear) ⇒
trainOccupationV SSRear(tr) ≥ trainLocationV SSRear(tr)

inv4 : ∀tr·tr ∈ dom(trainOccupationV SSFront) ∧
tr ∈ dom(trainLocationV SSRear) ⇒
trainOccupationV SSFront(tr) ≥ trainLocationV SSFront(tr)

Invariant inv2 tates that a TIMS/ERTMS train can occupy only the VSS
included in its MA. Invariants inv3 and inv4 state that the position of a train
known by the supervisor is behind the real position of the train. Recall that the
case study assumes that the position reported by trains are accurate.

6.2 Proving the Determinacy of the VSS State Machine

Recall that state variable currentStateVSS is typed as a function. The proof
obligation generated by this typing invariant ensures that each VSS state has
a single new value, hence there is a single transition that updates it. This is
equivalent to proving that the VSS state machine described in the case study is
deterministic. This turns out to be fairly complex. For each VSS state value (e.g.,
FREE), there are three outgoing transitions to the other three possible VSS state
values (e.g., transitions 1, 2 and 3 of Fig. 1). To ensure determinacy, we must
prove that the guards of these three transitions are mutually disjoint. Let ni be
the number of disjuncts in the disjonctive normal form of the guard of transition
i. Then we have to consider ni∗nj cases in the proof of disjointness of transitions
i and j. Luckily, transitions priorities eliminate a few cases to consider. In total,
there are 47 high-level cases to consider, which is a significant proof effort.

One way to simplify the handling of this proof in Rodin would be to decom-
pose event trainSupervisor into four events, one for each VSS state value. That
would still allow us to prove the determinacy of the VSS state machine, but we
would lose the atomicity of VSS state computation. We would then have to con-
trol the ordering of events to ensure that these four events are computed before
assigning MAs. For the sake of simplicity and to ease the construction of the
overall specification, we have chosen to use a single event.

Using ProB to Check the Determinacy of the VSS State Machine.
ProB can be used to find invariant violations with counterexamples. We have
used this feature extensively. The counter-examples provided help in identify-
ing the missing guards and invariants required to prove invariant preservation.
However, the state space of machine M3 is huge, with its 22 variables, most of
them typed as functions. ProB will only check the reachable states, and when
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it does not terminate in a reasonable time, one cannot determine which inter-
esting conditions have been explored, for instance among the 47 cases of guard
disjointness discussed earlier.

An alternative way to check the determinacy of the VSS state machine is to
use the constraint satisfier of ProB, which can find models for a formula. ProB
uses it to find values of constants in an Event-B context. To specifically check
one case among the 47 cases for the determinacy of the VSS state machine, we
construct a new context that declares the state variables, used in the guards
of the VSS state machine, as constants, and their related invariants as axioms.
We finally add to this context the local variables of event trainSupervisor that
computes new sets of VSS states and we check that these two sets are not
disjoint (e.g., check that dom(vss1A)∩dom(vss2A) �= {}). If ProB finds a model
for this context, it means that the corresponding transition guards in the VSS
state machine are not disjoint, given the invariants used in our machine. It thus
means that the invariants are insufficient to prove the determinacy of the VSS
state machine and that they must enriched or strengthened.

Dealing with Inconsistencies of the VSS State Machine. We have found
several cases where the guards are not disjoint, which means that one of the
following three alternatives holds: (i) our representation of the guards are incor-
rect, (ii) the case study text is incorrect, (iii) invariants are missing to rule out
these counterexamples (i.e., these Event-B states are not reachable from the
initial state of the system). Since we are not expert of the ERTMS standard, it
is hard for us to determine which alternative holds. In a first model of the sys-
tem ProB finds several counterexamples when searching for invariant violations,
that leads to a state where two transitions are not disjoint. Such traces are due,
for instance, to the expiration of several timers reported at the same moment
as the reporting of the train position. Thus, we do not know if the case study is
wrong, or if this trace is impossible in the real world where the timers represent
actual clocks with different values or perhaps there are implicit assumptions in
the case study that we missed or we could not figure out by simply reading it. To
rule them out, we assume that the transitions depending on the timers are dealt
with last; priority is given to those depending on the train position. From the
Event-B point of view, we use the overload operator to express it. Moreover, as
for the representation of the guards, we have used a straight forward translation
of the phrasal terms of the natural language text into state variables, to simplify
as much as possible the translation of the guards. However, there is still the
possibility of misinterpreting the natural language text. For instance, consider
the following conjunct of #2A.

#2A . . .
AND (VSS where the estimated front end of the train was

last reported, was “occupied” after the processing of this
previous position report)
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This conjunct can be interpreted as an implication, which means that the
guard holds even when only one position report has been issued for the train. Or,
it can be interpreted as a conjunction, which means that at least two position
reports must have been issued for the train, for the guard to hold. Given the
length of the case study, our limited expertise in the domain and the number of
ambiguities or missing (implicit) assumptions, we decided not to elicit further
these aspects, because there is no point in making hypothetical (as opposed
to “realistic”) assumptions in order to prove the determinacy of the VSS state
machine. The key issue is more to be able to identify ambiguities, thanks to
formalisation, validation and verification. In a real context, they can be resolve in
a systematic manner using domain experts. Moreover, since proof obligations can
be independently discharged, not proving the determinacy of the state machine
does not prevent us from proving the main safety property; we can assume that
the VSS state machine can be made deterministic. In addition, the four VSS
states can be reduced to only two (free or occupied), since the other two are
used to manage potentially hazardous situations, as noted in the case study
(paragraph 3.2.1.1.1 of [2]).

7 Conclusion

Our model covers the essential parts of the case study. We were able to prove the
safety of TIMS/ERTMS trains. It only remains to prove the determinacy of the
VSS state machine, which could not be completed because of the ambiguities of
the case study text. Understanding the case study itself was a challenge, because
of the difficulty to identify missing assumptions. Determining the ordering of
events was anything but trivial. Domain experts typically write for other domain
experts; it is not natural for them to think of all the details that a non-expert
does not know.

We have found Event-B to be adequate to model this case study. In this
paper, we deliberately chose not to use any Event-B plugins (e.g., [3,9]) in order
to be able to compare our solution with solutions based on them (and assuming
that a paper using them will be submitted to ABZ2018). In a companion paper,
we explore the use of ontologies and SysML/KAOS to model this case study [4].
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Abstract. In this paper, we present AsmetaA – a graphical animator
for Abstract State Machines integrated within the ASMETA framework.
The execution of formal specifications through animation provides sev-
eral advantages, e.g., it provides an immediate feedback about system
behavior, it helps understand system evolution, and it increases the over-
all acceptability of formal methods.

1 Introduction

One important feature of the Abstract State Machines (ASM) method [3] is that
it allows to execute specifications that represent the evolution of a system by a
sequence of states. An important advantage of the state-based execution is that
it helps users understand through experimentation the behavior of the system
being designed [7].

The ASMETA framework [4] provides an environment for systems develop-
ment using ASMs including a simulator. During simulation, the user can interact
with the simulator by inserting monitored values when required and observe the
system evolution. The user can drive and follow the ASM execution and under-
stand whether the specification really captures the intended system behavior.
However, the simulation engine currently available for the ASMETA platform
provides only a textual interface that prints the states as strings with some
optional messages on the console. Observing system evolution in this fashion can
be difficult. For this reason, the need for a graphical animator for the ASMETA
platform has been felt for a long time.

The graphical animation of specifications consists in showing by means of
graphical elements, e.g., tables and colors, the evolution of the system state.
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This provides several advantages: the user can perform a rapid validation, it
helps in understanding the system behavior, and it shows concrete scenarios in
which abstract states can be instantiated. For this reason, many formal notations
and tools (see Sect. 4) support this kind of validation technique.

In this paper, we present AsmetaA – a graphical animator for the ASMETA
platform, which shows the system execution and state evolution using graphi-
cal elements. It is integrated in the framework and it can be downloaded and
installed as an eclipse plug-in1. The rest of the paper is organized as follows: In
Sect. 2, we discuss the main goal of this work. In Sect. 3, we briefly present the
AsmetaA tool. A brief comparison of AsmetaA with similar tools is presented in
Sect. 4. The paper is concluded in Sect. 5.

2 Animation of ASMs: Requirements and Goals

In the wake of a recent effort for providing visual information to users of the
ASMETA framework, we have already developed a visualizer that provides a
graphical view of ASMETA models [2]. The visualizer provides information about
the structure of the machine, in terms of a set of construction rules and schemas
that give a graphical representation of an ASM and its rules. However, in current
settings, information about system dynamics is missing. For this reason, we
started to work on the concept of animation of ASM specifications. In our tool,
animation has the following main objectives:

1. Providing a user with complete information about all the locations in one
state. In this way, the user can understand the system state at every step.

2. Showing the evolution of an ASM during the execution. In this way, the user
can understand the behavior of the specification.

3. Using colors, tables, and figures over simple text to convey information about
states and their evolution.

ASM execu on
S0 S1 S2 S3

AS
M

 lo
ca

on
s

Fig. 1. Animation of an ASM

In order to achieve these goals, we
decided to structure the animator as
shown in Fig. 1. The table captures
the two dimensions of locations in one
state and their evolution. On the hor-
izontal axis, we want to represent the
evolution of the execution, by showing
the sequence of states. On the verti-
cal axis, we want to show the states,
i.e., locations and their values at each
state.

As an auxiliary goal of the animator, we use graphical elements also for user
interaction and avoid the use of textual consoles whenever possible. Additionally,
we cope with the specification complexity by allowing the user to highlight some
locations of interest.
1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/
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Observed Functions

Non-observed Functions

Sequence of States

Fig. 2. AsmetaA tool

3 AsmetaA: Animator for ASM Specifications

A graphical view of the AsmetaA tool is shown in Fig. 2. We now describe various
characteristics of this tool.

Random vs interactive animation. Random and interactive animations are two
modalities of execution provided by the animator. Random animation runs the
ASM specification and the values of monitored functions are chosen by the ani-
mator. The number of steps is selected by the user and it can be changed dynam-
ically. Interactive animation runs one step at a time and the value of monitored
functions are selected by the user. These two modalities of animation can be
mixed within the same run. This means that one state can be reached using ran-
dom animation and the next state can be reached using interactive animation.
The two modalities of animation are executed using the following corresponding
buttons.

– Do one interactive step: asks the user about the value of monitored functions
and runs one step. The monitored functions are inserted through a dialog
box.

– Do random step/s: runs one or more steps based on the number inserted in
the field Insert random step number.

In case of invariant violation, the message is shown in the dedicated text box.

Random simulation: multiple steps. With complex specifications, running one
random step each time is tedious. To overcome this limit, we have added a
field in which the user inserts the number of steps to be performed and the tool
performs the random simulation accordingly.
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Fig. 3. GUI dialogs allow the user to input new values for monitored functions

Use of tables. The first version of the animator was realized using one table
for all functions. However, it was difficult for the user to follow the functions
of his/her interest in complex specifications. To cope with this difficulty, we
have now added two tables. The upper table contains the functions observed by
the user, while the lower table contains all other functions. When the function
appears for the first time during the simulation, the animator inserts it in the
lower table. If the user is interested to follow this function, he/she has to move
it to the upper table using the check box display in the first column. When the
user is no longer interested in observing a specific function, he/she can move
it into the lower table and still follow other observed functions. The user can
also move functions (from one table to the other) that belong to a specific type
(controlled functions or monitored functions) using the buttons in the lower left
corner shown in Fig. 2. Moreover, the content of the tables can be sorted alpha-
betically based on the type or name of the functions.

Colors for easy reading. One of the main features of AsmetaA is the usage of
multiple colors to facilitate the readability of tables. Multiple colors help a user
to identify particular events during the ASM execution: the initial value of the
function (light blue cells) and when the function changes the value compared to
the previous state (light green cells).

Dialog box. The insertion of monitored functions is achieved through different
dialog boxes (see Fig. 3) depending on the type of function to be inserted. For
example, in case of a boolean function, the box has two buttons: one if the
answer is true and one if the answer is false. By pushing the button, the user
assigns the corresponding value to the function. In case of functions with the
enumerative domain, the dialog box shows all the possible assignable values and
the user selects the chosen value from a combo box. At the moment, for other
data types, the user inserts the value in a text box.

4 Related Work

Several formal methods support the animation of specifications. For the B family
methods, one of the main tools that provides such facility is ProB [6]. In this
tool, the user can select the events to fire while the state is constantly updated
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and shown to the user. Differently from our animator, ProB displays the history
of events but the history of the system states does not appear.

Visualization of traces is used in TLA+ to show counter examples in case
of errors while model checking a specification [8]. Also for the NuSMV model
checker, traces can be shown in tables by the NuSeen toolbox [1]. As compared
to model checkers, our animator is intended to be used in an interactive way to
allow the validation of specifications.

There is already one tool with the goal of animating ASM specifications [5].
In this work, the authors extend CoreASM with some plug-ins to show the state
evolution of the ASM specifying a flash file system. As compared to AsmetaA,
it is an application specific work focusing on a particular case study. AsmetaA,
on the other hand, is a generic animator capable of animating any ASM. As a
future work, we plan to introduce a method allowing the definition of special
graphical widgets for application specific animations.

5 Conclusion

In this paper, we have presented AsmetaA – an animation engine for ASM
specifications. The tool supports users in the validation process and concretizes
the abstract states. The users can run two types of animation: random and
interactive. In initial tests, the graphical interface of AsmetaA has been proved
intuitive, simple, and user friendly.
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Abstract. Control State Diagrams (CSD) are a graphical representa-
tion of Control State Abstract State Machines, a subclass of Abstract
State Machines (ASM). We extend the existing semi-formal specification
of this diagram type by a concrete syntax and its formal semantics. The
semantics is given by a translation approach that transforms combina-
tions of nodes into ASM snippets which are inserted into a textual ASM.
This node-by-node translation is not only the basis for a code generation
tool, but it also allows users to capture the behavior of a CSD more
easily.

1 Introduction and Goals

Abstract State Machines (ASMs) are a rigorous system engineering method
which guides the developer seamlessly from requirements capture to their imple-
mentation [3]. Although ASMs have a mathematical foundation, a developer
can correctly understand them as pseudo-code without any special mathemati-
cal knowledge.

Many systems inherently split their behavior in finitely many phases or
modes, between which can be switched. This general architecture is captured
by control state ASMs, a subclass of ASMs. For an easier understanding, con-
trol state diagrams (CSDs), a flowchart-like graphical representation of control
state ASMs, has been introduced [3]. Besides a simple formal definition in [3],
with some extensions described in natural language, there is currently no com-
plete formal specification of such diagrams. As a consequence, different kinds of
representation and semantics are used, sometimes without any explanation (e.g.
the rhomb with an inner circle in [6]). This can lead to misunderstandings and
contradicts the original intention of CSDs.

The goal of our work is to give a precise formal semantics and syntax of
CSDs by defining a meta model and the transformation from an instance of it
into textual ASMs. More details and a complete formalization are given in [5].

2 Related Work

One of the first definitions of CSDs is given in [3]. As stated above, this definition
is given in a schematic and less formal way. Based on this definition an eclipse
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 374–379, 2018.
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based graphical editor has been developed [4]. This tool is able to generate
textual ASMs, but a formal definition of the translation is missing.

A more recent work considers the other way round: In [1] the authors try
to create a graphical representation out of textual ASMs. Although the idea is
completely different, the used notation and some of the translations are similar to
our work. The general usefulness of ASMs to describe the semantics of diagrams
has been proven in many cases, e.g. for UML state diagrams in [2].

3 Structure

A CSD is a directed graph where the set of Nodes is a disjoint union of three sets:
Mode (contains all control states, including one initialMode), Condition (condi-
tional rules), and Rule (all remaining (basic) ASM rules). The set of directed
Edges consists of ordered pairs (source, target) of Nodes and each edge has one
of the three edgeTypes {yes,no, empty}.

The concrete representation of the nodes is based on [3]: Modes are circles or
ellipses, Rules are rectangles, and Conditions are stretched hexagons.

Fig. 1. Excerpt of an example CSD and its translation to ASM.

Figure 1 shows a small excerpt of an example CSD and its corresponding
representation as ASM code (textual ASM). It starts in mode m1 and exe-
cutes the rule r1. The successive conditional node is executed sequentially. If
the boolean expression cond is true, the system’s new mode is m2 else m3. As
for m1, for each mode with at least one outgoing edge, such a guarded command
(e.g. if mode = m2 then . . .) is added to the (main) ASM (here CSDasText)
and thus executed in parallel to all other guarded commands.

A ValidCSD must fulfill the following constraints (here given as text):

1. All Nodes (except the initialMode) must have at least one incoming edge.
2. All Condition-nodes must have at least one outgoing edge with an arbitrary

edgeType (empty is treated as yes). Outgoing edges of all other nodes must
have the type empty.

3. Loops are only allowed between Modes. Loops among Rules or Conditions
between two Modes are prohibited.
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4. To avoid obvious inconsistent updates (see translation below), edges from a
Mode or a Rule node to more than one Mode node are not permitted. For
Conditions, this constraint applies to each subset of edges with the same
edgeType. Note that this constraint only avoids simple inconsistent updates,
since the consistency problem in general is undecidable.

4 Translation Approach

The general translation approach is to create a guarded command for the initial
mode node (in Fig. 1 m1) and translate all paths until an other or the same mode
node is hit. All combinations of nodes can be translated by a fixed scheme which
is defined using ASMs again. To avoid arbitrary many combinations, we only
consider combinations of a node with its successor nodes and translate them into
textual ASM snippets. See Fig. 2 for some examples of these combinations. The
translated textual snippets are inserted at specific positions in the main ASM.

Fig. 2. Examples of possible combination patterns of nodes in a CSD

For each mode node with at least one outgoing edge, one guarded command
is created that is executed in parallel to all other guarded commands. To deal
with this special case, a location nextModePos always points to the next top
level position in parallel to all other guarded commands (e.g. position β in the
example at the end of this section).

Other combinations of nodes can occur at different positions, depending on
the incoming edges. Hence, a function positions provides for each rule and con-
dition node a set of Positions in the textual ASM (e.g. position α in the example
at the end of this section). The Positions remain abstract because they can be
implemented in different ways, e.g. by placeholders or offsets in a text file or
nodes in a syntax tree of the ASM.

The status of each node controls if (a) the node can not be translated unde-
fined), because there is no position defined yet, (b) can be translated (active),
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because at least one position is set for this node or (c) if its translation is fin-
ished for all positions (closed). As initial state, the status of all nodes is undefined
and the set of positions of each node is initialized by an empty set. Only the
initalMode is active and nextModePos is set to the beginning of the main ASM.

During the translation process, one can think of the textual ASM as a frag-
mentary ASM that contains some placeholders at different positions. A node
only becomes active if at least one position where its translation can be inserted
into is defined for this node, which again can introduce new positions for newly
activated nodes.

The compile process is specified by the ASM TranslateCSD. As long as
there are nodes whose status is active, one of them is chosen and applied with
one of its positions to a list of patterns describing a subgraph consisting of the
selected node and its successor nodes.

TranslateCsd =
choose node ∈ Node with status(node) = active
if node ∈ Mode then
TranslatePattern(node,nextModePos)
status(node) := closed -- a mode node is immediately closed

else
choose pos ∈ positions(node) -- translate pos by pos

TranslatePattern(node, pos)
positions(node) := positions(node) \ {pos}
if positions(node) \ {pos} = ∅ then
status(node) := closed -- if no positions left, node is closed

The general scheme of the TranslatePattern rule is as follows in which for
each matching pattern, the corresponding actions are executed.

TranslatePattern(node, pos) =
� pattern1(node) � ⇒ actions1(node, pos)
...
� patternn(node) � ⇒ actionsn(node, pos)

Each pattern is graphically defined by e.g.
(∣∣∣ m1 r1

∣∣∣
)

⇒actions(node, pos)
which is a short form for an appropriate conditional rule on the sets of Nodes
and Edges that describes the drawn combination. The equivalent ASM notation
of this example is:

if node = m1 and m1 ∈ Mode and r1 ∈ Rule
and ( m1 , r1 ) ∈ Edge then
actions(node, pos)

Each action contains at least a call to the rule AddTextualASM(pos,
textsnippet) that inserts the textsnippet at the position pos into the to be cre-
ated main ASM. The textsnippet can also assign concrete positions to newly
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introduced position labels. In the translation rules, we mark the textsnippets by
a frame and name the positions with Greek letters. Besides the generation and
insertion of the textual ASM, the status and new positions of affected nodes
(resp. nextModePos) are set. This generic behavior is illustrated in the following
examples when a mode node is followed by a rule:

(∣∣∣ m1 r1
∣∣∣
)

⇒ let α, β = new (Position) in
AddTextualASM(pos,

if mode = m1 then
α

β
)

-- add framed ASM snippet
to main ASM at position
pos and define new posi-
tions α, β

status( r1 ) := active
positions( r1 ) := positions( r1 ) ∪ {α}
nextModePos := β

In the translation, we use e.g. m1 as a variable of the node’s actual label. At
position α, the translation of the combination with r1 as source node will be
inserted during one of the next steps. At position β the text snippet of the
translation of the next mode node will be inserted.

5 Conclusion and Outlook

We have developed a formal definition of the semantics of CSDs, which is defined
by a transformation into textual ASMs. This, in combination with the break-
down of the CSD into simple subgraphs consisting of nodes and their successors,
facilitates the use of this semantics also for human readers of CSDs. In [5] the
complete specification is presented together with a proof of completeness and
consistency. The implementation of a prototype tool for the creation and trans-
lation of CSDs (similar to [4]) is also part of this thesis.

The next steps of our work are to evaluate the legibility of the specification by
user studies and a detailed research of the aspects resulting from the refinement
of arbitrary parts of a CSD by an other CSD.

Acknowledgments. We want to express our thanks to Egon Börger for many fruitful
discussions about this topic which improved the work significantly.
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Abstract. Natural computing is a field of research that tries to imitate
the ways of “computing” in nature. Membrane computing is a branch of
natural computing that exploits hierarchically nested membrane struc-
tures that are associated with multisets of objects. The key notion is the
P -system, which describes the transitions by rules for the creation, elim-
ination and wandering of objects through membranes as well as manip-
ulation of the membrane structure as such. In this short paper we sketch
how P -systems can be captured by parallel ASMs. We further give a
glimpse of further generalisations in several directions.

1 Membrane Structures and P -Systems

Natural computing is an umbrella for various computing paradigms taking
processes in nature as models [10]. It captures neural networks, genetic pro-
gramming, DNA computing and membrane computing. Membrane computing
exploits hierarchically nested membrane structures as in cells, each associated
with multisets of objects [9]. These associations are manipulated by so-called
P -systems, which associate rules with each membrane. Rules are executed in
parallel leading to the creation, elimination and wandering of objects through
membranes as well as the manipulation of the membrane structure as such [7].

Membrane structures are equivalence classes of well-formed words over an
alphabet of brackets: [] is well-formed, and whenever μ1, . . . , μn are well-formed,
then this also holds for [μ1, . . . , μn]. The equivalence relation ∼ on the set MS
of these words is defined by μ1μ2μ3μ4 ∼ μ1μ3μ2μ4 if μ1μ4, μ2, μ3 ∈ MS and
building the reflexive, transitive closure.

Each pair of matching brackets μ in a membrane structure ms is called a
membrane, and the degree deg(ms) of a membrane structure is the number of
its membranes. Membranes of the form [] are called elementary. We usually use
an index set I to denote the membanes, so Mms = {μi | i ∈ I} denotes the set
of membranes of the membrane structure ms.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 380–385, 2018.
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Let O denote a denumerable set, elements of which are called objects. A
super-cell comprises a membrane structure ms and an association o of multisets
o(μ) to each membrane μ ∈ Mms .

An evaluation rule is an expression � → r with � ∈ O∗ and either r ∈ Ô∗ or
r = r′δ with a special symbol δ /∈ O and r′ ∈ Ô∗, where

Ô = O × ({here, out} ∪ {inμ | μ ∈ Mms}). (1)

If (ms, o) is a super-cell with objects in O and a distinguished output mem-
brane μ0 ∈ Mms and � assigns a partially-ordered set of evaluation rules to each
membrane μ of ms, then (ms,O, o, μ0, �) is a P -system.

The semantics of a single evaluation rule is defined as follows. If � → r ∈ �(μ),
then � is treated as a multiset with elements in O, and if � ⊆ o(μ) holds (for
inclusion of multisets), then the rule � → r can fire.

The application of a rule � → r that can fire results in replacing o(μ) by the
multiset difference o(μ) − �, and

– adding o to o(μ) for all (o,here) in r,
– adding o to o(μ′) for all (o, out) in r, where μ′ is the unique membrane that

contains μ such that all other membranes containing μ also contain μ′,
– adding o to o(μ′) for all (o, inμ′) in r, where μ′ is a membrane contained in μ

such that any membrane contained in μ and containing μ′ is equal to either
μ or μ′, and

– dissolving μ for δ in r, i.e. to discard all rules in �(μ) and to add all o ∈ o(μ)
to o(μ′) for the unique minimal membrane containing μ.

A subset R ⊆ �(μ) of rules can fire simultaneously iff
⊎

�→r∈R � ⊆ o(μ)
holds. If R1 and R2 are two sets of rules that can fire simultaneously, then R1 is
preferred iff for all rules ρ1 ∈ R1 − R2 and ρ2 ∈ R2 − R1 we have ρ1 ≥μ ρ2 and
at least once ρ1 >μ ρ2 holds, where ≥μ is the partial order on �(μ).

The semantics of the P -system is defined by selecting for each membrane
μ a subset of rules Rμ ⊆ �(μ) that can fire simultaneously and is maximally
preferred and to apply all selected rules in parallel.

Example 1.1. Let us take the membrane structure ms = [[][[][]]] with deg(ms) =
5. We take the index set I = {0, 00, 01, 010, 011}, so the set of membranes is
Mms = {μi | i ∈ I}, and the corresponding matching brackets are indexed as
follows: ms = [0[00]00[01[010]010[011]011]01]0. Here the membranes μ00, μ010, μ011

are elementary.
We obtain a super-cell (ms, o) with the object set O = {a, b, c, d, e} using

the association o(μ0) = 〈a, a, b, c〉, o(μ00) = 〈a, c, d, d〉, o(μ01) = 〈b, c, d, e, e〉,
o(μ010) = 〈c, d, e〉, and o(μ011) = 〈b, b, b, e〉.
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This is further extended to a P-system (ms,O, o, μ0, �) with the following
sets of evaluation rules:

�(μ0) = {aa → (c,here)(b, inμ00), ab → (b,here)(a, inμ01), bc → (a, inμ01)}
�(μ00) = {bd → (a,here), d → (a, out), bbc → (a, out)δ}

�(μ01) = {bce → (b,here)(c,here)(a, inμ010)(b, inμ011), cde → (a, out)}
�(μ010) = {ac → (d,here), ae → (b, out)(e,here)}

�(μ011) = {bb → (d,here)(e,here), be → (c, out), e → (a, out)δ}

Let the rules in these sets be ordered from left to right with decreasing
priority. On the super-cell above we can fire simultaneously the first and the
third rule in �(μ0), twice the second rule in �(μ00), the first rule in �(μ01), and
the first two rules in �(μ011), which results in a new super-cell with o(μ0) =
〈a, a, c〉, o(μ00) = 〈a, b, c〉, o(μ01) = 〈a, b, c, d, e〉, o(μ010) = 〈a, c, c, d, e〉, and
o(μ011) = 〈b, d, e〉.

On this super-cell the first rules in �(μ0), �(μ01) and �(μ010) and the second
rule in �(μ011) fire simultaneously to yield the new super-cell with o(μ0) = 〈c, c〉,
o(μ00) = 〈a, b, b, c〉, o(μ01) = 〈a, b, c, d〉, o(μ010) = 〈a, c, c, d, d, e〉, and o(μ011) =
〈b, d〉. Continuing this way the next super-cell will be o(μ0) = 〈a, a, c, c〉, o(μ01) =
〈a, b, c, d〉, o(μ010) = 〈c, d, d, d, e〉, and o(μ011) = 〈b, d〉, while the membrane μ00

has been dissolved. The next step will only change o(μ0) to 〈b, c, c, c〉—here the
creation of b in the no longer existing membrane μ00 is treated as a creation in
μ0, followed by a step that changes o(μ0) to 〈c, c〉 and o(μ01) to 〈a, a, b, c, d〉,
where no more rules can be applied.

2 An ASM Model for Membrane Computing

In [8] it was shown that P-systems can be simulated in Cardelli’s ambient cal-
culus, which itself can be captured by ASMs [3], though in view of the parallel
ASM thesis [6] it does not come as a surprise that P-systems can be simulated
step-by-step by ASMs. While we give a specification of P-systems by ASMs we
lay the foundations for extending the computation paradigm as such.

In order to model a P -system by a parallel ASM [6] we use index trees. An
index tree is a non-empty, finite set I of words over N such that the following
conditions hold: (1) whenever 〈i1, . . . , ik〉 ∈ I with ik = n + 1 holds, then also
〈i1, . . . , ik−1i

′
k〉 ∈ I with i′k = n, and (2) whenever 〈i1, . . . , ik〉 ∈ I, then also

〈i1, . . . , ik−1〉 ∈ I.
We can identify a membrane structure ms with an index tree I, and use I as

set of indices for the membranes. For the signature of an ASM MP capturing a
P -system P = (ms,O, o, μ0, �) we use a unary function symbol cell , which is
defined on I and takes multisets as values, where the elements of the multisets
can be arbitrary values. That is, we take a finite subset of the universe as rep-
resentative of the object set O and model o(μi) by cell(i) in every state. Let 〈〉
be the index of the output membrane μ0.
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In order to capture the rules in �(μ) the signature further contains a binary
function symbol rule, which is defined on a finite subset of I ×N. Here rule(i, j)
is a pair (�, r), where � is a multiset containing arbitrary values in the universe
U , and r is a multiset with elements in Û ∪ {dissolve}, where Û is defined
analogously to Ô in Eq. (1) using constants here, out and ini (for i ∈ I). We
further use derived functions stimulator(i, j) = π1(rule(i, j)) and action(i, j) =
π2(rule(i, j)). The multiplicity of dissolve in r must be at most 1. Note that if
ink appears in action(i, j), we must have k = i · 〈n〉 for some n ∈ N.

Finally, let ≤i denote a partial order on N that is used to capture the partial
order on the rule set �(μi). For a set R ⊆ {j ∈ N | stimulator(i, j) �= undef } we
define fire(i, R) ≡ ⊎

j∈R stimulator(i, j) ⊆ cell(i) capturing that the rules in
�(μi) with index in R can simultaneously fire in the current state. A preference
relation i is defined by

R2 i R1 ≡ fire(i, R1) ∧ fire(i, R2) ∧
∀j1, j2.(j1 ∈ R1 ∧ j2 ∈ R2 ∧ j1 /∈ R2 ∧ j2 /∈ R1 ⇒ j2 ≤i j1) (2)

Then the main rule in MP is given by
FORALL i ∈ I CHOOSE Ri WITH max-fire(i, Ri) DO apply i(Ri) ENDDO

where max-fire(i, R) ≡ fire(i, R) ∧ ∀R′.(fire(i, R′) ⇒ R �i R′) and the rules
apply i (using partial updates [12]) are defined as follows:

apply i(R) ≡
FORALL j ∈ R
DO cell(i) ⇔− stimulator(i, j)

SEQ FORALL x ∈ action(i, j) WITH x �= dissolve
DO IF x = (vhere,here) THEN cell(i) ⇔� {{vhere}}

IF x = (vout, out)
THEN CHOOSE i′ ∈ I WITH ∃n ∈ N.i = i′ · 〈n〉

DO cell(i′) ⇔� {{vout}} ENDDO
IF x = (vin, ini′) ∧ ∃n ∈ N.i′ = i · 〈n〉
THEN cell(i′) ⇔� {{vin}}

ENDDO ;
IF dissolve ∈ R
THEN CHOOSE i′ ∈ I WITH ∃n ∈ N.i = i′ · 〈n〉

DO cell(i′) ⇔� cell(i)
omit and reorder(i)

ENDDO
ENDSEQ

We omit here the tedious definition of the rule omit and reorder(i), which
removes i from the index-tree and re-adjust all indices, cell values and rule sets
accordingly.

3 Extending the Scope

The main rule of an ASM MP is defined in a way that selected rule sets for
the different membranes are executed in parallel and synchronously. However,
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it appears more natural to assume that the different membranes act more inde-
pendently and the rule sets are applied in an asynchronous way. This could be
captured using separate agents for all selected rule sets and to use a concurrent
ASM [2]. That is, if a rule � → r is selected to be fired, then instead of applying
directly the partial updates as in the rule apply i(R) the rule activate an agent
to execute such an update rule in an asynchronous way. This further permits to
refine such agents in a way that an execution may be interrupted or changed1.

While P -systems manipulate the objects associated with a membrane and
allow membranes to be dissolved or created, the rules remain unchanged. If rules
are allowed to be changed as well, this can be captured by concurrent reflective
ASMs [11], which capture distributed adaptive systems [5].

While objects in membrane computing are just elements of an alphabet, the
capture by ASMs allows arbitrary Tarski structures to be taken into considera-
tion [4], which would add further power to the computations.

As most processes in nature are continuous rather than discrete, it makes
sense to consider also continuous functions as in hybrid ASMs [1]. This would
extend membrane computing from a discrete computation model that is some-
how inspired by nature to a model that can truly describe natural processes on
cell level.

In this way ASMs can be used for a natural capture of membrane comput-
ing, thus making nature-inspired computing paradigms an application field for
rigorous methods. While this is so far only a sketch of a new research direction
for rigorous methods, details will be explored in further research.
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Abstract. Role-Based Access Control (RBAC) is a popular autho-
rization model used to manage resource-access constraints in a wide
range of systems. The standard RBAC framework adopts a static, state-
independent approach to define the access rights to the system resources.
It is often insufficient for correct implementation of the desired function-
ality and should be augmented with the dynamic, i.e., a state-dependant
view on the access control. In this paper, we present a work in progress on
creating a domain-specific language and the tool support for modelling
and verification of dynamic RBAC. They support a tabular representa-
tion of the static RBAC constraints together with the graphical model
of the scenarios and enable an automated translation of them into an
Event-B model.

Keywords: Access control · DSL · JetBrains MPS · Event-B
Verification

1 Introduction

Role-Based Access Control (RBAC) [2] is one of the main mechanisms for ensur-
ing data integrity in a wide range of computer-based systems. The authorisation
model defined by RBAC regulates users’ access to computer resources based on
their role in an organisation.

RBAC is built around the notions of users, roles, rights and protected system
resources. A resource is an entity that contains some information. A user can
access a resource based on an assigned role, where a role is usually seen as a job
function performed by a user within an organisation. In their turn, rights define
the specific actions that can be applied to the resources.

Usually RBAC gives a static view on the access rights associated with each
role, i.e., it defines the permissions to manipulate certain resources “in general”,
i.e., without referring to the system state. RBAC can be defined as a table that
relates roles with the permissions over the resources. However, such a static view
is often insufficient for a correct implementation of the intended functionality.

c© Springer International Publishing AG, part of Springer Nature 2018
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An explicit definition of the dynamic state-dependant view could significantly
facilitate system development.

A dynamic view of the access policy reflects the workflow to be supported
by the system. Typically, it is described by the scenarios. A scenario defines a
sequence of operations (often called use cases) that should be performed over
the resources to implement the desired functionality. The dynamic and static
views of RBAC are intrinsically interwoven. The permissions defined by the
static view constitute the constraints on the operations execution. Therefore, we
need to verify that the scenarios are feasible, i.e., not deadlocked by the (static)
RBAC constraints. Similarly, we also need to check that if an operation is valid
from the static point of view, it can be executed according to the workflow logic.

Domain experts while creating the informal descriptions of different RBAC
views, are reluctant to formalise them by themselves. Yet they appreciate the
feedback that can be provided by formal modelling and verification. To address
this issue, in this paper, we propose a domain-specific language (DSL) and the
corresponding tool support – PapeRBACk – that integrates tabular and graph-
ical description of RBAC with formal modelling in Event-B [1]. We present the
envisaged development process to be supported by the PapeRBACk approach
and explain the main ideas behind it. We argue that by creating a DSL frame-
work, we combine an expressiveness of informal domain-specific descriptions with
rigour and verification feedback of Event-B.

Our ultimate goal here is to bridge the gap between highly-expressive RBAC
models and specification languages. To achieve it, we create a DSL for dynamic
RBAC. Using this language, a domain expert can describe main system elements,
their relationships and the desired system workflow (in terms of scenarios on
operations). After the intended workflow is described an initial Event-B specifi-
cation can be generated and verified using a model checker ProB [6,9] to detect
conflicting operations and inconsistent operation definitions.

2 Approach for Modelling Dynamic RBAC

A domain-specific language is a programming or modelling language specifically
designed for working within a particular area of interest. There are different
types of DSLs including visual diagramming language, e.g., the ones created
by the Generic Eclipse Modeling System; programmatic abstractions, e.g., the
Eclipse Modeling Framework, or textual languages [11]. Using a DSL improves
development productivity and allows the domain experts to get involved in the
development process. It is expected that the domain experts would be able to
write and read models or code written in DSL.

Implementing a DSL traditionally requires defining a parser for it, often using
a parser generator. A powerful Integrated Development Environment (IDE) for
a DSL is vital for an adoption and success of the language. Recently, tools
designed to define DSLs together with their IDEs have appeared under the name
of language workbenches. In this work, we use the language workbench JetBrains
MPS to implement a DSL for modeling RBAC.
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rights:
  CREATE
  DELETE
  READ
  WRITE
  << ... >>

report
employee
controller
admin

CREATE DELETE READ WRITE

READ
READ

Fig. 1. RBAC table

use case: submitForApproval
resource: report
handler: employee
others involved: controller, admin

CREATED
employee can
 READ
 WRITE

SUBMITTED
employee can
 READ
controller can
 READ
admin can
 <<...>>

submitForApproval

Fig. 2. submitForApproval use case

JetBrains MPS supports projectional editing, i.e., the key representation of
a program is its abstract syntax tree (AST) that can be projected into different
representations: textual, tabular, and graphical. Projectional editing does not
require parsing, as the user edits the AST directly.

We will now briefly introduce our DSL PapeRBACk for representing both
static and dynamic views on RBAC. The requirements description in PapeR-
BACk is a combination of textual, tabular and graphical elements. It starts with
a specification that statically defines the rights of the roles to access system
resources. Such a specification is represented by a table, with columns corre-
sponding to the resources, and the rows to the roles.

An example of such a table is given in Fig. 1. Here we consider a peri-
odic reporting system often used in organisations. Once per certain period, an
employee should create and fill in a report and submit it for an approval to
his/her boss (controller). The controller can approve a report and submit
it to the admin for archiving or return to an employee for edits. The table in
Fig. 1 shows the rights that each role has over the resource report.

The tabular format allows an engineer to immediately see whether all rights
have been specified by visually controlling that all corresponding cells of the
table are filled in. Rows and columns can be added, edited, and removed in the
manner similar to the standard text processors.

To define the dynamic view of RBAC, an engineer can create a representation
of the workflow. In PapeRBACk it consists of a textual and graphical represen-
tation of the use cases included in the workflow. Let us consider a simple use case
of submitting a report for approval. Its representation in PapeRBACk is shown
in Fig. 2. Since the main goal of the dynamic access control is to guarantee that
the system resources are not accessed or manipulated by the unauthorised users,
in our description we explicitly define the resource and the roles that access it in
the given use case. We distinguish between the handler – the role that should
initiate the execution of the use case, and others – the roles whose dynamically
defined access rights will be changed as a result of executing the use case.
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The dynamic view should also take into account the current system state. In
PapeRBACk such a state is defined by the state of the resource. In our exam-
ple, the use case is represented graphically as a “state machine” with only two
“states” and one “transition” labelled with the name of the use case. The “entry
state” contains information about the state of the resource (in our example, it
is CREATED), and the required rights that the handler has to have to perform the
use case. This set of rights is a subset of handler’s statically defined rights spec-
ified in the table in Fig. 1. The “exit state” specifies the state that the resource
will have after the use case is completed (in the example, it is SUBMITTED). In
our description of the states, we explicitly define how the rights of the handler
and others change as a result of reaching the corresponding state. Here again,
these rights are the subsets of the corresponding roles’ rights defined in Fig. 1.

The specification of static and dynamic RBAC views continues until all
the required use cases are defined in the similar manner. After the descrip-
tion of the dynamic access control is completed, PapeRBACk generates an
Event-B specification where the defined use cases (operations) are represented
as the model events. For example, an Event-B event modelling the operation
submitForAproval is presented below:

submitForApproval =̂

any rep, h
where report state(rep) = CREATED // the state of the report is CREATED

US ASSIGN(h) = Employee // handler’s role is Employee
{R,W} ⊆ dPerm(Employee �→ rep) // required rights to perform the operation

then
report state(rep) := SUBMITTED // the state of the report is updated
dPerm :=dPerm �− ({Employee �→rep �→{R}}∪{Controller �→rep �→ {R}})// rights are updated

end

Upon generation an Event-B specification, for every scenario (represented as
a sequence of operations in the Event-B context) we run a model checker ProB
[6] to detect the unfeasible scenarios or inconsistently defined constraints.

3 Discussion

In this paper we present the ongoing work on defining a DSL PapeRBACk.
The language provides an integrated flexible support for the domain experts
to describe static and dynamic aspects of role-based access control. To provide
the domain engineers with the immediate verification feedback, we have also
experimented with generation of the corresponding Event-B model. The Pro-B
model checker is used to verify feasibility of the defined scenarios and possible
mistakes or contradictions in the RBAC descriptions.

In this work, our primary goal was to explore feasibility of the proposed
approach. There are several lessons that we have learnt. Firstly, working with
a DSL is much easier than working with any “general purpose” informal mod-
elling frameworks. This is due to the fact that we can restrict (via the GUI)
the user’s input and avoid an interpretation of the inputs incompatible with the
defined AST. Secondly, while verification using model checking fitted well the
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development approach, an integration of the proof-based verification is less obvi-
ous. Finally, to exploit the full power of Event-B, we need to discover a way to
support the refinement-based development. We are experimenting with defining
a domain-compliant refinement strategy, by employing a pattern-based approach
proposed in [3,4,7] to maintain a connection between PapeRBACk and Event-B.

Our future plans focus on creating a powerful automated tool support for
integrated DSL and formal modelling. We are working in two directions: enrich-
ing the PapeRBACk language with such concepts as role hierarchy and cardi-
nality policies and separation of duty constraints as well as defining the facilities
to support invariant definition and refinement.

Related Work. The policy analysis and verification issues related to RBAC
model got a wide attention in last decades. The paper [8] presents a methodology
to specify access control policies starting with a set of graphical diagrams: UML
for the functional model, SecureUML for static access control and ASDT for
dynamic access control. Then these diagrams are translated into a set of B
machines. Moreover, the authors present the formal specification of an access
control filter that actually regulates access control to the data. However, in this
work the dynamics is mainly considered with the respect to an execution order
of operations, while in our work a dynamic view on the access policies depends
on the system state, in particular, on the state of a resource.

A DSL for RBAC based on UML diagrams and OCL constrains is discussed
in [5]. However, it might be difficult for a domain expert who is not familiar with
OCL to define such constrains.

Event-B is employed to specify the dynamic semantics of an industrial DSL
as presented in [10]. Dynamic semantics map each DSL model to the correspond-
ing execution behaviour. In contrast, in our work we use Event-B to verify the
correctness of the informal descriptions and clarify contradicting requirements.
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Abstract. Control systems, protocols, and hardware design are among
the most common applications of state-based formal methods, and yet
the types of modeling and analysis they enable are also well-suited to
problems in scientific computation, where quality, reproducibility, and
productivity are growing concerns. We survey the challenges faced by
developers of scientific software, characterize the nature of the programs
they write, and offer some perspective on the role that state-based meth-
ods can play in scientific domains.

1 Introduction

Called a third pillar of science, computation is an indispensable tool not only
for scientists, but for engineers who simulate physical and natural processes
to evaluate design alternatives. Recent studies on reliability, reproducibility of
results, and productivity have cast concern over what many have suspected or
experienced firsthand, that existing practices of constructing scientific software
are inadequate and limiting the pace of technological advancement. A discon-
nect between modern software engineering practice and scientific computation
is apparent, and yet the unique challenges facing developers of scientific soft-
ware must also be recognized: the lack of test oracles, software lifetimes and
evolving needs that span decades, and the competing objectives of performance,
maintainability, and portability.

We seek to address fundamental design and quality assurance challenges that
are intrinsic to scientific computation and related types of numerical software.
While numerous directions might be taken, our premise and motivating view-
point is the central role that modeling can and must play in the process of design-
ing and working with complex artifacts, including scientific programs. Culturally,
the fit may be a natural one: scientists and engineers are accustomed to working
with models anyway, and with the kind of automatic, push-button analysis sup-
ported by some state-based formalisms, those who develop software can focus
on modeling and design instead of theorem proving.

c© Springer International Publishing AG, part of Springer Nature 2018
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2 Background

Despite broad and recognized impacts, the field of scientific computation faces a
number of challenges. Meeting quality and reproducibility standards is a growing
concern [10], as is productivity [6]. Not merely anecdotes, numerous empirical
studies of software “thwarting attempts at repetition or reproduction of scientific
results” have been cataloged in a recent article by Storer [9], along with their
concomitant effects, including a widespread inability to reproduce results and
subsequent retractions of papers in scientific journals. Productivity problems
are also reported, which Faulk et al. [6] refer to as a productivity crisis because
of “frustratingly long and troubled software development times” and difficulty
achieving portability requirements and other goals.

Sources of difficulty may stem from fundamental characteristics of the prob-
lem domain, along with cultural and development practices within it. For
instance, projects are often undertaken, as one might imagine, for the purpose
of advancing scientific goals, so results may constitute novel findings that are
difficult to validate. In the absence of test oracles, developers may have to settle
for plausibility checks based on, say, conservation laws or other principles that
are expected to hold. Then, if the software is successful, its lifetime may span
a 20 or 30 year period, starting with development and then moving through
hardware upgrades and evolving requirements that are intended to keep up with
ongoing scientific advancements. Development priorities are such that traditional
software engineering concerns, like time to market and producing highly main-
tainable code, may receive relatively less attention compared with performance
and hardware utilization [6].

Proposals to address quality and productivity concerns are varied. Storer [9]
places new and suggested approaches into broad categories of (a) software pro-
cesses, including agile methods, (b) quality assurance practices, including testing,
inspections, and continuous integration, and (c) design approaches, including
component architectures and design patterns. In the category of quality assur-
ance practices, he adds formal methods, noting a couple of experience reports,
but also observing that such approaches have received considerably less atten-
tion in the scientific programming community, possibly due to “the additional
challenge of verifying programs that manage floating point data.”

3 Approach

Although the tools and techniques most identified with scientific computation are
those of numerical analysis—where error prediction, stability, and convergence
are central concerns—such an enterprise offers little guidance in the development
process, where early decisions about decomposition and organization establish
program structure. We suggest separating concerns, and lay out an approach
informed by numerical analyses that allows scientists and engineers to represent
and reason about the essential structure and behavior of the programs they
create. The ideas are well-suited for lightweight tools like Alloy [7], a state-based
formalism that combines declarative modeling and bounded model checking.
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3.1 About Scientific Programs

We consider the application of state-based methods in a relatively uncharted
domain, scientific computation, for which there is little community experience
in working with formal methods. We might ask about the essential complexities,
what they are, and whether formal methods might help. By way of contrast, when
computer engineers model systems, they already have some experience in getting
at these questions. So, for instance, when specifying a two-phase handshake
protocol they know whether they can ignore what’s going through the pipe:
they generally have some sense of how and what to specify, and what to ignore.
There is far less of this kind of experience with programs in scientific areas, so
it is helpful to characterize what they are like.

When we refer to scientific computation, we think primarily of problems
expressed as mathematical models, where approximate solutions are sought for
differential or integral equations that have no closed form solution. As a result,
they must be discretized to produce a finite system of equations that can then
be solved by algebraic methods. Ocean circulation models, for instance, may be
expressed as a system of partial differential equations of the hyperbolic type, and
solved by finite element [11] or other numerical schemes. Because they represent
aspects of the physical and natural world, the terms and parameters appearing in
the equations capture rich state in the form of spatial, geometric, material, topo-
logical, and other attributes. The types of discretizations that may be employed
in both time and space are varied, and each has its own performance, accuracy,
and ease-of-development implications.

3.2 Separating Concerns

What we propose is something akin to the two-phase handshake protocol analogy
where the data going through the pipe are, in this case, numerical expressions.
We cannot ignore them, of course, but we aim to consider them separately, so
we advance the following perspective:

scientific programs = numerical expressions + interstitial machinery

By interstitial machinery we mean the discrete data structures and algorithms
throughout which numerical expressions are embedded. In many cases, the inter-
stitial machinery is itself a complex apparatus, as we find in the class of problems
above, and these are aspects of a program that warrant increased scrutiny and
care. Correctness arguments for this part of scientific programs can be made
without simultaneously reproducing the sometimes deep, semantic proofs of
numerical analysis [8]. Instead, pertinent results may be brought into the mod-
eling process in the form of invariants and other structural properties.

Beyond appealing to experience, a supporting idea for this claim is the fol-
lowing: the numerical analyses performed for scientific computations often apply,
unchanged, throughout a broad range of implementation choices and modifica-
tions, changes in libraries and solvers, and diverse hardware upgrades, over the
life of the program.
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3.3 Examples

Applying this perspective, the following studies show how finite state models
can be used to draw useful conclusions about scientific software:

Hurricane Storm Surge. Used in production by the U.S. Army Corps of Engi-
neers and others, ADCIRC is a large-scale ocean circulation model that simulates
hurricane storm surge. In this study [3], we consider implementation choices for
a performance enhancement made by our group, and use models developed in
Alloy to make guarantees about them, in particular that they are equivalence
preserving. The study is motivated by complex interactions between the enhance-
ment and ADCIRC’s discrete wetting and drying algorithm, which operates on
a finite element mesh to accommodate advancing and receding flood waters.

Coupled Earth Models. Numerical models of the earth capture interactions
between atmospheric, ocean, land surface, sea ice, and other components, which
execute concurrently and exchange data during runtime. By modeling read-write
behavior and the timestamps associated with updates, race-free phasing arrange-
ments can be generated, thereby preventing data from either being overwritten
too soon or becoming stale. This approach is applied to a research prototype
of simultaneously executing ocean circulation models for which the exchange of
data must be coordinated [2].

Structural Analysis. Moment distribution [5] is an iterative technique, well-
known among civil engineers, for finding the internal member forces that develop
in building structures when external forces are applied to them. In its most gen-
eral form, the method is similar to asynchronous, chaotic relaxation algorithms,
where portions of a building structure converge numerically at differing rates as
the computation unfolds, depending on process scheduling. The nondeterminism
available here is also inherent in methods used to solve elliptic partial differen-
tial equations, which may exploit nondeterminism in different ways depending
on problem characteristics and hardware features. In an unpublished specifica-
tion that appears online [1], we make use of a numerical study [4] and predicate
abstraction in a modeling approach that facilitates refinement checking.

The examples above span a range of scales from production to research soft-
ware to what might be considered a toy problem, moment distribution, and yet
the problems share features that suggest a role for state-based methods:

– Structure: by supporting implicitness in a specification, Alloy allows arbi-
trary spatial discretizations to be considered in the analysis, e.g., the varied
topological relationships that exist in real building structures.

– Behavior: by not imposing fixed idioms, it can accommodate specifications
of different styles and with different approaches to parallelism that may be
encountered, e.g., in library interfaces like MPI, OpenMP, and OpenCL.

While other approaches might be considered, state-based methods like Alloy
seem particularly appropriate for the types of modeling and analysis we describe,
and for the support it provides for conceptual design.
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4 Conclusions

Numerical concerns figure prominently in scientific computation, and yet the
major sources of complexity in actual software, from our perspective, have more
to do with the interstitial machinery that ties them together. Separating con-
cerns, along the lines we have suggested, should allow state-based methods to
find productive use in a domain that could benefit from the kind of modeling
and push-button analysis they provide. Invariants and other structural proper-
ties often follow directly from numerical analyses, both for algorithms and for
data structures, facilitating safety, liveness, and fairness checks that can be put
together in a variety of ways beyond the ones we mention.

Given the fundamental role of computation in the conduct of modern science,
the development and adoption of better design practices could have far-reaching
benefits. Toward that end, we suggest a focus on essential complexities and sci-
entifically relevant computational abstractions, as advocated by Faulk et al. [6],
using precise and expressive notations that support exploration and analysis.
Future work in this direction may lead to new insights and deeper understanding,
as well as auxiliary tools and instructional materials that make these advances
more accessible to scientists and engineers in traditional areas.
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Abstract. Electrum is an extension of Alloy that adds (1) mutable
signatures and fields to the modeling layer; and (2) connectives from
linear temporal logic (with past) and primed variables à la TLA+ to
the constraint language. The analysis of models can then be translated
into a SAT-based bounded model-checking problem, or to an LTL-based
unbounded model-checking problem. Electrum has proved to be useful
to model and verify dynamic systems with rich configurations. However,
when specifying events, the tedious and sometimes error-prone handling
of traces and frame conditions (similarly as in Alloy) remained necessary.
In this paper, we introduce an extension of Electrum with a so-called
“action” layer that addresses these questions.

1 Introduction

The specification and verification of software and systems are crucial tasks at
early development phases. Indeed, the later the detection of an error happens
in the development cycle, the more costly it is. This calls for expressive formal
specification languages, ideally supported by automatic verification tools. Then,
an important issue is the trade-off between the expressiveness of the specification
language and the automation degree of the verification. Alloy [4], one of the main
propositions in lightweight formal methods, does not favor one concern over the
other. Instead, it gives up on the completeness of the verification: it performs an
exhaustive exploration of the system states up to a user-specified depth.

Alloy is based on an extension of first-order logic and offers a rich way to spec-
ify structural properties over a system. In [5], we proposed Electrum, an exten-
sion of Alloy with support for dynamic features based upon linear temporal logic
(LTL). Electrum preserves the flexibility of Alloy while easing the specification
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of behavioral properties and enabling verification over an unbounded temporal
horizon. With Electrum, the system behavior is specified using FOLTL formulas.
Electrum thus preserves the fully declarative feature of Alloy: there is no “con-
structive” description of the system, but only the constraints that the system
satisfies. However, in practice, it is often convenient to specify the basic actions
of the system (which needs little expressiveness in terms of temporal logic) sep-
arately from other behavioral requirements, such as the way these actions are
ordered (which may need the full expressive power of temporal logic). Relying on
this kind of idioms can have several advantages: (1) some part of the behavior,
such as the frame conditions or the time model, can be specified in a systematic
way; (2) such a description of the evolution of the system is more likely to be
exploited by a verification procedure that relies on a model checker.

Thus, still pursuing the goal of allowing the straightforward specification and
verification of models featuring rich structure and behavior, we propose here an
extension of Electrum with an action layer.

The remainder of the article is organized as follows. In Sect. 2 we present the
Electrum framework. In Sect. 3, we define the syntax and semantics of the action
layer and illustrate it on an example.

2 Electrum

Following Alloy, structure in an Electrum specification is introduced through the
declaration of signatures, which represent sets of uninterpreted atoms, and fields
of arbitrary finite arity, which relate atoms belonging to different signatures.
Each of these signatures and fields can be declared as static (by default) or
variable (keyword var): the former have the same valuation throughout a given
time trace, while the latter are mutable and hence may evolve in time. Hierarchy
between signatures (which can additionally be declared as abstract) can be
introduced through extension (extends keyword) or inclusion (in). Finally, both
signatures and fields may be restricted by simple multiplicity constraints. Notice
that for variable elements, these restrictions are applied globally in time.

Additional restrictions can be imposed through facts, axioms that every
instance of the specification is required to conform to. Those may rely on reusable
predicates and functions. Relational expressions are built by composing signa-
tures and fields (and some built-in constants) with common set-theoretic oper-
ators and relational operators like join � or transitive closure ^.

Every relational expression can be primed, referring to its valuation in the
succeeding state. Atomic formulas are then built as inclusion (or equality) tests
of relational expressions, which can be composed through the common Boolean
operators, first-order quantifications and future and past LTL operators.

Execution instructions consist of run and check commands restricted by
scopes that determine the maximum (or exactly the) number of atoms of each
signature that will be considered by the analyses: (1) run instructs the Ana-
lyzer to search for an instance satisfying a given constraint; (2) check instructs
the Analyzer to prove a given assertion valid (in practice: by checking that it



Proposition of an Action Layer for Electrum 399

Fig. 1. Hotel example in Electrum with actions (syntax additions are underlined).

cannot find a counter-example). A protected keyword Time restricts the size of
the traces when analysis is performed by bounded model checking (BMC). Note
that unbounded model checking (UMC) is still bounded on the atoms in the
valuations of signatures. The complete semantics of Electrum can be consulted
in [5].

3 Extending Electrum with Actions

In this section, we present the syntax and semantics of the action layer. The layer
is actually syntactic sugar on top of plain Electrum, therefore the semantics is
defined by translation into Electrum. For the sake of readability, we illustrate this
translation over an example (Fig. 1) inspired by the classic Alloy Hotel example.
The latter specifies a system handling entries in the rooms of a hotel with dispos-
able key-cards carrying cryptographic keys that must match other keys stored
in room-door locks to release these and open the rooms.

Specifying behavior in Electrum is completely unrestricted. However, in
practice (and as the Hotel example shows), many models are specified using
actions (represented as predicates or using the event idiom [4]) that only relate
two consecutive instants. Said otherwise, a large class of Electrum models does
not rely on the full power of LTL to specify the valid traces: this logic is mainly
useful when specifying additional facts (e.g. fairness properties) or stating prop-
erties to evaluate on a model using a run or a check command. Besides, the
frame conditions and the time model could be described in a systematic way.
Their generation could be automated, depending only on a few parameters (e.g.
allowing, or not, simultaneous actions).

In practice, we add to plain Electrum an action syntactic sugar that is optional
but committing: if no action is present in a model, then its semantics is fully
unrestricted, as usual, but as soon as an action is present, the semantics associ-
ated with actions applies. The sugar thus introduces a notion of action. Frame
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conditions are automatically generated out of a specific parameter of actions.
Traces are automatically generated, forcing a specific time model. Finally, the
occurrence of an action can be referred to in the syntax of constraints.

Actions and Time Model. We add an act keyword that introduces a named
action, possibly with parameters. Parameters may only be singletons (i.e., no set
may be passed as an argument: if this is needed, then a new signature pointing
to the said set should be introduced first and then passed as an argument). An
action executes atomically and relates two consecutive instants, therefore the
only temporal constructs allowed are the after keyword and the prime operator.
As in plain Electrum, formulas (from the action body) relating to the “current”
instant represent a guard (necessary condition) for the action to occur, and the
ones talking about the next instant stand for the post-condition.

The most important semantic constraint in our action layer is that the time
model imposes an interleaving semantics: exactly one action is executed at every
instant. Also, it does not feature stuttering steps by default: if this is needed, the
user may define an ad hoc action: act skip {} (with an empty modifies clause).

Actions are translated into a structure of signatures and fields encoding the
possible events (action occurrences). We introduce first an _Action enumeration
for all action names. Then we add a relation encoding all possible events by
taking the union of all possible valuations of actions (as actions may differ in
arity, we pad them to the highest arity with a dummy signature). Simultaneously,
we specify the time model by forcing exactly one event to occur at every instant.
Finally, a fact states the effect of every action when it is fired (cf. p. 4):

enum _Action { checkin, checkout, . . . } // action names

one sig _Dummy {}

one sig _E { // simply an enclosing signature for _event

var _event: (checkin → Guest → Room → Key)

+ (checkout → Guest → _Dummy → _Dummy)

+ . . . // other possible events

} { one _event } // time model

fact { always { // effect of every action when it is fired:

all g : Guest, r : Room, k : Key {

fired[checkin, g, r, k] implies . . . /* checkin body */ }

. . . /* the same for other actions */ } }

Frame Conditions. An action can specify, using a modifies clause, which vari-
able signatures and fields it controls. In practice, this allows the automatic gener-
ation of frame conditions under a simple rule saying that any variable signature
or field that is not controlled by an action is left unchanged by this action. E.g.,
the checkout action (see Fig. 1 l. 23–25) controls the occupant field only, inducing
that current, lastKey and gkeys do not change when this action fires. On the
other hand, notice every action is responsible for handling the frame conditions
for the variable constructs declared in its modifies clause.

Referring to Actions in Constraints. Any occurrence of an action can be
referred to in a constraint, with actual parameters (e.g. as entry[g,r,k] in
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Fig. 1 l. 37) or without (in which case, there is an implicit existential quan-
tification over all parameters). For instance, after checkout actually means:
after (some g: Guest | checkout[g]). To allow this, we generate a fired pred-
icate saying whether an action is indeed fired. As actions may take parameters
of different types, the fired predicate profile accepts arguments in the union of
all these types. Again, its arity is the highest arity for actions.

var sig _Arg = _Dummy + Guest + Room + Key {} // union of all types

pred fired [a : _Action, x1, x2, x3 : _Arg] { // if max arity = 3

a→x1→x2→x3 in _E � _event }

This way, entry[g,r,k] (Fig. 1 l. 37) translates to fired[entry, g, r, k].

4 Related Work and Conclusion

TLA+ inspired Electrum in general, and its action layer in particular. How-
ever, significant differences between TLA+ and plain Electrum have already
been pointed out in [5]. Moreover, our proposition slightly differs as Electrum
is stuttering sensitive and the time model is forced. The enhancement of Alloy
with behavior [1–3,6,7] has been widely studied. Among these propositions,
DynAlloy [3] defines a syntax for actions similar to ours, but the semantics differs
in the time model and in the firing of actions. Besides, all these frameworks pro-
pose in the end a translation into plain Alloy and thus, they only offer verification
over a bounded temporal horizon. In our experience, using the Electrum action
layer makes the behavior specification both easier (specifying the actions, and
reasoning about their occurrence, is quite natural) and less error-prone because
part of the behavior specification is automatically generated. We benchmarked
(not shown due to lack of space) the action layer on examples coming from the
Alloy literature: w.r.t. plain Electrum, the efficiency of analyses is often reduced
for valid properties, but still acceptably. In the future, we intend to assess several
new compilation strategies (and perhaps semantics) to improve the efficiency.
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Abstract. This case study of an insulin pump is to describe our solution
of the following difficulties. Firstly, how to model features to obtain a
family of products. Secondly, how to handle complex constraints and
synchronization of components when composing features. Thirdly, how
to construct the continuous environment for the individual features as
well as for the composed system.

1 Introduction

Insulin pumps are safety-critical medical devices which are usually built as prod-
uct families. It means that the various products of insulin pumps are built with
shared common functionalities, but also with varieties to satisfy the diversity
of patient needs. Moreover, features of an insulin pump need to collaborate and
synchronize with each other. An insulin pump and its environment form a typical
hybrid system that the discrete software controls directly the continuous physical
injection. Therefore, it is a very interesting case study for formal development.

When tried to construct a family of insulin pump following the requirements
in [1] using Event-B [2], we met the following problems. Firstly, how to configure
the components to obtain a family of products based on the diverse requirements
of patient needs is a problem. Secondly, the components of an insulin pump
have complex constraints and synchronize with each other. Therefore, how to
guarantee these relations after composition is a problem. Thirdly, if we model
some features as independent hybrid systems, when we compose them, how to
obtain a unique hybrid system is a problem.

In this paper, we present the modular approach of modeling and composi-
tion to form a product family, to solve the first problem. Then, we explain the
approach that transforms guarded event into pre-condition operation when we
compose models, to solve the second problem. Finally we show how to decompose
and compose hybrid systems, to solve the third problem.
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2 Requirements and System Design

Due to the diversity of needs, insulin pumps are built as a family of products
that have common and various functions. The requirements of a family of insulin
pumps simplified from [1] are described as below. The family is made up of two
products: both the products have a basal feature and a normal bolus feature,
but only one product has an extra square/dual bolus feature.

1. Basal feature. (a) The insulin pump therapy provides a basal function that delivers contin-
uously over 24 hours a day. The duration rates of the basal function are made up of start and
stop times that cannot overlap.
2. Bolus features. (a) The insulin pump provides three types of bolus that are normal bolus,
square wave bolus, and dual wave bolus. (b) Normal bolus is an infusion that pumps completely
at the onset of the bolus. It calculates the delivery time according to the insulin quantity set
by users, and delivers the bolus immediately at a pre-defined rate. (c) Square bolus is a slow
infusion that spreads over time. Dual bolus combines a normal bolus with a square wave bolus.
It provides a high dose up front, and extends the tail of infusion action. The wave diagrams of
the three bolus are shown in Fig. 1(a).
3. Suspend and Resume. (a) Suspend function is always available. It stops all the deliveries that
are in progress. (b) When the pump resumes from the suspended mode, the rate of basal bolus
depends on the corresponding rate of the resume time. (c) A bolus that is suspended will not be
resumed. The user must reprogram and activate the bolus to finish the delivery. (d) When the
pump is suspended, only its resume function is available.
4. Constraints. (a) If a bolus feature (normal, square, or dual bolus) is working in parallel with
a basal feature, the rate is a superimposition of both the basal feature and the bolus feature.
(b) A normal bolus can deliver at any time except during another normal bolus is delivering.
(c) During a normal bolus is delivering, both the square bolus and the dual bolus are disabled
until the normal bolus finish its delivery. (d) A normal bolus can temporarily interrupt a square
bolus or a dual bolus that is delivering. When the normal bolus is finished, the bolus delivery
resumes to the rate that just before interruption. (e) The basal feature and normal bolus feature
are mandatory, whereas the square/dual bolus feature is optional.

time

rate

Pre-defined 
rate

time

rate

(1) Normal Bolus (2) Square Bolus (3) Dual Bolus

Pre-defined 
rate
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Abstract
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(b) Bolus features modeling

Fig. 1. The modeling design for hybrid system

Due to complex constraints, we define two controllers for the communication
and synchronization of features, which are Control1 and Control2 for Product1
and Product2, respectively. Thus, the family is described using Product Family
Algebra (PFA) [3] as below:

Insulin Family = Basal · Normal · (Control1 + Square Dual·Control2) (1)
Product1 = Basal · Normal · Control1 (2)
Product2 = Basal · Normal · Square Dual · Control2 (3)

where + is a choice between components, and · is a composition or merging
operation on components. The system development follows the following steps.



Insulin Pump: Modular Modeling of Hybrid Systems Using Event-B 405

Basal  

Normal 

Square_Dual 

Control2

<<Call>>

<<Return>>

<<Call>>

<<Call>>

<<Return>>

<<Return>>

(a) Design of product2

Model Requirements

Basal 1(a),3(a)p, 3(b)
Normal Bolus 2(a)p,2(b),3(a,c,d)p
Square Dual 2(a)p,2(c),3(a,c,d)p
Control1 3(a,c)p, 4(a,b)
Control2 3(a,c)p, 4(a,b,c,d)
Product Family 4(e)

p means PARTIALLY taken.

(b) Modeling strategy

Discrete 
 Basal 

Control 

Discrete 
Square_Dual 

Discrete  
Normal 

Hybrid system 

(c) Hybrid system

Fig. 2. The design of modules for constructing product family

Firstly, we construct the individual features of Basal, Normal, Square Dual,
Control1 and Control2. Each feature is modeled independently by the Event-B
refinement as shown in Fig. 1(b) with its encapsulated data used through inter-
face. The features trace back to the requirements as presented in Fig. 2(b).

Secondly, we form the two products Product1 and Product2 following (2) and
(3), respectively. The structure of Product2 is shown in Fig. 2(a). The related
composition is detailed in Sect. 3.

Thirdly, we construct hybrid systems. Since the features Basal, Normal, and
Square Dual control independently the injection rates brate, nrate, and sdrate,
respectively, we refine each of them to a hybrid system as shown in Fig. 1(b). The
composed product has a merged environment, where the pump rate of Product2
is a superimposition of the rates brate, nrate, and sdrate. Thus, we refine the
composed discrete model to a hybrid system with a merged environment as
shown in Fig. 2(c). More details of the hybrid systems are shown in Sect. 4.

3 Model Composition

After studying various composition approaches [4–8], we choose the function calls
composition approach proposed in [9], which transforms guarded events into pre-
conditioned operations, to keep the function call process atomic. Moreover, in
this section we also propose a refinement pattern for function calls. The formal
model of this work can be found on [10].

3.1 Function Call Structure

Here we explain how to compose the features Control2 and Basal in the case
study. The feature Basal has an event rate update with the guards:

t ∈ dom(rate setting2 �− {−1}) ∧ basal mode = delivering, (4)

where t is a formal parameter, and the guards in (4) are the pre-conditions of
calling rate update. Define a technical enumerated set as a carrier set:

PROG = {call basal update, return basal update, null}
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Fig. 3. function call structure

The part of the composed model that relates to the call from Control2 to
the function rate update of Basal is shown below in Fig. 3, where the variable
prog ∈ PROG is used for the atomic function call, and the formal parame-
ter t is instantiated by the actual parameter par basal update rate t. The pre-
conditions in (4) are removed from rate update by adding the following invariant
to guarantee that the pre-conditions are satisfied when the function is called:

prog = call basal update ⇒
par basal update rate t∈ dom(rate setting2�−{−1}) ∧ basal mode=delivering

3.2 Refinement Pattern

A refinement pattern for introducing function calls gradually in refinements is
proposed here. Given PROG as a carrier set for the type of function calls, where
null∈PROG. In the abstract, to call function P1 we define a constant pg1 that:

axm1: pg1 ⊆ PROG ∧ pg1 = {call P1, return P1} ∧ null /∈ pg1

Then we define a variable prog1 that prog1 ∈ pg1 ∪ {null} (initialized to null)
to call P1. If we need to call another function P2 that is different from P1 in a
refinement, we introduce a constant pg2 that:

axm2: pg2 = {call P2, return P2} ∧ null /∈ pg2 ∧ pg1 ∩ pg2 = ∅

In the refinement we define a variable prog2 to call both functions P1 and P2,
where prog2 ∈ pg2 ∪ pg1 ∪ {null}. The variable prog1 can be replaced by prog2
based on the following invariant.

inv1: prog2 ∈ pg1 ∪ {null} ⇒ prog1 = prog2 inv2: prog2 ∈ pg2 ⇒ prog1 = null

where the usage of prog1 and prog2 follows the approach proposed in [9]. This
pattern is followed in the composition of the case study, where prog1, prog2 and
prog3 are used in the models Control2 Basal, Control2 Basal Normal and Con-
trol2 Basal Normal Square Dual, respectively. In the composition, firstly, the
models Control2 and Basal are composed to form the model Control2 Basal with
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the variable prog1, then it is further composed with the model Normal to obtain
the model Control2 Basal Normal, where prog1 is replaced by prog2 following
the pattern above to call the functions from either the model Basal or Normal.
The composed model Control2 Basal Normal refines the models Control2, Basal,
Normal, and Control2 Basal.

4 Transforming Discrete Systems to Hybrid Systems

The insulin pump controls the continuous injection rate. Thus, we would like to
analyze both discrete controller and continuous environment together. We refine
the discrete models to hybrid systems following the hybrid approach proposed
in [11]. For the modeling of Product2 defined in formula (3), firstly we refine the
three independent features Basal, Normal, and Square/Dual to hybrid systems,
to control the rates brate, nrate, and sdrate, respectively. Then we refine the
composed model Control2 Basal Normal Square Dual to a hybrid system with
a merged pump rate.

To animate the hybrid systems, we developed a prototype to translate the
hybrid Event-B to Matlab Simulink. Using this prototype, the simulation rates
brate, nrate, and sdrate of the model Basal, Normal, and Square/Dual are
shown in Fig. 4, respectively. The pump rate of the composed model which is a
superimposition of brate, nrate, and sdrate are shown in Fig. 4 as well.
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Fig. 4. Pump rate

5 Conclusion

Table 1. Statistics of the POs

Model Total

Basal 344
Normal 88
Square Dual 141
Control2 102
Control2 Basal 634
Control2 Basal Normal 794
Control2 Basal Normal Square Dual 1858

The statistics of Proof Obligations (POs)
of Product2 is listed in Table 1, where
the first four models are independent
models with refinements, and the last
three models show that the composition
is done gradually. The POs are proved
100% automatically. The extra POs of
the composed model are generated for
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verifying the function calls, which result in an increase of the POs and make
the provers work heavily. In the future work, we will propose a systematic app-
roach that gradually introduces function calls when composing models, as well
as fits paralleling system.
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Abstract. We propose an automation-friendly set theory for the B
method. This theory is expressed using first order logic extended to poly-
morphic types and rewriting. Rewriting is introduced along the lines of
deduction modulo theory, where axioms are turned into rewrite rules
over both propositions and terms. We also provide experimental results
of several tools able to deal with polymorphism and rewriting over a
benchmark of problems in pure set theory (i.e. without arithmetic).

Keywords: B method · Set theory · Automated deduction
Polymorphic types · Rewriting

1 Introduction

In this paper, we present the set theory of the B method [1] using polymorphic
types and rewriting. Expressed this way, this theory has the benefit of being
quite automatable for several reasons. In particular, the use of polymorphism
allows us to make the theory more synthetic by removing some typing predicates,
which therefore improves proof search. As for rewriting, it is introduced along
the lines of deduction modulo theory [5], where axioms are turned into rewrite
rules over both propositions and terms. Deduction modulo theory has proved to
be also very useful to improve proof search when integrated to usual automated
proof techniques. In this paper, we also aim to advertise that more and more
automated tools are able to deal with polymorphic types and rewriting, and we
provide some experimental results involving the latest versions of these tools.
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Fig. 1. Rewriting rules of the B set theory (part 1)

2 A Set Theory with Polymorphism and Rewriting for B

In the following, we consider the pure set theory part of the B method, i.e. the
material introduced in Chap. 2 of the B-Book [1]. This part of the B theory is
suitable as it can be easily turned into a theory that is compatible with deduction
modulo theory, i.e. where a large part of axioms can be turned into rewrite rules.
We therefore transform whenever possible the axioms and definitions into rewrite
rules. The resulting theory is summarized in Figs. 1 and 2, where we omit the
set BIG and the sets defined in extension.

As can be seen, the proposed theory is typed, using first order logic extended
to polymorphic types à la ML, through a type system in the spirit of [2]. This
extension to polymorphic types offers more flexibility, and allows us to deal with
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Fig. 2. Rewriting rules of the B set theory (part 2)

theories that rely on elaborate type systems, like the B set theory. The complete
type system used here can be found in [3]. The type constructors, i.e. tup for
tuples and set for sets, and type schemes of the considered set constructs are
provided in Fig. 3 of Appendix A, where Type is the type of types and o the type
of formulas. Type arguments are subscript annotations of the construct, and to
improve readability, we remove the type annotations in tuples when they are
redundant with the membership construct.
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Table 1. Experimental results over the B set theory benchmark

319 problems Zenon Modulo ArchSAT Zipperposition Alt-Ergo

Proofs 138 272 306 232

Rate 43.3% 85.3% 95.9% 72.7%

Time(s) 2.86 268.69 109.88 8.42

3 Experimental Results

To test the previous theory, we consider 319 lemmas1 coming from Chap. 2
of the B-Book [1]. As tools, we consider automated theorem provers able to
deal with polymorphic types and rewriting natively. Our set of tools includes:
Zenon Modulo (version 0.4.2), a tableau-based prover that is an extension of
Zenon to deduction modulo theory; ArchSAT (development version2), a prover
that combines a SAT solver with tableau calculus and rewriting; and Zipperpo-
sition (version 1.5), a prover based on superposition and rewriting. To show the
impact of rewriting over the results, we also include the Alt-Ergo SMT solver
(version 1.01), which deals with polymorphic types but not rewriting.

The experiment was run on an Intel Xeon E5-1650 v3 3.50 GHz computer,
with a timeout of 90 s and a memory limit of 1 GiB. The results are summarized
in Table 1. These results show the high performances, in terms of proved prob-
lems, obtained by the provers extended to rewriting, Zipperposition and ArchSAT
in particular, compared to the SMT approach of Alt-Ergo. Looking at the cumu-
lative times, Alt-Ergo is not really faster than Zipperposition and ArchSAT, which
take more time to find few more difficult problems (with a timeout of 3 s, they
respectively find 303 and 260 proofs in 17.61 s and 16.61 s, while Alt-Ergo finds
the same number of proofs). The low results of Zenon Modulo are probably due
to the fact that it uses a heuristic to transform the axioms into rewrite rules.

4 Conclusion

In light of the previous experimental results and as perspectives, we aim to apply
our approach, consisting of a B set theory using polymorphic types and rewriting
together with appropriate tools (Zenon Modulo, ArchSAT, and Zipperposition),
to proof obligations coming from the formalization of real-world applications. In
particular, we plan to use the benchmark provided by the industrial partners of
the BWare project [4], which gathers about 13,000 proof obligations.

1 The benchmark is available at: https://github.com/delahayd/bset.
2 Git version 7720d8c, available at: https://gforge.inria.fr/projects/archsat.

https://github.com/delahayd/bset
https://gforge.inria.fr/projects/archsat
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A Typing of the B Set Theory

Fig. 3. Type constructors and type schemes of the set constructs
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Abstract. This paper presents an evolution of an industrial proof
support framework that integrates state-of-the-art technologies without
compromising the existing tool qualification status. Third-party provers
produce proof rules that may be applied by the legacy system and veri-
fied using a certified approach. This approach has been implemented in
Atelier B, a formal-methods based IDE for the development of software
components and for the modeling of systems.

1 Introduction

The industrial applications of formal methods rely on the formal verification of
conditions, e.g., invariant preservation. In case the specification logic is undecid-
able, human interaction is required to discharge proof obligations. This is the
case of the B method and Event-B, two closely related formal methods, based
on a first-order language with integer arithmetics and set theory. So even though
automatic theorem provers are available, their application requires their users to
interact with proof assistants. Atelier B, an integrated development environment
for both the B method and Event-B, includes custom automatic and interactive
provers. Increasing the success rate of automatic provers and decreasing the
amount of user interaction are key to reducing the cost of formal methods and
increasing their application in the industry. This paper addresses the former
approach.

One main industrial application of formal methods in the industry is the
development of safety-critical, software-based, systems. Mostly, formal meth-
ods are used when mandated or recommended by an industrial standard (e.g.
EN50128 [3]). In that context, all the tool support must be qualified. Obtain-
ing such a qualification has a significant cost and then usually only applies to
a specific version of the tool. Atelier B has been qualified to formally develop
software components by large industrial partners in the railway industry. This
paper presents an extension to Atelier B that improves its support for interactive
proof without compromising the certification obtained by the existing code base.
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2 Technical Background

Atelier B and Proof. In Atelier B, proof obligations (POs) are produced auto-
matically, two proof engines being available to check them. One solver, called pr,
is a conditional term rewrite engine written in a Prolog-like notation, called the
theory language, together with a default set of rules. Users may also write their
own rules, which need also be verified eventually. The second solver, called pp for
predicate prover, was developed to prove such rules and takes an (incomplete)
tableaux-based approach. Both have been certified1. For rules that pp cannot
handle, the certified verification procedure is to first prove the rule with a math-
ematical demonstration and then have a third-party independent expert validate
this demonstration. Note that pp is also available to solve proof obligations.

In interactive mode, the user is presented with a PO composed of a goal, local
hypotheses and global hypotheses. In the course of an interactive session, the
goal and the hypotheses evolve, new POs are created and the current PO may be
discharged. Examples of commands are: rewrite the goal using an equality from
the hypotheses; call a built-in expression simplifier; apply either pr or pp on the
current goal; instantiate a universally quantified hypothesis; apply a given rule
(or set of rules); case split on a condition. The execution of some commands
produce new PO, e.g., case splits and instantiations. A PO is discharged when a
so called terminal rule is applied. An example of terminal rule is: binhyp(a) =>
a or b. Here a and b are so-called jokers and stand for terms, => is a delimiter
in the rule between the conditions (to the left) and the conclusion (to the right).
Such a rule can be applied if the current PO goal matches a or b, i.e., it is a
disjunction, and the term matching a is found in the hypotheses (that is the
semantics of the binhyp operator).

Leveraging Automatic Provers in Interactive Proof Assistant. Since Atelier B has
been originally developed, mechanical theorem proving has seen a lot of progress
and powerful automatic provers are now available, such as SMT solvers [2,4].
The area of formal methods has also made efforts to use such tools to address its
own verification challenges (see, e.g. [5,6]). Our goal has been to take advantage
of some of these advances in Atelier B without compromising certification.

We follow the approach taken in the general purpose proof system Isabelle [7],
extended with “sledgehammer” [8], a command to invoke external solvers on the
current PO and, when successful, to reconstruct an Isabelle proof script from
their output. Our take on applying this approach in the legacy proof system of
Atelier B is an extension we named the drudges of the interactive prover.

3 The Drudges of the Interactive Prover: Principles

Even though the logic of POs in Atelier B is rich and undecidable, it is often
the case that, during the course of an interactive proof, proving the current goal
1 E.g., sanctioned for software development by RATP for line 14 (operated completely
automatically).
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only requires arguments that may be cast in a decidable logic, such as proposi-
tional logic, equality and integer arithmetics. For such goals, the layered solving
architecture found in most SMT solvers is particularly fit. However this is not
how Atelier B solvers function, and they sometimes fail to prove automatically
POs that only require propositional reasoning or substitution of equals.

So our approach consists in applying SMT solvers to an abstraction of the
current goal, i.e., a simplified version where the set operators are uninterpreted
(i.e., their semantics is lost). Such simplified POs contain the declarations for
the symbols from the original PO, then a series of assertions. There is one such
assertion for each hypothesis (and so, all hypotheses are thus abstracted) and
one assertion with the negation of the goal. All these assertions are labeled. If
an SMT solver finds the simplified PO to be unsatisfiable, the original PO is
valid. Then, all we have to do is build a rule that can be applied by the solver of
Atelier B. This rule needs to be logically sound, applicable to the current PO,
and as general as possible.

To this end, the SMT solver is then queried to obtain an unsatisfiable subset
of the assertions, using the get-unsat-core functionality [2]. The solver then
returns the set of the labels of the assertions it used to conclude unsatisfiability.
Now all needs to be done is to build a rule from the logical formulas associated
with these labels. Assuming the solver is sound, such a rule is valid. Also, by con-
struction, it is applicable to the current PO. To make it more general, terms are
replaced with jokers. The issue here is where jokers are introduced. To illustrate
this point, consider the following PO:

{· · · ; 0 ≤ fn(s3); s1 = s2 ∨ s1 = s3; 0 ≤ fn(s2); · · · � fn(s1) ≤ fn(s2) + fn(s3)},
where the hypotheses are to the left of � and the goal is to the right. Only the
hypotheses returned by get-unsat-core are shown. Consider the proof rule,
built with these formulas:

binhyp(0<=fn(s3)) &
binhyp(s1 = s2 or s1 = s3) &
binhyp(0<=fn(s2)

=> fn(s1) <= fn(s2)+fn(s3)

This rule is sound but it only applies to POs where the goal and some hypotheses
are identical to those in the rule.

To gain generality, we can replace (sub)-terms with jokers, by recursing over
the structure of the given formulas, keeping the operators known to the SMT
solver, and by introducing a joker for each different sub-term. The result is the
following rule:

binhyp(0<=a) &
binhyp(b=c or b=d) &
binhyp(0<=e)

=> f <= e+a

However, the abstraction here is too coarse and the resulting rule is no longer
sound.
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However, when jokers are introduced one level deeper in the syntactic struc-
ture, the rule obtained is sound, applicable to the original PO, and as general
as possible given the initial problem.

binhyp(0 <= a(b)) &
binhyp(c=d or c=b) &
binhyp(0 <= a(d))

=> a(c) <= a(d)+a(b)

This discussion illustrates the main principles in the generation of proof rules.
Jokers are introduced at a given level, and if the rule is sound, the process stops,
otherwise it is repeated one level deeper. This process is guaranteed to end
at most when the level is the height of the original PO. The verification of the
soundness is carried out by the same SMT solver that was applied to the original
proof obligation.

4 The Drudges of the Interactive Prover: Application

The functionality is in release 4.5 of Atelier B. The user sets the preferences of the
interactive prover to create drudges. A drudge is an SMT solver with settings to
enable quantifiers and arithmetics reasoning. These settings guide the procedure
that simplifies the POs for the SMT solver; e.g., disabling quantifiers forces all
quantified sub-formulas to be abstracted.

The new functionality can be run in the interactive prover either with a com-
mand smt or with the click of a button. In case the interaction fails to prove
the PO, a message is printed to the console. Otherwise, the following steps take
place. First, a “most-general”, sound, proof rule is created as described above.
Second, the rule is added to the “pmm” file, a file containing the rules for the
current component, in a section named SMT Rules (actually, the rule is added
only if no other equivalent rule is already present). Third, a command to apply
the rules from SMT Rules is issued to the Atelier B solver. The current PO is then
proved. The interactive prover either loads the next proof obligation or signals
completion of the session. In practice, the smt command is successful as soon as
the proof only involves arithmetics, equalities and properties of Boolean opera-
tors. The pmm file of the component then contains all the rules that have been
created through this command, thus guaranteeing compliance with certification
requirements.

All the proof rules introduced in a development process should be verified.
This includes the rules created by drudges. For this activity, the pp prover is
applicable and practice shows that it is able to verify many such rules. For the
rest, a manual proof must be performed.

5 Conclusion and Future Work

We extend the proof assistant of Atelier B with a command to run SMT solvers
in a proof session. The main requirements to use a solver in our framework are
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efficiency and a function returning the hypotheses used in a proof. This extension
then creates and applies automatically proof rules.

For certification, these rules need to be verified. The pp solver of Atelier B
is able to check only part of these rules. The remainder need to be verified and
validated manually. We envision the following alternatives: to put a bridle to
the function by only adding rules that are checked with pp; to develop a more
efficient rule checker; to translate the proofs generated by the SMT solvers into
a human-readable proof. Future work also includes: to evaluate axiomatizing
set operators for the SMT solvers, to experiment with SMT solvers handling
set operators (namely, CVC4 [1]), to use other classes of solvers (e.g., TPTP
provers).
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The software B method has so far been mainly used in the industrial world to
develop safety critical software with very basic memory management limited to
arrays of fixed size defined at compilation time. We present here an alternative
approach for modelling software based on a more classic memory management
with dynamically allocated complex data structures accessed through pointers.

1 Context

Critical supervision systems are exposed to an increasing number of security
threats, which have deep consequences in domains such as energy, transport,
and defense. It is crucial to build components for the industry 4.0 and Industrial
Internet of Things that can better resist such threats.

OPC-UA is a standard [6] for data exchange in industrial communications. It
provides safe and secure means to connect supervision systems (SCADA) with
programmable logic controller (PLC), actuators, and sensors.

INGOPCS is a research project that aims at developing an open source OPC-
UA toolkit, named S2OPC1. This toolkit can be used for both server and client
software. It has been designed to comply with both the EAL4 security level
(Common Criteria [4]) and the SIL2 safety level (ISO/IEC 61508 [5]).

The toolkit is developed in C99. In order to ensure high assurance in the
development, formal methods have been applied: B modelling of OPC-UA ser-
vices, which is translated to C code; formal analysis of low-level manual C code
using Frama-C and TrustInSoft Analyzer.

Systerel has strong experience in software B modelling for embedded railway
applications. The toolkit however, does not address the same constraints:

– railway applications are cyclic (their entry point is a B operation called at
each software cycle, that reads input messages, computes internal data and
writes output messages), whereas the toolkit is triggered by events, either
from the network or the application level,

This work has been supported by an FUI 19 grant of the French
government.

1 See https://gitlab.com/systerel/S2OPC.
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– railway applications use static memory management, whereas the toolkit
requires dynamic management, due to the wide diversity of exchanged objects.

This paper explains how Systerel adapted its methods and design patterns
to build a B model of the OPC-UA services.

2 Modelling Dynamic Data

Historically, the software B method [1] has been used in an operational con-
text for the development of safety critical railway software [2,3]. To meet these
needs, the B language has evolved, B translators into classic programming
languages, such as the C language, have been developed and methodological
principles for software B development have been defined. This package B lan-
guage/translator/software B methodology has reached a good level of maturity
for the development of this type of software and has changed little since the
early 2000s.

Although this approach is satisfactory, it is limited to the development of
cyclic software where data is entirely managed within the model. All variables
are statically allocated and contain simple data structures.

These features are not compatible with the development of software imple-
menting the OPC-UA protocol that heavily uses record-based data structures,
pointers to these data and dynamic allocation. We could try to get around these
memory management issues by interfacing the C data structures with B arrays.
However this approach is not satisfactory because it would imply a lot of data
copying in between the C program and the B model.

We will see how to solve all these problems without changing either the B
language or the B to C translators, thus bringing methodological solutions.

Classic B Data Structures. Implementable data structures supported by
the software B language and the C translators are 1 or 2-dimensional scalar
arrays and scalar types, where scalar types are the int type, the Boolean type,
enumerated types and carrier sets. Attempts to introduce record types into the
B-Language have raised major issues that made them impractical. For instance,
modifying several fields of the same record in a row leads to very large and hard
proof obligations. Therefore, with the classic B methodology, single records are
usually replaced by several scalars and arrays of records are replaced by several
arrays, one for each field of the record.

Carrier Sets. One of the great advances of the current software B methodology
has been to successfully use carrier sets to provide strong typing at the B level,
while at the C level everything is integer. If we were to use integer subtypes
instead of carrier sets, we could misuse a variable for another one belonging to a
different subset, even at proof level, since all variables would be regular integers.
For example, in a rail system, trains, signals or points may be modeled by carrier
sets. Thanks to the strong typing, one is sure not to confuse a signal and a point
in the B formulas.
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Pointer Management. To handle pointers, the key idea is to consider that a
carrier set may represent a pointer type. For instance, to represent a pointer to
a record of two Cartesian coordinates x and y, we define in a basic machine a
pointer type t pos i denoting all possible pointer values, a subset t pos denoting
pointers valid at some point in time and constant c pos undef denoting the
NULL pointer value. The fields of the pointed record are modelled by partial
functions. In addition, we define operations for memory management (allocation
and de-allocation) and access to field values. The basic machine is implemented
straightforwardly in C with the usual semantics.

sets

t pos i
abstract constants

t pos,
c pos undef

properties

t pos ⊆ t pos i ∧
c pos undef ∈ t pos i ∧
c pos undef �∈ t pos

variables

f pos x,
f pos y

invariant

f pos x ∈ t pos �→ Z ∧
f pos y ∈ t pos �→ Z ∧
dom(f pos x) = dom(f pos y)

initialisation

f pos x, f pos y := ∅,∅
operations

p ← pos alloc =̂
choice p := c pos undef or

any np, nx, ny
where np ∈ t pos − dom(f pos x) ∧ nx ∈ Z ∧ ny ∈ Z

then f pos x(np) := nx ‖ f pos y(np) := ny ‖ p := np end

end

pos free(p) =̂
pre p ∈ dom(f pos x)
then f pos x := {p} �− f pos x ‖ f pos y := {p} �− f pos y end

x ← get pos x(p) =̂ pre p ∈ dom(f pos x) then x := f pos x(p) end

set pos x(p, x) =̂ pre p ∈ dom(f pos x) then f pos x(p) := x end

As pointers are viewed as scalars at the B level, nothing prevents us from
defining more complex structures where a field value is itself a pointer to another
record. We even can use arrays of pointers.

3 Use Case: OPC-UA Message Manipulation

The decoding of incoming OPC-UA messages is an interesting application of
this approach. Messages arrive on a network socket as a stream of bytes. These
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bytes are stored in a byte buffer (whose size is dynamic and unknown at compile
time) by low-level C code. They are then interpreted by the B model to create
a structured message, that is a record containing itself other records and arrays.
Again, this message structure is dynamic and depends on the contents of the
buffer, so it cannot be pre-allocated.

A pointer to the byte buffer is passed as input to a B model entry point. This
buffer is already allocated and passed as a valid pointer. The buffer state variable
is initialized as not read yet. The buffer can then be read in a predefined order
that is enforced by buffer states used as preconditions for decoding operations
(message type, message header and message). These decoding operations allocate
message structures. In case of failure the buffer becomes unreadable (undefined
state). When reading is finished, the buffer is invalidated by setting its state to
undefined to prevent misuse.

The input message is allocated by the decoding operation. It is thereon used
as a valid message pointer. Then, messsage fields can be accessed as stated in
Sect. 2. Once the message content has been consumed, it is deallocated and the
pointer is set as invalid.

This example shows how the B model encapsulates the low-level byte buffer
and message structures. It controls the structure manipulation and the possible
field accesses. The memory management is also driven by the B model, even
though the object lifecycle is partial in it (e.g., an output pointer remains valid
out of the model but is considered invalid in it). Basic machines are only used
for low-level and basic operations (actual decoding, structure accesses).

4 Conclusion

The new approach that we have described allows us to incorporate explicitly
dynamic memory management in our B model, including allocation, dealloca-
tion and the validity of pointers. Since these properties are represented in the
model, they can be used in B invariants and operations to provide guarantees
when manipulating data referenced by pointers. As a consequence, operations
can define pre-conditions to manipulate only valid pointers and have read/write
access to the underlying data structures. Moreover the input and output data
flow can also be treated in the model even if part of the memory management
is done upstream or downstream of the model.

Another important aspect is that the data structures and their associated
low-level services (implemented directly in C) can be encapsulated in the B
model to add high-level properties on the services which are guaranteed by a
formal proof.

Thanks to the methodological advances presented, we successfully developed
a B model integrated in a piece of C software manipulating dynamically allocated
data and pointers, notably on structures.

There are still a few issues that we did not address yet. Firstly, all our data
structures contain a fixed number of elements whose size is also statically fixed.
One could extend the approach to dynamically sized fields and variant records
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(e.g., C unions). Secondly, for recursive data structures (e.g., linked lists, trees)
one may also want to express some (inductive) property on the data structure
as a whole, while our approach is currently limited to each record (e.g., cell)
independently of the others.
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1 Context

Although several authors like Zave and Jackson [11,17], Bjørner [5], Van Lam-
sweerde [13] have drawn the attention of system designers on the necessity to
handle domain knowledge, while designing systems, it is still a major concern
nowadays. The IMPEX1 project, funded by the French ANR national research
agency, addresses the problem of making explicit domain knowledge in formal
system developments using refinement and proof based formal methods. It advo-
cates the use and formalisation of ontologies as models for domain knowledge.
The Event-B [1] modelling technique has shown its usefulness to support the
various developments. In this paper, we briefly describe the approach [3] and the
case studies developed in the context of this project.

2 Formal Ontologies as Domain Models

Gruber defines an ontology as an explicit specification of a conceptualization [7].
Another definition relies on the notion of dictionary. [12] considers a domain
ontology as a formal and consensual dictionary of categories and properties of
entities of a domain and the relationships that hold among them. Here, an entity
represents any concept belonging to the considered domain. Dictionary entails

This work was supported by grant from the French national research agency - ANR
ANR-13-INSE-0001 (The IMPEX Project http://impex.gforge.inria.fr (or http://
impex.loria.fr)).

1 http://impex.gforge.inria.fr (or http://impex.loria.fr).
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two major concepts. First, it makes explicit the existence, through a construc-
tive definition or declaration, of entities in the domain under consideration and
second any entity or relationship described in this ontology is directly reference-
able independently of other entities or relationships. Reference is carried by a
symbol defining an identifier. Each description of each entity or relationship is
formally stated using an ontology modelling language equipped with a formal
semantics. It allows automatic reasoning and consistency checking. Event-B is a
good candidate to support such formal descriptions.

2.1 Ontologies as Theories in Event-B [2]

In the context of IMPEX, we have identified two approaches to define ontologies
as formal theories. They use two different modelling processes: shallow and deep.

– The shallow modelling approach consists in formalising the ontology con-
cepts directly in the target modelling language without keeping trace of the
structure of the ontology modelling language concepts [16]. One way to inte-
grate the ontology concepts into a specific formal method development pro-
cess is to express the ontology modelling languages constructs into the target
formal language by means of transformation rules. In our case, a shallow mod-
elling approach consists in encoding the ontology concepts (classes, properties,
... ) directly in an Event-B context using abstract sets, constants and axioms.

– The deep modelling approach consists in formalising the ontology concepts
together with the concepts of the modelling language that were used to define
the ontology concepts [8,9]. Here, ontologies are defined as instances of ontol-
ogy models. Two steps are required. First, an ontology model is formalised
and then ontologies are defined as specific models corresponding to the defined
ontology model. In our approach, we consider that both ontology modelling
concepts and ontologies are explicitly modelled. These concepts have been
formalised in Event-B. More precisely, as we consider ontologies as theories,
we have used Event-B contexts to formalise such concepts.

The OntoEventB Plug-In. The OntoEventB plug-in2 [16] has been developed
to automatically support the translation of ontologies models, described using
ontology description languages such as OWL [4] or PLIB [10], into Event-B
contexts. It takes as input an ontology description file and generates, according
to the selected approach (shallow or deep), the corresponding Event-B contexts.
The OntoEventB plug-in is integrated it into Rodin. To use the OntoEventB
plug-in in your Rodin platform instance, you must install the plug-in by using
the Install New Software menu item.

2.2 The IMPEX Approach [3]

As mentioned above, ontologies have been chosen as a framework for modelling
domain knowledge. Additionally, annotation relationships have been set up to
2 OntoEventB update site: http://wdi.supelec.fr/OntoEventB-update-site/.

http://wdi.supelec.fr/OntoEventB-update-site/
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link system models concepts to its semantic description unit provided by the
ontologies. In this way, it becomes possible to consider properties of the domain
in system models. As a consequence, domain knowledge is made explicit in such
system models. Domain properties together with reasoning capabilities become
accessible from the system models.

2.3 A Priori or A Posteriori Handling of Domain Models

When domain models are formalised, it is possible to take into account the
expressed domain concepts and properties in system models. Two different situ-
ations depending on the availability of the considered system models may occur.

– In the a priori case, we consider that domain models are available before
the system models are produced. In this case, when designing system mod-
els, domain concepts (axioms or theorems) are borrowed to define the system
model concepts as being subsumed by domain concepts. Note that the sub-
sumption mechanism available in ontology-based models allows a designer to
borrow only relevant concepts and properties from an ontology. The two first
examples of Sect. 3 report on an a priori approach.

– The a posteriori case occurs when system models are already designed. In
this case, these models are re-factored using explicit references to ontology
concepts. This mechanism uses specific references, based on explicit mapping
definitions, to borrow ontology concepts inside the re-factored models. The
last example of Sect. 3 reports on an a posteriori approach.

3 Case Studies

In this section, we briefly present some experiments we have conducted using
both a priori and a posteriori approaches to explicitly handle domain knowledge.

Embedded Systems [14]. The embedded system under consideration is a nose
gear velocity update function. It is responsible of estimating the velocity of an
aircraft while moving on the ground. Hence, it is suitable to highlight the need
for identifying and integrating explicit semantics. A single explicit, requirement
is defined. EXFUN-1: While the aircraft is on the ground, the estimated veloc-
ity shall be within 3 km/hr of the true velocity of the aircraft at some moment
within the past 3 s. Along with EXFUN-1, we have systematically extracted sev-
eral other implicit/derived requirements from this requirements description. An
a priori model [14] of the Nose Gear Velocity system has been developed with
six Event-B refinements. The second refinement introduces the interrupt ser-
vice routine (ISR) responsible for updating the rotation counter and recording
the service request time. As per the system description, NGRotations counter
is a 16-bit counter. However, it is observed that NGRotations counter can be
modelled as an always incrementing counter – taking into account possible diam-
eters of an aircraft wheel, a 16-bit rotations counter is more than enough for the
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longest existing runway. The explanations are based on the strong requirement
to avoid overflow during execution of the system: π ∗ WHEEL DIAMETER ∗
NGRotations ≤ LONGEST WORLD RUNWAY or equivalently the maxi-
mal distance of the aircraft is less than the longest world runway which is Qamdo
Bamda Airport, China, 5,500 m following the Internet. It means that the con-
dition NGRotations ≤ 215 − 1 and a 16-bit counter is largely sufficient. The
validation of the choice of the size is based on a knowledge borrowed from an
ontology. The proof of absence of overflow is then obtained automatically as long
as the prover is able to handle the fact.

Electronic Voting Systems [6]. In Applying a Dependency Mechanism for
Voting Protocol Models Using Event-B’ [6], the case study presents a method for
re-using general concepts from an e-voting domain model in the formal develop-
ment of specific systems within the same domain. The approach is refinement-
based and thus the development is a sequence of models, moving from the
abstract to the concrete. By following different refinement sequences, a fam-
ily of e-voting systems can be produced that share common properties from
the e-voting domain. This is illustrated in the study by a development which
branches (through refinement) into two different e-voting system families. The
e-voting domain knowledge is explicitly represented in the Event-B contexts. The
first Event-B context introduces only the elements necessary to build an initial
abstract machine for the phase of behavior associated with recording votes i.e.:
sets, constants and static properties such as Electors, Choices, Envelopes, Poll-
Station, Representatives, Bulletins . . . . As this abstract machine is refined it is
necessary to extend the initial context with new conceptual elements from the
e-voting domain. These correspond to specific features (increments of behavior)
which the concrete system needs to offer; and they are added to the Event-B
contexts as required.

Medical Systems [15]. Here, we describe the a posteriori approach for devel-
oping a medical protocol and we revisit the ECG interpretation protocol case
study [15]. Our aim is to use domain knowledge explicitly in the development
of a medical protocol including two different models: domain model and system
model. The domain model describes the common medical concepts, relationships,
properties and axioms related to biomedical, disease, diagnosis, anatomy, clini-
cal procedure using several available medical ontologies (e.g. GALAN, OpenCyc,
WordNet, UMLS, SNOMED-CT, FMA and Gene Ontology). The system model
describes the stepwise clinical procedure for assessing the medical protocol. The
Event-B models both domain and system. Domain knowledge is described in an
Event-B context using ontology relations to capture the clinical procedure of
the medical protocol. Note that both the domain model and system model are
linked through annotation, in which the system model uses all axioms and the-
orems expressed in the domain ontology model. This model combination allows
us to verify new properties related to domain knowledge within the enriched
design medical protocol. We have used the ECG medical protocol for devel-
oping refinement-based formal models to systematically analyse whether the
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formalisation complies with certain medically relevant protocol properties. More-
over, this approach allows us to identify possible anomalies and to improve the
quality of the medical protocol.

4 Conclusion

Our results show that it is possible to handle formally and explicitly domain
knowledge in formal system developments with Event-B and the Rodin platform.
Ontologies have been formalised within Event-B as theories and a Rodin plug-
in has been developed for this purpose. Moreover, the a priori and a posteriori
scenarios have been set up to define system model annotations. For the future,
we plan to investigate two research directions. The first one relates to the study
of the properties of the annotation relationships, possibly modelled as Galois
connections, and the second one concerns the study of domain knowledge for
dynamic concepts like actions, events or transitions. Finally, experimenting the
proposed approach in other application engineering areas is also planned.
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6. Gibson, J.P., Kherroubi, S., Méry, D.: Applying a dependency mechanism for vot-
ing protocol models using event-B. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017.
LNCS, vol. 10321, pp. 124–138. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60225-7 9

7. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

8. Hacid, K., Ait-Ameur, Y.: Strengthening MDE and formal design models by ref-
erences to domain ontologies. A model annotation based approach. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 340–357. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 24

9. Hacid, K., Ait-Ameur, Y.: Annotation of engineering models by references to
domain ontologies. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J.M., Aı̈t-
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