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Abstract. Cycloids are particular Petri nets for modelling processes
of actions or events. They belong to the fundaments of Petri’s gen-
eral systems theory and have very different interpretations, ranging from
Einstein’s relativity theory to elementary information processing gates.
Despite their simple definitions, their properties are still not completely
understood. This contribution provides for the first time a formal defini-
tion together with new results concerning their structure. For instance,
it is shown that the minimal length of a cycle is the length of a local
basic circuit, possibly decreased by an integer multiple of the number of
semi-active transitions.
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1 Introduction

Cycloids were discovered by C. A. Petri to describe fundamental processes run-
ning in time and space. They are based on Minkowski’s spacetime model, but use
causal dependence instead of numeric distance. They have been introduced in
[7] in the section on physical spaces to illustrate the shift from Galilei to Lorentz
transformation. Of particular importance to Petri was his discovery that fun-
damental gates of boolean circuits, such as XOR-transfer, majority-transfer, or
Quine-transfer, are topologically equivalent to some of his cycloids (see Fig. 9).
In private communication with the author, he explained that he discovered this
relationship by pure diligence without any methodical approach. Petri usually
introduced the concept using the regimen or organization rule for people car-
rying buckets to extinguish a fire [7] or by cars driving in line on a road with
varying distances as shown in Fig. 1 (from [9]). In the corresponding causal and
infinite net, cars are represented by black tokens moving forward in time and
space, whereas the gaps are moving also forward in time but in the opposite spa-
cial direction1. As the concept considerably differs from Minkowski’s space and

1 In the net, the gaps are also ordinary black tokens, but represented here by a cross
to distinguish them from the cars.
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Fig. 1. Cars in Petri space.

is based uniquely on causal dependencies, we call it Petri space2. Petri defined
the slowness of the system by the quotient of the difference of the numbers of
gap units and cars (in a suitable section of a case), divided by the sum of the
numbers of gaps and cars. In the example this is w := gaps−cars

gaps+cars = 12−4
12+4 = 1

2 .
In [9] he wrote: “The concept of slowness is a key to understanding repetitive
group behaviour. It can be applied to organization, to workflow (just-in-time
production), and to physical systems”.3 In the report [11], Stehr states that the
nets of Fig. 2 have slowness w = 0 on the left-hand side and slowness w = 1/3
on the right-hand. Intuitively it is visible that the first net is “faster” as more
transitions can occur concurrently. But the parameters α and β, which have been
used by Petri to define the slowness, are not directly visible from the net. In this
paper we show how to compute these parameters.

In this context systems are considered as finite repetitive structures. They are
constructed by folding the Petri space. In a first step, a finite space is assumed.
Hence after some finite number of steps the initial state is reached again. This
is modelled by folding the Petri space in such a way that transitions a and b (as
well as d and c) of Fig. 3 are identified. The resulting still infinite net is called
a time orthoid ([7], p. 37), as it extends infinitely in temporal direction.

Next, the analogous step is done with respect to time, i.e. transitions a and
d are identified. The resulting net is finite, and all the four vertices a, b, c
and d are identified. In the middle of the figure, the resulting net is represented
by the output of a cycloid tool4. On the right hand side, a redesign is shown

2 In his Hamburg lecture 2004 [8] and in [9] Petri introduced the denomination natural
coordinates whereas in an earlier publication [7] the term Minkowski coordinates has
been used. This shows that he also saw the necessity to use a different name.

3 See more about the notion of slowness in Sect. 4.
4 The cycloid model generator cyclogen written by Fenske, in combination with the

RENEW tool.
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Fig. 2. Cycloids C(3, 3, 1, 1) and C(4, 2, 1, 1)

emphasizing the cyclic structure5. Note that the cycle leading in a straight line
from transition a via 3 other transitions to transition c, the latter identified with
a in the folding, corresponds to the cycle t1, t2, t3, t4 in the right-hand side
nets. Other examples generated with that tool are given in the Figs. 6 and 8.

Fig. 3. Folding in Petri space.

The aims of this paper are threefold:

– From the lectures and seminars, Petri gave in the years 1988–2004 at the
University of Hamburg, there is a lot of unpublished knowledge in hand-
written scripts by Petri and in the notes and the memory of the persons
which attended the events [6]. Some of this knowledge is put into writing in
this paper.

– The introduction of cycloids in [7] is rather short. This paper provides formal
definitions that allow to prove some properties.

– New properties of cycloids are found, like symmetry properties or length-of-
shortest-cycles, that allow new analytic procedures.

We acknowledge the work of Uwe Fenske, who collected much of the material
mentioned above and contributed formal Definitions 2, 3 and 8 as well as Lemma 4
5 The net is known as “oscillator net” or “four seasons net”. See also Fig. 9.
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in a thesis [1]. This thesis also contains a large number of explanations and motiva-
tions of Petri’s concepts. Later he implemented the cycloid tool mentioned above,
which allowed to create numerous examples by the construction of cycloid sys-
tems in form of RENEW nets. We also acknowledge Peter Langner who wrote
the web tool “Cycloids’ Characteristics” [5], which was very useful to investigate
cycloids in the form of the fundamental parallelogram (see Figs. 6 and 8). We fur-
ther acknowledge the help of Lawrence Cabac who provided a plug-in for the com-
putation of cycles from a RENEW net. Finally thanks to Uwe Fenske, Mark-Oliver
Stehr, Bernd Neumann and Olaf Kummer for comments on this paper, the latter
for suggesting Theorem 5(b) and (c).

2 Nets, Net Systems and Petri Space

Definition 1. A net N is defined by a triple (S, T, F ) where S is a set, called
set of state elements or places, a set T of transitions and a flow relation F ,
with the following restrictions:

(a) S ∩ T = ∅ (S and T are disjoint sorts)
(b) F ⊆ S × T ∪ T × S (only distinct sort elements are connected by arcs)
(c) F ∩ F −1 = ∅ (no selfloops)
(d) dom (F ) ∪ ran (F ) = S ∪ T (no isolated elements).

An element from X := S ∪ T is said to be a net element of N.
•
x := F−1[x]6, x

• := F [x] denote the input and output elements of an element
x, respectively.

A transition t ∈ T is active in a marking M ⊆ S if 0 ≤ |•t ∩ M | = |•t|
and t

• ∩ M = ∅. In this case the follower marking M ′ is defined and given by
M ′ = M\•

t ∪ t
• .

A transition t ∈ T with |•t| ≥ 2 is semi-active in a marking M ⊆ S if
0 < |•t ∩ M | < |•t| and t

• ∩ M = ∅.
A transition t ∈ T with |•t| ≥ 1 is input-marked or marked in a marking

M ⊆ S if 0 < |•t ∩ M | ≤ |•t| and t
• ∩ M = ∅.

A net (S, T, F ) together with an initial marking M0 is called a net system.

Active transitions follow the usual definition: •
t ⊆ M and t

• ∩ M = ∅. For
a semi-active transition there are some, but not sufficiently many input tokens.
A transition, with |•t| ≥ 2, is marked if it is active or semi-active.

Definition 2. A Petri space is defined by the net
PS1 := (S1, T1, F1) where

S1 = S→
1 ∪ S←

1 , S→
1 = {s→

ξ,η | ξ, η ∈ Z} , S←
1 = {s←

ξ,η | ξ, η ∈ Z} , S→
1 ∩ S←

1 = ∅
T1 = {tξ,η | ξ, η ∈ Z} ,
F1 = {(tξ,η, s→

ξ,η) | ξ, η ∈ Z} ∪ {(s→
ξ,η, tξ+1,η) | ξ, η ∈ Z} ∪

{(tξ,η, s←
ξ,η) | ξ, η ∈ Z} ∪ {(s←

ξ,η, tξ,η+1) | ξ, η ∈ Z} .

S→
1 is called set of forward places and S←

1 the set of backward places.

6 F −1[x] is the relational image of the element x with respect to the inverse of the
relation F .
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Fig. 4. Denomination of Petri space elements

The introduced denominations of the Petri space elements are shown in Fig. 4
and should be compared with Fig. 1. Contrary to the Minkowski space, the Petri
space is independent of an embedding into Z×Z. It is therefore suitable for the
modelling in transformed coordinates as in non-Euclidian space models. How-
ever, the reader will wonder that we will apply linear algebra, for instance using
equations of lines. This is done only to determine the relative position of points.
It can be understood by first topologically transforming and embedding the
space into R × R, calculating the position and then transforming back into the
Petri space. Distances, however, are not computed with respect to the Euclidean
metric, but by counting steps in the grid of the Petri space.

3 Cycloids

Definition 3. A cycloid is a net C(α, β, γ, δ) = (S, T, F ) , defined by param-
eters α, β, γ, δ ∈ N+

7 as a quotient of the Petri space PS1 := (S1, T1, F1)
(Definition 2) with respect to the equivalence relation ≡ ⊆ X1 × X1 with8

≡[S→
1 ] ⊆ S→

1 , ≡[S←
1 ] ⊆ S←

1 , ≡[T1] ⊆ T1,

xξ,η ≡ xξ+mα+nγ, η−mβ+nδ for all ξ, η,m, n ∈ Z, X = X1/≡
[[x]]≡ F [[y]]≡ ⇔ ∃x′ ∈ [[x]]≡ ∃y′ ∈ [[y]]≡ : x′ F1 y′ for all x, y ∈ X1.
Isomorphic nets are denominated as cycloids, as well.

From [1] we cite the following lemma.

7
N+ denotes the set of positive integers.

8 ≡[A] is the relational image of the set A with respect to the relation ≡.
[[x]]≡ denotes the equivalence class to which x belongs in the quotient X1/≡.
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Lemma 4. The natural application with respect to ≡ ⊆ X1 ×X1 and explicitely
specified by f≡ : X1 → X, f≡(xξ,η) = [[xξ,η]]≡ and the property f≡(xξ,η) =
f≡(xξ+mα+nγ, η−mβ+nδ) for arbitrary ξ, η,m, n ∈ Z is a net morphism, and par-
ticularly a folding and a quotient.

Proof. Following [10] the map f≡ is a morphism if and only if
≡ ∩ (S1 × T1) = ∅. This holds in our case as property (b) of Definition 1 is
preserved by f≡. Also by [10] f≡ is a folding and a quotient. �

As we are interested in exploring the structure of cycloids from their para-
meters, symmetries are of importance. The first symmetry will be used in later
sections, namely that the structure is preserved by exchanging α with β, and γ
with δ, respectively. This symmetry describes the exchange of forward by back-
ward lines, which are terms used by Petri. If ordinary time and space coordinates
are considered (see Fig. 1 and [7]) it describes the reversal of space orientation.
The second and third symmetry are a kind of shearing of the cycloid. They have
an interesting application in Sect. 6.

Theorem 5. The following cycloids are isomorphic to C(α, β, γ, δ):

(a) C(β, α, δ, γ),
(b) C(α, β, γ − α, δ + β) if γ > α and
(c) C(α, β, γ + α, δ − β) if δ > β.

Proof. (a) We show that the mapping ϕ : X1 → X1 defined by ϕ(xξ,η) :=
xη+β,ξ−α is an isomorphism that is congruent to ≡. To avoid confusion we
denote the second cycloid by C′(α′, β′, γ′, δ′), i.e. α′ = β, β′ = α, γ′ = δ,
δ′ = γ.
ϕ is an isomorphism on the Petri space since ϕ(xξ,η) = ϕ(xξ′,η′) ⇒ η + β =
η′ + β ∧ ξ − α = ξ′ − α ⇒ (ξ, η) = (ξ′, η′), i.e. ϕ is injective and by similar
arguments also surjective.
It remains to show, that ϕ is congruent, i.e. xξ,η ≡ xξ1,η1 ⇒ ϕ(xξ,η) ≡
ϕ(xξ1,η1). For easier reading, we omit the letter x and calculate with the
indices only: with ϕ(ξ, η) = (ξ′, η′) and ϕ(ξ1, η1) = (ξ′

1, η
′
1) we now prove

(ξ, η) ≡ (ξ1, η1) ⇒ (ξ′, η′) ≡ (ξ′
1, η

′
1). By the definition of ≡ we have (ξ1, η1) =

(ξ + mα + nγ, η − mβ + nδ) for some m,n ∈ Z and

(ξ′
1, η

′
1) = (η − mβ + nδ + β, ξ + mα + nγ − α)

= (η + β − mβ + nδ, ξ − α + mα + nγ)
= (ξ′ + m′α′ + n′γ′, η′ − m′β′ + n′δ′)

with m′ = −m and n′ = n, hence (ξ′
1, η

′
1) ≡ (ξ′, η′).

(b) Since ξ + mα + n(γ − α) = ξ + (m − n)α + nγ and η − mβ + n(δ +
β) = η − (m − n)β + nδ, the equivalence relation folding the Petri space is
the same as the original one of Definition 2. The analogous argument proves
part (c). �
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Fig. 5. Fundamental parallelogram

For proving properties of cycloids particular denotations are needed. Petri
used the letters O,P,R and Q for the vertices of the fundamental parallelogram
([7], p. 41). Equations, vectors and distances with respect to these vertices will
be used (see Fig. 5).

Lemma 6. For a cycloid C(α, β, γ, δ) the vertices with their coordinates in clock-
wise order are O = (0, 0) (origin), P = (α,−β) (space), R = (α+γ, δ−β)(space
and time) and Q = (γ, δ) (time). For pairs (A,B) of such nodes the following
table gives the equation for the line AB through A and B in column 2, the vector−−→
AB from A to B in column 3 and the distance d(A,B) between A and B.

(A, B) Equation for AB Vector
−→
AB Distance d(A, B)

(O, P ) η = − β
α

ξ

(
α

−β

)
= as α + β

(O, Q) η = δ
γ
ξ

(
γ

δ

)
= at γ + δ

(P, R) η = δ
γ
(ξ − α) − β

(
γ

δ

)
γ + δ

(Q, R) η = −β
α

(ξ − γ) + δ

(
α

−β

)
α + β

(P, Q) η = β+δ
γ−α

(ξ − α) − β

(
−α + γ

β + δ

)
|α − γ| + β + δ

(O, R) η = δ−β
α+γ

ξ

(
α + γ

δ − β

)
α + γ + |β − δ|
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Proof. The vectors
−−→
OP and

−−→
OQ are obvious (see Fig. 5), while the vector

−−→
OR is

the sum of both.
−→
PR equals

−−→
OQ and

−−→
PQ =

−−→
OQ − −−→

OP . Similarly the equations
for the lines OP and OQ are obvious (see Fig. 5). The equation for PR is a
shift of value α of OQ in ξ-direction and of value −β in η-direction. In a similar
way QR is a shift of OP . The slope of QR and OQ follow from OP and PR,
respectively. The slope of PQ follows from

−−→
PQ while its η-intercept is computed

by ordinary methods. To prove column 4, observe that the distance is different
from Euclidean geometrie, as the steps between points of the grid are counted.

Therefore d(
(

a
b

)
,

(
c
d

)
) = |a − c| + |b − d|. �

The number of transitions of a cycloid is frequently used by Petri and called area
A ([7], p. 40). He gave a geometrical proof in his lectures, which was described
in [1]. In the proof below we use a property of determinants. This will be useful
when considering cycloids in higher dimensions.

Theorem 7

(a) A cycloid C(α, β, γ, δ) has A = |T | = αδ + βγ transitions and |S| = 2 |T |
places.

(b) The set T of transitions of such a cycloid is the union of three sets9, called
Upper Area UA, Middle Area MA and Lower Area LA. These sets are:
1. Upper Area for 0 ≤ ξ ≤ min(α, γ):

UA := {tξ,η|ξ, η ∈ Z,−β

α
ξ ≤ η ≤ δ

γ
ξ}

2. Middle Area 1 for γ ≤ α and γ ≤ ξ ≤ α:

MA1 := {tξ,η|ξ, η ∈ Z,−β

α
ξ ≤ η ≤ −β

α
(ξ − γ) + δ}

3. Middle Area 2 for α ≤ γ and α ≤ ξ ≤ γ:

MA2 := {tξ,η|ξ, η ∈ Z, | δ
γ

(ξ − α) − β ≤ η ≤ δ

γ
ξ}

4. Lower Area for max(α, γ) ≤ ξ ≤ α + γ:

LA := {tξ,η|ξ, η ∈ Z,
δ

γ
(ξ − α) − β ≤ η ≤ −β

α
(ξ − γ) + δ}

Proof

(a) It is well-known that the volume A of a parallelepiped of n vectors is the
determinant of the matrix having these vectors as columns. In our case we

have two vectors in two dimensions: A = det(
−−→
OP

−−→
OQ) =

∣∣∣∣ α γ
−β δ

∣∣∣∣ = αδ +βγ.

For each transition tξ,η there are two places s→
ξ,η and s←

ξ,η, hence |S| = 2 |T |.
9 These sets are not disjoint.
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(b) The Upper Area is a triangle bordered by the lines OP , OQ and ξ =
min(α, γ) (see Fig. 5 and the table of Lemma 6). The Middle Area depends
on the value of α ≤ γ, but the proof also applies. The same holds for the
Lower Area. The special case α = γ is covered by all four cases. �

4 Cycloid Systems

As in most Petri net models, a net structure together with an initial marking
is called a net system as it gives rise to dynamic processes. The first formal
definition of an initial marking for cycloids is given by Kummer [3,4]. For the
cycloid C(4, 4, 2, 2) he gives three live initial markings having different reacha-
bility sets. This shows that the right choice of an initial marking is important.
In the same year, but not known by Kummer, Petri published the following
informal definition ([7], p. 38): We provide each cycloid with a standard mark-
ing by marking the earliest case in the fundamental parallelogram. In his earlier
lectures10 Petri gave an interpretation: shift the space repetition vector

−−→
OP = as

(see Fig. 5) in the direction of the time repetition vector
−−→
OQ = at until it does

not meet any crossing point (i.e. transitions) of the Petri space grid. The edges
of the grid which are crossed in this way are the locations of the intended initial
marking. To formalize this approach, we select transitions lying between the line
OP (having equation η = −β

αξ) and the line η = −β
α (ξ + 1). The latter results

from OP by a shift of distance 1 in negative ξ-direction. For each such tran-
sition tξ,η a token is located in its forward place s→

ξ,η. In a similar way, tokens
are introduced in backward places of transitions between lines η = −β

αξ and the
line η = −β

αξ − 1, i.e. the line shifted by 1 in negative η-direction. Between any
two of such marked places there is no directed path in the Petri grid. There-
fore these marked places are causally independent11, as required for a marking.
The definition of Fenske and Kummer are very similar and generate the same
reachability set. From the difference it becomes apparent that Petri’s informal
definition is not unambiguous. In Petri’s handwritten script [6] we found the
cycloid C(4, 3, 4, 3) (see Fig. 6), which is used for illustration. Also in Fig. 6 the
corresponding cycloid system is shown in two different representations, together
with their standard initial marking.

Definition 8. For a cycloid C(α, β, γ, δ) constructed as a quotient from the Petri
space PS1 = (S1, T1, F1) by the equivalence relation ≡ we define a cycloid system
by adding the following standard initial marking12

M0 = {s→
ξ,η ∈ S→

1 | η ≤ −β
αξ ∧ η > −β

α (ξ + 1)} /≡ ∪ (1)
{s←

ξ,η ∈ S←
1 | η ≤ −β

αξ ∧ η > −β
αξ − 1} /≡ (2)

10 Reported by Fenske.
11 They are in the concurrency relation co.
12 We will use the term initial marking, for short.
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Fig. 6. Cycloid system C(4, 3, 4, 3) from [6] and redesign.

A proof that a cycloid system is strongly connected, live, safe and secure is
given in [1], drafting upon propositions by Stehr [12]13. The next lemma shows
properties that are useful for designing the initial marking and are used in the
following proofs. Parts (a) and (b) of the lemma show that the coordinates of the
first and the last14 marked transitions t1,0 and tα,1−β are the same in all cycloids
with α ≥ β. (c) proves a more general regularity, namely that the backward input
places of all marked transitions are marked. Part (d) is useful to show that some
of these transitions are semi-active, and (e) and (f) will be used to prove that
coordinates of a marked transition fulfil a certain condition.

Lemma 9. Let C(α, β, γ, δ) be a cycloid system with α ≥ β and initial marking
M0. (See Figs. 4 and 7 for the following properties.)

(a) t1,0 is active.
(b) tα,1−β is active if α = β, but is semi-active if α > β.
(c) The backward input place is marked for all marked transitions.
(d) If s←

ξ,η−1 ∈ M0 then s→
ξ,η /∈ M0.

(e) If tξ,η is a marked transition, then tξ,η−1 is not.
(f) If tξ−1,η+1 and tξ,η are marked transitions, then s→

ξ−1,η ∈ M0.

Proof

(a) The coordinates of the input places of t1,0 are (0, 0) and (1,−1) and therefore
satisfy the conditions (1) and (2) of Definition 8 due to α ≥ β.

(b) The coordinates of the backward input place of tα,1−β are (α,−β) and satisfy
the condition (2). Condition (1) for the forward input place s→

α−1,1−β is
equivalent to β ≥ β +1− β

α ∧β < β +1 and requires α = β (as we assumed
α ≥ β).

13 For the definitions of safe and secure see [7], whereas live was used in the usual form
(e.g. see [2], p. 59). For a cycloid to be secure α, β, γ, δ ≥ 2 is required.

14 First and last with respect to the space dimension.
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(c) As for a marked transition tξ,η at least one input place is marked in M0, it
is sufficient to show that the backward input place is marked if the forward
input place is marked: if s→

ξ−1,η ∈ M0 then s←
ξ,η−1 ∈ M0. In fact, from the

first part of condition (1) for s→
ξ−1,η, namely η ≤ −β

α (ξ −1) and using α ≥ β

it follows η −1 ≤ −β
αξ which is the first part of condition (2) for s←

ξ,η−1. The
same holds for the second part of the conditions.

(d) If s→
ξ,η ∈ M0 then (by condition (1)) η ≤ −β

αξ which is in contradiction to
the second part of condition (2) for s←

ξ,η−1, hence s→
ξ,η /∈ M0.

(e) The following property has to be proved: if one of the two (or both) input
places s→

ξ−1,η or s←
ξ,η−1 of tξ,η are marked then by (c) the backward input

place s←
ξ,η−2 of tξ,η−1 is not marked. Indeed, let be s→

ξ−1,η ∈ M0, i.e. η ≤
−β

α (ξ − 1) ∧ η > −β
αξ implying η ≤ −β

αξ + β
α ≤ −β

αξ + 1 (condition (*)).
Assuming s←

ξ,η−2 be marked leads to η − 2 > −β
αξ − 1 and η > −β

αξ + 1 in
contradiction to condition (*). The second case for s←

ξ,η−1 is similar.
(f) If tξ−1,η+1 is a marked transition, then by (c) s←

ξ−1,η ∈ M0 (see Fig. 4) and
by the first part of condition (2) it follows η ≤ −β

α (ξ − 1). This is the same
condition (2) for s→

ξ−1,η. If tξ,η is a marked transition, then by (c) s←
ξ,η−1 ∈ M0

and by the second part of condition (2) it follows η − 1 > −β
αξ − 1. This is

equivalent to the same condition (2) for s→
ξ−1,η. �

As we are interested to find the cycloid parameters from the cycloid system
in any representation we introduce new parameters μ, μa, μ0 and τ, τa, τ0 corres-
ponding to the initial marking and the initially active transitions, respectively.

Definition 10. For a cycloid system C(α, β, γ, δ) with initial marking M0 the
following system parameters are defined:

(a) τ0 := |{t| |•t ∩ M0| ≥ 1}| is the number of transitions initially marked.
(b) τa := |{t| |•t ∩ M0| = 2}| is the number of initially active transitions.
(c) τ := |{t| |•t ∩ M0| = 1}| is the number of initially semi-active transitions.
(d) μ0 := |M0| is the number of tokens in the initial marking.
(e) μa is number of tokens activating initially active transitions.
(f) μ is number of tokens activating initially semi-active transitions.

Tokens contributing to μa and μ are called active and semi-active tokens,
respectively.

Lemma 11. The number of tokens of the initial marking M0 is μ0 = α + β.

Proof. The transitions generating the forward tokens in Definition 8 have the
number of β coordinates (0, 0), (ξ1, 1), · · · , (ξβ−1, β − 1), while those generating
the backwards tokens have α coordinates (1, η1), (2, η2) · · · , (α, ηα). The total
number is α + β. �

Petri [6] called the tokens of the former and latter class forward and back-
wards flow tokens, respectively. Their total number corresponds to the distance
d(O,P ) = α + β (see Lemma 6).
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Lemma 12. The number of semi-active tokens of the initial marking M0 is
μ = |α − β|.
Proof. First, we assume α ≥ β. We define a path, called m-path, containing
all marked transitions as nodes. The edges connect marked transitions tξ,η and
tξ+1,η′ with 1 ≤ ξ ≤ α.15 By Lemma 9(a) and (b) the first transition is t1,0 and
the last is tα,1−β . From this we have for the η-coordinates 0 ≤ η ≤ 1 − β, with
the following property.

The edges of the m-path are composed of edges of (vector-)type (1,−1) (diag-
onal in the ξ-η-grid) and of type (1, 0) (following a line η = const), since the
type (0,−1) is excluded by Lemma 9(e): if tξ,η is a marked transition in M0 then
tξ,η−1 is not. By (c) and (d) of the same lemma the backward input place of each
marked transition is marked, but the forward output place is not. Therefore a
(place on a) (1, 0)-edge is not marked and the transition at the higher-ξ-end of
this edge is semi-active. Furthermore the forward input place of a transition at
the end of a (1,−1)-edge is marked by Lemma 9(f). Therefore this transition is
active. As a consequence a token is semi-active if and only if it marks the place
on a (1, 0)-type edge and the number of semi-active tokens equals the number
of (1, 0)-edges on the m-path.

Both types of edges, (1, 0) and (1,−1) have the number 1 in their ξ-
component. Therefore the number of all edges of the m-path is the difference
of the ξ-components of the first transition t1,0 and the last transition tα,1−β ,
namely |1−α|. With respect to the η-component only (1,−1) contribute. There-
fore their number is the difference of the η-components of the first and the last
transition, namely |0 − (1 − β)|. The number of (1, 0)-edges is their difference
|1 − α| − |0 − (1 − β)| = |1 − α| − |β − 1| = |α − β|. This proves the number
of semi-active tokens to be |α − β|. To revoke the assumption α ≥ β we apply
Theorem 5(a) by swapping α and β keeping the structure isomorphic. �

Example 13. To illustrate the proof, consider Fig. 7. It shows the case α = β = 6.
There are 6 active transitions with coordinates (1, 0), (2,−1), · · · , (6,−5) forming
a m-path. The case α = 6 and β′ = 3 is represented in the same picture. The new
origin O′ is in the point (0,−α + β′) = (0,−3). The coordinates with respect to
the new origin are distinguished by apostrophes. The nodes of the m-path have
the coordinates (1′, 0′), (2′, 0′), (3′,−1′), (4′,−1′), (5′,−2′), (6′,−2′). The path
contains two (1, 1)-edges and three (1, 0)-edges. It is evident that the number of
(1, 0)-edges equals the distance of the two origins 0 and 0′, which is α − β′ = 3.
The initial marking is shown by small circles on edges, hence 3 transitions are
active and 3 are semi-active. To show a case with two consecutive (1, 1)-edges,
consider the case α = 6 and β′′ = 4.

15 It may be helpful for the reader to consider Fig. 7, which illustrates the proof and is
explained afterwards.
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Fig. 7. Marked paths for the cases α = β = 6 and α = 6, β′ = 3

Theorem 14. Let C(α, β, γ, δ) be a cycloid system with initial marking M0

(a) τ0 = max{α, β}
(b) τa = min{α, β}
(c) τ = |α − β|
(d) μ0 = α + β
(e) μa = 2 · min{α, β}
(f) μ = |α − β|.
Proof. The propositions of (d) and (f) are proved in the preceding lemmata.

For (e) we use μa = μ0 − μ = α + β − |α − β|. For α ≥ β this gives
α+β−(α−β) = 2·β. In the same way, for α < β we obtain α+β−(β−α) = 2·α,
hence μa = 2 ·min{α, β}. The first three propositions follow immediately: There
are as many semi-active transitions as semi-active tokens: τ = μ = |α−β|. Each
active transition has two active input tokens: τa = 1

2 · μa = min{α, β}. Finally,
τ0 = τa + τ = min{α, β} + |α − β|, which is β + α − β = α if α ≥ β and
α + β − α = β if α < β. �

In his article [7] Petri introduces the notion of slowness by w = |α−β|
α+β . Using

our notation, the slowness of a cycloid is the ratio μ/μ0 of semi-active tokens
relative to all tokens in the initial marking. The more tokens are semi-active,
the higher is the slowness. In the left-hand example of Fig. 2 we have minimal
slowness w = 0 as all tokens are active, while on the right-hand side w = 1

3 as
a third of all tokens is semi-active. While Petri’s definition of slowness is non-
probabilistic, in a personal communication he wrote: “Slowness is a mass or group
phenomenon. The formula is valid for very large numbers of objects following
a uniformly distributed behaviour. By a simple rule-of-thumb, a distribution
proceeds as its slowest part”.
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5 Minimal Cycloid Cycles

As another parameter which is independent of a fundamental parallelogram re-
presentation, we now look for the length of minimal cycles. In his lecture notes
[6] Petri mentions the “number of segments in local basic circuit” as γ + δ in
connection with his investigations on security. As we will see in this section,
this is in fact the length of a minimal cycloid circuit in some cases, but no
further results of Petri are known on the topic. As we investigate the property
of minimal cycles using the fundamental parallelogram, we first state that such
a cycle always appears as a normal form containing a vertex O,P,Q or R.

Lemma 15. For any cycloid C(α, β, γ, δ) there is a minimal cycle containing
the origin O in its fundamental parallelogram representation.

Proof. It is obvious that a cycloid contains cycles (closed paths). Consider a
fixed minimal cycle and a transition tξ0,η0 contained in this cycle. The mapping
ϕ : X1 → X1 defined by ϕ(xξ,η) := xξ−ξ0,η−η0 is an automorphism that is
congruent to ≡. Therefore there is a also a minimal cycle containing tξ,η which
is the origin O = (0, 0) in the Petri space. �

As shown in Fig. 8, the edges of a path can leave the limiting lines of the
fundamental parallelogram. We first consider the opposite case.

Definition 16. Let C(α, β, γ, δ) be a cycloid. A path or a cycle is called inter-
nal if it does not leave the limiting lines of the fundamental parallelogram. The
internal minimal cycle index is defined by

i0(α, β, γ, δ) = if α ≤ β then
if β ≤ δ then 1 else 0 fi

else
if α ≤ γ then − 1 else 0 fi

fi

If the parameters are given by context, the internal index is denoted by i0.

Theorem 17. The length of a minimal internal cycle of a cycloid C(α, β, γ, δ)
is cyc0(α, β, γ, δ) = γ + δ + i0 · (α − β).

Proof. As we argued above, with respect to paths and cycles in the fundamental
parallelogram and by Lemma15, it is sufficient to consider the paths between
the vertices O, P , Q and R. Therefore we can reduce our investigations to the
paths (A,B), as given in the second column of the following table. The minimal
paths between (O,Q) and (P,R) are the same and have the length of the distance
d(O,Q) = d(P,R) = γ+δ by Lemma 6. Such a path is always possible, as already
observed by Petri, in contrast to paths between O and P or Q and R. For any
such internal path, due to

−−→
OP =

−−→
QR = (α,−β) a step in negative η-direction

would be included, which is impossible.
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Case (A, B) Path possible Path length i0

I (O, Q), (P, R) True γ + δ 0

II (P, Q) α ≤ γ −α + β + γ + δ −1

III (O, R) β ≤ δ α − β + γ + δ 1

(O, P ), (Q, R) False

The paths between (P,Q) and (O,R) are only possible under specific conditions,
however. (P,Q) is possible if the ξ-coordinate of P is not greater than that of
Q, i.e. α ≤ γ. (O,R) is possible if and only if R = (α + γ, δ − β) (Lemma 6)
has a non-negative η-coordinate, i.e. δ ≥ β. Due to these conditions the signs
for the absolute value in Lemma6 for d(P,Q) = |α − γ| + β + δ = γ − α + β + δ
and d(O,R) = α + γ + |β − δ| = α + γ + δ − β can be omitted (column 4).
With the values for i0 in the fifth column of the preceding table, the formula
cyc0(α, β, γ, δ) = γ + δ + i0 · (α − β) reproduces the values in the fourth column.
It remains to find out which of the three cases I, II and III gives the length of
the minimal cycle. Let us compare, for instance, case I with case II. γ + δ ≤
−α + β + γ + δ is equivalent to α ≤ β, which gives the entry of the line I and
column II of the following table. Similarly, comparing case II with case III gives
−α + β + γ + δ ≤ α − β + γ + δ ⇔ β ≤ α. The other entries in the table are
computed in the same way.

Case I II III

I α ≤ β β ≤ α

II β ≤ α β ≤ α

III α ≤ β α ≤ β

Compiling these results, in the case of α ≤ β we obtain III ≤ I ≤ II, where the
case identifier stands for the cycle length. Case III is the winner if it is possible,
i.e. under the condition α ≤ β ∧ β ≤ δ with cycle length α − β + γ + δ. This
is just the right condition, namely giving i0 = 1 in Definition 16 and the correct
cycle length in Theorem 17. If case III is not possible, we obtain case I as the
minimal cycle length with condition α ≤ β ∧ β > δ and i0 = 0 which gives
again the correct cycle length γ + δ in Theorem 17.

The case β ≤ α is deduced from the case α ≤ β by using the isomorphism of
Theorem 5 applying the substitution [α → β, β → α, γ → δ, δ → γ]. �

As shown by the cycle t1, t2, t3, t4, t5, t6 of length 6 in the cycloid at the left-
hand side of Fig. 8, a minimal cycle is not necessarily internal. Looking on the
corresponding fundamental parallelogram on the right-hand side, the cycle can
be obtained by starting in the origin, proceeding in ξ-direction until meeting
the line QR1. The example is chosen in such a way that the ξ-axis and the
line QR intersect in a point in the Petri space, namely the point R3 in Fig. 8,
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which is equivalent to R1. Geometrically, the point is obtained by unfolding16

the fundamental parallelogram i − 1 = 2 times. As shown in the proof below we
will obtain i = δ

β = 3. The vector
−−→
OR3 can be calculated by adding

−−→
OQ and i

times the vector
−−→
QR1 =

−−→
OP1. This vector is

−−→
OR3 =

(
γ + i · α
δ − i · β

)
=

(
6
0

)
with

length |−−→
OR3| = γ + δ + i · (α − β) = 6. The case where the intersect of the lines

is not in the Petri space is treated in the proof.

P1

Q

R1

P2

P3

R2

R3

O

Fig. 8. Cycloid C(1, 3, 3, 9) as Petri net and in fundamental diagram representation.

Definition 18. The minimal cycle index of a cycloid C(α, β, γ, δ) is defined by

i(α, β, γ, δ) = if α ≤ β then � δ

β
� else − � γ

α
� fi

If the parameters are given by context, the index is denoted by i.

Theorem 19. The length of a minimal cycle of a cycloid C(α, β, γ, δ) is

cyc(α, β, γ, δ) = γ + δ + i · (α − β).

If the parameters are given by context the cycle index is denoted by i.

16 Such unfoldings of the fundamental parallelogram have been frequently used by
Petri, see “Nets, Time and Space” [7], Fig. 11, for instance.



310 R. Valk

Proof. With respect to paths and cycles in the fundamental parallelogram and
by Lemma 15 it is sufficient to consider paths starting in the origin O.

(a) We first consider the case α ≤ β. As will be justified below, the best choice is
a line starting in the origin O in direction ξ, i.e. having the equation η = 0.
It meets the line QR with equation η = −β

α (ξ − γ) + δ (see Lemma 6) in
a point X. If this point is equivalent to Q or R (with respect to ≡), then
d(O,X) = cyc is the length of the cycle in question. Hence, setting ξ = cyc
and η = 0 in the equation above, we obtain: 0 = −β

α (cyc−γ)+ δ ⇔ β
α (cyc−

γ) = δ ⇔ cyc = δ α
β + γ ⇔ cyc = δ α

β + γ + δ − δ ⇔ cyc = γ + δ + δ
β (α − β).

If X is equivalent to Q or R with respect to ≡ then δ
β is an integer. If this is

not the case, we compute X in a different way. In fact, X can be obtained

by the following vector equation
−−→
OX =

−−→
OQ + j · −−→OP =

(
γ
δ

)
+ j ·

(
α

−β

)
=(

γ + j · α
δ − j · β

)
for some integer j. The length of this vector is |−−→OX| = γ + j ·

α + δ − j ·β = γ + δ + j · (α −β). Comparing |−−→OX| = γ + δ + j · (α −β) with
cyc = γ + δ + δ

β (α − β) from case (a) we conclude j ≤ δ
β ≤ j + 1. Due to the

causality structure of the cycloid the transition with respect to j + 1 = � δ
β �

is not directly reachable, hence j = � δ
β �. This gives cyc = γ+δ+� δ

β �·(α−β)
in the case α ≤ β. The optimality of the choice of a line in case a) becomes
evident here, since a smaller value of i results in a longer cycle, whereas a
greater value of i is impossible due to the causality structure of the cycloid.

(b) For the alternative case we look at the isomorphic cycloid C(β, α, δ, γ) (by
interchanging α and β, as well as γ and δ, see Theorem 5 which has a minimal
cycle of the same length, hence cyc = γ + δ + � γ

α� · (β − α) also in the case
α > β. Both cases together verify the theorem. �

Remark: Using Petri’s terminology and the notion of semi-active transition,
the minimal length of a cycle is the length γ + δ of a local basic circuit, possibly
decreased by an integer multiple i of the number τ = |α − β| of semi-active
transitions.

Note that Theorems 17 and 19 are consistent in the following sense. The inter-
nal minimal cycle length is obtained without unfolding the fundamental paral-
lelogram. This means that the index i is 0 or 1. If we replace � δ

β � by min{1, � δ
β �}

and −� γ
α� by max{−1,−� γ

α�} in Definition 18, we obtain Theorem 17 from
Theorem 19.

6 Computing Cycloid Parameters from System
Parameters

Next we exploit our results to find the fundamental parallelogram representation
of a cycloid from its net presentation using the system parameters τ0, τa, A and
cyc. The corresponding equivalence is denoted as σ-equivalence. The letter σ
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emphasizes the use of the shortest cycle length cyc, whereas the other parameters
are more natural. It also gives room for other equivalences like λ-equivalence,
where the longest cycle length is used, instead. Similar to the theory of regions,
the following procedures do not necessarily give a unique result. But for α �= β
the resulting cyloids are isomorphic.

Definition 20. Cycloids with identical system parameters τ0, τa, A and cyc are
called σ-equivalent.

Theorem 21. Given a cycloid C(α, β, γ, δ) in its net representation where the
parameters τ0, τa, A and cyc are known (but the parameters α, β, γ, δ are not).
Then a σ-equivalent cycloid C(α′, β′, γ′, δ′) can be computed by the formulas
α′ = τ0, β′ = τa and, if α′ �= β′ the positive solutions of γ′ mod α′ = α′·cyc−A

α′−β′

and δ′ = 1
α′ (A − β′ · γ′). These equations may result in different cycloids which

are isomorphic, however. If α′ = β′ then γ′ = � cyc
2 � and δ′ = � cyc

2 � can be used.

Proof. As by Theorem 5 for the case α ≤ β, there is an isomorphic solution for
α ≥ β we can restrict to the latter case. Hence by Theorem 14 we can choose
α′ = τ0 and β′ = τa, giving α′ = α and β′ = β.

For computing γ′ and δ′ we use the following equations if α �= β: from
A = αδ′ + βγ′ we obtain δ′ = A

α − β
αγ′ and insert this value into the formula for

cyc in the case α ≥ β: cyc = γ′ +δ′ +�γ′

α � ·(β−α) = γ′ + A
α − β

αγ′ +�γ′

α � ·(β−α).
This is equivalent to γ′ − α · �γ′

α � = α·cyc−A
α−β . Using γ′ − α · �γ′

α � = γ′ mod α we
obtain one or more (positive) solutions γ′, which also give the same number of
solutions for δ′ = A

α − β
αγ′. If γ1 and γ2 are two different such solutions, we have

γ2 = γ1 + k · α for some k ∈ Z. W.l.o.g. assume k ≥ 1. Then for δ2 we obtain
δ2 = A

α − β
αγ2 = δ1 − k · β. Hence applying Theorem 5(c) (k-times) the resulting

cycloids C(α, β, γ1, δ1) and C(α, β, γ1 + k · α, δ1 − k · β) are isomorphic.
If α′ = β′ then the minimal cycle length is always γ′ + δ′. To verify again the

same values cyc′ = cyc and A′ = A in C(α′, β′, γ′, δ′), we observe: cyc′ = γ′+δ′ =
� cyc

2 � + � cyc
2 � = cyc and A′ = αδ′ + βγ′ = α(δ′ + γ′) = α · cyc′ = α · cyc = A. �

Example 22. For the cycloid system on the left-hand side of Fig. 2 we obtain
α′ = τ0 = 3, β′ = τa = 3 and α′ = τ0 = 4, β′ = τa = 2 for the right-
hand net of the same figure. To compute γ′ and δ′ we start with the net on
the right-hand side with A = 6 transitions and cyc = 2. As α′ �= β′ we obtain
γ′ mod α′ = α′·cyc−A

α′−β′ = 4·2−6
4−2 = 1. The set of positive solutions of γ′ mod 4 = 1

is {4n + 1|n ∈ Z} = {1, 5, 9, · · · }. Using these values we obtain
δ′ = 1

α′ (A − β′ · γ′) = 1
4 (6 − 2 · γ′) = {1,−1,−3, · · · }. Therefore γ′ = 1, δ′ = 1

is a unique positive solution. To compute γ′ and δ′ for the net on the left-hand
side (A = 6, cyc = 2) we obtain γ′ = � 2

2� = 1 δ′ = � 2
2� = 1, since α′ = β′.

Example 23. For the cycloid system of Fig. 6 we obtain α′ = τ0 = 4, β′ = τa =
3, A = 24, cyc = 6. As α′ > β′ we consider γ′ mod α′ = α′·cyc−A

α′−β′ = 4·6−24
4−3 = 0.

The set of positive solutions of γ′ mod 4 = 0 is {4n|n ∈ Z} = {0, 4, 8, · · · }.
Using these values we obtain δ′ = 1

α′ (A − β′ · γ′) = 1
4 (24 − 3 · γ′). Hence the set
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of values for (γ′, δ′) reduces to {(0, 3
2 ), (4, 3), (0, 8), · · · }. Therefore γ′ = 4, δ′ = 3

is a unique positive integer solution.

Example 24. Consider the cycloid C(3, 2, 8, 2) with A = 22 and cyc = 8. Then
α′ = 3, β′ = 2 and γ′ mod 3 = α′·cyc−A

α′−β′ = 3·8−22
3−2 = 2 has a set of solutions γ′ ∈

{· · ·−1, 2, 5, 8, 11, · · · } and with δ′ = 1
α′ (A−β′ ·γ′) = 1

3 (22−2 ·γ′) also (γ′, δ′) ∈
{· · · (−1, 8), (2, 6), (5, 4), (8, 2), (11, 0), · · · }. As only positive integer values for γ′

and δ′ are possible, we obtain two cycloids C(3, 2, 2, 6) and C(3, 2, 5, 4) that are
σ-equivalent to the initial cycloid C(3, 2, 8, 2). All three cycloids are isomorphic
due to Theorem 5.

Fig. 9. Cycloid C(2, 1, 2, 1), XOR-gate and Petri’s patterns of behavior

Example 25. As mentioned in the introduction, the topological equivalence of
elementary gates of information processing on the bit level to particular cycloids
is an important result of Petri’s work. In a mail from August 28, 2007 Petri wrote
that the “oscillator” is the easiest example for the “surprising” construction of
a cycloid from the XOR-gate, which he called a “Pattern of Group Behaviour”
based on the same topology. Petri wrote that he first found such an equivalence
in the year 1964 by the example of the Quine-Transfer. Let us come back to the
XOR-gate shown on the right-hand side of Fig. 9 and its redesign in the middle.
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By reorientation of the arcs, Petri built the net on the left hand side. It becomes
a cycloid system by adding a token to the place a0 in order to obtain a live net,
as in a marked graph each cycle has to contain exactly one token. The net is
known as “oscillator net” or “four seasons net” (equivalent to Fig. 3).

Here our result helps Petri’s construction: initially marked transitions: α′ =
τ0 = |{a, b}| = 2, initially active transitions β′ = τa = |{a}| = 1, minimal
cycle length cyc = 2 and A = 4, hence γ′mod 2 = α′·cyc−A

α′−β′ = 2·2−4
2−1 = 0

and δ′ = 1
α′ (A − β′ · γ′) = 2 − γ′

2 . The set of solutions for (γ′, δ′) is
{· · · (0, 2), (2, 1), (4, 0), · · · }. Therefore γ′ = 2 and δ′ = 1 is a unique positive
integer solution, giving the cycloid C(2, 1, 2, 1), as shown in Petri’s slide of Fig. 9.

7 Conclusion

In this paper a formal definition for the model of cycloids is given, enabling
proofs of known and new properties. This has been done on the basis of C. A.
Petri’s formal and informal papers, some of which are internal for the Hamburg
research group on General Net Theory. To prepare new results and also as a
mathematical tool box for further research, some technical properties are derived.
The main theorem gives a compact formula for the length of minimal cycloid
cycles. Together with three other system parameters, this allowed to compute
the cycloid parameters α, β, γ and δ solely from the cycloid net. At the end,
some examples are given, including some suggested by C. A. Petri himself.
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