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Abstract. We present a simple characterization of the set of Petri net
solvable binary words. It states that they are exactly the extensions of
the prefixes of Petri net cyclic solvable words, by some prefix xk, where x
is any letter of the binary alphabet being considered, and k is any natural
number. We derive several consequences of this characterization which,
in a way, shows that the set of solvable words is ‘smaller than expected’.
Therefore, the existing conjecture that all of them can be generated
by quite simple net is not only confirmed, but indeed reinforced. As a
byproduct of the characterization, we also present a linear time algorithm
for deciding whether a binary word is solvable. The key idea is that the
connection with the cyclic solvable words induces certain structural reg-
ularity. Therefore, one just needs to look for possible irregularities, which
can be done in a structural way, resulting in a rather surprising linear-
ity of the decision algorithm. Finally, we employ the obtained results to
provide a characterization of reversible binary transition systems.

Keywords: Petri net · Binary word · Word solvability · Reversibility
Binary transition system

1 Introduction

In the past few years several authors investigated finite labelled transition sys-
tems (flts) which can be solved by Petri nets (i.e., flts’s which are isomorphic
to the reachability graphs of Petri nets). The solvability problem turned out to
be more complicated than expected and a very particular case of the general
problem, where the flts’s are linear and defined by binary words, was studied
first. Based mainly on the theory of regions [1] many useful properties of the
set of solvable words have been obtained. In particular, [5] presented two deci-
sion algorithms (with quadratic time complexity) for the solvability of finite and
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cyclic words. Both algorithms are based on a quantitative analysis that relates
the number of a’s and b’s in any ‘convenient’ piece of the tested word w, check-
ing whether in all cases the obtained quantities are close enough. In this way,
the sets of solvable and cyclic solvable words are totally characterized. [5] was a
continuation of [2], that introduced quantitative techniques used also here.

Studying the two (collections of) conditions that characterize both solv-
able and cyclic solvable words, we observed that they are related, and in fact
look quite similar. However, following a closer investigation we discovered some
important differences that make it difficult to bring to light the close connection
between these two sets of solvable words. As discussed in Sect. 4, the conditions
verifying the solvability of (plain) words compare any two consecutive parts β
and γ, which are connected producing a full sequence yβxγy, where x �= y are
letters of the alphabet {a, b} being considered. However, in the cyclic case, the
two compared parts cover the whole verified word, i.e., w′ = yβxγ for a cir-
cular permutation w′ of the verified word w. The first property can be seen as
local, since we need to compare two (consecutive) pieces that can be arbitrarily
long/short, whereas the second is global.

This paper focuses on the structural results. Some are recalled from [2,5], and
prove that solvable words can be decomposed into blocks abxi . We reformulate
the original conditions giving more precise description of block decomposition
which is easier to verify. An informal statement of the resulting criteria is as
follows: ‘Any two adequate pieces, consecutive or not, of a solvable word must
contain quite similar proportion of a’s and b’s’. Moreover, an adequate piece can
be understood as a sequence abxiabxi+1 . . . abxi+m−1 of full blocks.

The only difference between the two sets of conditions is the way in which
they treat the beginning of a word. In the plain case, a prefix xk (followed by
y �= x) will not be considered in most cases. In the cyclic case, any part of the
word is subjected to the same procedure due to the circularity of cyclic words.

As long as we test (nearly) any two pieces of a word in order to verify its
solvability, the corresponding algorithm remains quite costly. In fact, a direct
check of the restated criteria would be even worse in the general case, since we
need to check also nonconsecutive pieces. Having said that, the algorithm could
be used to catch unsolvable words in a fast way, by exhibiting two unbalanced
(possibly nonconsecutive) sequences of blocks.

The structural properties stated in [6] imply that no cyclic solvable word w
contains both aa and bb, which could be seen as the simplest version of the proce-
dure confirming unsolvability, and is also a basic test when we check solvability.
And, if w passes it, we apply the block decomposition results. More precisely,
we take advantage of the result that there are no two full blocks abxi and abxj

with |xi − xj | ≥ 2, which is another example of our linear time local test.
If both simple tests are passed, we need to check more sophisticated condi-

tions. In particular, if w is solvable and contains two consecutive abe−1 blocks,
then it cannot contain two consecutive abe blocks. This corresponds to the struc-
tural periodicity of solvable words: if there are no two unbalanced pieces at the
level of single letters, then we proceed at the level of blocks. We then continue
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the analysis in a similar hierarchical way, checking larger and larger parts of the
word, until either we find a witness of unsolvability, or we terminate arriving
at a trivial solvable word which proves the solvability of the original word. For-
tunately, each step of this recursive procedure at least halves the length of the
checked word. As a result, even if the number of iterations is logarithmic, the full
cost of the algorithm is linear, as each of the iterations is linear in the current
size of the checked word.

We adopted from [6] the idea to generate recursive reductions, called here
derivatives. The authors of [6] introduced a compression operator that applies
our general derivation operator in a particular case of the generation of a minimal
unsolvable word from another, longer word. In fact, along with the compression
mechanism, [6] presented an extension procedure that played a dual role. In a
similar vein, we will introduce a general integration operator, and show that
derivation/integration preserves and reflects solvability (and so also unsolvabil-
ity!). Its application will lead, as annouces above, to a pair of optimal (linear
time) decision algorithms, which verify both plain and cyclic solvability.

Our initial motivation was to extend the existing results on solvability, con-
tinuing the study of the reversibility of linear transition systems initiated in the
conference version of [4], where questions about decidability of several related
notions are studied. In this paper, we show that a linear transition system can
be reversed if and only if both the word w generated by the system, and its
reversed version wrev are solvable. Then, we look for a more explicit definition
of the set of reversible words. In [3] it was already demonstrated that not every
solvable word is reversible. However, we show that all the cyclic solvable words
are reversible. Hence, towards the end of in this paper, we will look for the con-
nections and differences between these two classes. We show that there are a
few ‘simple’ reversible words that are not cyclic solvable, but all the other ‘more
complex’ reversible words are.

The paper is organized as follows. After recalling the basic notions in Sect. 2,
Sect. 3 contains new characterizations of cyclic solvable words, including the
efficient algorithm for detect them. Sections 4 and 5 deal with plain solvable
words and reversible words, respectively. A brief section containing conclusions
ends the paper.

2 Basic Notions

The sets of all integers and non-negative integers are denoted by Z and N,
respectively.

Words. A word over an alphabet T is a finite sequence w ∈ T ∗, and it is binary
if |T | = 2. The empty word is denoted by ε. The reverse of a word w = t1 . . . tn
is wrev = tn . . . t1. For a word w ∈ T ∗ and a letter t ∈ T , |w| denotes the
length of w, and |w|t denotes the number of occurrences of t in w. Moreover,
|w|xy = |w|x/|w|y and if |w|y = 0, then |w|xy = ∞. A word w′ ∈ T ∗ is called
a subword of w ∈ T ∗ if w = uw′v, for some u, v ∈ T ∗. In particular, w′ is a prefix
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of w if u = ε, a suffix of w if v = ε, and an infix of w if u �= ε �= v. The
concatenation of k copies of a word w ∈ T ∗ is denoted by wk. Moreover, wω

denotes an infinite word obtained by concatenating infinitely many copies of w.
Note that in the denotation wω we explicitly indicate the period w which is used
to construct the infinite word ww . . . . Similarly, uwω denotes an infinite word
uww . . . constructed using the prefix u and period w.

For two alphabets T and V , a mapping φ : T ∗ → V ∗ is a morphism if φ(ε) = ε
and φ(uv) = φ(u)φ(v), for all u, v ∈ T ∗. A morphism φ is uniquely determined
by its application to the members of T .

Transition Systems. A finite labelled transition system (or flts) is a tuple TS =
(S, T,→, s0) with a finite set of states S, a finite set of labels T , a set of arcs
→⊆ (S × T × S), and an initial state s0 ∈ S. A label t is enabled at s ∈ S,
denoted by s[t〉, if (s, t, s′) ∈→, for some s′ ∈ S. A state s′ is reachable from
s through the execution of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed
path from s to s′ whose arcs are labelled consecutively by σ. The set of states
reachable from s is denoted by [s〉. A sequence σ ∈ T ∗ is enabled at a state s,
denoted by s[σ〉, if there is some state s′ such that s[σ〉s′.

t•TS = {s ∈ S | ∃s′ ∈ S : (s′, t, s) ∈→} and •tTS = {s ∈ S | ∃s′ ∈ S :
(s, t, s′) ∈→} are respectively the sets of all states having an incoming arc
labelled with t, and an outgoing arc labelled with t. The set of all arcs labelled
by t is denoted by

−→
t . We assume that each

−→
t is nonempty, and each state is

reachable from s0.
Two flts’s, (S, T,→, s0) and (S′, T,→′, s′

0), are isomorphic if there is a bijec-
tion ζ : S → S′ with ζ(s0) = s′

0, and (s, t, s′) ∈→⇔ (ζ(s), t, ζ(s′)) ∈→′, for all
s, s′ ∈ S and t ∈ T .

Petri Nets. A (place/transition) net is a tuple N = (P, T, F,M0), where P is a
finite set of places, T is a disjoint finite set of transitions (or actions), F is the
flow function F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and M0

is the initial marking (where a marking is a mapping M : P → N).
A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if M(p) ≥

F (p, t), for every p ∈ P . The firing of an enabled t at marking M leads to M ′,
denoted by M [t〉M ′, where M ′(p) = M(p)+F (t, p)−F (p, t), for every p ∈ P . The
notions of enabledness and firing, M [σ〉 and M [σ〉M ′, are extended in the usual
way to sequences σ ∈ T ∗, and [M〉 denotes the set of all markings reachable from
M . For an infinite sequence of transitions, σ ∈ Tω, we write M [σ〉 if M [σ′〉, for
infinitely many finite prefixes σ′ of σ. We assume that each transition is enabled
in at least one reachable marking.

Transition enabledness is monotonic, i.e., if a transition t is enabled at a
marking M and M(p) ≤ M ′(p), for every p ∈ P , then t is also enabled at M ′.

The net N can also be specified as (N ′,M0), where N ′ = (P, T, F ).

Synthesis of Words. A Petri net N = (P, T, F,M0) net is bounded if the set of
reachable markings [M0〉 is finite, and its reachability graph is then defined as
the flts RG(N) = ([M0〉, T, {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′},M0). If an
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flts TS is isomorphic to the reachability graph of N , then N solves TS , and TS
is synthesizable (to N).

Let w = t1 . . . tm and u = tm+1 . . . tm+n be nonempty words, T =
{t1, . . . , tm}, and T ′ = {t1, . . . , tm+n}. Then w/wω/wuω is solvable if respec-
tively

TSw = ({0, . . . ,m}, T, {(i − 1, ti, i) | 1 ≤ i ≤ m}, 0)
TS c

w = ({0, . . . ,m − 1}, T, {(i − 1, ti, i) | 1 ≤ i < m} ∪ {(m − 1, tm, 0)}, 0)
TS c

w,u = ({0, . . . ,m + n − 1}, T ′,
{(i − 1, ti, i) | 1 ≤ i < m + n} ∪ {(m + n − 1, tm,m)}, 0)

is a synthesizable flts. Moreover, a Petri net N solves w/wω/wuω if respectively
the flts TSw/TS c

w/TS c
w,u is synthesizable to N (see Fig. 1).

In the rest of this paper, T is a binary alphabet and all the finite words
considered belong to T ∗. Moreover, x, y, ti typically stand for the letters in T ,
and unless stated otherwise, T = {a, b}.

•
0

•
1

•
2

•
3

•
4

a b a b a b

•••
2

a b••••

•

Fig. 1. The flts TSabab, and two Petri nets solving abab. The second net without the
middle place solves (ab)ω.

3 A Finer Characterisation of Cyclic Solvable Words

Two words, w and w′, are circular equivalent if w = uv and w′ = vu, for some u
and v. We denote this by w � w′. One can show that � is an equivalence relation.
The equivalence classes of � are circular words, and the circular word containing
w = t1 . . . tn is [w]� = {ti . . . tnt1 . . . ti−1 | 1 ≤ i ≤ n}. Hence |[w]�| ≤ n, and
if |[w]�| = n, then w is prime. One can show that, for each word w, there is a
unique prime word u and k ≥ 1 such that w = uk. The subwords of [w]� are all
the subwords of the members of [w]�.

A word w is cyclic solvable if uω is solvable, where u is the prime satisfying
w = uk, for some k ≥ 1. In such a case, every member of [w]� is cyclic solvable,
and [w]� itself is solvable. A set of nets N solves [w]� if they cyclic solve all the
members of [w]�.

The above definitions are more subtle than it might appear at a first glance.
First, notice that uω and (uk)ω ‘construct’ the same infinite word, but do so
using different periods and the solvability is tested using different flts’s, viz.
TS c

u and TS c
uk . Moreover, whenever u is not prime, no Petri net can solve uω,
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and so generate the infinite cyclic word w denoted by it using u as period. In
particular, if we take (uk)ω with k > 1, then TS c

uk would include at least two
different states generating w, and all such states should be represented by the
same marking in the reachability graph of a Petri net to which TS c

uk might be
synthesiszable. This, however, is impossible.

Situations describe above are not a problem for the definition of cyclic solv-
ability since we only consider prime periods u. For example, w = aa is cyclic
solvable because w = a2, a is prime, and the flts TS c

a = ({s}, {a}, {(s, a, s)}, s)
can be synthesized to the net Na = ({p}, {a}, F,M0) with M0(p) = 1 and the
non-zero entries of F being F (a, p) = F (p, a) = 1. On the other hand, the flts
TS c

aa = ({s0, s1}, {a}, {(s0, a, s1), (s1, a, s0)}, s0) is not synthesizable.

Fact 1 (follows from Proposition 5 in [5]). A solvable circular word does
not have both aa and bb as subwords.

Hence, we will usually assume (wlog) that aa is not a subword of cyclic
solvable words. And, in order to avoid cumbersome trivial cases in proofs, we
will disregard the solvable circular words [a]�, [b]�, and [ab]�. As a result,
we will concentrate on the remaining solvable circular words [w]�, where
w = abx1abx2 . . . abxn and x1, . . . , xn ≥ 1. Each such [w]� is a circular block-
word, each w is a block-word, and each abxi is a block. Also, a block-subword of
[w]� is ε or abxiabxi+1 . . . abxj (for i ≤ j) or abxi . . . abxnabx1 . . . abxj (for i > j).
Note that not all such [w]� are solvable, but only those that are also ‘periodic’,
in the sense to be made precise later.

Fact 2 (Theorem 3 in [5]). A circular word [w]� is solvable iff |xα|xy > |w|xy ,
for its every subword xαy with x �= y.

Following the above result, a circular word [w]� is balanced if, for its every
subword xαy with x �= y:

|xα|xy > |w|xy . (1)

Moreover, if (1) does not hold for xαy, then [w]� is xα-unbalanced. It turns out
that for circular block-words it suffices to concentrate on block-subwords.

Proposition 1. A circular block-word [w]� is not balanced iff there is a block-
subword w′ of [w]� such that [w]� is w′-unbalanced or bw′-unbalanced.

Proof. Suppose that [w]� is aα-unbalanced. Then we can extend aα by some bj

(j ≥ 0) obtaining a block-subword w′ = aαbk such that [w]� is w′-unbalanced.
Suppose that [w]� is bα-unbalanced. If |α|a = 0, then [w]� cannot be bα-

unbalanced. Hence bα = bjw′, where j ≥ 1 and w′ is a block-subword, and [w]�
is bw′-unbalanced. ��

Let w be a block-word and αγβδ � w, where α, γ, β, δ are block-subwords of
[w]�. Then α and β are complementary if γ = δ = ε, and mutually unbalanced,
denoted by α � β, if |α|b+1

|α|a ≤ |β|b−1
|β|a or |β|b+1

|β|a ≤ |α|b−1
|α|a .
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An alternative presentation of the balancing property of circular words is
obtained by considering complementary block-subwords. It will later be used to
show that for any unbalanced block-word one can construct a pair of mutually
unbalanced complementary block-subwords.

Proposition 2. Let α and β be complementary block-subwords of [w]�.

– If [w]� is bα-unbalanced or α′-unbalanced, where α′b = α, then α � β.
– If α � β, then w is not balanced.

Proof. Let m and k be the numbers of blocks in α and β, respectively. Then
|bα|ba = |α|b+1

m ≤ |w|ba = |β|b−1+|α|b+1
m+k is equivalent to

m|α|b + m + k|α|b + k ≤ m|α|b + m + m(|β|b − 1)

which is equivalent to k(|α|b + 1) ≤ m(|β|b − 1). And the latter is equivalent to
|α|b+1

m ≤ |β|b−1
k .

Moreover, we have that |aα′|ab = m
|aα′b|b−1 ≤ |w|ab = m+k

|aα′b|b−1+1+|β|b is equiv-

alent to m(|β|b + 1) ≤ k(|aα′b|b − 1) which is equivalent to |aα′b|b−1
m ≥ |β|b+1

k .
��

Next we show that as soon as we have two mutually unbalanced block-
subwords, one can extend one of them by the block-subword positioned ‘in
between’ the original sub-words.

Proposition 3. Let w = αγβδ be a block-word such that α, β, γ, δ are block-
subwords of [w]� and α � β. Then: (i) αγ � β or α � γβ; and (ii) α � βδ or
δα � β.

Proof. (i) It is a consequence of the following general result. Whenever we have
m1−1

n1
≥ m2+1

n2
, then for all p, q with q �= 0, we have either (m1+p)−1

n1+q ≥ m2+1
n2

or
m1−1

n1
≥ (m2+p)+1

n2+q . Indeed, the former is clearly obtained when p
q > m1

n1
, and the

latter when p
q < m2

n2
. In general, if p

q ≥ m2+1
n2

then, by m1−1
n1

≥ m2+1
n2

, we have
m1−1

n1
≥ (m2+p)+1

n2+q . And, by symmetry, if p
q ≤ m1−1

n1
then m1−1

n1
≥ (m2+p)+1

n2+q .
Note: The two cases considered in the second part of the proof cover all

possibilities, but the previous easy cases are included to improve readability.
(ii) The proof is similar as for (i) due to the fact that δ lies ‘in between’ β

and α in the circular sense. ��
A block-word w = abx1abx2 . . . abxn is block-balanced if, for all 1 ≤ j ≤ k ≤

l ≤ m ≤ n:
∑k

i=j xi

k − j + 1
>

∑m
i=l xi

m − l + 1
=⇒

∑k
i=j xi − 1

k − j + 1
<

∑m
i=l xi + 1

m − l + 1
(2)

and ∑k
i=j xi

k − j + 1
<

∑m
i=l xi

m − l + 1
=⇒

∑k
i=j xi + 1

k − j + 1
>

∑m
i=l xi − 1

m − l + 1
. (3)
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Moreover, if all block-words in [w]� are block-balanced, then w is circular block-
balanced. (Note that in the case of circular block-balancing, if all block-words in
[w]� satisfy (2), then they satisfy (3) as well.) The block-word w is contiguously
block-balanced if the conditions (2) and (3) are satisfied for l = k + 1. And w is
contiguously circular block-balanced if all the members of [w]� are contiguously
block-balanced.

Theorem 1. A block-word is cyclic solvable iff it is circular block-balanced.

Proof. Applying Proposition 3 we only need to observe that once we have w =
αγβδ, which is circular block unbalanced because α 
 β, then αγ 
 β or
α 
 γβ, will be also mutually unbalanced. Suppose (wlog) that the former holds.
Then another application of Proposition 3 implies that αγ 
 βδ or α 
 γβδ
holds, and an application of Proposition 2 concludes the proof. ��
Corollary 1. A block-word is cyclic solvable iff it is contiguously circular block-
balanced.

Proof. Follows immediately from Theorem 1 and Proposition 3.

Propositions 8 and 9 in [5] imply that solvable circular words can be solved by
‘circular’ nets with two places and two transitions. For all A,B ≥ 1, let NAB be
the set of all nets NAB = ({pa, pb}, {a, b}, F,M0) such that M0(pa) + M0(pb) =
A + B − 1 and the non-zero values for F are F (pa, a) = F (a, pb) = A and
F (pb, b) = F (b, pa) = B.

Fact 3 (follows from Proposition 9 in [5]). NAB solves the unique solv-
able circular word [wAB ]� satisfying |wAB |a = B and |wAB |b = A. Also, if
gcd(A,B) = 1 then wAB is prime, and if gcd(A,B) = C > 1 then w = uC ,
where u is prime.

A general result about the extendability of solvable words by prefixes is

Fact 4 (Proposition 4 in [2]). If aw is solvable, then aaw is also solvable.

In other words, a prefix a can be extended to ak without losing solvability.
This is not always possible using b instead of a, since otherwise any word would
be solvable. However, any cyclic solvable word can be prefixed by ak or bk, for
any k ≥ 1, yielding a solvable word (although, in general, not cyclic solvable,
and not even a subword of a cyclic solvable word). It seems that this fact was
not yet used in the literature, and it has indeed been one of the key observations
leading to our new characterization of (plain) solvable words.

Proposition 4. Let A,B, k ≥ 1 and NAB = ({pa, pb}, {a, b}, F,M0) ∈ NAB be
a net solving wω. Moreover, let N ′ = ({pa, pb}, {a, b}, F ′,M ′

0) be a net such that:

– F ′(pa, a) = F ′(a, pb) = A, F ′(pb, b) = B + k, F ′(b, py) = kA, and F ′(b, pa) =
B are the non-zero values of F ′, and

– M ′
0(pa) = kA + M0(pa) and M ′

0(pb) = kA + M0(pb).



An Efficient Characterization of Petri Net Solvable Binary Words 215

Then N ′ solves akwω.
Note: A symmetric construction solves bkwω.

Proof. The kA additional tokens in pa allow the firing of ak. At the same time,
b is not enabled since M0(pb)+(k−1)A < B +kA as M0(pb) > A+B. After the
firing of ak, the kA produced tokens will remain frozen at pb, and the remaining
tokens will ‘constitute’ the initial marking M0 for NAB , so that the subsequent
behaviour of N ′ will generate wω. ��

A direct consequence of the last result is that all the infinite words represented
by xkwω, where w is a cyclic solvable word, are solvable.

Given an integer e ≥ 2, a block-word abx1 . . . abxm is an e-block-word if
x1, . . . , xm ∈ {e − 1, e}. From the results in [5], it immediately follows that each
cyclic solvable block-word is an e-block-word, for some e ≥ 2. We next apply our
characterization of cyclic solvable words to demonstrate a duality between the
abe−1 blocks and abe blocks, which can be swapped without affecting solvability.

Proposition 5. An e-block-word abx1 . . . abxm is cyclic solvable iff the e-block-
word ab2e−1−x1ab2e−1−x2 . . . ab2e−1−xm is cyclic solvable.

Proof. We first observe that
∑i+m−1

s=i 2e−1−xs

m = 2e−1−
∑i+m−1

s=i xs

m . Hence we have

that
∑i+m−1

s=i xs

m >
∑j+k−1

t=j xt

k =⇒
∑i+m−1

s=i xs−1

m <
∑j+k−1

t=j xt+1

k is equivalent to:

i+m−1∑

s=i
(2e−1−xs)

m <

j+k−1∑

t=j

(2e−1−xt)

k =⇒
i+m−1∑

s=i
(2e−1−xs)+1

m >

j+k−1∑

t=j

(2e−1−xt)−1

k . �

3.1 An Efficient Algorithm to Detect Cyclic Solvable Words

Having observed (wlog) that all the solvable cyclic block-words are e-block-
words (i.e., they are built from two kinds of blocks), one can intuitively foresee
the internal periodicity of cyclic solvable block-words. This means that the full
word w not only appears as period of the corresponding infinite (cyclic) word,
but also the internal structure of w is periodic, and the blocks are distributed in
a periodic way.

Definition 1. The derivative words of an e-block-word w are defined as follows:

– ∂1(w) is obtained by replacing in w each block abe−1 by 1, and each block abe

by 2.
– ∂2(w) is obtained by replacing in w each block abe−1 by 2, and each block abe

by 1.

We use as alphabet {1, 2} in order to reflect the numerical information contained
in the blocks. Note that both derivative words ignore the actual value of e.

As shown later in Corollary 2, cyclic solvable e-block-words cannot contain
both abe−1abe−1 and abeabe. Hence, we complete the definition of derivative
words in the following way.
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Definition 2. An e-block-word w is derivable if it does not contain abe−1abe−1

or abeabe. Moreover, its derivative is defined as ∂(w) = ∂2(w) if the former
holds, and as ∂(w) = ∂1(w) otherwise.

A word bx0abx1 . . . abxmabxm+1 is semi-derivable if abx1 . . . abxm is derivable
and 1 ≤ x0, xm+1 ≤ min{x1, . . . , xm} + 1.

Hence we have ∂(w) = 1y021y121y2 . . . 21yn , for some n ≥ 1 and y1, . . . , yn ≥ 1.
Moreover, inverse transformations can integrate words like 1y021y121y2 . . . 21yn .
Since we can choose any e ≥ 2, and either abe−1 or abe to appear more often
this can be done in infinitely many ways.

Definition 3. For each e ≥ 2 and v = 1y021y121y2 . . . 21yn , we define:
∫

e,1

v = φ1 �→abe−1,2 �→abe(v) and
∫

e,2

v = φ1 �→abe,2 �→abe−1(v)

where φ1 �→z,2 �→z′ is a morphism replacing 1 by z and 2 by z′.

Hence we always have ∂i(
∫

e,i
v) = v, for all i ∈ {1, 2} and e ≥ 2.

We will now aim at a structural characterization of cyclic solvable words,
that will lead to an (optimal!) algorithm detecting such words. In order to see
how the relationship between (un)balanced words and their derivatives works,
we discuss a simple example.

Consider v = 212111 which contains two mutually unbalanced block-
subwords 21 and 2111 (note that 3−1

1 �< 1+1
1 ). Let us have a look at its integrals

w1 =
∫
2,1

v = (ab2ab)(ab2ababab) and w2 =
∫
2,2

v = (abab2)(abab2ab2ab2), where
the parenthesis separate contributions of the two blocks in v. Both w1 and w2

are unbalanced. In the first case, we can take the block-subwords w11 = ab2abab2

and w12 = ababab satisfying:

|w11|b−1
|w11|a = 2·2+1·1−1

2+1 �< 0·2+3·1+1
0+3 = |w12|b+1

|w12|a .

In the second case, we can take w21 = ab2ab2ab2 and w22 = abab2ab satisfying:

|w21|b−1
|w21|a = 0·1+3·2−1

0+3 �< 2·1+1·2+1
2+1 = |w22|b+1

|w22|a .

There are two things to be considered. The first is that ∂2 works in a covariant
way, so that ‘wherever’ v has ‘too many’ 1’s, w2 has in turn ‘too many’ b’s. On the
other hand, ∂1 works exactly the other way around, i.e., in a contravariant way.
Besides, in both cases the block-subwords that now are mutually unbalanced
do not coincide exactly with the integrals of the mutually unbalanced block-
subwords in v. Indeed, w11 and w22 (observe again the duality!) need to expand
the corresponding block-subword, borrowing the following block, while w12 and
w12 lose their first blocks. In the general case, we have the following:

Theorem 2. An e-block-word w is cyclic solvable iff w is derivable and ∂(w) is
cyclic solvable.
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Proof. First, if w contains both abe−1abe−1 and abeabe, then it is not cyclic solv-
able. Let us suppose that it contains abeabe, which corresponds to the covari-
ant case, as explained in the introduction to the proof. Now, if ∂(w) is not
cyclic solvable, then its alternative presentation v′ = 21y121y2 . . . 21yn+y0 is
not either. To simplify the notation, we consider first the case y0 = 0. Apply-
ing Theorem 1, we should have two block-subwords 21yi21yi+1 . . . 21yi+p−1 and

21yj21yj+1 . . . 21yj+k−1 , with
∑i+p−1

s=i ys−1

p ≥
∑j+k−1

t=j yt+1

k . If we consider the
corresponding block-subwords in

∫
e,2

v:

– w1 = abe−1(abe)yiabe−1(abe)yi+1 . . . abe−1(abe)yi+p−1 and w1 = abe−1w′
1

– w2 = abe−1(abe)yjabe−1(abe)yj+1 . . . abe−1(abe)yj+k−1 and w′
2 = w2abe−1

we have |w′
1|b−1

|w′
1|a =

(p−1)(e−1)+e
i+p−1∑

s=i

ys−1

(p−1)+
i+p−1∑

s=i
ys

≥
(k+1)(e−1)+e

j+k−1∑

t=j

yt+1

(k+1)+
j+k−1∑

t=j

yt

= |w′
2|b+1

|w′
2|a .

And the contravariant case can be treated in a similar way, but reversing the
inequality.

For the converse, let us consider an e-block-word w = abx1 . . . abxm and its
two block-subwords, w′

1 and w′
2, satisfying |w′

1|b−1
|w′

1|a ≥ |w′
2|b+1

|w′
2|a . Reasoning similarly

as in Proposition 1, we obtain that w′
1 = (abe)y1 . . . abe−1(abe)ym , and w′

2 =
abe−1(abe)yp . . . (abe)yp+r−1abe−1 . Also, w1 = abe−1w′

1 and w2 such that w′
2 =

w2abe−1, are block-subwords of w, so that ∂(w) contains the block-subwords
21y1 . . . 21ym and 21yp . . . 21yp+r−1 . Hence we can see that all this corresponds
to the situation that we had in the first part of the proof, so that reversing our
arguments we conclude as required. ��
Theorem 3 (efficient recursive algorithm checking cyclic solvability).
The following prolog-like algorithm checks in linear time the cyclic solvability
of an e-block-word w = abx1abx2 . . . abxm .

– if x1 = · · · = xm

then CyclicSolvable(w)
– if xi = xi+1 �= xj = xj+1, for some i, j

then ¬CyclicSolvable(w)
– if w = (abe)f (abe−1abe)n(abe−1)g, for some f, g ∈ {0, 1} and n ≥ 1

then CyclicSolvable(w)
else CyclicSolvable(w) = CyclicSolvable(∂(w))

Proof. The algorithm checks the cyclic solvability of w by Theorem 2. It termi-
nates in linear time since |w| ≥ 2 · |∂(w)|. ��

4 Relating Solvable Words and Cyclic Solvable Words

Here we present the main result of this paper, showing that all solvable words
can be obtained by prefixing with xk prefixes of cyclic solvable words.
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Theorem 4. {xkw | k ≥ 0 and w is a prefix of a cyclic solvable word } is the
set of all solvable words.

In order to prove the (⊇) inclusion (note that the reverse inclusion holds
by Proposition 6), we give an algebraic characterization of the set of prefixes of
cyclic solvable words. This is very similar to that of the cyclic solvable words in
Theorem 1. We start with recalling an important result.

Theorem 5 (Theorem 2 in [5]). A word w is solvable if, for any decomposition
w = αyβxγyδ, with x �= y, we have |yβ|yx > |xγ|yx.

The above condition is equivalent to |β|y+1
|xγ|x >

|xγ|y
|γ|x+1 , and this is indeed very

close to the conditions (2) and (3) in the definition of block-balanced words. We
have found that these are exactly the prefixes of cyclic solvable words:

Theorem 6. A word w = abx1abx2 . . . abxma is a prefix of a cyclic solvable word
iff w′ = abx1abx2 . . . abxm is block-balanced.

It is worth to note that the only differences between the statements in The-
orem 1 are first Theorem 6 is that in the latter we need to introduce a final a
in the word, in order to signal the completion of the previous block abxm . On
the other hand, we have the circular character of circular words, which ‘forces’
us to consider also block-subwords that can ‘glue’ the end of the word with its
beginning.

As it is the case for cyclic solvable words, the characterization above remains
valid when we only check contiguous block-subwords.

Theorem 7. A word w = abx1abx2 . . . abxma is a prefix of a cyclic solvable word
iff w′ = abx1abx2 . . . abxm is contiguously block-balanced.

To prove the last two theorems we need several auxiliary results.

Proposition 6. For any e ≥ 2, no solvable word w contains the subword abeabe

before the subword abe−1abe−1a.

Proof. Let us consider an occurrence of abeabe before, and as close as possible,
the occurrence of abe−1abe−1a. Then w = α(abeabe)(abe−1abe)k(abe−1abe−1)aδ.
Let y be the first a after α, β = (beabe)(abe−1abe)k−1(abe−1abe−1), x the last b
in the subsequence (abe−1abe)k, γ = abe−1abe−1, and the second y be the last a.
Then we get |aβ|a · |bγ|b = (2e−1) ·(2k+2) ·2 = (k+1) ·(2e−1) ·2 = |aβ|b · |bγ|a,
and thus |aβ|a · |bγ|b �> |aβ|b · |bγ|a. Hence, by Fact 5 w is unsolvable and thus
we obtain an obvious contradiction, finishing the proof. ��
Corollary 2. No solvable circular block-word has abeabe and abe−1abe−1 as
block-subwords.

Proof. In such a case we could always ‘put’ the occurrence of abeabe ‘before’
that of abe−1abe−1, due to the cyclic character of circular words.

Proposition 7. A solvable word cannot have both abeabe and abe−1abe−1a as
subwords, after any previous occurrence of b. ��
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Proof. By Proposition 6, the only possibility is that we will have abe−1abe−1a
before abeabe, possibly sharing the last a of the first, but then, reasoning as in the
proof of Proposition 6, we should have w = αb(abe−1abe−1)(abeabe−1)k(abeabe)δ.
Taking as y the first b after α, β = (abe−1abe−1)(abeabe−1)k, as x the first a
in the last block (abeabe), γ = beabe−1, and as second y the last b, we get
|bβ|b · |aγ|a = (2e − 1) · (2k + 2) · 2 �> (2k + 2) · (4e − 2) = |bβ|a · |aγ|b, obtaining
again the unsolvability of w. ��
Remark 1. It is important to observe that the total duality we had in the case
of cyclic solvable words, as shown by Proposition 5, is partially lost when we
consider solvable (plain) words. In particular, from Proposition 6 we conclude
that ab2ab2abab is not a solvable word, while ababab2ab2 is solvable, because
it can be decomposed as a(babab2ab2), and babab2ab2ab (or babab2ab) is cyclic
solvable. However, when considering prefixes of cyclic solvable words, this duality
remains valid, since it can be obtained as an immediate consequence of the
following more general result.

Proposition 8. Let abx1abx2 . . . abxm be a block balanced e-block-word. Then
ab2e−1−x1ab2e−1−x2 . . . ab2e−1−xm is block balanced.

Proof. We only need to observe that
∑k

i=j xi−1

k−j+1 <
∑m

i=l xi+1

m−l+1 is equivalent to
∑k

i=j(2e−1−xi)+1)

k−j+1 >
∑m

i=l(2e−1−xi)−1

m−l+1 , by simply observing that the following

holds:
∑k

i=j(2e − 1 − xi) = (2e − 1)(k − j + 1) − ∑k
i=j xi. ��

As we observed for cyclic solvable block-words, conjugation also preserves
plain block balancing, and this allows to simplify some proofs, by reducing the
number of cases, as in the proof of Theorem8 below.

Theorem 8. Let w = abx1abx2 . . . abxm be a block balanced derivable word, with
∂(w) = ∂2(w). Then ∂(w) = 1y021y12 . . . 21ym+1 is semi-derivable and consid-
ering dw = 21ys . . . 21yt , where s = 0 if y0 = min{y1, . . . , ym} + 1 and s = 1
otherwise; and t = m + 1 if ym+1 = min{y1, . . . , ym} + 1 and t = m otherwise,
the block-subword φ1→a,2→b(dw) is block balanced.

Proof. 1. Suppose that yi1 < yi2 − 1, where i1, i2 ∈ {1, . . . , m}. Then, the cor-
responding subwords in w, w1 = abe−1(abe)y1abe−1a and w2 = (abe)y2a,
are clearly not block balanced since ey1+2(e−1)+1

y1+2 ≤ ey2−1
y2

is equivalent to
y1 ≤ y2 − 2.

2. Exactly as above, once w contains a full sequence of blocks (abe)f−1, neither
y0 nor ym+1 can be greater than f .

3. First notice that ∂(w′) can indeed contain a nonempty prefix 1y0 , but at
the moment we will ignore this, assuming that y0 = 0. In the same way,
we will remove the (possibly) incomplete final block 21ym+1 , only keeping it
when ym+1 = e. Note that the obtained word 21y1 . . . 21yt remains block bal-
anced. Let us suppose that this is not the case. Then we have two subwords,

21yj . . . 21yj+m−1 and 21yk . . . 21yk+r−12, with
∑j+m−1

i=j yi−1

m ≥
∑k+r−1

i=k yi+1

r .
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To simplify, we write T1 =
∑j+m−1

i=j yi and T2 =
∑k+r−1

i=k yi, so that we
have rT1 − r ≥ mT2 + m.
Let us consider the two subwords of w′ that generate the two subwords
of the derivative given above, w1 = abe−1(abe)yj . . . abe−1(abe)yj+m−1 and
w2 = abe−1(abe)yk . . . abe−1(abe)yk+r−1 . We take w′

1, where w1 = abe−1w′
1,

and w′
2 = w2abe−1. Hence |w′

1|b−1
|w′

1|a ≥ |w′
2|b+1

|w′
2|a .

Since we have |w′
1|b = eT1 + (m − 1)(e − 1), |w′

1|a = T1 + (m − 1),
|w′

2|b = eT2 + (r + 1)(e − 1), and |w′
2|a = T2 + r + 1, we obtained exactly the

same situation as in the proof of Theorem 2.
And this gives (|w′

1|b − 1)|w′
2|a ≥ (|w′

2|b + 1)|w′
1|a ⇐⇒ rT1 − r ≥ mT2 + m.

Finally, when the initial prefix is 1e, the result remains valid for the whole
word 21y0 . . . 21yt . Note that, although we have introduced an additional 2 at
the beginning of the derivative in the case y0 = 0, we have also ‘removed’ the
prefix abe−1 of w1, and proceded with its continuation w′

1. Now, we simply
avoid that complication, working with the full word w1, and the rest of the
proof works in the same way as before. ��
Now we can present the proofs of Theorems 6 and 7:

Proof (Theorem 6). By the induction on the number of blocks of w. The base
case (i.e., 0) is vacuous. For the inductive case, we first apply Proposition 8 if
needed, so that we can assume ∂(w) = ∂2(w). Hence, we can apply Theorem 8
to conclude that φ1→a,2→b(dw) is also block-balanced, so that we can apply
the induction hypothesis, getting that it is a prefix of a cyclic solvable word,
cw. Now, we can consider c =

∫
e,2

cw, that contains w as a subword, since
the removed prefix and suffix (if that was the case) would clearly fit into the
blocks before and after dw in cw. Finally, to complete the proof, we just need to
undo the conjugation, if that was applied at the beginning. By Proposition 8 and
Proposition 5 conjugation preserves cyclic solvability. Hence it can be applied to
prefixes of the form w = abx1abx2 . . . abxma. ��
Proof (Theorem 7). The result follows immediately from Theorem 6, using the
arguments from the proof of Proposition 3. ��

We show that the conditions characterizing solvable words in [5], recalled
here as Theorem 5, are nearly equivalent with our block balancing property, as
the following lemmata states:

Lemma 1

1. Let w be a word and its decomposition w = αyβxγyδ disproves the solvability
of w with the use of Theorem5. Then β = xβ′y, and δ = ε or δ = xδ′.

2. Let w = akw′ and w′ = bx0abx1 . . . abxmabxm+1 , where x1, . . . , xm ∈ {e, e− 1}
and x0 > 0, for e = min{x1, . . . , xm} + 1 > 1. Then:
(a) If y = a, then yβ = abxi . . . abxi+n1−1−1 and xγ = babxi+n1 . . . bxi+n1+n2−1 .
(b) If y = b, then yβ = babxi . . . abxi+n1−1 and xγy = abxi+n1 . . . bxi+n1+n2−1 .
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Proof. (1) If β = yβ′, then β′ makes |β′|y < |β|y, and thus can be used instead
of β. And, similarly, if β = β′x, then we can take γ′ = xγ instead of γ; while
if δ = yδ′, we can take γ′ = γy instead of γ.

(2) This is an application of part (1) to this particular class of words. ��
Lemma 2. Let w = akw′ and w′ = bx0abx1 . . . abxmabxm+1 , where x1, . . . , xm ∈
{e, e − 1} and x0 > 0, for e = min{x1, . . . , xm} + 1 > 1, and the decomposition
w = αyβxγyδ disproves its solvability with the use of Theorem5. Then:

1. If yβ = abxi . . . abxi+n1−1−1 and xγ = babxi+n1 . . . bxi+n1+n2−1 , then yβb 
 γ,
and so abxi . . . abxm+1 is not a prefix of a cyclic solvable word.
Conversely, if u 
 v are sequences of blocks with |u|b−1

|u|a ≥ |v|b+1
|v|a , then αuvδ

is unsolvable, for all α and δ.
2. If yβ = babxi . . . abxi+n1−1−1 and xγy = abxi+n1 . . . bxi+n1+n2−1 , then β 
 aγb,

and so abxi . . . abxm+1 is not a prefix of a cyclic solvable word.
Conversely,if u 
 v are sequences of blocks with |u|b+1

|u|a ≤ |v|b−1
|v|a , then αbuvδ

is unsolvable, for all α and δ.

Proof. (1) |aβ|a
|aβ|b = |u|a

|u|b−1 ≤ |v|a
|v|b+1 = |bγ|a

|bγ|b .

(2) |bβ|b
|bβ|a = |u|b−1

|u|a ≤ |v|b+1
|v|a = |aγ|b

|aγ|a .
Note that these two cases are not totally symmetric, because in the second case
introducing at least one b before u is needed to obtain an unsolvable word. ��

And finally we can present the proof of our main theorem.

Proof (Theorem 4). Let w = akw′ and w′ = bx0abx1 . . . abxmabxm+1 , where
x1, . . . , xm ∈ {e, e − 1} and x0 > 0, for e = min{x1, . . . , xm} + 1 > 1. We
consider two possible cases:

Case 1: k = 0. Then w = bx0 . . . abxmabxm+1 . Suppose that the word
w′ = abx1 . . . abxmabxm+1 cannot be extended to a cyclic solvable word. Then, by
Theorem 7, there exists a pair of contiguous block-subwords u 
 v of w′. This
gives us w = αbuvδ, for some words α and β, and we can apply one of the cases
of Lemma 2, whether we have |u|b−1

|u|a ≥ |v|b+1
|v|a or |u|b+1

|u|a ≤ |v|b−1
|v|a , getting in both

cases that w would be unsolvable, against the hypothesis.
Case 2: k > 0. Then we have w = akbx0abx1 . . . abxmabxm+1 , and applying

Lemma 2(2) again, if abx1 . . . abxmabxm+1 would not be a prefix of a cyclic solvable
word, then babx1 . . . abxmabxm+1 would not be solvable, which cannot be the case.
Therefore, abx1 . . . abxmabxm+1 must be a prefix of a cyclic solvable word, and
then be−1abx1 . . . abxmabxm+1 is also a prefix of a cyclic solvable word.

Then, the only remaining case to check corresponds to x0 = e, but then
w′ = bx0 . . . abxmabxm+1 can be extended to a cyclic solvable word iff aw =
w′ = abx0 . . . abxmabxm+1 can be extended. But if this would not be the case,
since w is assumed to be solvable, there should exist a decomposition disproving
its solvability with i = 0. This corresponds to the case y = a. But then, by
Lemma 2(2), we conclude again that w is unsolvable. ��
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4.1 An Efficient Algorithm to Detect Solvable Words

Having established that the extensions of prefixes of cyclic solvable words with
an additional prefix of the form xk are the only solvable words, we can now
verify solvability. For this purpose we use the constructive proof of Theorem8,
combined with Theorem 2, that states that derivation both preserves and reflects
cyclic solvability.

Theorem 9 (efficient recursive algorithm to check solvability). The fol-
lowing prolog-like algorithm with clauses applied in indicated order checks in
linear time the solvability of w.

– if w = xkyw′ and k > 0
then Solvable(w) = PrefixCyclicSolvable(yw′)

– if w = αxxβyyγ and x �= y
then ¬PrefixCyclicSolvable(w)

– if w = xk1yjxk2 , for k1, k2 ∈ N and j ∈ {0, 1}
then PrefixCyclicSolvable(w)

Now w = bx0abx1abx2 . . . abxmabxm+1 , where m ≥ 1 and x1, . . . , xm ≥ 1 and
x0, xm+1 ∈ N.

– if xi > xj + 1, for some j ∈ {1, . . . ,m} and i ∈ {0, . . . , m + 1}
then ¬PrefixCyclicSolvable(w)

– if x1 = · · · = xm

then PrefixCyclicSolvable(w)
– if x0 < xj, for some j ∈ {1, . . . , m}

then PrefixCyclicSolvable(w) = PrefixCyclicSolvable(abx1 . . . abxm+1)
else PrefixCyclicSolvable(w) = PrefixCyclicSolvable(abx0 . . . abxm+1)

– if xm+1 < xj, for some j ∈ {1, . . . , m}
then PrefixCyclicSolvable(w) = PrefixCyclicSolvable(abx1 . . . abxma)
else PrefixCyclicSolvable(w) = PrefixCyclicSolvable(abx1 . . . abxm+1a)

– if w = (abe)f (abe−1abe)k(abe−1)g, for some f, g ∈ {0, 1} and k ∈ N

then PrefixCyclicSolvable(w)
else PrefixCyclicSolvable(w) = PrefixCyclicSolvable(∂(w))

Proof. Follows immediately from Theorems 2 and 8. Applying the latter we know
that whenever the algorithm declares w not extendable to a cyclic solvable word,
because its derivative was proved not to be such, the decision is sound. And if the
algorithm, after some derivatives, finally reaches some trivial prefix of a cyclic
solvable word, then the application of the former theorem proves that after the
corresponding number of integrations, we would obtain a cyclic solvable word
that extends the considered word w.

The algorithm terminates in linear time, since |w| ≥ 2 · |∂w|. ��
Let us consider w = b8(ab)2ab2(ab)4ab2(ab)3ab2(ab)4ab2(ab)4ab2ab. After

removing the prefix b8, we obtain w′ with ∂(w′) = 1221421321421421, which once
the short prefix and suffix are removed, can be translated to w′′ = ab4ab3ab4ab4a.
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Now we have ∂(w′′) = 1212, which produces the simple word ab2, which clearly
is a prefix of a cyclic solvable word. Thus w is solvable.

One can show in an ‘effective’ way that the analysis was correct by con-
structing the primitives of the involved words, that will be cyclic solvable words
extending them (see Fig. 2). In particular, we see first that 212 proves that ∂(w′′)
is a prefix of (1)(212)(21), while the first integration produces the cyclic solv-
able word cw′′ = ab4ab3ab4, by means of which we see that w′′ is a prefix
of cw′′ ·cw′′. And finally, a new integration produces the cyclic solvable word
cw′ = (ab)2ab2(ab)4ab2(ab)3ab2(ab)2, by means of which we see that taking
w = b8w′, w′ is a prefix of cw′ ·cw′.

bbbbbbbbabababbabababababbababababbabababababbabababababbab

b8 (ab)2abb (ab)4 abb (ab)3 abb (ab)4 abb (ab)4 abbab

12 2 14 2 13 2 14 2 14 2 1
a b4 a b3 a b4 a b4 a

1 2 1 1
a b b

b b a b b a

ab2b2 a b4 a b3 a b4 a b4 a b b2

(ab)2abb (ab)4 abb (ab)3 abb (ab)4 abb (ab)4 abbab

bbbbbbbbabababbabababababbababababbabababababbabababababbababababbabab

Fig. 2. Procedure of checking solvability and deriving a circular word for suffix.

5 Characterization of Reversible Binary Words

We start by recalling the definitions of strict reverses and reversible words. A
(strict) reverse of a transition t ∈ T in a net N = (P, T, F,M0) is a new transition
t such that F (p, t) = F (t, p) and F (t, p) = F (p, t). Following [3], we now relate
the reversibility of all transitions with the solvability of the reversed sequence.

A binary word w = t1 . . . tn is reversible if the following flts is solvable:

TSw = ({0, . . . , n}, {a, b}, {(i − 1, ti, i), (i, ti, i − 1) | 0 < i ≤ n}, 0).

Fact 5. A solvable binary word w is reversible iff wrev is solvable.

We continue by showing that any cyclic solvable word is reversible, and so
any prefix of a cyclic solvable word is also reversible.

Proposition 9. A binary word w is cyclic solvable iff wrev is cyclic solvable.

Proof. By Fact 3, any cyclic solvable word w can be generated by a net NAB ,
with A = |w|a, B = |w|b. One can show that by reversing the arrows in NAB ,
and starting from the same initial marking, we generate exactly wrev , recovering
again the initial marking, and thus proving that wrev is cyclic solvable. ��
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Corollary 3. Each cyclic solvable binary word is reversible.

Proof. Follows immediately from Fact 5 and Proposition 9. ��
We can further illustrate the last result by showing that in every NAB =

({pa, pb}, {a, b}, F,M0) ∈ NAB one can introduce strict reverses without enlarg-
ing the set of reachable markings. We define NAB = ({pa, pb}, {a, a, b, b}, F ,M0),
where the non-zero values of F are F (pa, a) = F (a, pb) = F (pb, a) = F (a, pa) =
A, and F (pb, b) = F (b, pa) = F (pa, b) = F (b, pb) = B. Similarly as in NAB , every
reachable marking M of NAB satisfies the same property as the initial marking,
namely M(pa) + M(pb) = A + B − 1, and the net is reversible (i.e., from every
marking one can reach the initial marking). As a consequence, in each reachable
marking one can fire either a or b. Similarly, in each reachable marking, one can
fire either a or b. Suppose we can fire a at M . Then we cannot fire b, hence we
go from M0 to M , firing a as the last transition. The case of the initial marking
is treated similarly, thanks to the reversibility of NAB .

The result above leads to a characterization of reversible words.

Proposition 10. A binary word w = akbαabm is reversible iff both ws = bαabm

and wp = akbαa are prefixes of cyclic solvable words.

Proof. In order to be reversible, w must be solvable, and so ws must be a prefix
of a cyclic solvable word. Moreover, wrev must also be solvable, so that wrev

p

must be a prefix of a cyclic solvable word. Then, by applying Proposition 9, wp

must be also a prefix of a cyclic solvable word. ��
Corollary 4. One can decide in linear time whether a binary flts can be
reversed.

Proof. Given a word w = akbαabm, we can apply the algorithm in Theorem9 to
both akbαa and bαabm.

Note: The result could also be obtained directly, by applying the character-
ization from Proposition 10, and so applying the algorithm from Theorem9 to
both akbαa and bmaαrevb. ��

It seems that the above characterization gives us some space to find reversible
words that are not prefixes of cycle solvable words, but this can only happen in
very few simple cases.

Theorem 10. Apart from prefixes of cyclic solvable binary words, the only
reversible words are those of the form ak(ba)ibm or bk(ab)iam, where i ∈ {0, 1}
or k = 2 = m.

Proof. First, it is clear that all the ‘exceptions’ in the statement are indeed
solvable and reversible. Moreover one can see that they must appear indeed as
exceptional cases, since they do not correspond to prefixes of cyclic solvable
words, out of a few trivial instances.

Now we concentrate on the words w = xnyuztm with x �= y, z �= t ∈ {a, b},
such that w′ = yuz contains either aa or bb. We assume the latter. Using the
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results about the decomposition of solvable words, we know that all the blocks
abi, and reversed blocks bia in w′, must be either abe−1 or abe (resp. be−1a or
bea), for some e ≥ 2. Moreover, if x = a then n = 1, and when t = a then
m = 1. While when x = b, the cases in which m < e will immediately generate a
prefix of a cyclic solvable word, since wp = xnw′ is such a word; and, similarly,
when t = b. Hence, we can concentrate in the following on the case m = e. Next
we distinguish the remaining cases, showing that they never produce reversible
words which are not prefixes of cyclic solvable words:

– If x = b, then awp is a prefix of a cyclic solvable word, and then aw remains
solvable. Now, using our characterization of solvable words, w must be a
prefix of a cyclic solvable word. The case t = b can be dealt with in a similar
(symmetric) way.

– If x = a and t = a, we consider the contiguous blocks of b’s, bix and biy .
• If ix = e (resp. iy = e), then the cyclic word containing ws = w′ym (resp.

wp) clearly contains one a before (resp. after) its occurrence, and so w
itself is contained in that cyclic word.

• If ix = e−1 and iy = e−1 and w is not a prefix of a cyclic solvable word,
then w contains two mutually unbalanced contiguous block-subwords that
totally cover wp, since otherwise they would also prove that either ws or
wp would not be the prefix of some cyclic solvable word, contradicting our
assumption. But since the two blocks at the end of these block-subwords
will be the same (abe−1), we could remove them getting two new unbal-
anced subwords that now do not cover wp, something that we have already
shown to be impossible.

As a result, if w is not a prefix of a cyclic solvable word, then w′ = yuz
contains neither aa nor bb. Hence it is of the form (ab)i or (ba)i. ��

6 Conclusions

In this paper, we discussed three classes of binary words from the viewpoint of the
solvability of the transition systems related to them. For each class, we described
a linear algorithm which verifying its membership. Based on our results, one can
show every cyclic solvable word is reversible, and every reversible word is solvable
(moreover, the two implications cannot be reversed).

A natural direction for further research is to consider larger alphabets, and
more sophisticated flts’s, for example, those having the shape of directed rooted
trees.
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