
Victor Khomenko
Olivier H. Roux (Eds.)

 123

LN
CS

 1
08

77

39th International Conference, PETRI NETS 2018
Bratislava, Slovakia, June 24–29, 2018
Proceedings

Application and Theory
of Petri Nets
and Concurrency

Lecture Notes in Computer Science 10877

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Victor Khomenko • Olivier H. Roux (Eds.)

Application and Theory
of Petri Nets
and Concurrency
39th International Conference, PETRI NETS 2018
Bratislava, Slovakia, June 24–29, 2018
Proceedings

123

Editors
Victor Khomenko
University of Newcastle
Newcastle upon Tyne
UK

Olivier H. Roux
École Centrale de Nantes
Nantes Cedex 3
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-91267-7 ISBN 978-3-319-91268-4 (eBook)
https://doi.org/10.1007/978-3-319-91268-4

Library of Congress Control Number: 2018942335

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume constitutes the proceedings of the 39th International Conference on
Application and Theory of Petri Nets and Concurrency (Petri Nets 2018). This series of
conferences serves as an annual meeting place to discuss progress in the field of Petri
nets and related models of concurrency. These conferences provide a forum for
researchers to present and discuss both applications and theoretical developments in
this area. Novel tools and substantial enhancements to existing tools can also be
presented.

Petri Nets 2018 was colocated with the Application of Concurrency to System
Design Conference (ACSD 2018). Both were organized by the Interes Institute and
Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology. The conference took place at the Austria Trend Hotel Bratislava, during
June 24–29, 2018. We would like to express our deepest thanks to the Organizing
Committee chaired by Gabriel Juhás for the time and effort invested in the local
organization of this event. This year, 33 papers were submitted to Petri Nets 2018 by
authors from 19 different countries. Each paper was reviewed by three reviewers. The
discussion phase and final selection process by the Program Committee (PC) were
supported by the EasyChair conference system. From 23 regular papers and ten tool
papers, the PC selected 23 papers for presentation: 15 regular papers and eight tool
papers. The number of submissions was a bit lower than expected. However, we were
pleased that several highly innovative and very strong papers were submitted. After the
conference, some of these authors were invited to submit an extended version of their
contribution for consideration in a special issue of a journal.

We thank the PC members and other reviewers for their careful and timely evalu-
ation of the submissions and the fruitful constructive discussions that resulted in the
final selection of papers. The Springer LNCS team (notably Anna Kramer and Alfred
Hofmann) provided excellent and welcome support in the preparation of this volume.
We are also grateful to the invited speakers for their contributions:

– Orna Grumberg, Israel Institute of Technology, Haifa, Israel, who delivered the
Distinguished Carl Adam Petri Lecture “Semantic Difference for Program
Versions”

– Fabrice Kordon, Université P & M. Curie, Paris, France, “Self-Adaptive Model
Checking, the Next Step?”

– Matthias Függer, Max-Planck-Institut für Informatik, Germany, “Challenges of
Circuit Design: Circuits as Robust Distributed Algorithms”

Alongside ACSD 2018, the following workshops were colocated: the Workshop on
Petri Nets and Software Engineering (PNSE 2018) and the Workshop on Algorithms
and Theories for the Analysis of Event Data (ATAED 2018). Other colocated events
included: the Model Checking Contest, the Petri Net Course, an Advanced Tutorial

on Verification, and an Advanced Tutorial on Process Mining (A Tour In Process
Mining: From Practice to Algorithmic Challenges).

We hope you enjoy reading the contributions in this LNCS volume.

June 2018 Victor Khomenko
Olivier H. Roux

VI Preface

Organization

Steering Committee

W. van der Aalst RWTH Aachen University, Germany
J. Kleijn Leiden University, The Netherlands
L. Pomello Università degli Studi di Milano-Bicocca, Italy
G. Ciardo Iowa State University, USA
F. Kordon Université P & M. Curie, France
W. Reisig Humboldt-Universität zu Berlin, Germany
J. Desel University of Hagen, Germany
M. Koutny (Chair) Newcastle University, UK
G. Rozenberg Leiden University, The Netherlands
S. Donatelli Universita’ di Torino, Italy
L. M. Kristensen Western Norway University of Applied Sciences, Norway
M. Silva Universidad de Zaragoza, Spain
S. Haddad ENS Cachan, France
C. Lin Tsinghua University, China
A. Valmari University of Jyväskylä, Finland
K. Hiraishi Japan Advanced Institute of Science and Technology, Japan
W. Penczek Institute of Computer Science PAS, Poland
A. Yakovlev Newcastle University, UK

Program Committee

Didier Buchs CUI, University of Geneva, Switzerland
Lawrence Cabac University of Hamburg, Germany
Maximilien Colange Laboratoire de Recherche et Développement de l’EPITA,

France
José-Manuel Colom University of Zaragoza, Spain
Isabel Demongodin LSIS - UMR CNRS 7296, France
Dirk Fahland Eindhoven University of Technology, The Netherlands
Gilles Geeraerts Université libre de Bruxelles, Belgium
Henri Hansen Tampere University of Technology, Finland
Petr Jancar Palacky University Olomouc, Czech Republic
Ryszard Janicki McMaster University, Canada
Gabriel Juhas Slovak University of Technology Bratislava, Slovakia
Victor Khomenko

(Chair)
Newcastle University, UK

Jetty Kleijn LIACS, Leiden University, The Netherlands
Fabrice Kordon LIP6/Sorbonne Université and CNRS, France
Lukasz Mikulski Nicolaus Copernicus University, Torun, Poland
Andrew Miner Iowa State University, USA

Giovanni Michele
Pinna

Università di Cagliari, Italy

Pascal Poizat Université Paris Nanterre and LIP6, France
Olivier H. Roux

(Chair)
LS2N/Ecole Centrale de Nantes, France

Pawel Sobocinski University of Southampton, UK
Wil van der Aalst RWTH Aachen University, Germany
Irina Virbitskaite A.P. Ershov Institute of Informatics Systems,

Siberian Branch of the Russian Academy of Sciences,
Russia

Matthias Weidlich Humboldt-Universität zu Berlin, Germany
Karsten Wolf Universität Rostock, Germany

Additional Reviewers

Barylska, Kamila
Brenner, Leonardo
Cerna, Ivana
Erofeev, Evgeny
Frutos Escrig, David
Gogolinska, Anna
Haustermann, Michael
Hillah, Lom Messan
Hoogeboom, Hendrik Jan
Jezequel, Loig
Klikovits, Stefan
Korovina, Margarita
Leroux, Jérôme

Linard, Alban
Mhaskar, Neerja
Moldt, Daniel
Mosteller, David
Piatkowski, Marcin
Racordon, Dimitri
Rietveld, Kristian
Sawa, Zdenek
Tarasyuk, Igor
Thierry-Mieg, Yann
Zuberek, Wlodek

VIII Organization

Contents

Invited Talk

Self-adaptive Model Checking, the Next Step? . 3
Fabrice Kordon and Yann Thierry-Mieg

Petri Net Synthesis

Analysis and Synthesis of Weighted Marked Graph Petri Nets 19
Raymond Devillers and Thomas Hujsa

Elementary Net Synthesis Remains NP-Complete Even for Extremely
Simple Inputs . 40

Ronny Tredup, Christian Rosenke, and Karsten Wolf

Petri Net Synthesis with Union/Find . 60
Karsten Wolf

Factorisation of Petri Net Solvable Transition Systems. 82
Raymond Devillers and Uli Schlachter

A Geometric Characterisation of Event/State Separation 99
Uli Schlachter and Harro Wimmel

From Event-Oriented Models to Transition Systems 117
Eike Best, Nataliya Gribovskaya, and Irina Virbitskaite

Analysis and Model Checking

Simplification of CTL Formulae for Efficient Model
Checking of Petri Nets. 143

Frederik Bønneland, Jakob Dyhr, Peter G. Jensen, Mads Johannsen,
and Jiří Srba

Basis Coverability Graph for Partially Observable Petri Nets
with Application to Diagnosability Analysis . 164

Engel Lefaucheux, Alessandro Giua, and Carla Seatzu

Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition
Systems with States. 184

Petr Jančar, Jérôme Leroux, and Grégoire Sutre

Languages

An Efficient Characterization of Petri Net Solvable Binary Words. 207
David de Frutos Escrig, Maciej Koutny, and Łukasz Mikulski

Pattern Matching in Link Streams: A Token-Based Approach 227
Clément Bertrand, Hanna Klaudel, Matthieu Latapy,
and Frédéric Peschanski

Semantics and Expressiveness

Modeling Operational Semantics with Interval Orders Represented
by Sequences of Antichains . 251

Ryszard Janicki

One Net Fits All: A Unifying Semantics of Dynamic Fault
Trees Using GSPNs. 272

Sebastian Junges, Joost-Pieter Katoen, Mariëlle Stoelinga,
and Matthias Volk

On the Structure of Cycloids Introduced by Carl Adam Petri 294
Rüdiger Valk

Markings in Perpetual Free-Choice Nets Are Fully Characterized
by Their Enabled Transitions . 315

Wil M. P. van der Aalst

Tools

ePNK Applications and Annotations: A Simulator for YAWL Nets 339
Ekkart Kindler

Petri Net Model Checking with LoLA 2 . 351
Karsten Wolf

Integrating Simulink Models into the Model Checker Cosmos 363
Benoît Barbot, Béatrice Bérard, Yann Duplouy, and Serge Haddad

LocalProcessModelDiscovery: Bringing Petri Nets to the Pattern
Mining World. 374

Niek Tax, Natalia Sidorova, Wil M. P. van der Aalst,
and Reinder Haakma

A Model Checker Collection for the Model Checking Contest Using
Docker and Machine Learning . 385

Didier Buchs, Stefan Klikovits, Alban Linard, Romain Mencattini,
and Dimitri Racordon

X Contents

Arduino Library Developed for Petri Net Inserted into RFID
Database and Variants . 396

Carlos Eduardo Alves da Silva,
José Jean-Paul Zanlucchi de Souza Tavares,
and Marco Vinícius Muniz Ferreira

OMPetri - A Software Application for Modeling and Simulation Using
Extended Hybrid Petri Nets by Employing OpenModelica 406

Christoph Brinkrolf and Philo Reipke

GreatTeach: A Tool for Teaching (Stochastic) Petri Nets 416
Elvio Gilberto Amparore and Susanna Donatelli

Author Index . 427

Contents XI

Invited Talk

Self-adaptive Model Checking,
the Next Step?

Fabrice Kordon(B) and Yann Thierry-Mieg

Sorbonne Université, CNRS LIP6, 75005 Paris, France
{Fabrice.Kordon,Yann.Thierry-Mieg}@lip6.fr

Abstract. Model checking is becoming a popular verification method
that still suffers from combinatorial explosion when used on large indus-
trial systems. Currently, experts can, in some cases, overcome this com-
plexity by selecting appropriate modeling and verification techniques, as
well as an adapted representation of the system. Unfortunately, this can-
not yet be done automatically, thus hindering the use of model checking
in industry.

The objective of this paper is to sketch a way to tackle this prob-
lem by introducing self-adaptive model checking. This is a long term goal
that could lead the community to elaborate a new generation of model
checkers able to successfully push forwards the scale of the systems they
can deal with.

Keywords: Verification · Model checking
Formal methods and methodology · Benchmark for verification

1 Introduction

Model checking is becoming a popular verification method, even in large com-
panies such as Intel, Motorola and IBM [18]. There are already many success
stories involving this technique. PolyORB, an open source middleware now used
in aerospace applications, was formally verified to prove that no deadlocks nor
livelocks could occur on one execution node [24]. Similarly, some aspects of the
bluetooth interaction protocols have been studied formally [12]. Finally, NASA
development of critical code also involved model checking to ensure its safety [23].

The main advantage of model checking is to be quite easy to automate, and
so, it can be operated by non experts. Unfortunately, it suffers from the so-
called combinatorial state explosion, that is difficult to tackle, especially for non
experts. This can be called the “model checking dilemma”: on the one hand,
this approach is easy to use but as soon as you deal with complex problems, an
expert aware of the various appropriate techniques and algorithms is required
to complete the verification task.

Today, numerous techniques have been defined by the various communities
working on the topic. They may rely on several types of automata like Büchi [6],
Rabin [30], Streett [34], testing automata [17] and variants [2], etc. They may
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-91268-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_1&domain=pdf

4 F. Kordon and Y. Thierry-Mieg

also involve several techniques to describe the system such as symmetry reduc-
tions [8], various types of decision diagrams [7,20,33], partial order reduc-
tions [10], on-the-fly automata reductions [15], etc. Moreover, sometimes, several
techniques are combined like Binary decision diagrams and symmetry reductions
in [36], on-the-fly reductions and hierarchical decision diagrams in [13], and hier-
archical decision diagrams and symmetry reductions in [11]. Finally, the analysis
of properties is also a part of the optimization problem since there may exist some
particular cases where some adapted algorithm performs better [31], automata
derived from formulas can also be optimized [1] and observed elements in the
system taken into consideration to reduce complexity [26].

However, when analyzing the behavior of model checkers on large bench-
marks, such as the one of the Model Checking Contest1 [28], we can notice that
several combinations of techniques can be successfully operated to solve some
classes of problems (e.g. LTL, CTL, reachability, bound computation, etc.). Iden-
tifying such combinations of techniques is thus of great help.

But so far, only experts can estimate which combination of techniques will
be the more likely to solve a complex verification problem. The idea of “self-
adaptive” model checking is to define the bases of an infrastructure embedding
the capability to select and use the best data-representations and algorithms so
that it can transparently tackle the complexity when performing verification.

This paper is structured as follows. Section 2 presents a simple analysis of the
techniques used by model checking tools participating to the Model Checking Con-
test in 2015, 2016 and 2017. In particular, we are trying to extract some information
about the involved techniques and focus on determining wether symbolic (based
on decision diagram) or explicit approaches are the most efficient. Then, Sect. 3
defines what we mean with “self-adaptive model checking” before Sect. 4 discusses
the impact of this approach on tools architecture. Section 5 discusses some issues
to be solved to enable meta-heuristics to select an appropriate combination of algo-
rithms to solve a verification problem. Section 6 concludes the paper.

2 Information Gathered from the Model Checking
Contest

For more than a decade, we observed the emergence of software contests that
assess the capabilities of verification tools on complex benchmarks. It is a way to
identify the theoretical approaches that are the most fruitful in practice, when
applied to realistic examples. Such events motivate the involved community to
improve research tools and measure the benefits gained by new improvements.

They are also interesting because they bring representative and shared bench-
marks to the involved communities. Moreover, since many tools compete, it is
possible to gather and analyze information from the detailed outputs produced
by such events. As a typical example, the Model Checking Contest benchmark
is growing every year thanks to models proposed by the community. In 2017,
it was composed of 78 models from which, thanks to some scaling parameters,

1 See http://mcc.lip6.fr.

http://mcc.lip6.fr

Self-adaptive Model Checking, the Next Step? 5

812 instances are derived. Numerous formulas (reachability, CTL, LTL) are also
available (a new set is produced every year).

Models proposed by the Model Checking Contest mainly represent concur-
rent systems and are expressed in PNML [21] (Petri Net markup Language, an
ISO/IEC standard to describe Petri net specifications). Some are derived from
higher specification languages or translated from code. Some others are natively
expressed using Petri nets. Many models come from a wide range of application
domains and describe hardware systems, protocols, distributed algorithms, bio-
logical systems, etc. Some models are extracted from research papers and denote
interesting “theoretical” configurations to be analyzed.

In the Model Checking Contest, tools are confronted to several examinations:
StateSpace, UpperBounds, Reachability, CTL and LTL. StateSpace requires the
tool to compute the full state space of a specification and then provide informa-
tions about it. Mandatory information concerns the number of states but tools
may also provide additional informations like the number of transitions, the
maximum number of tokens per marking in the net and the maximum number
of tokens that can be found in a place.

UpperBounds requires the tool to compute as a integer value, the exact upper
bound of a list of places designated in a formula (there are 16 formulas per model
instance).

Reachability, CTL, and LTL require the tool to evaluate if formulas are sat-
isfied or not. For each formulas, we consider atomic propositions referring to
either the marking of places or the fireability of transitions (16 formulas of each
type are provided per model instance). In the reachability examination, there
are extra formulas to check if there exist a deadlock.

So, the Model Checking Contest could be seen as a way to observe and evalu-
ate the most successful techniques for a given type of model checking activity. To
do so, we have analyzed the techniques participating tools reported to use over
the three last years of the Model Checking Contest (2015, 2016, and 2017) where
data was collected using comparable data formats. All the reported techniques
are listed in Table 1.

Table 1. List of techniques reported by tools.

Technique Explanation

BMC The tool uses Bounded Model Checking and/or K-induction techniques

CEGAR The tool uses a CEGAR [9] approach

Compress. The tool uses some compression technique (other than decision diagrams)

Dec. Diag The tool uses a kind of decision diagram

Expl. The tool does explicit model checking

Net Unf. The tool uses McMillan unfolding [29]

NUPN The tool exploits the structural information provided in the NUPN [16] format

Part. Order The tool uses some partial order technique

SAT/SMT The tool relies on a SAT or SMT solver

Struct. Red. The tool uses structural reductions (Berthelot, Haddad, etc.)

Symm. The tool exploits symmetries of the system

Topol. The tool uses structural informations on the Petri net itself (invariants, etc.)

Unfold. P/T The tool transforms colored nets into their equivalent P/T

6 F. Kordon and Y. Thierry-Mieg

0 %

25 %

50 %

75 %

100 %

D
ec

. D
ia

g

To
po

l.

N
U

PN

U
nf

ol
d.

 P
/T

Ex
pl

.

C
om

pr
es

s.
St

ru
ct

. R
ed

.

(a) StateSpace

0 %

25 %

50 %

75 %

100 %

D
ec

. D
ia

g
Ex

pl
.

To
po

l.
C

om
pr

es
s.

N
U

PN
U

nf
ol

d.
 P

/T
Pa

rt
. O

rd
er

St
ru

ct
. R

ed
.

SA
T/

SM
T

(b) UpperBound

0 %

25 %

50 %

75 %

100 %

Ex
pl

.

D
ec

. D
ia

g

To
po

l.

St
ru

ct
. R

ed
.

C
om

pr
es

s.
Pa

rt
. O

rd
er

N
U

PN

U
nf

ol
d.

 P
/T

SA
T/

SM
T

Sy
m

m
.

N
et

 U
nf

.

C
EG

A
R

B
M

C

(c) Reachability formulas

0 %

25 %

50 %

75 %

100 %

D
ec

. D
ia

g
Ex

pl
.

To
po

l.
C

om
pr

es
s.

Pa
rt

. O
rd

er
N

U
PN

U
nf

ol
d.

 P
/T

SA
T/

SM
T

St
ru

ct
. R

ed
.

(d) CTL formulas

0 %

25 %

50 %

75 %

100 %

Ex
pl

.

N
U

PN

To
po

l.

Pa
rt

. O
rd

er
C

om
pr

es
s.

SA
T/

SM
T

D
ec

. D
ia

g

(e) LTL formulas

Fig. 1. Cumulated declarations of techniques per successful examination as reported
by tools during the Model Checking Contest over the 2015, 2016, and 2017 editions.

Figure 1 reports, for the valid answers, the percentage of techniques used by
tools to compute examinations (they sometimes use several techniques simultane-
ously). Unfortunately, these techniques are so far reported per examination, even
if, often, an examination contains 16 formulas to be evaluated. However, it is inter-
esting to observe the top winning techniques for each examination categories.

It is easy to see that, based on these raw data, symbolic model checking
(based on decision diagrams) is used more often than explicit techniques for the
StateSpace, the UpperBound, and the CTL examinations. Explicit approaches
appear more often in reachability and LTL examinations. Tools also report a
large number of additional techniques like compression, partial order, or the use

Self-adaptive Model Checking, the Next Step? 7

Table 2. Number of tools relying on symbolic versus explicit approaches for partici-
pating tools (in the 2015, 2016 , and 2017 editions). Several participations of a given
tool are cumulated.

Technique StateSpace UpperBound Reachability CTL LTL

Symbolic tools 22 (71%) 8 (57%) 11 (44%) 10 (63%) 3 (27%)

Explicit tools 9 (29%) 6 (43%) 14 (56%) 6 (27%) 80 (73%)

Total tools 30 13 24 15 10

of structural informations to optimize model checking. Some tools also rely on
Constraint solving, CEGAR [9] or bounded model checking.

However, this raw data must then be normalized because the number of tools
declaring a technique may change from one examination to another as shown in
Table 2. For example, the raw value declared for Decision Diagrams in Fig. 1(a)
must be pondered by the fact that more tools between 2015 and 2017 rely on
this technique (so it is naturally reported more often).

Symbolic approaches (based on some type of decision diagram) are usually
confronted to explicit ones (often associated with other optimization techniques)
in the community since they are in mutual exclusion. It is thus of interest to refine
the raw data of Fig. 1 by focusing on these two approaches and check which one
seems to be the most efficient and in which situations.

Figure 2 summarizes the ponderated ratio between Symbolic and Explicit
approaches for the model checking contest examinations proposed in 2015, 2016
an 2017. For each examination, the first large bar shows the ratio between the
tools declaring the use of Decision diagrams2 and those declaring the use of
explicit approaches3. The two other thinner bars present a “normalized” success
rate when considering the respective number of tools using the corresponding
technique. All these data are collected for successful examinations only (so the
two approaches can claim together 100% of success).

0 %

25 %

50 %

75 %

100 %

To
ol

s

To
ol

s

To
ol

s

To
ol

s

To
ol

s

Dec. Diag. Explicit

StateSpace UpperBound Reachability CTL LTL

Su
cc

es
s

Su
cc

es
s

Su
cc

es
s

Su
cc

es
s

Su
cc

es
s

Fig. 2. Normalized measure of the success of decision diagram based techniques versus
explicit ones (for the 2015, 2016, and 2017 editions) (Color figure online)

2 Orange or gray in B&W.
3 Dark blue or black in B&W.

8 F. Kordon and Y. Thierry-Mieg

Table 3. Analysis of the formulas computed by tools over the 2015, 2016 and 2017 edi-
tions of the Model Checking Contest. Formulas computed by several tools are cumulated.

Reachability CTL LTL Total

Satisfied computed formulas 205 478 (51%) 70 824 (45%) 28 773 (23%)

Unsatisfied computed formulas 197 280 (49%) 84 990 (55%) 97 662 (77%)

Total computed formulas 402 758 155 814 126 435 685 007

From these normalized data, it appears that symbolic and explicit techniques
are quite comparable. For the StateSpace examination, decision diagram technol-
ogy is a main factor of performance since the full state space must be computed.
Figure 1(a) also shows that topological approaches (for example, based on the
exploitation of NUPN4 data) are quite useful to optimize the encoding of the
state space using decision diagrams.

For the UpperBound examination, results are more balanced but slightly in
favor of explicit approaches. Similarly to the StateSpace examination, Fig. 1(b)
outlines an extensive use of topological information (including the use of NUPN
data) to compute an appropriate variable order for decision diagrams. Compres-
sion mechanisms are also reported to be associated with explicit approaches.

For the evaluation of formulas (reachability, CTL, LTL), there seems to be
some advantage to explicit techniques too. This is less clear for reachability for-
mulas, more evident for CTL ones, and particularly true for LTL ones. However,
for LTL, we must consider two factors that reduce the relevance of these mea-
sures. First, the LTL formula generator used in the Model Checking Contest
remains quite basic compared to the one of reachability and CTL formulas (the
team is working on this). Second, while reachability and CTL computed formu-
las are quite balanced between the satisfied and unsatisfied ones (see Table 3),
this is not the case for LTL ones (more than 3

4 are unsatisfied, so that some
counter-example might be found rapidly). These two factors probably hinder
any conclusion for LTL at this stage.

This simple study, based on he output of a single verification competition,
may help to understand how and when one could operate a set of techniques
to perform model checking. Unfortunately, even if several involved tools do not
come from the Petri net community, the inputs of the Model Checking Contest
all represent concurrent systems expressed using Petri nets. So, there might be
some bias in the way such models are processed. It would be great if a similar
analysis could be done on other verification contests. This is a complex task
requiring at least some common glossary and notions to be defined.

3 What is Self-adaptive Model Checking?

The term “adaptive model checking” [19] was first used to denote a way to learn
a model from a component in the context of black-box testing. It was also called
later “black box checking” [5].
4 NUPN means “Nested-Unit Petri Nets” and is additional information providing

some structure to the specification [16]. Some models in the benchmark embed such
information.

Self-adaptive Model Checking, the Next Step? 9

model+property analysis data

Feedback

preprocessing

Model

Property

Result

Fig. 3. The self-adaptive model checking process inside a verification engine.

The context here is totally different. The objective is to integrate some “intel-
ligence” in tools so that they can self-adapt to the most appropriate combination
and configuration of techniques when verifying a property on a model. In this sit-
uation, “appropriate” may have several meanings. Among them, let us consider
the combinatorial state explosion problem that prevents a non-expert user from
verifying a property on a system where some expert would apply a combination
of modeling abstractions and the choice of the best model checking engine to
solve the problem.

This combinatorial explosion problem is itself difficult to solve because it has
to be tackled at different levels. It does not only involve a toolset and must be
considered already at the modeling level. This is why it raises methodological
issues in the way specifications and properties can be tuned to reduce complex-
ity. Typically, relevant abstractions in the system model with regards to the
properties to be verified, may dramatically reduce the verification complexity
and should not be ignored.

Self-adaptive model checking must be operated at several stages inside a
verification engine (seen as a “black box” by users) where various techniques
are coordinated to build a verification process.

Figure 3 sketches what could be such a process. First, we consider as input
a model and a property (both can be produced automatically or manually).
A preprocessing step analyzes the model and the associated property to produce
a simplified model and a simplified property, as well as some analysis data. The
simplified model must be equivalent to the original one with regards to the
property to be checked. Similarly, the simplified property must be equivalent
to the original one. Analysis data about the model and its related property
can be deduced from structural analysis (e.g. hierarchical design of the system,
invariants or some properties when the input specification is a Petri nets, or any
other information that can be derived from the specification, and possibly the
property). In the worst case, the simplified model and/or property are equal to
the input model and property. Let us note that, in the Model Checking Contest,
such a situation is rare when models are complex (for example, those coming
from an industrial case study) and tools implement such type of optimizations.

Once produced, the simplified model and property are then processed by a
verification engine which can be adapted using the analysis data.

One can even imagine that a feedback from the way model and property are
processed may provide useful information for some later preprocessing. Typically,
this could lead to the integration of a CEGAR [9] like loop inside the verification
engine itself.

10 F. Kordon and Y. Thierry-Mieg

4 Impact on Model Checkers Architecture

This two step process suggests an architecture that is similar to the one of
modern compilers (front-end, middle-end, back-end). In fact, it is a trend to
adopt this type of architecture in modern model checkers [27].

This trend is illustrated in Fig. 4. The idea is to separate the verification
engine from the input formalism. Then, the notion of “pivot representation”
naturally arises as an intermediate representation between an “upper level”,
and a a set of “verification engines” able to process this pivot representation.
This software architecture brings three major advantages.

Fig. 4. Software architecture of modern model checkers (from [27]).

First, it decouples the input (high-level) specification language from its verifica-
tion. Then, the specification language designer may work independently from the
verification machinery as long as they provide a sound and formal semantics to
their notation. This is of particular interest when dealing with numerous input
languages, because it does not hinder the access to efficient verification engines
thanks to the pivot representation.

Several tools like MC-Kit [32], LTSMin [25], Spot [14], or ITS-Tools [35]
already experimented this type of approach. Some of them (like Spot or LTSMin)
offer an API to encode the notion of state and the transition relation of a given
model. Others (like ITS-Tools) implement an “assembly language” suitable to
encode such notions. These solutions showed their efficiency in numerous situa-
tions but suffer from an important drawback when it comes to provide feedback
to users : they usually lack back-translation mechanisms to show counterexam-
ples in the terms of the input specification. This is one of the main challenge
for self-adaptive model checking as soon as one wants to cope with several input
formalisms.
The second advantage is that many preprocessing optimizations can be per-
formed, either in the front-end (the input language specific ones) or in the middle-
end (more generic ones). Optimizations implemented in the middle-end benefit
to all the input formalisms supported by the model checker.

We already mentioned tools structured in a way they can easily enable
analysis from various input specifications. There is unfortunately no stan-
dard pivot representation (neither at an API level nor at a language level)
despite the numerous attemps to define interesting languages for verification of

Self-adaptive Model Checking, the Next Step? 11

industrial-like systems (such as PNML [21], FIACRE [3], GAL [35], or
Promela [22]). Probably, finding a standard suitable to be associated with numer-
ous and different techniques is an important challenge for the community.
The third advantage is that it is then possible to exploit the technology foreseen to
be the most efficient to process the model and its related property. One can even
imagine the back-end to be (automatically) produced on-the-fly from off-the-
shelf libraries, assembled to build the most performant model checking engine
for a given couple 〈model, property〉.

It appears from the model checking contest that most winning tools simul-
taneously activate several techniques to compute properties. Thus, combination
of representation techniques (i.e. explicit, symbolic, use of different classes of
automata), together with reduction algorithms (like partial order, saturation in
decision diagrams, etc.) is probably needed in the future. Here, numerous chal-
lenges must be addressed to elaborate appropriate and combinable back-ends for
verification.

5 The Decision Process

The decision process to select libraries to be assembled to produce an efficient
model checking engine is a crucial challenge. A deeper analysis of the involved
techniques and their success in identified situations (e.g. the use of some opera-
tor, some structure of the model or the property, etc.) is required to enable some
meta-heuristic that would act as a decision process to perform the assembling
of a verification engine.

However, the question of the technique to be used to implement such a meta-
heuristic remains. We think that several directions should be investigated:

– An analysis of the input system and property, associated with a dictio-
nary of techniques usable in each situation could be considered. It requires
to be aware of the correlations between some characteristics of the couple
〈model, property〉 and the most efficient technique to solve problems having
such characteristics. As an illustration, we can cite the definition of adapted
efficient algorithms dedicated to the verification of subcategories of LTL for-
mulas [4]. Unfortunately only a few such situations are identified so far.

– Recent learning techniques have proven their efficiency to take decisions based
on the analysis of a large set of data. Unfortunately, we have no evidence
that we already have a sufficient amount of unbiased data to operate such a
technique.

– The increasing parallelism of modern computers allows us to imagine a
portfolio-like implementation of a model checker where several algorithms
would concurrently be operated. Unfortunately, such a solution requires
massively parallel architectures since the number of possible combinations
when mixing algorithms, representations, and implementation matters, grows
rapidly.

12 F. Kordon and Y. Thierry-Mieg

Of course, even if the complexity of the decision algorithm is more likely to
be related to the size of the system instead of the size of its associated state
space, it can take a while, thus being of little interest for unsatisfied properties
for which a counterexample is found rapidly. However, it is easy to imagine that
such an analysis could be performed in parallel of a first search using some default
configuration of the model checking engine. However, for satisfied properties, for
the analysis of CTL formulas, or any other situation where the full state space
has to be explored to take a decision, the cost of building on-the-fly a dedicated
model checking engine would be probably rapidly balanced by the gain on the
verification operation itself.

Anyway, at this stage, it is difficult to state which of these approaches will
help and produce a self-adaptive model checking tool. We trust there is an inter-
esting problem for the community to deal with.

6 Conclusion

In this paper, we depict self-adaptive model checking as a way to increase the
efficiency of model checking. It is a mix of methodological, theoretical, and tech-
nical visions. Methodological aspects reside in the definition of a typical process
including preprocessing (a way to rewrite and simplify the problem) and the use
of optimized verification engines, possibly elaborated and compiled on-the-fly
for a given couple 〈model, property〉. Theoretical aspects reside in the fact that
theory needs to be extended, for example to enable the combination of several
algorithms when it is possible. Technical aspects reside in the definition of some
standards (a common pivot representation, a common software architecture, etc.)
to enable the sharing of off-the-shelf efficient libraries.

It would also be of interest to share and increase typical benchmarks so that
the effect of some algorithm combinations could be explored deeply. Then, more
lessons could be gathered from larger experiments on these benchmarks. At this
stage, the Model Checking Contest [28] can provide interesting data based on the
analysis of the results available for 2015, 2016 and 2017. A first and raw analysis
of these data is discussed in the paper. Getting similar information from other
similar events should be a goal for the communities involved.

Of course, much work is still needed to complete fully automated self-adaptive
model checking. However, the community of model checking already handles
many building blocks for this purpose: numerous algorithms, numerous internal
representations of the state space (symbolic or explicit, based on a variety of
automata), various logics, etc.

So, one can expects that, sooner or later, a new generation of model checking
tools will emerge, benefitting from all these expertise, implementation experi-
ence, and experimentation.

Self-adaptive Model Checking is a long-term goal the community should take
as an important challenge to deal with.

Self-adaptive Model Checking, the Next Step? 13

References

1. Baarir, S., Duret-Lutz, A.: Sat-based minimization of deterministic ω-automata.
In: 20th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, LPAR, pp. 79–87 (2015)

2. Ben Salem, A.E., Duret-Lutz, A., Kordon, F., Thierry-Mieg, Y.: Symbolic model
checking of stutter-invariant properties using generalized testing automata. In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 440–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 38

3. Berthomieux, B., Bodeveix, J.P., Filali, M., Lang, F., Le Botland, D., Vernadat,
F.: The syntax and semantic of fiacre. Technical report 7264, CNRS-LAAS (2007)

4. Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking
of linear time logic properties. In: Halbwachs, N., Peled, D. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48683-6 21

5. Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137241

6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In:
Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford Univer-
sity (1960, 1962)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10ˆ20 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

8. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11),
1343–1360 (1993)

9. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O.,
Theobald, M.: Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

10. Clarke, E.M., Jha, S., Marrero, W.R.: Efficient verification of security protocols
using partial-order reductions. STTT 4(2), 173–188 (2003)

11. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Towards distributed soft-
ware model-checking using decision diagrams. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 830–845. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 58

12. Duflot, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A formal analysis of
bluetooth device discovery. STTT 8(6), 621–632 (2006)

13. Duret-Lutz, A., Klai, K., Poitrenaud, D., Thierry-Mieg, Y.: Self-loop aggregation
product—a new hybrid approach to on-the-fly LTL model checking. In: Bultan,
T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 336–350. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1 24

14. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

15. Evangelista, S., Haddad, S., Pradat-Peyre, J.: Syntactical colored petri nets reduc-
tions. In: Automated Technology for Verification and Analysis, Third International
Symposium, ATVA. pp. 202–216 (2005)

https://doi.org/10.1007/978-3-642-54862-8_38
https://doi.org/10.1007/3-540-48683-6_21
https://doi.org/10.1007/3-540-48683-6_21
https://doi.org/10.1007/b137241
https://doi.org/10.1007/978-3-642-39799-8_58
https://doi.org/10.1007/978-3-642-39799-8_58
https://doi.org/10.1007/978-3-642-24372-1_24
https://doi.org/10.1007/978-3-319-46520-3_8

14 F. Kordon and Y. Thierry-Mieg

16. Garavel, H.: Nested-unit petri nets: a structural means to increase efficiency and
scalability of verification on elementary nets. In: Devillers, R., Valmari, A. (eds.)
PETRI NETS 2015. LNCS, vol. 9115, pp. 179–199. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19488-2 9

17. Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model check-
ing. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11691617 4

18. Gerth, R.: Model checking if your life depends on it: a view from intel’s trenches. In:
Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, p. 15. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45139-0 2

19. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46002-0 25

20. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using
hierarchical set decision diagrams and automatic saturation. Fundam. Inf. 94(3–4),
413–437 (2009)

21. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri
Net Markup Language and ISO/IEC 15909–2. In: Petri Net Newsletter (originally
presented at the 10th International workshop on Practical Use of Colored Petri
Nets and the CPN Tools - CPN 2009), vol. 76, pp. 9–28 (2009)

22. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2003)

23. Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)
24. Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Baarir, S., Vergnaud, T.: On

the formal verification of middleware behavioral properties. In: 9th International
Workshop on Formal Methods for Industrial Critical Systems (FMICS 2004), pp.
139–157. Elsevier (2004)

25. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

26. Klai, K., Poitrenaud, D.: MC-SOG: an LTL model checker based on symbolic
observation graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS,
vol. 5062, pp. 288–306. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68746-7 20

27. Kordon, F., Leuschel, M., van de Pol, J., Thierry-Mieg, Y.: Software architecture
of modern model checkers. In: High Assurance System: Methods, Languages, and
Tools. LNCS 10000 (2018, to appear)

28. Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel, L., Rodŕıguez, C.,
Hulin-Hubard, F.: MCC’2015 – the fifth model checking contest. In: Koutny, M.,
Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Con-
currency XI. LNCS, vol. 9930, pp. 262–273. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53401-4 12

29. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-
fication of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV
1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-56496-9 14

30. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. AMS 141, 1–35 (1969)

https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1007/11691617_4
https://doi.org/10.1007/3-540-45139-0_2
https://doi.org/10.1007/3-540-46002-0_25
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-540-68746-7_20
https://doi.org/10.1007/978-3-540-68746-7_20
https://doi.org/10.1007/978-3-662-53401-4_12
https://doi.org/10.1007/978-3-662-53401-4_12
https://doi.org/10.1007/3-540-56496-9_14
https://doi.org/10.1007/3-540-56496-9_14

Self-adaptive Model Checking, the Next Step? 15

31. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Strength-based decom-
position of the property Büchi automaton for faster model checking. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 580–593. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 42

32. Schröter, C., Schwoon, S., Esparza, J.: The model-checking kit. In: van der Aalst,
W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1 29

33. Schwarick, M., Heiner, M.: CSL model checking of biochemical networks with
interval decision diagrams. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS,
vol. 5688, pp. 296–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03845-7 20

34. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily
decidable. Inf. Control 54(1/2), 121–141 (1982)

35. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 20

36. Wang, F., Schmidt, K., Yu, F., Huang, G., Wang, B.: BDD-based safety-analysis
of concurrent software with pointer data structures using graph automorphism
symmetry reduction. IEEE Trans. Softw. Eng. 30(6), 403–417 (2004)

https://doi.org/10.1007/978-3-642-36742-7_42
https://doi.org/10.1007/3-540-44919-1_29
https://doi.org/10.1007/978-3-642-03845-7_20
https://doi.org/10.1007/978-3-642-03845-7_20
https://doi.org/10.1007/978-3-662-46681-0_20

Petri Net Synthesis

Analysis and Synthesis of Weighted
Marked Graph Petri Nets

Raymond Devillers1 and Thomas Hujsa2(B)

1 Département d’Informatique, Université Libre de Bruxelles,
1050 Brussels, Belgium
rdevil@ulb.ac.be

2 Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
26111 Oldenburg, Germany
hujsa.thomas@gmail.com

Abstract. Numerous real-world systems can be modeled with Petri
nets, which allow a combination of concurrency with synchronizations
and conflicts. To alleviate the difficulty of checking their behaviour, a
common approach consists in studying specific subclasses. In the con-
verse problem of Petri net synthesis, a Petri net of some subclass has
to be constructed efficiently from a given specification, typically from a
labelled transition system describing the behaviour of the desired net.

In this paper, we focus on a notorious subclass of persistent Petri
nets, the weighted marked graphs (WMGs), also called generalised (or
weighted) event (or marked) graphs or weighted T-nets. In such nets,
edges have multiplicities (weights) and each place has at most one ingo-
ing and one outgoing transition. Although extensively studied in previous
works and benefiting from strong results, both their analysis and synthe-
sis can be further investigated. To this end, we provide new conditions
delineating more precisely their behaviour and give a dedicated synthesis
procedure.

Keywords: Weighted Petri net · Analysis · Synthesis
Marked graph · Event graph

1 Introduction

Petri nets have proved useful to model numerous artificial and natural systems.
Their weighted version allows weights on arcs, making possible the bulk con-
sumption or production of tokens, hence a more compact representation of the
systems.

Many fundamental properties of Petri nets are decidable, although often hard
to check. Given a bounded Petri net, a naive analysis can be performed by con-
structing its finite reachability graph, whose size may be considerably larger
than the net size. To avoid such a costly computation, subclasses are often con-
sidered, allowing to derive efficiently their behaviour from their structure only.

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 19–39, 2018.
https://doi.org/10.1007/978-3-319-91268-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_2&domain=pdf

20 R. Devillers and T. Hujsa

This approach has led to various polynomial-time checking methods dedicated
to several subclasses, the latter being defined by structural restrictions in many
cases [13,17,18,24,28].

In the domain of Petri net synthesis, a specification has to be implemented
by a Petri net, meaning that the behaviour of the Petri net obtained must
correspond exactly to the specification. Classical representations of such a spec-
ification encompass labelled transitions systems (lts for short), which are rooted
directed graphs with labels on the arcs, and a synthesis procedure is meant to
build a Petri net of a specific subclass whose reachability graph is isomorphic to
a given lts.

Weighted Marked Graphs: Applications and Previous Studies. In this
paper, we focus on marked graphs with weights (also called generalised event
graphs and weighted T-nets), a subclass of weighted Petri nets in which each
place has at most one input and one output. They can model Synchronous
DataFlow graphs [21], which have been fruitfully used to design and analyse
many real systems such as embedded applications, notably Digital Signal Pro-
cessing (DSP) applications [20,23,25].

Various characterisations and polynomial-time sufficient conditions of struc-
tural and behavioural properties, notably of liveness, boundedness and reversibil-
ity, have been developed for this class [22,26]. These nets are a special case of
persistent systems, in which no transition firing can disable another transition.

Petri Net Synthesis: Previous Studies. Given a labelled transition system,
previous works have proposed algorithms synthesizing a Petri net with an iso-
morphic reachability graph, sometimes aiming at a Petri net subclass [6,9]. In
the latter case, the objective is to delineate properties of the lts that are specific
to the target subclass, so as to determine sufficient and necessary conditions for
its synthesisability within the subclass. Ideally, such specific conditions should
be easier to check than generic ones, for instance during a pre-synthesis phase.

Marked graphs, i.e. unit-weighted marked graphs, belong to the larger class of
choice-free nets, in which each place has at most one output. Both classes benefit
from dedicated synthesis algorithms that operate in polynomial time [2,4,6,8,9].
However, such methods do not yet exist for the intermediate class of marked
graphs with arbitrary weights.

Contributions. In this paper, we further investigate the class of weighted
marked graphs (WMGs). We delineate new properties of these nets and pro-
pose a synthesis procedure aiming at this subclass.

First, we provide new structural and behavioural properties of WMGs: we
give a comparison property on the sequences starting at the same state and
reaching another common state, we show that WMGs are necessarily backward
persistent, meaning that for all reachable states s1, s2, s3 such that s2[a〉s1 (i.e.
s1 is reached from s2 through the action with label a) and s3[b〉s1, there exists a
reachable state s4 with s4[b〉s2 and s4[a〉s3. We also develop conditions allowing
the existence of a feasible sequence corresponding to a given Parikh vector.

Analysis and Synthesis of Weighted Marked Graph Petri Nets 21

Then, we delineate necessary conditions for the WMG-solvability of an lts,
such as backward persistence and the existence of particular cycles. We show,
with the help of a counter-example from another subclass, that these conditions
are not sufficient for a WMG solution to exist.

Finally, we devise a WMG-synthesis procedure, specialising previous methods
that were designed for the larger class of choice-free nets.

Organisation of the Paper. In Sect. 2, we introduce general definitions, nota-
tions and properties. In Sect. 3, we recall some properties of persistent Petri nets
and provide new structural and behavioural results on WMGs, including the
proof of backward persistence. In Sect. 4, we describe a synthesis procedure for
WMGs. Section 5 presents our conclusion with perspectives.

2 Classical Definitions, Notations and Properties

In the following, we define formally Petri nets, labelled transitions systems and
related notions. We also recall classical properties of Petri nets in Proposition 1.

Petri Nets, Incidence Matrices, Pre- and Post-sets. A (Petri) net is a
tuple N = (P, T,W) such that P is a finite set of places, T is a finite set of
transitions, with P ∩T = ∅, and W is a weight function W : ((P ×T)∪(T ×P)) →
N setting the weights on the arcs. A marking of the net N is a mapping from P
to N, i.e. a member of NP , defining the number of tokens in each place of N .

A (Petri net) system is a tuple ζ = (N,M0) where N is a net and M0 is a
marking, often called initial marking. The incidence matrix C of N (and ζ) is
the integer place-transition matrix with components C(p, t) = W (t, p)−W (p, t),
for each place p and each transition t.
The post-set n• and pre-set •n of a node n ∈ P ∪ T are defined as n• = {n′ ∈
P ∪ T | W (n, n′)>0} and •n = {n′ ∈ P ∪ T | W (n′, n)>0}.

Firings and Reachability in Petri Nets. Consider a system ζ = (N,M0)
with N = (P, T,W). A transition t is enabled at M0 (i.e. in ζ) if ∀p ∈ •t,
M0(p) ≥ W (p, t), in which case t can occur at or be fired from M0. The firing of
t from M0 leads to the marking M = M0 + C[P, t] where C[P, t] is the column
of C associated to t: we note this as M0[t〉M .
A finite (firing) sequence σ of length n ≥ 0 on the set T , denoted by σ = t1 . . . tn
with t1 . . . tn ∈ T , is a mapping {1, . . . , n} → T . Infinite sequences are defined
similarly as mappings N \ {0} → T . A sequence σ of length n is enabled in
ζ if the successive states obtained, M0[t1〉M1 . . . [tn〉Mn, satisfy Mk−1[tk〉Mk,
∀k ∈ {1, . . . , n}, in which case Mn is said to be reachable from M0: we note this
as M0[σ〉Mn. If n = 0, σ is the empty sequence ε, implying M0[ε〉M0. The set of
markings reachable from M0 is noted [M0〉.
The reachability graph of ζ, noted RG(ζ), is the rooted directed graph (V,A, ι)
where V represents the set of vertices [M0〉, A is the set of arcs labelled with
transitions of T such that the arc M

t−→ M ′ belongs to A if and only if M [t〉M ′

and M ∈ [M0〉, and ι = M0 is the root.

22 R. Devillers and T. Hujsa

In Fig. 1, a weighted system is pictured on the left. Its reachability graph is
pictured on the right, where vT denotes the transpose of vector v.

Petri Net Subclasses. N is plain if no arc weight exceeds 1; choice-free (CF for
short) [11,27] (also called place-output-nonbranching in [5]) if ∀p ∈ P , |p•| ≤ 1;
fork-attribution (FA) [27] if it is CF and, in addition, ∀t ∈ T , |•t| ≤ 1; a weighted
marked graph (WMG, also called weighted T-system in [26]) if it is CF and, in
addition, ∀p ∈ P , |•p| ≤ 1. A WMG is pictured on the left of Fig. 1. Well-studied
subclasses encompass marked graphs [10], which are plain and fulfill |p•| = 1 and
|•p| = 1 for each place p, and T-systems [13], which are plain and fulfill |p•| ≤ 1
and |•p| ≤ 1 for each place p.

p3 p4

p1 p2

2 1
4 3

1 1

2 3

t1

t2
t3 (0, 1, 4, 0)T

(0, 0, 4, 3)T

(2, 1, 0, 0)T

(1, 1, 2, 0)T

(2, 0, 0, 3)T (1, 0, 2, 3)T
t2

t1

t3 t1

t1

t3

t1 t3

Fig. 1. A WMG system ζ and its reachability graph RG(ζ) are pictured respectively
on the left and on the right. The initial marking is boxed in RG(ζ).

Lts and Their Relationship with Petri Nets. A labelled transition system
with initial state, abbreviated lts, is a quadruple TS = (S,→, T, ι) where S is
the set of states, T is the set of labels, →⊆ (S ×T ×S) is the transition relation,
and ι ∈ S is the initial state.
A label t is enabled at s ∈ S if ∃s′ ∈ S : (s, t, s′) ∈→, written s[t〉 or s[t〉s′, in
which case s′ is reachable from s through the execution of t. We denote by s•

the set {s′|∃t ∈ T, s[t〉s′}.
A label t is backward enabled at s if ∃s′ ∈ S : (s′, t, s) ∈→, written [t〉s or s′[t〉s.
A (firing) sequence σ of length n ≥ 0 on the set of labels T , denoted by
σ = t1 . . . tn with t1 . . . tn ∈ T , is enabled at some state s0 if the successive
states obtained, s0[t1〉s1 . . . [tn〉sn, satisfy sk−1[tik〉sk, ∀k ∈ {1, . . . , n}: we note
s0[σ〉sn. Similarly, other notions and notations, related to sequences and reach-
ability in Petri nets, extend readily to labelled transition systems by replacing
markings with states.
The reachability graph RG(ζ) of a system ζ = (N,M0) can be represented by
the labelled transition system TS = (S,→, T, ι) if an isomorphism γ : S → [M0〉
exists such that γ(ι) = M0 and (s, t, s′) ∈→⇔ γ(s)[t〉γ(s′) for all s, s′ ∈ S. If an
lts TS is isomorphic to the reachability graph of a Petri net system ζ, we say
that ζ solves TS , and that it WMG-solves TS if N is a WMG.
These notions are illustrated on the lts on the right of Fig. 2, which is isomorphic
to the reachability graph of the WMG in Fig. 1; it is thus WMG-solvable.

Analysis and Synthesis of Weighted Marked Graph Petri Nets 23

Two lts TS 1 = (S1,→1, T, s01) and TS 2 = (S2,→2, T, s02) are isomorphic
if there is a bijection β : S1 → S2 with β(s01) = s02 and (s, t, s′) ∈→1 ⇔
(β(s), t, β(s′)) ∈→2, for all s, s′ ∈ S1.

Vectors, Semiflows and Cycles. The support of a vector is the set of the
indices of its non-null components. Consider any net N = (P, T,W) with its
incidence matrix C. A T-vector is an element of NT ; it is called prime if the
greatest common divisor of its components is one (i.e. its components do not
have a common non-unit factor). A T-semiflow ν of the net is a non-null T-
vector whose components are only non-negative integers (i.e. ν � 0) and such
that C · ν = 0. A T-semiflow is called minimal when it is prime and its support
is not a proper superset of the support of any other T-semiflow [27].
The Parikh vector P(σ) of a finite sequence σ of transitions is a T-vector counting
the number of occurrences of each transition in σ, and the support of σ is the
support of its Parikh vector, i.e. supp(σ) = supp(P(σ)) = {t ∈ T | P(σ)(t) > 0}.
A (non-empty) cycle around a marking M is a non-empty sequence σ such that
M [σ〉M ; the Parikh vector of a non-empty cycle is a T-semiflow and a non-empty
cycle is called prime if its Parikh vector is prime.

Further Notions. Consider a lts TS = (S,→, T, ι). For all states s, s′ ∈ S, a
sequence s[σ〉s′ is called a cycle, or more precisely a cycle at (or around) state s,
if s = s′. A non-empty cycle s[σ〉s is called small if there is no non-empty cycle
s′[σ′〉s′ in TS with P(σ′) � P(σ). A two-way uniform chain of TS is a couple
({si ∈ S|i ∈ Z,∀i, j ∈ Z : i �= j ⇒ si �= sj}, σ ∈ T+) such that ∀i ∈ Z, si[σ〉si+1,
where T+ is the set of non-empty sequences on T .

In Fig. 2, a two-way uniform chain is depicted on the left; on the right, the
lts is finite, hence has no two-way uniform chain. The lts TS is:

– totally reachable if S = [ι〉;
– reversible if ι ∈ [s〉 for each state s ∈ [ι〉, meaning the strong connectedness

of this lts when it is totally reachable;
– weakly periodic if for each couple ({si ∈ S|i ∈ N}, σ ∈ T+) such that ∀i ∈ N

si[σ〉si+1 (where σ is a non-empty sequence of labels), either si = sj ∀i, j ∈ N,
or i �= j ⇒ si �= sj ∀i, j ∈ N;

– strongly cycle consistent if for every sequence s[α〉s′, the existence of cycles
s1[β1〉s1, s2[β2〉s2, . . . , sn[βn〉sn and of numbers k1, k2, . . . , kn ∈ Q such that
P(α) =

∑n
i=1 ki · P(βi) implies that s = s′;

– deterministic if, for all states s, s′, s′′ ∈ S and labels t, t′ ∈ T such that
s[t〉s′ ∧ s[t〉s′′, necessarily s′ = s′′; it is fully deterministic if for all sequences
σ and σ′ such that P(σ) = P(σ′), we have, for all states s, s′, s′′ ∈ S: s[σ〉s′ ∧
s[σ′〉s′′ ⇒ s′ = s′′;

– backward deterministic if, for all states s, s′, s′′ ∈ S and labels t, t′ ∈ T such
that s′[t〉s ∧ s′′[t〉s, necessarily s′ = s′′; it is fully backward deterministic if,
for all sequences σ and σ′ such that P(σ) = P(σ′), we have, for all states
s, s′, s′′ ∈ S: s′[σ〉s ∧ s′′[σ′〉s ⇒ s′ = s′′;

– persistent if for all states s, s′, s′′ ∈ S and labels t′, t′′ ∈ T such that s[t′〉s′

and s[t′′〉s′′ with t′ �= t′′, there exists a state s′′′ ∈ S such that s′[t′′〉s′′′

24 R. Devillers and T. Hujsa

and s′′[t′〉s′′′; it is backward persistent if for all states s, s′, s′′ ∈ S and labels
t′, t′′ ∈ T such that s′[t′〉s and s′′[t′′〉s with t′ �= t′′, there exists a state s′′′ ∈ S
such that s′′′[t′′〉s′ and s′′′[t′〉s′′.

Figure 2 illustrates some of these notions. All notions defined for labelled
transition systems apply to Petri nets through their reachability graphs. For
example, a Petri net is reversible if its reachability graph is isomorphic to a
reversible lts, meaning that the initial marking is reachable from every reachable
marking.

. . .
s−2 s−1 s0 s1 s2

. . .σ σ σ σ
s5

s0

s1

s3

s2
s4

t2

t1

t3 t1

t1
t3

t1
t3

Fig. 2. On the left, a two-way uniform chain based on σ. On the right, a labelled
transition system with states {s0, s1, s2, s3, s4, s5}, labels {t1, t2, t3} and initial state
ι = s0. It is isomorphic to the reachability graph of Fig. 1. The label t2 is enabled at
s0 and t3 is backward enabled at s0. The state s1 is reachable from s0 through the
execution of t2. Denote by σ the sequence t2t3t1t1. Then, the Parikh vector of σ is
P(σ) = (2, 1, 1) and its support is supp(σ) = {t1, t2, t3}. Since s0[σ〉s0, σ is a cycle
around state s0. This lts is totally reachable, weakly periodic, fully deterministic and
fully backward deterministic, strongly cycle consistent, persistent, backward persistent
and reversible.

The following proposition recalls properties satisfied by every Petri net sys-
tem and presented in [5].

Proposition 1 (Classical properties of Petri nets [5]). If ζ = (N,M0),
where N = (P, T,W), is a Petri net system, then RG(ζ) is totally reachable,
weakly periodic, fully deterministic, fully backward deterministic, and strongly
cycle consistent. Moreover it has no two-way uniform chain over the set S = NP

of all the possible markings for N , meaning that no couple ({Mi ∈ NP |i ∈
Z\{0},∀i, j ∈ Z : i �= j ⇒ si �= sj}, σ ∈ T+) exists such that ∀i ∈ Z, Mi[σ〉Mi+1.

3 Properties of WMGs and Larger Persistent Classes

In this section, we investigate the structure and behaviour of WMGs. For that
purpose, we first recall notions and results relevant to persistent systems in
Subsect. 3.1. Then, in Subsect. 3.2, for the class of WMGs, we show a property
of the sequences sharing the same starting state and the same ending state, and
we prove backward persistence. Finally, in Subsect. 3.3, we propose conditions for
the existence of feasible sequences corresponding to a given T-vector in WMGs.

Analysis and Synthesis of Weighted Marked Graph Petri Nets 25

3.1 Previous Results and Notions Related to Persistence

In addition to the general properties of Petri nets mentioned in Proposition 1,
we recall results and notions useful to the study of persistent systems.

The next result is dedicated to WMGs and extracted from [26,27].

Proposition 2 (Minimal T-semiflow and cycles in WMGs [26,27]). Con-
sider a connected WMG net N . If N has a T-semiflow ν then there exists a
unique minimal (hence prime) one π, which satisfies: supp(π) = T and ν = k ·π
for some integer k > 0. Moreover, for any marking M0, writing ζ = (N,M0),
if RG(ζ) contains some non-empty cycle, then the Parikh vector of each small
cycle of RG(ζ) equals π.

The next notion of residues is useful to the study of persistent systems.

Definition 1 (Residues). Let T be a set of labels and τ, σ ∈ T ∗ two sequences
over this set. The (left) residue of τ with respect to σ, denoted by τ−• σ, arises
from cancelling successively in τ the leftmost occurrences of all symbols from
σ, read from left to right. Inductively: τ−• ε = τ ; τ−• t = τ if t /∈ supp(τ);
τ−• t is the sequence obtained by erasing the leftmost t in τ if t ∈ supp(τ); and
τ−•(tσ) = (τ−•t)−•σ. For example, acbcacbc−•abbcb = cacc and abbcb−•acbcacbc = b.

We deduce the next property of residues.

Lemma 1 (Disjoint support of residues). For any two sequences τ and σ,
the residues δ1 = τ−•σ and δ2 = σ−•τ have disjoint supports: supp(δ1)∩supp(δ2) =
∅. Consequently, δ1−• δ2 = δ1 and δ2−• δ1 = δ2.

Proof. For any label t, P(τ)(t) = P(σ)(t) ⇒ P(δ1)(t) = P(δ2)(t) = 0, P(τ)(t) >
P(σ)(t) ⇒ P(δ2)(t) = 0 and P(τ)(t) < P(σ)(t) ⇒ P(δ1)(t) = 0. In all cases,
t �∈ supp(δ1) ∩ supp(δ2). ��

Kellers’s theorem is based on residues and applies to persistent lts.

Theorem 1 (Keller [19]). Let (S,→, T, ι) be a deterministic, persistent lts. Let
τ and σ be two label sequences enabled at some state s. Then τ(σ−•τ) and σ(τ−•σ)
are both enabled at s and lead to the same state.

Applying Theorem1, we obtain the next result directly.

Proposition 3 (Persistence and determinism). Let TS be a persistent lts.
If TS is also deterministic, then it is fully deterministic.

3.2 Equivalent Sequences and Backward Persistence

In the following, we provide new properties on the reachability graph of WMGs.
Since non-connected nets can be studied by analysing each connected component
separately, we restrict our attention to connected nets.

For the class of WMGs, we first provide in Lemma 2 a property of the
sequences starting from a same state s and leading to the same state s′. Then,
we prove the backward persistence of WMGs in Theorem 2. To achieve it, we
need to define the reverse of a net and of a firing sequence.

26 R. Devillers and T. Hujsa

Definition 2 (Reverse nets and sequences). The reverse of a net N ,
denoted by −N , is obtained from N by reversing all the arcs while keeping the
weights. We denote by σ−1 the sequence σ followed in reverse order. For example,
if σ = t1t2t2t3, then σ−1 = t3t2t2t1.

The set of WMGs is closed under reverse, contrarily to the set of CF nets.
Lemma 2 highlights strong similarities in the reachability graph between two

sequences sharing the same starting state and the same destination state. The
proof makes use of reverse sequences feasible in reverse WMGs.

Lemma 2 (Equivalent sequences in WMGs). Let N be a connected WMG.
Assume the existence of markings M,M1 and sequences σ, σ′ such that M [σ〉M1

and M [σ′〉M1. If N has no T-semiflow, then P(σ) = P(σ′). Otherwise, either
P(σ) = P(σ′), or there exists an integer k > 0 such that P(σ) = P(σ′) + k.π or
P(σ) + k.π = P(σ′), where π is the unique minimal T-semiflow of N .

Proof. Let us assume that P(σ) �= P(σ′). We show in the following that N has
necessarily a T-semiflow in this case, proving the first claim by contraposition.
Since N is a WMG, it is persistent. Defining τ = σ−• σ′ and τ ′ = σ′−• σ, applying
Keller’s theorem (Theorem 1), we have for some marking M2 that M1[τ〉M2 and
M1[τ ′〉M2. By Lemma 1, τ and τ ′ have disjoint supports, τ−•τ ′ = τ and τ ′−•τ = τ ′.
Thus, applying Keller’s theorem, a marking M3 is reached from M2 by firing τ
or τ ′. Iterating this process up to any positive integer i, some marking Mi+1 is
reached from Mi with Mi[τ〉Mi+1 and Mi[τ ′〉Mi+1.

Now, in the reverse net −N , which is also a WMG, since M2[(τ)−1〉M1 and
M2[(τ ′)−1〉M1, still with disjoint supports, we can construct markings M0, M−1,
. . . such that ∀i ∈ Z, Mi[(τ)−1〉Mi−1 and Mi[(τ ′)−1〉 Mi−1, i.e. also Mi−1[τ〉Mi

and Mi−1[τ ′〉Mi. If all Mi’s are (pairwisely) different, this leads to a two-way
uniform chain for the system (N,M1), contradicting Proposition 1. Consequently,
for some i, j ∈ Z with i �= j, we have Mi = Mj , and since σ, σ′ are different, they
are not both empty and τ , τ ′ cannot be both empty. Thus, N has a T-semiflow,
proving the first claim of the lemma.

For the second claim, either P(σ) = P(σ′) or P(σ) �= P(σ′). Consider the
latter case: from the first part of the proof, taking the same notation, there is a
positive integer n such that τn and τ ′n are cycles appearing in the reachability
graph of the system (N,M). Since the supports of τ and τ ′ are not both empty,
Proposition 2 applies: there is a unique minimal T-semiflow π, whose support is
T , and integers k, k′ ≥ 0 exist such that P(τn) = k ·π and P(τ ′n) = k′ ·π, where
k > 0 or k′ > 0. Since the supports of τ and τ ′ are disjoint and the support of
any cycle is T , then either k′ = 0, τ ′ = ε, τ is a cycle and P(σ) � P(σ′), or k = 0,
τ = ε, τ ′ is a cycle and P(σ′) � P(σ). Thus, either P(σ) = P(σ′) + P(τ) =
P(σ′) + q.π for an integer q > 0 or P(σ′) = P(σ) + P(τ ′) = P(σ) + q.π for an
integer q > 0. Hence the claim. ��

In [26], in the proof of Theorem 4.8, it is mentioned that each WMG is
backward persistent without a proof, basing on the fact that the reverse of a
WMG is still a WMG, hence a persistent net. However, this property needs to

Analysis and Synthesis of Weighted Marked Graph Petri Nets 27

be proved carefully: since M1[a〉M and M2[b〉M , Keller’s theorem implies the
existence of a marking M ′ reachable from (−N,M1) and (−N,M2), such that
M ′[a〉M2 and M ′[b〉M1 in the original system; however, the reachability of M ′

in the original system, under the assumption of reachability for M1 and M2, is
not obvious. In the following, we show it is indeed the case.

Theorem 2 (Backward persistence of WMGs). Backward persistence of
WMGs In a connected WMG system ζ = (N,M0), let us assume that markings
M1, M2, M are reachable and that, for two different labels a and b, M1[a〉M
and M2[b〉M . Then, a marking M ′ is reachable in ζ such that M ′[a〉M2 and
M ′[b〉M1.

Proof. Let us write N = (P, T,W) and introduce two sequences σ1 and σ2

enabled in ζ such that M0[σ1〉M1 and M0[σ2〉M2. From the previous remarks,
we know that M ′ is reachable in the reverse system (−N,M1), hence belongs to
NP . It remains to show that M ′ ∈ [ζ〉.

From Lemma 2, either P(σ1a) = P(σ2b) or, without loss of generality,
P(σ1a) = P(σ2b) + k · π, where π is the unique minimal T-semiflow of N , with
support T . Then, in either case, b occurs at least once in σ1. For the reverse
net −N , we have M1[σ−1

1 〉M0, and from Keller’s theorem, we have M1[b〉M ′ and
M2[a〉M ′; we also have M0[b−• σ−1

1 〉M ′′ and M ′[σ−1
1 −• b〉M ′′. Since b occurs in σ1,

hence also in σ−1
1 , b−• σ−1

1 = ε and M ′′ = M0. Going back to ζ, we deduce that
M0[(σ−1

1 −• b)−1〉M ′, thus M ′ is reachable in ζ (Fig. 3). ��

M0

M1

M2

M ′ M

σ1

σ2

a

ba

b

M ′′

M0

M1

M2

M ′ M

σ−1
1

σ−1
1 −• b

a

ba

b

b−• σ−1
1 = ε

M0

M1

M2

M ′ M

σ1

σ2

a

ba

b
σ

Fig. 3. Illustration of the proof of Theorem 2: the initial assumptions are depicted on
the left, the sequences in the reverse system (−N, M) are depicted in the middle, where
the sequence leading to M ′′ from M0 equals ε, implying that M ′′ = M0. In the original
system, we deduce the reachability of M ′ from M0 on the right, with σ = (σ−1

1 −• b)−1.

Theorem 2 becomes wrong for FA systems, thus also for CF systems. Indeed,
a non-backward persistent FA system is provided in Fig. 4.

3.3 Fireability of T-Vectors in WMGs

In this subsection, we develop conditions for the existence of enabled sequences
corresponding to given Parikh vectors. For that purpose, we borrow some vocab-
ulary from [26,28] as follows: for a net with incidence matrix C, we say that a

28 R. Devillers and T. Hujsa

p1

p2 p3

2

t1

t2 t3

(0, 2, 0)T (1, 1, 0)T

(2, 0, 0)T

(0, 1, 1)T

(1, 0, 1)T
t2

t2

t1

t3 t2

t3

Fig. 4. A Fork-Attribution (FA) system on the left and its reachability graph on the
right, where the initial marking is boxed. The FA system is not backward persistent,
since the marking (1, 1, 0)T can be reached from two predecessors by firing t2 and t3
respectively from the initial marking and from (0, 1, 1)T , but the initial marking has
no predecessor.

marking M is potentially reachable from a marking M0 if a T-vector ν exists
such that M = M0 + C · ν. If, additionally, a sequence σ is feasible in (N,M0)
such that P(σ) = ν, we say that ν is fireable (or feasible, or realisable) at M0.

Lemma 3 (Realisable T-vectors in WMGs). Let N = (P, T,W) be a WMG
with incidence matrix C. Let M be a marking and ν ∈ NT be a T-vector such that
M +C ·ν ≥ 0. Let T1 be the support of ν, P1 = •T1∩T •

1 , σ′ a transition sequence
such that ν ≤ P(σ′), and M ′ be a marking such that ∀p ∈ P1 : M ′(p) = M(p).
Then, if M ′[σ′〉, there is a firing sequence M [σ〉 such that P(σ) = ν.

Proof. By induction on the size of ν. If ν = 0, the property is clearly true.
Otherwise, let t be the first transition of T1 occurring in σ′, i.e. σ′ = σ′

1tσ
′
2 with

ν(ti) = 0 for each ti in σ′
1.

Assume that ¬M [t〉, then for some p ∈ •t, M(p) < W (p, t). Since M+C ·ν ≥0,
there is t′ ∈ •p, t′ �= t, such that t′ ∈ T1, and t′ is unique in •p since N is a WMG.
This contradicts the fact that M ′[σ′

1t〉 since t′ does not occur in σ′
1. Hence, we

assume that M [t〉M1 and M ′[σ′
1〉M ′′[t〉M ′

1[σ
′
2〉.

Since the net is a WMG, the only transitions able to modify the places in P1

are in T1. Thus, we have M(p) = M ′(p) = M ′′(p) and M1(p) = M ′
1(p) for each

p ∈ P1 (no transition of T1 belongs to σ′
1). Let us denote by δt the T-vector with

value 1 for t, 0 elsewhere.
Hence, the induction hypothesis applies to ν −δt ≤ P(σ′

2) from the markings
M1 and M ′

1, and there is a firing sequence M1[σ1〉 with P(σ1) = ν − δt. Thus,
the sequence σ = tσ1 with Parikh vector ν is enabled at M . The lemma results.

��
Instantiating Lemma 3 with M = M ′, we deduce the next corollary.

Corollary 1 (Potential reachability in WMGs). Let N = (P, T,W) be a
WMG with incidence matrix C. Let M be any marking and ν ∈ NT be a T-vector
such that M ′ = M +C ·ν ≥ 0. Let σ be a transition sequence such that ν ≤ P(σ).
Then, if M [σ〉, there is a firing sequence M [σ′〉M ′ such that P(σ′) = ν.

Lemma 3 and Corollary 1 are not valid in the class of FA systems. Indeed,
denoting by C the incidence matrix of the system in Fig. 4, by M0 its initial

Analysis and Synthesis of Weighted Marked Graph Petri Nets 29

marking (0, 2, 0)T and by ν the T-vector (1, 1, 1)T , we have: M0 = M0 + C · ν,
and the sequence σ = t2t2t1t3 is enabled at M0, with P(σ) ≥ ν. However, there
is no initially feasible sequence whose Parikh vector equals ν.

We present next the notion of a maximal execution vector in order to obtain
Theorem 3 on potentially reachable markings below.

Definition 3 (Maximal execution vector in WMGs). Let ζ be a WMG
system whose set of transitions is T . We denote by maxexζ : T → N ∪ {∞} the
extended T-vector satisfying: ∀t ∈ T , maxexζ(t) is the maximal number of times
t may be executed in firing sequences of ζ, allowing the case maxexζ(t) = ∞.

Theorem 3 (Potential reachability in WMGs, revised). Let ζ = (N,M0)
be a WMG with incidence matrix C. Let ν ∈ NT be a T-vector such that M =
M0 + C · ν ≥ 0. Let maxexζ be the maximal execution vector of ζ. Then, there
exists a firing sequence M0[σ〉M with P(σ) = ν if and only if ν ≤ maxexζ .

Proof. Suppose that M0[σ〉M with P(σ) = ν. Since σ can be fired at M0, we
deduce, from the definition of maxexζ , that ∀t ∈ T , maxexζ(t) ≥ P(σ)(t), thus
ν ≤ maxexζ .

Conversely, suppose that ν ≤ maxexζ . Then, for each t ∈ T , since ν(t) ≤
maxexζ(t), there is a finite firing sequence M0[σt〉 such that ν(t) ≤ P(σt)(t). By
persistence and Keller’s theorem (applied |T | − 1 times), there is a finite firing
sequence M0[σ′〉 such that ∀t ∈ T : P(σt)(t) ≤ P(σ′)(t), hence ν ≤ P(σ′) and
Corollary 1 applies. ��

In this section, we delineated several properties on the reachability graph
of WMGs. In the next section, we exploit some of these conditions, notably
persistence and backward persistence, to synthesise a WMG from a given lts,
when possible.

4 Synthesis of Connected, Bounded, Weakly Live WMGs

In the domain of Petri net synthesis from labelled transition systems, the aim is
to build a Petri net system whose reachability graph is isomorphic to a given lts,
when it exists. Usually, one has to check first some necessary structural properties
of the lts. In some rare cases, such conditions have been proven sufficient for
ensuring the existence of a solution (sometimes a unique minimal one) in the class
considered and for driving the synthesis process [2,4]. However, in most cases,
the known synthesis methods need a combination of such necessary conditions
with other computational checks and constructions [1,3,5–7,9].

In this section, we focus on finite, totally reachable and weakly live lts, the
latter property meaning that each label of T occurs at least once in the lts. We
build a procedure synthesising a connected WMG solving such lts when possible.

First, in Subsect. 4.1, we highlight necessary conditions of WMG-solvability,
notably persistence, backward persistence and the existence of specific cycles.
We also build a counter-example showing that these conditions, when satisfied,
are not sufficient to ensure WMG-solvability.

30 R. Devillers and T. Hujsa

Then, in Subsect. 4.2, we highlight constraints induced by each place and we
delineate two subsets of the lts states that are particularly relevant to WMG-
synthesis. By focusing the analysis on these states, the number of checking steps
is potentially reduced.

Finally, in Subsects. 4.3 and 4.4, we define systems of constraints for two
kinds of lts shapes: the cyclic case, i.e. when the lts is strongly connected (hence
reversible), and the acyclic case, i.e. when the lts does not contain any cycle.
We show these two cases to contain all the lts being solvable by a connected,
bounded and weakly live WMG. Also, the number of constraints is reduced by
checking only the relevant states defined in Subsect. 4.2. When these systems
have a solution, we obtain a WMG solving the lts. To extend this method to
all the WMG-solvable lts, the decomposition technique developed in [14–16] to
factorise a lts into prime factors, i.e. factors that cannot be further factorised
and hence should correspond to connected nets, can finally be exploited.

4.1 Necessary Conditions for Solvability with Connected WMGs

For a synthesis into a connected WMG to succeed, the given lts must satisfy the
conditions of Proposition 1, the properties described in Proposition 2, as well as
persistence and backward persistence, as proved in Theorem 2. The boundedness
of the WMG obtained stems from the finiteness of the lts. We capture part of
these conditions with the next notation b and c and explain the relationship
between the existence of a cycle in the lts and property c.

Properties b and c. For any lts TS = (S,→, T, ι), we denote by:

– b the property: TS is finite, weakly periodic, deterministic and backward
deterministic, persistent and backward persistent, totally reachable;

– c the property: TS is strongly connected, all its small cycles have the same
prime Parikh vector π with support T , and P(α) is a multiple of π for each
cycle α.

Let us consider the case in which the finite lts contains a cycle. Then, the
(finite) reachability graph of any connected and bounded WMG solving this lts
contains a cycle. Thus, from Proposition 2, the cycle contains all transitions. By
Corollary 4 in [27], the system is live, and by backward persistence, it is also
reversible, implying the strong connectedness of the reachability graph. Conse-
quently, we have to consider only two cases: the given lts is either acyclic or is
strongly connected, the second case being considered in property c.

Without loss of generality, we assume in the sequel that the lts considered are
weakly live. The next lemma presents relationships between properties relevant
to the synthesis.

Lemma 4 (Determinism, reversibility, cycle consistence). Let us con-
sider a weakly live lts TS = (S,→, T, ι).

(1) If TS satisfies b, it also satisfies the full determinism and full backward
determinism.

Analysis and Synthesis of Weighted Marked Graph Petri Nets 31

(2) If TS satisfies b and is acyclic, all the sequences between any two states
have the same Parikh vector.

(3) If TS satisfies b and contains a small prime cycle with support T and Parikh
vector π, then TS satisfies property c, there is a small prime cycle around
each state, each arc belongs to a small prime cycle, TS satisfies the strong
cycle consistence; also, for any two states s1 and s2, there is a sequence from
s1 to s2 whose Parikh vector δ is not greater than nor equal to π, and each
other sequence σ from s1 to s2 satisfies P(σ) = P(δ)+k·π for a non-negative
integer k.

Proof

(1) Full determinism and full backward determinism arise directly from deter-
minism and backward determinism and from persistence and backward per-
sistence, with the aid of Proposition 3 applied to TS and to its reverse ver-
sion.

(2) If the lts is acyclic, satisfies b and, for some s ∈ S and s′ ∈ [s〉, we have
s[α〉s′ as well as s[β〉s′ with P(α) �= P(β), and α−• β or β−• α is non-empty
(both of them may be non-empty). Then, as in the proof of Lemma2, with
the aid of Keller’s theorem and of Lemma 1, we can build a uniform chain
s′[α−•β〉s1[α−•β〉s2 · · · and s′[β−•α〉s1[β−•α〉s2 · · · . Since the lts is finite, there
must exist positive integers i and j such that i < j and si = sj , forming a
non-empty cycle, hence a contradiction with the acyclicity.

(3) In the rest of the proof, we suppose that the lts satisfies b and contains a
small prime cycle α around some state s ∈ S with support T . Determinism
and persistence imply that cycles can be pushed forward Parikh-equivalently,
i.e.: if s[α〉s ∧ s[t〉s′, then s′[α′〉s′ for some α′ with P(α′) = P(α) (apply-
ing Keller’s theorem). Symmetrically, backward determinism and backward
persistence imply that cycles can be pushed backward Parikh-equivalently.

Now, consider any non-empty cycle β around some state s′ in TS . Both cycles
α and β can be pushed backward Parikh-equivalently to the initial state ι (since
s and s′ are reachable from ι by total reachability). Using Keller’s theorem,
both support-disjoint sequences α−•β and β−•α are feasible at ι and lead to some
marking s0. Since (α−• β)n and (β−• α)n are feasible at ι for every positive integer
n while the lts is finite, there exists a positive integer m such that (α−• β)m

and (β−• α)m are cycles. Since the lts is also weakly periodic, deterministic and
backward deterministic, both α−• β and β−• α are cycles. Since α, β �= ε and
supp(α) = T , we have P(α−• β) � P(α). Hence, if α−• β �= ε, it forms a smaller
cycle, contradicting the fact that α is already a small cycle. Thus, necessarily,
α−• β = ε, implying that P(β) ≥ P(α). Suppose that P(β) is not a multiple
of P(α). Denote by k the largest integer such that P(β) ≥ k · P(α) and β′ =
β−• αk �= ε. Necessarily, P(α) �≥ P(β′) and P(β′) �≥ P(α), implying that P(α) �
P(α−•β′) � 0, where α−•β′ is a cycle, contradicting the fact that α is a small cycle.
We deduce that P(β), as well as each other Parikh vector of each non-empty
cycle of the lts, is a multiple of P(α) = π.

32 R. Devillers and T. Hujsa

Hence, from total reachability and persistence, there is a small prime cycle
(with Parikh vector π) around the initial state, as well as around any state.

Since there is a small cycle with support T around each state, by Keller’s theo-
rem each arc can be extended into a cycle: s[t〉s′ implies there is a sequence s′[γ〉s
with P(tγ) = π. As a consequence, TS is reversible, thus strongly connected.

For any cycle s[β〉s, from the above, we have that P(β) = k · π for some
integer k ≥ 0. Now, if a sequence s[γ〉s′ is such that k1 · P(γ) = k2 · π for some
positive integers k1, k2, since π is prime k1 must divide k2; let us denote by k′

the integer k2/k1. We have P(γ) = k′ · π so that by full determinism s = s′,
hence the strong cycle consistence.

Consider a sequence s[α〉s′ in TS . Suppose that P(α) ≥ π. Since there is
a small cycle γ with Parikh vector π around s, we build a shorter sequence by
applying Keller’s theorem as follows: α−•γ is fireable at s and leads to s′. We can
build such shorter sequences until we get a sequence s[α′〉s′ with P(α′) �≥ π and
P(α) = P(α′) + k · π for some integer k > 0. If we start from another sequence
s[β〉s′, we get similarly s[β′〉s′ with P(β′) �≥ π, and P(β) = P(β′) + h · π for a
non-negative integer h. If P(β′) �= P(α′), then we have two cases.

In the first case, one of them is greater than the other one, without loss of
generality P(β′) ≥ P(α′), in which case, with Keller’s theorem, we can construct
from s′ the cycle β′−• α′ with P(β′−• α′) �≥ P(π) a contradiction with the fact
that the Parikh vector of every cycle of TS is a multiple of π (with support T).

In the second case, β′−• α′ and α′−• β′ are both non-empty with disjoint sup-
ports, their support containing at least one null component. In this second case,
we construct from s1 = s′ a chain s1[σ〉s2[σ〉s3 · · · , with σ = β′−•α′ as well as for
σ = α′−• β′. Since the lts is finite, we must have si = sj for some i < j, hence a
cycle with Parikh vector n · π = (j − i) · P(σ) for some positive integer n, which
is incompatible with the fact that the support of π is T and the support of σ
does not contain all transitions.

Thus, we get a contradiction in both cases, implying that P(β′) = P(α′). We
deduce that for every sequence σ from s1 to s2, there exists a sequence δ �≥ π
from s1 to s2 such that P(σ) = P(δ) + k · π for some non-negative integer k. ��

Insufficiency of the Necessary Conditions b and c for WMG-
Solvability. In Fig. 5, we provide an example of an FA system whose reachability
graph satisfies all conditions of properties b and c but is not WMG-solvable. We
deduce that these conditions, when satisfied by a given lts, are not sufficient for
ensuring the existence of a solution in the WMG subclass. Indeed, in Fig. 5, each
possible attempt of a construction leads to a contradiction, as detailed next.

– Non-existence of a WMG solution with six places:
To obtain a WMG solution structured as on the right of Fig. 5, the following
sequences must be feasible at the initial marking M0:

t3t1 ⇒ M0(p1) ≥ 3
t3t1t2t3t1t3t2t1 ⇒ M0(p2) ≥ 3

t2t3t1t2 ⇒ M0(p3) ≥ 9

t3t1t3t2t1t3t2t1t3t2t3 ⇒ M0(p4) ≥ 9
t3t1t3 ⇒ M0(p5) ≥ 6

t2t3t1t2t3t1t3t1t2 ⇒ M0(p6) ≥ 12

Analysis and Synthesis of Weighted Marked Graph Petri Nets 33

The sequence σ = t2t3t1t3t1t3t2t1t3t3 is then feasible in such a constrained
WMG but is not enabled in the FA system ζ.

– Non-existence of a WMG solution with fewer places:
Since the previous WMG system with six places and its necessary marking
are too permissive, we deduce that the same contradicting sequence σ is also
feasible in all less constrained WMGs, typically obtained by removing some
places while retaining the necessary initial marking in the other places.

p1

p2

p3

42

3

3
3

t1

t2 t3 3

p1

3

p2

9

p3

9

p4
6

p5

12

p6

3 7
3 7

6

6

6

6

7 3

37

t1
t2 t3

Fig. 5. A Fork-Attribution (FA) system ζ is pictured on the left. Its minimal prime
T-semiflow π = (6, 3, 7) equals the Parikh vector of each small cycle of RG(ζ). The
latter is persistent and backward persistent, reversible, finite and fulfills properties
b and c. The most constrained WMG solution ζ′ whose reachability graph could be
isomorphic to RG(ζ) is depicted on the right: its weights are directly deduced from π
and, in each place, the given amount of tokens is necessary to enable the sequences of
RG(ζ). However, this necessary initial marking already enables a sequence that is not
feasible in ζ, namely σ = t2t3t1t3t1t3t2t1t3t3. Since every possible variant ζ′′ of ζ′ is
less constrained than ζ′, each such ζ′′ also enables σ. We deduce that no WMG solves
RG(ζ).

Checking the Necessary Conditions in a Pre-synthesis Phase. Since the
lts is finite, all the necessary properties for solvability can be checked in a naive
way. However, some algorithmic improvement can be achieved by considering an
adequate checking order. For instance, from Proposition 3, property b implies full
determinism and full backward determinism, whose checking is thus avoided. In
the next subsection, we exhibit subsets of states of the lts whose analysis is
sufficient to ensure some constraints, allowing to perform fewer operations.

4.2 Constraints and Subsets of States Relevant to WMG-Synthesis

In the following, we describe some constraints that must be fulfilled in order to
synthesise a WMG. Also, we define two subsets of the states of the given lts
that are sufficient to check in order to fulfill several constraints over all states,
decreasing potentially the size of the systems of constraints to solve.

A WMG synthesis amounts to build places of the kind schematised in Fig. 6.

34 R. Devillers and T. Hujsa

ma,b

pa,b

a b

Wa Wb ma,∗

pa,∗
a

Wa m∗,b

p∗,b
b

Wb

Fig. 6. Possible types of places for the synthesis of a WMG (N, M0), with initial
marking ma,b = M0(pa,b), ma,∗ = M0(pa,∗) and m∗,b = M0(p∗,b).

Constraints Related to Places in the WMG. Note that a place pa,∗ is
equivalent to a place pa,b with Wb = 0, and a place p∗,b is equivalent to a place
pa,b with Wa = 0. In a place pa,b, we can always choose Wa and Wb relatively
prime without loss of generality, with an adequate initial marking M0. If a and b
are the same label, then we have a single transition and the place is equivalent to
either a place pa,∗, p∗,a or no place at all, depending on the sign of the difference
between Wa and Wb. In a place pa,∗, the initial marking M0(pa,∗) may always be
chosen as 0 and the weight Wa as 1. In a place p∗,b, we must have Wb ≤ M0(p∗,b)
(otherwise the lts would not be weakly live), and the weight Wb can always be
chosen as 1, with an adequate choice of the initial marking M0.

If T = ∅, TS is reduced to its initial state and the (minimal) solution is the
empty Petri net. If T = {a} is a singleton, either TS is acyclic, in the form of
a single chain, and the minimal solution is a place p∗,a, with an initial marking
deduced from the length of the chain, or it is a loop ι[a〉ι with a minimal solution
reduced to a transition a without any place. Hence, in the following, we assume
without loss of generality that |T | > 1. We shall also assume that the lts to be
synthesised satisfies property b and either acyclicity or c.

M0 is the marking corresponding to the initial state ι; consider any state s ∈
S with a shortest sequence from ι to s, meaning that no other sequence from ι to
s has a smaller Parikh vector. By Lemma 4 (point 2 or 3), such a sequence exists,
and all such sequences from ι to s share the same Parikh vector Δs. The marking
corresponding to state s is given by Ms(pa,b) = M0(pa,b)+Δs(a)·Wa−Δs(b)·Wb.
The next conditions are necessary and sufficient for allowing (and realising) a
synthesis, and are related to the classical regional approach [1]:

– The number of tokens in pa,b must remain non-negative at each reachable
marking described by a state in S.

– For each state s not allowing b, there must exist a place p such that Wb is
larger than Ms(p), where Ms is the marking associated to s.

– Any two different states s′, s′′ must be distinguished by a place p′ such that
Ms′(p′) �= Ms′′(p′).

In many cases, notably for CF and MG synthesis [3,4,9,12], hence in this
study, the last constraint, called the separation property, arises from the other
two and from the assumptions on TS .

Two Subsets of States Relevant to the WMG-Synthesis. The first two
constraints above are linked to two particular subsets of states of TS : for each
label x ∈ T , we define

Analysis and Synthesis of Weighted Marked Graph Petri Nets 35

OX (x) = {r ∈ S | r[t〉 ⇒ t = x} and NXX (x) = {s ∈ S|¬s[x〉∧∀s′ ∈ s• : s′[x〉}.
For each state s in OX (x) (the notation stemming from “Only X”), the only

arc starting at s, if any, is labelled x. Let us consider a place pa,b and a longest
sequence without a starting from some state s. This sequence is finite since the
lts is finite, and each cycle along the sequence, if any, has support T , hence
contains an a. Thus, we reach a state r either without successor (this may only
occur if the lts is acyclic) or with a single output a, hence in OX (a) in both
cases, and Ms(pa,b) ≥ Mr(pa,b). As a consequence, to check that all markings
of pa,b reachable from ι are non-negative, we only have to check the states in
OX (a): r ∈ OX (a) ⇒ Mr(pa,b) ≥ 0 and Ms(pa,b) ≥ 0.

For each state s in NXX (x), x cannot be executed at s (hence the first two
letters NX of the notation), but in each next state s′, if any, x is enabled (hence
the last letter X of the notation). Let us assume that a place pa,b may be used to
exclude performing b at some state s (i.e. ¬s[b〉), meaning Ms(pa,b) < Wb. If s′[t〉s
with ¬s′[b〉 (which implies t �= b), then Ms(pa,b) ≥ Ms′(pa,b), so that the same
place pa,b disables b at s′. Moreover, the longest chains of states excluding to
perform b are necessarily finite since b occurs in any non-empty cycle; hence they
all end in states of NXX (b). As a consequence, in order to exclude performing
b when necessary, one only has to find, for each state r ∈ NXX (b), a place
pa,b such that Mr(pa,b) < Wb (while allowing all valid transitions, as expressed
through OX (a)). In some cases, a same place pa,b can be used for several states
in NXX (b).

In our case, for any label x, the states in NXX (x) have a very special shape,
highlighted in the next lemma whose proof is illustrated in Fig. 7.

r

s1 s2

r1 r2

s s′
s′′ s′′′

b

x

a
x

a

b

x
a

b
a

b

x

b

a

Fig. 7. Illustration of the proof of Lemma 5.

Lemma 5 (Single outputs of the states in NXX). Let TS = (S,→, T, ι) be
a lts satisfying property b. If x, a, b ∈ T , r ∈ NXX (x), r[a〉 and r[b〉, then a = b.

Proof. Let us assume that r[a〉r1 and r[b〉s1 with a �= b. Since r ∈ NXX (x), we
have r1[x〉r2 and s1[x〉s2 for some states r2, s2. By persistence (and determinism),
we also have r1[b〉s, s1[a〉s, s[x〉s′, r2[b〉s′ and s2[a〉s′ for some s, s′. By backward
persistence, we then have s′′[a〉r2 and s′′[b〉s2 for some s′′, as well as s′′′[x〉s′′

and s′′′[b〉s1 for some s′′′. Finally, by backward determinism, s′′′ = r and r[x〉,
contradicting the fact that r ∈ NXX (x). ��

36 R. Devillers and T. Hujsa

If TS is acyclic, by persistence there is a unique (maximal) state without
successor; let us call it s∞; we then have s∞ ∈ ∩x∈T NXX (x). If TS is cyclic,
there is no such state. In any case, we may have several states s and label a �= x
in some NXX (x) with s[ax〉.

4.3 Computational Synthesis in the General Cyclic Case

Let TS = (S,→, T, ι) be a lts satisfying properties b and c, denoting by π
the unique minimal Parikh vector of small cycles, with support T . Each place
pa,b must satisfy Wa · π(a) = Wb · π(b), thus we can choose Wa = π(b) and
Wb = π(a) (or any proportional values1, in particular π(b)/ gcd(π(a), π(b)) and
π(a)/ gcd(π(a), π(b))), and the only parameter that still needs to be fixed is the
initial marking (plus the exact pairs a, b for which we need those places).

For each b ∈ T , we need such a place pa,b if there is a state s ∈ NXX (b)
such that s[ab〉 (otherwise, there is no way to enable a b after an a when b is
not directly enabled). We denote by pred(b) the set {a ∈ T |∃s ∈ NXX (b), s[ab〉}
and, for any a ∈ pred(b), NXX (a, b) = {s ∈ NXX (b)|s[ab〉}.

For each a, b ∈ T such that a ∈ pred(b), since Wa = π(b) and Wb = π(a), we
have to solve the following constraints (in M0, over the non-negative integers):

{∀s ∈ OX (a) : M0(pa,b) ≥ Δs(b) · π(a) − Δs(a) · π(b)
∀s ∈ NXX (a, b) : M0(pa,b) < Δs(b) · π(a) − Δs(a) · π(b) + π(a)

This amounts to first compute

M0(pa,b) = max
s∈OX (a)

{Δs(b) · π(a) − Δs(a) · π(b)}

and then to check that, for each s ∈ NXX (a, b),

M0(pa,b) < Δs(b) · π(a) − Δs(a) · π(b) + π(a).

If each such system of constraints is solvable, we obtain a WMG solution of TS .
Otherwise, there is no solution and the reason is known.

4.4 Computational Synthesis in the General Acyclic Case

In the acyclic case, we may first apply the factorisation techniques of [14–16]
to check if the given lts is prime and thus has a chance to have a connected
solution. The weights Wa and Wb around the place pa,b are not constrained by a
T-semiflow. Thus, we may need variants of such places (differing by the weights
Wa, Wb and the initial marking). We may also need places p∗,b and pa,∗; in
particular, a place p∗,b with Wb = 1 and M0 = Δs∞(b) excludes executing b
at the final state s∞. Such a place may be redundant with other ones, but we
do not aim here at building an optimal solution: we focus on the existence of a
solution and on its construction.
1 This is the only way to define an adequate pa,b; in particular, there is no p∗,b or pa,∗.

Analysis and Synthesis of Weighted Marked Graph Petri Nets 37

In this acyclic case, the enabledness of labels is described by the first set of
constraints below, using again the sufficient condition stating that the markings
at states from OX (a) must be non-negative. The last constraint expresses that
the place is useful for excluding some transition from some state.

For each b ∈ T , a ∈ pred(b) and s ∈ NXX (a, b), we have to solve the
following constraints (in M0(pa,b),Wa,Wb ∈ N):

{∀s′ ∈ OX (a) : M0(pa,b) ≥ Δs′(b) · Wb − Δs′(a) · Wa

M0(pa,b) < Δs(b) · Wb − Δs(a) · Wa + Wb.

To solve such a system, we can first consider the system in Wa and Wb:

∀s′ ∈ OX (a) : Δs(b) · Wb − Δs(a) · Wa + Wb > Δs′(b) · Wb − Δs′(a) · Wa

i.e.: ∀s′ ∈ OX (a) : [Δs(b) − Δs′(b) + 1] · Wb > [Δs(a) − Δs′(a)] · Wa

and then check if there exists a solution satisfying:

Δs(b) · Wb − Δs(a) · Wa + Wb > 0.

If each such system of constraints is solvable, we obtain a WMG solution of
TS . Otherwise, no solution exists and we know the reason.

5 Conclusions and Perspectives

Weighted marked graphs (WMGs) form a well-known subclass of Petri nets
with numerous real-life applications. These nets have been extensively studied
in previous works, leading to strong theoretical results.

For this class, we obtained new structural and behavioural properties, such
as backward persistence. We also delineated necessary conditions that must be
fulfilled by a labelled transition system to be WMG-solvable. We showed that
these necessary conditions are not sufficient. Finally, we specialised the synthesis
procedures devised for choice-free nets in [3,5–7,9] to WMG nets.

A perspective is to develop additional properties of WMGs in order to
enhance the pre-synthesis phase, allowing to discard non-solvable systems
promptly. Ideally, such properties would characterise the WMG-solvable labelled
transition systems in a purely structural way, in the spirit of the methods
designed for plain marked graphs and T-systems in [2,4].

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47967-4

2. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph Petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-
L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04921-2 13

https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-319-04921-2_13

38 R. Devillers and T. Hujsa

3. Best, E., Devillers, R.: Synthesis of persistent systems. In: Ciardo, G., Kindler, E.
(eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 111–129. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07734-5 7

4. Best, E., Devillers, R.: State space axioms for T-systems. Acta Inf. 52(2–3), 133–
152 (2015). https://doi.org/10.1007/s00236-015-0219-0

5. Best, E., Devillers, R.: Synthesis and reengineering of persistent systems. Acta Inf.
52(1), 35–60 (2015). https://doi.org/10.1007/s00236-014-0209-7

6. Best, E., Devillers, R.: Synthesis of bounded choice-free Petri nets. In: Aceto, L.,
Frutos Escrig, D. (eds.) Proceedings of 26th International Conference on Con-
currency Theory (CONCUR 2015), pp. 128–141 (2015). https://doi.org/10.4230/
LIPIcs.CONCUR.2015.128

7. Best, E., Devillers, R.: Synthesis of live and bounded persistent systems. Fundam.
Inform. 140, 39–59 (2015). https://doi.org/10.3233/FI-2015-1244

8. Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri
nets. Inf. Comput. 253(3), 399–410 (2017). https://doi.org/10.1016/j.ic.2016.06.
006

9. Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis:
algorithmic issues. Acta Inform. 54, 1–37 (2017)

10. Commoner, F., Holt, A., Even, S., Pnueli, A.: Marked directed graphs. J. Comput.
Syst. Sci. 5(5), 511–523 (1971). https://doi.org/10.1016/S0022-0000(71)80013-2

11. Crespi-Reghizzi, S., Mandrioli, D.: A decidability theorem for a class of vector-
addition systems. Inf. Process. Lett. 3(3), 78–80 (1975). https://doi.org/10.1016/
0020-0190(75)90020-4

12. Darondeau, P.: Equality of languages coincides with isomorphism of reachable state
graphs for bounded and persistent Petri nets. Inf. Process. Lett. 94(6), 241–245
(2005). https://doi.org/10.1016/j.ipl.2005.03.002

13. Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, New York (1995)

14. Devillers, R.: Products of transition systems and additions of Petri nets. In: Desel,
J., Yakovlev, A. (eds.) Proceedings of 16th International Conference on Application
of Concurrency to System Design (ACSD 2016), pp. 65–73 (2016). https://doi.org/
10.1109/ACSD.2016.10

15. Devillers, R.: Factorisation of transition systems. Acta Inform. 54, 1–24 (2017).
https://doi.org/10.1007/s00236-017-0300-y

16. Devillers, R., Schlachter, U.: Factorisation of Petri net solvable transition systems.
In: 39th International Conference on Applications and Theory of Petri Nets and
Concurrency, Bratislava (2018)

17. Hujsa, T., Delosme, J.M., Munier-Kordon, A.: On liveness and reversibility of
equal-conflict Petri nets. Fundam. Inform. 146(1), 83–119 (2016). https://doi.org/
10.3233/FI-2016-1376

18. Hujsa, T., Devillers, R.: On liveness and deadlockability in subclasses of weighted
Petri nets. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol.
10258, pp. 267–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57861-3 16

19. Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In:
Feng, T. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg
(1975). https://doi.org/10.1007/3-540-07135-0 113

20. Lee, E., Messerschmidt, D.: Static scheduling of synchronous data flow programs
for digital signal processing. IEEE Trans. Comput. C–36(1), 24–35 (1987). https://
doi.org/10.1109/TC.1987.5009446

https://doi.org/10.1007/978-3-319-07734-5_7
https://doi.org/10.1007/s00236-015-0219-0
https://doi.org/10.1007/s00236-014-0209-7
https://doi.org/10.4230/LIPIcs.CONCUR.2015.128
https://doi.org/10.4230/LIPIcs.CONCUR.2015.128
https://doi.org/10.3233/FI-2015-1244
https://doi.org/10.1016/j.ic.2016.06.006
https://doi.org/10.1016/j.ic.2016.06.006
https://doi.org/10.1016/S0022-0000(71)80013-2
https://doi.org/10.1016/0020-0190(75)90020-4
https://doi.org/10.1016/0020-0190(75)90020-4
https://doi.org/10.1016/j.ipl.2005.03.002
https://doi.org/10.1109/ACSD.2016.10
https://doi.org/10.1109/ACSD.2016.10
https://doi.org/10.1007/s00236-017-0300-y
https://doi.org/10.3233/FI-2016-1376
https://doi.org/10.3233/FI-2016-1376
https://doi.org/10.1007/978-3-319-57861-3_16
https://doi.org/10.1007/978-3-319-57861-3_16
https://doi.org/10.1007/3-540-07135-0_113
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1109/TC.1987.5009446

Analysis and Synthesis of Weighted Marked Graph Petri Nets 39

21. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

22. Marchetti, O., Munier-Kordon, A.: A sufficient condition for the liveness of
weighted event graphs. Eur. J. Oper. Res. 197(2), 532–540 (2009). https://doi.
org/10.1016/j.ejor.2008.07.037

23. Pino, J.L., Bhattacharyya, S.S., Lee, E.A.: A hierarchical multiprocessor schedul-
ing framework for synchronous dataflow graphs. Technical report, University of
California, Berkeley, May 1995

24. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 19

25. Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Syn-
chronization. Signal Processing and Communications. CRC Press, Boca Raton
(2009)

26. Teruel, E., Chrzastowski-Wachtel, P., Colom, J.M., Silva, M.: On weighted T-
systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55676-1 20

27. Teruel, E., Colom, J.M., Silva, M.: Choice-free Petri nets: a model for deterministic
concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern.
Part A 27(1), 73–83 (1997). https://doi.org/10.1109/3468.553226

28. Teruel, E., Silva, M.: Structure theory of equal conflict systems. Theor. Comput.
Sci. 153(1–2), 271–300 (1996). https://doi.org/10.1016/0304-3975(95)00124-7

https://doi.org/10.1016/j.ejor.2008.07.037
https://doi.org/10.1016/j.ejor.2008.07.037
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1007/3-540-55676-1_20
https://doi.org/10.1109/3468.553226
https://doi.org/10.1016/0304-3975(95)00124-7

Elementary Net Synthesis Remains
NP-Complete Even for Extremely

Simple Inputs

Ronny Tredup1(B), Christian Rosenke2, and Karsten Wolf1

1 Institut für Informatik, Universität Rostock, 18051 Rostock, Germany
{ronny.tredup,karsten.wolf}@uni-rostock.de

2 arivis AG, Erika-Mann-Straße 19-23, 80636 Munich, Germany
christian.rosenke@arivis.com

Abstract. Elementary net systems (ENS) are the most fundamental
class of Petri nets. Their synthesis problem has important applications
in the design of digital hardware and commercial processes. Given a
labeled transition system (TS) A, feasibility is the NP-complete decision
problem whether A can be synthesized into an ENS. It is known that A
is feasible if and only if it has the event state separation property (ESSP)
and the state separation property (SSP). Recently, these properties have
also been studied individually for their practical implications. A fast
ESSP algorithm, for instance, would allow applications to at least vali-
date the language equivalence of A and a synthesized ENS. Being able to
efficiently decide SSP, on the other hand, could serve as a quick-fail pre-
processing mechanism for synthesis. Although a few tractable subclasses
have been found, this paper destroys much of the hope that many prac-
tically meaningful input restrictions make feasibility or at least one of
ESSP and SSP efficient. We show that all three problems remain NP-
complete even if the input is restricted to linear TSs where every event
occurs at most three times.

1 Introduction

ENSs are a Petri net class that provides a lot of useful properties for the speci-
fication, verification, and synthesis of asynchronous or self-timed circuits [7,13].
That is why synthesizing ENSs is a useful act in the description of processes in
digital hardware. The inherent concepts of choice and causality also make ENSs
the ideal starting point for process modeling languages like the Business Process
Modeling Notation [14], Event Driven Process Chains [15] or activity diagrams in
the UML standard [16]. As pointed out in [1], especially the simpleness of ENSs
is useful for the specification of workflow management systems like milano.

Feasibility for ENS synthesis is the problem to decide if a given TS A can be
synthesized into an ENS, that is, if it is isomorphic to the state graph of some
ENS. Traditionally, this problem is approached by the state separation property,
SPP, and the event state separation property, ESSP. In fact, A is isomorphic to
the state graph of an ENS if and only if it satisfies both properties [4].
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 40–59, 2018.
https://doi.org/10.1007/978-3-319-91268-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_3&domain=pdf

Hardness of ENS Synthesis for Restricted Inputs 41

This does not mean that the SSP and the ESSP are not of interest when
considered alone. For instance, synthesizing TSs having only the ESSP leads to
Petri nets that implement the given behavior but have fewer states [4].

Deciding the SSP or ESSP is NP-complete [3,8] shows that feasibility is NP-
complete, too. Nevertheless, considerable efforts are made to find practically
relevant tractable cases. For example, feasibility becomes tractable for Flip-Flop
nets, a superclass of ENSs [12]. Free-Choice Acyclic ENSs [1], a sub-class of ENS
applied in workflow models, allow polynomial time feasibility, too.

The subject of this paper is to analyze if, instead of altering the admissible
output nets, restricting the allowed input TSs can lead to tractable cases, too.
The hope is that there are considerably large subclasses of practically significant
TSs that make, feasibility or at least one of the SSP or ESSP, efficiently decidable.
Thinking of reasonable input constraints, putting restrictions on the number of
events that can happen at a state is probably the first suggestion coming up. As
a matter of fact, benchmarks in the digital hardware design community show
that TSs often have few choices, that is, states with an overall limited degree of
outgoing arcs [6]. Another immediate idea to reduce possible input is to limit
the number of occurrences of an event in the whole TS.

This paper shows that natural input restrictions like these have little influ-
ence on the problems complexity. In fact, it shows that the SSP, the ESSP, and
feasibility remain NP-complete even for what we call linear 3-fold TSs. Here,
every state, except for initial and terminal, has exactly one successor and pre-
decessor and every event occurs at most three times in the TS.

That the problem’s hardness survives even on linear TSs is very surprising.
They have already been studied in [5] where feasibility is shown to be decidable
by a letter counting algorithm in quadratic time if the linear input TSs have just
two different events and the sought net is a place/transition Petri net.

We organize this paper as follows: The following section introduces prelimi-
nary notions. Section 3 develops a modular concept for TSs and shows that, for
linear TSs, the ESSP implies the SSP. Notice that this implies the equivalence
of feasibility and ESSP for this class of TSs. Section 4 gives a polynomial time
reduction of cubic monotone one-in-three 3-SAT to linear 3-fold ESSP, implying
that the latter is NP-complete. Hence, 3-fold feasibility becomes NP-complete,
too. Finally, Sect. 5 provides a polynomial time reduction of linear 3-fold ESSP to
linear 3-fold SSP. Hence, the last of the three problems also turns NP-complete.
This paper is an extended abstract for the first part of the technical report [11].
The proofs that had to be removed due to space limitation are given in the
report.

2 Preliminaries

A (deterministic) transition system A = (S,E, δ, s0) is defined by finite disjoint
sets S of states and E of events, a partial transition function δ : S × E → S,
and an initial state s0 ∈ S. We understand A as an edge-labeled directed graph
using S as node set. Every triple δ(s, e) = s′ is read as an e-labeled arc s e s′

42 R. Tredup et al.

from s to s′. We say that an event e occurs at a state s if δ(s, e) = s′ for some
state s′ and we formally abbreviate this with s e .

This paper deals with linear TSs defined by A = s0
e1 s1

e2 . . . et st, the
sequence of states and events starting with s0 and ending at a terminal st. The
only present arcs si−1

ei si link consecutive states for i ∈ {1, . . . , t}. The events
are E =

⋃t
i=1{ei}. Aside from linearity this paper is mostly restricted to 3-fold

TSs where every event in E occurs at most at three states.
For a region, the pivot concept of Petri net synthesis, we need the following

notions: Given a set R of states, an arc s e s′ enters R, if s �∈ R and s′ ∈ R,
exits R, if s ∈ R and s′ �∈ R, or else obeys R. With respect to this, a set of
states R ⊆ S is a region if there is a so-called signature sig : E → {−1, 0, 1}
that, for every event e ∈ E, specifies the behavior sig(e) of all e-labeled arcs
(1: enter, 0: obey, −1: exit). This means, all arcs s e s′ have to satisfy the
equation R(s′) = sig(e) + R(s), where, by a little abuse of notation, R(s) = 1
if s ∈ R and otherwise R(s) = 0 for all s ∈ S. For a region R, there exists only
one signature, so we may call it the signature sigR of R. By R(A) we denote
the set of all regions of a TS A. Moreover, we use enterR = {e | sigR(e) = 1},
exitR = {e | sigR(e) = −1}, and obeyR = {e | sigR(e) = 0} to classify events
according to their behavior with respect to R’s border.

Based on the definition of regions, we say that two states s, s′ ∈ S are sepa-
rable in A if there is a region R ∈ R(A) with R(s) �= R(s′). The state separation
property, is satisfied by A if all states are pairwise separable. An event e ∈ E

is called inhibitable at state s ∈ S with ¬(s e) if there is a region R ∈ R(A)
such that R(s) = 0 and sigR(e) = −1. A TS A has the event state separation
property if all events e are inhibitable at all states s that do not fulfill s e . If
A has the SSP and ESSP it is called feasible. We say that a subset R ⊆ R(A)
is a witness for the SSP, respectively the ESSP, of A if all states are separable,
respectively all events are inhibitable, by the regions of R.

The next observation for a region R follows by a simple induction over the
transitions s e s′ and the requirement R(s′) = R(s) + sigR(e):

Observation 1. If R is a region of a linear TS A = s0
e1 . . . et st then every

subsequence si
ei+1 . . .

ej sj fufills
∑j

l=i+1 sigR(el) = R(sj) − R(si).

Notice that we do not formally define ENSs in this paper. As we approach
the feasibility problem by the SSP and ESSP which are defined on the basis of
TSs it is not necessary. For the interested reader, we recommend the monograph
[4] for an excellent introduction to the topic.

3 Unions, Transition System Containers

The following concept of unions allows us to easily generate gadgets for our
NP-completeness proofs. Formally, if

A0 = s00
e01 . . .

e0t0 s0t0 to An = sn
0

en
1 . . .

en
tn sn

tn

Hardness of ENS Synthesis for Restricted Inputs 43

are linear TSs with pairwise disjoint states (but not necessarily disjoint events)
then we say that U = U(A0, . . . , An) is their union. By S(U) we denote the
entirety of all states in A0, . . . , An and E(U) is the aggregation of all events.
If every event in E(U) occurs at most at three states of S(U), which are not
necessarily part of the same TS, then we say that U is 3-fold.

For simplicity, we also build unions recursively: Firstly, every TS A is iden-
tified with the union containing only A, that is, A = U(A). Next, if U1 =
U(A1

0, . . . , A
1
n1

) to Um = U(Am
0 , . . . , Am

nm
) are unions, where possibly Ai = Ui,

then U(U1, . . . , Um) is the flattened union U(A1
0, . . . , A

1
n1

, . . . , Am
0 , . . . , Am

nm
).

Next, we lift regions, the SSP and ESSP to unions as follows: We say that
R ⊆ S(U) is a region of U if and only if it permits a signature sigR : E(U) →
{−1, 0, 1} in the following sense: For all i ∈ {0, . . . , n} the subset Ri = R ∩ Si of
R, coming from the states Si of Ai, has to be a region of Ai with the signature
sigRi

that resembles sigR on the events Ei of Ai. This means sigR(e) = sigRi
(e)

for all e ∈ Ei. Then, U has the SSP if all states s, s′ ∈ S(U), that are part of
the same TS Ai, are separable by Ai’s part R∩Si of a region R of U . Moreover,
U has the ESSP if for all events e ∈ E(U) and all states s ∈ S(U) with ¬(s e)
there is a region R of U that inhibits e at s, that is, R(s) = 0 and sigR(e) = −1.
Again, U is feasible if U has the SSP and ESSP.

To merge a union U = U(A0, . . . , An), we define its joining A(U) as the
following concatenation of the independent TSs in the joined linear TS

A(U) = A0
y1
1 z1

y1
2 A1

y2
1 z2

y2
2 . . .

yn
1 zn yn

2 An

which additionally uses 2n distinct connector events y1
1 , y

1
2 , . . . , y

n
1 , yn

2 that are
not in E(U) and n distinct connector states z1, . . . , zn that are not in S(U).
As A(U) preserves the manifoldness of all events in E(U) and as all connector
events occur at just one state we can conclude that a 3-fold union U leads to a
linear 3-fold TS A(U). The following lemma justifies the replacement of bulky
composite TSs with modular unions:

Lemma 1. If U = U(A0, . . . , An) is the union of linear TSs A0, . . . , An and
A = A(U) is their joining then U has the SSP (ESSP) if and only if A has the
SSP (ESSP).

Before we can prove Lemma 1 we need the following statement:

Lemma 2. If R ⊆ R(A) is a witness for the ESSP of A = s0
e1 . . . et st then

it is also a witness for the SSP of A.

Proof. Let R ⊆ R(A) be a witness for the ESSP of A and, for a contradiction,

assume that there is a subsequence si
ei+1 . . .

ej sj
ej+1 . . . et st of A such that

si, sj are not separable by any region of R. If ei+1 and ej+1 are not the same
event then the region R ∈ R that inhibits ei+1 at sj has sigR(ei+1) = −1,
implying R(si) = 1, and R(sj) = 0, a contradiction. As each event has to be
inhibit at the terminal state this also implies that sj is different from st.

44 R. Tredup et al.

Hence, let k ≥ 1 be the greatest integer satisfying i+k ≤ j such that each of

the subsequences si
ei+1 . . .

ei+k si+k and sj
ej+1 . . .

ej+k sj+k of A are built on
the same series of events, that is, ei+� = ej+� for all � ∈ {1, . . . , k}.

If i + k < j then the event ei+k+1 �= ej differs from ej+k+1. The region
R ∈ R that inhibits the event ei+k+1 at sj+k has sigR(ei+k+1) = −1, R(si+k) =
1, R(sj+k) = 0. If R(sj) = 0, Observation 1 implies that

R(sj+k) − R(sj) =
j+k∑

�=j+1

sigR(e�) = 0 =
i+k∑

�=i+1

sigR(e�) = R(si+k) − R(si)

and, consequently, that R(si) = 1, a contradiction. If R(sj) = 1 the same con-
clusions lead to R(si+k)−R(si) = −1, which makes R(si) = 2 and is impossible.

Hence, we have to assume that si+k = sj . In this case, Observation 1 can
be used to infer for every region R that R(sj) − R(si) = R(sj+k) − R(sj) and,
thus, R(sj+k) + R(si) = 2R(sj). Hence, R(sj+k) + R(si) is even, which, for the
binary function R, means R(sj+k) = R(si). If the event ei+1 does not occur
at sj+k then there is no region R inhibiting ei+1 at sj+k. Such a region would
have sigR(ei+1) = −1, R(si) = 1, R(sj+k) = 0, which leads to the contradiction
R(sj+k) �= R(si).

Consequently, ej+k+1 = ei+1 and the sequence ei+2 . . . ejej+1 = ei+2 . . .
ejei+1 occurring at si+1 equals the the sequence ej+2 . . . ej+kej+k+1 = ej+2 . . .
ej+kei+1 occurring at sj+1. But then again, Observation 1 provides R(sj+1) −
R(si+1) = R(sj+k+1) − R(sj+1). By the same argumentation, we get
R(sj+k+1) = R(si+1) and, by the assumption that ei+2 does not occur at sj+k+1,
we get R(sj+k+1) �= R(si+1). This means ej+k+2 = ei+2. This argument can be
continued at most until st is reached where the assumption that si+k = sj finally
fails. 	

Armed with the result that the ESSP of a linear TS implies the SSP, we can
show the validity of using unions:

Proof of Lemma 1. If : Projecting a region separating s and s′, respectively
inhibiting e at s, in A(U) to the component TSs yields a region separating s
and s′, respectively inhibiting e at s in U . Hence, the (E)SSP of A(U) trivially
implies the (E)SSP of U .

Only if : A region R of U separating s and s′, respectively inhibiting e at s,
can be completed to become an equivalent region of A(U) by setting

R(zi) = 0, sigR(yi
1) = −R(si−1

ti−1
), and sigR(yi

2) = R(si
0)

for all i ∈ {1, . . . , n}. Notice that R also inhibits e at all connector states. Hence,
constructing one region for every event as demonstrated inhibits all events at all
connector states.

For the (E)SSP of A(U) it is subsequently sufficient to analyze (event) state
separation concerning the connector states (events). It is easy to see, that each
connector state zi defines a region Ri = {zi} of A(U) that separates zi from all

Hardness of ENS Synthesis for Restricted Inputs 45

other states in A(U). This already implies that A(U) has the SSP if U has the
SSP. Moreover, the region Ri also inhibits yi

2 at all required states of A(U).
To show that A(U) has the ESSP in case that U has the ESSP, it is only

left to argue for all i ∈ {1, . . . , n} that yi
1 can be inhibited at all appropriate

states. Firstly, the set Si−1 of states from component Ai−1 is a region of A(U)
that makes sure that yi

1 is inhibited at all required states in S(U) \ Si−1.
Secondly, the event yi

1 can be inhibited at any state s ∈ Si−1 as follows: As
U has the ESSP, there is a subset R ⊆ R(U) of all regions of U witnessing the
ESSP for U . Hence, for all i ∈ {0, . . . , n} the set R(Ai) ∩ R witnesses that Ai

has the ESSP and, by Lemma2, witnesses the SSP of Ai, too. Subsequently,
U has the SSP, which, by the argumentation above, means that A(U) has the
SSP. Consequently, there is a region R of A(U) separating s and si−1

ti−1
, that is,

where R(s) = 0 and R(si−1
ti−1

) = 1. If R(zi) = 0 then R already inhibits yi
1 at s.

Otherwise, as each connector event is unique in A(U), we simply get what we
need by removing zi from R to get a region R′ = R \ {zi} that behaves like R
except for R′(zi) = 0, sigR′(yi

1) = −1 and sigR′(yi
2) = R′(si

0). 	

Notice that the connector states are crucial for the successful transfer of

ESSP from U to A(U). Without the additional degree of freedom, that they
provide, it would be generally impossible to solve in A(U) some of the ESSP
problems which originate from the subsequences that represent the individual
TSs of the union.

4 The Hardness of ESSP and Feasibility

This section starts with ESSP and shows that it remains a hard problem even
if the input is restricted to linear 3-fold TSs:

Thoerem 1. To decide the ESSP for linear 3-fold transition systems is NP-
complete.

By Lemma 2 the ESSP implies the SSP on linear TSs. Hence, if a linear TS
A has the ESSP then it is immediately feasible. Reversely, if A is feasible then,
by definition, it also has the ESSP. Consequently, on linear TSs both properties
are equivalent and therefore the following theorem is a corollary of Theorem1:

Thoerem 2. Feasibility of linear 3-fold transition systems is NP-complete.

To prove Theorem 1, we present a polynomial time reduction of a cubic mono-
tonic set ϕ of boolean 3-clauses to a 3-fold union Uϕ of linear TSs such that ϕ
has a one-in-three model M if and only if Uϕ has the ESSP. As deciding the
existence of M is NP-complete [10] and as it is known from [3] that deciding the
ESSP is in NP the announced construction of Uϕ together with the discussion
of A(U) in Sect. 3 proves the theorem.

In compliance to [10], ϕ is a set {K0, . . . ,Km−1} of m clauses, each a set
Ki = {Ai, Bi, Ci} of exactly three distinct elements from V (ϕ), the set of all

46 R. Tredup et al.

boolean variables in ϕ. Moreover, every variable occurs in exactly three clauses
of ϕ which implies |V (ϕ)| = m. A one-in-three model M of ϕ is a subset of the
variables V (ϕ) such that |M ∩ Ki| = 1 for all i ∈ {0, . . . , m − 1}.

The development of union Uϕ = U(B, T) is divided into the subunions B and
T . Basically, B provides all basic components for the translation of one-in-three
satisfiability to ESSP. It implements a single key ESSP instance, that is, a key
event k which is inhibited at a certain key state of B by a unique region RB. By
design, RB fixes a negative signature for an event series called the key copies.

In T , the fixed signature of key copies is used for the actual translation of
one-in-three satisfiability to ESSP. In fact, a region R of Uϕ inhibiting k at the
key state has to extend the unique region RB of B by a region RT of T that
has a consistent signature for all events shared by B and T . As the only shared
events are key copies, RT inherits their negative signature from RB.

Next, T applies the exiting key copies to make sure that RT exists if and only
if ϕ has a one-in-three model. To this end, T encodes all variables X ∈ V (ϕ)
as an event X ∈ E(T) and every clause Ki = {Ai, Bi, Ci} is implemented by a
translator union Ti. In Ti, the three events of Ki are arranged in such a way that,
if the key copies exit then exactly one of Ai, Bi, Ci has a positive signature while
the other two obey. As this happens simultaneously for all i ∈ {0, . . . , m − 1},
there is a region RB ∪ RT that inhibits k at the key state if and only if exactly
one event Ai, Bi or Ci enters in every translator Ti if and only if a variable subset
M ⊆ V (ϕ) intersects every clause Ki = {Ai, Bi, Ci} in exactly one element if
and only if M is a one-in-three model of ϕ. Finally, the construction of Uϕ makes
sure that if k is inhibitable at the key state then all other events are inhibitable
at all other required states, too.

The behavior of B and T is created by several gadget TSs. A single master M
provides the key event and the key state. Next, there are 6m refreshers Fj and
6m duplicators Dj that generate the negative signature of all key copies. Hence,
B = U(M,F0, . . . , F6m−1,D0, . . . , D6m−1) is a union of altogether 12m + 1 TSs.
The union T = U(T0, . . . , Tm−1) consists of the m translators, each a union
Ti = U(Ti,0, Ti,1, Ti,2) of three linear TSs. To create a complete picture of our
reduction, we subsequently introduce the details of all these gadget TSs. We
like to point out that this does not explain the role of all used events. Some
of them are only included to enable the model-independent inhibition of event
state pairs that are not the key instance. This applies especially to the helper
and zero events h, hj , z2j+1 with j ∈ {0, . . . , 6m − 1}.

Master. M is a linear TS providing the key event k and the key state m6.
Figure 1(a) defines M and shows RM the part of region RB belonging to
M . Notice that the region RM that inhibits k at m6 is unique. The so-called
opposites o0, o1 enter and the zero z0 obeys. These events initialize the setup of
the key copies’ negative signature. The subsequent refreshes and duplicators
implement this synchronization in an assembly line fashion.

Refreshers. Fj are linear TS that consume the opposites o2j , o2j+1 to generate
key copies k3j , k3j+1, k3j+2. More precisely, for all j ∈ {0, . . . , 6m−1} refresher
Fj takes the two previously prepared opposites o2j , o2j+1 and forces a negative

Hardness of ENS Synthesis for Restricted Inputs 47

signature onto the key copies k3j , k3j+1, k3j+2. This consumes both remaining
applications of o2j , o2j+1 such that no further opposites are available at this
point. The definition of Fj together with its fraction RFj of region RB is
given in Fig. 1(b). It is easy to see that, if the input opposites enter, there is
no other way to choose RFj and that this leads to exiting k3j , k3j+1, k3j+2.

Duplicators. Dj are linear TSs that provide the next opposites o2j+2, o2j+3

and zero z2j+2. To this end, they eat up the remaining two applications of
k3j , k3j+1 and one of the remaining applications of k3j+2 provided by refresher
Fj , as well as one occurrence of z2j . The generated opposites o2j+2, o2j+3 and
the zero z2j+2 prepare the work of Fj+1 and Dj+1. Main result of step j,
however, is the one remaining application of the key copy k3j+2 with neg-
ative signature. Therefore, the whole process chain produces 6m key copies
k2, k5, . . . , k18m−1, each of them free to be applied one more time. Figure 1(c)
introduces Dj as well as the part RDj of region RB. Again, it is easy to ver-
ify that, if the input key copies exit and z2j obeys, RDj is the only possible
region of Dj . Note that, as the last needed key copy k18m−1 is already pro-
duced by F6m−1, duplicator D6m−1 is actually not required. But for a unique
case study it is more convenient to keep it the construction.

a) m0 m1 m2 m3 m4 m5 m6 m7 m8
k z0 o0 k h z0 o1 k

b) fj,0 fj,1 fj,2 fj,3 fj,4 fj,5 fj,6 fj,7
o2j k3j o2j+1 k3j+1 o2j k3j+2 o2j+1

c)

dj,0 dj,1 dj,2 dj,3 dj,4 dj,5 dj,6 dj,7 dj,8

dj,9dj,10dj,11dj,12dj,13dj,14

k3j z2j hj k3j z2j+1 hj z2j+2 k3j+1

z2j+1

o2j+2k3j+1
z2j+2o2j+3k3j+2

Fig. 1. Gadgets of union B together with their parts of the region RB . States in the
respective region are shown with a gray background. (a) M with RM , (b) Fj with RFj ,
(c) Dj with RDj .

The following lemma summarizes the functionality of union B:

Lemma 3. Let RM = {m0,m3,m7} and, for all j ∈ {0, . . . , 6m− 1}, let RFj =
{fj,1, fj,3, fj,5, fj,7} and RDj = {dj,0, dj,3, dj,6, dj,7, dj,10, dj,13}. Except for the
complement, the set of states

RB = RM ∪ RD0 ∪ . . . RD6m−1 ∪ RF0 ∪ · · · ∪ RF6m−1

is the only region of B that inhibits k at m6. For all i ∈ {0, . . . , 18m − 1} the
signature of the key copy ki is exiting, that is, sigRB (ki) = −1.

48 R. Tredup et al.

Proof. Figure 1(a) shows that RM is a region of M that inhibits k at m6 and that
RFj ∪ RDj yields a region of Fj ∪ Dj where the key copies exit, the zeros obey
and the opposites enter. We further observe, that for i �= j the unions Fi ∪ Di

and Fj ∪ Dj have at most zeros and opposites in common and with respect to
these events the signature of the regions RFi ∪ RDi and RFj ∪ RDj are equal.
Furthermore, the master M shares events only with F0,D0, namely o0, o1 and
z0. With respect to these events the signatures of RM and RF0 ∪ RD0 are equal.
Altogether, we conclude that RB is a region of B that inhibits k at m6 where
all key copies exit.

Reversely, let R be a region of B that inhibits k at m6. Without loss of
generality we can assume that R(k) = −1 and R(m6) = 0. Firstly, we show that
R∩M = RM . From sigR(k) = −1 we obtain R(m0) = R(m3) = R(m7) = 1 and
R(m1) = R(m4) = R(m8) = 0. From R(m1) = 0 and R(m6) = 0 we conclude
sigR(z0) = 0 which yields R(m2) = R(m5) = 0. That is R ∩ M = RM .

Now we show, that R ∩ Fj = RFj and that R ∩ Dj = RDj . To this end, we
initially argue that RFj is the only region of Fj such that all opposite events
enter. Figure 1(b) proves RFj to be a region with announced event behavior.
Observe, that RFj forces all key copies to exit. Let R′ be a region of Fj such
that all opposite events enter. It follows immediately that R′(fj,1) = R′(fj,3) =
R′(fj,5) = R′(fj,7) = 1 and R′(fj,0) = R′(fj,2) = R′(fj,4) = R′(fj,6) = 0 which
results in R′ = RFj .

We further show, that RDj is the only region of Dj where all key copies exit
and the event z2j obeys. Again, Fig. 1(c) proves RDj to behave as announced.
Now, let R′ be a region of Dj where all key copies exit and z2j obeys. We obtain
R′(dj,�) = 1 for � ∈ {0, 3, 7, 10, 13} and R′(dj,�) = 0 for � ∈ {1, 4, 8, 11, 14}.
From R′(dj,1) = 0 and sigR′(z2j) = 0 we have R′(dj,2) = 0 which, together with
R′(dj,3) = 1, yields sigR′(hj) = 1. From sigR′(hj) = 1 we conclude R′(dj,5) = 0
and R′(dj,6) = 1 which, together with R′(dj,4) = 0 and R′(dj,7) = 1, yields
sigR′(z2j+1) = sigR′(z2j+2) = 0. With sigR′(z2j+1) = sigR′(z2j+2) = 0 and
R′(dj,8) = R′(dj,11) = 0, we obtain R′(dj,9) = R′(dj,12) = 0. This means R′ =
RDj .

Finally, with R∩M = RM implying sigR(o0) = sigR(o1) = 1 and sigR(z0) =
0 we inductively obtain that R ∩ Fj = RFj and that R ∩ Dj = RDj for all
j ∈ {0, . . . , 6m − 1}. This results in R = RB. 	

After B has finished the job, we have 6m key copies with one free application,
namely the events k3j+2 for all j ∈ {0, . . . , 6m − 1}. In the construction of T ,
we need a sequence of six free key copies for every translator Ti. Consequently,
we assign to Ti the events k18i+2+3� for all � ∈ {0, . . . , 5}. We continue with the
description of our translators:

Translators. Ti = U(Ti,0, Ti,1, Ti,2) are unions that represent the clauses Ki =
{Ai, Bi, Ci} of ϕ. Figure 2 defines the three linear TSs Ti,0, Ti,1, Ti,2 of Ti and
presents RTi

Bi
, a possible part of a region of T .

A negative signature of the key copies makes sure that exactly one of the
variable events Ai, Bi, Ci gets a positive signature while the other two obey.

Hardness of ENS Synthesis for Restricted Inputs 49

a) ti,0,0 ti,0,1 ti,0,2 ti,0,3 ti,0,4 ti,0,5
k18i+2 Ai bi Ci k18i+11

b) ti,1,0 ti,1,1 ti,1,2 ti,1,3 ti,1,4
k18i+5 Bi pi k18i+14

c) ti,2,0 ti,2,1 ti,2,2 ti,2,3 ti,2,4
k18i+8 bi pi k18i+17

Fig. 2. The translators (a) Ti,0, (b) Ti,1, (c) Ti,2 with region RTi
Bi

, one of three possi-
bilities in case of exiting key copies. Here just Bi has a positive signature while Ai, Ci

obey.

In fact, RTi

Bi
selects the event Bi and there are two other regions RTi

Ai
and RTi

Ci

of Ti for the selection of Ai, respectively Ci.
The TSs Ti,1 and Ti,2 create a copy of Bi, namely the event bi that unlike Bi

occurs only in the translator Ti, and guarantees that the signature of both
events cannot be negative. To achieve this, both TSs surround a sequence,
Bi, pi or, respectively, bi, pi, with key copies. As the proxy event pi and the key
copies behave equally in both TSs, Bi and bi have to be equal, too. Moreover,
the negative signature of the key copies makes sure that their neighboring
events Bi, bi, pi cannot exit.
The TS Ti,0 is simply the event sequence Ai, bi, Ci surrounded by key copies.
Again, the negative signature of key copies prevents a negative signature for
their neighboring events, Ai and Ci. The exiting key copies also imply that
the signature of the event sequence Ai, bi, Ci has to add up to one. Hence, by
the equality of bi and Bi, exactly one of Ai, Bi, Ci enters.

Lemma 4. Let RT be a region of T where all contained key copies exit, that is,
where sigR(k3j+2) = −1 for all j ∈ {0, . . . , 6m − 1}. Then RT =

⋃m−1
i=0 RTi with

RTi being one of

RTi

Ci
= {ti,0,0, ti,0,4, ti,1,0, ti,1,3, ti,2,0, ti,2,3},

RTi

Bi
= RTi

Ci
∪ {ti,0,3, ti,1,2, ti,2,2},

RTi

Ai
= RTi

Ci
∪ {ti,0,2, ti,0,3}

for all i ∈ {0, . . . ,m−1}. Hence, for all clauses Ki = {Ai, Bi, Ci} there is exactly
one variable event Xi ∈ Ki such that sigRT (Xi) = 1.

Proof. We prove the lemma in the following steps: Firstly, we show for all i ∈
{0, . . . , 6m−1} that R being a region of Ti where all key copies exit implies that
exactly one event of {Ai, Bi, Ci} enters and the others obey. Secondly, we show
that R has to be equal to one of RTi

Ci
, RTi

Bi
, and RTi

Ai
. Thirdly, we argue that RT

behave as announced.
Assume R to be a region of Ti such that all key copies exit. Then it follows

immediately that R(ti,1,1) = R(ti,2,1) = 0 and R(ti,1,3) = R(ti,2,3) = 1. Hence,

50 R. Tredup et al.

by Observation 1 we have sigR(Bi) + sigR(pi) = sigR(bi) + sigR(pi) = 1 imply-
ing sigR(Bi) = sigR(bi) = 1 − sigR(pi) which by sigR(pi) ∈ {−1, 0, 1} again
implies that sigR(Bi) and sigR(bi) are nonnegative. Furthermore, by the exiting
key copies, on the one hand, we have R(ti,0,1) = 0 and R(ti,0,4) = 1 implying
that sigR(Ai) and sigR(Ci) are nonnegative. On the other hand, Observation 1
provides sigR(Ai)+sigR(bi)+sigR(Ci) = R(ti,0,4)−R(ti,0,1) = 1 which requires
that exactly one of Ai, bi, Ci enters. Altogether we have shown that exactly one
event of {Ai, Bi, Ci} enters and the others obey.

Now let R be a region of Ti such that all key copies exit. Then R includes
the sources of the key copies and excludes their sinks. If sigR(Ci) = 1, by
sigR(Ai) = sigR(bi) = sigR(Bi) = 0, we immediately obtain that R =
RTi

Ci
. If sigR(Bi) = sigR(bi) = 1 and sigR(Ai) = sigR(Ci) = 0 we have

R(ti,0,3) = R(ti,1,2) = R(ti,2,2) = 1, that is, R = RTi

Bi
. If sigR(Ai) = 1,

sigR(Ci) = sigR(bi) = sigR(Bi) = 0, we obtain R(ti,0,2) = R(ti,0,3) = 1 and
R(ti,2,2) = 0 implying R = RTi

Ai
.

Finally, if RT is a region of T such that all key copies exit, we have argued
that RT ∩ Ti ∈ {RTi

Ci
, RTi

Bi
, RTi

Ai
}. This completes the proof. 	

The following lemma establishes the foundation for the correctness of our
reduction:

Lemma 5. The union Uϕ can inhibit the key event k at the key state m6 if and
only if ϕ has a one-in-three model.

Proof. If: If M is a one-in-three model of ϕ, we firstly define a region RT =⋃m−1
i=0 RTi

Xi
of T by adding RTi

Xi
for every Ti where Xi = M ∩ Ki is the one

variable Ai, Bi or Ci of Ki covered by M . By definition, this lets all contained
key copies exit. By Lemma 3 the region RB of B inhibits k at m6 and lets all
key copies exit, too. As key copies are the only events shared by B and T , the
two regions are compatible and RB ∪ RT is a region of Uϕ inhibiting k at m6.
Only if: If R is a region of Uϕ that inhibits k at m6 then Lemma 3 states that,
without loss of generality, R contains RB as subregion for B. This implies that
all key copies exit. By Lemma 4, every i ∈ {0, . . . , m − 1} exactly defines one
variable event Xi ∈ Ki = {Ai, Bi, Ci} that has sigR(X) = 1, while sigR(Y) = 0
for the other two Y ∈ Ki \ X. This yields a one-in-three model M = {X | X ∈
V (ϕ), sigR(X) = 1}. 	

Having established the connection between the key region and the original
satisfiability problem, it remains to show for all other combinations of event e

and state s with ¬(s e) that e can be inhibited at s. This is done by one lemma
for every event e of Uϕ asserting the inhibition of e at every required state of
Uϕ. To show the lemmas, respective proofs provide tables with four columns
States, Exit, Enter and Affected TSs, each. Every row of such a table defines
a region that inhibits e at the states listed in the corresponding States column
and at all states of TSs of the union that do not occur in the associated Affected
TSs column. The Exit (Enter) cell shows the events with negative (positive)

Hardness of ENS Synthesis for Restricted Inputs 51

signature of the respective region. Moreover, Affected TS lists the TSs of Uϕ

having at least one event that participates in Exit or Enter.
That the regions given in a proof’s table inhibit e at all TSs that are not

affected, is derived from the following lemma introducing a mechanism that we
call region enhancement :

Lemma 6 (Region Enhancement). Let U = U(A1, . . . , Am) be a union, R be
a region of U , and Am+1, . . . , An be linear TSs such that for all i ∈ {m+1, . . . , n}
there is at most one arc si

ei s′
i in Ai where sigR(ei) is defined and sigR(ei) �= 0.

Moreover, for all i ∈ {m+1, . . . , n}, let Pi be the set of si and all its predecessor
states and let Pi = ∅ in case si does not exist. Then there is an enhanced region
R′ = R ∪ Rm+1 ∪ · · · ∪ Rn of union U(A1, . . . , Am, Am+1, . . . , An) with sigR′ =
sigR such that, for all i ∈ {m+1, . . . , n}, the region is enhanced by Ri = Si\Pi if
sig(ei) = 1, where Si is the state set of Ai, and otherwise, the region is enhanced
by Ri = Pi.

The proof of Lemma 6 is straightforward and therefore omitted. The following
lemma gives an example for the announced proof mechanism by showing that
the key event can be inhibited at all states of the union:

Lemma 7. The key event k is inhibitable in Uϕ.

Proof. By the key region, the key event is already inhibited in the entire master
and in the duplicator D0 except for the states d0,0, d0,3, d0,6, d0,7, d0,10, d0,13.
Furthermore, it remains to show, that k is inhibitable in all the other TSs:

States Exit Enter Affected TS

d0,0, d0,3, d0,6, d0,7 k, h0 z0, z1 M,D0

d0,10, d0,13 k, k0 z0 M,F0, D0

	

Hence, except for the key region, two additional regions are needed to inhibit

k in Uϕ. For instance, the first row of the given table represents a region R
where k, h0 exit, z0, z1 enter and all other events obey. The non-obeying events
affect, that is, occur only in U(M,D0). This is used in region enhancement from
Lemma 6 to extend R for a region of the entire union Uϕ. By R the key event k
is inhibited at d0,0, d0,3, d0,6, d0,7 and at all states of TSs different from M,D0.

Applying this template for all other states finally yields the inhibition of
all events at all states. However, this is fairly tedious work and not too much
enlightening. Therefore, we have shifted the remaining lemmas of this kind to
[11]. Since furthermore the polynomial running time of our reduction is obvious,
we consider the proof of Theorem 1 completed.

52 R. Tredup et al.

5 The Hardness of SSP

If SSP was of a lesser complexity than ESSP, it could serve as a fast fail pre-
process for feasibility. That means, if a linear TS fails the efficient SSP test in
question one could save the costly ESSP test. However, this possibility is ruled
out by a polynomial time reduction of linear 3-ESSP to linear 3-SSP provided
in this section:

Thoerem 3. To decide the SSP for linear 3-fold transition systems is NP-
complete.

Given a linear 3-fold TS A = (S,E, δ, s0), our reduction creates a separate
union Ue

s of linear 3-fold TSs for every pair of event e ∈ E and state s ∈ S that
do not fulfill s e . By construction, Ue

s has two key states that are separable
if and only if e can be inhibited at s in A. Then, as the unions get mutually
disjoint state and event sets by design, they can be smoothly merged into an
aggregate union UA = U(Ue

s | e ∈ E, s ∈ S,¬(s e)). If UA has the SSP then
the key states of Ue

s are separable for all relevant (e, s), which implies the ESSP
for A. Reversely, if A has the ESSP, we use Lemma 2 to get the SSP for UA.
Finally, we join the TSs of UA forming A′ = A(UA) and, by Lemma1, we get
that A′ has the SSP if and only if UA has the SSP if and only if A has the ESSP.

Having an outline of the primal reduction approach, the remainder of this
section focuses on the introduction of Ue

s for event e ∈ E and state s ∈ S failing
s e . Basically, Ue

s installs a TS M with two key states m0,m1 and a TS C
representing a copy of A such that, effectively, m0 and m1 can be separated only
by a key region R where sigR(e) = −1 and R(s) = 0. Hence, the separability of
m0 and m1 implies that e is inhibitable at s and vice versa. One difficulty with
this idea is to get along with just three assignments of event e. The union solves
this by including additional TSs that exploit properties of a key region to copy
the signature of e to other events subsequently serving as replacements for e.

Actually, the approach to copy the behavior of an event into other events is
similar to our approach in Sect. 4. Lemma 3 shows, that the copy functionality
of the refreshers and the duplicators in the region RB depends crucially on the
determined signature of o0, o1 and z0. Unfortunately, the restriction on linear
3-fold TSs heavily complicates the use of state separation to determine the sig-
nature of these three events. Therefore, we refrain from reusing the gadgets of
Sect. 4. However, the following reduction uses events with names and functions
similar to the respective counterparts in Sect. 4. In the following we go into the
details of the used gadget TSs:

Mapper. M is a linear TS on states {m0, . . . ,m5} where the separation of m0

and m1 by a suitable region RM makes sure that e ∈ exitRM . Figure 3(a)
introduces M together with M ’s part of a key region, RM . M uses the event
e already thrice to force the first two opposites o0 and o1 into enterRM .

Hardness of ENS Synthesis for Restricted Inputs 53

Duplicators. Dj are linear TSs on states {dj,0, . . . , dj,13} that, for a duplica-
tor part RDj of a key region, are supposed to synchronize the signature of e
with events {e2j , e2j+1}, so-called e-copies. In this way we work around the
limitation of using e only three times. There are five duplicators D0, . . . , D4

and each of them generates one e-copy e2j+1, j ∈ {0, . . . , 4} that has a free
assignment to be used somewhere else. As Fig. 3(b) demonstrates, every dupli-
cator Dj exploits the previous opposites o2j , o2j+1, which are appointed to
enterRDj , to force a negative signature onto the e-copies and to synchro-
nize two further opposites o2j+2, o2j+3 to be used in the next duplicator. The
helpers h2j , h2j+1 help to solve other state separation instances different from
the key instance.

Provider. P is a linear TS on states {p0, . . . , p7} which, for the provider part
RP of a key region, applies the negative signature of the e-copies e7 and e9
and the positive signature of the last two opposites o10 and o11 to provide
witness events w1 and w2 with sigRP (w1) = 1 and sigRP (w2) = −1. The
purpose of w1 and w2 is to enhance the following copy of A in such a way
that s is guaranteed to be outside a key region. See Fig. 3(c) for a definition
of P and RP .

Copy. C is a linear TS that basically copies A into the union. However, C
replaces every of the at most three occurrences of e by a free e-copy e1, e3, e5.

Also, s is enhanced by two edges s w1 p w2 s′. If there was an edge s e′
q in

A we let C continue with this edge after s′, that is, s′ e′
q. In C’s part RC

of a key region, the e-copies inherit the negative signature of e. Moreover, we
get sigRC (w1) = 1 and sigRC (w2) = −1 which means that neither s nor s′

are in RC . Combining these two facts, we get a slightly modified version of
RC that can be used as a region of A to inhibit e at s.

Altogether, the construction of Ue
s results in U(M,D0, . . . , D4, P, C). Notice

that the same construction scheme generates unions Ue
s for multiple instances

(e, s). Although not explained in detail at this point, we later enhance the con-
struction by a renaming mechanism that prevents possible state or event clashes
by enhancing the used state and event names with a unique identifier of the
union Ue

s they occur in.
The correctness of the given reduction is based on the following argumenta-

tion. Firstly, the following lemma formalizes that the separation of key states
implies a unique key region that inhibits e at s:

Lemma 8. If R is a region of Ue
s with m0 ∈ R and m1 �∈ R then

1. R ∩ {m0, . . . ,m5} = RM = {m0,m2,m4},
2. R ∩ {dj,0, . . . , dj,13} = RDj = {dj,1, dj,3, dj,5, dj,7, dj,8, dj,10, dj,12} for all j ∈

{0, . . . , 4},
3. R ∩ {p0, . . . , p5} = RP = {p0, p2, p5, p7},
4. sigR(e) = sigR(e0) = · · · = sigR(e9) = −1,
5. sigR(o0) = · · · = sigR(o11) = 1,

54 R. Tredup et al.

a) m0 m1 m2 m3 m4 m5
e o0 e o1 e

b)

dj,0 dj,1 dj,2 dj,3 dj,4 dj,5 dj,6

dj,7dj,8dj,9dj,10dj,11dj,12dj,13

o2j e2j o2j+1 h2j o2j e2j+1

o2j+1

h2j+1
e2jo2j+2e2j+1o2j+3e2j

c) p0 p1 p2 p3 p4 p5 p6 p7
e7 w1 e9 h o10 w2 o11

Fig. 3. Gadgets of union Ue
s together with their parts of a key region. (a) M with RM ,

(b) Dj with RDj , (c) P with RP .

6. sigR(w1) = 1, and sigR(w2) = −1, and
7. the set R′ = R ∩ S is a region of A inhibiting e at s.

Proof. By m0 ∈ R and m1 �∈ R it is easy to see that sigR(e) = −1, which
implies m2,m4 ∈ R and m1,m3,m5 �∈ R and, thus, sigR(o0) = sigR(o1) = 1.
Iterating through the duplicators for j ∈ {0, . . . , 4}, we get from sigR(o2j) =
sigR(o2j+1) = 1 that dj,0, dj,2, dj,4, dj,6 �∈ R and dj,1, dj,3, dj,5, dj,7 ∈ R and
sigR(e2j) = sigR(e2j+1) = −1, which in turn means that dj,8, dj,10, dj,12 ∈ R
and dj,9, dj,11, dj,13 �∈ R and that sigR(o2j+2) = sigR(o2j+3) = 1. Finally, using
sigR(e7) = sigR(e9) = −1 and sigR(o10) = sigR(o11) = 1 we get p0, p2, p5, p7 ∈
R and p1, p3, p4, p6 �∈ R which means that sigR(w1) = 1 and sigR(w2) = −1.

To see the correctness of statement 7, recall that, by definition, R pro-
vides a (sub) region RC for C. If C had not been modified with e-copies
and s w1 p w2 s′ we basically could use RC as a region of A. However, as
sigR(e) = sigR(e1) = sigR(e3) = sigR(e5) = −1, we get that the signature
of e is negative and appropriately translated into R′. Moreover, by sigR(w1) = 1
and sigR(w2) = −1, we correctly have s, s′ �∈ R which means that s �∈ R′ and

that, in the case s e′
q exists, sigR(e′) = sigR′(e′). 	

Hence, as the part RC basically is a region of A that inhibits e at s, the SSP
for UA, which includes the separability of the key states in Ue

s for all relevant
(e, s), implies the ESSP of A.

Next, the following lemma makes sure that every region R of A can be trans-
lated into a meaningful region R′ of Ue

s . Meaningful is to say that R′ is a region
that adopts the signature of A for the according events of C. We take care that
the translation works in a way that forces as many events of UA as possible to
obey. This will simplify the conclusion of the SSP of UA from the ESSP of A.

Hardness of ENS Synthesis for Restricted Inputs 55

Lemma 9. If R is region of A, then the set R′ = RC ∪ RU with

RU =

⎧
⎪⎨

⎪⎩

⋃2
j=0{dj,6, dj,7, dj,11, dj,12, dj,13}, if sigR(e) = −1,

∅, if sigR(e) = 0,
⋃2

j=0{dj,0, . . . , dj,5, dj,8, dj,9, dj,10}, if sigR(e) = 1, and

RC =

{
R, if s �∈ R,

R ∪ {p, s′}, otherwise,

is a region of Ue
s where for all x ∈ E \ {e} hold that sigR(x) = sigR′(x) and

sigR(e) = sigR′(e1) = sigR′(e3) = sigR′(e5) and R(y) = R′(y) for all y ∈ S and
R′(s) = R′(p) = R′(s′).

Proof. We start by showing that RU = R′ ∩ S(U) is a region of the union
U = U(M,D0, . . . , D4, P) and that RC = R′ ∩SC is a region of the TS C having
state set SC . Subsequently, we argue that the signatures sigRU and sigRC merge
into an aggregate signature sigR′ such that R′ becomes a region of Ue

s .
For RU it is easy to check that it admits the signature

sigRU (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x ∈ {e, e0, e2, e4, e6, . . . , e9, w1, w2, o0, . . . , o11, h, h0,

h2, h4, h6, . . . , h9},

sigR(e), if x ∈ {e1, e3, e5},

−sigR(e), if x ∈ {h1, h3, h5}

and therefore is a region of U .
Next, to show that RC is a region of C is pretty straightforward as C is an

enhanced copy of A and RC is a superset of R, a region of A. It is sufficient
to argue that, (1) with respect to events E \ {e}, the signature sigR can be
kept for RC , (2) the e-copies e1, e3, e5 inherit their signature from e, and (3) the
signature of w1 and w2 is simply zero. Observe, s, p and s′ are either all in RC or

all not in RC such that a possible edge s′ e′
q in C behaves just like the original

edge s e′
q and therefore fulfills sigRC (e′) = sigR(e′). Hence, RC admits the

signature

sigRC (x) =

⎧
⎪⎨

⎪⎩

sigR(x), if x ∈ E \ {e},

sigR(e), if x ∈ {e1, e3, e5},

0, if x ∈ {w1, w2}
and, consequently, is a region of C. Having RU as a region of U and RC as a
region of C, it remains to show that R′ = RU ∪ RC is a region of Ue

s = U(U,C).
This requires to show that the signatures sigRU and sigRC coincide on shared
events and, thus, can be merged to a signature sigRe

s
. However, by construction,

the only events shared by U and C are e1, e3, e5, w1, w2 which, by definition,
have equal signatures in both regions. 	

56 R. Tredup et al.

In the following argumentation, Lemma9 is used to show that the ESSP of
A, which by Lemma 2 also provides the SSP of A, implies the SSP of UA, too.
But before we aim for UA, we show this property for Ue

s :

Lemma 10. If A has the ESSP, then for every event e ∈ E and state s ∈ S

with ¬(s e) the union Ue
s has the SSP.

Proof. In this proof, we again use the mechanism of region enhancement from
Lemma 6 to show that all pairs of states of Ue

s are separable. States that originate
from different TSs of Ue

s are separable by definition. Hence, we have to consider
four cases, namely that both come from the same TS, either M,Dj , P, or C.

We start with M and in particular the key states m0 and m1. To separate
them, we use RU = RM ∪ RD0 ∪ · · · ∪ RD4 ∪ RP , which is a region of union
U = U(M,D0, . . . , D4, P) as easily verified by Fig. 3. Notice that sigRU (e1) =
sigRU (e3) = sigRU (e5) = sigRU (w2) = −1 and sigRU (w1) = 1. Moreover, as A
has the ESSP, we can find a region R inhibiting e at s such that sigR(e) = −1
and R(s) = 0 and enhance it to RC = R ∪ {p}. It is easy to see that RC is a
region of C with sigRC (e1) = sigRC (e3) = sigRC (e5) = sigRC (w2) = −1 and
sigRC (w1) = 1. Clearly, the regions are compatible on the events e1, e3, e5, w1, w2

shared by U and C and we can combine them to the key region Rkey = RU ∪RC

of Ue
s that separates the key states.
Moreover, in M the region Rkey separates every state in {m0,m2,m4} from

every state in {m1,m3,m5}. Here, it remains to show that mi and mj are sep-
arable if they originate from the same of both sets, that is, if i and j are of
the same parity. Consider the region R0 = {m0,m1, d0,0, d0,4} of U having just
obeying events except for sigR0(o0) = −1 and sigR0(h0) = 1. As o0 and h0 do
not occur in C, region R0 can be enhanced to a region R′

0 of Ue
s = U(U,C).

Obviously, R′
0 separates all states in {m0,m1} from all states in {m2, . . . ,m5}.

Consider the region R1 = {m0, . . . ,m3, d0,0, d0,1, d0,2, d0,4, d0,5, d0,6} of U where
again all events are obeying except for sigR1(o0) = −1 and sigR1(o1) = 1. The
TS C does not contain o0 and o1 and, consequently, region R1 can be enhanced
to a region R′

1 for Ue
s that separates m2 from m4 and m3 from m5.

Next, we consider two states s1, s2 of C. We firstly assume both states s1
and s2 to be in the state set S of A. Then, we use the fact that, by Lemma2, A
inherits the SSP from the ESSP. Let R be a region of A separating s1 and s2.
By Lemma 9, we can use the according region R′ that separates s1 and s2 in C.

If exactly one of the states, without loss of generality s1, is in S \ {s} and
s2 ∈ {p, s′} then let R be a region of A separating s1 and s. Again, we can
enhance region R to a region R′ that separates s1 and s in C. As s, p and s′

are not separated by this region, R′ separates s1 and s2, too. The states s and
p respectively s′ and p are separated by the key region Rkey introduced above.
Finally, for s and s′ we can generate a separating region of Ue

s as follows: We
let RU = {p0, p1} and RC is the set of states from S that are predecessors of or
equal to s in A. It is easy to see that sigRU (w1) = sigRC (w1) = −1 and for all
other events, both signatures are zero. Hence, the set RU ∪ RC is a region of Ue

s

that contains s but not s′.

Hardness of ENS Synthesis for Restricted Inputs 57

In the following, we investigate Dj for j ∈ {0, . . . , 4} as well as P . The key
region Rkey already separates every state of {dj,0, dj,2, dj,4, dj,6, dj,9, dj,11, dj,13}
from every state of {dj,1, dj,3, dj,5, dj,7, dj,8, dj,10, dj,12} in Dj and in P every
state of {p0, p2, p5, p7} from every state of {p1, p3, p4, p6}. The argumentation
for the remaining state pairs always works like already seen for M : We define a
region R of U by specifying the signature of all non-obeying events, we observe
that C has at most one edge labelled with such an event, we enhance region R
to a region of Ue

s = U(U,C), and we list two sets of states X and Y such that
every state in X is separated from every state of Y by R:

Signature X Y

R2 sigR2(h2j) = −1 {dj,0, . . . , dj,3} {dj,4, . . . , dj,13}
R3 sigR3(h2j+1) = −1 {dj,4, . . . , dj,7} {dj,8, . . . , dj,13}
R4 sigR5(e2j+1) =

−sigR5(e2j) = 1
{dj,0, dj,1, dj,6, . . . , dj,8,
dj,11, dj,12}

{dj,2, . . . , dj,5,
dj,9, dj,10, dj,13}

R5 sigR6(e2j+1) =
−sigR6(h2j) = 1

{dj,8, dj,9} {dj,12, dj,13}

R6 sigR7(h) = −1 {p0, . . . , p3} {p4, . . . , p7}
R7 sigR8(w1) = −1 {p0, p1} {p2, p3}
R8 sigR9(h) =

−sigR9(w2) = 1
{p4, p5} {p6, p7}

This completes the proof. 	

Before we can put together the proof of Theorem3 there is one last thing

that we have to consider: Our idea is to create a union UA = (Ue
s | e ∈ E, s ∈

S,¬s
e−→ }) to finish the reduction for input A. However, in the given form, the

unions Ue
s would not have mutually disjoint state and event sets. To resolve the

name clash, we do the following renaming:

Lemma 11. Let Ue
s = U(M,D0, . . . , D4, P, C) be a union of TSs as defined

above. Then, we let Ũe
s = U(M̃, D̃0, . . . , D̃4, P̃ , C̃) be the rectified union where,

for all TSs T = (S,E, s0, δ) in {M,D0, . . . , D4, P, C}, we define T̃ = (S̃, Ẽ, s̃0, δ̃)
by S̃ = {(e, s, x) | x ∈ S} and Ẽ = {(e, s, x) | x ∈ E} and s̃0 = (e, s, s0) and

δ̃((e, s, x), (e, s, y)) =

{
(e, s, δ(x, y)), if δ(x, y) is defined,

undefined, otherwise

for all (e, s, x) ∈ S̃ and all (e, s, y) ∈ Ẽ. Then R is a region of Ue
s if and only if

R̃ = {(e, s, x) | x ∈ R} is a region of the rectified union Ũe
s .

The proof of this lemma is straightforward and therefore omitted. However,
as the rectified unions have mutually disjoint state and event sets, the union UA

can now be defined as

UA = (Ũe
s | e ∈ E, s ∈ S,¬s e).

58 R. Tredup et al.

Proof of Thoerem 3. We start by showing that A has the ESSP if and only if
UA has the SSP. If UA has the SSP then, for every e ∈ E and every s ∈ S with
¬(s e), there is a region R̃ of UA separating the key states (e, s,m0), (e, s,m1)
in Ũe

s . This means, by definition and by Lemma11, that

Re
s = {x | (e, s, x) ∈ R̃ ∩ S(Ũe

s)}

is a region of Ue
s separating m0 and m1. Lemma 8 provides that e is inhibtable

at s. Hence, A has the ESSP.
Reversely, if A has the ESSP then, by Lemma10, Ue

s has the SSP for all
e ∈ E and all s ∈ S where ¬s e . Using Lemma 11, we get for all e ∈ E and all
s ∈ S where ¬(s e) that Ũe

s has the SSP. As these union are pairwise disjoint
with respect to states and events, we have that UA has the SSP, too.

Given A, we can now create a linear 3-fold TS A′ = A(UA) by joining the
individual TSs of UA. With the help of Lemma1, we subsequently get that A′

has the SSP if and only if UA has the SSP if and only if A has the ESSP.
As creating A′ out of A is obviously doable in polynomial time, we get that
linear 3-ESSP ≤p linear 3-SSP. In Sect. 4 we show that ESSP of linear 3-fold
TSs is NP-complete and [3] states that SSP is in NP, which, together with our
argumentation, imply that linear 3-SSP is NP-complete. 	

6 Conclusion

This paper shows that synthesis of elementary net systems, one of the most fre-
quently used Petri net classes, is hard, even if the permitted input is set close
to triviality. Notice in this context that concatenating the individual segments
of our unions in long linear transition systems is not our only option. In fact,
we could assemble them in many possible ways and would still be able to derive
our NP-completeness results. By that, the hardness of the three problems, SSP,
ESSP, and feasibility, spreads to various other TS classes, as for instance nets
with cycles. This means that there is not much hope for reasonable input sub-
classes allowing polynomial time ENS synthesis.

Consequently, encouraged by the class of Flip-Flop nets that provides a poly-
nomial time algorithm for deciding the ESSP respectively feasibility [12], it is
probably more reasonable for future work to focus research on synthesis com-
plexity towards Petri net classes generalizing ENSs. There are a lot of cases that
have not yet been studied well, as for instance Set nets [9], Trace nets [2], and
variations of Flip-Flop nets [12] which are all contained in the class of boolean
nets [4]. Therefore, we think it may be interesting to do further research on the
complexity of SSP, ESSP and feasibility with respect to the subclasses of boolean
nets, that, at best, clarifies exactly and extensively for which kinds of boolean
nets the decision problems are tractable, respectively NP complete.

Moreover, we may need to look for algorithms that work well in practice,
despite a non-polynomial worst-case complexity.

Hardness of ENS Synthesis for Restricted Inputs 59

Acknowledgements. We thank the anonymous reviewers for their helpful sugges-
tions. The first author thanks Eric Badouel for the inspiring correspondence about the
synthesis of ENS.

References

1. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Man-
agement. LNCS, vol. 1806, pp. 218–234. Springer, Heidelberg (2000). https://doi.
org/10.1007/3-540-45594-9 14

2. Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Informatica
32(7), 647–679 (1995)

3. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997)

4. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in The-
oretical Computer Science. An EATCS Series, pp. 1–325. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47967-4. ISBN 978-3-662-47966-7

5. Best, E., Erofeev, E., Schlachter, U., Wimmel, H.: Characterising Petri net solv-
able binary words. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS,
vol. 9698, pp. 39–58. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39086-4 4

6. Cortadella, J.: Private correspondence (2017)
7. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Com-

plete state encoding based on the theory of regions. In: International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pp. 36–47. IEEE
(1996)

8. Hiraishi, K.: Some complexity results on TS and elementary net systems. Theor.
Comput. Sci. 135(2), 361–376 (1994)

9. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of
Boolean nets. Acta Informatica 50(1), 15–39 (2013)

10. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discret. Comput.
Geom. 26(4), 573–590 (2001)

11. Rosenke, C., Tredup, R.: The hardness of synthesizing elementary net systems from
highly restricted inputs. arXiv:1711.00220 (2017)

12. Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS,
vol. 1046, pp. 515–528. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60922-9 42

13. Yakovlev, A.V., Koelmans, A.M.: Petri nets and digital hardware design. In: Reisig,
W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1492, pp. 154–236. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-65307-4 49

14. OMG. Business Process Model and Notation (BPMN). Object Management Group
(2016)

15. Scheer, A.-W.: Business Process Engineering, Reference Models for Indus-
trial Enterprises. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-
79142-0

16. UML. Unified Modeling Language (UML). Object Management Group (2016)

https://doi.org/10.1007/3-540-45594-9_14
https://doi.org/10.1007/3-540-45594-9_14
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-319-39086-4_4
https://doi.org/10.1007/978-3-319-39086-4_4
http://arxiv.org/abs/1711.00220
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/3-540-65307-4_49
https://doi.org/10.1007/978-3-642-79142-0
https://doi.org/10.1007/978-3-642-79142-0

Petri Net Synthesis with Union/Find

Karsten Wolf(B)

Institut für Informatik, Universität Rostock, Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. We propose a new algorithm for the synthesis of a Petri net
from a transition system. It is presented for a class of place/transition
Petri nets we call Δ1-Petri nets. A Δ1-Petri net has an incidence matrix
where entries have values 0, 1, and −1 only. This class includes safe
Petri nets as well as ordinary place/transition nets. The proposed algo-
rithm can be adapted to these net classes. The algorithm employs Tar-
jan’s union/find algorithm for managing sets of vertices. It requires just
O(|V ||T |) space where V is the set of vertices and T is the set of transition
labels. Consequently, problem instances even beyond 1,000,000 vertices
have a manageable memory footprint. Our results are experimentally
validated using a prototype implementation.

1 Introduction

Petri net synthesis [2] is the task of translating a labelled transition system
(LTS) L with label set T into a Petri net N with transitions T such that the
reachability graph of N is isomorphic to L. The problem can be reasonably
generalised by permitting N to have a larger set of transitions T ′, with a mapping
from T ′ to T [7]. In this paper we consider only the basic problem. Synthesis
may target various classes of Petri nets, including elementary net systems [8,9],
place/transition nets [1,11], or others. Several tools for synthesis already exist,
for instance petrify [6], genet [5], synet [3], or apt [4].

Solutions to the synthesis problem are based on the theory of regions [2,8,9].
A region is the footprint, that a place of N leaves in the reachability graph
of N . The precise notion of region depends on the class of Petri nets targeted
for synthesis. Every region is connected to the set of transitions through its
signature. The signature of region R specifies the effect that transitions have on
the place represented by R. Synthesis tools assemble the resulting net from the
given set T of transitions, a reasonably chosen set of regions serving as the set
of places, and arcs that are deduced from the signature of the included regions.

An LTS usually has a large number of regions. Generally, many of them
produce redundant places that may be left out of the resulting Petri net. In fact,
it is sufficient to compute a set of regions that satisfies the state separation and
event/state separation properties. State separation (SSP) means that each vertex
corresponds to a distinct marking of the synthesised net. Event/state separation
(ESSP) means that no transition fires in the synthesised net where that is not
specified in the input LTS.
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 60–81, 2018.
https://doi.org/10.1007/978-3-319-91268-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_4&domain=pdf

Petri Net Synthesis with Union/Find 61

Our approach is based on regarding a region as a partition of the set V of
vertices of L. We propose to calculate it from a trivial partition (all classes are
singleton) by a sequence of union operations. These operations are managed by
the famous and very efficient union/find algorithm proposed by Tarjan [14]. We
call the intermediate partitions obtained during computation proto-regions. At
the same time, we keep track of the partial information about the signature of
the region-to-be and call that record of information a proto-signature. The data
structures for proto-signatures and proto-regions are shallow enough to permit
O(|V ||T |) space complexity. This is an important pre-requisite for being able to
handle inputs with 1,000,000 vertices and beyond.

A pair of proto-region and proto-signature represents a set of regions that
accord to the given record of information. Every proto-region imposes constraints
on the corresponding proto-signature and vice versa. This way, we can refine both
proto-region and proto-signature while preserving the set of according regions.
We apply such refinements until no further conclusions can be made. Then,
by considering all remaining cases on an underspecified element of the proto-
signature, we divide the computation problem into several subproblems. Every
according region accords to one of the subproblems. Hence, we ultimately tra-
verse a search tree that branches at deliberate decisions made for the proto-
signature. The leaves of the search tree represent the regions of the given LTS,
or they represent inconsistent situations from which we backtrack. We further
prune the search tree by backtracking from proto-regions and proto-signatures
without contribution to SSP or ESSP. The result is not necessarily a minimal
Petri net. We believe that further minimisation can then be organised as post-
processing. We do not consider that task in this article. Our approach is quite
different from the currently dominating approach where the synthesis problem
is translated into a system of linear equations [1,4].

We demonstrate our approach for Δ1-Petri nets. A Δ1-Petri net is a
place/transition net where the entries in the incidence matrix are limited to
{−1, 0, 1}. This class includes safe Petri nets as well as ordinary place/transition
nets with or without loops. Our approach can be adapted to target these classes.

We start with defining transition systems and Petri nets. Then we briefly
recap the union/find approach. We continue with presenting our concepts of
proto-region and proto-signature and reveal their mutual dependencies. After
that, we sketch our calculation procedure. Instead of a running example. We
describe a complete walk-through for a simple example. Finally, we present
experimental results and conclude.

2 Transition Systems, Petri Nets, Synthesis

Definition 1. A labelled transition system (LTS) L = [V,E, T, λ, v0] consists of
a finite set V of vertices, a set E ⊆ V × V of edges, a finite set T of transition
labels, a labelling function λ : E → T , and an initial vertex v0.

For a transition label t, let Et = {[v, v′] | λ([v, v′]) = t} be the set of
t-labelled edges of L. For synthesis, it is convenient to consider only LTS that are

62 K. Wolf

deterministic ([v, v′] ∈ E, [v, v′′] ∈ E, and v′ �= v′′ implies λ([v, v′]) �= λ([v, v′′]))
and rooted (every vertex is reachable via E from v0).

Definition 2 (Petri Net). A Petri net [P, T, F,W,m0] consists of finite and
disjoint sets P and T of places resp. transitions, an arc relation F ⊆ (P × T) ∪
(P × T), a weight function W : F → N\{0}, and the initial marking m0 where
a marking is a mapping m : P → N ∪ {0}. Let W ([x, y]) = 0 for [x, y] /∈ F .
Then transition t is enabled in marking m if, for all places p, m(p) ≥ W ([p, t]).
Firing transition t in marking m yields marking m′ (m t−→ m′) if t is enabled
in m and, for all places p, m′(p) = m(p) − W ([p, t]) + W ([t, p]). The set of
reachable markings RN (m0) contains all markings that can be obtained from m0

by any sequence of transition firings. RN (m0) and the firing relation define the
reachability graph of N , a labelled transition system with T as set of transition
labels and m0 as initial vertex.

Definition 3 (Synthesis Problem). The synthesis problem is formulated as
follows: Given an LTS L, return a Petri net N such that the reachability graph
of N is isomorphic to L, if such an N exists, and return ⊥, otherwise.

3 Union/Find

The union/find data structure has been designed for managing partitions of finite
sets. A partition of M is a family of non-empty and pairwise disjoint sets that
have a union equal to M . The union/find algorithm [14] considers elements and
sets (classes). At each stage of computation, every set has a distinguished name
that happens to be one of the contained elements. The algorithm supports union
and find operations. union(x,y) replaces the sets with name x and y with their
union. find(x) returns the unique name of the set that contains element x. The
algorithm supports any sequence of union and find operations and represents, at
each stage, the resulting partition. Its data structure consists of a single integer
array of size |M |. The elements correspond to indices in the array. Each set is
represented as a tree. The root of the tree is the name of the set. The array entry
of a root is a negative number and represents the size of the net. For all other
nodes, the array index is not negative and represents the index of its parent node
in the array. Table 1 shows an example of a union/find array.

Table 1. Example of a union/find array representing the partition {{0, 2, 4, 5}, {1},
{3, 6, 7}}. The names of the classes are 1, 2, and 7.

2 −1 −4 7 0 2 7 −3

A find operation is realised by traversing the tree from the given element to
the corresponding root. For efficiency, all visited nodes are then directly linked
to their root (in our example, find(4) would replace the 0 by 2 in component 4).

Petri Net Synthesis with Union/Find 63

This way, future find operations require less time. A union operation consists of
linking the root of the smaller set to the root of the larger set. In our example,
union(1,7) would write 7 into component 1 and −4 into component 7.

Initially, all sets are singleton. Performing a sequence of n union and find
operations requires a worst case run time of O(nlog∗n) where log∗ is a function
that grows so slowly that its impact can be neglected (call O(nlog∗n) quasi-
linear).

4 Backtracking in a Union/Find Structure

In the sequel, we shall derive a region by performing a sequence of union and find
operations on the set of all vertices. If a region is found, or if a proto-region turns
out to be inconsistent, we need to backtrack to an earlier stage of computation.
Unfortunately, a union operation cannot be easily reversed. Moreover, storing
explicit copies of intermediate partitions is not recommendable as each copy
would consume space as large as |V |.

We solve the backtracking issue with the help of a stack that records all pairs
of set names (i.e. integer numbers) for which actual union operations have been
performed. Since there cannot be more than n − 1 subsequent union operations
on n sets, this stack requires linear space. Every intermediate stage of computa-
tion corresponds to some index on that stack that separates earlier union oper-
ations from later union operations. Backtracking to such an intermediate stage
consists of resetting the initial partition and then re-playing all union operations
recorded up to the given index. This requires quasi-linear run-time which has
basically the same order of magnitude as making and replacing explicit copies
of the union/find data structure. Our space requirement is, however, only 3 · |V |
rather than |V |2 required for a naive implementation.

This backtracking mechanism is important for meeting the O(|V ||T |) space
goal of our approach.

5 Theory

A place/transition net N is a Δ1-Petri net if, for all p ∈ P and t ∈ T , we have
|W ([p, t]) − W ([t, p])| ≤ 1. That is, arc weights may be arbitrarily large but the
total effect of a transition to a place must not exceed consumption or production
of a single token. This class includes the popular classes of ordinary (or plain)
place/transition nets (all arc weights are 1) as well as safe Petri nets (at most
one token on each place). It is included in the class of place/transition nets.

A region of a place/transition net is a mapping f from V to the natural num-
bers. The rationale behind this choice is to identify a place pf in the reachability
graph of N through the mapping f from m to m(p), for all reachable markings
m. That is, having a region f and a vertex v with f(v) = k, pf would have k
tokens in the marking φ(v) where φ is the isomorphism between L and N to be
established.

64 K. Wolf

We compute f in two steps. First, we calculate the partition R of V induced
by f as follows: Let R = {Vi|i ∈ N} where Vi = {v|f(v) = i}. If f is indeed a
region of a Δ1-Petri net, edges of L turn R into some double linked list where
an edge in Et with W (t, pf)−W (pf , t) = 1 establishes a forward link, an edge in
Et with W (t, pf)−W (pf , t) = −1 represents a back link, and an edge in Et with
W (t, pf) − W (pf , t) = 0 is a self loop. For classes linked this way (disregarding
self-loops), the value of f differs by exactly 1, and is the same for all reachable
markings. This property can be used to deduce the actual values of f .

Since the effect of a transition to a place is the same in all markings, a
transition can be ascending (all t-edges are forward links), it can be descending
(all t-edge are back links), or ignoring (all t-edges are self-loops). If none of the
attributes can be assigned to t, R cannot be related to a place in a Δ1-Petri net,
so it is not a region. We formalise these ideas as follows.

Definition 4 (Signature). A signature of a set T of transition labels is a map-
ping s : T → {−1, 0, 1} where a transition t with s(t) = 1 is called ascending, a
transition with s(t) = −1 is called descending, and a transition with s(t) = 0 is
called ignoring.

Definition 5 (Region). Let L = [V,E, T, λ, v0] be an LTS. A region with sig-
nature s is a partition {V0, . . . , Vk} such that, for every [x, y] ∈ E with x ∈ Vi,
y ∈ Vi+s(λ([x,y]).

In this definition, we slightly abuse notation. We write {V0, . . . , Vk} as a
family of sets but actually use the indices to impose a particular order on these
sets. This way, we avoid over-formalisation. We shall take care of the introduced
ambiguity at due time.

Let, for a transition t, it be the smallest index such that Vit contains source
nodes of edges labelled with t. Given a region {V0, . . . , Vk}, a corresponding place
can be derived as follows.

– the capacity (i.e. highest number of tokens on p) is k,
– its initial marking is j if Vj contains v0,
– for all t, W ([p, t]) = it,
– for all t, W ([t, p]) = it + s(t).

This way, the region net for a given set F of regions is fully specified. Observe
that W ([t, p]) cannot become negative for descending transitions since no tran-
sition can descend from V0.

According to [2], the region net for F has a reachability graph that is isomor-
phic to the given LTS L if and only if F meets all separation problems of L. We
consider state separation problems (SSP) and event/state separation problems
(ESSP). SSP makes sure that every pair of vertices has a different “code” in
the synthesised net. This means that, for vertices v, v′ (v �= v′) of L, markings
φ(v) and φ(v′) differ in the token count of a least one place. ESSP makes sure
that a transition cannot fire in the region net if that is not prescribed in L.
The separation problems can actually be formulated in terms of the partitions
induced by a set of regions.

Petri Net Synthesis with Union/Find 65

Definition 6 (SSP, ESSP for Δ1-Petri nets). Let L = [V,E, T, λ, v0] be
an LTS. Let F a set of regions of L and R be the set of partitions induced
by the regions in F . Two vertices v, v′ are separated w.r.t. F if there exists
R = {V0, . . . , Vk} ∈ R and two indices i �= j with v ∈ Vi, v′ ∈ Vj. Transition t
is separated from vertex v w.r.t. F if there exists a vertex v′ with [v, v′] ∈ Et, or
there exists R = {V0, . . . , Vk} ∈ R where v ∈ Vi and j ≤ i implies that there are
no source nodes of t-labelled edges contained in Vj. F satisfies SSP if all pairs
of vertices (v �= v′) are separated, F satisfies ESSP if all pairs of transitions
and vertices are separated.

Indeed, if a region R separates two vertices v and v′, the place corresponding
to R has a different number of tokens for v (i tokens) and v′ (j tokens). Likewise,
if a vertex v and a transition t are separated by region R, t is enabled in v, or
the place built from R disables t in the marking that models v.

We obtain

Proposition 1 ([2])

– A set F of regions of L defines a Petri net that has a reachability graph
isomorphic to L if and only if F satisfies SSP and ESSP.

– For L there is a Δ1-Petri net with isomorphic reachability graph if and only if
there is a set of regions where the corresponding region net has a reachability
graph isomorphic to L.

Consequently, our task amounts to finding sufficiently many regions to meet
all SSP and ESSP instances.

The following notion of generalised path will be useful for identifying regions
in L. It helps us to lift the concept of edges from the level of vertices to the
level of classes in the partition. At the same time, it implements the idea that
ascending and descending edges have opposite effects.

Definition 7 (Generalised path). Let L = [V,E, T, λ, v0] be an LTS and
R = {V0, . . . , Vk} be a partition of V . A sequence π = t1 . . . tn of transitions in
T is a generalised path in R if there exist vertices x1, . . . , xn and y1, . . . , yn such
that the following conditions hold:

1. for all i, [xi, yi] ∈ Eti or [yi, xi] ∈ Eti .
2. for all i < n, there exists a V ∈ R with xi+1 ∈ V and yi ∈ V .

We say that π starts in Vi if x1 ∈ Vi. π ends in Vj if yn ∈ Vj.

That is, we may travel through edges in arbitrary direction, and we may jump
between vertices if they belong to the same class in R. Nevertheless, every actual
path in L is a generalised path as well, regardless of R (just let all [xi, yi] ∈ Eti

and xi+1 = yi). We extend the concept of signature to transition sequences such
that the signature of the involved transitions and the travel direction for edges
is taken into account. The result is a mapping from sequences of transition into
the set of integer numbers.

66 K. Wolf

Definition 8 (Generalised signature). Let L = [V,E, T, λ, v0] be an LTS and
R = {V0, . . . , Vk} be a partition induced by a region of V . Let π = t1 . . . tn be a
generalised path for R and s a signature. Let all xi and yi be as in Definition 7.
Then the generalised signature s∗ is inductively defined by the following rules:

– for the empty sequence ε, let s∗(ε) = 0.
– if [xi, yi] ∈ Eti , let s∗(πti) = s∗(π) + s(ti).
– if [yi, xi] ∈ Eti , let s∗(πti) = s∗(π) − s(ti).

Since we expect R to be induced by a region with signature s, s∗ is actually
well-defined independently of the assigned xi and yi. From the Definitions 5 and
8, we can immediately deduce the fundamental property of generalised paths in
Δ1-Petri nets:

Lemma 1. Let L = [V,E, T, λ, v0] be an LTS and R = {V0, . . . , Vk} be a parti-
tion induced by a region of V with signature s. Let t1 . . . tn be a generalised path
in R that starts in Vi and ends in Vj. Then j = i + s∗(π).

6 Proto-Regions of Δ1-Petri Nets

A proto-region represents an intermediate step in the computation of a region.
It is in fact a partition of V . It represents the fact that unified nodes shall
ultimately belong to the same class of vertices in a region f to be computed. In
other words, the isomorphism φ to be established will map vertices v, v′ in the
same class to markings φ(v), φ(v′) such that φ(v)(pf) = φ(v′)(pf).

Definition 9 (Proto-Region for Δ1-Petri net). A proto-region is a partition
of the set of vertices of a LTS. A region f inducing partition R = {V0, . . . , Vk}
accords to a proto-region S = {V ′

0 , . . . , V
′
m} (f |= S), if, for all i (0 ≤ i ≤ m),

there is a j (0 ≤ j ≤ k}) such that V ′
i ⊆ Vj.

Obviously, for every region f , f |= {{v}|v ∈ V }. It is easy to see:

Lemma 2. Let S be a proto-region. Let f be a region with f |= S, and R be the
partition induced by f . Every generalised path in S is a generalised path in R.

7 Proto-Signatures of Δ1-Petri Nets

Consider a region with induced partition R. The edges of the given LTS define
the neighbourhood relation between its classes. However, the very same parti-
tion can then still be interpreted as {V0, . . . , Vk} or as {Vk, . . . , V0}. All other
orderings can be ruled out by the fact that, in a Δ1-Petri net, edges form the
already mentioned “double linked list” structure. The actual ordering of the
classes is important for defining ascending versus descending transitions as well
as the initial marking of the place corresponding to R. In fact, for every place
p, its complement place induces the same partition. Only the ordering of the

Petri Net Synthesis with Union/Find 67

classes is reversed. That is, computing a partition that satisfies all properties
of a region, we end up in a structure that describes both a place and its com-
plement place. This is not a problem, though. Whether or not we finally ship
a place, its complement, or both, to the resulting Petri net, ultimately depends
on the contribution of the two places to the separation problems. For ESSP, the
contribution may actually differ. We shall pick up this thought in Sect. 12.

To address the duality between a place and its complement place, we do
not treat transitions as ascending or descending in the concepts below. Instead,
we record the relative orientation for pairs of transitions They may have the
same orientation (both ascending, both descending) or opposite orientation (one
ascending, the other one descending). Additionally, relative orientation may
include, exclude, or be exclusively set to ignoring. We shall use the following
symbols: SA for “same”, SI for “same or ignoring”, OP for “opposite”, OI for
“opposite or ignoring”, and II for “ignoring”. The ideas lead to the following
formalisation:

Definition 10 (Proto-Signature of Δ1-Petri net). A proto-signature is a
subset of T ×{SA, SI,OP,OI, II}×T . Signature s accords with proto-signature
σ (s |= σ) if the following conditions are satisfied:

– [t, SA, t′] ∈ σ implies s(t) = s(t′) �= 0;
– [t, SI, t′] ∈ σ implies s(t) = s(t′);
– [t, OP, t′] ∈ σ implies s(t) = −s(t′) �= 0;
– [t, OI, t′] ∈ σ implies s(t) = −s(t′);
– [t, II, t′] ∈ σ implies s(t) = s(t′) = 0.

We formalised a proto-signature as a set of triples. This way, new facts can
be easily added. However, we can translate a proto-signature into a LTS with T
as set of vertices and {SA, SI,OP,OI, II} as set of labels. The reason is that,
whenever there exist two triples [t,X, t′] ∈ σ and [t, Y, t′] ∈ σ with X �= Y , σ is
either inconsistent (there is no s with s |= σ), or the two triples can be replaced
with a single triple, keeping the set of according signatures invariant. Actually,
if X,Y ∈ {SA,OP, II}, σ is inconsistent. If X,Y ∈ {SI,OI, II}, the two triples
can be replaced with [t, II, t′]. If X,Y ∈ {SA, SI}, only [t, SA, t′] needs to be
kept, and for X,Y ∈ {OP,OI}, only [t, OP, t′] is significant. They remaining
combinations X,Y ∈ {SA,OI} and X,Y ∈ {SI,OP} are again inconsistent.
Hence, for each pair of transitions, there is a unique “best” label. Only this label
needs to be kept.

Moreover, we may transitively propagate from [t,X, t′] and [t′, Y, t′′] to some
value Z such that every signature that accords with σ also accords with σ ∪
{[t, Z, t′′]}. The appropriate value of Z depending on X and Y is given in Table 2.

In the sequel, we assume that, whenever we modify σ, all deductions described
so far are applied. We further assume that, if a modification leads to an incon-
sistent proto-signature, this is detected and we backtrack to some other sub-
problem. So, we silently assume σ to be consistent.

68 K. Wolf

Table 2. Deduced value of Z in [t, Z, t′′] depending on X and Y in [t, X, t′], [t′, Y, t′′] ∈
σ. CC denotes “inconsistent”.

SA SI OP OI II

SA SA SA OP OP CC

SI SA SI OP OI II

OP OP OP SA SA CC

OI OP OI SA SI II

II CC II CC II II

Otherwise, the labelled graph given by a proto-signature enjoys some interest-
ing properties. It partitions T into connected components. In every component,
the transitivity rules in Table 2 establish that every component actually is a
clique. Applying all mentioned rules until nothing changes, we actually arrive at
three types of cliques:

– Type 1: all labels are II;
– Type 2: all labels are SI or OI;
– Type 3: all labels are SA or OP .

In the sequel, let [t]σ be the clique containing t, i.e., [t]σ = {t′ | ∃X :
[t,X, t′] ∈ σ}. Assume further that every such clique has a canonical repre-
sentative canrep([t]σ).

In adding more and more knowledge to a proto-signature, we approach a
situation where the set of transitions falls into at most two cliques. The first
clique has type 2 or 3 while the optionally present second clique has type 1. Two
signatures accord with such a proto-signature. Setting the signature for one of
the transitions in the first clique to 1, the signature of all other transitions in
the clique can be deduced to be either 1 or −1. Setting the signature to −1
instead, the signature of all other transitions can be deduced accordingly. In
both cases, the second clique contains the transitions with signature value 0.
The two signatures then correspond to a place and its complement place. If the
first clique has type 2, there is a third according signature. It assigns 0 to all
transitions. We can, however, ignore this case as the resulting place would never
change its marking and is thus redundant anyway.

8 Simple Deductions Between Proto-Region
and Proto-Signature

The following rules in a proto-region S = {V1, . . . , Vk} suggest values for a proto-
signature σ, based on simple patterns in a proto-region R. We use the notation
σ := σ′ for: if a region accords with R and its signature s accords with σ, then
s accords with σ′, too.

Petri Net Synthesis with Union/Find 69

RS1 If [x, y] ∈ Et and x, y ∈ Vi then σ := σ ∪ {[t, II, t]}:
RS2 If [x, y] ∈ Et, [x′, y′] ∈ Et′ , x, x′ ∈ Vi, and y, y′ ∈ Vj , then σ := σ ∪

{[t, SI, t′]}:
RS3 If [x, y] ∈ Et, [x′, y′] ∈ Et′ , x, y′ ∈ Vi, and y, x′ ∈ Vj , then σ := σ ∪

{[t, OI, t′]}:

Lemma 3. Rules RS1, RS2, and RS3 preserve the set of according regions.

Proof. Consider generalised paths t and t′ (if applicable) in any region f that
accords to σ and S. Let R be the partition induced by f . We apply Lemma 1. In
RS1, t starts and ends in the same class of R, so s(t) = 0. In RS2, t starts in the
same class as t′, and t ends in the same class as t′. Hence, s(t) = s(t′). In RS3,
The generalised path tt′ starts and ends in the same class. Hence, s∗(tt′) = 0, so
s(t) = −s(t). �

The other way round, a proto-signature σ has an impact on a proto-region
S. In the subsequent set of rules, we derive union operations for S such that
every region that accords with the original S and has a signature according
with σ, accords with the new proto-region, too. union(v, v′) means: unify the
set containing v with the set containing v′.

SR1 If [t, II, t] ∈ σ then, for all [v, v′] ∈ Et, union(v, v′).
SR2 If {[t, SA, t′], [t, SI, t′]} ∩ σ �= ∅, [v1, v2 ∈ Et, [v3, v4] ∈ Et′ , and there is a

V ∈ R with v1, v3 ∈ V , then union(v2, v4).
SR3 If {[t, SA, t′], [t, SI, t′]} ∩ σ �= ∅, [v1, v2] ∈ Et, [v3, v4] ∈ Et′ , and there is a

V ∈ R with v2, v4 ∈ V , then union(v1, v3).
SR4 If {[t, OP, t′], [t, OI, t′]} ∩ σ �= ∅, [v1, v2] ∈ Et, [v3, v4] ∈ Et′ , and there is a

V ∈ R with v2, v3 ∈ V , then union(v1, v4).

Lemma 4. Rules SR1, SR2, SR3, and SR4 preserve the set of according regions.

Proof. Consider generalised paths t and t′ (if applicable) in any region f that
accords to σ and S. Let R be the partition induced by f . We apply Lemma 1.
In SR1, s∗(t) = 0, so any start and end of t must actually be contained in the
same class of R. In SR2 and SR3, we have s∗(t) = s∗(t′). In SR2, t and t′ start
in the same class of R, so they must end in the same class of R, too. In SR3, t
and t′ end in the same class of R, so they must start in the same class of R, too.
In SR4, we have tt′ is a generalised path with s∗(tt′) = 0. So, its start and end
must be contained in the same class of R. �

9 Topological Deductions

For more sophisticated deductions, we consider an LTS that we derive from
the given LTS L, a proto-region S, and a proto-signature σ. Its vertices are the
classes of S and its labels are the canonical representatives of the cliques induced
by σ. The new structure reflects the fact that transitions identified as “same”
actually have the same effect. Accordingly, transitions identified as “opposite”
have reverse effect. Hence, an edge labelled with t∗ is drawn from V to V ′ iff there
is an edge [v, v′] in L labelled with t where one of the following two conditions
holds:

70 K. Wolf

(1) v ∈ V , v′ ∈ V ′ and {[t, SA, t∗], [t, SI, t∗]} ∩ σ �= ∅, or
(2) v ∈ V ′, v′ ∈ V and {[t, OP, t∗], [t, OI, t∗]} ∩ σ �= ∅.

Call the resulting LTS the proto-LTS for S and σ. It is an intermediate result
in folding L into a region.

Lemma 5. Let L be an LTS, S a proto-region, σ a consistent proto-signature,
and L∗ the corresponding proto-LTS. For every path t1 . . . tn in L∗ there exists
a generalised path t′1 . . . t′n in S such that, for all i, ti = canrep(t′i). For all such
t′1 . . . t′n, s∗(t′1 . . . t′n) =

∑n
i=1 s(ti).

Proof. Path t′1 . . . t′n can be assembled according to the defining conditions of
the proto-LTS. For all i, either condition (1) or condition (2) is applicable. In
case (1), we have s(ti) = s(t′i) and the directions of edges [v, v′] and [V, V ′]
coincide. In case (2), we have s(ti) = −s(t′i) but [v, v′] and [V, V ′] have reverse
directions. In both cases, Definition 8 yields the same value for ti and t′i to be
added to s∗. �

For a transition sequence π, consider the Parikh vector (transition count
vector) Ψ(π). Ψ(π)(t) is the number of occurrences of t in π. Using Ψ , we can
rewrite the equation in Lemma 5 to

s∗(π′) =
∑

t∈T

Ψ(π)(t)s(t).

Our first application of the lemma concerns the refinement of the proto-
region. Consider a proto-region S, a proto-signature σ, and the induced proto-
LTS.

TR Let π1 and π2 be paths in the proto-LTS with Ψ(π1) = Ψ(π2). Let V , V ′ and
V ′′ be classes in S such that one of the following two conditions holds:
(1) π1 starts in V and ends in V ′, π2 starts in V and ends in V ′′, or
(2) π1 starts in V ′ and ends in V , π2 starts in V ′′ and ends in V . Then:

union(V ′, V ′′).

Lemma 6. Rule TR does not change the set of according regions.

Proof. Let f be a region according to S and σ and R be the partition induced
by f . Since f accords to S, all vertices in V will be contained in the same class
of R. By Ψ(π1) = Ψ(π2) and Lemma 5, all nodes in V ′ ∪V ′′ are contained in the
same class of R. �

The second application of Lemma 5 permits the refinement of the proto-
signature.

TS Let π1 and π2 be paths of the proto-LTS that both start in some vertex V
and both end in some vertex V ′. Let, for all t, k(t) = Ψ(π1)(t) − Ψ(π2)(t).
(1) if there is a transition label t∗ such that |k(t∗)| >

∑
t�=t∗ |k(t)| then σ :=

σ ∪ {[t∗, II, t∗]};
(2) if there is a transition label t∗ such that |k(t∗)| =

∑
t�=t∗ |k(t)| then σ :=

σ ∪ {[t∗, II, t∗]} or, for all t �= t∗:

Petri Net Synthesis with Union/Find 71

• if sign(k(t)) = sign(k(t∗)) then σ := σ ∪ {[t, OI, t∗]};
• if sign(k(t)) = −sign(k(t∗)) then σ := σ ∪ {[t, SI, t∗]}.

Lemma 7. Rule TS does not change the set of according regions.

Proof. Since, for all t, s(t) ∈ {−1, 0, 1}, the proposed values are the only possi-
bilities to solve the equation of Lemma 5. �

10 Branching the Search Space

If none of the rules is applicable, computation continues with a separation of
the search space into disjoint parts. This way, the search tree branches. Since in
general, the number of transitions is much smaller than the number of vertices,
we branch w.r.t. the proto-signature σ. To this end, we consider two transitions t
and t′ for which no mutual relation is recorded in σ (i.e. they belong to different
cliques). We consider the following four cases:

– t is ignoring;
– t is not ignoring and t′ is ignoring;
– none of t and t′ is ignoring and they have the same signature;
– none of t and t′ is ignoring and they have opposite signatures.

These cases can be implemented by adding one of the following tuples to σ:
[t, II, t], [t′, II, t′], [t, SA, t′], [t, OP, t′]. In the second case, we additionally have
to take care that, subsequently, t is not set to ignoring. We implement this issue
with the help of an additional bit per transition. Setting this bit, any attempt
to add [t, II, t] will be recognised as inconsistency. Any subsequent addition of
[t, SI, t′] or [t, OI, t′] will be modified to [t, SA, t′] or [t, OP, t′], respectively. This
way, our cases cover all situations (which is important for correctness) and are
disjoint (which is important for efficiency). Consequently, every decision point
in the search tree has four branches. Although the number of transition pairs
is quadratic in the number of transition labels, the depth of the search tree
cannot grow beyond the number of transitions. This is due to the transitive
conclusions mentioned above. This means that every case unifies two transition
cliques induced by σ and the number of union operations is bounded by the
number of transitions.

For the selection of a transition pair, we implemented a greedy strategy. We
select the transition with the largest number of classes where both transitions
have source or sink vertices. This way, it is likely that the simple rules quickly
provoke a large number of union operations. In effect, the proto-LTS becomes
smaller and operations on it need less time.

11 Detecting a Region

The search process approaches a situation where only two regions accord to
proto-region and proto-signature: one for a place p and one for its complement

72 K. Wolf

place. This situation is reached if σ consists of at most two cliques: one of type
2 or 3, and optionally one of type 1. We further assume that all simple rules
are exhaustively applied and did not cause any inconsistency. Finally we assume
that at least the following spacial case of rule TS is not applicable: Let π1 = tk,
for arbitrary k, and π2 = ε. In such a case (for k > 0), tk is a uniformly labelled
cycle in the proto-LTS and rule TS would set t to ignoring. Consequently, by
rule SR1, all vertices on the cycle would collapse into a single class.

Under the described conditions, there is only one label that connects different
vertices in the proto-LTS: it is the component of type 2 or 3. There cannot be
forward nor backward branches in the proto-LTS since otherwise one of the rules
SR2, SR3, or SR4 would be applicable. There cannot be a cycle as otherwise rule
TS would be applicable. Finally, the proto-LTS is connected since the original
LTS is connected and the process of folding the original LTS into a proto-LTS
does not interrupt existing connections. Consequently, the proto-LTS has the
shape of a linked list. This list contains a unique vertex without predecessor. This
serves as V0. Then, let the unique successor of Vi be Vi+1 and we have an ordering
of the classes of proto-region as required for a region. Let t∗ be the canonical
representative of the non-ignoring clique of σ. All transitions t with [t, SA, t∗]
or [t, SI, t1∗] naturally become ascending transitions and all transitions t with
[t, OP, t∗] or [t, OI, t1∗] become descending. Transitions in the other clique, if
present, are ignoring. The complement place is generated by reversing the order
of the classes in the proto-region, and by multiplying all signature values with −1.

Should we arrive at a situation with only one clique of type 1, we can imme-
diately backtrack. A resulting place would never change its marking, so it cannot
contribute to SSP nor ESSP.

12 Managing the Separation Problems

Throughout the whole calculation process, we record information about solved
instances of the two separation problems SSP and ESSP. Whenever a region
is detected, we update that information. At any time during the search, we
analyse whether, for the given proto-region and proto-signature, contributions
to the remaining instances may be expected from according regions. If not, we
backtrack and continue our search in another part of the search space. As soon
as all separation problems are completely solved, we exit.

For recording information on solved and unsolved SSP instances, we use the
linear data structure proposed in [12]. The data structure represents a partition
of the set of vertices. Its semantics is as follows: v and v′ are separated w.r.t.
the already known regions if and only if v and v′ appear in different classes of
the partition. Unfortunately, this is not another application of union/find since
the dominating operation is intersection, not union. We implement the partition
using three arrays of size |V |. In the first array, the indices of all vertices of some
class Si are recorded as a continuous section. In the second and third array, the
i-th entry represents the first and last index containing elements of set Si.

Petri Net Synthesis with Union/Find 73

If a new region is detected, we use the induced partition R for updating
the SSP information. We sort every part of the first array according to set
names of its vertices in R. Then, for each distinct value, a new set is introduced
by recording start and end in the second and third arrays. Singleton sets are
removed as they do not represent unsolved SSP instances. As soon as the last
set is separated into singletons, SSP is satisfied for the regions detected so far.

A proto-region S does not contribute to SSP as soon as no according region
solves an instance of SSP that is still open.

Lemma 8. A proto-region S does not contribute to SSP if every set of the SSP
data structure is included in a class of the partition S.

Proof. A region can separate only states that are in different classes of its induced
partition R. Since only regions accord to S where every class of S is included in
some class of R, no contribution to open instances of SSP is possible. �

For ESSP, we keep a two-dimensional bit-array of size |V ||T |. v and t are
separated w.r.t. existing regions if and only if the bit at index v and t is set to
true. Upon detection of a region, we determine, for every transition t, the small-
est class of the induced partition R that contains sources of t-edges. Vertices in
smaller classes of R are those where this region contributes to ESSP, and we
update the corresponding bits. If any new bit is changed, the region contributes
to ESSP. The same procedure is independently executed for the reverse region
(i.e. the complement place). If a region contributes to SSP or ESSP, the corre-
sponding place is added to the resulting region net. The complement place is
added if it has its own contribution to ESSP (for SSP, the contribution of place
and complement place are identical).

The remaining problem in this section is to find out whether a given proto-
region S and proto-signature σ can contribute to open ESSP problems. To this
end, let us fix a transition t∗ and a vertex v∗ to be separated. Consider the
proto-LTS L∗ for S and σ. Let V ∗ be the unique class of S that contains v∗ and
let t be an arbitrary transition appearing in L∗. We assume that the check for
ESSP contribution is executed in a situation where no simple rules are applicable
(so there is no forward nor backward branching in L∗ with edges that have the
same label), and the topological rules have been applied at least to the degree
that there are no uniformly labelled cycles in L∗. Then there is a unique and
finite longest (but possibly empty) path using t-edges starting from V ∗. It ends
in some node Vy of L∗. Analogously, there is a longest and possibly empty path
from V ∗ using reverse t-edges. It ends in some Vx. Together, we have a path
(that still can be empty) from Vx via V ∗ to Vy using only t-edges. We claim
that the current situation comprised of S and σ cannot contribute to the ESSP
instance [v∗, t∗] if some vertex V on the path between Vx and V ∗ (including
both) contains a source of a t∗-edge, and some vertex V ′ on the path between
V ∗ and Vy (including both contains a source of a t∗-edge.

To verify this claim, assume a situation as described and consider any accord-
ing region f and its induced partition R. Depending on the signature of t, there
are two cases to be considered. In the first case, t becomes ignoring in f . Then,

74 K. Wolf

Fig. 1. Example of an LTS.

all classes on the considered path are contained in the same class of R. This
contains a source of a t∗-edge, so f cannot contribute to this ESSP instance.
In the second case, t is not ignoring. Then the classes on the considered path
are contained in different but connected classes of R. Since the least class of R
containing sources of t∗ determines the weight of the input arc to t∗, one of the
existing sources proves that the resulting place cannot disable t∗ while the exist-
ing source in the other sub-path proves that the complement pace cannot disable
t∗. Consequently, no according region can contribute to this ESSP instance.

We check the ESSP contribution by traversing, for all t, the transition systems
[V ∗, E∗

t], taking O(|V ||Et|) time. This sums up to a total of O(|V ∗||E∗|). Taking
into consideration that most checks are performed on deep levels of the search
tree, i.e. on already small proto-LTS, the run-time is acceptable and is in any
case less expensive than traversing the useless branches of the search tree.

If our algorithm is applied to a subclass of Δ1-Petri nets, the management
of SPP and ESSP needs to be adapted.

13 A Walkthrough

Consider the transition system in Fig. 1. We start in the following situation. In
the presentation of σ, {a, b/d, e} : k stands for: k is the type of the compo-
nent. If both transitions appear before or both appear after the slash, the have
orientation SA or SI. Otherwise their orientation is OP or OI.

S = {{0}, {1}, {2}, {3}, {4}, {5}, {6}} σ = {{a} : 2, {b} : 2, {c} : 2, {d} : 2, {e} : 2}
(1)

The SSP data structure is {0, 1, 2, 3, 4, 5, 6}. In the ESSP structure, all bits
[v, t] where v is source of a t-transition, are set as “solved”. In this situation,
no rules are applicable, so we set a first decision point. We select a pair of
transitions, b and c, and start with the first case: b is ignoring. By rule SR1, this
leads to the following situation:

S = {{0}, {1, 3}, {2, 4}, {5}, {6}} σ = {{a} : 2, {b} : 1, {c} : 2, {d} : 2, {e} : 2}
(2)

For the second decision point, we select transition pair d and c and make d
ignoring. We obtain

S = {{0}, {1, 3, 5}, {2, 4, 6}} σ = {{a} : 2, {b, d} : 1, {c} : 2, {e} : 2} (3)

Petri Net Synthesis with Union/Find 75

Rules are not applicable. A third decision point uses c and a. Making c ignor-
ing, leads us to proto-region {{0}, {1, 2, 3, 4, 5, 6}}. Rule RS3 is applicable for
transitions a and e, so we obtain

S = {{0}, {1, 2, 3, 4, 5, 6}} σ = {{a/e} : 2, {b, c, d} : 1} (4)

In this situation, we have found two regions f1 and f2. We have f1(0) = 0 and
f1(x) = 1, for x �= 0. a is ascending, e is descending. The corresponding place has
{a, b, c, d} as pre-set and {b, c, d, e} as post-set. All multiplicities are 1. f2 with
f2(x) = 1 − f1(x) is the complement place. It has pre-set {e} and post-set {a}.
Both f1 and f2 contribute to SSP and ESSP, so they are added to the resulting
region net. The new SSP record is {{1, 2, 3, 4, 5, 6}}. In ESSP, bits a1, a2, a3, a4,
a5, a6 are set due to f2, and bits b0, c0, d0, e0 are set due to f1. Hence, ESSP
is completed for transition a. We backtrack to situation (3) and try the second
option. That is, a becomes ignoring while ignoring is excluded for c. With rule
RS1 applied to a, we obtain

S = {{0, 1, 3, 5}, {2, 4, 6}} σ = {{c} : 3, {a, b, d} : 1, {e} : 2} (5)

With rule RS3, a and e become opposite, so we get another pair of regions. The
first place has pre-set {c} and post-set {e} while the complement place has pre-
set {a, e} and post-set {a, c}. SSP reduces to {{1, 3, 5}, {2, 4, 6}}. In ESSP, bits
e1, e3, e5, c2, c4, c6 are set. So ESSP is completed for transition c. We backtrack
once more to situation (3) and set a and c to SA. Considering the proto-region
in situation 3, there is a path from {0} with a to {1, 3, 5}, with c to {2, 4, 6}, and
with e back to {0}. a and c are in the same clique now. Let c be its canonical
representative. Apply rule TS with π1 = cce and π2 = ε. The rule tries to set c
to ignoring, in contradiction to the setting that c should not be ignoring. So we
backtrack. The final option in situation (3) is to set a and c to OP. We result in

S = {{0}, {1, 3, 5}, {2, 4, 6}} σ = {{c/a} : 3, {b, d} : 1, {e} : 2} (6)

Here, S is not able to split any class in the remaining SSP record. Since b and
d both have outgoing edges from {1, 3, 5} and {2, 4, 6} and e has an outgo-
ing edge from {2, 4, 6}, we may conclude that the current situation has only
according regions without contribution to the separation problems. We back-
track and return to the second decision point since the third decision point has
been exhaustively explored. So we return to situation (2), set transition c to
ignoring and mark d as “not ignoring”. We arrive at situation

S = {{0}, {1, 2, 3, 4}, {5, 6}} σ = {{a} : 2, {b, c} : 1, {d} : 3, {e} : 2} (7)

Since no rule is applicable, we open a fourth decision point and choose e and a
as transition pair. In the first branch, e is set to ignoring. So {0} and {5, 6} are
unified and with rule RS3, a and d become OP. In this situation,

S = {{1, 2, 3, 4}, {0, 5, 6}} σ = {{a/d} : 3, {b, c, e} : 1} (8)

76 K. Wolf

We produce the next two places. One has pre-set {a, b} and post-set {b, d},
the other one has pre-set {d, e} and post-set {a, e}. The SSP record reduces to
{{2, 4}, {1, 3}} and in the ESSP record, only bits b3, b4, d1, d2 remain unset.
Returning to situation (7), there cannot be any further contribution to SSP
since class {1, 2, 3, 4} in incapable to split the remaining SSP sets. In addition,
{1, 2, 3, 4} contains sources of b and d, so no contribution to ESSP is possible.
We backtrack to the second decision point (situation 2). Again, we can see that
there is no more contribution to SSP since all sets of the remaining SSP records
are included in some set of S. The classes containing vertices 1, 2, 3, 4 all have
sources of b-edges and d-edges, so no contribution to ESSP is possible either.
We backtrack to the first decision point. Having already demonstrated all major
ingredients of our approach, we skip the details of the remaining approach. It
leads to a final pair of places where one has pre-set {b} and post-set {d} while
the other one has pre-set {a, d, e} and post-set {a, b, e}. This pair of places solves
the remaining instances of SSP and ESSP, so we exit the whole procedure. We
have produced a net with 5 transitions and 8 places.

14 Quality of Resulting Net

As we keep track on SSP and ESSP, the Petri net produced by our algorithm is
indeed isomorphic to the input LTS if and only if all SSP and ESSP instances are
solved. Since we add a place to the resulting net only if it contributes to SSP or
ESSP, we have by construction that no place in our region net is redundant w.r.t.
the places returned earlier. It may, however, be redundant if places produced
later are taken into consideration. Hence, we cannot guarantee that our result
is minimal. Furthermore, at the current stage of development, our resulting net
contains a lot of self-loops (situations where W ([p, t]) = W ([t, p]) �= 0) . In a
refined algorithm, we could restrict insertion of self-loops to cases where that
contributes to ESSP. However, we believe that such issues can be solved in
post-processing where, given a set of places, redundant places and redundant
self-loops can be eliminated. Then the resulting net would at least be minimal
in the sense that no place is redundant.

On the other hand, we believe that our algorithm is not suitable for getting
a net with minimal number of included places. For this goal, algorithms based
on linear programming will probably remain the best solution.

15 Complexity

With the sketched procedure, we indeed achieve a space complexity of O(|V ||T |).
The main data structures in our approach are

– the input LTS which takes O(|V ||T |) space since no vertex can have more
than |T | outgoing edges;

– the proto-region, an array with |V | elements;
– the proto-signature that can be implemented in O(|T |) exploiting the clique

structure (in fact, we use union/find);

Petri Net Synthesis with Union/Find 77

– the SPP record that takes O(|V |) as sketched above;
– the ESSP record, an array with |V ||T | entries;
– a stack for managing decision points that cannot grow beyond size |T | and

contains only information of constant size. In particular, we refer to our solu-
tion for backtracking in proto-regions explained in Sect. 3.

Additional data structures for implementing the application of rules do not
exceed this space requirement. To our best knowledge, the memory footprint of
our algorithm is better than the memory usage of existing tools. Our experiments
confirm this assumption. In fact, we were able to execute problem instances with
our procedure on a machine with 16 GB RAM where competing tools ran out of
memory on another machine with 1 TB of RAM.

Concerning run-time, only a tiny fraction of time is used for managing a
proto-region. This is remarkable since we tried instances with more than one
million vertices. The most time consuming part of our algorithm is the investiga-
tion of the data-structures for applicability of rules. All procedures implemented
have a polynomial run time, though. The decisive factor for the run-time of our
procedure is its branch-and-backtrack nature. Since we may run into branches
that lead to inconsistent or redundant situations, our procedure has essentially
exponential run-time. For further improvements of our algorithm, it is thus nec-
essary to add additional and more powerful rules as well as heuristics such that
the number of fruitless branches in our search tree is further reduced. In fact,
instances that we cannot currently solve have search trees with a large number
of recursive decision points. This number has some correlation to |T | and, to a
much smaller degree, to |V |.

16 Implementation

We implemented our results in a prototype. We call it ptsynthia. It reads an
LTS from the input and writes the computed region net to the output. We imple-
mented both proto-region and proto-signature using the union/find algorithm.
The prototype supports all simple rules. We did not implement the full power of
the rules TS and TR. We only support several special cases for which we found
efficient implementations. The special cases are strong enough for making sure
that, if no rule is applicable, the pre-requisites for the considerations in Sect. 11
are satisfied.

The implementation language is C++. We also implemented a modified pro-
totype synthia. This prototype support the synthesis of safe Petri nets. In this
tool, the restricted target class permits a lot of simplifications in the application
of rules which we cannot describe in detail, due to the page limit. The whole
project comprises of almost 5000 lines of code.

17 Experiments

We applied our tool to a benchmark of 105 labelled transition systems and
compared our results to existing tools. The benchmark stems from the model

78 K. Wolf

Table 3. Solved instances, depending on number of states.

Number of vertices Total apt ptsynthia synthia

Number Percent Number Percent Number Percent

0 .. 9,999 46 43 93% 43 93% 44 96%

10,000 .. 100,000 15 13 87% 12 80% 13 87%

100,000 .. 1,000,000 18 3 17% 16 89% 16 89%

Beyond 1,000,000 26 0 0% 7 27% 18 69%

Total 105 59 56% 78 74% 91 87%

checking contest (MCC) [10] in 2016. We collected all Petri nets where the state
space category of the contest reported less than 10 million reachable markings.
We further included the smallest instance beyond that threshold. It has some
11 million reachable states. From this set, we removed some of the most trivial
instances as well as some net instances that were mostly identical to other nets
concerning net structure and number of reachable states. For the remaining nets,
we used our tool LoLA [13] for generating the full state space. With a patch of the
tool, we produced labelled transition systems in several formats. This includes
the format for synthia, for petrify (which is also readable for genet), and apt.
The decision to use MCC 2016 instead of MCC 2017 is motivated by the fact,
that the organisers of the MCC removed many net instances with small state
space in 2017 as they were considered to be too simple for verification.

The benchmark contains a small number of nets that are not Δ1-Petri nets.
Most of them produce an LTS that is not synthesable (that is, there is no Δ1-
Petri net producing that state space). We nevertheless report such instances as
“solved” if the tool returns and reports open SSP or ESSP instances. About half
of the nets are not safe and thus not synthesable by synthia. Again, we report
the run-time for all instances. After some experimentation, we got the impression
that, among the other tools, apt has the strongest performance. This impression
coincides with existing literature [4]. Consequently, we ran the whole benchmark
for synthia, ptsynthia, and apt. We executed the instances on a Mac-Book Pro
with 4 cores, 2.2 GHz, and 16 GB RAM. For instances that ran out of memory,
we repeated experiments on a LINUX machine with 64 cores, 2.7 GHz, and 1 TB
of RAM. We gave each instance about 24 h of run time. On the LINUX machine,
we executed about 20 instances in parallel. While synthia and ptsynthia are
purely sequential tools, apt uses all available cores for parallelisation. apt offers
several options that are relevant in our context:

– plain for producing ordinary nets
– safe for producing safe nets.

Run times vary, but in the end we concluded that apt performs best if applied
without using such modifiers. Our experiments refer to that way of application.

Petri Net Synthesis with Union/Find 79

Table 4. Solved instances, depending on number of transition labels.

Number of labels Total apt ptsynthia synthia

Number Percent Number Percent Number Percent

0 .. 49 43 29 67% 40 93% 43 100%

50 .. 99 21 19 90% 21 100% 21 100%

100 .. 199 14 7 50% 9 64% 12 86%

200 .. 500 16 4 25% 6 38% 9 56%

Beyond 500 11 0 0% 2 18% 6 55%

Total 105 59 56% 78 74% 91 87%

Table 5. Number of solved instances, depending on consumed run time

Time apt ptsynthia synthia

<1 min 40 40 59

1min .. 1 h 18 23 24

1 h .. 10 h 0 8 7

10 h .. 24 h 0 7 1

Table 3 lists the number of instances solved by the compared tools, depending
on the number of states of the models. Table 4 presents the same experiments,
depending on the number of transition labels of the input LTS. In Table 5, we
report on the consumed run time.

For only a handful of transition systems, ptsynthia and synthia needed
more than 16 GB memory. They are the only tools that were able to break the
sonic barrier of one million states, and even that was sometimes possible with less
than 16 GB. In turn, apt did not solve any problem having more than 500,000
states. In comparison, the largest instance solved by ptsynthia has more than
9,000,000 vertices. synthia even solved the largest example in the benchmark.
If all three tools solved a problem, we typically saw synthia coming in first
and apt second. apt produces smaller nets and perhaps uses some of its run
time to minimise the size of the net. The run time of synthia and ptsynthia
depends only partly on the size of the net. Managing large sets of vertices is
not an important issue, thanks to the union/find algorithm. We observed that
success of our tools mostly depends on the depth of the search tree, that is,
the number of subsequent decision points. Our run time is exponential in that
number. Of course, the depth of the search tree has some correlation to the
number of transitions in the net, so, in Table 4, the largest number of instances
solved by our tools but not by apt is in the interval of 0 to 49 labels. However,
there are instances where ptsynthia was successful on instances with several
thousand transitions. In these instances, the rules performed above average thus
reducing the depth of the search tree.

80 K. Wolf

We can see that the O(|V ||T |) memory consumption is decisive for the success
of the new algorithms. For the other tools, memory usage runs beyond limits
much earlier than for our tools. With the larger memory consumption, run time
grows due to the necessity to handle much larger data structures. In particular,
Table 5 shows that the new tools more likely profit from additional time spent
for computation.

The benchmark and our prototypes can be downloaded from https://users.
informatik.uni-rostock.de/∼ks249/pn2018.tar.

18 Conclusion and Future Work

We developed the idea of Petri net synthesis. Our main focus was a lean mem-
ory footprint. We achieved our goal by observing that synthesis can be viewed
as a calculation process that is centered around partitions. This way, we can
successfully apply the union/find algorithm.

There are several obvious sources for improvement. Much time is spent for
checking for applicable rules. This task can easily be parallelised. We could
also run several instances of our algorithm in parallel that synchronise only
on the found regions and solved separation problems. If the instances use dif-
ferent strategies for selecting the transitions when branching, we increase the
likelihood that all separation problems are covered earlier. We should work on
better exploitation of the topological rules, and on finding additional rules. This
way, the depth of the search tree can be reduced. We have an open issue for
post-processing our results. We should remove places that finally turn out to be
redundant, and we should remove self-loops if they are not needed for separation.

Apart from these obvious improvements, the concept of label splitting and
the extension of the approach to arbitrary place/transition nets establish the
natural next challenges.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

3. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
Petri net synthesis. Form. Asp. Comput. 13(6), 447–470 (2002)

4. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceed-
ings of the ICE, EPTCS, vol. 189, pp. 53–67 (2015)

5. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: a tool for the synthesis and
mining of Petri nets. In: Proceedings of the ACSD, pp. 181–185 (2009)

6. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Trans. Inf. Syst. E80–D(3), 315–325 (1997)

https://users.informatik.uni-rostock.de/~ks249/pn2018.tar
https://users.informatik.uni-rostock.de/~ks249/pn2018.tar
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/978-3-662-47967-4

Petri Net Synthesis with Union/Find 81

7. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets for
finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)

8. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Part I: basic notions
and the representation problem. Acta Inf. 27(4), 315–342 (1990)

9. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Part II: state spaces of
concurrent systems. Acta Inf. 27(4), 343–368 (1990)

10. Kordon, F., et al.: Complete Results for the 2016 Edition of the Model Checking
Contest, June 2016. http://mcc.lip6.fr/2016/results.php

11. Mukund, M.: Petri nets and step transition systems. Int. J. Found. Comput. Sci.
3(4), 443–478 (1992)

12. Schlachter, U.: Petri net synthesis for restricted classes of nets. In: Kordon, F.,
Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 79–97. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-39086-4 6

13. Schmidt, K.: LoLA: a low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44988-4 27

14. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

http://mcc.lip6.fr/2016/results.php
https://doi.org/10.1007/978-3-319-39086-4_6
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-44988-4_27

Factorisation of Petri Net Solvable
Transition Systems

Raymond Devillers1 and Uli Schlachter2(B)

1 Université Libre de Bruxelles, Boulevard du Triomphe - C.P. 212,
1050 Bruxelles, Belgium

rdevil@ulb.ac.be
2 Department of Computing Science, Carl von Ossietzky Universität,

26111 Oldenburg, Germany
schlachter@informatik.uni-oldenburg.de

Abstract. In recent papers, general conditions were developed to char-
acterise when and how a labelled transition system may be factorised into
non-trivial factors. These conditions combine a local property (strong
diamonds) and a global one (separation), the latter being of course more
delicate to check. Since one of the aims of such a factorisation was to
speed up the synthesis of Petri nets from such labelled transition sys-
tems, the problem arises to analyse if those conditions (and in particular
the global one) could be simplified, or even dropped, in the special case
of Petri net solvable behaviours, i.e., when Petri net synthesis is possible.
This will be the subject of the present paper.

Keywords: Labelled transition systems · Composition
Decomposition · Petri net synthesis

1 Introduction

The product of two labelled transition systems (lts) with disjoint label sets com-
bines their behaviour by interleaving. Namely, the product can do an a-transition
if the subsystem to which a belongs can. In factorisation, an lts is given which
should be decomposed into disjoint subsystems, or factors, when possible.

In [16,17], conditions were devised to characterise when an lts is the disjoint
product of non-trivial factors, how to check these conditions, and how to find
an (optimal) decomposition. This uses essentially two types of properties: a
general diamond property on pairs of labels and a separation property on subsets
of labels. The first one is local, in the sense that it only relies on the close
neighbourhood of the various states, hence is rather easy to check. The second

U. Schlachter—This author is supported by the German Research Foundation (DFG)
project ARS (Algorithms for Reengineering and Synthesis), reference number Be
1267/15-1, and partially supported by DFG Research Training Group (DFG GRK
1765) SCARE.

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 82–98, 2018.
https://doi.org/10.1007/978-3-319-91268-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_5&domain=pdf

Factorisation of Petri Net Solvable Transition Systems 83

one is global, needing to look at long distance relationships, hence is more delicate
to check. Moreover, the first condition leads to an efficient way to partition the set
of labels in such a way that labels from different components have the diamond
property, by defining an equivalence relation on the label set so that only unions
of equivalence classes may drive an adequate decomposition. However, the second
condition allows no such treatment and instead the powerset of those classes has
to be checked, leading to a potentially exponential blowup of the factorisation
procedure.

The motivation for factorisation came from the Petri net synthesis problem,
where an lts is given and one tries to find a Petri net whose behaviour corresponds
to a reachability graph isomorphic to this lts. When ths is possible, one says the
lts is solvable and the constructed Petri net is a solution. This problem was
initially studied for elementary Petri nets [15,19,20], and later extended to the
full class of Petri nets and some sub-classes like choice-free Petri nets or marked
graphs [6,8,9]. The synthesis problem is usually polynomial in terms of the size
of the lts, with degree between 2 and 5 depending on the subclass of Petri nets
one searches for [3,4,8,12], but can also be NP-complete [5]. Hence the interest
to apply a “divide and conquer” synthesis strategy. Moreover, the approach of [8]
(extended to weighted marked graphs in [1]) only works for connected Petri nets.
By factorising the given lts into prime (i.e., not further decomposable) factors,
which automatically lead to connected solutions when solvable, this requirement
can be lifted.

Hence, one could wonder if, in the specific framework of Petri net synthesis,
the needed conditions and related algorithms could be simplified to avoid the
exponential blowup and actually make synthesis faster. We shall see that this
is indeed the case, and that the needed Petri net synthesis algorithms already
perform the needed “long distance” checks.

The structure of the paper is as follows. After recalling the bases of the
Petri net synthesis problem, disjoint products of lts are linked to disjoint sums
of Petri nets. Then conditions for the factorisation of general lts are recalled,
before the special case of factorisation in the context of Petri net synthesis is
handled. This leads to a quick factorisation algorithm that may be run before
proper synthesis starts, and its efficiency is illustrated on selected cases. The last
section concludes.

2 Labelled Transition Systems and Petri Nets

A classical way for representing the possible (sequential) evolutions of a dynamic
system is through its labelled transition system [2].

Definition 1. Labelled Transition Systems
A labelled transition system (lts for short) with initial state is a tuple TS =
(S,→, T, ι) with node (or state) set S, edge label set T , edges → ⊆ (S × T × S),
and an initial state ι ∈ S.

84 R. Devillers and U. Schlachter

Two lts TS 1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with the same
label set T are (state-)isomorphic, denoted TS1 ≡T TS 2, if there is a bijection
ζ : S1 → S2 with ζ(ι1) = ι2 and (s, t, s′) ∈ →1 ⇔ (ζ(s), t, ζ(s′)) ∈ →2, for all
s, s′ ∈ S1 and t ∈ T .

Usually, one considers the forward reachability relation: a label t ∈ T is
enabled at s ∈ S, written formally as s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈ →. A state s′

is reachable from s through the execution of σ ∈ T ∗, denoted by s[σ〉s′, if there
is a directed path from s to s′ whose edges are labelled consecutively by σ. The
set of states reachable from s is denoted by [s〉.

But it is also possible to consider the forward-backward reachability relation:
for each label t ∈ T we shall denote by −t the corresponding reverse label,
i.e., s[−t〉s′ if s′[t〉s (this may also be denoted s〈t]s′). We shall assume that
−T = {−t | t ∈ T} is disjoint from T , and that −t = t.

Define ±T = T ∪ −T to be the set of all forward and reverse labels. The
general paths s[α〉s′ for α ∈ (±T)∗ are then defined like the forward ones, and
we shall denote by 〈s〉 the set of states reachable from s through a general path.

We shall generalise the usual Parikh vectors to general paths: let α ∈ (±T)∗

and a ∈ T , Ψ(α)(a) is defined inductively by

Ψ(ε)(a) = 0 and Ψ(τt)(a) =

⎧
⎨

⎩

Ψ(τ)(a) + 1 if t = a
Ψ(τ)(a) − 1 if t = −a
Ψ(τ)(a) otherwise

An lts is (forward) deterministic if ∀t ∈ T,∀s, s′, s′′ ∈ S : s[t〉s′ ∧ s[t〉s′′ ⇒
s′ = s′′. Similarly, it is forward/backward (f/b for short) deterministic if
∀t ∈ ±T,∀s, s′, s′′ ∈ S : s[t〉s′ ∧ s[t〉s′′ ⇒ s′ = s′′, i.e., the reached state
is additionally unique in backwards direction. It is strongly deterministic if
∀α, α′ ∈ (±T)∗,∀s, s′, s′′ ∈ S : Ψ(α) = Ψ(α′) ∧ s[α〉s′ ∧ s[α′〉s′′ ⇒ s′ = s′′.
This last definition means that two (general) paths with the same Parikh vector
must reach the same state from s, e.g., permutations do not reach a different
state.

A general cycle (around some state s ∈ S) is a general path s[α〉s. Directed
cycles are defined similarly, but using forward paths only.

Classical properties of an lts are:

1. It is finite if so are S and T (hence also →).
2. It is totally reachable if S = [ι〉, and generally reachable if S = 〈ι〉 (then it is

also connected).
3. TS is strongly cycle-consistent if, whenever there is a general path s[α〉s′,

general cycles s1[β1〉s1, s2[β2〉s2, . . . , sn[βn〉sn and numbers k1, k2, . . . , kn ∈ Q
such that Ψ(α) =

∑n
1 ki · Ψ(βi), then s = s′. Intuitively, this means that a

combination of Parikh vectors of cycles cannot produce non-cycles.

Factorisation of Petri Net Solvable Transition Systems 85

Definition 2. Petri Nets
An initially marked Petri net is denoted as N = (P, T, F,M0) where P is a set
of places, T is a disjoint set of transitions (P ∩ T = ∅), F is the flow function
F : ((P × T) ∪ (T × P)) → N specifying the arc weights, and M0 is the initial
marking (where a marking is a mapping M : P → N, indicating the number
of tokens in each place). Its incidence matrix is the matrix C : (P × T) → N
defined as C(p, t) = F (t, p) − F (p, t), i.e., the difference between the number of
tokens produced and absorbed by t on p.

Two Petri nets N1 = (P1, T, F1,M
1
0) and N2 = (P2, T, F2,M

2
0) with the

same transition set T are isomorphic, denoted N1 ≡T N2, if there is a bijection
ζ : P1 → P2 such that, ∀p1 ∈ P1, t ∈ T , M1

0 (p1) = M2
0 (ζ(p1)), F1(p1, t) =

F2(ζ(p1), t) and F1(t, p1) = F2(t, ζ(p1)).
A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if ∀p ∈

P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted by M [t〉M ′, if
M [t〉 and M ′(p) = M(p) − F (p, t) + F (t, p). This can be extended, as usual, to
M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of markings reachable
from M . The net is bounded if there is k ∈ N such that ∀M ∈ [M0〉, p ∈ P :
M(p) ≤ k. Firing sequences may be generalised easily to sequences σ ∈ (±T)∗.

The reachability graph RG(N) of N is the labelled transition system with the
set of vertices [M0〉, initial state M0, label set T , and set of edges {(M, t,M ′) |
M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. If an lts TS is isomorphic to the reachability graph
of a Petri net N , we say that TS is solvable and that N solves TS . �� 2

Corollary 1. Independence from isomorphisms
Let N1, N2 be two Petri nets; if N1 ≡T N2, then RG(N1) ≡T RG(N2).
Let TS 1,TS 2 be two lts; if TS1 ≡T TS 2 and N solves TS1, then N solves TS2.

�� 1

But it may happen that two Petri nets with completely different structures
have isomorphic reachability graphs, as illustrated in Fig. 1.

The classical state equation of Petri nets may be extended to general paths.

ιa

b

b

a

c

a

b

d

dd

a b

c

d

a

b

c d

2

Fig. 1. A finite lts (on the left) and two possible Petri net solutions, with very different
structures.

86 R. Devillers and U. Schlachter

Lemma 1. General state equation
Let N be a Petri net with incidence matrix C, M1,M2 be two of its markings
and α ∈ (±T)∗ be some general firing sequence, then if M1[α〉M2 we have M2 =
M1 + C · Ψ(α).

Proof. This immediately results, by induction on the length of α, from the
definition of the firing rule. �� 1

Lemma 2. General properties of reachability graphs
Let N = (P, T, F,M0) be any Petri net. Its reachability graph RG(N) is totally
reachable, strongly deterministic and strongly cycle-consistent. It is finite iff N
is bounded.

Proof. Total reachability holds by definition of the reachability graph. Similarly,
boundedness and finiteness are equivalent by definition.

For strong determinism, assume that M [α〉M ′, M [α〉M ′′, and Ψ(α) = Ψ(α′).
By Lemma 1 we have M ′ = M + C · Ψ(α) = M + C · Ψ(α′) = M ′′.

Strong cycle-consistency can be shown similarly with Lemma 1: Mi[βi〉Mi

implies C · Ψ(βi) = 0, from which C · Ψ(α) = 0 can be deduced, thus M = M ′.
�� 2

Other kinds of properties, linked to infinite paths in those reachability graphs,
are the following and are illustrated in Fig. 2:

Definition 3. Weak periodicity and two-way uniform chains An lts
TS = (S,→, T, ι) is weakly periodic if, for every α ∈ T ∗ and infinite path
s1[α〉s2[α〉s3 · · · , either for every i, j ∈ N : si = sj or for every i, j ∈ N : i �= j ⇒
si �= sj .

It presents a forward two-way uniform chain if there is a sequence α ∈ T ∗

and states si ∈ S for i ∈ Z such that si[α〉si+1 for each i ∈ Z and ∀i, j ∈ Z : (i �=
j ⇒ si �= sj). It presents a general two-way uniform chain if the same is true for
some α ∈ (±T)∗. �� 3

s0
a

s1

b a

s2

b
. . .

s−1

a b

s−2

a b
. . .

s′
0

a

s′
1

b a

s′
2

b
. . .

s′
−1

a b

s′
−2

a b
. . .

Fig. 2. A forward two-way uniform chain (top, with α = ab), and a general one (bot-
tom, with α = a −b).

Factorisation of Petri Net Solvable Transition Systems 87

Lemma 3. Reachability graphs and infinite uniform chains
The reachability graph of a Petri net is weakly periodic and does not present
two-way (forward or general) uniform chains.

Proof. Weak periodicity has been introduced and analysed in [7]. The proof
for Lemma 10 of [7] also holds if, in the definition of weak periodicity we allow
α ∈ (±T)∗ instead of α ∈ T ∗. The proof follows from Lemma 1: Either a firing
sequence α reproduces the marking (C · Ψ(α) = 0), or not.

For two-way uniform chains, the property also follows from Lemma1. Indeed,
let N be a Petri net with incidence matrix C. If there is a (forward or general)
two-way uniform chain . . . Mi[α〉Mi+1[α〉Mi+2 . . . in its reachability graph, since
M1 �= M2, there is at least one place p such that the marking on it is strictly
increased or decreased by α. From Lemma 1, the effect of α is the same on any
marking: ∀i : Mi+1 − Mi = C · Ψ(α). Hence, if the marking on p is decreased, it
is not possible to have such a chain going infinitely to the right. If it is increased,
it is not possible to have such a chain going infinitely to the left. �� 3

3 Disjoint Product of lts and Disjoint Sum of Petri Nets

A product of two disjoint lts is again an lts. Its states are pairs of states of the
two lts and an edge exists if one of the underlying states can do the transition.
An example is shown in Fig. 3.

Definition 4. Product of two disjoint lts
Let TS 1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) be two lts with disjoint
label sets (T1 ∩ T2 = ∅). The (disjoint) product TS1 ⊗ TS 2 is the lts

(
S1 ×

S2,→, T1 � T2, (ι1, ι2)
)
, where → = {(

(s1, s2), t1, (s′
1, s2)

) | (s1, t1, s′
1) ∈ →1} ∪

{(
(s1, s2), t2, (s1, s′

2)
) | (s2, t2, s′

2) ∈ →2}. �� 4

TS1 0 1a
TS2

ι

s1

s2

b

b

TS3

(0, ι)

(0, s1)

(0, s2)

(1, ι)

(1, s1)

(1, s2)

b

b

b

b

a

a

a

Fig. 3. Example for a disjoint product. We have TS1 ⊗ TS2 = TS3.

When a product is given and the individual label sets T1 and T2 are known,
the factors can be computed by only following edges with labels in T1, resp. T2,
from the initial state:

88 R. Devillers and U. Schlachter

Corollary 2. Factors of a product
If TS = (S,→, T1 �T2, ι) ≡T TS 1 ⊗TS 2 with TS 1 and TS 2 generally reachable,
then TS 1 ≡T 〈ι〉T1 , where 〈ι〉T1 = (S1,→1, T1, ι) with S1 = {s ∈ S | ∃α1 ∈
(±T1)∗ : ι[α〉s} and →1 = {(s1, t1, s2) ∈ → | s1, s2 ∈ S1, t1 ∈ T1}, and similarly
for TS2. �� 2

It is easy to see that, up to isomorphism1, the disjoint product of lts is
commutative, associative and has a neutral (the lts with a single state and no
label).

There is an interesting relation between lts products and Petri nets: if two
nets are disjoint, putting them side by side yields a new net whose reachability
graph is (up to isomorphism) the disjoint product of the reachability graphs of
the two original nets. This may be generalised up to Petri net isomorphism:

Definition 5. (Disjoint) sum of Petri nets
Let N1 = (P1, T1, F1,M

1
0) and N2 = (P2, T2, F2,M

2
0) be two Petri nets with

disjoint transition sets (T1 ∩ T2 = ∅). The disjoint sum N1 ⊕ N2 is defined (up to
isomorphism) as the net N = (P, T1 ∪ T2, F,M0) where P = ζ1(P1) ∪ ζ2(P2);
F (ζ1(p1), t1) = F1(p1, t1), F (t1, ζ1(p1)) = F1(t1, p1), F (ζ2(p2), t2) = F2(p2, t2),
F (t2, ζ2(p2)) = F2(t2, p2), M0(ζ1(p1)) = M1

0 (p1) and M0(ζ2(p2)) = M2
0 (p2), for

t1 ∈ T1, t2 ∈ T2, p1 ∈ P1, p2 ∈ P2. In these formulas, ζ1 is a bijection between
P1 and ζ1(P1) and ζ2 is a bijection between P2 and ζ2(P2) such that ζ1(P1) ∩
(ζ2(P2) ∪ T1 ∪ T2) = ∅ and ζ2(P2) ∩ (ζ1(P1) ∪ T1 ∪ T2) = ∅. �� 5

It may be observed that the resulting net is not uniquely defined since it
depends on the choice of the two bijections ζ1 and ζ2 used to separate the place
sets from the rest, but this is irrelevant since we want to work up to isomor-
phism. Again, up to isomorphism, the disjoint sum of Petri nets is commutative,
associative and has a neutral (the empty net).

An additional remark that may be precious for applications is that many
subclasses of Petri nets found in the literature (free-choice, choice-free, join-free,
fork-attribution, homogeneous,. . . , not defined here) are compatible with the
presented (de)composition, in the sense that a disjoint sum of nets belongs to
such a subclass if and only if each component belongs to the same subclass.

Corollary 3. Reachability graph of a sum of nets
The reachability graph of a disjoint sum of nets is isomorphic to the disjoint
product of the reachability graphs of the composing nets. �� 3

There is a kind of reverse of this property [16,17].

Proposition 1. Petri net solution of a disjoint product of lts
A disjoint product of lts has a Petri net solution iff each composing lts has a
Petri net solution, and a possible solution is the disjoint sum of the latter. �� 1

1 Those properties could be expressed in terms of categories, but we shall refrain from
doing this here.

Factorisation of Petri Net Solvable Transition Systems 89

4 Factorisation of a Connected lts

Let us now examine when an lts may be decomposed into (non-trivial) disjoint
factors, and how to get them. These results arose in [16,17].

Definition 6. Label separation
An lts TS = (S,→, T, ι) with T1, T2 ⊆ T is {T1, T2}-separated if ∀s, s′ ∈ S,∀α ∈
(±T1)∗ and β ∈ (±T2)∗: s[α〉s′ ∧ s[β〉s′ ⇒ s = s′. �� 6

That means that, if s �= s′, it is not possible to go from s to s′ while using
only labels (and reverse labels) from T1 as well as only labels (and reverse labels)
from T2. Note that, trivially, the lts is always {∅, T}-separated.

Proposition 2. Product implies separation
Let TS 1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) be two lts with disjoint
label sets, then TS1 ⊗ TS 2 is {T1, T2}-separated. �� 2

Another remarkable property of product lts is the following:

Definition 7. General diamond property
An lts TS = (S,→, T, ι) presents the general diamond property for two distinct
labels a, b ∈ T if ∀s, s1, s2 ∈ S, ∀u ∈ {a,−a},∀v ∈ {b,−b} : s[u〉s1 ∧ s[v〉s2 ⇒
(∃s′ ∈ S : s1[v〉s′ ∧ s2[u〉s′).

If T1, T2 ⊆ T with T1 ∩ T2 = ∅, TS will be said {T1, T2}-gdiam if it presents
the general diamond property for each pair of labels a ∈ T1, b ∈ T2. �� 7

In other words, TS presents the general diamond property for a �= b ∈ T if
whenever there are two adjacent edges in a diamond like in Fig. 4, the other two
are also present. Note that any lts TS = (S,→, T, ι) is {∅, T}-gdiam.

s1

s2

s3

s4

a

b

b

a

s1[a〉s2 ∧ s1[b〉s3 ⇒ ∃s4 : s3[a〉s4 ∧ s2[b〉s4

s3[a〉s4 ∧ s2[b〉s4 ⇒ ∃s1 : s1[a〉s2 ∧ s1[b〉s3

s1[a〉s2 ∧ s2[b〉s4 ⇒ ∃s3 : s1[b〉s3 ∧ s3[a〉s4

s1[b〉s3 ∧ s3[a〉s4 ⇒ ∃s2 : s1[a〉s2 ∧ s2[b〉s4

Fig. 4. General diamond property.

Proposition 3. Projections and permutation
Let TS = (S,→, T, ι) be a {T1, T2}-gdiam lts with T1 ∩T2 = ∅. If s[α〉s′ for some
s, s′ ∈ S and general path α ∈ (±T1 ∪ ±T2)∗, let α1 be the projection of α on
T1 (i.e., α where all the elements in ±T2 are dropped) and α2 be the projection
of α on T2 (thus dropping the elements in ±T1). Then there are s1, s2 ∈ S such
that s[α1〉s1[α2〉s′ and s[α2〉s2[α1〉s′. �� 3

This also implies a variant of the well-known Keller’s theorem [21].

90 R. Devillers and U. Schlachter

Proposition 4. General diamonds imply big general diamonds
Let TS = (S,→, T, ι) be a {T1, T2}-gdiam lts with T1 ∩ T2 = ∅. If s[α1〉s1 and
s[α2〉s2 for some s, s1, s2 ∈ S, α1 ∈ (±T1)∗ and α2 ∈ (±T2)∗, then for some
s′ ∈ S, s1[α2〉s′ and s2[α1〉s′. �� 4

This may be interpreted as the fact that big general diamonds are filled with
small ones. Now, the interest of the notion of general diamonds arises from the
following observation:

Proposition 5. Product implies general diamonds
Let TS 1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) be two lts with disjoint
label sets, then TS1⊗TS 2 presents the general diamond property for each a ∈ T1

and b ∈ T2. �� 2

Unfortunately, the reverse property does not hold in all generality, as shown
by the counterexamples in Fig. 5. On the left, in TS4, a and b form general
diamonds, however the lts is not a product of two lts based on label sets {a}
and {b}, since the general paths ι[b〉s2 and ι[a − a〉s2 show that the lts is not
{{a}, {b}}-separated, hence contradicting Proposition 2. On the right, in TS5,
a and b also form general diamonds, but we have s5[b −b〉s2 and s5[−aa〉s2,
contradicting again Proposition 2. But note that both counterexample are non-
deterministic, hence cannot have Petri net solutions.

TS4

ι s1

s2

a

a

b

b

b

TS5

ι

s2

s3
s4

s5

a

b

b

a

a b

Fig. 5. General diamond property does not imply product.

In the following, if s ∈ S and T ′ ⊆ T , we shall denote by 〈s〉T ′ the subset
of states generally reachable from s while only using labels from T ′, i.e., {s′ ∈
S | s[α〉s′for some α ∈ (±T ′)∗}, and by 〈s〉T ′

the corresponding sub-system, i.e.,
(〈s〉T ′ ,→T ′ , T ′, s), where →T ′ = {s′[a〉s′′ ∈ → withs′, s′′ ∈ 〈s〉T ′ , a ∈ T ′}.

The main result of [16,17] is then:

Theorem 1. General diamonds and separation imply product
Let TS = (S,→, T, ι) be a connected lts with T = T1 � T2.

Factorisation of Petri Net Solvable Transition Systems 91

There are two lts TS1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) such that
TS ≡T TS 1 ⊗ TS 2 iff TS is {T1, T2}-separated and {T1, T2}-gdiam. Moreover,
we then have TS 1 ≡T1 〈ι〉T1 and TS 2 ≡T2 〈ι〉T2 . �� 1

5 The Petri Net Synthesis Case

Given an lts and two disjoint sets T1 and T2 of labels, it is easy to check if the lts
is {T1, T2}-gdiam: For each state a property that only considers its immediate
neighborhood has to be examined. We call such a property local. In contrast,
checking if the lts is {T1, T2}-separated has to consider paths of arbitrary length
and is global.

Let us now re-examine the previous results in the framework of Petri net
synthesis. The main result of this paper is that the local property suffices:

Theorem 2. General diamonds and Petri net synthesis imply sepa-
ration
If a totally reachable lts TS = (S,→, T1 �T2, ι) is f/b deterministic and satisfies
the general diamond property for each pair of labels a ∈ T1 and b ∈ T2, then
it is Petri net synthesisable iff so are 〈ι〉T1 and 〈ι〉T2 ; moreover, we then have
TS ≡T 〈ι〉T1 ⊗ 〈ι〉T2 and therefore a possible solution of the synthesis problem
for TS is the disjoint sum of a solution of 〈ι〉T1 and a solution of 〈ι〉T2 .

Proof. Let us first assume TS is Petri net synthesisable. In particular, that
means by Lemmas 2 and 3 that it is weakly periodic, has no general two-way
uniform chains and is strongly cycle-consistent. If it has the general diamond
property for {T1, T2}, let us show it is also {T1, T2}-separable. Let us assume
that for some s0, s1 ∈ S, α ∈ (±T1)∗ and β ∈ (±T2)∗, we have s0[α〉s1 ∧ s0[β〉s1.
Then, from Proposition 4, we have for some s2 as well as some s−1: s1[α〉s2 ∧
s1[β〉s2 ∧ s−1[α〉s0 ∧ s−1[β〉s0, and we may continue the construction forward
as well as backward. Since the reachability graph of a Petri net has no general
two-way uniform chains (Lemma 3), we must have si = sj for some i �= j ∈ Z.
But then, from the strong cycle consistency (as well as the weak periodicity),
we must have si = sj ∀i, j ∈ Z, and in particular s0 = s1, hence the separation
property for {T1, T2}. From Theorem 1 and Proposition 1, we thus have that a
possible solution of the synthesis problem is the disjoint sum of the solutions of
〈ι〉T1 and 〈ι〉T2 .

Conversely, let us assume that 〈ι〉T1 and 〈ι〉T2 are Petri net solvable. Let
us show TS satisfies the separation property for {T1, T2}. Like in the first part,
since by hypothesis we have the general diamond property, if for some s0, s1 ∈ S,
α ∈ (±T1)∗ and β ∈ (±T2)∗ we have s0[α〉s1 ∧ s0[β〉s1, we may construct a
structure si[α〉si+1 ∧ si[β〉si+1. Since the lts is totally reachable, let us assume
that ι[γ〉s0 for some γ ∈ T ∗, with γ1 being its projection on T1 and γ2 being its
projection on T2.

From Proposition 3, for each i ∈ Z we have ι[γ1αi〉s′
i[γ2〉si for some s′

i. From
the f/b determinism, each s′

i is unique, and since s′
i[γ2〉si and s′

j [γ2〉sj for any
i, j ∈ Z, s′

i = s′
j iff si = sj ; hence all the s′

i’s are distinct iff so are all the si’s. But

92 R. Devillers and U. Schlachter

in 〈ι〉T1 , s′
i[α〉s′

i+1 for each i ∈ Z. Since 〈ι〉T1 is Petri net solvable, from Lemma 3
this implies that s′

i = s′
j for some i �= j ∈ Z (no two-way general uniform chains)

and s′
i = s′

j for all i, j ∈ Z (weak periodicity), and consequently si = sj for
all i, j ∈ Z. In particular s0 = s1, hence the claimed separation property. And
from Theorem 1 and Proposition 1, we thus have that a possible solution of the
synthesis problem is the disjoint sum of the solutions of 〈ι〉T1 and 〈ι〉T2 . �� 2

In some sense that means that the missing (global) separation property is
hidden in the Petri net synthesis of the sub-systems 〈ι〉T1 and 〈ι〉T2 , when this
succeeds.

It remains to find adequate subsets of labels T1 and T2, partitioning T and
satisfying the general diamond property. To do that, one may rely on the follow-
ing, which is again a local property.

Definition 8. Connected labels
Let TS = (S,→, T, ι) be an lts and a, b ∈ T be two distinct labels.
We shall denote by a ↔ b the fact that they do not form general diamonds, i.e.,
there are states s, s1, s2 ∈ S, s1[u〉s2, s1[v〉s3 with u ∈ {a,−a} and v ∈ {b,−b}
such that (� ∃s4 : s2[v〉s4 ∧ s3[u〉s4).

We shall also note �♦= ↔∗, i.e., the reflexive and transitive closure of ↔,
meaning in some sense that the labels are ‘non-diamondisable’. �� 8

These relations mean that in any decomposition, if a ↔ b they must belong
to the same component, i.e., a ∈ T1 ⇒ [a] ⊆ T1, where [a] = {b ∈ T | a �♦ b}.
But from Theorem 2, we know this is enough: for each equivalence class, either
the synthesis works and we have a global solution by taking the disjoint sum of
all the solutions, or one (or more) of the subproblems fails, and we know there
is no global solution for the whole system.

Our proposed algorithm now works as follows: First, iterate over all states
of the given lts, and for each state check if the adjacent edges form general
diamonds. If not, their labels must be in the same equivalence class. Then, for
each equivalence class [a] try Petri net synthesis on 〈ι〉[a]. If it works, the result
is the disjoint sum of the computed Petri nets. This constructs the equivalence
relation by repeatedly joining classes, but it also allows to stop the iteration
early when only one equivalence class remains.

Concerning the estimation of the efficiency of this procedure, we may observe
that, from the forward and the backward determinism, any state can be con-
nected to 2 · |T | edges (each label may occur once in forward and backwards
direction). Checking the presence of general diamonds requires examining each
pair of these edges, so requires time in O(|T |2) for a each state and O(|S| · |T |2)
for the full lts. However, in practice, in the non-factorisable case, the procedure
is likely to be a lot faster since one may stop as soon as it is discovered that
there is a single equivalence class; in this case the factorisation procedure is then
useless, but the extra burden may be expected to be negligible with respect to
the time of the proper synthesis. For a factorisable lts, if there are f factors
approximately of the same size, the size of each subsystem to synthesise is the

Factorisation of Petri Net Solvable Transition Systems 93

fth root of the original size. This divides the polynomial degree of the synthe-
sis by f , i.e., replacing O(|S|d) with O(f · |S|d/f). However, this concerns the
worst case complexity analysis and the true one may be rather different, which
is the reason why we conducted various experiments, a summary of which will
be described in the next section. Note also that if the factorisation procedure
is placed at the end of the pre-synthesis phase, that checks the structure of the
lts to determine if there is a chance that the synthesis succeeds (see [12]), the
factorisation will not be entered at all if a failure is detected before.

6 Experimental Results

The proposed algorithm was implemented and its effect on Petri net synthesis
was measured. For this, several families of Petri nets were used. The reachability
graph of such a Petri net was calculated and then the running time of several
algorithms was measured: (1) Re-synthesising the lts into a (possibly different)
Petri net. (2) Factorising the lts without attempting synthesis. (3) Factorising
the lts and synthesising its factors.

For Petri net synthesis, an existing implementation in APT [13,14] based
on an algorithm from [3] was used. Previous experiments [12] showed that its
performance is similar to other existing implementations of Petri net synthesis.

Fig. 6. Instances of the net families. In the philosophers net, transition f indicates
that forks are taken, while b describes putting the forks back.

We considered many net families2, where the size is controlled by a parameter
n, but the results were very similar so that we only present here the following
families of nets (see Fig. 6):

• Philosophers nets: This is Dijkstra’s dining philosophers example [18] mod-
elled as a Petri net. Each of the n philosophers can be either thinking or
eating. To eat, a philosopher grabs his left and right forks atomically. When
a philosopher starts to think again, he releases his forks. The state space of
such a Petri net has between 2� n

2 � and 2n reachable markings. The upper
bound corresponds to the case where each philosopher can freely visit his two
states. The lower bound corresponds to the case where each even philosopher
thinks while the odd ones are in one of their two states.

2 For example, the well-known KANBAN example, or Petri nets with k tokens, n
transitions and n places arranged in a cycle.

94 R. Devillers and U. Schlachter

• Connected bit nets: A bit can be in one of two states, set and unset, and there
are n such bits. Initially, all bits are unset. The lowest bit has a transition
to set it and the highest bit has a transition to unset it. For all other bits,
there is a transition unsetting bit i and simultaneously setting bit i + 1 for
0 < i < n. The reachability graph of such a Petri net has 2n reachable states
and is one of the many possible implementations of an n-bit buffer.

Since these examples cannot be factored, the benchmarks actually used the dis-
joint sum of two such nets. This means there are 22n reachable states in the sum
of two connected n-bit nets. A similar behaviour arises for the philosopher nets;
due to this fast growth, we decided not to use the classical model of philosophers
were forks are picked up one after another3.

We also want to show that the factorisation algorithm has a low overhead
even when it is useless, i.e., when factorisation is not possible. For this, we
generated another variant of the examples: All tokens were removed from the
initial marking and a new transition was added that can only fire once and which
produces the original initial marking. The effect of this modification is to make
factorisation fail while preserving the size of the reachability graph.

Another possibility, that we however did not measure, is that a factorisation
is found, but the resulting Petri net synthesis fails for one of the factors. The
performance of such an example would depend on the order in which the factors
are synthesised, which is non-deterministic. Also, since the factorisation is not
interwoven with synthesis, this case would likely have similar characteristics to
the case with successful factorisation and synthesis.

The benchmarks were performed in Java and their results are shown in
Figs. 7, 8, 9 and 10 using semi-logarithmic plots.

Fig. 7. Runtime for the disjoint sum of two philosophers of size n.

3 Otherwise, only reachability graphs for n ≤ 8 could be measured before running out
of memory on the computer used for measurements.

Factorisation of Petri Net Solvable Transition Systems 95

Fig. 8. Runtime for the disjoint sum of two philosophers of size n with an additional
init transition.

Philosophers Nets. The results for the philosophers nets are shown in Fig. 7. The
curve labelled Synth shows the time for just Petri net synthesis, Factorise is the
time just to factorise the input without attempting synthesis, and Factorise +
Synth first factorises the input and then synthesises the factors.

It can be seen that just factorisation is consistently at least ten times faster
than just synthesis. Also, the factors are so much smaller than the original
input that eventually the curves for Factorise and Factorise + Synth become
indistinguishable.

Figure 8 shows the results when making the input non-factorisable by adding
an init transition. Compared to the previous graph, the Factorise curve is lower,
showing that the algorithm notices early on that factorisation is not possible and
fails quickly. Synthesis is roughly a 100 times slower than factorisation, but this
factor becomes higher with larger inputs. This means that the overhead due to
a useless factorisation is low.

Connected Bit Nets. Figure 9 shows the results for connected bit nets. As in the
previous example, factorisation is at least ten times faster than synthesis and the
factors are a lot easier to synthesise than the original input, making factorisation
the slowest part of Synth + Factorise.

Similar to the other example, adding an init transition shows that the fac-
torisation algorithm has a very low overhead for non-factorisable inputs. These
results are shown in Fig. 10. Factorisation is about a hundred times faster than
synthesis and this factor becomes larger for larger inputs. Thus, compared to
the time for synthesis, the failed attempt at factorisation takes almost no time.
For n = 9, one can see that factorisation together with synthesis is noticeably
slower than just synthesis. However, measurements varied a lot for this lts with
some runs taking twice as long as others. Thus, we believe this is due to the

96 R. Devillers and U. Schlachter

Fig. 9. Runtime for the disjoint sum of connected bit nets of size n.

Fig. 10. Runtime for the disjoint sum of connected bit nets of size n with an additional
init transition.

fact that the available memory was almost exhausted, which means that Java’s
garbage collector was very active and used a lot of processing time.

7 Concluding Remarks

We have shown how lts factorisation may be rendered very efficient in the context
of (bounded) Petri net synthesis. We thus suggest to systematically incorporate it
in the pre-synthesis procedures, that first check if needed structural properties
like total reachability and f/b determinism (plus others when focussing on a
subclass of nets [10,12]) are satisfied. When factorisation succeeds, the speed up
is usually noticeable. When it fails, only a negligible time was needed. Anyway,
factorisation is needed when using highly optimised synthesis algorithms for
specific net subclasses needing connectedness of the result.

Factorisation of Petri Net Solvable Transition Systems 97

Additional works in this direction could be to analyse when and how an lts
may be decomposed into a disjoint sequence, allowing to detect cases like the
ones used for Figs. 8 and 10, which correspond to a sequence of a single init
transition and the original lts used for Figs. 7 and 9, respectively. Other kinds of
net and lts operators could also be considered, like loops, choices,. . . in the spirit
of [11].

Acknowledgements. We would like to thank Valentin Spreckels for his help in imple-
menting the factorisation. The anonymous referees made interesting comments, and
asked questions that helped improving the presentation.

References

1. Analysis and Synthesis of Weighted Marked Graph Petri Nets (2018)
2. Arnold, A.: Finite Transition Systems - Semantics of Communicating Systems.

Prentice Hall International Series in Computer Science. Prentice Hall, Upper Sad-
dle River (1994)

3. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

4. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

5. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997)

6. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 22

7. Best, E., Darondeau, P.: A decomposition theorem for finite persistent tran-
sition systems. Acta Inf. 46(3), 237–254 (2009). http://dx.doi.org/10.1007/
s00236-009-0095-6

8. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph Petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez,
J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04921-2 13

9. Best, E., Devillers, R.: Synthesis of bounded choice-free Petri nets. In: Aceto, L.,
de Frutos-Escrig, D. (eds.) CONCUR 2015. LIPIcs, vol. 42, pp. 128–141. Schloss
Dagstuhl (2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.128

10. Best, E., Devillers, R.: Pre-synthesis of Petri nets based on prime cycles and dis-
tance paths. Science of Computer Programming (2017)

11. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical
Computer Science. An EATCS Series. Springer, Heidelberg (2001). https://doi.
org/10.1007/978-3-662-04457-5

12. Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis:
algorithmic issues. Acta Informatica (2017). https://doi.org/10.1007/s00236-017-
0310-9

13. Best, E., Schlachter, U.: APT: analysis of Petri nets and transition systems.
https://github.com/CvO-Theory/apt

https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-65306-6_22
https://doi.org/10.1007/3-540-65306-6_22
http://dx.doi.org/10.1007/s00236-009-0095-6
http://dx.doi.org/10.1007/s00236-009-0095-6
https://doi.org/10.1007/978-3-319-04921-2_13
https://doi.org/10.4230/LIPIcs.CONCUR.2015.128
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/s00236-017-0310-9
https://doi.org/10.1007/s00236-017-0310-9
https://github.com/CvO-Theory/apt

98 R. Devillers and U. Schlachter

14. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Knight,
S., Lanese, I., Lluch-Lafuente, A., Vieira, H.T. (eds.) ICE 2015. EPTCS, vol. 189,
pp. 53–67 (2015). https://doi.org/10.4204/EPTCS.189.6

15. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
for finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998).
http://dx.doi.org/10.1109/12.707587

16. Devillers, R.: Products of transition systems and additions of Petri nets. In: Desel,
J., Yakovlev, A. (eds.) ACSD 2016, pp. 65–73. IEEE Computer Society (2016).
https://doi.org/10.1109/ACSD.2016.10

17. Devillers, R.: Factorisation of transition systems. Acta Informatica (2017). https://
doi.org/10.1007/s00236-017-0300-y

18. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica 1,
115–138 (1971). https://doi.org/10.1007/BF00289519

19. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Part I: basic notions and
the representation problem. Acta Informatica 27(4), 315–342 (1990). http://dx.
doi.org/10.1007/BF00264611

20. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Part II: state spaces of
concurrent systems. Acta Informatica 27(4), 343–368 (1990). http://dx.doi.org/
10.1007/BF00264612

21. Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In:
Feng, T. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg
(1975). https://doi.org/10.1007/3-540-07135-0 113

https://doi.org/10.4204/EPTCS.189.6
http://dx.doi.org/10.1109/12.707587
https://doi.org/10.1109/ACSD.2016.10
https://doi.org/10.1007/s00236-017-0300-y
https://doi.org/10.1007/s00236-017-0300-y
https://doi.org/10.1007/BF00289519
http://dx.doi.org/10.1007/BF00264611
http://dx.doi.org/10.1007/BF00264611
http://dx.doi.org/10.1007/BF00264612
http://dx.doi.org/10.1007/BF00264612
https://doi.org/10.1007/3-540-07135-0_113

A Geometric Characterisation
of Event/State Separation

Uli Schlachter(B) and Harro Wimmel

Department of Computing Science, Carl von Ossietzky Universität,
26111 Oldenburg, Germany

{uli.schlachter,harro.wimmel}@informatik.uni-oldenburg.de

Abstract. Region theory, as initiated by Ehrenfeucht and Rozenberg,
allows the characterisation of the class of Petri net synthesisable finite
labelled transition systems. Two kinds of problems need to be solved for
such a synthesis, state separation problems for distinguishing states and
event/state separation problems for preventing unwanted behaviour. In
the present paper, the class of finite labelled transition systems in which
all event/state separation problems are solvable shall be characterised
geometrically, rather than linear-algebraically.

1 Introduction

The linear algebra-based synthesis algorithm described by Badouel et al. [1]
allows to check whether a given edge-labelled transition system is isomorphic
to the state graph of an unlabelled Petri net, and if so, to construct such a
net. However, in case of a negative answer, the explanation for this failure is
the unsolvability of some inequality system as a whole (and not some specific
inequality). This makes it difficult to pinpoint the failure and it may therefore
be interesting to characterise the solvability of separation problems in a linear
algebra-independent way with an easier interpretation of failures.

The synthesis algorithm solves two different kinds of separation problems.
Roughly speaking, a state separation problem (SSP) consists of two different
states which must have distinguishable markings in the Petri net solution while
an event/state separation problem (ESSP) describes an unwanted edge at some
state that must be prevented by the corresponding marking in the solution.

A previous paper [4] provided a graph-theoretical characterisation of state
separation (SSP). The present paper deals with the second kind of problems
(ESSP) and provides a geometric characterisation of event/state separation. An
important role in this characterisation will be played by the convex hull of a set
of points, which is a geometric concept with a linear-algebraic foundation.

The structure of the paper is as follows: after recalling some notions about
labelled transition systems and about regions in Sects. 2 and 3, Sects. 4 and 5

This work is supported by the German Research Foundation (DFG) projects ARS
and ASYST, reference numbers Be 1267/15-1 and Be 1267/16-1, and partially sup-
ported by DFG Research Training Group (DFG GRK 1765) SCARE.

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 99–116, 2018.
https://doi.org/10.1007/978-3-319-91268-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_6&domain=pdf
http://orcid.org/0000-0002-5063-025X

100 U. Schlachter and H. Wimmel

present our geometric characterisation for pure1, respectively general, Petri nets.
Examples for this characterisation appear in Sect. 6. In Sect. 7 a restriction to
alphabets of size two and a generalisation to infinite lts are considered. Finally
some concluding remarks are presented in Sect. 8.

2 Labelled Transition Systems

A labelled transition system can be understood as an edge-labelled directed
graph with an initial state.

Definition 1 (lts, walks, reachability). A labelled transition system with
initial state, abbreviated lts, is a quadruple TS = (S, T,→, ı) where S is a set of
states, T is a set of labels, →⊆ (S ×T ×S) is the transition relation, and ı ∈ S
is an initial state.

A walk s[σ〉s′ consists of two states s, s′ ∈ S and a word σ = a1 . . . am ∈ T ∗

such that

∃r0, r1, . . . , rm ∈ S : s = r0 ∧ rm = s′ ∧ ∀j ∈ {1, . . . , m} : (rj−1, aj , rj) ∈ →

Note that s[ε〉s′ is tantamount to s = s′.
A state s enables a word σ, written s[σ〉, if there is a state s′ with s[σ〉s′. A

state s′ is reachable from a state s if ∃σ ∈ T ∗ : s[σ〉s′.

Some examples for transition systems are depicted in Fig. 1.

Definition 2 (Parikh vectors and cycles). A T -vector is a function Φ : T →
Z; in linear algebra, it will usually be considered as a column-vector. For a word
σ ∈ T ∗, the Parikh vector of σ is a T -vector Ψ(σ), defined inductively as follows:

Ψ(ε) = 0 (the null vector)

Ψ(σa)(t) =
{

Ψ(σ)(t) + 1 if t = a ∈ T
Ψ(σ)(t) if t 	= a

A walk s[σ〉s′ is called a cycle, or more precisely a cycle at (or around) state s,
if s = s′.

Definition 3 (Spanning tree, equivalences). A transition system TS =
(S, T,→, ı) is called finite if S and T (hence →) are finite, and it is called totally
reachable if every state is reachable from ı. A finite lts TS is a tree (with root ı)
if it is totally reachable and |→| = |S| − 1 (i.e., for each state, there is a single
walk from the root to it). A tree TS 0 = (S, T,→0, ı) is called a spanning tree of
TS if →0 ⊆ →. The language of TS is the set L(TS) = {σ ∈ T ∗ | ı[σ〉}.

Two lts TS1 = (S1, T,→1, ı1) and TS 2 = (S2, T,→2, ı2) are called language-
equivalent if L(TS1) = L(TS 2), and isomorphic if there is a bijection ζ : S1 → S2

with ζ(ı1) = ı2 and (s, t, s′) ∈ →1 ⇔ (ζ(s), t, ζ(s′)) ∈ →2, for all s, s′ ∈ S1.

1 Any place/transition pair can be connected by an edge in one direction only.

A Geometric Characterisation of Event/State Separation 101

As an example, consider the labelled transition system TS1 depicted in Fig. 1.
The walk ı[aba〉 emanating from state ı (more precisely, exhibiting all interme-
diate states, ı[a〉s1[b〉ı[a〉s1), has a Parikh vector mapping a to 2 and b to 1.
TS1 has a unique spanning tree containing ı[a〉s1 as its only edge. Of the five
examples, only TS5 allows two different spanning trees, both consisting of the
edge ı[b〉s1 and exactly one of the a-edges. TS3 is not isomorphic to TS1, but it
is language-equivalent as both lts have the prefixes of (ab)∗ as their language.

TS1

ı s1

a

b

TS2

ı s1

a

a

TS3

ı s1

s2s3

a

b

a

b

ı s1 s2 s3 s4 s5

a b b a a

TS4 TS5

ı
s1

s2
b a

a

Fig. 1. Five example transition systems.

Definition 4 (πs, chord, cycle basis). Let TS 0 = (S, T,→0, ı) be a spanning
tree of TS = (S, T,→, ı). For any state s, let ı[πs〉s denote the (unique) walk
from ı to s in TS0 (which is also a walk in TS). An edge (s, t, s′) ∈ (→ \ →0)
is called a chord. Every chord (s, t, s′) defines two different walks from ı to s′:
ı[πst〉s′ and ı[πs′〉s′, forming a generalised cycle2 by going from ı to s′ via πs

and t and then backwards through πs′ until we reach ı again. With the T -vector
1t given by 1t(t) = 1 and ∀u ∈ T \ {t} : 1t(u) = 0, let

ΓTS ,TS0 = {Ψ(πs) + 1t − Ψ(πs′) | (s, t, s′) is a chord}.

The set ΓTS ,TS0 is called the cycle basis (of TS, with regard to TS0).

The cycle bases for the examples in Fig. 1 are {1a + 1b}, {2·1a}, {2·(1a+1b)},
and ∅ for the first four lts. They can be computed by the above formula from
the chords s1[b〉ı in TS1, s1[a〉ı in TS2, and s3[b〉ı in TS3. TS4 does not have
chords and therefore yields an empty cycle basis. For TS5 we have either the
chord ı[a〉s2 or s1[a〉s2, depending on the chosen spanning tree. This leads to
either Ψ(πı)+1a −Ψ(πs2) = 0+1a − (1a +1b) = −1b or Ψ(πs1)+1a −Ψ(πs2) =
1b + 1a − 1a = 1b as the only vector in the cycle basis.

The term cycle basis is justified by the following lemma.

2 A cycle in the underlying undirected graph, i.e. edges can also be followed backwards.

102 U. Schlachter and H. Wimmel

Lemma 1 (Cycle basis). The Parikh vector Ψ(κ) of any cycle s[κ〉s in TS =
(S, T,→, ı) with a spanning tree TS0 = (S, T,→0, ı) can be written as

Ψ(κ) =
∑

γ∈ΓTS,TS0

kγ · γ

for some coefficients kγ ∈ Z.

Proof. For any non-chord s′[t〉s′′, Ψ(πs′) + 1t − Ψ(πs′′) = Ψ(πs′t) − Ψ(πs′′) = 0
since πs′t = πs′′ . Now, with κ = a1 . . . am and s = s0[a1〉s1 . . . sm−1[am〉sm = s,
Ψ(κ) =

∑m−1
i=0 1ai+1 =

∑m−1
i=0 (Ψ(πsi

) + 1ai+1 − Ψ(πsi+1)), where each Ψ(πsi
)

appears twice, once with a negative sign, and πs0 = πsn
. All the elements of the

sum are either zero or in ΓTS ,TS0 . �
In the remainder of this paper, we always assume that TS = (S, T,→, ı) is a

finite and totally reachable labelled transition system. Note that by total reach-
ability, TS has at least one spanning tree TS 0 [2]. We pick one such spanning
tree and let Γ = ΓTS ,TS0 denote the cycle basis defined by it.

3 Regions

Regions, to be defined next, mimick the properties of Petri net places at the
transition system level. Our nomenclature accords with this idea, even though
we shall not define Petri nets in the present paper: B and F assign backward
and forward weights to labels t, so that these weights can serve as connecting
arcs between a transition t (which realises the label t) and a place of a Petri net,
while R assigns a token count in each marking to that place.

Definition 5 (Regions of an lts, and the effect of a label). Let TS =
(S, T,→, ı) be an lts. A triple ρ = (R,B, F) ∈ N

S × N
T × N

T is a region of
TS if for all s, s′ ∈ S and t ∈ T , s[t〉s′ implies R(s) ≥ B(t) and R(s′) =
R(s)−B(t)+F (t). The derived function E : T → Z defined by E(t) = F (t)−B(t)
is called the effect of t.

Definition 6 (State and event/state separation properties [1]). An lts
TS = (S, T,→, ı) satisfies SSP (state separation property) iff

∀s, s′ ∈ S : s 	= s′ ⇒ ∃ region ρ = (R,B, F) with R(s) 	= R(s′) (1)

meaning that if all regions agree on two states, then the latter are equal.
TS satisfies ESSP (event/state separation property) iff

∀s ∈ S ∀t ∈ T : (¬s[t〉) ⇒ ∃ region ρ = (R,B, F) with R(s) < B(t) (2)

meaning that if all regions satisfy R(s) ≥ B(t), then s enables t, i.e. s[t〉.

A Geometric Characterisation of Event/State Separation 103

In usual parlance, two distinct (unordered) states s, s′ ∈ S yield a state separa-
tion problem, denoted by SSP(s, s′), and if there is a region ρ as in (1), then ρ
is said to solve SSP(s, s′).3 Intuitively, ρ distinguishes s and s′. A state s and a
label t not enabled in this state (¬s[t〉) yield an event/state separation problem,
denoted by ESSP(s, t). A region ρ as in (2) is then said to solve ESSP(s, t).
Intuitively, this region prevents t in state s.

For example, in Fig. 1, TS1 satisfies both SSP and ESSP. Indeed, if we repre-
sent the three functions of a region ρ = (R,B, F) by their equivalent multisets,
ρ1 = ({s1}, {b}, {a}) and ρ2 = ({ı}, {a}, {b}) are two regions such that ρ1 solves
the event/state separation problem ESSP(ı, b) and ρ2 solves the event/state sep-
aration problem ESSP(s1, a). Either of them solves the state separation problem
SSP(ı, s1). TS2 and TS3 (in Fig. 1) satisfy ESSP but not SSP (SSP(ı, s1) in TS2

as well as SSP(ı, s2) and SSP(s1, s3) in TS3 are unsolvable). TS4 satisfies SSP
but not ESSP, here no region preventing a at s2 exists. TS5 satisfies neither SSP
nor ESSP, because SSP(ı, s1) and ESSP(s1, b) are unsolvable. The significance of
these properties is expressed by the following result [1]. (Place/transition Petri
nets are defined, e.g., in [8].)

Theorem 1 (Basic region theorems for place/transition nets). A
totally reachable and finite lts is isomorphic to the reachability graph of some
place/transition Petri net if, and only if, it satisfies SSP ∧ ESSP.

If a totally reachable, finite lts satisfies ESSP, then it is language-equivalent
to the reachability graph of some Petri net.

For example, for TS3 as shown in Fig. 1, even though there is no Petri net with an
isomorphic reachability graph, there is still a Petri net with a language-equivalent
reachability graph, for instance a net whose reachability graph is isomorphic to
TS1. Interestingly, a totally reachable, finite lts may be language-equivalent to
some Petri net without satisfying ESSP. This is the case, for instance, for system
TS5 shown in Fig. 1: it is easy to build a Petri net with two transitions {a, b}
and the language {ε, a, b, ba} = L(TS 5), but since ı[a〉s2 and s1[a〉s2, any region
will assign the same token count to s1 and ı, so that it is not possible to allow
b at ı and to exclude it from s1; as a consequence, neither ESSP nor SSP are
satisfied by this system.

Here are some observations about regions and walks. Let a finite, totally
reachable lts TS = (S, T,→, ı) be given and let TS 0 be any spanning tree of TS
with root ı.

(a) Any T -vector E : T → Z can be extended to words in T ∗ by defining

E(σ) =
∑
t∈T

E(t) · Ψ(σ)(t) = Eᵀ · Ψ(σ), for anyσ ∈ T ∗

(ᵀ means ‘transposed’, · is scalar product)
If ρ = (R,B, F) is a region with effect E, then for any walk s1[τ〉s2, we
obtain: R(s2) = R(s1)+E(τ). (Proof: by easy induction on the length of τ .)

3 SSP(s, s′) equals SSP(s′, s), and thus, SSP(s, s′) is solvable iff SSP(s′, s) is solvable.

104 U. Schlachter and H. Wimmel

(b) In particular, by total reachability, for any state s ∈ S, we have R(s) =
R(ı) + E(πs). This implies that knowing R(ı) (and πs) is sufficient for
knowing R(s), for every state s.

(c) Also, let (s, t, s′) ∈ → be an edge of TS . Then E(πst) − E(πs′) = 0: Both
ı[πst〉s′ and ı[πs′〉s′ are walks reaching s′, so by (b) we have R(s′) = R(ı) +
E(πst) = R(ı) + E(πs′), which can be re-arranged into the statement. In
particular, for each entry γ ∈ Γ of the cycle basis Γ , Eᵀ · γ = 0 holds.

4 Pure Event/State Separability

For Petri net synthesis, for each separation problem a solving region has to
be found. To characterise separation problems geometrically, we will use the
following definition.

Definition 7 (Linear Hull and Convex Hull). Given a set S of points (in
some vector space for our purposes), its linear hull, or linear span, is the set
of all linear combinations of elements of S, namely span(S) = {∑�

i=1 kivi | ∈
N, vi ∈ S, ki ∈ Q}. A set of points is convex if for each two points in it, also all
points on a straight line connecting both are contained. The convex hull of S is
the smallest convex set enclosing S. The convex hull only contains non-negative
linear combinations (of points/vectors in S) with total weight one and is defined
as convex(S) = {∑�

i=1 kivi | ∈ N, vi ∈ S, ki ∈ Q, ki ≥ 0,
∑�

i=1 ki = 1}.
Two examples for convex hulls are given in Fig. 2.

State separation was previously characterised in a way which we can refor-
mulate as:

Proposition 1 (Characterisation of SSP [4]). Let TS be a finite, totally
reachable lts. A state separation problem SSP(s, s′) cannot be solved if and only
if Ψ(πs) − Ψ(πs′) ∈ span Γ (with Γ being our cycle basis of TS).

In other words, a state separation problem is unsolvable exactly if the difference
between these states’ Parikh vectors corresponds to a cycle in the lts.

We now want to characterise event/state separation. The general case will
be examined in the next section while this section concentrates on the pure case,
to be defined next. Pure Petri nets are a well known class of nets where no side-
conditions are allowed, meaning that there are no places and transitions with
flows between them in both directions. The equivalent condition for a region is
as follows:

Definition 8 (Pure Regions). Let TS = (S, T,→, ı) be an lts. A region ρ =
(R,B, F) of TS is pure if it satisfies B(t) = 0 ∨ F (t) = 0 for each label t ∈ T .

Clearly, a pure region (R,B, F) is fully described by R and E, so can equivalently
be represented as the pair (R,E). This transformation is also possible for a non-
pure region, in which case side-conditions are lost. Since SSP(s, s′) only depends
on R, the resulting region would solve SSP(s, s′) if and only if the original region
solves it. Thus, Proposition 1 is also valid when only considering pure regions.

A Geometric Characterisation of Event/State Separation 105

However, for event/state separation, the general and pure case are different.
In this section, we want to show the following result, where addition of sets is
interpreted element-wise:

Theorem 2 (Characterisation of pure ESSP). Let TS be a finite, totally
reachable lts. An event/state separation problem ESSP(s, t) cannot be solved by
any pure region if and only if

Ψ(πs) + 1t ∈ span Γ + convex Θ

where Θ = {Ψ(πs′) | s′ ∈ S} and Γ is a cycle basis.

Fig. 2. The lts TS4 from Fig. 1 drawn in a coordinate system. The triangular area is
the convex hull of the Parikh vectors of states enabling a and the trapezoidal area
shows the convex hull of the Parikh vectors of all states. To make it clear that the
trapezoidal area contains the triangular area, the former one was slightly enlarged. An
unsolvable event/state separation problem is visualised by the light a-edge.

As an example for this theorem consider Fig. 2. The lts has no cycles, which
means that spanΓ = {0}. Thus, only the convex hull of Parikh vectors of states
can lead to unsolvable separation problems. In the figure, which visualises this
hull as the trapezoid containing all arrows, the light state is not part of the
lts, but inside the convex hull. By the above theorem, the ESSP instance corre-
sponding to the light edge is unsolvable.

Note that the lts with the light edge and state is still not isomorphic to the
reachability graph of any pure Petri net, because, again by the above theorem,
the light state needs an outgoing edge with label b.

We will now first show that our condition is sufficient, and then that it is
also necessary.

Lemma 2 (Sufficient condition for pure ESSP). Let TS be a totally
reachable lts. Given a state s ∈ S and a label t ∈ T with ¬s[t〉 so that
Ψ(πs) + 1t ∈ spanΓ + convex Θ, the event/state separation problem ESSP(s, t)
cannot be solved by any pure region.

Proof. Assume an arbitrary pure region (R,B, F). Let kγ , ks ∈ Q be the factors
showing that Ψ(πs) + 1t is representable, i.e., ks ≥ 0 and

∑
s′∈S ks = 1 so that:

Ψ(πs) + 1t =
∑
γ∈Γ

kγ · γ +
∑
s′∈S

ks · Ψ(πs′) (3)

106 U. Schlachter and H. Wimmel

We now have:

R(s) + E(t)
= R(ı) + Eᵀ · (Ψ(πs) + 1t) (by Item (b) above)

= R(ı) +
∑
γ∈Γ

kγ · Eᵀ · γ +
∑
s′∈S

ks · Eᵀ · Ψ(πs′) (by (3) and linearity)

= R(ı) + 0 +
∑
s′∈S

ks · Eᵀ · Ψ(πs′) (by Item (c) above)

=
∑
s′∈S

ks · (R(ı) + Eᵀ · Ψ(πs′)) (since
∑
s′∈S

ks = 1)

=
∑
s′∈S

ks · R(s′) ≥ 0 (by Item (b) and region)

To summarise, we have shown that for an arbitrary region we have R(s)+E(t) ≥
0. For this pure case, we know B(t) = 0 ∨ F (t) = 0. If B(t) = 0, R(s) ≥ B(t)
by definition of a region. If F (t) = 0, R(s) ≥ −E(t) = B(t). A region solving
ESSP(s, t) would require R(s) < B(t), though. �
In the following proof we will need the well known Farkas’ Lemma.

Lemma 3 (Farkas’ Lemma [7]). Let A be a rational (n,m)-matrix and b
a rational (m, 1)-vector. Exactly one of the following alternatives holds. Either
there is a rational (m, 1)-vector x so that A ·x ≥ 0 and bᵀ ·x < 0, or there exists
a rational (n, 1)-vector y so that Aᵀ · y = b and y ≥ 0.

Lemma 4 (Necessary condition for pure ESSP). Let TS be a finite,
totally reachable lts. Given an event-state separation problem ESSP(s, t) unsolv-
able by any pure region, we have Ψ(πs) + 1t ∈ span Γ + convex Θ.

Proof. A pure region is characterised by

∀γ ∈ Γ : Eᵀ · γ = 0 ∀s′ ∈ S : R(ı) + Eᵀ · Ψ(πs′) ≥ 0

Note that with R(s′) = R(ı) + Eᵀ · Ψ(πs′) and E = F − B, we can uniquely
construct a triple (R,B, F) ∈ N

S × N
T × N

T with F (t′) = 0 ∨ B(t′) = 0 for
all t′ ∈ T . Assume s′[t′〉s′′. If this edge is in the spanning tree, we get R(s′′) −
R(s′) = R(ı) + Eᵀ · Ψ(πs′′) − R(ı) − Eᵀ · Ψ(πs′) = Eᵀ · (Ψ(πs′′) − Ψ(πs′)) =
Eᵀ ·(Ψ(πs′t′)−Ψ(πs′)) = E(t′) = F (t′)−B(t′) as expected. If the edge is a chord,
we find R(s′′)−R(s′) = Eᵀ·(Ψ(πs′′)−Ψ(πs′)) = Eᵀ·(Ψ(πs′′)−1t′ −Ψ(πs′)+1t′) =
Eᵀ · 1t′ = E(t′) again, by Ψ(πs′) + 1t′ − Ψ(πs′′) ∈ Γ and Item (c). In both cases
R(s′) − B(t′) = R(s′′) − F (t′), so R(s′) ≥ B(t′) holds as B(t′) = 0 ∨ F (t′) = 0.
Overall, (R,B, F) is a pure region.

The equality in the first condition (for the cycles γ) can also be expressed
as two inequalities. Written via matrix multiplication, this inequality system

A Geometric Characterisation of Event/State Separation 107

looks as follows, where T = {t1, t2, . . . , tn} and multiple rows are abbreviated
via quantification:

⎛
⎝∀γ ∈ Γ : 0 (γ)ᵀ

∀γ ∈ Γ : 0 (−γ)ᵀ

∀s′ ∈ S : 1 (Ψ(πs′))ᵀ

⎞
⎠

⎛
⎜⎜⎜⎝

R(ı)
E(t1)

...
E(tn)

⎞
⎟⎟⎟⎠ ≥ 0

So each row of the matrix on the left (which we will name A from now) consists
of a constant (0 or 1) followed by the row vector for one of the cycles (γ, also
in the negated form) or the row form of a Parikh vector Ψ(πs′) for a walk in
the spanning tree. The solution vector with the initial value and the effects of a
region will be called x, so that the above can be written as Ax ≥ 0.

Note that this system has a solution in the natural numbers whenever it has
a rational solution. If Ax ≥ 0, then for y ∈ Q>0 also Ayx = y ·(Ax) ≥ 0, showing
that if x is a solution, yx also is. Thus, without loss of generality, we can assume
x to be rational.

Now that we have a linear-algebraic definition of a pure region, let us turn
back to the event/state separation problem. We are assuming that ESSP(s, t) is
unsolvable, which means that there is no pure region with R(s) < B(t), which
is, for pure regions, equivalent to R(s)+E(t) < 0 and can, by Item (b) above, be
written as bᵀx < 0 with bᵀ =

(
1 (Ψ(πs) + 1t)ᵀ)

. Again, if a solution is multiplied
with a positive rational number, this inequality is still fulfilled.

We can now use Farkas’ lemma (Lemma 3): Since the system Ax ≥ 0 with
bᵀx < 0 has no solution, this means there is a value y ≥ 0 so that b = Aᵀy,
specifically:

(
1

(Ψ(πs) + 1t)

)
=

⎛
⎝∀γ ∈ Γ : ∀γ ∈ Γ : ∀s′ ∈ S :

0 0 1
(γ) (−γ) (Ψ(πs′))

⎞
⎠ · y

We index y by ys′ , yγ , and y−γ for s′ ∈ S and γ ∈ Γ , and write the above as:

1 =
∑
s′∈S

ys′

Ψ(πs) + 1t =
∑
γ∈Γ

(yγ − y−γ) · γ +
∑
s′∈S

ys′ · Ψ(πs′)

Defining zγ = yγ − y−γ , the second equation can be written as Ψ(πs) + 1t =∑
γ∈Γ zγ · γ +

∑
s′∈S ys′ · Ψ(πs′). We now see that this describes an element of

the linear hull of Γ plus an element of the convex hull of Θ = {Ψ(πs′) | s′ ∈ S}.
Thus, our inequality system is equivalent to:

Ψ(πs) + 1t ∈ span Γ + convex Θ �

108 U. Schlachter and H. Wimmel

5 General Event/State Separability

The previous section provided a characterisation of event/state separability for
pure Petri nets. In this section, the more complicated general case will be inves-
tigated. The aim is to show the following theorem:

Theorem 3 (Characterisation of general ESSP). Let TS be a finite,
totally reachable lts. An event/state separation problem ESSP(s, t) cannot be
solved by any region if and only if

Ψ(πs) ∈ span Γ + convex Θt,

where Θt = {Ψ(πs′) | s′ ∈ S, s′[t〉} (which is ⊆ Θ) and Γ is a cycle basis.

Consider the example in Fig. 2. The triangular area shows the convex hull of
the Parikh vectors of states enabling a. The state from which the light a-edge
emanates is inside this area. By the above theorem, the missing light edge cor-
responds to an unsolvable event/state separation problem.

When adding the light edge to the lts, the resulting lts is isomorphic to the
reachability graph of a Petri net. While in the pure case the light state needed an
outgoing b-edge, in the general setting the corresponding event/state separation
problem is solvable since the convex hull of states enabling b is just a vertical
line segment that does not include the light state.

As in the previous section, each direction of this theorem will be shown
separately.

Lemma 5 (Sufficient condition for general ESSP). Let TS be a totally
reachable lts. Given a state s ∈ S and a label t ∈ T with ¬s[t〉 so that Ψ(πs) ∈
span Γ +convex Θt, the event/state separation problem ESSP(s, t) is unsolvable.

Proof. Let St = {s ∈ S | s[t〉} be the set of all states enabling t and let kγ , ks ∈ Q

be the factors showing that Ψ(πs) is representable, i.e., ks ≥ 0 and
∑

s′∈St
ks = 1

so that:
Ψ(πs) =

∑
γ∈Γ

kγ · γ +
∑

s′∈St

ks · Ψ(πs′) (4)

Assume an arbitrary region (R,B, F). We now have the following:

R(s)
= R(ı) + Eᵀ · Ψ(πs) (by Item (b) above)

= R(ı) +
∑
γ∈Γ

kγ · Eᵀ · γ +
∑

s′∈St

ks′ · Eᵀ · Ψ(πs′) (by (4) and linearity)

= R(ı) + 0 +
∑

s′∈St

ks′ · Eᵀ · Ψ(πs′) (by Item (c) above)

A Geometric Characterisation of Event/State Separation 109

=
∑

s′∈St

ks′ · (R(ı) + Eᵀ · Ψ(πs′)) (since
∑

s′∈St

ks′ = 1)

=
∑

s′∈St

ks′ · R(s′) (by Item (b) above)

≥
∑

s′∈St

ks′ · B(t) (since s′[t〉 and region)

= B(t) (since
∑

s′∈St

ks′ = 1)

This shows that the region (R,B, F) does not solve ESSP(s, t). Because the
region was arbitrary, no region solves ESSP(s, t) and it is unsolvable. �
Lemma 6 (Necessary condition for general ESSP). Let TS be a finite
and totally reachable lts. Given an unsolvable event-state separation problem
ESSP(s, t), we have Ψ(πs) ∈ spanΓ + convex Θt.

Proof. The definition of a region (R,B, F) is expressed by the following inequal-
ities:

R(ı) ≥ 0 B ≥ 0 F ≥ 0

∀γ ∈ Γ : (F − B)ᵀ · γ = 0
∀s′[t′〉s′′ ∈ → : R(ı) + (F − B)ᵀ · Ψ(πs′) − Bᵀ · 1t′ ≥ 0

With the same reasoning as in the proof of Lemma 4 we find that for s′[t′〉s′′, be
it an edge of the spanning tree or a chord, holds R(s′′) − R(s′) = F (t′) − B(t′).
The last line of inequations then ensures that, if s′[t〉s′′, then R(s′) = R(ı) +
(F − B)ᵀ · Ψ(πs′) ≥ Bᵀ · 1t′ = B(t′), which makes (R,B, F) a region.

Replacing the equality in the middle line with two inequalities, the system
can be written as a matrix multiplication Ax ≥ 0 in the following way (where
U represents the unit matrix which expresses the first three inequalities):

⎛
⎜⎜⎝

U
∀γ ∈ Γ : 0 (γ)ᵀ (−γ)ᵀ

∀γ ∈ Γ : 0 (−γ)ᵀ (γ)ᵀ

∀s′[t′〉s′′ ∈ → : 1 (Ψ(πs′))ᵀ (−Ψ(πs′) − 1t′)ᵀ

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R(ı)
F (t1)

...
F (tn)
B(t1)

...
B(tn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ 0

As before, the system has a solution in the natural numbers whenever it has a
rational solution.

Let us turn back to the event/state separation problem. We are assuming that
ESSP(s, t) is unsolvable, which means that there is no region with R(s) < B(t),
which can be written by Item (b) above as R(ı)+E(πs) < B(t) and thus results
in bᵀ · x < 0 with bᵀ =

(
1 (Ψ(πs))ᵀ (−Ψ(πs) − 1t)ᵀ)

.

110 U. Schlachter and H. Wimmel

We can now use Farkas’ lemma (Lemma 3): Since the system Ax ≥ 0 with
bᵀx < 0 has no solution, this means there is a value y ≥ 0 so that b = Aᵀy. The
unit matrix that is part of Aᵀ will be interpreted as introducing slack variables:
Instead of b = Aᵀy with Aᵀ = (UCᵀ) we just aim for b ≥ Cᵀy. We obtain

⎛
⎝ 1

(Ψ(πs))
(−Ψ(πs) − 1t)

⎞
⎠ ≥

⎛
⎜⎜⎝

∀γ ∈ Γ : ∀γ ∈ Γ : ∀s′[t′〉s′′ ∈ → :
0 0 1

(γ) (−γ) (Ψ(πs′))
(−γ) (γ) (−Ψ(πs′) − 1t′)

⎞
⎟⎟⎠ · y.

Thus, by Farkas’ Lemma we have a value y ≥ 0, which we will index by ys′[t′〉s′′ ,
yγ , and y−γ for s′[t′〉s′′ ∈ → and γ ∈ Γ , so that:

1 ≥
∑

s′[t′〉s′′∈→
ys′[t′〉s′′

Ψ(πs) ≥
∑
γ∈Γ

(yγ − y−γ) · γ +
∑

s′[t′〉s′′∈→
ys′[t′〉s′′ · Ψ(πs′)

−Ψ(πs) − 1t ≥
∑
γ∈Γ

(yγ − y−γ) · (−γ) +
∑

s′[t′〉s′′∈→
ys′[t′〉s′′ · (−Ψ(πs′) − 1t′)

We begin by defining zγ = yγ − y−γ , which thus is no longer necessarily non-
negative. Next, we negate the last inequality, bring 1t to the other side, and
distribute the second sum in it to arrive at:

Ψ(πs) ≤
∑
γ∈Γ

zγ · γ +
∑

s′[t′〉s′′∈→
ys′[t′〉s′′ · Ψ(πs′) +

∑
s′[t′〉s′′∈→

ys′[t′〉s′′ · 1t′ − 1t

The second inequality gives a lower bound to Ψ(πs) while this new, last inequality
provides an upper bound. Relating these two inequalities, dropping Ψ(πs), and
eliminating common summands results in 1t ≤ ∑

ys′[t′〉s′′ · 1t′ . We can consider
only component t of this vector to get 1 ≤ ∑

ys′[t′〉s′′ · 1t′(t) ≤ ∑
ys′[t′〉s′′ ≤ 1,

where the second inequality is due to 1t′(t) ≤ 1 and the last one is part of our
inequality system. Thus 1 =

∑
ys′[t′〉s′′ · 1t′(t), i.e. already the variables ys′[t′〉s′′

with t′ = t sum up to one, and so with
∑

ys′[t′〉s′′ ≤ 1 we can conclude now that
ys′[t′〉s′′ = 0 for t′ 	= t and also 1 =

∑
ys′[t′〉s′′ , which is stronger than the original

inequality and can replace it. To eliminate all the ys′[t′〉s′′ that are zero, define
St = {s′ ∈ S | s′[t〉} to be the set of all states enabling t and ys′ =

∑
ys′[t〉s′′ to

be the weight of all edges emanating from state s′ with label t. This allows us
to simplify our inequality system as follows:

1 =
∑

s′∈St

ys′

Ψ(πs) ≥
∑
γ∈Γ

zγ · γ +
∑

s′∈St

ys′ · Ψ(πs′)

Ψ(πs) ≤
∑
γ∈Γ

zγ · γ +
∑

s′∈St

ys′ · Ψ(πs′) +
∑

s′∈St

ys′ · 1t − 1t

A Geometric Characterisation of Event/State Separation 111

By the equality that we just computed,
∑

s′∈St
ys′ · 1t = 1t. Now, after simpli-

fication, the last two inequalities are the same except for opposite comparison
operators. Thus, we can combine them into an equality to arrive at the following
system with ys′ , zγ ∈ Q and ys′ ≥ 0.

Ψ(πs) =
∑
γ∈Γ

zγ · γ +
∑

s′∈St

ys′ · Ψ(πs′) 1 =
∑

s′∈St

ys′

Finally, we see that Ψ(πs) is the sum of an element of the linear hull of Γ and
the convex hull of Θt = {Ψ(πs′) | s′ ∈ St}. Thus, we can write it as such:

Ψ(πs) ∈ span Γ + convex Θt �
To better illustrate the close connection to the pure case, Theorem 3 can be refor-
mulated. The set Θt of Parikh vectors of states which enable t can be replaced
with the set Θt containing Parikh vectors of states that are reached by t:

Theorem 4. Let TS be a finite, totally reachable lts. An event/state separation
problem ESSP(s, t) cannot be solved by any region if and only if

Ψ(πs) + 1t ∈ span Γ + convex Θt,

where Θt = {Ψ(πs′′) | s′, s′′ ∈ S, s′[t〉s′′} (⊆ Θ) and Γ is a cycle basis.

Proof. We have to show that v ∈ spanΓ + convex Θt ⇔ v + 1t ∈ span Γ +
convex Θt. The rest follows from Theorem 3.

(⇒) Let v ∈ span Γ + convex Θt and St = {s′ ∈ S | s′[t〉}. By definition,
there are yγ , ys′ ∈ Q for γ ∈ Γ and s′ ∈ St with ys′ ≥ 0 for all s′ ∈ St, and∑

s′∈St
ys′ = 1 so that

v =
∑
γ∈Γ

yγ · γ +
∑

s′∈St

ys′ · Ψ(πs′)

Let now St = {s′′ ∈ S | s′ ∈ S, s′[t〉s′′}. Choose some mapping �: St → St such
that �(s′) = s′′ implies s′[t〉s′′.4 If (s′, t, s′′) is a chord, then Ψ(πs′)+1t −Ψ(πs′′)
is in Γ , otherwise this expression is 0 since πs′′ = πs′t. Thus, Ψ(πs′) + 1t =
Ψ(πs′) + 1t − Ψ(πs′′) + Ψ(πs′′) ∈ (Γ ∪ {0}) + Θt. With this and

∑
ys′ = 1, we

can now write

v + 1t =
∑
γ∈Γ

yγ · γ +
∑

s′∈St

ys′ · (Ψ(πs′) + 1t)

=
∑
γ∈Γ

(yγ + zγ) · γ +
∑

s′′∈St

ys′′ · Ψ(πs′′) ∈ span Γ + convex Θt

where ys′′ =
∑

s′∈�−1(s′′) ys′ and zγ counts how often each individual chord was
added.

4 � is unique if TS is deterministic.

112 U. Schlachter and H. Wimmel

(⇐) This case is analogous to the previous one. For v + 1t ∈ spanΓ +
convex Θt, we have v =

∑
γ∈Γ yγ · γ +

∑
s′′∈St ys′′ · (Ψ(πs′′) − 1t). By adding

suitable Ψ(πs′) + 1t − Ψ(πs′′) and compensating for this in the first sum, we see
that v ∈ spanΓ + convex Θt. �

6 Further Examples

The unsolvable event/state separation problem from the example in Fig. 2 was
already discussed after Theorems 2 and 3. This section provides some further
examples.

In TS5 from Fig. 1, ESSP(s1, b) is unsolvable. The cycle basis contains a
Parikh vector with a single b, Γ = {1b}, since the two a’s cancel each other out.
Now, the Parikh vector of s1, which is reached by a single b, i.e. Ψ(πs1) = 1b, can
be represented as the only element of the cycle basis plus the Parikh vector of
the initial state ı, which is the zero vector 0. Since Ψ(πs1) ∈ spanΓ +convex Θb,
ESSP(s1, b) is unsolvable by Theorem 3.

TS6

ı

s1

s2 s3

s4

a
b b

a

TS7

ı

s1

s2 s3

a
b c

a

TS8

ı

s1 s2 s3 s4

s5 s6 s7

a b c d

c b a

Fig. 3. Three transition systems with unsolvable ESSP instances.

Some more examples are shown in Fig. 3. TS6 has a comb structure with a
shaft of b’s and a’s as teeth, where at least one tooth is missing (here at s2).
This makes ESSP(s2, a) unsolvable. Quite obviously, Ψ(πs2) = 1b = 1

2Ψ(πı) +
1
2Ψ(πs3) ∈ convex{Ψ(πı), Ψ(πs3)} = convex Θa and spanΓ = {0} (a linear hull
always contains 0). Comb structures are special cases of unsolvable ESSP, but
slight changes like replacing the edge s2[b〉s3 by s2[c〉s3, i.e. just changing one
label, will make the whole system solvable, even to a pure Petri net (with a
region R(ı) = 3, E(a) = −2, E(b) = −3, and E(c) = 2 preventing a at s2).

A very similar lts is shown in TS7. Despite the different labels on the
shaft, it has three unsolvable separation problems: SSP(ı, s1), ESSP(s1, a), and
ESSP(s1, b). All of these are unsolvable because there is a chord with a Parikh
vector that contains just label a once (namely the loop at s3). Thus, state s1,
which is reached from ı via πs1 = a, has a Parikh vector that appears in the
cycle basis and is the sum of the Parikh vector of the initial state and an entry
from the cycle basis. By Proposition 1, SSP(ı, s1) is unsolvable. Since ı enables
labels a and b, this also means that these labels cannot be prevented in s1.

When considering pure regions, ESSP(s2, a) becomes unsolvable, too: Since
the cycle basis contains a Parikh vector with just event a (for the loop), Ψ(πs)+

A Geometric Characterisation of Event/State Separation 113

1a ∈ span Γ + convex Θ for any state s via Ψ(πs) ∈ convex Θ and 1a ∈ span Γ .
Thus, a must be enabled in every state.

As the last example, TS8 has two states, s3 and s7, which both have the same
Parikh vector consisting of one a, one b and one c. Thus, Ψ(πs3) − Ψ(πs7) = 0 ∈
{0} = span ∅ = span Γ and SSP(s3, s7) is unsolvable. Furthermore, since s3
enables d, but s7 does not, ESSP(s7, d) is unsolvable. This can be seen from
Ψ(πs7) = Ψ(πs3) ∈ convex Θd. If the attention is restricted to pure Petri nets for
this lts, then ESSP(s1, c) is also unsolvable. Note that this does not represent
an unsolvable comb structure. As seen before, the shaft with different labels
ı[a〉s1[b〉s2 does not necessarily lead to an unsolvable ESSP.

7 Restrictions and Extensions

In this section, the restriction to lts over a two-letter alphabet and corresponding
to words is investigated. In this setting, Theorem 3 can be used as an alternative
proof for an already known result.

We also consider the extension of our characterisation to infinite lts, but we
will obtain only a partial result, i.e. we do not get a characterisation but only a
sufficient condition.

7.1 Two-Letter Words

We start this section by deriving some already known results as corollaries to
our characterisation to underline the generality of our new result.

In [5], conditions for Petri net solvability of words over a two letter alphabet
are investigated. A word is identified with a transition system in the obvious
way. For example, TS4 from Fig. 1 corresponds to the word abbaa. The main
result for words is the following theorem.

Theorem 5. (Theorem 2 of [5]). A word w ∈ {a, b}∗ is solvable if and only
if the following formula holds for x = a ∧ y = b as well as for x = b ∧ y = a:

∀α, β, γ, δ : (w = αyβxγyδ ⇒ #y(yβ) · #x(xγ) > #x(yβ) · #y(xγ))

Proof (Idea). We decompose γ = xnyγ′ into a prefix xn for some n ∈ N and
the remaining part yγ′. (If γ does not contain y, the inequation above is triv-
ially true.) Let s, t, u, v be states so that s[yβ〉t[xxn〉u[yγ′〉v[y〉. This situation
is illustrated in Fig. 4. We can rearrange the formula from the theorem into
#y(yβ)/#x(yβ) > #y(xγ)/#x(xγ). This formula compares the slope of the line
connecting states s and t with the slope of the line connecting t and v, requiring
the first line to have a higher slope than the second. We can see in the picture
that this corresponds to state t being outside of the convex hull of s, u and v.
Because these are the extremal states where y is enabled, by Theorem 3 this is
equivalent to ESSP(t, y) being solvable. �

114 U. Schlachter and H. Wimmel

Fig. 4. Illustration for the proof of Theorem 5. Label x goes to the right while y goes
up. On the left side, the slope of the line connecting s and t is lower than the slope of
the line connecting t and v, putting t into the convex hull and yielding an unsolvable
ESSP(t, y), in contrast to the right picture. For simplicity, we do not show any y’s in
β; this would complicate the convex hull, but the result still holds

Another related paper is [6] which investigates the possible shapes of reachability
graphs of Petri nets with just two transitions. Its Theorem2 states that an lts
without non-trivial cycles5 can be solved by a pure Petri net if its states form a
convex set and all interior edges are present. In the present paper, Proposition 1
and Theorem 2 show the same statement, but also for the case of more than just
two transitions: Because only trivial cycles exist, Proposition 1 guarantees that
all SSP instances are solvable, and convexity and the presence of interior edges
guarantee by Theorem 2 that all ESSP instances are solvable.

Theorem 3 in [6] handles the general case and is again a special case of
Theorem 3, similar to the pure case.

7.2 Infinite Labelled Transition Systems

Our characterisations in Theorems 2 and 3 are only valid for finite lts. However,
the sufficient conditions in Lemmas 2 and 5 do not have this precondition and
also hold for infinite lts.

ı
· · ·· · ·

a a a a a a

bbbbbb

s
c

Fig. 5. An infinite lts where all separation problems not involving the state s are
unsolvable.

The example in Fig. 5 shows that the theorems are not easily generalisable to
infinite lts. The lts consists of an infinite chain of states going in two directions [3].
5 Meaning that span Γ = {0}.

A Geometric Characterisation of Event/State Separation 115

The label a proceeds to the right while b advances to the left. Additionally, there
is an extra state s reachable from the initial state via label c. This label occurs
only once.

Let ρ = (R,B, F) be an arbitrary region of this lts. The initial state has R(ı)
tokens and there are walks s′[aR(ı)+1〉ı and ı[aR(ı)+1〉s′′ with suitable states s′

and s′′. Thus, E(a) = 0 since otherwise either R(s′) or R(s′′) would be negative,
which is not allowed. By the same reasoning, E(b) = 0.

This shows that all state separation problems that do not involve the state s
are unsolvable, because all such states are assigned the same region value, and
also that all event/state separation problems not involving state s are unsolvable,
since such a separation problem necessarily involves event c, which is enabled in
a state with the same number of tokens.

However, there are no states s′ and s′′ in this lts so that Ψ(πs′) − Ψ(πs′′) ∈
spanΓ , i.e. Proposition 1 does not hold for infinite lts. Each chord has a Parikh
vector with one a and one b, i.e. Γ = {1a + 1b}. Each state s′′ to the right of
ı has πs′′ = a� for a suitable , while each state s′ to the left of ı has πs′ = b�.
Thus, the only way to satisfy Ψ(πs′) − Ψ(πs′′) ∈ spanΓ is with s′ = s′′.

For event/state separation, we can see that all instances involving state s
are solvable. ESSP instances not involving state s only exist with label c, so we
only have to consider this label. Since Θc = {0}, Theorem 3 would simplify to
Ψ(πs′) ∈ spanΓ = { · (1a +1b) | ∈ Q}. No such state s′ 	= ı exists even though
there are many unsolvable event/state separation problems.

To summarise, our characterisation is a sufficient condition even for infinite
lts, but the example shows that it is not a necessary condition in this case.

8 Conclusion

The main results of this paper are the following characterisations of event/state
separability, as defined in Petri net synthesis [1]:

– For pure Petri nets, the convex hull of all states describes reachable states
(Theorem 2).

– For general Petri nets, the convex hull of states enabling some event t contains
states that must enable t (Theorem 3).

Together with a previous characterisation of state separation (Proposition 1),
this amounts to a full geometric characterisation of lts that are reachability
graphs of Petri nets.

We have seen that this characterisation can be used to simplify the proof
of some earlier results, and also that it is only valid for finite lts and does not
generalise to infinite transition systems.

While this characterisation can be used to produce better diagnostics in case
a given lts cannot be synthesised into a Petri net, actually doing so is still an
open problem. It is not obvious how our characterisation can be checked and
it only allows to conclude that a Petri net solution exists, but cannot actually
produce it.

116 U. Schlachter and H. Wimmel

Instead, we want to use the presented characterisation in future work for
the idea of label-splitting: Given an event/state separation problem ESSP(s, t),
our characterisation allows to pinpoint states that enable transition t and cause
ESSP(s, t) to be unsolvable. One of the states s′ ∈ St with ys′ > 0 is chosen and
s′[t〉 replaced with s′[t′〉, which means that the label t is split up into the labels
t and t′. This is repeated until ESSP(s, t) becomes solvable. In the synthesised
Petri net, both transitions, t and t′, will later obtain the same label t, yielding
a hopefully small, labelled Petri net with the sought behaviour.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in The-
oretical Computer Science. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47967-4

2. Berge, C.: Graphs and Hypergraphs, vol. 6. Elsevier, New York (1973). North-
Holland mathematical library

3. Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri
nets. Inf. Comput. 253, 399–410 (2017). https://doi.org/10.1016/j.ic.2016.06.006

4. Best, E., Devillers, R., Schlachter, U.: A graph-theoretical characterisation of state
separation. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M.,
Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 163–175. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-51963-0 13

5. Best, E., Erofeev, E., Schlachter, U., Wimmel, H.: Characterising Petri net solvable
binary words. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698,
pp. 39–58. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4 4

6. Erofeev, E., Wimmel, H.: Reachability graphs of two-transition Petri nets. In: van
der Aalst, W.M.P., Bergenthum, R., Carmona, J. (eds.) ATAED 2017. CEUR Work-
shop Proceedings, vol. 1847, pp. 39–54. CEUR-WS.org (2017). http://ceur-ws.org/
Vol-1847/paper03.pdf

7. Farkas, J.: Theorie der einfachen Ungleichungen. J. für die reine und Angew. Math.
124, 1–27 (1902). https://doi.org/10.1515/crll.1902.124.1

8. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs in Theoretical Com-
puter Science, vol. 4. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-
642-69968-9

https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1016/j.ic.2016.06.006
https://doi.org/10.1007/978-3-319-51963-0_13
https://doi.org/10.1007/978-3-319-39086-4_4
http://ceur-ws.org/Vol-1847/paper03.pdf
http://ceur-ws.org/Vol-1847/paper03.pdf
https://doi.org/10.1515/crll.1902.124.1
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9

From Event-Oriented Models
to Transition Systems

Eike Best1, Nataliya Gribovskaya2, and Irina Virbitskaite2,3(B)

1 Department of Computing Science,
Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

eike.best@informatik.uni-oldenburg.de
2 A.P. Ershov Institute of Informatics Systems, SB RAS,

6, Acad. Lavrentiev av., 630090 Novosibirsk, Russia
{gribovskaya,virb}@iis.nsk.su

3 Novosibirsk State University, 2, Pirogov av., 630090 Novosibirsk, Russia

Abstract. Two structurally different methods of associating transition
system semantics to event-oriented models of distributed systems are dis-
tinguished in the literature. One of them is based on configurations (event
sets), the other on residuals (model fragments). In this paper, a variety of
models is investigated, ranging from extended prime event structures to
configuration structures, and it is shown that the two semantics lead to
isomorphic results. This strengthens prior work where bisimilarity (but
not necessarily isomorphism) is achieved for a smaller range of mod-
els. Thanks to the isomorphisms obtained here, a wide range of facts
known from the literature on configuration-based transition systems can
be extended to residual-based ones.

Keywords: Event structures · Configuration structures
Transition systems

1 Introduction

Two methods of associating a labeled transition system [18] with an event-
oriented model of a distributed system, such as an event structure [27] or a
configuration structure [12], can be distinguished: a configuration-based and a
residual-based method. In the first case,1 states are understood as sets of events,
called configurations, and state transitions are built by starting with the empty
configuration and enlarging configurations by already executed events. In the
second approach,2 states are understood as event structures, and transitions are
built by starting with the given event structure as an initial state and removing
already executed (or conflicting) parts thereof in the course of an execution.

E. Best, N. Gribovskaya and I. Virbitskaite—Supported by German Research Foun-
dation through grant Be 1267/14-1.

1 E.g., see [1,2,10,11,13–16,24,28].
2 E.g., see [3,6,7,16,17,19,22,25].

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 117–139, 2018.
https://doi.org/10.1007/978-3-319-91268-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_7&domain=pdf

118 E. Best et al.

In the literature, configuration-based transition systems seem to be predom-
inantly used as the semantics of event structures, but residual-based transition
systems are actively used in providing operational semantics of process calculi
and in demonstrating the consistency of operational and denotational seman-
tics. The two kinds of transition systems have occasionally been used alongside
each other (see [16] as an example), but their general relationship has not been
studied for a wide range of existing models. In a seminal paper, viz. [23], bisimu-
lations between configuration-based and residual-based transition systems have
been proved to exist for prime event structures [29]. The result of [23]3 has been
extended in [5] to more complex event structure models with asymmetric con-
flict. Counterexamples4 illustrate that an isomorphism cannot be achieved with
the various removal operators defined in [5,23].

The present paper demonstrates that the operators can be tightened in such
a way that isomorphisms, rather than just bisimulations, between the two types
of transition systems belonging to a single event structure can be obtained. A key
idea is to employ non-executable events5 if the model allows them (and to intro-
duce a special non-executable event otherwise), in order to turn model fragments
into parts of states.6 This idea has been applied by the authors on a wide vari-
ety of event structure models, and for a full spectrum of semantics (interleaving,
step, pomset, multiset). Some of the resulting combinations present substantial
formal difficulties due to model and semantical overhead. Nevertheless, as will
be reported in the present paper, the definitions can be achieved successfully,
and the corresponding isomorphism results proved, in all of the considered cases.

In Sect. 2 of this paper, we shall thus define removal operators which are
tightened in this way, for the spectrum of event-oriented models summarised
in Sect. 1.2 below, and demonstrate the correctness of the operators in different
semantics. Section 3 contains the definition of the two types of transition systems
and describes the main isomorphism results of this paper. Section 4 concludes.
The paper also contains AppendixA with proofs.

1.1 Prime Event Structures, and Motivating Remarks

All removal operators that are introduced in Sects. 2.1–2.5 use emulations of
non-executable events. Such events cannot be expressed in the basic prime event
structure model of [29], for which [23] has been designed. In this subsection,
we show how such an event can be added usefully for the purpose of proving
isomorphism, rather than bisimulation, between the resulting transition systems.

A labeled prime event structure (P -structure) over a set L of actions is
a tuple E = (E, �,≤, L, l), where E is a set of events; ≤ ⊆ E × E is a
partial order (the causality relation), satisfying the principle of finite causes:

3 Recalled below in Sect. 1.1.
4 One of which is also shown in Sect. 1.1.
5 In an event structure, an event is called non-executable or impossible if it does not

occur in any configuration of the structure, i.e. the event is never executed.
6 As explained in Sect. 1.1 on the example described there.

From Event-Oriented Models to Transition Systems 119

∀e ∈ E : �e� = {e′ ∈ E | e′ ≤ e} is finite; � ⊆ E × E is an irreflexive and
symmetric relation (the conflict relation), satisfying the principle of hereditary
conflict: ∀e, e′, e′′ ∈ E : e ≤ e′ and e � e′′ then e′ � e′′; and l : E → L is a labeling
function. So, a P -structure over L is a simple event based model of (concurrent)
computations where events labeled over L are considered as atomic, indivisi-
ble and instantaneous action occurrences, some of which can only be executed
after another (i.e. there is a causal dependency represented by a partial order
≤ between the events) and some of which might not be executed together (i.e.
there is a binary conflict � between the events). Two events that are neither in
causal dependency nor in conflict are considered to be concurrent. In addition,
the principle of finite causes and the principle of conflict inheritance are required.
Therefore, non-executable events cannot be expressed in the model. For exam-
ple, the left-hand side of Fig. 1 shows a P -structure Ep with an identity labeling
function, where pairs of events related by causality are connected by arrows (for
the pairs derivable from the transitivity property, the arrows are not shown), and
pairs of the events included in conflict are marked by a symbol � (for the pairs
derivable from the hereditary conflict principle, symbols � are not depicted). The
states of a computation of P -structure is called configurations—finite subsets of
conflict-free events left-closed with respect to the causality relation.

We can represent the behavior of P -structure as an LTS TC(.) where states
are configurations and transitions between configurations are set inclusions; the
initial state is the empty configuration. In [23,25], for a prime event structure E
and its configuration X, a removal operator for the construction of residuals has
been defined as follows: E \ X = (E′,≤ ∩(E′ × E′), � ∩ (E′ × E′), L, l |E′),
with E′ = E \ (X ∪ �(X)), where �(X) denotes the events conflicting with
the events in X. With this, an LTS TR(.) can be defined as follows: states
are understood as event structures, and transitions are built by starting with
the given event structure as an initial state and removing the events from
already executed configurations and the events conflicting with the executed
ones. For our example, Fig. 1 presents TC(Ep) (in the middle) and TR(Ep) (on

Ep

d b

a

c

�

TC (Ep)

∅

{b, d}{d}

{d, a} {d, a, c}

{b}
d d

a

c

b

b

d;
a;

c

b||d

d
;a

a; c

TR(Ep)

d b

a

c

�

ba

c

�

c

d

∅
d

b

a

c

d

a; c
b

d;
a;

c

b||d

d
;a

Fig. 1. A prime event structure and two bisimilar LTS derived from it as in [23]

120 E. Best et al.

the right-hand side), in their pomset semantics. The main result of [23] states
that the two transition systems are bisimilar. Observe that this is true in our
example, but also, that TC(Ep) and TR(Ep) are not isomorphic. The culprits are
the maximal states, of which there are two in TC(Ep), obtained by executing,
respectively, d; a; c and d‖b, but in TR(Ep) only one—the empty event structure
obtained as the residual by applying the removal operator with the corresponding
configurations.

Suppose that we extend prime event structures just slightly by allowing a
non-executable event, say denoted by ∗. On the left-hand side of Fig. 2, an event
structure Ep∗ extending the previous one in this way is shown. Using ∗, we can
specify parts of an event structure as non-executable, rather than deleting them.
For instance, consider TR(Ep∗) shown on the right-hand side of Fig. 2, with the
initial state being the middle one on the lower line. After executing b as a first
event, a and c are no longer possible, but instead of being deleted as in TR(Ep),
they were positioned after the (unique) ∗ event.7 Doing this systematically, we
obtain the residual transition system TR(Ep∗) shown in full on the right hand
side of Fig. 2. Observe that TR(Ep∗) is isomorphic – rather than just bisimilar –
to the original configuration-based transition system TC(Ep), which is, of course,
the same as TC(Ep∗).

All event structure models investigated in Sect. 2 can simulate an ∗ event.
Therefore, we were able to define a suitable removal operator8 which leads to
the desired (and announced, and proved) transition system isomorphism.9

Ep∗

∗ d b

a

c

�

�

TR(Ep∗)

∗ d b

a

c

�

�

∗ ba

c

�

�

∗ b

c

�

∗ d

a

c

∗ a

c

∗ b

d

b

a b

c
d

d; a; c

d; a

a;
c

b||d

Fig. 2. An (extended) prime event structure with an ∗ event, and a novel residual LTS

7 If the transitivity of → is assumed, the arrow from ∗ to c could be omitted, of course.
8 Even if this was technically not always straightforward.
9 The general idea of retaining an appropriate amount of structure during residual

semantics (or, for that matter, unfolding semantics, when applied, e.g., to a process
algebra) is not novel, nor claimed to be so. However, its application to the transition
semantics of event structures is hoped to shed some new light onto this general idea.

From Event-Oriented Models to Transition Systems 121

1.2 Event-Oriented Models to Be Considered in This Paper

In Sect. 2, the following models of varying complexity will be considered:

– Section 2.1: (extended [1]) prime event structures [29] with conjunctive10

binary causality, unique enabling, and symmetric irreflexive binary conflict;
– Section 2.2: bundle event structures [19] with non-binary conjunctive causality,

alternative enablings, and a stability constraint (each causal predecessor set
for an event contains only conflicting events) ensuring unique enabling within
a configuration; and dual event structures [19] with disjunctive causality11

allowing causal ambiguity even in a single configuration;
– Section 2.3: flow event structures [6] with binary conjunctive causality, allow-

ing for alternative enablings, and self-conflicting events;
– Section 2.4: stable event structures [29] with non-binary conjunctive causal-

ity, alternative enablings, and a stability constraint (the intersection of non-
conflicting causal predecessor sets for an event is a causal predecessors set
for it), resulting in unique enabling within a configuration; and, dropping the
stability constraint, general event structures [29] with disjunctive causality;

– Section 2.5: configuration structures [11–14] that represent the behaviours of
event-oriented models as the collections of their configurations.

When comparing the families of (finite reachable) configurations of the mod-
els they can express, configuration structures are more expressive than gen-
eral/stable event structures; which are more expressive than flow event struc-
tures; which are more expressive than bundle event structures; which are, in
turn, more expressive than (extended) prime event structures.

2 Removal Operators for Some Event-Oriented Models

In Sects. 2.1–2.5, we define configurations, as well as removal operators, for some
variants of Winskel’s original event structures [27]. Section 2.5 differs slightly,
in that (finitary) configuration structures described in [11,14] are considered.
They can be thought of as the “essence” of configuration semantics appearing
in all other models, and thus as a virtual bracket between them. In Sect. 2.6, we
demonstrate the correctness of the removal operators in different (interleaving,
step, pomset, multiset) semantics.

2.1 Extended Prime Event Structures

For reasons of flexibility, the authors of [1] propose to generalise ordinary prime
event structures [29] by dropping the transitivity and acyclicity of causality, as
well as the principles of finite causes and conflict inheritance.12 As opposed to
prime event structures, the extended version allows for non-executable (impos-
sible) events. We will use those in order to construct residual event structures.
10 An event is enabled once all of its causal predecessors have occurred.
11 An event is enabled once at least one of its causal predecessors have occurred.
12 It was noted in [1] that, as far as finite configurations are concerned, this does not

lead to an increase in expressive power.

122 E. Best et al.

Definition 1. An extended prime event structure (EP -structure) over L is a
triple E = (E, �,→, L, l), where E is a set of events; � ⊆ E × E is an irreflexive
symmetric relation (the conflict relation); → ⊆ E × E is the enabling relation;
L is a set of labels; l : E → L is a labeling function. Let Eep

L denote the class of
EP -structures over L.

Let E be an EP -structure. For X ⊆ E, let �(X) = {e′ ∈ E | ∃e ∈ X : e � e′}.13

We call a set X ⊆ E a configuration of E if X is finite, conflict-free (i.e. ∀e, e′ ∈
X : ¬(e � e′)), left-closed (i.e. ∀e, e′ ∈ E : e → e′ ∧ e′ ∈ X ⇒ e ∈ X), and does
not contain enabling cycles (i.e., � ∃e1, . . . , en ∈ X : e1 → . . . → en and en = e1
(n > 1)). The set of configurations of E is denoted by Conf(E).

In an EP -structure, an event e is called impossible if it does not occur in any
of the configurations. Events can be impossible because of enabling cycles, or
infinite causes, or an overlapping between the enabling and the conflict relation,
or because of impossible predecessors.

In the graphical representation of an EP -structure, pairs of events related
by the enabling relation are connected by arrows; pairs of the events included in
the conflict relation are marked by the symbol �.

Eep : ab c�

Fig. 3. An extended prime event structure Eep

Example 1. Figure 3 depicts the EP -structure Eep over L = {a, b, c}, with
Eep = L; �ep = {(a, b), (b, a)}; →ep= {(a, c)}; and the identity labeling func-
tion lep. Observe that the principle of conflict inheritance is violated. The set of
configurations of Eep is {∅, {a}, {b}, {a, c}}.

Definition 2. For E ∈ E
ep
L and X ∈ Conf(E), a removal operator is defined as

follows: E \ X = (E′,→′, �′, L, l′), with

E′ = E \ X

�′ = � ∩ (E′ × E′)
→′ = (→ ∩ (E′ × E′)) ∪ {(e, e) | e ∈ �(X)}

l′ = l |E′

We see that the events in X are removed, yielding a reduction of the enabling and
conflict relations. At the same time, any event conflicting with some event in X
is retained, equipping it with an enabling cycle, thereby making the conflicting
event impossible.

Consider auxiliary

Lemma 1. Given E ∈ E
ep
L and X ∈ Conf(E), (i) E \ X ∈ E

ep
L ; (ii) X ∪ X ′ is

conflict-free and �(X ∪ X ′) = �(X) ∪ �′(X ′), for any X ′ ∈ Conf(E \ X).
13 We shall use the notation for the other models through the paper.

From Event-Oriented Models to Transition Systems 123

2.2 Bundle and Dual Event Structures

Bundle event structures were introduced in [19] for the description of formal
semantics of the specification language LOTOS for parallel systems and the
corresponding algebra of processes PA [16]. Unlike events in prime structures,
those in bundle structures can be initiated by different sets of events. Causality
is not a binary relation anymore; instead, it is represented by the bundle relation
� between a finite set W of events and event e. A pair (W, e) such that W � e
is called a bundle, and W is called a bundle set. The bundle set contains only
pairwisely conflicting events (which is known as the stability principle). This
causality relation can be interpreted as follows: in the system’s functioning, an
event e can occur only if one of the events from the set W has already occurred.
Dual event structures [20] extend bundle structures by dropping the stability
principle. This leads to causal ambiguity; i.e., given a configuration and one of
its events, it is not always possible to determine what caused this event.

Definition 3. A dual event structure (D-structure) over L is a tuple E =
(E, �,�, L, l), where E is a set of events; � ⊆ E × E is an irreflexive and
symmetric relation (the conflict relation); � ⊆ 2E ×E is the bundle relation; L
is a set of labels; l : E → L is a labeling function. E is a bundle event structure
(B-structure) over L if the stability principle holds: ∀X ⊆ E, e ∈ E : X � e ⇒
∀e1, e2 ∈ X if e1 �= e2 then e1 � e2. Let Eb/d

L denote the class of B/D-structures
over L.

The behavior of a B/D-structure is described by explaining which subsets
of events constitute possible (partial) runs of the represented system (thus for-
malising the interpretation of the bundle sets and the conflict relation). These
subsets are called configurations. In other words, a set X ⊆ E is a configura-
tion of a B/D-structure E iff X is a finite set, conflict-free (i.e., ¬(e � e′), for
all e, e′ ∈ X) and secured (i.e., there exist events e1, . . . , en (n ≥ 0) such that
X = {e1, . . . , en}, and for all i < n, if Y � ei+1, then {e1, . . . , ei}∩Y �= ∅). The
set of configurations of E is denoted by Conf(E). The causal relation between
events in a configuration X of a B-structure can be represented by the partial
order ≤X= {(d, e) ∈ X × X | ∃Y : d ∈ Y � e}∗. In D-structures, a config-
uration cannot be described by a single poset anymore, because of the causal
ambiguity—a configuration may contain events whose causes are not determined
uniquely.

The definition of the syntax of a B/D-structure allows an empty bundle,
∅ �→ e, to be defined. The behavioral interpretation of such a bundle is that
e cannot occur in any configuration, i.e. e is an impossible event. Notice that
there are alternative ways to specify impossible events, for instance {e} �→ e or
{e′} �→ e � e′. It is known from [16,19], all the bundles with impossible events can
always be eliminated while preserving the behaviour (in terms of configurations).

In the graphical representation of a B/D-structure, the bundles (W, e) are
indicated by drawing an arrow from each element of W to e and connecting all
the arrows by small lines. The pairs of the events included in the conflict relation
are marked by the symbol �.

124 E. Best et al.

Eb : a

b

c�

Ed : a

b

c

Fig. 4. A bundle event structure Eb (l.h.s.) and dual event structure Ed (r.h.s.)

Example 2. Figure 4 (l.h.s.) shows the B-structure Eb over L = {a, b, c}, with
Eb = L; �b = {(a, b), (b, a)}; �b= {({a, b}, c)}; and the identity labeling function
lb. The set of configurations of Eb consists of the sets: ∅, {a}, {b}, {a, c}, {b, c}.
Unlike conflicting causes of an event in an EP -structure, the conflicting causes
a and b for the event c of Eb may appear in the configurations containing the
event c.

Consider the D-structure Ed over L = {a, b, c} depicted in Fig. 4 (r.h.s.). The
components of Ed are the sets: Ed = {a, b, c}; �d = ∅; �d= {({a, b}, c)}; and
the identity labeling function ld. Notice that Ed is not a B-structure because
it has a bundle set with non-conflicting causes for the event c. It is easy to see
that Conf(Ed) = {∅, {a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c}}. The last configura-
tion contains the event c whose cause is not determined uniquely.

In [19], a removal operator for B-structures was defined and treated within
the specification language LOTOS. It has turned out that the operator can be
used for D-structures as well.

Definition 4. For E ∈ E
b/d
L and X ∈ Conf(E), a removal operator is defined as

follows: E ′ = E \ X = (E′,�′, �′, L, l′), with

E′ = E \ X

�′ = � ∩ (E′ × E′)
�′ =

(
� \{(W, e) ∈ � | W ∩ X �= ∅}) ∪ {(∅, e) | e ∈ �(X)}

l′ = l |E′

So, all the events in X are removed from E; the conflict relation �′ is defined
on the remaining conflicting events; bundles W �→ e such that W ∩ X �= ∅ are
eliminated from �, because some cause of e already occurs in X; hence, e can
be executed any next moment in E ′. The events conflicting with some event in
X are retained in E′, making them impossible by adding empty bundles.

The lemma below seems identical to Lemma 1 but it should be stressed that
the residuals obtained by the removal operators are B/D-structures.

Lemma 2. Given, E ∈ E
b/d
L and X ∈ Conf(E), (i) E \ X ∈ E

b/d
L ; (ii) X ∪ X ′ is

conflict-free and �(X ∪ X ′) = �(X) ∪ �′(X ′), for any X ′ ∈ Conf(E \ X).

2.3 Flow Event Structures

Flow event structures introduced in [6] are another kind of event structures hav-
ing a similar representation as prime event structures [29] but being far more

From Event-Oriented Models to Transition Systems 125

relaxed. First, the causality ordering in flow event structures is represented by
an irreflexive flow relation that is not necessarily transitive and acyclic. Second,
the symmetric conflict relation is not assumed to be irreflexive; this means that
self-conflicting events are allowed. Such events cannot in general be removed
from a flow structure without affecting its set of configurations. Third, there
is no requirement on the relationships between the flow and the conflict rela-
tions. Fourth, the principles of finite causes and conflict inheritance are dropped.
Boudol [6] provided translations between 1-reachable occurrence nets, flow nets,
and flow event structures that have expressive power strictly between the bundle
event structures of [19] and the stable event structures of [29].

Definition 5. A flow event structure (F -structure) over L is a tuple E =
(E, �,≺, L, l), where E is a set of events; � ⊆ E × E is a symmetric relation
(the conflict relation); ≺ ⊆ E × E is an irreflexive relation (the flow relation);
L is a set of labels; l : E → L is a labeling function. Let Ef

L denote the class of
F -structures over L.

Consider the notion of a configuration of F -structures. First, configurations
must be finite and, moreover, conflict-free (hence, self-conflicting events will
never occur in any configuration, i.e. they are impossible). Second, for an event
to occur it is necessary that a complete non-conflicting set of its immediate
causes has occurred. Here, we say that d is a possible immediate cause for e iff
d ≺ e, and a set of causes is complete if for any cause which is not contained
there is a conflicting cause which is included. Third, no cycles with respect to
causal dependence may occur. A set X ⊆ E is a configuration of an F -structure
E iff X is a finite set, conflict-free (i.e., for all e, e′ ∈ X ¬(e � e′)), left-closed
up to conflicts (i.e., for all d, e ∈ E if e ∈ X, d ≺ e and d �∈ X then there is f ∈ X
such that d � f ≺ e), and does not contain flow cycles (i.e., ≤X :=

(≺ ∩(X ×X)
)∗

is an ordering). The set of configurations of E is denoted Conf(E).
In the graphical representation of an F -structure, e ≺ e′ is drawn as an arrow

from e to e′; the pairs of the events included in the conflict relation are marked
by the symbol �; and the self-conflicts are pictured as dotted circles around the
events.

Example 3. Figure 5 presents the F -structure Ef over L = {a, b, c, d, e, f},
with Ef = L; �f = {(a, b), (b, a), (b, b), (b, c), (c, b), (a, d), (d, a), (c, f), (f, c)};
<f= {(d, e), (a, e), (b, e), (c, e), (f, e)}; and the identity labeling function lf . The
set of configurations Conf(Ef) consists of the sets: ∅, {a}, {c}, {d}, {f}, {a, c},
{a, f}, {c, d}, {d, f}, {a, c, e}, {a, f, e}, {c, d, e}. The F -structure Ef is not a

Ef : a b c

d e f

� �

� �

Fig. 5. A flow event structure Ef

126 E. Best et al.

B/D-structure because Ef has the self-conflicting event b being a cause of the
event e, b cannot be removed without affecting Conf(Ef)—{d, f, e} would be a
configuration of Ef .

Definition 6. For E = (E,≺, �, L, l) ∈ E
f
L and X ∈ Conf(E), a removal opera-

tor is defined as follows: E \ X = (E′, �′,≺′, L, l′), with

E′ = E \ X

�′ = (� ∩ (E′ × E′)) ∪ {(e, e) | e ∈ �(X)}
≺′ = (≺ ∩ (E′ × E′)) \ {(e, f) ∈≺ | ∃e′ ∈ X : e � e′ ≺ f}
l′ = l |E′

The intuitive interpretation of the above definition is as follows. All the events
in X are removed from E; the conflict relation �′ contains the pairs of remaining
conflicting events and newly-added self-conflicting events being in conflict with
some events in X; and the flow relation ≺′ includes the pairs of remaining events
related by ≺ without the pairs (e, f) with e conflicting with some e′ in X and
f having immediate causes e and e′. We remove the pairs (e, f) because e and
e′ being in conflict belong to different complete sets of causes of f and the self-
conflicting event e not being in conflict with the events from the intersection of
the complete sets would prohibit a possible execution of f .

Lemma 3. Given E ∈ E
f
L and X ∈ Conf(E),

(i) E \ X ∈ E
f
L;

(ii) for any X ′ ∈ Conf(E \ X),
(a) whenever b ≺ a: if a ∈ X ∪ X ′ and b ∈ X ′, then a ∈ X ′; if a ∈ X and

b ∈ X ∪ X ′, then b ∈ X; if a, b ∈ X ′, then b ≺′ a;
(b) X ∪ X ′ is conflict-free and �(X ∪ X ′) = �(X) ∪ �′(X ′).

2.4 Stable and General Event Structures

Stable and non-stable event structures, introduced in the work of Winskel [28] in
order to overcome the unique enabling problem of prime event structures, have
an enabling relation indicating which (usually finite) sets X of events are possible
prerequisites of a single event e, written X � e. This enables one to model dis-
junctive causality as in D-structures, the phenomenon that an event is causally
dependent on a disjunction of other events occurring in the same system’s run.
We consider versions of stable and general event structures of [29] where the
conflict relation is specified for sets with two events. The versions generalise the
above event structure models, except for D-structures which generalise stable
event structures, as shown in [16].

Definition 7. A general event structure (G-structure) over L is a tuple E =
(E, �,�, L, l), where

From Event-Oriented Models to Transition Systems 127

– E is a set of events;
– � ⊆ E × E is an irreflexive, symmetric relation (the conflict relation). We

shall write Con for the set of finite conflict-free subsets of E, i.e. those finite
subsets X ⊆ E for which ∀e, e′ ∈ X : ¬(e � e′). X ∈ Con means that the
events in X could happen in the same run, i.e. they are consistent;

– � ⊆ Con × E is the enabling relation which satisfies X � e and X ⊆ Y ∈
Con ⇒ Y � e. � indicates possible causes: an event e can occur whenever
for some X with X � e all events in X have occurred before. The minimal
enabling relation �min is defined as follows: X �min e iff X � e and for all
Y ⊆ X if Y � e then Y = X;

– L is a set of actions;
– l : E → L is a labeling function.

E is a stable event structure (S-structure) over L if the stability principle holds:
X � e, Y � e, and X ∪ Y ∪ {e} ∈ Con ⇒ X ∩ Y � e. Let Es/g

L denote the class
of S/G-structures over L.

A set X ⊆ E is a configuration of an S/G-structure E iff X is finite, conflict-
free (i.e., X ∈ Con), and secured (i.e., there are e1, . . . , en such that X =
{e1, . . . , en} and {e1, . . . , ei} � ei+1, for all i < n). The set of configurations of
E is denoted Conf(E). For an S-structure E ,X ∈ Conf(E), and e, e′ ∈ X, let
e′ ≺X e iff e′ belongs to the smallest subset Y of X with Y � e. Then, ≤X , the
causality relation on X, is defined as the reflexive transitive closure of ≺X .

Example 4. Consider the S-structure Es over L = {a, b, c, d}, with Es =
L; �s = {(a, b), (b, a)}; �s

min= {(∅, a), (∅, b), (∅, c), ({a}, d), ({b, c}, d)}; and
the identity labeling function ls. The set of configurations of Es is
{∅, {a}, {b}, {c}, {a, c}, {b, c}, {a, d}, {a, c, d}, {b, c, d}}.

Next, contemplate the G-structure Eg over L = {a, b, c, d}, with Eg = L; �g =
{(a, b), (b, a), (b, c), (c, b)}; �g

min= {(∅, a), (∅, b), (∅, c), ({a}, d), ({b}, d), ({c}, d)};
and the identity labeling function lg. Clearly, Eg is not an S-structure because
({a} ∪ {c} ∪ {d}) ∈ Con and ({a} ∩ {c}) ��Eg d. The set of configurations of Eg

is {∅, {a}, {b}, {c}, {a, c}, {a, d}, {b, d}, {c, d}, {a, c, d}}.
Notice that neither Es nor Eg is a flow event structure because the event c

not conflicting with the event a may be a cause for d or may not.

Definition 8. For E = (E, �,�, L, l) ∈ E
s/g
L and X ∈ Conf(E), a removal oper-

ator is defined as follows: E \ X = (E′, �′,�′, L, l′), with

E′ = E \ X
�′ = � ∩ (E′ × E′)
�′ = {(W ′, e) | W ′ ∈ Con′, ∃(W ′′, e) ∈ �′

min s.t. W ′′ ⊆ W ′} where
�′

min= {(W ′′, e) | ∃(W, e) ∈ �min s.t. W ′′ = W ∩ E′, e ∈ E′,
W ′′ ∪ X ∈Con, {e} ∪ X ∈Con}

l′ = l |E′

128 E. Best et al.

We see that all the events in X are deleted; the conflict relation �′ contains the
pairs of remaining conflicting events; the definition of �′ is based on that of �′

min,
which consists of the pairs from � without the pairs whose events conflict with
some event in X, thereby making them impossible.

Lemma 4. Given E ∈ E
s/g
L ,X ∈ Conf(E), and E ′ = E \ X,

(i) A ∩ E′ ∈ Con′, for any A ∈ Con, and A′ ∈ Con, for any A′ ∈ Con′;
(ii) E ′ ∈ E

s/g
L ;

(iii) X ∪ X ′ ∈ Con, and W ∪ X ∪ X ′ ∈ Con iff (W \ X) ∪ X ′ ∈ Con′ and
W ∪ X ∈ Con, for any X ′ ∈ Conf(E ′) and W ⊆ E.

2.5 Configuration Structures

In this section, we present and study the model of (finitary) configuration struc-
tures from [11,14] that generalises the families of configurations of event struc-
tures and also resembles the Chu spaces of [26]. Furthermore, the connections
between configuration structures and Scott domains are established in [9].

Definition 9. A configuration structure (C-structure) over L is a tuple E =
(E,C,L, l), where E is a set of events, C ⊆ P(E) is a collection of subsets of
events, L is a set of actions, l : E → L is a labeling function.

The elements of E are events and the elements of C are configurations. An
event is considered as an occurrence of an action the system may execute. A
configuration X denotes a state of the system in which the events of X have
occurred. From now on we will restrict our attention to finitary C-structures
over L, meaning that all configurations are finite and the empty set of events is
a configuration. Let Ec

L be the class of finitary C-structures over L. For technical
convenience, we shall use Conf(E) instead of C, in Sect. 2.6.

Example 5. Consider the C-structure Ec over L = {a, b, c}, with Ec = L; Cc =
{∅, {a}, {b}, {c}, {a, b}, {a, b, c}}; and the identity labeling function lc. Note that
Ec is not a G-structure because the events a and b are not causes for c and are
not in the conflict relation with c, however, the sets {a, c} and {b, c} are not
configurations of Ec.

Definition 10. For E ∈ E
c
L and X ∈ C, a removal operator is defined as follows:

E \ X = (E′, C ′, L, l′), where

E′ = E \ X

C ′ = {Y ⊆ E′ | X ∪ Y ∈ C}
l′ = l |E′

That is, all events in X are deleted, and the configurations of E ′ are sim-
ply the subsets of E′ whose unions with X give configurations of E . Note that
this definition is much less complex than the ones in the previous sections. Nev-
ertheless, as we will see in Sect. 3, it also guarantees the desired isomorphism
result. This can be interpreted as a formal vindication in favour of preferring the
removal operators defined above (rather than those described in [5,23]).

From Event-Oriented Models to Transition Systems 129

Lemma 5. Given E ∈ E
c
L and X ∈ C, E \ X ∈ E

c
L.

2.6 Correctness of the Removal Operators in Different Semantics

We first introduce auxiliary notations. From now on, we consider a structure E
over L, as defined in the various previous subsections of Sect. 2. For configura-
tions X,X ′ ∈ Conf(E), we write:

• X →int X ′ iff X ⊆ X ′ and X ′ \ X = {e};
• X →step X ′ iff X ⊆ X ′ and X ′′ ∈ Conf(E), for all X ⊆ X ′′ ⊆ X ′;
• X →pom X ′ iff X ⊆ X ′ and ≤X′\X is defined;
• X →mset X ′ iff X ⊆ X ′.

From now on, we specify � as follows, if not defined otherwise:

� ∈
{{int, step,mset}, if E ∈ E

d
L ∪ E

g
L ∪ E

c
L,

{int, step,mset, pom}, otherwise.

A configuration X ∈ Conf(E) is a configuration in �-semantics of E iff ∅ →∗
�

X, where →∗
� is the reflexive and transitive closure of →�. Let Conf�(E) denote

the set of configurations in �-semantics of E .
We state some correctness criteria for the removal operators introduced in

the previous subsections. The meaning of the correctness properties is that the
obtained residuals do not allow configurations that are disallowed by original
structures. Also, in some sense, this signifies some compositionality properties
of the removal operators.

Proposition 1. Let E be a structure over L. Then,

(i) for any E ′ = E \ X, with X ∈ Conf�(E), and E ′′ = E ′ \ X ′, with X ′ ∈
Conf�(E ′), X ∪ X ′ ∈ Conf�(E) and E ′′ = E \ (X ∪ X ′);

(ii) for any X,X ′′ ∈ Conf�(E) such that X →� X ′′, X ′′ \ X ∈ Conf�(E \ X)
and, moreover, ∅ →� X ′′ \ X in E \ X.

3 Transition Systems TC(.) and TR(.), and Main Results

In this section, we first give some basic definitions concerning labeled transition
systems. Then, we define the mappings TC(E) and TR(E), which associate two
distinct kinds of transition systems – one whose states are configurations and
one whose states are residual event structures – with the structures E over L.

A transition system T = (S,→, i) over a set L of labels consists of a set
of states S, a transition relation →⊆ S × L × S, and an initial state i ∈ S.
Two transition systems over L are isomorphic if their states can be mapped
one-to-one to each other, preserving transitions and initial states.

Let L be a fixed set of labels (of event structures). Let Lint := L, and
Lstep/mset := N

L
0 (the set of multisets over L, or functions from L to the non-

negative integers), and Lpom := PomL (the set of isomorphic classes of partial

130 E. Best et al.

orders labeled over L) be another sets of labels. (The sets will be used as the set
of labels of the transition systems.)

We need an additional auxiliary notation. For a structure E over L and
configurations X,X ′ ∈ Conf(E) such that X →� X ′ (� ∈ {int, step, pom,mset}),
we write:

– lint(X ′ \ X) = a ∈ Lint iff X ′ \ X = {e} and l(e) = a, if � = int;
– lstep/mset(X ′ \ X) = M ∈ Lstep/mset iff M(a) = |{e ∈ X ′ \ X | l(e) = a}|, for

all a ∈ L, if � ∈ {step,mset};
– lpom(X ′ \X)=Y ∈ Lpom iff Y = [(X ′ \X,≤X′ ∩(X ′ \X ×X ′ \X), L, l |X′\X)],

if � = pom.

We are ready to construct two kinds of labeled transition systems.

Definition 11. For a structure E over L,

– TC�(E) is the transition system (Conf�(E),⇁�, ∅) over L�, where X
p

⇁� X ′

for p ∈ L� iff X →� X ′ and p = l�(X ′ \ X);
– TR�(E) is the transition system (Reach�(E), ⇀�, E) over L�, where F p

⇀� F ′

for some p ∈ L� iff F ′ = F \ X and ∅ →� X in F , for some X ∈ Conf�(F)
with p = l�(X), and Reach�(E) = {F | ∃E0, . . . , Ek (k ≥ 0) s.t. E0 = E , Ek =
F , and Ei

p
⇀� Ei+1 (i < k)}.

For instance, Figs. 6, 7, 8, 9, 10 and 11 indicate the transition systems TR�(·)
with states—the residuals of the structures considered in Examples 1–5, respec-
tively. Here, � = step, if E ∈ E

c
L, � = mset, if E ∈ E

d
L ∪ E

g
L, and � = pom,

otherwise. This implies that a single transition system arrow may represent,
respectively, the occurrence of labeled concurrent events, the occurrence of a
multiset of labeled non-conflicting enabled events, and the occurrence of par-
tially ordered labeled enabled events.

Proposition 2. Given a structure E over L,

(i) for any X ∈ Conf�(E), E \ X ∈ Reach�(E);
(ii) for any E ′ ∈ Reach�(E), there exists X ∈ Conf�(E) such that E ′ = E \ X;
(iii) for any X ′,X ′′ ∈ Conf�(E), if X ′ p

⇁� X ′′, then E \ X ′ p
⇀� E \ X ′′;

(iv) for any E ′, E ′′ ∈ Reach�(E), if E ′ p
⇀� E ′′, then there are X ′,X ′′ ∈ Conf�(E)

such that E ′ = E \ X ′, E ′′ = E \ X ′′, X ′ p
⇁� X ′′.

We state the main result of the paper.

ab c�
b c

ba c

a

a; cb c

Fig. 6. The residual transition system TRpom(Eep)

From Event-Oriented Models to Transition Systems 131

a

b

c�
b c

b

a c

a

ba

c c

a; c b;
c a

b

cb c

b

a c

a

c

a; c b; c

(a||b); c

ba

c c

b ac

b||
c a||c

a
||bb a

Fig. 7. The residual transition systems TRpom(Eb) (l.h.s.) and TRmset(Ed) (r.h.s.)

a b c

d e f

� �
� �

b c

d e f

�
�

a b c

e f

� �
�

a b

d e f

�
�

a b c

d e

� �
�

b

d e

f a b

ef

�

b c

de

� a b c

e

� �

b

c

d

�

a b f�bd f e e

(a||c); e (c||d); e

(a||f); e

c

f

e

c

f

c

f

a

a

a

d

d

d

a||c

a||f

c||d

d||f

Fig. 8. The residual transition system TRpom(Ef)

E = {a, b, c, d}
�min= {(∅, a), (∅, b), (∅, c),

({a}, d), ({b, c}, d)}
� = {(a, b), (b, a)}

E = {b, c, d}
�min= {(∅, c), (∅, d)}

� = ∅

E = {b, c}

� = ∅
�min= {(∅, c)}

E = {a, c, d}

� = ∅

�min= {(∅, c),

({c}, d)}

E = {a, b, d}

� = {(a, b), (b, a)}

�min= {(∅, a), (∅, b),

({a}, d), ({b}, d)}

E = {a, d}

� = ∅
�min= {(∅, d)}

E = {a}

� = ∅
�min= ∅

E = {b, d}

� = ∅
�min= {(∅, d)}

E = {b}

� = ∅
�min= ∅

a; d(a; d)||c (b||c); d

ad b

c cc||d a||c

d a b d

c

b||
c c

Fig. 9. The residual transition system TRpom(Es)

132 E. Best et al.

E = {a, b, c, d}

� = {(a, b), (b, a),

(b, c), (c, b)}

�min= {(∅, a), (∅, b),

(∅, c), ({a}, d),

({b}, d), ({c}, d)}

E = {b, c, d}

� = {(b, c), (c, b)}

�min= {(∅, c),

(∅, d), ({c}, d)}

E = {a, b, d}

� = {(a, b), (b, a)}

�min= {(∅, a), (∅, d),

({a}, d)}

E = {a, b}

� = {(a, b), (b, a)}
�min= {(∅, a)}

E = {a, c, d}

� = ∅
�min= {(∅, d)}

E = {b, d}

� = ∅
�min= {(∅, d)}

E = {b}

� = ∅
�min= ∅

E = {a, c}

� = ∅
�min= ∅

E = {b, c}

� = {(b, c), (c, b)}
�min= {(∅, c)}

{a, d} {c, d}

{a, c, d}

{d}

{a}

{b}

{d}

{a}

{c, d}

{c}

{c}

{c}

{d}

{d}

{a, c
} {a

, d
}

{a}{b, d}

Fig. 10. The residual transition system TRmset(Eg)

E = {a, b, c}
CE = {∅, {a}, {b},

{c}, {a, b},

{a, b, c}}

E = {a, b}
CE\{c} =

= {∅, {a, b}}

E = {b, c}
CE\{a} =

= {∅, {b}, {b, c}}

E = ∅
CE\{a,b,c} = {∅}

E = {c}
CE\{a,b} =

= {∅, {c}}

E = {a, c}
CE\{b} =

= {∅, {a}, {a, c}}

a||b c

b
a

c
a

b

Fig. 11. The residual transition system TRstep(Ec)

Theorem 1. Given a structure E over L, TC�(E) and TR�(E) are isomorphic.

It is well-known that the families of (finite and infinite) configurations of any
structure E from (Eep

L ∪E
b
L ∪E

d
L ∪E

f
L ∪E

s
L ∪E

g
L) are completely determined by its

finite configurations defined in Sects. 2.1–2.4. Specify the configuration structure
C(E) = (E,Conf(E), L, l), where E is the set of events and l is the labeling
function of E . Then, it is easy to check the truth of the equality TC�(C(E)) =
TC�(E). So, we get the following corollary, which provides the formal vindication
announced at the end of Sect. 2.5.

Corollary 1. Given a structure E over L and � ∈ {int, step,mset}, TR�(E)
and TR�(C(E)) are isomorphic.

From Event-Oriented Models to Transition Systems 133

4 Concluding Remarks

In this paper, we have defined two structurally different ways of giving various
(interleaving, step, pomset, and multiset) transition system semantics for a wide
spectrum of event-oriented distributed system models. As our main result, we
have obtained an isomorphism between the corresponding transition systems of
each model. As a consequence, we have been able to argue that the various
removal operators defined for this purpose are related to a simple form defined
for an encompassing model, that of configuration structures.

The main technical contribution of this paper consists in defining appropri-
ate formal concepts underlying the removal operators which are necessary for
residual semantics. They are based on the notion of non-executable events and
have to be defined meticulously, and individually for each of the models.

In a sense, our paper can be seen as unifying the use of such a technique
which has already had plenty of impact (albeit scattered) in the literature, but
has not, so far, been emphasised quite so explicitly. For example, the use of
non-executable events in removal operators allows the author of [16] to develop
algebraic calculi for (extended) bundle, (extended) dual, and various real-time
and probabilistic extensions of event structures. The author of [6] needed to
restrict their attention to a subclass (at least with inherited conflict) of flow
event structures when deleting events conflicting with an executed configuration
in a removal operator (but not using non-executable events). The presence of
non-executable events allowed the authors of [1] to establish a close relationships
between event structures with shrinking causality and dual event structures. In
our experience, removal operators based on deleting already executed configura-
tions and events conflicting with them are likely to become cumbersome, up to
the point of unreadability, for models that are more complex than prime event
structures. In sum, this device facilitates the elimination of non-fundamental
inconsistencies between models and is therefore, we feel, useful in comparative
semantics. Other papers confirm that non-executable events are technically con-
venient in expressing operations on concurrent models in a concise way (see, e.g.,
[21] where they are used in the definition of unfoldings).

Isomorphisms such as the ones obtained in this paper are expected to allow
one to relate transition systems constructed on configurations and transition
systems derived from denotational semantics of process calculi in a tight way.
Moreover, thanks to our results, a variety of facts known from the literature
on configuration-based transition systems (e.g., [4,9,12,29]) can be extended to
residual-based ones. For instance, it is known from [12] that every stable (gen-
eral) event structure with non-binary conflict is history preserving bisimulation
equivalent to a stable (general) event structure with binary conflict. A similar
statement is likely to be true with residuals playing the role of configurations
in the bisimulation. As another example, consider [9] where van Glabbeek pro-
posed transition systems as alternative presentations of domains. Due to our
results, the classic duality between prime algebraic domains and partial orders
of configurations of stable event structures, established in [29], can be extended
to residual-based transition systems of the models. Furthermore, thanks to the

134 E. Best et al.

paper [4], we can expect a duality between weak prime domains and residual-
based transition systems of a well-defined subclass of general event structures.

Another benefit of having isomorphism instead of bisimulation arises in the
context of prime event structures. With a bisimulation between TC(.) and TR(.),
[23] shows that the operator TC is a functor from a category of labeled prime
event structures into a category of labeled transition systems, in interleaving and
step semantics, whereas the operator TR is not, for any semantics. This is at
variance with a postulate by Winskel and Nielsen [30] that any semantic model
should form a category and its semantic operations should possess a categori-
cal characterization. Isomorphisms between the two kinds of transition systems
conform better to this postulate.

Work on extending our approach (e.g., to precursor [8], probabilistic [31], and
local [15] event structures, to event structures with dynamic causality [1] and
to labeled event structures with invisible actions) is presently under way and
has yielded promising intermediate results. Another future line of research is to
extend our results to the non-pure case of resolvable conflict event structures [13]
and to the multiset transition relation. We also plan to develop some translations
of event structures from the classes under consideration into resolvable conflict
structures, so as to compare residual-based transition systems constructed from
the original structures with the ones obtained after translation, extending the
nice corresponding suggestion in [14]. Furthermore, it would be interesting to
see if the TR(.) operators proposed here preserve behavioural (trace, testing,
bisimulation) equivalences of the event-oriented models under consideration.

A Proofs

This appendix contains the proofs of the results obtained for E ∈ E
g
L and

� = mset. All the proofs can be found at http://www.iis.nsk.su/virb/BGV-
proofsketches-2018.pdf.

Proof of Lemma 4. (i) Take an arbitrary A ∈ Con. This implies that A ⊆ E
and ¬(x � x′), for all x, x′ ∈ A. Check that A ∩ E′ ∈ Con′. Suppose a
contrary, i.e. there is a, a′ ∈ A ∩ E′ such that a �′ a′. By the definition
of �′, this means that a, a′ ∈ A and a � a′, contradicting A ∈ Con. So,
A ∩ E′ ∈ Con′. Next, take an arbitrary A′ ∈ Con′. We shall show that
A′ ∈ Con. Assume a contrary, i.e. there is a, a′ ∈ A′ such that a � a′. Since
A′ ∈ Con′, it holds that A′ ⊆ E′. By the definition of �′, we get a �′ a′,
contradicting A′ ∈ Con′. Hence, A′ ∈ Con.

(ii) Follows from the definitions of the components of E \ X.
(iii) Next, we show that X ∪ X ′ ∈ Con. As X ∈ Conf(E) (X ′ ∈ Conf(E ′)), we

get X ∈ Con (X ′ ∈ Con′). By item (i), it holds that X ′ ∈ Con. Suppose
a contrary, i.e. X ∪ X ′ �∈ Con. Then, we can find e′ ∈ X ′ and e ∈ X
such that e′ � e. Since X ′ ∈ Conf(E ′), there are e′

1, . . . , e
′
m (m ≥ 0) such

that X ′ = {e′
1, . . . , e

′
m} and {e′

1, . . . , e
′
i} �′ e′

i+1, for all i < m. W.l.o.g.,
assume e′ = e′

j for some 1 ≤ j ≤ m. By the definition of �′, there is

http://www.iis.nsk.su/virb/BGV-proofsketches-2018.pdf
http://www.iis.nsk.su/virb/BGV-proofsketches-2018.pdf

From Event-Oriented Models to Transition Systems 135

W ′ ⊆ {e′
1, . . . , e

′
j−1} such that (W ′, e′

j) ∈ �′
min. Then, due to the definition

of �′
min, there is (W, e′

j) ∈ �min such that W ′ = W ∩E′ and {e′
j}∪X ∈ Con,

contradicting e′ � e ∈ X.
Check that W ∪ X ∪ X ′ ∈ Con iff (W \ X) ∪ X ′ ∈ Con′ and W ∪ X ∈ Con.

Assume W ∪X ∪X ′ ∈ Con. Clearly, it holds that W ∪X ∈ Con. Next, it easy to
see that (W ∪X ∪X ′)∩E′ ∈ Con′, due to item (i). This means (W \ X)∪X ′ ∈
Con′. Conversely, suppose (W \X)∪X ′ ∈ Con′ and W ∪X ∈ Con. By item (i),
we have (W \ X) ∪ X ′ ∈ Con. Moreover, we know that X ∪ X ′ ∈ Con. Hence,
it holds that W ∪ X ∪ X ′ ∈ Con. �

Proof of Proposition 1. (i) Let E ′ = E \ X with X ∈ Conf�(E) and E ′′ =
E ′ \ X ′ with X ′ ∈ Conf�(E ′).
Since X ∈ Conf�(E) (X ′ ∈ Conf�(E ′)), X (X ′) is a finite, conflict-free, and

secured subset of E (E′) and ∅ →∗
� X in E (∅ →∗

� X ′ in E ′). Obviously, X ∪ X ′

is a finite subset of E, by the definition of E′. Next, due to Lemma 4(iii), we
have that X ∪ X ′ ∈ Con. Further, we check that X ∪ X ′ is secured. As X is
secured, there is a sequence e1 . . . en (n ≥ 0) such that X = {e1, . . . , en}, and
{e1, . . . , ei} � ei+1, for all i < n. Moreover, there exists a sequence e′

1 . . . e′
m (m ≥

0) such that X ′ = {e′
1, . . . , e

′
m}, and {e′

1, . . . , e
′
j} �′ e′

j+1, for all j < m, because
X ′ is secured in E ′. Consider a sequence e1 . . . en en+1 = e′

1 . . . en+m = e′
m.

Clearly, {e1, . . . , en, en+1, . . . , en+m} = X ∪ X ′. Check that {e1, . . . , el} � el+1,
for all l < n + m. We know that {e1, . . . , el} � el+1, for all l < n. Consider
the case when l = n. Obviously, ∅ �′ en+1 = e′

1, i.e. ∅ �′
min en+1 = e′

1. This
means that there is (W, e′

1) ∈ �min such that ∅ = W ∩ E′ and {e′
1} ∪ X ∈ Con.

Since W ⊆ E′ ∪ X and W ∩ E′ = ∅, we get W ⊆ X ∈ Con. Then, X � en+1,
i.e. {e1, . . . , en} � en+1. Finally, we verify the case when n + 1 ≤ l < n +
m. We know that {e′

1, . . . , e
′
l−n} �′ e′

l−n+1. Then, W ′ �′
min e′

l−n+1, for some
W ′ ⊆ {e′

1, . . . , e
′
l−n}. This means that there is (W, e′

l−n+1) ∈ �min such that
W ′ = W ∩ E′, {e′

l−n+1} ∪ X ∈ Con, and W ′ ∪ X ∈ Con. So, W ′ ∪ X � e′
l−n+1.

Since X ∪ X ′ ∈ Con and W ′ ⊆ {e′
1, . . . , e

′
l−n} ⊆ X ′, X ∪ {e′

1, . . . , e
′
l−n} ∈ Con.

Then, {e1, . . . , en, en+1, . . . , el} � el+1. Hence, X ∪ X ′ is a configuration of E .
Since ∅ ⊆ X ∪ X ′ we get ∅ →� X ∪ X ′ in E . Thus, X ∪ X ′ ∈ Conf�(E).

Set Ẽ = E \ (X ∪X ′). Check that E ′′ = Ẽ . By definition, Ẽ = E \ (X ∪X ′) =
(E \ X) \ X ′ = E′ \ X ′ = E′′. Then, again by definition, �′′ = �′ ∩ (E′′ ×
E′′) = (� ∩ (E′ × E′)) ∩ (E′′ × E′′) = � ∩ (E′′ × E′′) = �

⋂
Ẽ × Ẽ = �̃, and

l′′ = l |E′′= l |
˜E= l̃. Using that Ẽ = E′′ and �̃ = �′′, it is straightforward

to verify that C̃on = Con′′. It remains to show that �̃ = �′′. We know that
�̃min = {(W̃ , e)} | ∃(W, e) ∈ �min s.t. e ∈ Ẽ, W̃ = W ∩ Ẽ, {e}∪(X ∪X ′) ∈ Con,
W̃ ∪ (X ∪ X ′) ∈ Con}. On the other hand, we have that �′′

min= {(W ′′, e) |
∃(W ′, e) ∈ �′

min s.t. e ∈ E′′,W ′′ = W ′ ∩ E′′, {e} ∪ X ′ ∈ Con′,W ′′ ∪ X ′ ∈
Con′}. Due to the definition of �′

min, �′′
min= {(W ′′, e) | ∃(W, e) ∈ �min s.t.

e ∈ E′ ∩ E′′,W ′′ = (W ′ = W ∩ E′) ∩ E′′, {e} ∪ X ∈ Con, {e} ∪ X ′ ∈ Con′,
W ′′ ∪X ′ ∈ Con′, W ′ ∪X ∈ Con} = {(W ′′, e) | ∃(W, e) ∈ �min s.t. e ∈ E′′,W ′′ =
W ∩ E′′, {e} ∪ X ∈ Con, {e} ∪ X ′ ∈ Con′, W ′′ ∪ X ′ ∈ Con′, W ′ ∪ X ∈ Con}. As
W̃ = W\(X∪X ′), W̃∪X∪X ′ = W∪X∪X ′, as W ′ = W\X,W ′∪X = W∪X, and

136 E. Best et al.

as W ′′ = W ′ \X ′,W ′′ ∪X ′ = W ′ ∪X ′ = (W \X)∪X ′. Hence, W̃ ∪X ∪X ′ ∈ Con
iff W ′′ ∪ X ′ ∈ Con′ and W ′ ∪ X ∈ Con, due to Lemma 4(iii). Notice that
e �∈ X ∪ X ′, because e ∈ E′′. We also have that {e} ∪ X ∪ X ′ ∈ Con iff
{e} ∪ X ′ ∈ Con′ and {e} ∪ X ∈ Con, again by Lemma 4(iii). Due to Ẽ = E′′,
we get that �̃min = �′′

min. Moreover, it holds that �̃ = {(W̃ , e)} | W̃ ∈ C̃on,
∃(W, e) ∈ �̃min s.t. W ⊆ W̃} = {(W ′′, e)} | W ′′ ∈ Con′′, ∃(W, e) ∈ �′′

min s.t.
W ⊆ W ′′} = �′′, because C̃on = Con′′ and �̃min = �′′

min.

(ii) Assume X,X ′′ ∈ Conf�(E) and X →� X ′′. Since X ′′ ∈ Conf�(E), we
have X ′′ ∈ Conf(E), i.e. X ′′ is finite, conflict-free (i.e., X ′′ ∈ Con), and
secured (i.e., there exists a sequence t = e′′

1 . . . e′′
n of events from E (n ≥ 0)

such that X ′′ = {e′′
1 , . . . , e′′

n}, and {e′′
1 , . . . , e′′

i } � e′′
i+1, for all i < n. Using

the sequence t and the fact that X →� X ′′, i.e. X ⊆ X ′′, construct a
sequence t′ as follows: t′0 = ε, t′i+1 = t′i e′′

i+1, if e′′
i+1 �∈ X, and t′i+1 = t′i,

otherwise. W.l.o.g. assume t′ = e′
1 . . . e′

k (k ≥ 0) and X ′ = {e′
1, . . . , e

′
k}.

Clearly, X ′ is a finite subset of E′. As X ′′ ∈ Con, then X ′′ \ X = X ′ =
X ′′ ∩E′ ∈ Con′, by Lemma 4(i). We shall show that {e′

1, . . . , e
′
j} �′ e′

j+1, for
all j < k. Take an arbitrary j < k. Clearly, e′

1, . . . , e
′
j , e

′
j+1 ∈ X ′ ⊆ E′ and

{e′
1, . . . , e′

j} ∈ Con′. W.l.o.g., assume e′
j+1 = e′′

i+1, for some e′′
i+1 ∈ X ′′. As

X ′′ ∈ Conf(E), we get that W ′′ = {e′′
1 , . . . , e′′

i } � e′′
i+1. Then, W �min e′′

i+1,
for some W ⊆ W ′′. Obviously, W ′′ ∩ E′ = {e′

1, . . . , e′
j}. Set W ′ = W ∩ E′.

Clearly, W ′ ∪ {e′′
i+1} ∪ X ⊆ X ′′. As X ′′ ∈ Con, we get that W ′ ∪ X ∈ Con

and {e′′
i+1} ∪ X ∈ Con. So, W ′ �′

min e′
j+1. Since W ′ ⊆ {e′

1, . . . , e
′
j} ∈ Con′,

{e′
1, . . . , e

′
j} �′ e′

j+1. This implies, X ′ is a configuration of E \ X. Since
∅ ⊆ X ′, we have ∅ →� X ′ = X ′′ \X in E \X. Hence, X ′ ∈ Conf�(E \X). �

Proof of Proposition 2. (i) Take an arbitrary X ∈ Conf�(E). This means
that X0 = ∅ →� X1 . . . Xn−1 →� Xn = X (n ≥)) in E . Then, we get that
Xi ∈ Conf�(E) (0 ≤ i ≤ n) and Xi−1 ⊆ Xi (1 ≤ i ≤ n). We shall proceed by
induction on n.

n = 0. E \ X0 = E ∈ Reach�(E).
n = 1. By the induction hypothesis, E \ X0 ∈ Reach�(E). Check that E \ X0

p1
⇀�

E \ X1. Since X0 →� X1 in E , it holds X1 \ X0 ∈ Conf�(E \ X0) and ∅ →�

X1 \ X0 = A1 in E \ X0, by Proposition 1(ii). Next, due to Proposition 1(i),
we have (E \ X0) \ A1 = E \ (X0 ∪ (X1 \ X0)) = E \ X1. This implies that
E \ X0

p1
⇀� E \ X1, where p1 = l�(A1). So, E \ X1 ∈ Reach�(E).

n > 1. By the induction hypothesis, E \ Xn−2
pn−1
⇀ � E \ Xn−1. Reasoning as in

the previous item, we get that E \Xn−1
pn
⇀� E \Xn, where pn = l�(An). Thus,

E \ (Xn = X) ∈ Reach�(E).

(ii) Take an arbitrary E ′ ∈ Reach�(E). This means that E = E0
p1
⇀� E1 . . . En−1

pn
⇀� En = E ′ (n ≥ 0). By the definition of

pi+1
⇀ �, it holds that Ei+1 = Ei\Xi+1,

for some Xi+1 ∈ Conf�(Ei) such that ∅ →� Xi+1 in Ei and pi+1 = l�(Xi+1)

(i < n). Verify that Yi+1 =
i+1⋃

j=1

Xj ∈ Conf�(E) and Ei+1 = E \ Yi+1, for all

i < n.

From Event-Oriented Models to Transition Systems 137

We shall proceed by induction on n.

n = 0. Obvious.
n = 1. Then, Y1 = X1 ∈ Conf�(E) and E1 = E0 \ X1 = E \ Y1.

n > 1. By the induction hypothesis, Yn−1 =
n−1⋃

j=1

Xj ∈ Conf�(E) and En−1 =

E \ Yn−1. Check that Yn =
n⋃

j=1

Xj ∈ Conf�(E) and En = E \ Yn. As En =

En−1 \ Xn, it holds that En = (E \ Yn−1) \ Xn. According to Proposition 1(i),
we have that Yn−1 ∪ Xn ∈ Conf�(E) and En = E \ (Yn−1 ∪ Xn) = E \ Yn.

Thus, E ′ = E \ Yn.

(iii) It follows from the definitions of the transition relations and Proposi-
tion 1(i),(ii).

(iv) Due to item (ii), there is X ′ ∈ Conf�(E) such that E ′ = E \X ′. According to
the definition of

p
⇀�, there is X̃ ′ ∈ Conf�(E ′) such that E ′′ = E ′ \ X̃ ′, ∅ →�

X̃ ′ in E ′, and p = l�(X̃ ′). Then, X ′′ = X ′∪X̃ ′ ∈ Conf�(E) and E ′′ = E \X ′′,
by Proposition 1(i). Clearly, X ′,X ′′ ∈ Conf(E) and X ′ ⊆ X ′ ∪ X̃ ′ = X ′′.
Hence, X ′ →� X ′′ in E . Obviously, l�(X ′′ \ X ′) = p. Thus, X ′ p

⇁� X ′′ in E .
�

Proof of Theorem 1. Define a mapping g : Conf�(E) → Reach�(E) as fol-
lows: g(X) = E \X, for all X ∈ Conf�E). Clearly, g(∅) = E . By the definition of
E \X and Proposition 2(i), g is well-defined. Check that g is a bijective mapping.

Suppose that g(X) = g(X ′), for some X,X ′ ∈ Conf�(E). This means that
E \X = E \X ′. By the definition of E \X and E \X ′, we get that E \X = E \X ′.
Since X,X ′ ⊆ E, we have that X = X ′. Thus, g is an injective mapping.

Take an arbitrary E ′ ∈ Reach�(E). Due to Proposition 2(ii), we get that
E ′ = E \ X, for some X ∈ Conf�(E). So, g is a surjective mapping.

We finally show that X
p
⇁� X ′ in TC�(E) iff g(X)

p
⇀� g(X ′) in TR�(E). It

follows from Proposition 2(iii) and (iv) and the fact that g is a bijective mapping.
Thus, g is indeed an isomorphism. �

References

1. Arbach, Y., Karcher, D., Peters, K., Nestmann, U.: Dynamic causality in event
structures. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039,
pp. 83–97. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19195-9 6

2. Armas-Cervantes, A., Baldan, B., Garcia-Banuelos, L.: Reduction of event struc-
tures under history preserving bisimulation. J. Log. Algebr. Methods Program.
85(6), 1110–1130 (2016)

3. Baier, C., Majster-Cederbaum, M.: The connection between event structure seman-
tics and operational semantics for TCSP. Acta Inform. 31, 81–104 (1994)

4. Baldan, P., Corradini, A., Gadducci, F.: Domains and event structures for fusions.
In: LICS, pp. 1–12 (2017)

https://doi.org/10.1007/978-3-319-19195-9_6

138 E. Best et al.

5. Best, E., Gribovskaya, N., Virbitskaite, I.: Configuration- and residual-based tran-
sition systems for event structures with asymmetric conflict. In: Steffen, B., Baier,
C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017.
LNCS, vol. 10139, pp. 132–146. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-51963-0 11

6. Boudol, G.: Flow event structures and flow nets. In: Guessarian, I. (ed.) LITP
1990. LNCS, vol. 469, pp. 62–95. Springer, Heidelberg (1990). https://doi.org/10.
1007/3-540-53479-2 4

7. Crafa, S., Varacca, D., Yoshida, N.: Event structure semantics of parallel extrusion
in the pi-calculus. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 225–
239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 15

8. Fecher, H., Majster-Cederbaum, M.: Event structures for arbitrary disruption. Fun-
dam. Inform. 68(1–2), 103–130 (2005)

9. van Glabbeek, R.J.: History preserving process graphs. Report, Stanford Univer-
sity. http://boole.stanford.edu/rvg/pub/abstracts/history

10. van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. Theor.
Comput. Sci. 356(3), 265–290 (2006)

11. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Inform. 37, 229–327 (2001)

12. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. In: Proceedings of
the LICS, pp. 199–209 (1995)

13. van Glabbeek, R., Plotkin, G.: Event structures for resolvable conflict. In: Fiala,
J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 550–561.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28629-5 42

14. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
Petri nets. Theor. Comput. Sci. 410(41), 4111–4159 (2009)

15. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: An event structure semantics
for general Petri nets. Theor. Comput. Sci. 153, 129–170 (1996)

16. Katoen, J.-P.: Quantitative and qualitative extensions of event structures. Ph.D.
thesis, Twente University (1996)

17. Katoen, J.-P., Langerak, R., Latella, D.: Modeling systems by probabilistic process
algebra: an event structures approach. In: IFIP Transactions, vol. C-2, pp. 253–268
(1993)

18. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

19. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.
In: Formal Description Techniques V. IFIP Transactions, vol. C-10, pp. 331–346
(1993)

20. Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders
in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 317–331. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63141-0 22

21. Li, B., Koutny, M.: Unfolding CSPT-nets. In: Proceedings of the International
Workshop on Petri Nets and Software Engineering (PNSE 2015), Brussels, Bel-
gium, pp. 207–226, June 2015

22. Loogen, R., Goltz, U.: Modelling nondeterministic concurrent processes with event
structures. Fundam. Inform. 14(1), 39–74 (1991)

23. Majster-Cederbaum, M., Roggenbach, M.: Transition systems from event struc-
tures revisited. Inf. Process. Lett. 67(3), 119–124 (1998)

24. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains.
Theor. Comput. Sci. 13(1), 85–108 (1981)

https://doi.org/10.1007/978-3-319-51963-0_11
https://doi.org/10.1007/978-3-319-51963-0_11
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/978-3-642-28729-9_15
http://boole.stanford.edu/rvg/pub/abstracts/history
https://doi.org/10.1007/978-3-540-28629-5_42
https://doi.org/10.1007/3-540-63141-0_22
https://doi.org/10.1007/3-540-63141-0_22

From Event-Oriented Models to Transition Systems 139

25. Nielsen, M., Thiagarajan, P.S.: Regular event structures and finite Petri nets: the
conflict-free case. In: Esparza, J., Lakos, C. (eds.) ICATPN 2002. LNCS, vol. 2360,
pp. 335–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48068-
4 20

26. Pratt, V.: Chu spaces and their interpretation as concurrent objects. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 392–405. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0015256

27. Winskel G.: Events in computation. Ph.D. thesis, University of Edinburgh (1980)
28. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

29. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 364–397. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0013026

30. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Com-
puter Science, vol. 4 (1995)

31. Winskel, G.: Distributed probabilistic and quantum strategies. Electron. Notes
Theor. Comput. Sci. 298, 403–425 (2013)

https://doi.org/10.1007/3-540-48068-4_20
https://doi.org/10.1007/3-540-48068-4_20
https://doi.org/10.1007/BFb0015256
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/BFb0013026

Analysis and Model Checking

Simplification of CTL Formulae
for Efficient Model Checking of Petri Nets

Frederik Bønneland, Jakob Dyhr, Peter G. Jensen, Mads Johannsen,
and Jǐŕı Srba(B)

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

srba@cs.aau.dk

Abstract. We study techniques to overcome the state space explosion
problem in CTL model checking of Petri nets. Classical state space prun-
ing approaches like partial order reductions and structural reductions
become less efficient with the growing size of the CTL formula. The rea-
son is that the more places and transitions are used as atomic proposi-
tions in a given formula, the more of the behaviour (interleaving) becomes
relevant for the validity of the formula. We suggest several methods to
reduce the size of CTL formulae, while preserving their validity. By these
methods, we significantly increase the benefits of structural and partial
order reductions, as the combination of our techniques can achive up to
60% average reduction in formulae sizes. The algorithms are implemented
in the open-source verification tool TAPAAL and we document the effi-
ciency of our approach on a large benchmark of Petri net models and
queries from the Model Checking Contest 2017.

1 Introduction

Model checking [6] of distributed systems, described in high-level formalisms
like Petri nets, is often a time and resource consuming task—attributed mainly
to the state space explosion problem. Several techniques like partial order and
symmetry reductions [16,20,21,23,24] and structural reductions [14,17,18] were
suggested for reducing the size of the state space of a given Petri net in need
of exploration to verify different logical specifications. These techniques try to
prune the searchable state space and their efficiency is to a high degree influenced
by the type and size of the logical formula in question. The larger the formula is
and the more atomic propositions (querying the number of tokens in places or
the fireability of certain transitions) it has, the less can be pruned away when
exploring the state space and hence the effect of these techniques is reduced. It is
therefore desirable to design techniques that can reduce the size of a given logical
formula, while preserving the model checking answer. For practical applicability,
it is important that such formula reduction techniques are computationally less
demanding than the actual state space search.

In this paper, we focus on the well-known logic CTL [5] and describe three
methods for CTL formula simplification, each preserving the logical equivalence
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 143–163, 2018.
https://doi.org/10.1007/978-3-319-91268-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_8&domain=pdf

144 F. Bønneland et al.

w.r.t. a the given Petri net model. The first two methods rely on standard log-
ical equivalences of formulae, while the third one uses state equations of Petri
nets and linear programming to recursively traverse the structure of a given
CTL formula. During this process, we identify subformulae that are either triv-
ially satisfied or impossible to satisfy, and we replace them with easier to verify
alternatives. We provide an algorithm for performing such a formula simplifi-
cation, including the traversal though temporal CTL operators, and prove the
correctness of our approach.

The formula simplification methods are implemented and fully integrated
into an open-source model checker TAPAAL [10] and its untimed verification
engine verifypn [14]. We document the performance of our tool on the large
benchmark of Petri net models and CTL queries from the Model Checking Con-
test 2017 (MCC’17) [15]. The data show that for CTL cardinality queries, we
are able to achieve on average 60% of reduction of the query size and about
34% of queries are simplified into trivial queries true or false, hence avoiding
completely the state space exploration. For CTL fireability queries, we achieved
50% reduction of the query size and about 10% of queries are simplified into true
or false. Finally, we compare our simplification algorithm with the one imple-
mented in the tool LoLA [26], the winner of MCC’17 in the several categories
including the CTL category, documenting a noticeable performance margin in
favour of our approach, both in the number of solved queries purely by the CTL
simplification as well as when CTL verification follows the simplification process.
For completeness, we also present the data for pure reachability queries where
the tool Sara [25] (run parallel with LoLA during MCC’17) performs counterex-
ample guided abstraction refinement and contributes to a high number (about
twice as high as our tool) of solved reachability queries without the need to run
LoLA’s state space exploration. Nevertheless, if we also include the actual veri-
fication after the formula simplification, TAPAAL now moves 0.4% ahead of the
combined performance of LoLA and Sara.

Related Work. Traditionally, the conditions generated by the state equation tech-
nique [17] express linear constraints on the number of times the events can occur
relative to other events of the system, and form a necessary condition for marking
reachability. State equations were used in [14] as an over-approximation tech-
nique for preprocessing of reachability formulae in earlier editions of the model
checking contest. As the technique can be often inconclusive, extensions of state
equations were studied e.g. in [11] where the authors use traps to increase pre-
cision of the method, or in [8] where the state equation technique is extended
to liveness properties. State equations, as a necessary condition for reachability,
were also used in other application domains like concurrent programming [1,2].
Our work further extends state equations to full CTL logic and improves the
precision of the method by a recursive evaluation of integer linear programs
for all subformulae, while employing state equations for each subformula and
its negation. State equations were also exploited in [22] in order to guide the
state space search based on a minimal solution to the equations. This app-
roach is orthogonal with ours as it essentially defines a heuristic search strat-

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 145

egy that in the worst case must explore the whole state space. More recently,
the state equation technique was also applied to the coverability problem for
Petri nets [4,12].

Formula rewriting techniques (in order to reduce the size of CTL formulae)
are implemented in the tool LoLA [26]. The tool performs formula simplifica-
tion by employing subformula rewriting rules that include a subset of the rules
described in Sect. 3. LoLA also employs the model checking tool Sara [25] that
uses state equations in combination with Counter Example Abstraction Refine-
ment (CEGAR) to perform an exact reachability analysis, being able to answer
both reachability and non-reachability questions and hence it is close to being a
complete model checker. Sara shows a very convincing performance on reacha-
bility queries, however, in the CTL category, we are able to simplify to true or
false almost twice as many formulae, compared to the combined performance of
Sara and LoLA.

2 Preliminaries

A labelled transition system (LTS) is a tuple TS = (S, A,→) where S is a set
of states, A is a set of actions (or labels), and → ⊆ S × A × S is a transition
relation. We write s

a−→ s′ whenever (s, a, s′) ∈ → and say that a is enabled in
s. The set of all enabled actions in a state s is denoted en(s). A state s is a
deadlock if en(s) = ∅. We write s −→ s′ whenever there is an action a such that
s

a−→ s′.
A run starting at s0 is any finite or infinite sequence s0

a0−→ s1
a1−→ s2

a2−→ · · ·
where s0, s1, s2, . . . ∈ S, a0, a1, a2 · · · ∈ A and (si, ai, si+1) ∈ → for all respective
i. We use Π(s) to denote the set of all runs starting at the state s. A run is
maximal if it is either infinite or ends in a state that is a deadlock. Let Πmax (s)
denote the set of all maximal runs starting at the state s. A position i in a run
π = s0

a0−→ s1
a1−→ s2

a2−→ · · · refers to the state si in the path and is written
as πi. If π is infinite then any i, 0 ≤ i, is a position in π. Otherwise 0 ≤ i ≤ n
where sn is the last state in π.

We now define the syntax and semantics of a computation tree logic (CTL) [7]
as used in the Model Checking Contest [15]. Let AP be a set of atomic propo-
sitions. We evaluate atomic propositions on a given LTS TS = (S, A,→) by the
function v : S −→ 2AP so that v(s) is the set of atomic propositions satisfied in
the state s ∈ S.

The CTL syntax is given as follows (where α ∈ AP ranges over atomic
propositions):

ϕ ::= true | false | α | deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | AXϕ | EXϕ | AFϕ |
EFϕ | AGϕ | EGϕ | A(ϕ1Uϕ2) | E (ϕ1Uϕ2).

We use ΦCTL to denote the set of all CTL formulae. The semantics of a CTL
formula ϕ in a state s ∈ S is given in Table 1. We do not use only the minimal

146 F. Bønneland et al.

Table 1. Semantics of CTL formulae

s |= true

s �|= false

s |= α iff α ∈ v(s)

s |= deadlock iff en(s) = ∅
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

s |= ¬ϕ iff s �|= ϕ

s |= AXϕ iff s′ |= ϕ for all s′ ∈ S s.t. s −→ s′

s |= EXϕ iff there is s′ ∈ S s.t.s −→ s′ and s′ |= ϕ

s |= AFϕ iff for all π ∈ Πmax (s) there is a position i in π s.t. πi |= ϕ

s |= EFϕ iff there is π ∈ Πmax (s) and a position i in π s.t. πi |= ϕ

s |= AGϕ iff for all π ∈ Πmax (s) and for all positions i in π we have πi |= ϕ

s |= EGϕ iff there is π ∈ Πmax (s) s.t. for all positions i in π we have πi |= ϕ

s |= A(ϕ1Uϕ2) iff for all π ∈ Πmax (s) there is a position i in π s.t.

πi |= ϕ2 and for all j, 0 ≤ j < i, we have πj |= ϕ1

s |= E(ϕ1Uϕ2) iff there is π ∈ Πmax (s) and there is a position i in π s.t.

πi |= ϕ2 and for all j, 0 ≤ j < i, we have πj |= ϕ1

set of CTL operators because the query simplification tries to push the negation
as far as possible to the atomic predicates. This significantly improves the per-
formance of our on-the-fly CTL model checking algorithm and allows for a more
refined query rewriting.

We can now define weighted Petri nets with inhibitor arcs. Let N0 = N∪{0}
be the set of natural numbers including 0 and let N

∞ = N ∪ {∞} be the set of
natural numbers including infinity.

Definition 1 (Petri net). A Petri net is a tuple N = (P, T,W, I) where P and
T are finite disjoint sets of places and transitions, W : (P × T) ∪ (T × P) → N

0

is the weight function for regular arcs, and I : (P × T) → N
∞ is the weight

function for inhibitor arcs.

A marking M on N is a function M : P −→ N
0 where M(p) denotes the

number of tokens in the place p. The set of all markings of a Petri net N is
written as M(N). Let M0 ∈ M(N) be a given initial marking of N .

A Petri net N = (P, T,W, I) defines an LTS TS(N) = (S, A,→) where
S = M(N) is the set of all markings, A = T is the set of labels, and M

t−→ M ′

whenever for all p ∈ P we have M(p) < I((p, t)) and M(p) ≥ W ((p, t)) such that
M ′(p) = M(p) − W ((p, t)) + W ((t, p)). We inductively extend the relation t−→ to
sequences of transitions w ∈ T ∗ such that M

ε−→ M and M
wt−→ M ′ if M

w−→ M ′′

and M ′′ t−→ M ′. We write M −→∗ M ′ if there is w ∈ T ∗ such that M
w−→ M ′.

By reach(M) = {M ′ ∈ M(N) | M −→∗ M ′} we denote the set of all markings
reachable from M .

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 147

w

m2

m1s1

i1 f1

s2

i2 f2

wait sync

2

2

2

Fig. 1. A Petri net modelling two synchronizing processes

Example 1. Figure 1 illustrates an example of a Petri net where places are drawn
as circles, transitions as rectangles, regular arcs as arrows with the weight as
labels (default weight is 1 and arcs with weight 0 are not depicted) and inhibitor
arcs are shown as circle-headed arrows (again the default weight is 1 and arcs
with weight ∞ are not depicted). The dots inside places represent the number
of tokens (marking). The initial marking in the net can be written by i1i32w
denoting one token in i1, one token in i3 and two tokens in the place w. The net
attempts to model two processes that aim to get exclusive access to firing either
the transition f1 or f2 (making sure that they cannot be enabled concurrently).
Once the first process decides to enable transition f1 by moving the token from
i1 to m1, the second process is not allowed to place a token into m2 due to
the inhibitor arc connection m1 to s2. However, as there is no inhibitor arc in
the order direction, it is possible to reach a deadlock in the net by performing
i1i22w

s2−→ i1m2w
s1−→ m1m2.

Finally, we fix the set of atomic propositions α (α ∈ AP) for Petri nets as
used in the MCC Property Language [15]:
α ::= t | e1 �� e2
e ::= c | p | e1 ⊕ e2
where t ∈ T , c ∈ N

0, �� ∈ {<,≤,=, =, >,≥}, p ∈ P , and ⊕ ∈ {+,−, ∗}. The
evaluation function v for a marking M is given as v(M) = {t ∈ T | t ∈ en(M)}∪
{e1 �� e2 | evalM (e1) �� evalM (e2)} where evalM (c) = c, evalM (p) = M(p) and
evalM (e1 ⊕ e2) = evalM (e1) ⊕ evalM (e2).

Formulae that do not use any atomic predicate t for transition firing and
deadlock are called CTL cardinality formulae and formulae that avoid the use of
e1 �� e2 and deadlock are called CTL firability formulate. Formulae of the form
EFϕ or AGϕ where ϕ does not contain any other temporal operator are called
reachability formulae, and as for CTL can be subdivided into the reachability
cardinality and reachability fireability category.

148 F. Bønneland et al.

Example 2. Consider the Petri net in Fig. 1 and the reachability fireability for-
mula EF (f1 ∧f2) asking whether there is a reachable marking that enables both
f1 and f2. By exploring the (finite) part of the LTS reachable from the ini-
tial marking i1i22w, we can conclude that i1i22w |= EF (f1 ∧ f2). However, the
slightly modified query EFAX (f1 ∧ f2) holds in the initial marking as a dead-
locked marking m1m2 can be reached, and due to the definition of the universal
next modality we have m1m2 |= AX (f1 ∧ f2). Another example of a cardinality
formula is E (w ≥ 2 U m2 = 1) asking if there is a computation that marks
the place m2 and before it happens, w must contain at least two tokens. This
formula holds in the initial marking by firing the transition s2.

We shall finish the preliminaries by recalling the basics of linear program-
ming. Let X = {x1, x2, . . . , xn} be a set of variables and let x = (x1, x2, . . . , xn)T

be a column vector of the variables. A linear equation is of the form c · x �� k
where �� ∈ {=, <,≤, >,≥}, k ∈ Z is an integer, and c = (c1, c2, . . . , cn) is a row
vector of integer constants. An integer linear program LP is a finite set of linear
equations. An (integer) solution to LP is a mapping u : X −→ N

0 from variables
to natural numbers such that for every linear equation (c · x �� k) ∈ LP , the
column vector u = (u(x1) u(x2) · · · u(xn))T satisfies the equation c · u �� k. We
use EX

lin to denote the set of all integer linear programs over the variables X .
An integer linear program with a solution is said to be feasible. For our

purpose, we only consider feasibility and we are not interested in the optimality
of the solution. The feasibility problem of integer linear programs is NP-complete
[11,19], however, there exists a number of efficient linear program solvers (we
use lp solve in our implementation [3]).

3 Logical Equivalence of Formulae

Before we give our method for recursive simplification of CTL formulae via the
use of state equations in Sect. 4, we first introduce two other formula simplifi-
cation techniques. The first method utilizes the initial marking and the second
method uses universally valid formulae equivalences. For the rest of this section,
we assume a fixed Petri net N = (P, T,W, I) with the initial marking M0.

For the first simplification, let us define in Table 2 the function Ω : ΦCTL →
{true, false, ?} that checks if a given formula is trivially satisfiable in the initial
marking M0. Note that we generalize the binary conjunctions and disjunctions
to n-ary operations as it corresponds to the implementation in our tool. The
correctness of this simplification is expressed in the following theorem.

Theorem 1 (Initial Rewrite). Let ϕ be a CTL formula such that Ω(ϕ) = ?.
Then M0 |= ϕ if and only if Ω(ϕ) = true.

For the second simplification, we establish a recursively defined rewrite-
function ρ : ΦCTL → ΦCTL given in Table 3 that is based on logical equivalences
for the CTL quantifiers. In the definition of ρ, we assume that the n-ary oper-
ators ∨ and ∧ are associative and commutative. The correctness is captured in
the following theorem.

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 149

Table 2. Simplification rules for a given initial marking M0

Ω(true) = true

Ω(α) = M0 |= α

Ω(AXϕ) =

{
true if M0 |= deadlock

? otherwise

Ω(false) = false

Ω(deadlock) = M0 |= deadlock

Ω(EXϕ) =

{
false if M0 |= deadlock

? otherwise

Ω(¬ϕ) =

⎧⎪⎨
⎪⎩
true if Ω(ϕ) = false

false if Ω(ϕ) = true

? otherwise

Ω(ϕ1 ∧ · · · ∧ ϕn) =

⎧⎪⎨
⎪⎩
true if for all i, 1 ≤ i ≤ n, we have Ω(ϕi) = true

false if there exists i, 1 ≤ i ≤ n, s.t. Ω(ϕi) = false

? otherwise

Ω(ϕ1 ∨ · · · ∨ ϕn) =

⎧⎪⎨
⎪⎩
true if there exists i, 1 ≤ i ≤ n, s.t. Ω(ϕi) = true

false if for all i, 1 ≤ i ≤ n, we have Ω(ϕi) = false

? otherwise

Ω(EGϕ) = Ω(AGϕ) =

{
false if Ω(ϕ) = false

? otherwise

Ω(EFϕ) = Ω(AFϕ) =

{
true if Ω(ϕ) = true

? otherwise

Ω(E(ϕ1Uϕ2)) = Ω(A(ϕ1Uϕ2)) =

⎧⎪⎨
⎪⎩
true if Ω(ϕ2) = true

false if Ω(ϕ1) = Ω(ϕ2) = false

? otherwise

Theorem 2 (Equivalence Rewriting). Let M ∈ M(N) be a marking on N .
Then M |= ϕ if and only if M |= ρ(ϕ).

4 Formula Simplification via State Equations

We will now describe the main ingredients of our formula simplification algo-
rithm. It is based on a recursive decent on the structure of the formula, checking
whether its subformulae and their negations can possibly hold in some reachable
marking (here we use the state equation [11,17] approach) and then propagating
back this information through the Boolean and temporal operators.

We use state equations to identify universally true or false subformulae, sim-
ilarly as e.g. in [14]. The main novelty is that we extend the approach to deal
with arbitrary arithmetical expressions and repeatedly solve linear programs for
subformulae of the given property so that more significant simplifications can

150 F. Bønneland et al.

Table 3. Equivalence rewriting of CTL formulae

ρ(α) = α

ρ(EGϕ) = ρ(¬AFρ(¬ϕ))

ρ(EXϕ) = EXρ(ϕ)

ρ(ϕ1 ∧ · · · ∧ ϕn) = ρ(ϕ1) ∧ · · · ∧ ρ(ϕn)

ρ(deadlock) = deadlock

ρ(AGϕ) = ρ(¬EFρ(¬ϕ))

ρ(AXϕ) = AXρ(ϕ)

ρ(ϕ1 ∨ · · · ∨ ϕn) = ρ(ϕ1) ∨ · · · ∨ ρ(ϕn)

ρ(¬ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′ if ρ(ϕ) = ¬ϕ′

AXρ(¬ϕ′) if ρ(ϕ) = EXϕ′

EXρ(¬ϕ′) if ρ(ϕ) = AXϕ′

ρ((¬ϕ1) ∧ · · · ∧ (¬ϕn)) if ϕ = ϕ1 ∨ · · · ∨ ϕn

ρ((¬ϕ1) ∨ · · · ∨ (¬ϕn)) if ϕ = ϕ1 ∧ · · · ∧ ϕn

¬ρ(ϕ) otherwise

ρ(EFϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬deadlock if ρ(ϕ) = ¬deadlock
EFϕ′ if ρ(ϕ) = EFϕ′

ρ(EFϕ′) if ρ(ϕ) = AFϕ′

ρ(EFϕ2) if ρ(ϕ) = E(ϕ1Uϕ2)

ρ(EFϕ2) if ρ(ϕ) = A(ϕ1Uϕ2)

ρ(EFϕ1 ∨ · · · ∨ EFϕn) if ρ(ϕ) = ϕ1 ∨ · · · ∨ ϕn

EFρ(ϕ) otherwise

ρ(AFϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬deadlock if ρ(ϕ) = ¬deadlock
EFϕ′ if ρ(ϕ) = EFϕ′

AFϕ′ if ρ(ϕ) = AFϕ′

ρ(AFϕ2) if ρ(ϕ) = A(ϕ1Uϕ2)

ρ((EFϕ2) ∨ (AFϕ1)) if ρ(ϕ) = ϕ1 ∨ EFϕ2

AFρ(ϕ) otherwise

ρ(A(ϕ1Uϕ2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬deadlock if ρ(ϕ2) = ¬deadlock
ρ(ϕ2) if ρ(ϕ1) = deadlock

ρ(AFϕ2) if ρ(ϕ1) = ¬deadlock
EFϕ3 if ρ(ϕ2) = EFϕ3

AFϕ3 if ρ(ϕ2) = AFϕ3

ρ((EFϕ4) ∨ A(ϕ1Uϕ3)) if ρ(ϕ2) = ϕ3 ∨ EFϕ4

A(ρ(ϕ1)U ρ(ϕ2) otherwise

ρ(E(ϕ1Uϕ2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬deadlock if ρ(ϕ2) = ¬deadlock
ρ(ϕ2) if ρ(ϕ1) = deadlock

ρ(EFϕ2) if ρ(ϕ1) = ¬deadlock
EFϕ3 if ρ(ϕ2) = EFϕ3

ρ((EFϕ4) ∨ E(ϕ1Uϕ3) if ρ(ϕ2) = ϕ3 ∨ EFϕ4

E(ρ(ϕ1)U ρ(ϕ2) otherwise

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 151

t1 p
2

2

t2
3

2

Fig. 2. Example Petri net and initial marking for formula simplification

be achieved (we try to solve the state equations both for the subformula and
its negation). As a result, we can simplify more formulae into the trivially valid
ones (true) or invalid ones (false) or we can significantly reduce the size of the
formulae which can then speed up the state space exploration.

Consider the Petri net in Fig. 2 with the initial marking M0, where M0(p) = 4.
The state equation for the reachability formula EF p ≥ 5 (can the place p be
marked with at least five tokens) over the variables xt1 and xt2 (representing the
number of transition firings of t1 and t2 respectively) looks as

M0(p) +
∑

t∈T

(W (t, p) − W (p, t))xt ≥ 5

which in our example translates to 4+0 ·xt1 − 1 ·xt2 ≥ 5. The inequality clearly
does not have a solution in nonnegative integers, hence we can conclude without
exploring the state space that EF p ≥ 5 does not hold in the initial marking.
Moreover, consider now the formula EF (p ≥ 5)∨ (p = 2∧p ≤ 7). By recursively
analyzing the subformulae, we can conclude using the state equations that p ≥ 5
cannot be satisfied in any reachable marking, hence the formula simplifies to
EF (p = 2 ∧ p ≤ 7). Moreover, by continuing the recursive decent and looking
at the subformula p ≤ 7, we can determine by using state equations, that its
negation p > 7 cannot be satisfied in any reachable marking. Hence p ≤ 7
is universally true and the formula further simplifies to an equivalent formula
EF p = 2 for which we have to apply conventional verification techniques.

In what follows, we formally define our formula simplification procedure and
extend it to the full CTL logic so that e.g. the formula EF AX p ≥ 5 simplifies
to the reachability formula EF deadlock for which we can use specialized algo-
rithms for deadlock detection (e.g. using the siphon-trap property [13]) instead
of the more expensive CTL verification algorithms. Even if a CTL formula does
not simplify to a pure reachability property, the reduction in the size of the
CTL formula has still a positive effect on the efficiency of the CTL verification
algorithms as the state space grows with the number of different subformulae.

4.1 Simplification Procedure

Let N = (P, T,W, I) be a fixed Petri net with the initial marking M0 and
ϕ a given CTL formula. Before we start, we assume that the formula ϕ has
been rewritten into an equivalent one by recursively applying the rewriting rules
in Table 4. Clearly, these rules preserve logical equivalence and they push the
negation down to either the atomic propositions or in front of the existential or

152 F. Bønneland et al.

Table 4. Rewriting rules

ϕ Rewritten ϕ

t p1 ≥ W (p1, t) ∧ · · · ∧ pn ≥ W (pn, t) ∧
p1 < I(p1, t) ∧ · · · ∧ pn < I(pn, t)
where P = {p1, p2, . . . , pn}

e1 �= e2 e1 > e2 ∨ e1 < e2

e1 = e2 e1 ≤ e2 ∧ e1 ≥ e2

¬(ϕ1 ∧ ϕ2) ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ∧ ¬ϕ2

¬AXϕ EX¬ϕ

¬EXϕ AX¬ϕ

¬AFϕ EG¬ϕ

¬EFϕ AG¬ϕ

¬AGϕ EF¬ϕ

¬EGϕ AF¬ϕ

universal until operators. Moreover, the fireability predicate for a transition t is
rewritten to the equivalent cardinality formula.

Let EX
lin be the set of all integer linear programs over the set of variables

X = {xt | t ∈ T}. Let LPS ⊆ EX
lin be a finite set of integer linear programs. We

say that LPS has a solution, if there exists a linear program LP ∈ LPS that has
a solution.

We will now define a simplification function that, for a given formula ϕ ∈
ΦCTL, produces a simplified formula and two sets of integer linear programs.
The function is of the form

simplify : ΦCTL −→ ΦCTL × 2EX
lin × 2EX

lin

and we write simplify(ϕ) = (ϕ′,LPS ,LPS) when the formula ϕ is simplified to
an equivalent formula ϕ′, and where the following invariant holds:

– if M |= ϕ for some M reachable from M0 then LPS has a solution, and
– if M |= ϕ for some M reachable from M0 then LPS has a solution.

In order to define the simplification function, we use the function merge :
2EX

lin × 2EX
lin → 2EX

lin that combines two set of integer linear programs and is
defined as merge (LPS 1,LPS 2)= {LP1 ∪ LP2 | LP1 ∈ LPS 1, LP2 ∈ LPS 2}.
Finally, let BASE denote the integer linear program with the following equations

M0(p) +
∑

t∈T

(W (t, p) − W (p, t)) · xt ≥ 0 for all p ∈ P

that ensures that any solution to BASE must leave a nonnegative number of
tokens in every place of N .

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 153

Algorithm 1. Simplify e1 �� e2

1 Function simplify(e1 �� e2)
2 if e1 is not linear or e2 is not linear then
3 return (e1 �� e2, {{0 ≤ 1}}, {{0 ≤ 1}})

4 LPS ← {{const(e1) �� const(e2)}}
5 LPS ← {{const(e1) �� const(e2)}}
6 if {LP ∪ BASE | LP ∈ LPS} has no solution then
7 return simplify(false)

8 else if {LP ∪ BASE | LP ∈ LPS} has no solution then
9 return simplify(true)

10 else

11 return (e1 �� e2,LPS ,LPS)

Algorithm 2. Simplify ¬ϕ

1 Function simplify(¬ϕ)

2 (ϕ′,LPS ,LPS) ← simplify(ϕ)
3 if ϕ′ = true then return simplify(false)
4 if ϕ′ = false then return simplify(true)

5 return (¬ϕ′,LPS ,LPS)

First, we postulate simplify(true) = (true, {{0 ≤ 1}}, ∅), simplify(false) =
(false, ∅, {{0 ≤ 1}}), and simplify(deadlock) = (deadlock , {{0 ≤ 1}}, {{0 ≤ 1}})
and these definitions clearly satisfy our invariant.

Algorithm 1 describes how to simplify the atomic predicates, where the func-
tion const takes as input an arithmetic expression e and returns one side of the
linear equation as follows:

const(c) = c

const(p) = M0(p) +
∑

t∈T

(W (t, p) − W (p, t)) · xt

const(e1 + e2) = const(e1) + const(e2)
const(e1 − e2) = const(e1) − const(e2)
const(e1 · e2) = const(e1) · const(e2).

In the algorithm we let �� denote the dual operation to ��, for example > becomes
≤ and ≥ becomes <. There is a special case that we must handle here. If in either
of the expressions e1 or e2 we have a multiplication that includes more than one
place (i.e. the expression is not linear) then we would return a nonlinear program
that cannot be solved by linear program solvers. To handle this situation, if either
side of the comparison in nonlinear, we return the formula unchanged and two
singleton sets of linear programs {{0 ≤ 1}} that trivially have a solution (any

154 F. Bønneland et al.

Algorithm 3. Simplify ϕ1♦ . . . ♦ϕn for ♦ ∈ {∧,∨}
1 Function simplify(ϕ1♦ . . . ♦ϕn)
2 Let ϕ′ be an empty formula.

3 if ♦ = ∧ then LPS ← {{0 ≤ 1}}; LPS ← ∅
4 if ♦ = ∨ then LPS ← ∅; LPS ← {{0 ≤ 1}}
5 for i := 1 to n do

6 (ϕ′
i,LPS i,LPS i) ← simplify(ϕi)

7 if ♦ = ∧ and ϕ′
i = false then return simplify(false)

8 if ♦ = ∧ and ϕ′
i �= true then

9 ϕ′ ← ϕ′ ∧ ϕ′
i

10 LPS ← merge(LPS ,LPS i)

11 LPS ← LPS ∪ LPS i

12 if ♦ = ∨ and ϕ′
i = true then return simplify(true)

13 if ♦ = ∨ and ϕ′
i �= false then

14 ϕ′ ← ϕ′ ∨ ϕ′
i

15 LPS ← LPS ∪ LPS i

16 LPS ← merge(LPS ,LPS i)

17 if ϕ′ is empty formula and ♦ = ∧ then return simplify(true)
18 if ϕ′ is empty formula and ♦ = ∨ then return simplify(false)
19 if ♦ = ∧ and {LP ∪ BASE | LP ∈ LPS} has no solution then
20 return simplify(false)

21 if ♦ = ∨ and {LP ∪ BASE | LP ∈ LPS} has no solution then
22 return simplify(true)

23 return (ϕ′,LPS ,LPS)

variable assignment is a solution to the linear program 0 ≤ 1) and hence satisfy
our invariant.

The simplification of negation ¬ϕ is given in Algorithm 2. It first recursively
computes the simplification ϕ′ of ϕ and if the answer is conclusive then the
negated conclusive answer is returned, otherwise we return ¬ϕ′ and swap the
two sets of linear programs.

In Algorithm 3 we show how to simplify conjunctions and disjunctions of
formulae. We give the simplification function for n-ary operators to mimic the
implementation closely. We present both conjunction and disjunction in the same
pseudocode in order to clarify the symmetry in handling the Boolean connec-
tives. The algorithm recursively simplifies the subformulae and one by one adds
the simplified formulae into the resulting proposition ϕ′, unless a conclusive
answer (true/false) can be given immediately or the subformula can be omitted.
Note that for conjunction we merge the current LPS and LPS i returned for the
subformula ϕi as if the conjunction is satisfied in some reachable marking then
there must be an LP ∈ LPS and an LPi ∈ LPS i such that LP ∪ LPi has a
solution. Symmetrically, we do the merge also for disjunction and the negated
sets of linear programs. Finally, we check whether the created systems of linear

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 155

Algorithm 4. Simplify QXϕ, where Q ∈ {A,E}
1 Function simplify(QXϕ)

2 (ϕ′,LPS ,LPS) ← simplify(ϕ)
3 if Q = A and ϕ′ = true then return simplify(true)
4 if Q = A and ϕ′ = false then return simplify(deadlock)
5 if Q = E and ϕ′ = true then return simplify(¬deadlock)
6 if Q = E and ϕ′ = false then return simplify(false)
7 return (QXϕ′, {{0 ≤ 1}}, {{0 ≤ 1}})

Algorithm 5. Simplify QPϕ, where QP ∈ {AG ,EG ,AF ,EF}
1 Function simplify(QPϕ)

2 (ϕ′,LPS ,LPS) ← simplify(ϕ)
3 if ϕ′ = true then return simplify(true)
4 if ϕ′ = false then return simplify(false)
5 return (QPϕ′, {{0 ≤ 1}}, {{0 ≤ 1}})

programs have solutions and in the negative cases we can sometimes draw a
conclusive answer.

Simplification of the next operators is given in Algorithm4. It is worth notic-
ing that for certain situations, the next operator can be removed and replaced
with the deadlock proposition (and hence possibly change the CTL formula into
a reachability formula). If none of the simplification cases applies, we return
the next operator with the simplified formula together with two sets of linear
programs with trivial solutions in order to satisfy our invariant. Similarly, the
simplification of the unary CTL temporal operators is given in Algorithm5.

Finally, in Algorithm6 we present the simplification of binary CTL temporal
operators. Here we first simplify ϕ2 and see if we can draw some straightforward
conclusions. If this is not the case, we also simplify ϕ1 and if it evaluates to true
or false, we can either reduce the binary temporal operator into a unary one or
completely remove the unary operator, respectively.

Example 3. Consider again the net from Example 2. We can simplify the formula
EFAX (f1 ∧ f2) as follows. Let X = {xs1 , xs2 , xf1 , xf2 , xsync} be the variables.
Using the rewriting rules from Table 4 we have that EFAX (f1∧f2) is equivalent
to EFAX (m1 ≥ 1 ∧ w ≥ 1 ∧ m2 ≥ 1). The linear equations LPS generated by
Algorithms 1 and 3 are as follows.

xs1 − xf1 ≥ 1
2 + xf1 + xf2 − xs1 − xs2 ≥ 1

xs2 − xf2 ≥ 1

We do not include BASE here, as the equations above are already unfeasible
(have no integer solution). This follows from the observation that the first and

156 F. Bønneland et al.

Algorithm 6. Simplify Q(ϕ1Uϕ2), where Q ∈ {A,E}
1 Function simplify(Q(ϕ1Uϕ2))

2 (ϕ′
2,LPS2,LPS2) ← simplify(ϕ2)

3 if ϕ′
2 = true then return simplify(true)

4 if ϕ′
2 = false then return simplify(false)

5 (ϕ′
1,LPS1,LPS1) ← simplify(ϕ1)

6 if ϕ′
1 = true then return (QFϕ′

2, {{0 ≤ 1}}, {{0 ≤ 1}})

7 if ϕ′
1 = false then return (ϕ′

2,LPS2,LPS2)
8 return (Q(ϕ′

1Uϕ′
2), {{0 ≤ 1}}, {{0 ≤ 1}})

third equation imply that xs1 > xf1 and xs2 > xf2 , respectively, and this con-
tradicts the second equation 2 + xf1 + xf2 > xs1 + xs2 . Therefore, Algorithm 3
simplifies EFAX (f1 ∧ f2) to EFAX false and by Algorithm4, we simplify it
further to EFdeadlock . No further reduction is possible, however, we simplified
a CTL formula into a simple reachability formula for which we can now use
specialized algorithms for deadlock detection.

We conclude this section with a theorem stating the correctness of the sim-
plification, meaning that for simplify(ϕ) = (ϕ′,LPS ,LPS) we have M0 |= ϕ if
and only if M0 |= ϕ′. In order to do so, we prove a stronger claim that allows us
to formally introduce the invariant on the sets of linear programs returned by
the function simplify .

Theorem 3 (Formula Simplification Correctness). Let N = (P, T,W, I)
be a Petri net, M0 an initial marking on N , and ϕ ∈ ΦCTL a CTL formula.
Let simplify(ϕ) = (ϕ′,LPS ,LPS). Then for all markings M ∈ M(N) such that
M0

w−→ M holds:

1. M |= ϕ iff M |= ϕ′

2. if M |= ϕ then there is LP ∈ LPS such that ℘(w) is a solution to LP
3. if M |= ϕ then there is LP ∈ LPS such that ℘(w) is a solution to LP

where ℘(w) is a solution that assigns to each variable xt the number of occur-
rences of the transition t in the transition sequence w.

5 Implementation and Experiments

The formula simplification techniques are implemented in C++ in the verifypn
engine [14] of the tool TAPAAL [10] and distributed in the latest release at www.
tapaal.net. The source code is available at code.launchpad.net/verifypn.

After parsing the PNML model and the formula, TAPAAL applies sequen-
tially the simplification procedures as depicted in Fig. 3, where we first attempt
to restructure the formulae to a simpler form using ρ followed by the application
of Ω. After this, the main simplify procedure is called. The simplification can

www.tapaal.net
www.tapaal.net
https://code.launchpad.net/verifypn

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 157

XML parser ρ

Ω

simplify

ρ

Ω

Structural reduction

CTL verification

CTL

Siphon-trap analysis

EF deadlock

Reachability verification
with stubborn reduction

Reachability Feasible

Not satisfied

Infeasible

Satisfied or not satisfied

PNML + XML formulae

Fig. 3. TAPAAL tool-chain and control flow

create a formula where additional applications of ρ and Ω are possible and can
further reduce the formula size. After the simplification is completed, TAPAAL
applies structural reductions to the model, removing or merging redundant tran-
sitions and places as described in [14]. The engine now proceeds as follows.

1. If the formulae is of the form EFdeadlock then siphon-trap analysis is
attempted, followed by normal explicit-state verification in case of an incon-
clusive answer.

2. If the formulae falls within pure reachability category (EFϕ or ¬EFϕ, where
ϕ does not contain further temporal operators), then we call a specialized
reachability engine that uses stubborn set reduction.

3. For the general CTL formula, the verification is performed via a translation to
a dependency graph and performing on-the-fly computation of its minimum
fixed-point assignment as described in [9].

5.1 Implementation Details of the Simplification Procedure

During implementation and subsequent experimentation, we discovered that the
construction of linear programs for large models can be both time and memory-
consuming. In particular, the merge-operation causes a quadratic blowup both in
the size and the number of linear programs. To remedy this, we have implemented

158 F. Bønneland et al.

Table 5. Formula simplification for CTL cardinality and fireability

CTL cardinality

Algorithm Solved % Solved Reachability % Reachability % Reduction

Ω 117 2.3 1834 36.6 27.2

ρ 7 0.1 1437 28.7 24.1

simplify 1437 28.7 2425 48.4 45.7

all 1724 34.4 2993 59.8 60.3

CTL fireability

Ω 194 3.9 1701 34.0 27.1

ρ 0 0.0 1319 26.3 30.0

simplify 255 5.1 1422 28.4 11.0

all 495 9.9 2022 40.4 49.7

a “lazy” construction of the linear programs—similar to lazy evaluation known
from functional programming languages. Instead of computing the full set of
linear programs up front, we simply remember the basic linear programs and
the tree of operations making up the merged or unioned linear program. Using
this construction, we then extract a single linear program on demand, and thus
avoid the up-front time and memory overhead of computing the merge and union
operations at the call time.

5.2 Experimental Setup

To evaluate the performance of our approach, we conduct two series of experi-
ments on the models and formulae from MCC’17 [15]. First, we investigate the
effect of the three different simplification methods proposed in this paper along
with their combination as depicted in Fig. 3. In the second experiment we com-
pare the performance of our simplification algorithms to those used by LoLA,
the winner of MCC’17. We also conduct a full run of the verification engines
after the formula simplification in order to assess the impact of the simplifica-
tion on the state space search. All experiments were run on AMD Opteron 6376
Processors, restricted to 14 GB of memory on 313 P/T nets from the MCC’17
benchmark. Each category contains 16 different queries which yields a total of
5008 executions for a given category.

5.3 Evaluation of Formula Simplification Techniques

We compare the performance of Ω, ρ and simplify functions along with their
combined version referred to as all (applying sequentially ρ, Ω, simplify , ρ and
Ω). The execution of each simplification was limited to 20 minutes per formula
(excluding the model parsing time) and a timeout for finding a solution to a
linear program using lp solve [3] was set to 120 s.

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 159

Table 6. Tool comparison on CTL formulae

CTL simplification only

TAPAAL LoLA LoLA+Sara

Solved % Solved Solved % Solved Solved % Solved

Cardinality 1724 34 236 5 904 18

Fireability 495 10 173 3 488 10

Total 2219 22 409 4 1392 14

CTL simplification followed by verification

Cardinality 4232 85 3634 73 3810 76

Fireability 3712 74 3663 73 3690 74

Total 7944 79 7297 73 7500 75

Table 5 reports the numbers (and percentages) of formulae that were solved
(simplified to either true or false), the number of formulae converted from a
complex CTL formula into a pure reachability formula and the average formula
reduction in percentages (where the formula size before and after the reductions
is measured as a number of nodes in its parse tree).

We can observe that the combination of our techniques simplifies about 34%
of cardinality queries and 10% of fireability queries into true or false, while a sig-
nificant number of queries are simplified from CTL formula into pure reachability
problems (60% of cardinality queries and 40% of fireability ones). The average
reduction in the query size is 60% for cardinality and 50% for fireability queries.
The results are encouraging, though the performance on fireability formulae is
considerably worse than for cardinality formulae. The reason is that fireability
predicates are translated into Boolean combinations of cardinality predicates
and the expanded formulae are less suitable for the simplification procedures
due to their increased size. This is also reflected by the time it took to compute
the simplification. For CTL cardinality, half of the simplifications terminate in
less than 0.05 s, 75% simplifications terminate in less than 0.98 s and 90% of sim-
plifications terminate in less than 9.46 s. The corresponding numbers for CTL
fireability are 0.22 s, 13.70 s and 538.34 s.

5.4 Comparison with LoLA

We compare the performance of our tool-chain, presented in Fig. 3, with the tool
LoLA [26] and the combination of LoLA and its linear program solver Sara [25]
that uses the CEGAR approach. In CTL simplification experiment, we allow
20 min for formula simplification (excluding the net parsing time) and count
how many solved (simplified to true or false) queries each tool computed1. For
CTL verification, we allow the tools first simplify the query and then proceed
1 We use the current development snapshots of LoLA (based on version 2.0) and Sara

(based on version 1.14), kindly provided by the LoLA and Sara development team.

160 F. Bønneland et al.

Table 7. Tool comparison on reachability formulae

Reachability simplification only

TAPAAL LoLA LoLA+Sara

Solved % Solved Solved % Solved Solved % Solved

Cardinality 2256 45 277 6 3734 75

Fireability 1073 21 296 6 2880 58

Total 3329 33 573 6 6614 66

Reachability simplification followed by verification

Cardinality 4638 93 3734 75 4628 92

Fireability 4402 88 2880 58 4372 87

Total 9040 90 6614 66 9000 90

with the verification according to the best setup the tools provide, again with a
20 min timeout excluding the parsing time. We run LoLA and Sara in parallel
(in their advantage), each of them having 20 min timeout per execution. The
results are presented in Table 6. We can observe that in simplification of CTL
cardinality formulae, we are able to provide an answer for 34% of queries while
the combination of LoLA and Sara solves only 18% of them. The performance
on the CTL fireability simplification is comparable. If we follow the simplifica-
tion with an actual verification, TAPAAL solves in total 79% of queries and
LoLA with Sara 75%. As a result, TAPAAL with the new query simplification
algorithms now outperforms the CTL category winner of the last year.

For completeness, in Table 7, we also include the results for the simplifica-
tion and verification of reachability queries, even though our method is mainly
targeted towards CTL formulae. We can notice that thanks to Sara, a fully func-
tional model checker implementing the CEGAR approach, LoLA in combination
with Sara solves twice as many queries by simplification as we do. However, once
followed by the actual verification (and due to our simplification technique that
significantly reduces formula sizes), both tools now show essentially compara-
ble performance with a small margin towards TAPAAL, solving 40 additional
formulae.

6 Conclusion

We presented techniques for reducing the size of a CTL formula interpreted over
the Petri net model. The motivation is to speed up the state space search and to
provide a beneficial interplay with other techniques like partial order and struc-
tural reductions. The experiential results—compared with LoLA, the winner of
MCC’17 competition—document a convincing performance for simplification of
CTL formulae as well as for CTL verification. The techniques were not designed
specifically for the simplification of reachability formulae, hence the number of

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 161

solved reachability queries by employing only the simplification is much lower
than that by the specialized tools like Sara (being in fact a complete model
checker). However, when combined with the state space search followed after
the formula simplification, the benefits of our techniques become apparent as
we now solve 40 additional formulae compared to the combined performance of
LoLA and Sara.

The simplification procedure is less efficient for CTL fireability queries than
for CTL cardinality queries. This is the case both for our tool as well as LoLA
and Sara. The reason is that we do not handle fireability predicates directly
and unfold them into Boolean combination of cardinality predicates. This often
results in significant explosion in query sizes. The future work will focus on over-
coming this limitation and possibly handling the fireability predicates directly
in the engine.

Acknowledgements. We would like to thank Karsten Wolf and Torsten Liebke from
Rostock University for providing us with the development snapshot of the latest version
of LoLA and for their help with setting up the tool and answering our questions. The
last author is partially affiliated with FI MU, Brno.

References

1. Avrunin, G.S., Buy, U.A., Corbett, J.C.: Integer programming in the analy-
sis of concurrent systems. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS,
vol. 575, pp. 92–102. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55179-4 10

2. Avrunin, G.S., Buy, U.A., Corbett, J.C., Dillon, L.K., Wileden, J.C.: Automated
analysis of concurrent systems with the constrained expression toolset. IEEE Trans.
Softw. Eng. 17(11), 1204–1222 (1991)

3. Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: open source (mixed-
integer) linear programming system. Eindhoven University of Technology (2004)

4. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 480–496. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 28

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

6. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

8. Corbett, J.C., Avrunin, G.S.: Using integer programming to verify general safety
and liveness properties. Formal Methods Syst. Des. 6(1), 97–123 (1995)

https://doi.org/10.1007/3-540-55179-4_10
https://doi.org/10.1007/3-540-55179-4_10
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

162 F. Bønneland et al.

9. Dalsgaard, A.E., Enevoldsen, S., Fogh, P., Jensen, L.S., Jepsen, T.S., Kaufmann,
I., Larsen, K.G., Nielsen, S.M., Olesen, M.C., Pastva, S., Srba, J.: Extended depen-
dency graphs and efficient distributed fixed-point computation. In: van der Aalst,
W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 139–158. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57861-3 10

10. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 36

11. Esparza, J., Melzer, S.: Verification of safety properties using integer programming:
beyond the state equation. Formal Methods Syst. Des. 16(2), 159–189 (2000)

12. Geffroy, T., Leroux, J., Sutre, G.: Occam’s Razor applied to the Petri net cov-
erability problem. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS,
vol. 9899, pp. 77–89. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45994-3 6

13. Hack, M.H.T.: Analysis of production schemata by Petri nets. Technical report,
DTIC Document (1972)

14. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 16

15. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Berthomieu, B., Ciardo,
G., Colange, M., Dal Zilio, S., Amparore, E., Beccuti, M., Liebke, T., Meijer, J.,
Miner, A., Rohr, C., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf, K.: Complete
Results for the 2017 Edition of the Model Checking Contest, June 2017. http://
mcc.lip6.fr/2017/results.php

16. Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods
for state properties. Formal Methods Syst. Des. 29(3), 215–251 (2006)

17. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

18. Murata, T., Koh, J.Y.: Reduction and expansion of live and safe marked graphs.
IEEE Trans. Circ. Syst. 27(1), 68–70 (1980)

19. Nemhauser, G.L., Wolsey, L.A.: Integer Programming and Combinatorial Opti-
mization. Wiley, Chichester (1992). Nemhauser, G.L., Savelsbergh, M.W.P., Sigis-
mondi, G.S.: Constraint classification for mixed integer programming formulations.
COAL Bull. 20, 8–12 (1988)

20. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48745-X 4

21. Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf,
S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 315–330. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0 22

22. Schmidt, K.: Narrowing Petri net state spaces using the state equation. Funda-
menta Informaticae 47(3–4), 325–335 (2001)

23. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

24. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Koutny, M., Kleijn,
J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency
XII. LNCS, vol. 10470, pp. 140–165. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55862-1 7

https://doi.org/10.1007/978-3-319-57861-3_10
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-319-45994-3_6
https://doi.org/10.1007/978-3-319-45994-3_6
https://doi.org/10.1007/978-3-662-53401-4_16
http://mcc.lip6.fr/2017/results.php
http://mcc.lip6.fr/2017/results.php
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/3-540-46419-0_22
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets 163

25. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 224–238.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 19

26. Wolf, K.: Running LoLA 2.0 in a model checking competition. In: Koutny, M.,
Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Con-
currency XI. LNCS, vol. 9930, pp. 274–285. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53401-4 13

https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/978-3-662-53401-4_13
https://doi.org/10.1007/978-3-662-53401-4_13

Basis Coverability Graph for Partially
Observable Petri Nets with Application

to Diagnosability Analysis

Engel Lefaucheux1,2(B), Alessandro Giua3,4, and Carla Seatzu3

1 Univ. Rennes, Inria, Campus Universitaire de Beaulieu, Rennes, France
engel.lefaucheux@inria.fr

2 LSV, ENS Paris-Saclay, CNRS, Cachan, France
3 Department of Electrical and Electronic Engineering, University of Cagliari,

Cagliari, Italy
4 Aix Marseille Univ., Université de Toulon, CNRS, ENSAM, LSIS,

Marseille, France

Abstract. Petri nets have been proposed as a fundamental model for
discrete-event systems in a wide variety of applications and have been
an asset to reduce the computational complexity involved in solving a
series of problems, such as control, state estimation, fault diagnosis, etc.
Many of those problems require an analysis of the reachability graph
of the Petri net. The basis reachability graph is a condensed version of
the reachability graph that was introduced to efficiently solve problems
linked to partial observation. It was in particular used for diagnosis which
consists in deciding whether some fault events occurred or not in the
system, given partial observations on the run of the system. However
this method is, with very specific exceptions, limited to bounded Petri
nets. In this paper, we introduce the notion of basis coverability graph
to remove this requirement. We then establish the relationship between
the coverability graph and the basis coverability graph. Finally, we focus
on the diagnosability problem: we show how the basis coverability graph
can be used to get an efficient algorithm.

1 Introduction

The marking reachability problem is a fundamental problem of Petri nets (PNs)
which can be stated as follows: Given a net system 〈N,M0〉 and a mark-
ing M , determine if M belongs to the reachability set R(N,M0). It plays an
important role since many other properties of interest can be solved by reduc-
tion to this problem. The marking reachability problem has been shown to be
decidable in [11] and was shown to be EXPSPACE-hard in [15].

In the case of bounded PNs, i.e., net systems whose reachability set is finite, a
straightforward approach to solve this problem consists in constructing the reach-
ability graph, which provides an explicit representation of the net behavior, i.e.,
its reachability set and the corresponding firing sequences of transitions. How-
ever, albeit finite, the reachability graph may have a very large number of nodes
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 164–183, 2018.
https://doi.org/10.1007/978-3-319-91268-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_9&domain=pdf

Basis Coverability Graph for Partially Observable PNs with Application 165

due to the so called state space explosion that originates from the combinatorial
nature of discrete event systems. For this reason, practically efficient approaches,
which do not require to generate the full state space, have been explored. We
mention, among others, partial order reduction techniques, such as the general
approaches based on stubborn sets [18] and persistent sets [8] or the Petri net
approaches based on unfolding [13] and maximal permissive steps [2].

In the case of unbounded PNs, whose reachability set is infinite, the authors
of [9] have shown that a finite coverability graph may be constructed which pro-
vides a semi-decision procedure (necessary conditions) for the marking reacha-
bility problem. It provides an over-approximation of both the reachability set
and the set of firing sequences. As was the case for the reachability graph, this
approach is not efficient and improvements to the basic algorithm have later
been proposed [14].

Recently some of us have proposed a quite general approach that exploits the
notion of basis marking to practically reduce the computational complexity of
solving the reachability problem for bounded nets. This method has originally
been introduced to solve problems of state estimation under partial observa-
tion [7] but has later been extended to address fault diagnosis [4], state-based
opacity [17] and general reachability problems [10].

The approach in [10] considers a partition of the set of transitions T =
Te ∪ Ti: Te is called set of explicit transitions and Ti is called set of implicit
transitions. The main requirement is that the subnet containing only implicit
transitions be acyclic. The firing of implicit transitions is abstracted and only
the firing of explicit transitions need to be enumerated. The advantage of this
technique is that only a subset of the reachability space—i.e., the set of the so-
called basis markings—is enumerated. All other markings are reachable from a
basis marking by firing only implicit transitions and can be characterized by the
integer solutions of a system of linear equations. In a certain sense, this hybrid
approach combines a behavioral analysis (limited to the firing of transitions in
Te) with a structural analysis (which describes the firing of transitions in Te).

The objective of this paper is mainly to show that the approach of [10] can
be generalized to unbounded nets. We define a basis coverability graph where the
firing of implicit transitions is abstracted, thus reducing the number of nodes
of the standard coverability graph. In addition, we show how this approach can
be applied to study the diagnosability of Petri nets in the logic framework of
[16]. Diagnosability is achieved in a system where transitions can be observable
or not is one can deduce from the observations that a specified faulty transition
was fired. In this case, we consider as implicit the set of unobservable transi-
tions. However, since the firing of unobservable faulty transitions need to be
recorded, we further extend the approach of [10] by considering that there may
exists a subset of implicit transitions (called relevant transitions) which, albeit
abstracted, need to be handled with special care. In terms of computational cost,
relevant transitions are in between observable and implicit transitions.

The paper is structured as follows. In Sect. 2, we recall some usual definitions
for Petri Nets and their coverability graph. In Sect. 3, we introduce the notion of

166 E. Lefaucheux et al.

basis coverability graph and establish some of its properties. In Sect. 4 we give
the definitions of the diagnosability of a Petri Net. Finally in Sect. 5 we study
unbounded Petri nets and show how to use the basis coverability graph for the
diagnosability analysis.

2 Background on Petri Nets and Coverability Graph

2.1 Petri Nets

In this section the formalism used in the paper is recalled. For more details on
Petri nets the reader is referred to [12].

Definition 1. A Petri net (PN) is a structure N = (P, T, Pre, Post), where
P is a set of m places; T is a set of n transitions; Pre : P × T → N and
Post : P × T → N are the pre– and post– incidence functions that specify the
arcs. We also define C = Post − Pre as the incidence matrix of the net.

A marking is a vector M : P → N that assigns to each place of a PN a
nonnegative integer number of tokens. A net system (NS) 〈N,M0〉 is a PN N
with an initial marking M0. A transition t is enabled at M iff M ≥ Pre(·, t) and
may fire yielding the marking M ′ = M + C(·, t). One writes M [σ〉 to denote
that the sequence of transitions σ = tj1 · · · tjk is enabled at M , and M [σ〉 M ′ to
denote that the firing of σ yields M ′. One writes t ∈ σ to denote that a transition
t is contained in σ. The length of the sequence σ (denoted|σ|) is the number of
transitions in the sequence, here k.

The set of all sequences that are enabled at the initial marking M0 is denoted
L(N,M0), i.e., L(N,M0) = {σ ∈ T ∗ | M0[σ〉}. Given k ≥ 0, the set of all
sequences of length k is written T k. A marking M is reachable in 〈N,M0〉 iff there
exists a firing sequence σ such that M0 [σ〉 M . The set of all markings reachable
from M0 defines the reachability set of 〈N,M0〉 and is denoted R(N,M0).

Let π : T ∗ → N
n be the function that associates with the sequence σ ∈ T ∗ a

vector y ∈ N
n, called the firing vector of σ. In particular, y = π(σ) is such that

y(t) = k iff the transition t is contained k times in σ.
A PN having no directed circuits is called acyclic. Given k ∈ N, a place p of

an NS 〈N,M0〉 is k-bounded if for all M ∈ R(N,M0), M(p) ≤ k. It is bounded if
there exists k ∈ N such that p is k-bounded. An NS is bounded (resp. k-bounded)
iff all of its places are bounded (resp. k-bounded).

A sequence is repetitive iff it can be repeated indefinitely (i.e. σ is repetitive
in the marking M iff M [σ〉M ′ with M ′ ≥ M). There are two kinds of repetitive
sequences: a repetitive sequence is stationary if it does not modify the mark-
ing (i.e. M [σ〉M), it is increasing otherwise. Remark that an NS containing an
increasing sequence can not be bounded.

Example 1. Consider the NS of Fig. 1, the sequence t1, is increasing in the initial
marking M0 = [2, 0, 0, 0, 0]. Firing t1 k times in M0 leads to the marking M1 =
[2, k, 0, 0, 0]. Therefore the place p2 is not bounded. However, every other place
is 2-bounded.

Basis Coverability Graph for Partially Observable PNs with Application 167

p1

p2

p3 p4

p5

t1

t2

t3

t4

t5

t6

Fig. 1. A net system. Circles are places and rectangles are transitions. In the initial
marking, p1 has two tokens represented by the two black dots.

Definition 2. Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of
its transitions, let us define the T ′−induced subnet of N as the new net N ′ =
(P, T ′, P re′, Post′) where Pre′, Post′ are the restrictions of Pre, Post to T ′. The
net N ′ can be thought as obtained from N removing all transitions in T \T ′. Let
us also write N ′ ≺T ′ N .

2.2 Coverability Graph

For a bounded NS 〈N,M0〉, one can enumerate the elements of the reachabil-
ity set R(N,M0) and establish the transition function between the markings.
The resulting graph is called Reachability Graph. If the NS is not bounded, this
construction does not terminate. Instead, an usual method is to build the Cov-
erability Graph which is a finite over-approximation of the reachability set and
of the net language [9]. We will define in this section the coverability graph of
an NS which if the NS is bounded is equal to the reachability graph of this NS.

An ω-marking is a vector from the set of places to N ∪ {ω}, where ω should be
thought of as “arbitrarily large”: for all k ∈ N, we have k < ω and ω±k = ω. An
ω-marking M is (resp. strictly) covered by an ω-marking M ′, written M ≤ M ′

(resp. M � M ′) iff for every place p of the net, M(p) ≤ M ′(p) (resp. and there
exists at least one place p such that M(p) < M ′(p)).

Definition 3. Given an NS 〈N,M0〉, the associated coverability graph
CG〈N,M0〉 = (M,M0,Δ) is defined in the following manner.

We first define inductively a temporary set Mt of pairs of ω-markings and
set of ω-markings and the temporary transition function Δt by:

– (M0, {M0}) ∈ Mt and
– (M ′, B′) ∈ Mt iff there exists (M,B) ∈ Mt and t ∈ T such that

• either M [t〉M ′, B′ = B ∪ {M ′} and for all M ′′ ∈ B,M ′ �� M ′′;
• or, for M t such that M [t〉M t, there exists M ′′ ∈ B such that M t

� M ′′.
For every such M ′′, let p1, . . . , pk be the set of places such that for all
j, M t(pj) � M ′′(pj), then ∀j,M ′(pj) = ω. For every place p such that
M ′(p) �= ω, M ′(p) = M t(p). Moreover B′ = B ∪ {M ′}.

In both cases, ((M,B), t, (M ′, B′)) ∈ Δt.
We then define M = {M | ∃B, (M,B) ∈ Mt} and given M and M ′ in M,

(M, t,M ′) ∈ Δ iff there exists B,B′ such that ((M,B), t, (M ′, B′)) ∈ Δt.

168 E. Lefaucheux et al.

The temporary graph built here is equivalent to the coverability tree of [5].
They proved in [9] that the coverability tree (and thus our temporary graph)
terminates in a finite number of steps.

Fig. 2. Left: the coverability graph of the NS in Fig. 1. Right: the BCG of the NS in
Fig. 1 where Ti = {t2, t3, t4, t6} and Ts = {t6}. The firing vectors are omitted on the
edges.

Example 2. The coverability graph of the NS in Fig. 1 is shown in Fig. 2. The
firing of t1 at the initial marking adds a token to the second place, reaching a
marking strictly greater than the initial marking in this place and equal every-
where else. Correspondingly in the coverability graph an ω appears in the second
component of the marking to show that there is a repetitive sequence enabled
by the system which increases the number of tokens in the second place.

A marking M is ω-covered by an ω-marking Mω, denoted M ≤ω Mω if
for every place p such that Mω(p) �= ω, Mω(p) = M(p). Using this definition
and the coverability graph, we define the coverability set of an NS which is an
over-approximation of the reachability set.

Basis Coverability Graph for Partially Observable PNs with Application 169

Definition 4. Given an NS 〈N,M0〉, let M be the set of ω-markings of its
coverability graph, the coverability set of 〈N,M0〉 is

CS(N,M0) = {M ∈ N
m | ∃Mω ∈ M,M ≤ω Mω}

t1 t2
2

Fig. 3. A Petri net where the coverability set strictly subsumes the reachability set.
Transition t2 is unobservable.

Example 3. The coverability set of the NS in Fig. 1 is equal to its reachability
set. This is not the case however for the NS in Fig. 3 where the reachability
set is {(k, 2r) | k, r ∈ N} while the coverability set is {(k, r) | k, r ∈ N}. We
however clearly see that the coverability set subsumes the reachability set. The
coverability graph of this NS is represented in Fig. 4.

Fig. 4. Left: the coverability graph of the NS in Fig. 3. Right: the BCG of the NS in
Fig. 3 where Ti = {t2} and Ts = ∅. The firing vectors are omitted on the edges.

We will use the rest of this section to recall a few known applications of the
coverability graph and the coverability set. All those results can be found in [5].
First, as claimed earlier, the coverability set subsumes the reachability set.

Proposition 1. Let 〈N,M0〉 be an NS, R(N,M0) ⊆ CS(N,M0).

The coverability graph can be used to determine if an NS is bounded.

Proposition 2. Given an NS 〈N,M0〉,
– a place p is k-bounded ⇔ for each marking M of CG〈N,M0〉, M [p] ≤ k.
– the marked net is bounded ⇔ no node of CG〈N,M0〉 contains the symbol ω.

Repetitiveness can be partially checked on the coverability graph.

Proposition 3. Given an NS 〈N,M0〉, a marking M and a non-empty sequence
σ′ of transitions enabled by M ,

– σ is repetitive ⇒ there exists a directed cycle in the coverability graph whose
arcs form σ starting in an ω marking Mω such that Mω ≥ω M .

– σ is stationary ⇐ there exists a directed cycle starting in M in the graph that
does not pass through markings containing ω and whose arcs form σ.

170 E. Lefaucheux et al.

The coverability graph can also be used to test whether a transition can even-
tually be fired by the NS. A transition t is dead if there is no reachable marking
enabling it, it is quasi-live otherwise. It is live if for all reachable markings M ,
there is a marking M ′ reachable from M enabling it. A marking is dead if every
transition is dead from this marking.

Proposition 4. Consider a marked net 〈N,M0〉, its coverability graph and an
observable transition t.

1. Transition t is dead ⇔ no arc labelled t belongs to the graph.
2. Transition t is quasi-live ⇔ an arc labelled t belongs to the graph.
3. Transition t is live ⇒ an arc labelled t belongs to each ergodic component of

the graph.
4. A marking M is dead ⇐ one ω-marking Mω of the coverability graph ω-

covering M has no output arc.

3 Basis Coverability Graph

3.1 Building the Basis Coverability Graph

While the reachability/coverability graph has many applications, one of its down-
side is its size. For bounded NS, the authors of [4,6] introduced the notion of
basis reachability graph which keeps most of the information relevant for par-
tially observed systems of the reachability graph while decreasing, in some cases
exponentially, the size of the graph. Their goal at the time was to study diag-
nosis. They then generalised this approach to study reachability (regardless of
labeling on transitions) in [10]. The idea of the basis reachability graph is to
select a set of transitions called “implicit” in [10] (and unobservable in [4]) that
will be abstracted and to only represent the “explicit” transitions that can be
fired (possibly after some implicit transition) in a given marking. In this section,
we will describe how to apply this idea to unbounded NS and how to build
instead a Basis Coverability Graph (BCG). When the NS is bounded, the BCG
is equal to the basis reachability graph.

Given a set of transitions T of a PN, we denote Ti ⊆ T and Te = T \Ti the sets
of implicit and explicit transitions respectively. Let Ci (Ce) be the restriction of
the incidence matrix to Ti (Te) and ni and ne, respectively, be the cardinality
of the above sets of transitions. Given a sequence σ ∈ T ∗, Pi(σ), resp., Pe(σ),
denotes the projection of σ over Ti, resp., Te.

We will sometimes need the following assumptions.

A1: The Ti-induced subnet is acyclic.
A2: Every sequence containing only implicit transitions is of finite length.

Remark that for bounded NS, the first assumption, which is an usual requirement
for problems such as diagnosis of discrete event systems, implies the second one.

When the partition between implicit and explicit transitions is not given, one
can always choose a partition respecting the two assumptions above (for example

Basis Coverability Graph for Partially Observable PNs with Application 171

Te = T). The authors of [10] discuss how to choose an appropriate partition for
the basis reachability graph and how this choice affects the cardinality of the set
of markings of the graph.

Definition 5. Given a marking M and an explicit transition t ∈ Te, let

Σ(M, t) = {σ ∈ T ∗
i | M [σ〉M ′, M ′ ≥ Pre(·, t)}

be the set of explanations of t at M , and let

Y (M, t) = π(Σ(M, t))

be the e-vectors (or explanation vectors), i.e., firing vectors associated with the
explanations.

Thus Σ(M, t) is the set of implicit sequences whose firing at M enables t.
Among the above sequences we will select those whose firing vector is minimal
and those who are minimal while containing a transition among a chosen set Ts ⊆
Ti which will be called the set of relevant transitions. This second category is
used to solve problems where it may be necessary to keep track of the occurrence
of a subset of implicit transitions. In particular it will be used in the section
about diagnosis later in this paper. As they are transitions we want to take
into account yet are not fully explicit, relevant transitions are more costly than
implicit transitions yet not as much as explicit transitions as we will see later.
The firing vector of these sequences are called (Ts-) minimal e-vectors.

Definition 6. Given a marking M , a transition t ∈ Te and a set of relevant
transitions Ts ⊆ Ti, let

Σmin(M, t) = {σ ∈ Σ(M, t) | � σ′ ∈ Σ(M, t) : π(σ′) � π(σ)}
be the set of minimal explanations of t at M , and

ΣTs

min(M, t) = {σ ∈ Σ(M, t) | σ ∩ Ts �= ∅ ∧ � σ′ ∈ Σ(M, t) :
σ ∩ Ts = σ′ ∩ Ts ∧ π(σ′) � π(σ)}

the set of Ts-minimal explanations of t at M .

Remark that for two sets of relevant transitions Ts ⊆ Ti and T ′
s ⊆ Ti, if

Ts ⊆ T ′
s, for every marking M and explicit transition t ∈ Te, ΣTs

min(M, t) ⊆
Σ

T ′
s

min(M, t). We will now build the BCG with a construction similar to the one
of the coverability graph. From a given marking, instead of choosing a transi-
tion and creating the marking obtained by firing this transition, we will fire a
sequence composed of a minimal explanation of an explicit transition followed by
the explicit transition in question. In other words, we skip all the intermediary
markings that were reached by the firing of the implicit transitions. Moreover, in
order to determine which places are labelled by ω, instead of only remembering
the markings encountered, the temporary construction keeps pairs of marking
encountered and of the e-vector of the minimal sequence fired from that mark-
ing. From these pairs, one can reconstruct every marking that could have been
reached.

172 E. Lefaucheux et al.

Definition 7. Given an NS 〈N,M0〉 verifying Assumption (A1) and a set of
relevant transition Ts ⊆ Ti, the associated basis coverability graph (BCG) with
relevant transitions Ts BCGTs

〈N,M0〉 = (M,M0,Δ) is defined in the following
manner.

We first define inductively a temporary set Mt of pairs of ω-markings and set
of pairs of ω-markings and firing vectors and the temporary transition function
Δt by:

– (M0, ∅) ∈ Mt and
– (M ′, B′) ∈ Mt iff there exists (M,B) ∈ Mt, t ∈ Te and σ ∈ Σmin(M, t) ∪

ΣTs

min(M, t) with M [σt〉Mn, where B′ = B ∪ {(M,π(σ))} and
• either Mn = M ′ and for all (M ′′, π) ∈ B, M [σ1〉M1 and M ′′[σ2〉M2 with

π(σ1) ≤ π(σt) and π(σ2) ≤ π, we have M1 �� M2;
• or there exists (M ′′, π) ∈ B, M [σ1〉M1 and M ′′[σ2〉M2 with π(σ1) ≤ π(σt)

and π(σ2) ≤ π such that M1 � M2. Then let p1, . . . , pk be the places such
that ∀i,M1(pi) > M2(pi). Let M̃ be the marking obtained from M by
replacing the number of tokens of the places pi by ω. We repeat the tests
from the marking M̃ until no new place can be modified. Let p1, . . . , pn

be the places of M where an ω was added in this process. Then for every
place p, if p ∈ {p1, . . . , pn}, M ′(p) = ω, otherwise M ′(p) = Mn(p).

In both cases ((M,B), (π(σ), t), (M ′, B′)) ∈ Δt.
We then define M = {M | ∃B, (M,B) ∈ Mt} and given M and M ′ in

M, (M, (π(σ), t),M ′) ∈ Δ iff there exists B,B′ such that ((M,B), (π(σ), t),
(M ′, B′)) ∈ Δt.

The markings of the BCG are called basis markings.

This construction does not require to check every implicit sequence of transi-
tions. Indeed, it only focuses on the firing vectors which can be more efficiently
analysed. This is only possible thanks to Assumption (A1), or more precisely
thanks to Theorem 3.8 of [4] which requires (A1) (this is the result used every
time Assumption (A1) is required in the following). This results implies that due
to the acyclicity of the implicit net, the implicit transitions of an explanation
that are not part of the minimal explanation can be postponed after the explicit
transition. This gives an important leeway on the order in which the implicit
transitions have to be in. Removing the Assumption (A1) would allow the con-
struction of a variant of the BCG defined here, but its construction would be
more costly as we would need to consider the minimal explanations instead of
their e-vector and the variant may construct more states than the one built here.

We denote the projection of a sequence σ = (σ1, t1) . . . (σk, tk) . . . of the BCG
on its second component by Pt(σ) = t1 . . . tk

Example 4. Let us first consider the NS in Fig. 3 with Ti = {t2} and no relevant
transition and the associated coverability graph and BCG in Fig. 4. In order to
fire t1, firing t2 is not required. As a consequence, the firing of the transition t2
is never used in the construction of the BCG.

As another example, we represent the BCG of the NS in Fig. 1 (for Ti =
{t2, t3, t4, t6} and Ts = {t6}) in Fig. 2. For readability the firing vectors on the

Basis Coverability Graph for Partially Observable PNs with Application 173

edges are omitted in the figure. This BCG has 11 less states than the coverability
graph.

Choosing Ts = {t6} adds the states {1, ω, 0, 0, 0} and {0, ω, 0, 0, 1} and the
edges affecting those states. The edge from {2, ω, 0, 0, 0} to {0, ω, 0, 0, 1} corre-
sponds to the {t6}-minimal explanation t2t2t3t4t6 of t5 which is not a minimal
explanation.

3.2 Properties of the Basis Coverability Graph

We will list here some of the properties of the BCG. We will first give a few results
on the size of the BCG compared to the coverability graph and under variations
of the sets of explicit, implicit and relevant transitions. Then we will define the
notion of basis coverability set and show it is a better approximation of the
reachability set than the coverability set. Finally, we will see how the properties
of boundedness, repetitiveness and liveness translate from the coverability graph
to the BCG.

The BCG was introduced in order to gain in efficiency compared to the
coverability graph. The first property to mention is thus that the BCG is always
smaller than or equal to the coverability graph. This is formally proved in the
following.

Proposition 5. Given an NS 〈N,M0〉 verifying Assumption (A1) with set of
implicit transitions Ti, for any set of relevant transitions Ts ⊆ Ti it holds that
every basis marking M of BCGTs

〈N,M0〉 is a marking of CG〈N,M0〉.

Proof. As any marking of the BCG is reachable from M0, we will show the result
by induction on the length of a path reaching this marking. Let M be a marking
of BCGTs

〈N,M0〉 and σ a sequence such that M0[σ〉M .
If |σ| = 0, M = M0 which is a marking of CG〈N,M0〉.
Given n ∈ N, suppose that the property is true for every marking reached

by a path of length at most n. If |σ| = n + 1, there exists a sequence σ1

and a transition (e, t) of BCGTs

〈N,M0〉 such that σ = σ1(e, t), let M1 such that
M0[σ1〉M1, then by hypothesis M1 belongs to CG〈N,M0〉. Moreover, as there
is a transition M1[(e, t)〉M in the BCG, there exists a minimal explanation
σ′ = t1, . . . tn ∈ Σmin(M1, t) ∪ ΣTs

min(M1, t) such that π(σ′) = e and one of
the two conditions for a BCG transition between M1 and M is validated. If it is
the first condition, there is a path M1[t1〉M2 . . . [tn〉Mn[t〉M in CG〈N,M0〉, thus
M is a marking of CG〈N,M0〉. If it is the second condition, assume the process
ends in a single round. Then there exists a marking M< either encountered while
reading σ in the BCG or reachable by a subset of a minimal explanation that
is smaller than a marking M> reachable from M1. As all the markings of the
BCG encountered along σ1 be longs to the coverability graph, using Assumption
(A1) there is a path in the coverability graph from M< to an ω-marking Mω

>

with Mω
> ≥ω M> and as the process occurs only once, the only places where Mω

>

contains an ω and M> does not are the places where M> is strictly greater than
M<. By firing the transitions corresponding to the firing vector e that are left
after reaching M> in the coverability graph from Mω

> we reach M . The same

174 E. Lefaucheux et al.

idea works if the process requires multiple rounds, however, in order to visit
every states that are covered and covering, one may need to extend the run. As
a consequence, M is a marking of CG〈N,M0〉. ��

How much is gained depends on the partition between implicit, explicit and
relevant transitions. For example, if every transition is explicit, the BCG is
exactly equal to the coverability graph. On the contrary, increasing the number
of implicit transitions reduce the size of the BCG.

Proposition 6. Consider an NS 〈N,M0〉 verifying Assumption (A1) and two
sets of implicit transitions Ti and T ′

i with T ′
i ⊆ Ti. For any set of relevant

transitions Ts such that Ts ⊆ T ′
i , every basis marking of the BCG of 〈N,M0〉 with

implicit transitions Ti is a basis marking of the BCG of 〈N,M0〉 with implicit
transition T ′

i .

Proof. We call C and C ′ the two BCG with implicit sets of transitions Ti and
T ′

i . We will show that any basis marking M of C is a basis marking of C ′ by
induction on the length n of the sequence reaching it. If n = 0, M = M0 and
belongs to C ′. Else, there is a sequence σ = σ1(e, t) (with e a firing vector of
implicit transition and t an explicit transition) and a basis marking M0 such
that M [σ1〉M0[(e, t)〉M in C. By induction hypothesis, M0 is a basis marking of
C ′. Let σ′ be a minimal explanation of t with π(σ′) = e. σ′ = σ0t0σ1 . . . tkσk+1

where for all i ≤ k + 1 the transitions ti are explicit transitions and the σi

are sequences of implicit transitions with respect to T ′
i . Due to Assumption

(A1), we can assume without loss of generality that the σi, i ≤ k, are mini-
mal explanations of ti. Therefore there exists basis markings in C ′, M1, . . . Mk,
such that M0[(π(σ0), t0)〉M1 . . . [(π(σk), tk)〉Mk[(π(σk+1), t)〉M . Thus M belongs
to C ′. ��

With a similar proof, we can show that turning implicit transitions into
relevant transitions increases the number of markings.

Proposition 7. Consider an NS 〈N,M0〉 verifying Assumption (A1) with set of
implicit transitions Ti. For any two sets of relevant transitions Ts, T

′
s ⊆ Ti with

Ts ⊆ T ′
s, every basis marking of BCGTs

〈N,M0〉 is a basis marking of BCG
T ′
s

〈N,M0〉.

Relevant transitions are in between explicit and implicit transitions in terms
of cost. This is strict as seen for example on the NS in Fig. 3 when choosing t2
explicit and ts either explicit or relevant (the associated BCG are represented

Fig. 5. Left: the BCG of the NS in Fig. 3 with t1 and t2 explicit. Right: the BCG of
the NS in Fig. 3 with t1 relevant and t2 explicit. The firing vectors are omitted on the
edges.

Basis Coverability Graph for Partially Observable PNs with Application 175

s

...

. . .

. . .

. . .

t0 ti

tr2

tr1

trk

tend

Fig. 6. A Petri net where the BCG has exponentially less states than the coverability
graph. s is the number of tokens contained in this place in the initial marking and
there is r + 1 places in each of the parallel lines.

in Fig. 5). Here, making the transition relevant instead of explicit removes one
basis marking. In fact, on this example making t1 relevant or implicit does not
change anything contrary to what was seen in Example 4.

Let us now discuss about the importance of the gain of the BCG construction
through an example.

Example 5. Consider the NS in Fig. 6, transitions t0, ti and tend being explicit
while the others are implicit. The BCG has exactly (s+3)(s+2)

2 basis markings,
thus is quadratic in s and does not depend on r or k. However, the coverability
graph has at least

∑s
j=0

(
r+j

j

)k
markings (this is the number of markings reached

while never firing t0). Thus is among others exponential in k. Moreover, as this
is without firing t0, this only describes a part of the coverability graph that do
not contain any ω.

We will now give some results showing that the BCG can effectively be used
in many cases instead of the coverability graph. As a first step, we will show that
the BCG can be used to define a set of markings that are an over-approximation
of the reachability set. We denote by Ri(N,M) the set of markings reachable
from M using only implicit transitions in the Petri net N . Given an ω-marking
Mω and a marking M , Mω =ω M iff for every place p such that Mω(p) �= ω,
Mω(p) = M(p).

Definition 8. Given an NS 〈N,M0〉 with m places and a set of implicit tran-
sitions Ti, let Ts ⊆ Ti be a set of relevant transitions and let V be the set of
basis markings of BCGTs

〈N,M0〉. The basis coverability set of 〈N,M0〉 with rele-
vant transitions Ts is

BCSTs(N,M0) = {M ∈ N
m | ∃Mω ∈ V,∃Mu

ω ∈ Ri(N,Mω),Mu
ω ≥ω M}

This set can be easily computed for NS verifying (A1). For every possible
choice of Ts, the basis coverability set is an over-approximation of the reachability
set.

176 E. Lefaucheux et al.

Proposition 8. Given an NS 〈N,M0〉 with set of implicit transitions Ti ver-
ifying Assumption (A1) and a set of relevant transitions Ts ⊆ Ti, it holds
R(N,M0) ⊆ BCSTs(N,M0).

Proof. Let σ be a sequence such that M0[σ〉M in the NS. We will proceed by
induction on the length of σ.

If |σ| = 0, M = M0 which is a marking of the BCG.
Given n ∈ N, supposing that the property is true for every marking reached

by a path of length at most n. For |σ| = n + 1, σ = σ1t. Let M0[σ1〉M1. By
the induction hypothesis there exists a basis marking M b

ω and an ω-marking Mu
ω

such that Mu
ω ∈ Ri(N,M b

ω) and Mu
ω ≥ω M1.

• if t is implicit, as Mu
ω ≥ω M1, t is enabled by Mu

ω and the marking reached by
firing t in Mu

ω , let’s call it Mu,2
ω , verifies Mu,2

ω ≥ω M and Mu,2
ω ∈ Ri(N,M b

ω).
• if t is explicit, let σt such that M b

ω[σt〉Mu
ω . Since σt is an explanation of t,

there thus exist a minimal explanation σmin such that π(σmin) ≤ π(σt) and a
sequence σe ∈ T ∗

i such that π(σmin)+π(σe) = π(σt). Let Ms ≤ω M b
ω such that

Ms[σt〉M1 and Mf the marking such that Ms[σmint〉Mf . Using Assumption
(A1), Mf [σe〉M . By construction of the BCG, there exists a basis marking
M b

2 reachable with transition (π(σmin), t) from M b
ω such that M b

2 ≥ω Mf .
Moreover, as Mf [σe〉M , triggering σe in M b

2 leads to a marking M2
ω such that

M2
ω ≥ω M . ��

The following result characterizes a monotonicity property of the basis cov-
erability set with respect to the corresponding set of relevant transitions. It is a
direct corollary of Proposition 7.

Corollary 1. Given an NS 〈N,M0〉 verifying Assumption (A1) with set of
implicit transitions Ti. For any two sets of relevant transitions Ts and T ′

s such
that Ts ⊆ T ′

s ⊆ Ti, BCSTs(N,M0) ⊆ BCST ′
s(N,M0).

The inclusion can be strict. Indeed, let us observe the NS of Fig. 3 with t2
implicit. The BCG with Ts = ∅ has two basis markings [0, 0] and [ω, 0]. The
associated basis coverability set is {[n, 2m] | n,m ∈ N}, which is equal to the
reachability set. However, the BCG with Ts = {t2} has the two previous basis
markings plus [ω, ω]. Therefore its basis coverability set is {[n,m] | n,m ∈ N},
which is equal to the coverability set. In fact the basis coverability set is always
a better approximation than the coverability set.

Proposition 9. Given an NS 〈N,M0〉 verifying Assumption (A1) with set
of implicit transitions Ti and a set of relevant transitions Ts ⊆ Ti, it holds
BCSTs(N,M0) ⊆ CS(N,M0).

Proof. Let M ∈ BCS(N,M0). By definition, there exists M ′ ≥ω M and Mb

state of the BCG with M ′ ∈ Ri(N,Mb). By Proposition 5, Mb is a state of
CG〈N,M0〉. Let σ be an implicit sequence such that Mb[σ〉M ′. By definition of
Ri and of the coverability graph there exists a state Mc of CG〈N,M0〉 such that
Mb[σ〉Mc in the CG and Mc ≥ M ′. Thus Mc ≥ M . Therefore M ∈ CS(N,M0).

��

Basis Coverability Graph for Partially Observable PNs with Application 177

We now show how the results relative to the coverability graph recalled in the
previous section (namely Propositions 2 and 3) can be transposed on the BCG.
As those results hold for every choice of set of relevant transitions Ts ⊆ Ti, this
set is omitted for the rest of the section.

Proposition 10. Given an NS 〈N,M0〉 with set of implicit transitions Ti veri-
fying Assumptions (A1) and (A2),

– a place p is k-bounded ⇒ for each basis marking M of the BCG M [p] ≤ k.
– p is not k-bounded ⇒ there exists a basis marking Mω and an ω-marking

Mu ∈ Ri(N,Mω) with Mu(p) > k;
– the NS is bounded ⇔ no basis marking of the BCG contains the symbol ω.

Proof. – The first item holds as this implication is true for every marking of
the coverability graph according to Propositions 2 and 5 which claims that
the markings of the BCG are markings of the coverability graph.

– Suppose that p is not k-bounded. There thus exists a marking M ∈ R(N,M0)
with M(p) > k. As R(N,M0) ⊆ BCS(N,M0) according to Proposition 8,
there exists a basis marking Mω and an ω-marking Mu ∈ Ri(N,Mω) such
that Mu ≥ω M . Thus Mu(p) > k.

– For the third item, the left to right implication is once again due to Propo-
sition 5 and the fact that the equivalence holds when considering the cover-
ability graph as stated in Proposition 2.
For the right to left implication, suppose that no ω appears in the BCG. Then
BCS(N,M0) is finite as in every basis marking, which are also markings
reachable in the NS, there is finitely many sequences of implicit transitions
enabled thanks to assumption (A2). Therefore, according to Proposition 8 the
reachability set R(N,M0) is finite. This implies that the NS is bounded. ��

The reverse implication of the first item is false. Indeed, observe the NS of Fig. 3,
the two basis markings of the BCG are [0, 0] and [ω, 0], however the second place
is not bounded by 0, in fact it is not bounded at all. In this respect, the BCG may
not explicitly show all the informations that appears in the coverability graph.
The second item shows the stronger requirement, using the implicit reach, that
is needed to get the reverse implication.

Proposition 11. Given an NS 〈N,M0〉 with set of implicit transitions Ti ver-
ifying Assumption (A1), a non-empty sequence σ′ of explicit transitions and a
marking M

– there exists a repetitive sequence σ with Pe(σ) = σ′ enabled by M ⇒ there
exists k ∈ N, two basis markings M1

ω, M2
ω and two ω-markings M i

u ∈
Ri(N,M i

ω), i ∈ {1, 2}, such that:
• M ≤ω M i

u, i ∈ {1, 2};
• there is a path starting in M1

ω and ending in M2
ω in the BCG whose arcs,

projected on the second component, form σ′;
• there is a directed cycle starting in Mω in the BCG whose arcs, projected

on the second component, form (σ′)k.

178 E. Lefaucheux et al.

– there exists a directed cycle starting in Mω in the BCG that does not pass
through markings containing ω and whose arcs, projected on the second com-
ponent, form σ′ where Mω is a basis marking such that M ∈ Ri(N,Mω) ⇒
there exists a stationary sequence σ with Pe(σ) = σ′ enabled by M .

Proof. – Suppose that σ is repetitive from M . Due to Proposition 8, there
exists a basis marking M0

ω and an ω-marking M0
u with M0

u ≥ω M and
M0

u ∈ Ri(N,M0
ω). Let σ = σ1t1 . . . σntnσn+1 where the σi’s are sequences of

implicit transitions and the ti’s are explicit transitions. As the NS verifies (A1)
and by construction of the BCG, there exists a sequence σ1 = σ1

1t1 . . . σ1
ntn

enabled by M0
ω where the σ1

i ’s are minimal explanations of the ti’s and end-
ing in a basis marking M1

ω such that there exists an ω-marking M1
u with

M1
u ≥ω M and M1

u ∈ Ri(N,M1
ω). This translates in the BCG into a sequence

(π(σ1
1), t1) . . . (π(σ1

n), tn) from M0
ω to M1

ω. This can be repeated, giving a
family of sequences (σj)j∈N, of basis markings (M j

ω)j∈N and of ω-marking
(M j

u)j∈N such that M j−1
ω [σj〉M j

ω, M j
u ≥ω M and M j

u ∈ Ri(N,M j
ω). Due

to the finite number of basis markings, there exists k, k′, k < k′, such that
Mk

ω = Mk′
ω . There thus exists a directed cycle starting in Mk

ω whose arcs,
projected on the second component, form Pe(σ)k′−k.

– Suppose that there exists a directed cycle starting in the basis marking Mω

in the BCG that does not pass through markings containing ω and whose
arcs, projected on the second component, form σ′. Using the Proposition 5,
Mω is a marking of CG〈N,M0〉. Moreover due to the construction of the BCG
there exists σ such that Pe(σ) = σ′ and a directed cycle starting in Mω in
CG〈N,M0〉 that does not pass through markings containing ω and whose arcs
form σ. Due to Proposition 3, this implies that σ is stationary. ��
A marking M is finitely dead if there exists a bound k such that every

sequence of transitions enabled by M does not contain an explicit transition
and has a length smaller than k.

Proposition 12. Consider an NS 〈N,M0〉 with set of implicit transitions Ti

verifying Assumptions (A1) and (A2), its BCG and an explicit transition t.

1. Transition t is dead ⇔ there is no arc labelled by t′ in the BCG with Pt(t′) = t.
2. Transition t is quasi-live ⇔ there is an arc labelled by t′ in the BCG with

Pt(t′) = t.
3. Transition t is live ⇒ there is an arc labelled by t′ in each ergodic component

of the BCG with Pt(t′) = t.
4. A basis marking Mω in the BCG has no output arc ⇒ any marking M with

Mω ≥ω M is finitely dead.

Proof. 1. ⇒ If an arc labelled (p, t) belongs to the BCG, then there is a basis
marking Mω by which it is enabled. Thanks to Proposition 5, this basis mark-
ing is an ω-marking of the coverability graph. Moreover due to the construc-
tion of the BCG, this implies that there is a sequence σt, with σ implicit,
enabled by Mω in CG〈N,M0〉. Thanks to Proposition 4 this implies that t is
not dead.

Basis Coverability Graph for Partially Observable PNs with Application 179

⇐ If t is not dead, then there exists a reachable marking M in the NS such
that t is enabled by M . Due to Proposition 8, there thus exists an ω-marking
Mu and a basis marking Mω such that Mu ≥ω M and Mu ∈ Ri(N,Mω). Let
σ such that Mω[σ〉Mu. σ is an explanation of t, there thus exists a minimal
explanation σ′ of t. Therefore (π(σ′), t) is enabled by Mω.

2. This item is equivalent to the previous one.
3. Suppose that t is live. According to Proposition 4, there thus exists an arc

labelled t in each ergodic component of CG〈N,M0〉. Let Mω be a basis marking,
due to Proposition 5, it is a marking of CG〈N,M0〉 too. There thus exists a path
σ = σ1t1, . . . , σntn in CG〈N,M0〉 enabled by Mω with tn = t. Without loss of
generalities thanks to the (A1) assumption, one can suppose the sequences
σi to be minimal explanations of ti. By construction of the BCG, there thus
exists a path σ′ = (π(σ1, t1) . . . (π(σn), tn) enable in Mω in the BCG. As it is
true for every marking Mω, there is an arc whose second component is t in
every ergodic component.

4. Let Mω be a basis marking with no output arc. Let M such that Mω ≥ω M ,
suppose there exists an explicit transition t and an implicit sequence σ such
that σt is enabled by M . As Mω ≥ω M , σt is enabled by Mω in CG〈N,M0〉,
which would imply by construction of the BCG that there exists an outgoing
arc labelled by (p, t) in Mω for some firing vector p, which is a contradiction.
Therefore any sequence enabled by M is only composed of implicit transitions.
As those sequences are finite due to (A2), this means that the number of
implicit transitions that can be fired is bounded. Thus M is finitely dead. ��

4 Diagnosability of Unbounded Net Systems

4.1 Definition of Diagnosability

In the following, we want to use the BCG to deal with the problem of fault
diagnosis where the goal is to detect the occurrence of a fault under partial
observation. To this aim, we associate a well precise physical meaning to implicit,
explicit, and relevant transitions. In more detail:

– Implicit transitions correspond to transitions that cannot be observed. They
are called silent or unobservable and could either model a regular (nominal)
behaviour or a faulty behaviour of the system.

– Conversely, explicit transitions model transitions that can be observed. Those
observable transitions are assumed to be a regular behaviour of the system.

– The set of faulty transitions is chosen as the set of relevant transitions.

We denote the above three sets as Tu, To, and Tf , respectively and choose Te = To

and Ti = Tu.
In simple words, we may assume that observable transitions model events

whose occurrence is detected by the presence of a sensor. On the contrary, unob-
servable transitions correspond to events to whom no sensor is associated. Note
that, in the general case, the same output signal may correspond to different

180 E. Lefaucheux et al.

events (different transition firings). This can be easily modelled using the notion
of labeling function. L : T → L ∪ {ε} that assigns to each transition t ∈ T
either a symbol from a given alphabet of events L (if T ∈ To) or the empty
string ε (if T ∈ Tu). We extend naturally L to sequences of transitions with
L(σt) = L(σ)L(t). The observed word w of events associated with the sequence
σ is w = L(σ). Note that the length of a sequence σ is always greater than or
equal to the length of the corresponding word w (denoted |w |). In fact, if σ
contains k′ transitions in Tu then |σ|= k′+ |w|. Given a word w ∈ L∗, we write
P(w) =

∑
σ∈P −1

e (w) P(σ). Assuming (A2), this sum is finite.
The goal of diagnosis is to detect whether a faulty event occurred in the

system. We denote by Tf ⊆ Tu the set of faulty transitions. A sequence σ is
faulty if there exists t ∈ Tf such that t ∈ σ, otherwise it is correct. An observed
word w is surely faulty (resp. correct) iff every sequence σ with L(σ) = w is
faulty (resp. correct) sequences, otherwise it is ambiguous. An NS system is
diagnosable iff all faults can be detected after a finite delay.

Definition 9. An NS 〈N,M0〉 is diagnosable if for every faulty sequence σ
enabled by M0, there exists n ∈ N such that for all sequences σ′ ∈ Tn with
σσ′ enabled by M0, L(σσ′) is surely faulty.

Example 6. Consider again the NS in Fig. 1, where the labelling function L is
such that L(t1) = b,L(t2) = a,L(t3) = L(t4) = ε and L(t5) = L(t6) = c. Thus, t3
and t4 are unobservable. Transition t5 being observable, the Tu−induced subnet
is acyclic.

Choosing Tf = {t3}, the infinite sequence σf = t1t2t3(t5)3 is faulty and its
observed word bac3 is surely faulty, so the fault can be detected here. However,
the sequences σf = t1t2t3(t1)∗ are faulty but their observed word bab∗ is ambigu-
ous as it can also correspond to the correct sequences t1t2(t1)∗ too. Thus this
NS is not diagnosable.

4.2 Diagnosability Analysis

Diagnosability was proven decidable [1,3]. To do so, the authors of [3] gave a
characterisation of diagnosability using a tool called Verifier Net. The verifier net
is obtained by a composition (related to a parallel composition of the studied NS
and its T \Tf -induced subnet with synchronisation on the observable transitions.

Definition 10. Given an NS 〈N,M0〉, let 〈N ′,M ′
0〉 be the T \ Tf -induced sub-

net of 〈N,M0〉 (prime are used to differentiate states and transitions of N ′

from those of N). We build the verifier net (VN) 〈Ñ , M̃0 of 〈N,M0〉 with
Ñ = (P̃ , T̃ , P̃ re, P̃ ost) where:

– P̃ = P ∪ P ′,
– T̃ = (T ′

o × To) ∪ (T \ Tf × {λ}) ∪ ({λ} × T),
– for t ∈ T, t′ ∈ T ′ \ Tf , p ∈ P , and p′ ∈ P ′, we have

• P̃ re(p, (λ, t)) = Pre(p, t) and P̃ ost(p, (λ, t)) = Post(p, t),

Basis Coverability Graph for Partially Observable PNs with Application 181

• P̃ re(p′, (t′, λ)) = Pre(p′, t′) and P̃ ost(p′, (t′, λ)) = Post(p′, t′),
• if L(t) = L(t′) �= ε, P̃ re(p′, (t′, t)) = Pre(p′, t′) and P̃ ost(p′, (t′, t)) =

Post(p′, t′), P̃ re(p, (t′, t)) = Pre(p, t) and P̃ ost(p, (t′, t)) = Post(p, t).
All unspecified values are equal to 0.

Theorem 1 ([3]). An NS 〈N,M0〉 verifying Assumption (A1) is diagnosable iff
there does not exist any cycle in the coverability graph of the VN which (1) starts
from an ω-marking reachable by a faulty sequence and (2) is associated with a
repetitive sequence in the associated VN.

We will now use this characterisation to formulate a similar one using the
BCG instead of the coverability graph. A sequence of the BCG is called faulty
if one of the minimal e-vector used activated a transition of Tf (i.e. the corre-
sponding sequence belongs to Σ

Tf

min).

Theorem 2. An NS 〈P,M0〉 verifying Assumptions (A1) and (A2) is diagnos-
able iff there does not exist any cycle in the BCG with relevant set of transitions
Tf of the VN which (1) starts from a basis marking reachable by a faulty sequence
and (2) is associated with a repetitive sequence in the associated VN.

Proof. We will show that the existence of such a cycle in the BCG is equivalent
to the existence of this cycle in the coverability graph.

Supposing there exists a cycle associated with a firable repetitive sequence
σ ∈ T ∗ in the associated VN that starts from a basis marking Mω reached by a
faulty sequence in the BCG with relevant set of transition Tf of the VN, then by
Proposition 5, Mω is an ω-marking of the coverability graph and by construction
of the BCG, there exists a directed cycle starting in Mω in the coverability graph
whose arcs form σ.

Now suppose that there is a firable repetitive sequence σ = σ1t1 . . . σntn in
the VN that is associated to a cycle starting from an ω-marking reached by a
faulty sequence in the coverability graph of the VN. There thus exists a marking
M of the VN such that σ is repetitive starting in M . Because of the assumption
(A2), σ contains at least one observable transition. According to Proposition 11,
there thus exists a basis marking Mω and an ω-marking Mu such that Mu ∈
Ri(N,Mω), Mu ≥ω M and there is a k ∈ N and a directed cycle starting in Mω

whose arcs, projected on the second component, form Po(σ)k. Moreover, as M
is reached by a faulty sequence σ′ = σ′

1t
′
1 . . . σ′

nt′nσ′
n+1, one can choose Mω to

be reached by a sequence that used a minimal explanation from Σ
Tf

min: if σ′
i is

faulty, one can choose the minimal explanation of ti to belong in Σ
Tf

min.
Consequently the characterisation of Theorems 1 and 2 are equivalent and

can both be used to solve diagnosability. ��

5 Conclusion

In this paper, we introduced the notion of basis coverability graph which pro-
vides an abstracted representation of the coverability graph. We established mul-
tiple properties of the basis coverability graph, especially how it can be used to

182 E. Lefaucheux et al.

approximate the reachability set efficiently. We then gave an application of the
basis coverability graph with the diagnosability analysis problem. We showed
how the basis reachability graph can be employed to efficiently replace a pre-
viously known characterisation of the diagnosability of an unbounded NS. The
logical next step would be to implement the algorithms obtained and compare
their efficiency with other algorithms ([1] for example) on case studies.

References

1. Bérard, B., Haar, S., Schmitz, S., Schwoon, S.: The complexity of diagnosability
and opacity verification for Petri nets. In: van der Aalst, W., Best, E. (eds.) PETRI
NETS 2017. LNCS, vol. 10258, pp. 200–220. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57861-3 13

2. Boucheneb, H., Barkaoui, K.: Reducing interleaving semantics redundancy in
reachability analysis of time Petri nets. ACM Trans. Embed. Comput. Syst. 12(1),
7:1–7:24 (2013)

3. Cabasino, M.P., Giua, A., Lafortune, S., Seatzu, C.: A new approach for diag-
nosability analysis of Petri nets using verifier nets. IEEE Trans. Autom. Control
57(12), 3104–3117 (2012)

4. Cabasino, M.P., Giua, A., Seatzu, C.: Fault detection for discrete event sys-
tems using Petri nets with unobservable transitions. Automatica 46(9), 1531–1539
(2010)

5. Cabasino, M.P., Giua, A., Seatzu, C.: Introduction to Petri nets. In: Seatzu, C.,
Silva, M., van Schuppen, J. (eds.) Control of Discrete-Event Systems. LNCIS, vol.
433, pp. 191–211. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
4276-8 10

6. Cabasino, M.P., Giua, A., Pocci, M., Seatzu, C.: Discrete event diagnosis using
labeled Petri nets. An application to manufacturing systems. Control Eng. Pract.
19(9), 989–1001 (2011)

7. Giua, A., Seatzu, C., Corona, D.: Marking estimation of Petri nets with silent
transitions. IEEE Trans. Autom. Control 52(9), 1695–1699 (2007)

8. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem, vol. 1032. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60761-7

9. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

10. Ma, Z.Y., Tong, Y., Li, Z.W., Giua, A.: Basis marking representation of Petri net
reachability spaces and its application to the reachability problem. IEEE Trans.
Autom. Control 62(3), 1078–1093 (2017)

11. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing,
STOC 1981, pp. 238–246. ACM (1981)

12. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

13. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains, part
I. Theor. Comput. Sci. 13(1), 85–108 (1981). Special Issue Semantics of Concurrent
Computation

14. Reynier, P.-A., Servais, F.: Minimal coverability set for Petri nets: Karp and Miller
algorithm with pruning. Fundam. Informaticae 122(1–2), 1–30 (2013)

https://doi.org/10.1007/978-3-319-57861-3_13
https://doi.org/10.1007/978-3-319-57861-3_13
https://doi.org/10.1007/978-1-4471-4276-8_10
https://doi.org/10.1007/978-1-4471-4276-8_10
https://doi.org/10.1007/3-540-60761-7

Basis Coverability Graph for Partially Observable PNs with Application 183

15. Lipton, R.: The reachability problem requires exponential space. Technical report,
Yale University (1976)

16. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–
1575 (1995)

17. Tong, Y., Li, Z., Seatzu, C., Giua, A.: Verification of state-based opacity using
Petri nets. IEEE Trans. Autom. Control 62(6), 2823–2837 (2017)

18. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21

Co-finiteness and Co-emptiness
of Reachability Sets in Vector Addition

Systems with States

Petr Jančar1(B), Jérôme Leroux2, and Grégoire Sutre2

1 Department of Computer Science, Faculty of Science, Palacký University,
Olomouc, Czech Republic
petr.jancar@upol.cz

2 University of Bordeaux, CNRS, LaBRI, UMR 5800, Talence, France
{jerome.leroux,gregoire.sutre}@labri.fr

Abstract. The coverability and boundedness problems are well-known
exponential-space complete problems for vector addition systems with
states (or Petri nets). The boundedness problem asks if the reachabil-
ity set (for a given initial configuration) is finite. Here we consider a
dual problem, the co-finiteness problem that asks if the complement of
the reachability set is finite; by restricting the question we get the co-
emptiness (or universality) problem that asks if all configurations are
reachable.

We show that both the co-finiteness problem and the co-emptiness
problem are complete for exponential space. While the lower bounds are
obtained by a straightforward reduction from coverability, getting the
upper bounds is more involved; in particular we use the bounds derived
for reversible reachability by Leroux in 2013.

The studied problems have been motivated by a recent result for struc-
tural liveness of Petri nets; this problem has been shown decidable by
Jančar in 2017 but its complexity has not been clarified. The problem
is tightly related to a generalization of the co-emptiness problem for
non-singleton sets of initial markings, in particular for downward closed
sets. We formulate the problems generally for semilinear sets of initial
markings, and in this case we show that the co-emptiness problem is
decidable (without giving an upper complexity bound) and we formulate
a conjecture under which the co-finiteness problem is also decidable.

1 Introduction

Context. Analysis of behavioural properties of (models of) systems is a natural
and wide area of study; the decidability and complexity questions for respective
properties are an important part of such research. As the most relevant for us
we recall the reachability and liveness problems for Petri nets.

This work was supported by the grant GAČR:18-11193S of the Czech Grant Agency
(P. Jančar) and by the grant ANR-17-CE40-0028 of the French National Research
Agency ANR, project BraVAS (J. Leroux and G. Sutre).

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 184–203, 2018.
https://doi.org/10.1007/978-3-319-91268-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_10&domain=pdf

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 185

A concrete source of motivation for us has been the recent paper [7] that
answered the decidability question for structural liveness in Petri nets positively;
the open status of this question was previously recalled, e.g., in [2]. It is natural
to continue with studying the computational complexity of this problem. Here
we contribute indirectly to this topic by studying some related naturally arising
problems concerning reachability sets.

The algorithm in [7] reduces the structural liveness problem to the question
if a Petri net with a downward closed set of initial markings is “universal”, in
the sense that every marking is reachable from the initial ones. This question
has been solved by using the involved result proved in [8], namely that there
is an algorithm that halts with a Presburger description of the reachability set
when this set is semilinear. Since this approach is not constructive, it does not
provide any complexity upper bound. This led us to consider the universality
problem, which we call the co-emptiness problem, on its own. There is also a
naturally related co-finiteness problem asking if a set of initial markings allows
to reach all but finitely many markings; this problem can be thus seen as dual
to the well-known boundedness problem that asks if the reachability set is finite.

Contributions. We formulate the co-emptiness and co-finiteness problem gener-
ally for semilinear sets of initial markings. We show that the co-emptiness prob-
lem is decidable using a reduction to [8] that is similar to the above-mentioned
approach used in [7] to decide the structural liveness problem. As before, no
complexity upper bound can be derived from that approach. In the case of the
co-finiteness problem we are even not sure with decidability, but we formulate a
conjecture under which the problem is decidable.

We then consider restrictions to the case with finite sets of initial markings
and then in particular to the case with singleton sets of initial markings.

In the case of finite initial sets we show that the co-emptiness problem reduces
in logarithmic space to the reachability problem. The converse reduction (reach-
ability to co-emptiness) is left open.

In the case of singleton initial sets we show EXPSPACE-completeness for
both co-emptiness and co-finiteness. This is the main technical result of the
paper. While the lower bound is obtained by an easy reduction from the cov-
erability problem (a well known EXPSPACE-complete problem, similarly as
boundedness), getting the upper bound is more involved. Using the bound
obtained for reversible reachability by Leroux in [9], we reduce the co-emptiness
problem (with a single initial marking) to a large number of coverability ques-
tions in a large Petri net. The latter is bounded in such a way that the questions
can be still answered in exponential space, using Rackoff’s technique [13].

Though our results do not improve our knowledge about the complexity of
structural liveness directly, we show that a related problem, namely the struc-
tural deadlock-freedom problem is tightly related (interreducible in polynomial
time) with the co-emptiness problem in the case of downward closed sets of
initial markings.

186 P. Jančar et al.

We have found more convenient to present our results on the model of vector
addition systems with states, or shortly VASSs. This model is equivalent to Petri
nets and all our results, while proved for VASSs, also hold for Petri nets.

Outline. In Sect. 2 we recall some preliminary notions, such as vector addition
systems with states and semilinear sets. Section 3 defines the co-emptiness prob-
lem and the co-finiteness problem, and presents our partial decidability results
for the general case and for the restriction to finite sets of initial configura-
tions. The main result is contained in Sect. 4 where we show the EXPSPACE-
completeness of co-emptiness and co-finiteness in the case with singleton sets
of initial configurations. Section 5 presents two applications of the co-emptiness
problem: we recall the structural liveness, and show the tight relation of struc-
tural deadlock-freedom to the co-emptiness problem with downward closed sets
of initial configurations. We conclude the paper by Sect. 6.

2 Preliminaries

By Z we denote the set of integers, and by N the set {0, 1, 2, . . . } of nonnegative
integers. By [i, j], where i, j ∈ Z, we denote the set {i, i + 1, . . . , j} (which is
empty when i > j).

For a vector v ∈ Z
d (d ∈ N), by v(i) we denote the i-th component of v. On

Z
d we define the operations +, − and the relations ≥, ≤ componentwise. For

v1, v2 ∈ Z
d we thus have v1 + v2 = w where w(i) = v1(i) + v2(i) for all i ∈ [1, d];

we have v1 ≤ v2 iff v1(i) ≤ v2(i) for all i ∈ [1, d]. For k ∈ N and v ∈ Z
d we put

k · v = (k · v(1), k · v(2), · · · , k · v(d)); we also write kv instead of k · v.
Slightly abusing notation, by (v1, v2, . . . , vm) where vi ∈ Z

di for i ∈ [1,m] we
do not denote an m-tuple of vectors but the corresponding vector of dimension
d =

∑
i∈[1,m] di.

The norm ‖v‖ of a vector v ∈ Z
d is max{|v(i)|; i ∈ [1, d]}, and the norm ‖V ‖

of a finite set V ⊆ Z
d is max{‖v‖; v ∈ V }; here we stipulate max ∅ = 0.

When the dimension d is clear from context, by 0 we denote the zero vector
(0(i) = 0 for all i ∈ [1, d]), and by ei (i ∈ [1, d]) the vector satisfying ei(i) = 1
and ei(j) = 0 for all j ∈ [1, d]�{i}.

For a set A, by A∗ we denote the set of finite sequences of elements of A,
and by ε we denote the empty sequence. For w ∈ A∗, |w| denotes its length.

Vector Addition Systems with States (VASSs). A vector addition system
with states (a VASS) is a tuple V = (d,Q,A, T) where d ∈ N is the dimension,
Q is the finite set of (control) states, A ⊆ Z

d is the finite set of actions, and
T ⊆ Q × A × Q is the finite set of transitions. We often present t ∈ T where
t = (q,a, q′) as q

a−→ q′ or t : q
a−→ q′.

The set of configurations of V = (d,Q,A, T) is the set Q × N
d; we rather

present a configuration (q, v) as q(v) (where q ∈ Q, v ∈ N
d). For actions a ∈ A

we define relations a−→V on the set Q × N
d of configurations by putting

q(v) a−→V q′(v′) if q
a−→ q′ is a transition in T and v′ = v + a.

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 187

Hence for a transition q
a−→ q′ and v ∈ N

d we have q(v) a−→V q′(v+a) iff v+a ≥ 0.
Relations a−→V are naturally extended to relations α−→V for α ∈ A∗; we write

just α−→ instead of α−→V when V is clear from context. The extension is defined
inductively: we put q(v) ε−→ q(v); if q(v) a−→ q′(v′) and q′(v′) α−→ q′′(v′′), then
q(v) aα−−→ q′′(v′′). We note that q(v) α−→ q′(v′) where α = a1a2 · · · am implies that
v′ = v +

∑
i∈[1,m] ai. We also note the monotonicity :

if q(v) α−→ q′(v′), then for any v̄ ≥ v we have q(v̄) α−→ q′(v′ + v̄ − v).

Reachability Sets. Given a VASS V = (d,Q,A, T), by q(v) ∗−→V q′(v′), or by
q(v) ∗−→ q′(v′) when V is clear from context, we denote that q′(v′) is reachable
from q(v), i.e., that q(v) α−→ q′(v′) for some α ∈ A∗. The reachability set for an
(initial) configuration q(v) is the set

[
q(v)

〉
V = {q′(v′) | q(v) ∗−→V q′(v′)}.

For a set C ⊆ Q × N
d of (initial) configurations we put

[
C

〉
V =

⋃
q(v)∈C

[
q(v)

〉
V .

We also write just
[
q(v)

〉
and

[
C

〉
when V is clear from context.

We write q(v) ∗−→ C if there is q′(v′) ∈ C such that q(v) ∗−→ q′(v′); similarly
C

∗−→ q(v) if there is q′(v′) ∈ C such that q′(v′) ∗−→ q(v).

Semilinear Sets of Configurations. A set C ⊆ Q × N
d is linear if

C = {q(b + n1p1 + · · · + nkpk) | n1, . . . , nk ∈ N}

for some q ∈ Q, k ∈ N, and b, p1, . . . , pk ∈ N
d. A set C ⊆ Q × N

d is semilinear
if C = L1 ∪ L2 ∪ · · · ∪ Lm for some m ∈ N and linear sets Lj , j ∈ [1,m].

We recall that semilinear sets correspond to the sets definable in Presburger
arithmetic [4].

Vector Addition Systems (VASs). A vector addition system (VAS) is a
VASS (d,Q,A, T) where Q is a singleton. In this case the single control state
plays no role, in fact; it is thus natural to view a VAS as a pair U = (d,A) for a
finite set A ⊆ Z

d. The configurations are here simply v ∈ N
d, and for a ∈ A we

have

v
a−→ v′ iff v′ = v + a (for any v, v′ ∈ N

d).

We write
[
v
〉

U , or just
[
v
〉
, for the reachability set of v. For a VAS the terms

“action” and “transition” are identified.

188 P. Jančar et al.

Binary and Unary Presentations. Instances of the problems that we will
consider comprise VASSs and (presentations of semilinear sets of) configurations.
We implicitly assume that the numbers in the respective vectors are presented
in binary. When giving a complexity lower bound, we will explicitly refer to a
unary presentation to stress the substance of the lower bound.

3 Co-finiteness and Co-emptiness of Reachability Sets

Now we introduce the two main problems considered in this paper.

Co-finiteness. The co-finiteness problem:

Instance: a VASS V = (d,Q,A, T) and a (presentation of a) semilinear set
C ⊆ Q × N

d.
Question: is

[
C

〉
co-finite, i.e., is the set (Q × N

d)�
[
C

〉
finite?

Co-emptiness (or Universality). By narrowing the co-finiteness question we
get the co-emptiness problem:

Instance: a VASS V = (d,Q,A, T) and a (presentation of a) semilinear set
C ⊆ Q × N

d.
Question: is

[
C

〉
co-empty, i.e., is

[
C

〉
= Q × N

d?

We note that co-emptiness can be also naturally called universality.

3.1 Decidability of the General Problems

We recall the classical reachability problem, defined as follows:

Instance: a VASS V and two configurations q(v), q′(v′).
Question: is q(v) ∗−→V q′(v′)?

The problem is decidable [12] but its complexity remains elusive; the problem
is known to be EXPSPACE-hard [11], and the best known upper bound is non-
primitive recursive [10].

By adding the acceleration techniques in [8], and decidability of Presburger
arithmetic, it is straightforward to derive decidability of the co-emptiness prob-
lem. We first recall a crucial fact.

Theorem 1 (reformulation of Lemma XI.1 of [8]). Given a VASS V =
(d,Q,A, T) and a semilinear set C of configurations, for every semilinear set
D ⊆ [

C
〉

V there is a sequence α1, . . . , αk of words in A∗ such that for every
q(v) ∈ D we have

C
α

n1
1 ...α

nk
k−−−−−−→V q(v)

for some n1, . . . , nk ∈ N.

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 189

We thus deduce that the co-emptiness problem can be decided by the follow-
ing two procedures that are executed concurrently:

– One procedure systematically searches for some configuration q(v) such that
q(v)
∈ [

C
〉

which is verified by using an algorithm deciding (non)reachability;
this search succeeds iff

[
C

〉
is not co-empty.

– The other procedure systematically searches for some words α1, . . . , αk

such that for every configuration q(v) there are n1, . . . , nk in N such that

C
α

n1
1 ...α

nk
k−−−−−−→ q(v). This property (of α1, . . . , αk) can be formulated in Pres-

burger arithmetic and is thus decidable. The search succeeds iff
[
C

〉
is co-

empty.

However, the complexity of the co-emptiness problem is still open. In fact, we
even have no reduction from or to the reachability problem.

The decidability status of the co-finiteness problem is not clear. We show
how to solve the problem under a conjecture. Let us first introduce the notion of
inductive set. A set of configurations D of a VASS V = (d,Q,A, T) is inductive
if for every configuration q(v) in D and every transition t : q

a−→ q′ in T such
that v + a ≥ 0, we have q′(v + a) ∈ D. We observe that if an inductive set
D contains a set of initial configurations C then

[
C

〉 ⊆ D. Moreover, we can
effectively decide if a semilinear set D is inductive. We introduce the following
conjecture.

Conjecture 2. Given a VASS V and a semilinear set C of configurations, if
[
C

〉
V

is co-infinite (i.e., not co-finite), then there is an inductive semilinear set D such
that C ⊆ D (hence also

[
C

〉
V ⊆ D) and D is co-infinite.

Under that conjecture, the co-finiteness problem can be also decided by two
algorithmic procedures executed concurrently:

– One procedure systematically searches for some inductive co-infinite semilin-
ear set D that contains C; this search succeeds iff

[
C

〉
is co-infinite (under

the conjecture).
– The other procedure systematically searches for some words α1, . . . , αk and a

natural number n, such that for every configuration q(v) with ‖v‖ ≥ n there

are n1, . . . , nk in N satisfying C
α

n1
1 ...α

nk
k−−−−−−→ q(v). This property (of α1, . . . , αk

and n) can be formulated in Presburger arithmetic, and is thus decidable.
The search succeeds iff

[
C

〉
is co-finite thanks to Theorem 1. Indeed, when

the reachability set
[
C

〉
is co-finite then it is semilinear, and we can apply

Theorem 1 with D =
[
C

〉
.

Hence we have derived:

Theorem 3. The co-emptiness problem is decidable.
The co-finiteness problem is decidable when assuming validity of Conjecture 2.

190 P. Jančar et al.

3.2 Finitely Many Initial Configurations

As already mentioned, we have no complexity upper bound for the (decidable)
co-emptiness problem in our general form. In the rest of this section we focus
on the FMIC co-emptiness problem, and the FMIC co-finiteness problem, where
“FMIC” refers to “Finitely Many Initial Configurations”. We give the result
captured by Theorem 5.

Lemma 4. Given a VASS V = (d,Q,A, T) and any set C ⊆ Q × N
d, we have

[
C

〉
= Q × N

d iff
[
C

〉 ⊇ D1 ∪ D2

where D1 = {q(v + ei) | q(v) ∈ C, i ∈ [1, d]} and D2 = {q(0) | q ∈ Q}.
Proof. If

[
C

〉
= Q × N

d, then we trivially have
[
C

〉 ⊇ D1 ∪ D2.
Let us now assume

[
C

〉 ⊇ D1. We show that

q(v) ∈ [
C

〉
implies q(v + ei) ∈ [

C
〉

(1)

(for all q ∈ Q, v ∈ N
d, i ∈ [1, d]). Indeed, if q0(v0)

∗−→ q(v) for some q0(v0) ∈
C, then

[
C

〉 � q0(v0 + ei) since
[
C

〉 ⊇ D1 and q0(v0 + ei)
∗−→ q(v + ei) by

monotonicity; hence q(v + ei) ∈ [
C

〉
.

If, moreover,
[
C

〉 ⊇ D2, then by (1) we get q(v) ∈ [
C

〉
for all q ∈ Q, v ∈ N

d.
�

Theorem 5. The FMIC co-emptiness problem is logspace reducible to the reach-
ability problem.

Proof. Given a VASS V = (d,Q,A, T) and a finite set C ⊆ Q × N
d, deciding if[

C
〉

= Q × N
d boils down to verifying if each configuration in the finite set

D1 ∪ D2 = {q1(v1), . . . , qk(vk)}
defined in Lemma 4 is reachable from (a configuration in) C.

Let V ′ arise from V by adding a fresh control state q0 and transitions q0
v−→ q

for all q(v) ∈ C. Hence
[
C

〉
V ⊇ D1 ∪ D2 iff q0(0) ∗−→V′ qj(vj) for all j ∈ [1, k].

Let us now consider a VASS V ′′ of dimension kd comprising k disjoint copies
of V ′ (each copy works on its own counters); let (q, j) denote the control state q
of V ′ in the j-th copy (j ∈ [1, k]).

Finally, we let V ′′′ arise from V ′′ by adding transitions (qj , j)
0−→ (q0, j + 1),

for j ∈ [1, k − 1]. We observe that

q0(0) ∗−→V′ qj(vj) for all j ∈ [1, k] iff (q0, 1)(0) ∗−→V′′′ (qk, k)(v1, . . . , vk).

We have thus shown the claimed logspace reduction. �
We leave open the question if the FMIC co-finiteness problem can be similarly

reduced to the reachability problem. Another open question is if reachability can
be reduced to FMIC co-finiteness or FMIC co-emptiness. In the next section,
we characterize the complexity of both problems for the case of single initial
configurations.

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 191

4 Single Initial Configurations

In this section we restrict our attention to the SIC co-emptiness problem and
the SIC co-finiteness problem where SIC refers to “Single Initial Configuration”;
the problem instances are thus restricted so that the given sets C are singletons
(C = {q0(v0)}). In the rest of this section we prove the following theorem.

Theorem 6. Both the SIC co-finiteness problem and the SIC co-emptiness prob-
lem are EXPSPACE-complete.

We recall that the integers in the problem instances are presented in binary.
Nevertheless the lower bound will be shown already for unary VASs (hence with
no control states and with a unary presentation of integers).

We first recall two well-known EXPSPACE-complete problems for VASSs
where the lower bound also holds for unary VASs.

Coverability. The coverability problem:

Instance: a VASS V = (d,Q,A, T), q0, q1 ∈ Q, v0, v1 ∈ N
d;

Question: is q0(v0)
∗−→ q1(v̄1) for some v̄1 ≥ v1 ?

Boundedness. The boundedness problem:

Instance: a VASS V = (d,Q,A, T), q0 ∈ Q, v0 ∈ N
d;

Question: is
[
q0(v0)

〉
finite ?

The EXPSPACE-hardness results follow from [11] (see also, e.g. [3]), the upper
bounds follow from [13]. A generalization of [13], extending a class of problems
known to be in EXPSPACE, was given in [14], which was later corrected in [1].

4.1 EXPSPACE-Hardness

Showing the hardness part of Theorem6 is relatively straightforward; we reduce
coverability in unary VASs (which we recalled as an EXPSPACE-complete prob-
lem) to both SIC co-finiteness and SIC co-emptiness by the following lemma.

Lemma 7. Given a unary VAS U = (d,A) and v0, v1 ∈ N
d, there is a logspace

construction yielding a unary VAS U ′ = (d + 1,A′) and v′
0 ∈ N

d+1 such that:

(a) if v0
∗−→U v̄1 for some v̄1 ≥ v1, then

[
v′
0

〉
U ′ = N

d+1;
(b) otherwise (when v0

∗−→U w implies w
≥ v1) the set N
d+1

�
[
v′
0

〉
U ′ is infinite.

Proof. Let us assume a unary VAS U = (d,A) and vectors v0, v1 ∈ N
d. We

consider U ′ = (d + 1,A′) and v′
0 = (v0, 0) where

A′ = {(a, 0) | a ∈ A} ∪ {b1,b2} ∪ {cj | j ∈ [1, d]} ∪ {−ej | j ∈ [1, d]}

192 P. Jančar et al.

for b1 = (−v1, 2), b2 = (v0,−1), cj = ej − ed+1.

It suffices to verify that the points (a) and (b) are satisfied (for U ′ and v′
0):

(a) Suppose v0
α−→U v̄1 for some v̄1 ≥ v1 and α = a1a2 · · · am.

For α′ = (a1, 0)(a2, 0) · · · (am, 0), in U ′ we then have

(v0, 0) α′
−→ (v̄1, 0) b1−→ (v̄1 − v1, 2) b2−→ (v0 + v̄1 − v1, 1).

By monotonicity, for any k ∈ N we have

v′
0 = (v0, 0)

(α′b1b2)
k

−−−−−−→ wk = (v0 + k(v̄1 − v1), k);

hence wk(d + 1) = k. For any w ∈ N
d+1 and the sum k =

∑
j∈[1,d+1] w(j)

we have wk
∗−→ w; indeed, in wk we can first empty (i.e., set to zero) all

components j ∈ [1, d] by using actions −ej (j ∈ [1, d]), and then distribute
the k tokens from component d + 1 by the actions cj so that w is reached.
Hence

[
v′
0

〉
U ′ = N

d+1.
(b) Suppose there is no v̄1 ≥ v1 such that v0

∗−→U v̄1. Then for any w ∈ [
v′
0

〉
U ′

we have w
≥ (v1, 0) and w(d + 1) = 0, since the actions b1, b2, cj are
dead (they cannot get enabled from v′

0); indeed, by monotonicity the actions
−ej cannot help to cover (v1, 0) from v′

0. Hence the set N
d+1

�
[
v′
0

〉
U ′ is

infinite. �

4.2 EXPSPACE-Membership

We now prove the EXPSPACE-membership claimed by Theorem6. This is more
involved; besides a closer look at the results in [13], we will also use the following
result from [9], from which we derive Lemma 9.

Theorem 8 ([9]). Given a VASS V = (d,Q,A, T) and two configurations q0(v0)
and q1(v1) reachable one from the other (i.e., q0(v0)

∗−→ q1(v1)
∗−→ q0(v0)), there

is a word α ∈ A∗ such that
(a) q0(v0)

α−→ q1(v1), and
(b) |α| ≤ 6 · (d + 3)2 · x45(d+3)d+5

where x = 1 + 2|Q| + 2‖A‖ + 2‖v0‖ + ‖v1‖.
Proof. Theorem 10.1 of [9] states that for every pair (v′

0, v
′
1) of configurations of

a VAS (p,A′) that are reachable one from the other there is a word α′ ∈ (A′)∗

such that:
v′
0

α′
−→ v′

1 and |α′| ≤ 17p2y15pp+2

where y = (1 + 2‖A′‖)(1 + ‖v′
0‖ + ‖v′

1 − v′
0‖). We extend this result to a VASS

(d,Q,A, T) by encoding it as a VAS (p,A′) using [6, Lemma 2.1]. With this
encoding, p = d+3, ‖A′‖ ≤ max{‖A‖, |Q| ·(|Q|−1)} and the encodings of q0(v0)
and q1(v1) provide vectors v′

0, v
′
1 satisfying ‖v′

0‖ ≤ ‖v0‖ + |Q| and ‖v′
1 − v′

0‖ =
‖v1 − v0‖ ≤ ‖v1‖ + ‖v0‖. It follows that (1 + 2‖A′‖) ≤ x2 and (1 + ‖v′

0‖ + ‖v′
1 −

v′
0‖) ≤ x. Thus y is bounded by x3. Finally, since the effect of an action of the

VASS is simulated by three actions of the simulating VAS, we deduce that there
exists a word α ∈ A∗ such that q0(v0)

α−→ q1(v1) and such that |α| ≤ 1
3 |α′|. We

derive the bound on |α| by observing that 17
3 ≤ 6. �

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 193

Pumpability of Components. Given a VASS V = (d,Q,A, T), we say that
component i ∈ [1, d] is pumpable in q(v) if q(v) ∗−→ q(v + kei) for some k ≥ 1.

Lemma 9. For any VASS V = (d,Q,A, T) and any q ∈ Q, v ∈ N
d, i ∈ [1, d]

where component i is pumpable in q(v) there is α ∈ A∗ such that

(a) q(v) α−→ q(v + kei) for some k ≥ 1, and
(b) |α| ≤ 6 · (d + 3)2 · x45(d+3)d+5

where x = 2 + 2|Q| + 2‖A‖ + 3‖v‖.
The trivial fact k ≤ |α| · ‖A‖ thus also yields a double-exponential bound on k.

Proof. We consider a VASS V = (d,Q,A, T) and assume q(v) ∗−→V q(v + kei)
where k ≥ 1. For the VASS V ′ arising from V by adding (action −ei and) the
transition q

−ei−−→ q we get

q(v) ∗−→ q(v + kei)
−ei−−→ · · · −ei−−→ q(v + ei)

−ei−−→ q(v);

hence q(v) and q(v + ei) are reachable one from the other (they are in the
reversible-reachability relation) in V ′. Using Theorem 8, we derive that

q(v) α−→V′ q(v + ei) (2)

for some α ∈ (A ∪ {−ei})∗ that is bounded as in the point (b) of the claim.
If α in (2) is a1a2 · · · am, then there are states q1, q2, . . . , qm−1 such that

q(v) a1−→ q1(v1)
a2−→ q2(v2)

a3−→ · · · qm−1(vm−1)
am−−→ q(v + ei) (3)

for the corresponding vj (j ∈ [1,m − 1]). We can view (3) as a sequence of tran-
sitions; let � ≥ 0 be the number of occurrences of the transition q

−ei−−→ q in (3).
Due to monotonicity, we can omit these occurrences and keep performability: we
get

q(v)
ai1ai2 ···aim−�−−−−−−−−−→V q(v + (� + 1)ei) (4)

for the sequence ai1ai2 · · · aim−�
arising from a1a2 · · · am by omitting the respec-

tive � occurrences of −ei. The proof is thus finished. �
We derive the following important corollary:

Corollary 10. There is an exponential-space algorithm that, given a VASS V =
(d,Q,A, T) and q(v), decides if all components i ∈ [1, d] are pumpable in q(v),
and in the positive case provides an (at most double-exponential) number n ≥ 1
such that q(v) ∗−→ q(v + nei) for each i ∈ [1, d].

Proof. It suffices to consider a nondeterministic algorithm trying to find, for
each i ∈ [1, d] separately, αi with length bounded as in Lemma9 such that
q(v) αi−→ q(v + kiei) for some ki ≥ 1. The algorithm just traverses along (a
guessed bounded) αi, keeping only the current configuration in memory; hence
exponential space is sufficient.

By monotonicity, q(v) ∗−→ q(v + kiei) implies that q(v) ∗−→ q(v + xkiei) for all
x ≥ 1. Hence if ki ≥ 1 for all i ∈ [1, d] are found, then the least common multiple
(or even simply the product) of all ki, i ∈ [1, d], can be taken as the claimed
number n. �

194 P. Jančar et al.

Before giving the algorithm deciding SIC co-emptiness we introduce some
useful natural notions, namely a notion of “reversing a VASS” (letting its com-
putations run backwards), and a notion of “transforming a VASS modulo n”
(where the component-values are divided by n while the remainders are kept in
the control states).

Reversed VASS. To a VASS V = (d,Q,A, T) we associate its reversed VASS

V← = (d,Q,−A, T←)

where −A = {−a | a ∈ A} and T← = {q′ −a−−→ q | q
a−→ q′ is in T}.

The next proposition can be easily verified by induction on m.

Proposition 11. For any VASS V and m ≥ 1, we have

q0(v0)
a1−→ q1(v1)

a2−→ q2(v2)
a3−→ · · · qm−1(vm−1)

am−−→ qm(vm) in V
iff

qm(vm) −am−−−→ qm−1(vm−1)
−am−1−−−−−→ · · · q1(v1) −a1−−→ q0(v0) in V←.

Modulo-n VASS. Given a VASS V = (d,Q,A, T) and n ≥ 1, we put

V(n) = (d,Q × {0, 1, . . . , n − 1}d,A′, T(n))

where T(n) arises as follows:
each transition q

a−→ q′ in T and each u ∈ {0, 1, . . . , n − 1}d determines

the transition (q, u) a′
−→ (q′, u′) in T(n)

where u′ and a′ are the unique vectors such that u + a = u′ + na′ and u′ ∈
{0, 1, . . . , n − 1}d. The set A′ is simply {a′ | ((q, u) a′

−→ (q′, u′)) ∈ T(n)}.
The next proposition is again easily verifiable by induction on m.

Proposition 12. For any VASS V, n ≥ 1, and m ≥ 1, we have

q0(v0)
a1−→ q1(v1)

a2−→ q2(v2)
a3−→ · · · qm−1(vm−1)

am−−→ qm(vm) in V
iff

(q0, u0)(v′
0)

a′
1−→ (q1, u1)(v′

1)
a′
2−→ · · · a′

m−−→ (qm, um)(v′
m) in V(n)

where uj + nv′
j = vj for every j ∈ [0,m] (and uj−1 + aj = uj + na′

j for every
j ∈ [1,m]).

Algorithm Deciding SIC Co-emptiness. We define the following algorithm.

Algorithm Alg-Co-Empt

Input: a VASS V = (d,Q,A, T) and a configuration q0(v0).

Output: YES if
[
q0(v0)

〉
= Q × N

d, and NO otherwise.

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 195

1. Check if each component i ∈ [1, d] is pumpable in q0(v0), and in the posi-
tive case compute an (at most double-exponential) number n as described in
Corollary 10 (hence q0(v0)

∗−→ q0(v0 + nei) for each i ∈ [1, d]).
In the negative case (when some component is not pumpable) return NO.

2. Let V ′ be the VASS V ′ = (V←)(n) = (d,Q × {0, 1, . . . , n − 1}d,A′, T ′) {i.e.,
the reversed VASS modulo n, where n is computed in the point 1}.
Create the configuration (q0, u0)(v′

0) of V ′ corresponding to the configuration
q0(v0) of V (hence v0 = u0 + nv′

0).
3. For each control state (q, u) of V ′ check if (q, u)(0) covers (q0, u0)(v′

0) (in V ′),
i.e., if (q, u)(0) ∗−→V′ (q0, u0)(v̄) for some v̄ ≥ v′

0.
If the answer is negative for some (q, u), then return NO, otherwise (when
all (q, u)(0) cover (q0, u0)(v′

0)) return YES.

Correctness and Exponential-Space Complexity of ALG-CO-EMPT

Lemma 13. Algorithm Alg-Co-Emptsatisfies its specification (i.e., returns
YES if

[
q0(v0)

〉
= Q × N

d, and NO otherwise).

Proof. If Alg-Co-Empt, when given V = (d,Q,A, T) and q0(v0), returns NO
in the point 1, then for some i ∈ [1, d] we have q0(v0)
 ∗−→ q0(v0 + xei) for all
x ≥ 1; therefore the set (Q × N

d)�
[
q0(v0)

〉
V is nonempty and even infinite.

Suppose now that the test in the point 1 has been positive, and a respective
number n has been computed.

Assume first that
[
q0(v0)

〉
V = Q × N

d and let us show that the algorithm
returns YES. Let (q, u) be a control state of V ′ = (V←)(n). Since

[
q0(v0)

〉
V =

Q × N
d, we have q0(v0)

∗−→V q(u). It follows that (q, u)(0) ∗−→V′ (q0, u0)(v′
0),

which also entails that (q, u)(0) covers (q0, u0)(v′
0) in V ′. We have proved that

the algorithm returns YES.
Conversely, we assume that the algorithm returns YES and we prove that[

q0(v0)
〉

V = Q × N
d. Let q(v) be a configuration of V and let (q, u)(v′) be

the corresponding configuration in V ′, i.e., v = u + nv′. Since (q, u)(0) covers
(q0, u0)(v′

0), there exists v̄′
0 ≥ v′

0 such that (q, u)(0) ∗−→V′ (q0, u0)(v̄′
0). It follows

that q0(u0 + nv̄′
0)

∗−→V q(u). By monotonicity, we derive that

q0(u0 + nv̄′
0 + nv′) ∗−→V q(u + nv′) = q(v).

By the definition of n, we get

q0(v0)
∗−→V q0(v0 + n(v̄′

0 − v′
0) + nv′) = q0(u0 + nv̄′

0 + nv′).

We have proved that q0(v0)
∗−→V q(v), and thus

[
q0(v0)

〉
V = Q × N

d. �
We still need to show that Alg-Co-Emptworks in exponential space

(Lemma 15). We first give a straightforward extension to VASSs of a result for-
mulated in [13] for VASs.

196 P. Jančar et al.

Proposition 14. For any VASS V = (d,Q,A, T) and any configurations q0(v0)
and q1(v1), if q0(v0)

∗−→ q1(v1) then q0(v0)
α−→ q1(v̄1) for some v̄1 ≥ v1 and

α ∈ A∗ such that |α| < x(d+1)!, where x = |Q| · (1 + ‖A‖ + ‖v1‖).

Proof. The bounds given in [13] for VASs are easily extended to VASSs. Instead
of giving a full proof, we only explain how to adapt the proof of [13] to deal with
control states.

The notions of paths, of i-bounded sequences and of i-covering sequences
from [13, pp. 224–225] are extended with control states in the obvious way.
For each q ∈ Q and v ∈ Z

d, define m(i, q, v) to be the length of the shortest
i-bounded, i-covering path in V starting from q(v), with the convention that
m(i, q, v) = 0 if there is none.

Now define f(i) = max{m(i, q, v) | q ∈ Q, v ∈ Z
d}. With the same reasoning

as in [13, Lemma 3.4], we get that

f(0) ≤ |Q| and f(i + 1) ≤ |Q| · (max{‖A‖, ‖v1‖} · f(i))i+1 + f(i).

It follows that f(i + 1) ≤ (xf(i))i+1. An immediate induction on i yields that
f(i) ≤ x(i+1)!. In particular, we get that m(d, q0, v0) ≤ f(d) ≤ x(d+1)!. Now,
if q0(v0)

∗−→ q1(v1) then 0 < m(d, q0, v0). This entails that q0(v0)
α−→ q1(v̄1) for

some v̄1 ≥ v1 and α ∈ A∗ such that |α| = m(d, q0, v0) − 1 < x(d+1)!. �
Lemma 15. Algorithm Alg-Co-Emptworks (i.e., can be implemented to work)
in exponential space.

Proof. The point 1 of Alg-Co-Empt, including the binary presentation of the
computed number n, can be performed in exponential space, w.r.t. the size of
the binary presentation of the input V = (d,Q,A, T) and q0(v0); this follows by
Corollary 10.

The VASS V ′ = (V←)(n) in the point 2 is not needed to be constructed
explicitly. The algorithm creates the configuration (q0, u0)(v′

0) and then stepwise
generates the control states (q, u) (q ∈ Q, u ∈ {0, 1, . . . , n−1}d) of V ′ and checks
if (q, u)(0) covers (q0, u0)(v′

0) in V ′.
It thus suffices to show that checking if (q, u)(0) covers (q0, u0)(v′

0) (i.e.,
if (q, u)(0) ∗−→V′ (q0, u0)(v̄) for some v̄ ≥ v′

0) can be done in exponential space
(w.r.t. the binary presentation of V = (d,Q,A, T) and q0(v0)). By Proposition 14,
it is enough to search for witnesses of coverability (q, u)(0) α−→ (q0, u0)(v̄) of
length |α| < x(d+1)!, where x = |Q|nd · (1 + ‖A′‖ + ‖v′

0‖). Since n is at most
double-exponential, x(d+1)! is also at most double-exponential. As in the proof of
Corollary 10, the algorithm just traverses along (a guessed bounded) α, keeping
only the current configuration in memory; so exponential space is sufficient. �

Algorithm Deciding SIC Co-finiteness. We will adjust the algorithm Alg-
Co-Emptso that, given V = (d,Q,A, T) and q0(v0), it answers YES iff the
set (Q × N

d)�
[
q0(v0)

〉
is finite; this can happen even if some (q, u)(0) does not

cover (q0, u0)(v′
0) in V ′. Informally speaking, it suffices to check if (q, u)(0) covers

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 197

(q0, u0)(v′
0) whenever we “ignore” one-component of 0, making it “arbitrarily

large”.
By ω we denote an “infinite amount”, satisfying z < ω and z + ω = ω + z =

ω for all z ∈ Z. Given V = (d,Q,A, T), by the set of extended configurations we
mean the set Q×(N∪{ω})d; the relations q(v) a−→ q′(v′), q(v) α−→ q′(v′) (α ∈ A∗),
and q(v) ∗−→ q′(v′) are then naturally extended to the relations on Q×(N∪{ω})d.
(Hence, e.g., if q(v) α−→ q′(v′) then v(i) = ω iff v′(i) = ω, for any i ∈ [1, d].)

Let us now consider the following algorithm.

Algorithm Alg-Co-Finit

Input: a VASS V = (d,Q,A, T) and a configuration q0(v0).

Output: YES if (Q × N
d)�

[
q0(v0)

〉
is finite, and NO otherwise.

1. As in Alg-Co-Empt.
2. As in Alg-Co-Empt.
3. For each control state (q, u) of V ′ and each i ∈ [1, d]

check if (q, u)(ωei) covers (q0, u0)(v′
0) (in V ′), i.e., if

(q, u)(ωei)
∗−→V′ (q0, u0)(v̄) for some v̄ ≥ v′

0;

by ωei we denote the d-dimensional vector where the i-th component is ω
and the other components are zero.
If the answer is negative for some (q, u) and i ∈ [1, d], then return NO,
otherwise (when all (q, u)(ωei) cover (q0, u0)(v′

0)) return YES.

Correctness and Exponential-Space Complexity of ALG-CO-FINIT

Lemma 16. Algorithm Alg-Co-Finitsatisfies its specification (i.e., returns
YES if (Q × N

d)�
[
q0(v0)

〉
is finite, and NO otherwise).

Proof. We reason analogously as in the proof of Lemma13. We have already
noted that if NO is returned in the point 1, then (Q × N

d)�
[
q0(v0)

〉
is infinite.

Assume first that
[
q0(v0)

〉
V is co-finite and let us show that the algorithm

returns YES. Let (q, u) be a control state of V ′ and let i ∈ [1, d]. Since
[
q0(v0)

〉
V is

co-finite, there is a number x ≥ 1 such that q0(v0)
∗−→V q(u+nxei). It follows that

(q, u)(xei)
∗−→V′ (q0, u0)(v′

0), which also entails that (q, u)(ωei) covers (q0, u0)(v′
0)

in V ′. We have proved that the algorithm returns YES.
Assume now that the algorithm returns YES and let us prove that

[
q0(v0)

〉
V

is co-finite. Since (q, u)(ωei) covers (q0, u0)(v′
0) in V ′ for every control state

(q, u) of V ′ and for every i ∈ [1, d], there is a (large enough) number x such that
(q, u)(xei) covers (q0, u0)(v′

0) for every control state (q, u) and every i ∈ [1, d].
Below we prove that every configuration q(v) of V such that ‖v‖ ≥ nx is reachable
from q0(v0); this will entail that

[
q0(v0)

〉
V is co-finite (i.e., (Q × N

d)�
[
q0(v0)

〉
V

is finite).
We thus fix an arbitrary q(v) and i ∈ [1, d] such that v(i) ≥ nx. Let (q, u)(v′)

be the configuration of V ′ corresponding to q(v); hence v = u + nv′. Since
(q, u)(xei) covers (q0, u0)(v′

0) in V ′, there is v̄′
0 ≥ v′

0 such that

198 P. Jančar et al.

(q, u)(xei)
∗−→V′ (q0, u0)(v̄′

0); this entails q0(u0 + nv̄′
0)

∗−→V q(u + nxei).

Since v(i) ≥ nx, we have v′ − xei ≥ 0. By monotonicity we derive

q0(u0 + nv̄′
0 + n(v′ − xei))

∗−→V q(u + nxei + n(v′ − xei)) = q(v).

By the definition of n, we get

q0(v0)
∗−→V q0(v0 + n(v̄′

0 − v′
0) + n(v′ − xei)) = q0(u0 + nv̄′

0 + n(v′ − xei)).

Hence we indeed have q0(v0)
∗−→V q(v). �

Lemma 17. Algorithm Alg-Co-Finitworks (i.e., can be implemented to work)
in exponential space.

Proof. This is analogous to the proof of Lemma15. We just note that deciding
if (q, u)(ωei) covers (q0, u0)(v′

0) is even easier than deciding if (q, u)(0) covers
(q0, u0)(v′

0), since the i-th component can be simply ignored. �

5 Applications of the Co-emptiness Problem

A motivation for the study in this paper has been the decidability proof for struc-
tural liveness in [7], which is based on a particular version of the co-emptiness
problem. We now give more details (in the framework of VASSs, which is equiv-
alent to the framework of Petri nets used in [7]), and some partial complexity
results. The main aim is to attract a further research effort on this topic, since
the complexity of various related problems has not been answered. In particu-
lar, we have no nontrivial complexity bounds for the structural liveness problem
(besides its decidability).

Assuming a VASS V = (d,Q,A, T), we are now particularly interested in the
co-emptiness of

[
D

〉
V for downward closed sets D ⊆ Q × N

d, which constitute a
subclass of semilinear sets. We use the notation

↓ C = {q(v) | v ≤ v′ for some q(v′) ∈ C}
for the downward closure of a set C ⊆ Q × N

d (of configurations of V). We say
that C ⊆ Q × N

d is downward closed if ↓ C = C.
We write just ↓ q(v) instead of ↓ {q(v)}.
Downward closed sets are semilinear since each such set can be presented as

↓ q1(v̄1) ∪ ↓ q2(v̄2) ∪ · · · ∪ ↓ qm(v̄m)

for some m ∈ N and v̄i ∈ (N ∪ {ω})d (i ∈ [1,m]), where we put

↓ q(v̄) = {q(v) | v ≤ v̄, v ∈ N
d}.

(Recall that k < ω for each k ∈ N.)
Later we use another natural presentation of downward closed sets: for each

q ∈ Q we provide a constraint in the form of a (finite) conjunction of disjunctions

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 199

of atomic constraints of the form v(i) ≤ c where i ∈ [1, d] and c ∈ N (then
q(v) ∈ Q × N

d is in the set iff v satisfies the constraint associated with q).
The DCIS co-emptiness problem where “DCIS” stands for “Downward Closed

Initial Sets of configurations” (i.e., given V = (d,Q,A, T) and a downward closed
set D ⊆ Q × N

d, is
[
D

〉
V = Q × N

d ?) is decidable by Theorem 3 (and the
fact that D is semilinear). The complexity is open, even the reductions to/from
the reachability problem are unclear. Now we explain the previously mentioned
motivation for such studies.

Liveness of Transitions and Configurations. We recall some standard def-
initions and facts. Given a VASS V = (d,Q,A, T),

– a transition t ∈ T is enabled in a configuration q(v) if t is of the form t : q
a−→ q′

and v + a ≥ 0;
– a transition t is live in q(v) if for every q̄(v̄) ∈ [

q(v)
〉

there is q′(v′) ∈ [
q̄(v̄)

〉

such that t is enabled in q′(v′);
– a transition t is dead in q(v) if there is no q′(v′) ∈ [

q(v)
〉

such that t is enabled
in q′(v′).

We note that t is not live in q(v) iff t is dead in some q′(v′) ∈ [
q(v)

〉
.

The next proposition (which also defines Dt,V and DV) is obvious, due to
monotonicity.

Proposition 18. Given a VASS V = (d,Q,A, T), for each t ∈ T the set

Dt,V = {q(v) | t is dead in q(v)}
is downward closed. Hence also the set

DV = {q(v) | some t ∈ T is dead in q(v)} =
⋃

t∈T Dt,V

is downward closed.

Given a VASS V = (d,Q,A, T), a configuration q(v) is live if each t ∈ T is
live in q(v), i.e., if q(v)
 ∗−→V DV . A VASS V is structurally live if it has a live
configuration, hence if the set

LV = {q(v) | q(v) is a live configuration of V}
is nonempty. While the membership problem for (Dt,V or) DV is essentially
a version of the (non)coverability problem, which also allows to construct a
natural presentation of the (downward closed) sets Dt,V and DV , the membership
problem for LV is close to the reachability problem as was already noted by
Hack [5] long time ago.

The set LV is indeed more involved than DV ; it is obviously not downward
closed but it is not upward closed either (in general), and it can be even non-
semilinear; we can refer to [7] for a concrete example, as well as for the following
idea of decidability.

The structural liveness can be decided as follows. We recall the reversed
VASS V←, and note that V is not structurally live iff

[DV
〉

V← is co-empty:

200 P. Jančar et al.

Proposition 19. For any VASS V = (d,Q,A, T) we have
[DV

〉
V← = (Q × N

d)�LV .

Hence V is not structurally live iff
[DV

〉
V← = Q × N

d.

Proof. We recall that q(v) is not live iff
[
q(v)

〉
V ∩DV
= ∅ (i.e., iff q(v) ∗−→V q′(v′)

where some t ∈ T is dead in q′(v′)). Hence q(v) is not live iff q′(v′) ∗−→V← q(v)
for some q′(v′) ∈ DV (using Proposition 11).

Therefore
[DV

〉
V← = (Q × N

d)�LV . �
Proposition 19 allows us to decide structural liveness of a given VASS

V = (d,Q,A, T) by a reduction to the co-emptiness problem, using the above-
mentioned constructability of DV .

Structural Deadlock-Freedom and DCIS Co-emptiness. We have shown
that the complementary problem of the structural liveness problem (hence “non
structural liveness”) can be reduced to the DCIS co-emptiness problem (with
downward closed sets of initial configurations). However, we have no reduction
from the latter problem to the former.

We now show that a special form of structural liveness, namely structural
deadlock-freedom, is closely related to the DCIS co-emptiness problem. We use
the previously mentioned presentation of downward closed sets by conjunctions
of disjunctions of atomic constraints of the form v(i) ≤ c (for each q ∈ Q).

Given a VASS V = (d,Q,A, T), a configuration q(v) is deadlock-free if
every configuration in

[
q(v)

〉
enables some transition. A VASS V is structurally

deadlock-free if it has a deadlock-free configuration. The structural deadlock-
freedom problem asks, given a VASS V, if V is structurally deadlock-free.

In the rest of this section we prove the following theorem.

Theorem 20. The complementary problem of the structural deadlock-freedom
problem is polynomially interreducible with the DCIS co-emptiness problem. This
entails that the structural deadlock-freedom problem is decidable.

We have already noted that the DCIS co-emptiness problem is decidable.
The interreducibility claimed in Theorem20 is proven in the rest of this section.
We first define the set

SV = {q(v) | no t ∈ T is enabled in q(v)}
of “sink configurations” or “deadlocks” (hence SV =

⋂
t∈T Dt,V). It is obvious

that SV is the downward closed set described so that to each q ∈ Q we attach
the constraint ∧

(q
a−→q′)∈T

∨

i∈[1,d]

a(i)<0

v(i) ≤ −a(i) − 1.

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 201

This presentation of SV can be clearly constructed in polynomial time, when
given a VASS V. Hence Proposition 21 entails the “left-to-right” reduction in
Theorem 20 (recall that V← denotes the reversed VASS of V). The other reduc-
tion is shown by Proposition 22.

Proposition 21. A VASS V is not structurally deadlock-free iff
[SV

〉
V← is co-

empty.

Proof. We consider a VASS V = (d,Q,A, T), and observe that q(v) is not
deadlock-free iff

[
q(v)

〉
V ∩ SV
= ∅. Hence q(v) is not deadlock-free iff q(v) ∈

[SV
〉

V← (using Proposition 11). It follows that V is not structurally deadlock-
free iff

[SV
〉

V← = Q × N
d. �

Proposition 22. Given a VASS V and a downward-closed set D of configu-
rations, we can construct, in polynomial time, a VASS V ′ such that

[
D

〉
V is

co-empty iff V ′ is not structurally deadlock-free.

Proof. Let us assume a VASS V = (d,Q,A, T) and a downward-closed set D of
configurations given, for each q ∈ Q, by conjunctions of disjunctions of atomic
constraints of the form v(i) ≤ c. By negating these formulas, we derive, in
polynomial time, a collection (Bq)q∈Q of finite subsets of N

d such that

(Q × N
d)�D = {q(v) | v ≥ b for some b ∈ Bq}.

(Hence (Bq)q∈Q represents the upward closed complement of D.)
We now define the VASS V̂ = (d, Q̂, Â, T̂) as follows:

(a) Q̂ = Q ∪ {(q, b) | q ∈ Q, b ∈ Bq}.
(b) T̂ consists of the following transitions:

i. q
−b−−→ (q, b) and (q, b) b−→ q for all q ∈ Q, b ∈ Bq, and

ii. (q, b) a+b−−→ q′ for all (q a−→ q′) ∈ T and b ∈ Bq.
(c) Â = {â | q

â−→ q′ ∈ T̂ for some q, q′ ∈ Q̂}.

It is obvious that for all configurations q(v) and q′(v′) of V we have that

q(v) ∗−→V̂ q′(v′) implies q(v) ∗−→V q′(v′)

but the converse does not hold in general. We will show that
[
D

〉
V← = Q × N

d iff V̂ is not structurally deadlock-free.

The proof will be finished, by taking V ′ = V̂← (and noting that (V←)← = V).
(⇒) Assume

[
D

〉
V← = Q×N

d. Observe that (q, b)(v) b−→ q(v+b) in V̂ for every
(q, b) ∈ Q̂ and v ∈ N

d. We now show that no configuration q(v) with q ∈ Q is
deadlock-free in V̂, which clearly entails that V̂ is not structurally deadlock-free.

Let us fix some q(v) ∈ Q×N
d. Since q(v) ∈ [

D
〉

V← , there are a1, . . . ,am ∈ A
and q0(v0), . . . , qm(vm) ∈ (Q × N

d) such that

q(v) = q0(v0)
a1−→ q1(v1)

a2−→ · · · qm−1(vm−1)
am−−→ qm(vm) ∈ D in V

202 P. Jančar et al.

(recall Proposition 11). Moreover, we may assume w.l.o.g. that qi(vi)
∈ D for all
i ∈ [0,m − 1]. So for each i ∈ [0,m − 1] there is bi ∈ Bqi

such that vi ≥ bi. We
derive that

qi(vi)
−bi−−→ (qi, bi)(vi − bi)

ai+1+bi−−−−−→ qi+1(vi+1) in V̂

for all i ∈ [0,m−1]. It follows that q(v) ∗−→ qm(vm) in V̂. Since qm(vm) ∈ D then
vm
≥ b for all b ∈ Bqm

; hence no transition of V̂ is enabled in qm(vm), and q(v)
is thus not deadlock-free in V̂.

(⇐) Assume that V̂ is not structurally deadlock-free. We fix a configuration
q(v) of V and prove that q(v) ∈ [

D
〉

V← . Since q(v) is also a configuration of
V̂, it is not deadlock-free in V̂. So there is a configuration q′(v′) of V̂ such that
q(v) ∗−→V̂ q′(v′) and no transition t ∈ T̂ is enabled in q′(v′). Since V̂ contains

the transition (q, b) b−→ q for every q ∈ Q and b ∈ Bq, we get that q′ ∈ Q. No

transition q′ −b−−→ (q′, b) of T̂ is enabled in q′(v′), so v′
≥ b for every b ∈ Bq′ .
It follows that q′(v′) ∈ D. Since q(v) ∗−→V̂ q′(v′) implies q(v) ∗−→V q′(v′), we get
q(v) ∗−→V D, i.e., q(v) ∈ [

D
〉

V← . �

6 Conclusion

Motivated by the structural liveness problem for VASS, whose computational
complexity is still open, we have introduced and studied in this paper the co-
emptiness problem and the co-finiteness problem for VASS. The complexity of
the co-emptiness and co-finiteness problems in the case of single initial con-
figurations has been clarified, but the complexity of general versions has been
left open, even w.r.t. reductions to/from the reachability problem. This requires
further work, in particular with an eye to the applications aiming to clarify
structural liveness properties of VASSs, or equivalently of Petri nets.

References

1. Atig, M.F., Habermehl, P.: On Yen’s path logic for Petri nets. Int. J. Found.
Comput. Sci. 22(4), 783–799 (2011). https://doi.org/10.1142/S0129054111008428

2. Best, E., Esparza, J.: Existence of home states in Petri nets is decidable. Inf.
Process. Lett. 116(6), 423–427 (2016)

3. Esparza, J.: Decidability and complexity of Petri net problems—an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1998. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

4. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac.
J. Math. 16(2), 285–296 (1966)

5. Hack, M.: The recursive equivalence of the reachability problem and the liveness
problem for Petri nets and vector addition systems. In: 15th Annual Symposium
on Switching and Automata Theory, New Orleans, Louisiana, USA, 14–16 Octo-
ber 1974, pp. 156–164. IEEE Computer Society (1974). https://doi.org/10.1109/
SWAT.1974.28

https://doi.org/10.1142/S0129054111008428
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1109/SWAT.1974.28
https://doi.org/10.1109/SWAT.1974.28

Co-finiteness and Co-emptiness of Reachability Sets in VASSs 203

6. Hopcroft, J.E., Pansiot, J.: On the reachability problem for 5-dimensional vector
addition systems. Theor. Comput. Sci. 8, 135–159 (1979)

7. Jančar, P.: Deciding structural liveness of Petri nets. In: Steffen, B., Baier, C.,
van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017.
LNCS, vol. 10139, pp. 91–102. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-51963-0 8

8. Leroux, J.: Presburger vector addition systems. In: 28th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28
June 2013, pp. 23–32. IEEE Computer Society (2013). https://doi.org/10.1109/
LICS.2013.7

9. Leroux, J.: Vector addition system reversible reachability problem. Log. Methods
Comput. Sci. 9(1), 1–16 (2013). https://doi.org/10.2168/LMCS-9(1:5)2013

10. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, 6–10 July 2015, pp. 56–67. IEEE Computer Society (2015). https://
doi.org/10.1109/LICS.2015.16

11. Lipton, R.J.: The reachability problem requires exponential space. Technical report
63, Department of Computer Science, Yale University, January 1976

12. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13(3), 441–460 (1984). https://doi.org/10.1137/0213029

13. Rackoff, C.: The covering and boundedness problems for vector addition sys-
tems. Theor. Comput. Sci. 6, 223–231 (1978). https://doi.org/10.1016/0304-
3975(78)90036-1

14. Yen, H.: A unified approach for deciding the existence of certain Petri net paths. Inf.
Comput. 96(1), 119–137 (1992). https://doi.org/10.1016/0890-5401(92)90059-O

https://doi.org/10.1007/978-3-319-51963-0_8
https://doi.org/10.1007/978-3-319-51963-0_8
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.2168/LMCS-9(1:5)2013
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1137/0213029
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0890-5401(92)90059-O

Languages

An Efficient Characterization of Petri Net
Solvable Binary Words

David de Frutos Escrig1, Maciej Koutny2, and �Lukasz Mikulski3(B)

1 Dpto. Sistemas Informáticos y Computación, Facultad de Ciencias Matemáticas,
Universidad Complutense de Madrid, Madrid, Spain

defrutos@sip.ucm.es
2 School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK

maciej.koutny@ncl.ac.uk
3 Faculty of Mathematics and Computer Science,

Nicolaus Copernicus University in Toruń, Chopina 12/18, Toruń, Poland
lukasz.mikulski@mat.umk.pl

Abstract. We present a simple characterization of the set of Petri net
solvable binary words. It states that they are exactly the extensions of
the prefixes of Petri net cyclic solvable words, by some prefix xk, where x
is any letter of the binary alphabet being considered, and k is any natural
number. We derive several consequences of this characterization which,
in a way, shows that the set of solvable words is ‘smaller than expected’.
Therefore, the existing conjecture that all of them can be generated
by quite simple net is not only confirmed, but indeed reinforced. As a
byproduct of the characterization, we also present a linear time algorithm
for deciding whether a binary word is solvable. The key idea is that the
connection with the cyclic solvable words induces certain structural reg-
ularity. Therefore, one just needs to look for possible irregularities, which
can be done in a structural way, resulting in a rather surprising linear-
ity of the decision algorithm. Finally, we employ the obtained results to
provide a characterization of reversible binary transition systems.

Keywords: Petri net · Binary word · Word solvability · Reversibility
Binary transition system

1 Introduction

In the past few years several authors investigated finite labelled transition sys-
tems (flts) which can be solved by Petri nets (i.e., flts’s which are isomorphic
to the reachability graphs of Petri nets). The solvability problem turned out to
be more complicated than expected and a very particular case of the general
problem, where the flts’s are linear and defined by binary words, was studied
first. Based mainly on the theory of regions [1] many useful properties of the
set of solvable words have been obtained. In particular, [5] presented two deci-
sion algorithms (with quadratic time complexity) for the solvability of finite and

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 207–226, 2018.
https://doi.org/10.1007/978-3-319-91268-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_11&domain=pdf

208 D. de Frutos Escrig et al.

cyclic words. Both algorithms are based on a quantitative analysis that relates
the number of a’s and b’s in any ‘convenient’ piece of the tested word w, check-
ing whether in all cases the obtained quantities are close enough. In this way,
the sets of solvable and cyclic solvable words are totally characterized. [5] was a
continuation of [2], that introduced quantitative techniques used also here.

Studying the two (collections of) conditions that characterize both solv-
able and cyclic solvable words, we observed that they are related, and in fact
look quite similar. However, following a closer investigation we discovered some
important differences that make it difficult to bring to light the close connection
between these two sets of solvable words. As discussed in Sect. 4, the conditions
verifying the solvability of (plain) words compare any two consecutive parts β
and γ, which are connected producing a full sequence yβxγy, where x �= y are
letters of the alphabet {a, b} being considered. However, in the cyclic case, the
two compared parts cover the whole verified word, i.e., w′ = yβxγ for a cir-
cular permutation w′ of the verified word w. The first property can be seen as
local, since we need to compare two (consecutive) pieces that can be arbitrarily
long/short, whereas the second is global.

This paper focuses on the structural results. Some are recalled from [2,5], and
prove that solvable words can be decomposed into blocks abxi . We reformulate
the original conditions giving more precise description of block decomposition
which is easier to verify. An informal statement of the resulting criteria is as
follows: ‘Any two adequate pieces, consecutive or not, of a solvable word must
contain quite similar proportion of a’s and b’s’. Moreover, an adequate piece can
be understood as a sequence abxiabxi+1 . . . abxi+m−1 of full blocks.

The only difference between the two sets of conditions is the way in which
they treat the beginning of a word. In the plain case, a prefix xk (followed by
y �= x) will not be considered in most cases. In the cyclic case, any part of the
word is subjected to the same procedure due to the circularity of cyclic words.

As long as we test (nearly) any two pieces of a word in order to verify its
solvability, the corresponding algorithm remains quite costly. In fact, a direct
check of the restated criteria would be even worse in the general case, since we
need to check also nonconsecutive pieces. Having said that, the algorithm could
be used to catch unsolvable words in a fast way, by exhibiting two unbalanced
(possibly nonconsecutive) sequences of blocks.

The structural properties stated in [6] imply that no cyclic solvable word w
contains both aa and bb, which could be seen as the simplest version of the proce-
dure confirming unsolvability, and is also a basic test when we check solvability.
And, if w passes it, we apply the block decomposition results. More precisely,
we take advantage of the result that there are no two full blocks abxi and abxj

with |xi − xj | ≥ 2, which is another example of our linear time local test.
If both simple tests are passed, we need to check more sophisticated condi-

tions. In particular, if w is solvable and contains two consecutive abe−1 blocks,
then it cannot contain two consecutive abe blocks. This corresponds to the struc-
tural periodicity of solvable words: if there are no two unbalanced pieces at the
level of single letters, then we proceed at the level of blocks. We then continue

An Efficient Characterization of Petri Net Solvable Binary Words 209

the analysis in a similar hierarchical way, checking larger and larger parts of the
word, until either we find a witness of unsolvability, or we terminate arriving
at a trivial solvable word which proves the solvability of the original word. For-
tunately, each step of this recursive procedure at least halves the length of the
checked word. As a result, even if the number of iterations is logarithmic, the full
cost of the algorithm is linear, as each of the iterations is linear in the current
size of the checked word.

We adopted from [6] the idea to generate recursive reductions, called here
derivatives. The authors of [6] introduced a compression operator that applies
our general derivation operator in a particular case of the generation of a minimal
unsolvable word from another, longer word. In fact, along with the compression
mechanism, [6] presented an extension procedure that played a dual role. In a
similar vein, we will introduce a general integration operator, and show that
derivation/integration preserves and reflects solvability (and so also unsolvabil-
ity!). Its application will lead, as annouces above, to a pair of optimal (linear
time) decision algorithms, which verify both plain and cyclic solvability.

Our initial motivation was to extend the existing results on solvability, con-
tinuing the study of the reversibility of linear transition systems initiated in the
conference version of [4], where questions about decidability of several related
notions are studied. In this paper, we show that a linear transition system can
be reversed if and only if both the word w generated by the system, and its
reversed version wrev are solvable. Then, we look for a more explicit definition
of the set of reversible words. In [3] it was already demonstrated that not every
solvable word is reversible. However, we show that all the cyclic solvable words
are reversible. Hence, towards the end of in this paper, we will look for the con-
nections and differences between these two classes. We show that there are a
few ‘simple’ reversible words that are not cyclic solvable, but all the other ‘more
complex’ reversible words are.

The paper is organized as follows. After recalling the basic notions in Sect. 2,
Sect. 3 contains new characterizations of cyclic solvable words, including the
efficient algorithm for detect them. Sections 4 and 5 deal with plain solvable
words and reversible words, respectively. A brief section containing conclusions
ends the paper.

2 Basic Notions

The sets of all integers and non-negative integers are denoted by Z and N,
respectively.

Words. A word over an alphabet T is a finite sequence w ∈ T ∗, and it is binary
if |T | = 2. The empty word is denoted by ε. The reverse of a word w = t1 . . . tn
is wrev = tn . . . t1. For a word w ∈ T ∗ and a letter t ∈ T , |w| denotes the
length of w, and |w|t denotes the number of occurrences of t in w. Moreover,
|w|xy = |w|x/|w|y and if |w|y = 0, then |w|xy = ∞. A word w′ ∈ T ∗ is called
a subword of w ∈ T ∗ if w = uw′v, for some u, v ∈ T ∗. In particular, w′ is a prefix

210 D. de Frutos Escrig et al.

of w if u = ε, a suffix of w if v = ε, and an infix of w if u �= ε �= v. The
concatenation of k copies of a word w ∈ T ∗ is denoted by wk. Moreover, wω

denotes an infinite word obtained by concatenating infinitely many copies of w.
Note that in the denotation wω we explicitly indicate the period w which is used
to construct the infinite word ww Similarly, uwω denotes an infinite word
uww . . . constructed using the prefix u and period w.

For two alphabets T and V , a mapping φ : T ∗ → V ∗ is a morphism if φ(ε) = ε
and φ(uv) = φ(u)φ(v), for all u, v ∈ T ∗. A morphism φ is uniquely determined
by its application to the members of T .

Transition Systems. A finite labelled transition system (or flts) is a tuple TS =
(S, T,→, s0) with a finite set of states S, a finite set of labels T , a set of arcs
→⊆ (S × T × S), and an initial state s0 ∈ S. A label t is enabled at s ∈ S,
denoted by s[t〉, if (s, t, s′) ∈→, for some s′ ∈ S. A state s′ is reachable from
s through the execution of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed
path from s to s′ whose arcs are labelled consecutively by σ. The set of states
reachable from s is denoted by [s〉. A sequence σ ∈ T ∗ is enabled at a state s,
denoted by s[σ〉, if there is some state s′ such that s[σ〉s′.

t•TS = {s ∈ S | ∃s′ ∈ S : (s′, t, s) ∈→} and •tTS = {s ∈ S | ∃s′ ∈ S :
(s, t, s′) ∈→} are respectively the sets of all states having an incoming arc
labelled with t, and an outgoing arc labelled with t. The set of all arcs labelled
by t is denoted by

−→
t . We assume that each

−→
t is nonempty, and each state is

reachable from s0.
Two flts’s, (S, T,→, s0) and (S′, T,→′, s′

0), are isomorphic if there is a bijec-
tion ζ : S → S′ with ζ(s0) = s′

0, and (s, t, s′) ∈→⇔ (ζ(s), t, ζ(s′)) ∈→′, for all
s, s′ ∈ S and t ∈ T .

Petri Nets. A (place/transition) net is a tuple N = (P, T, F,M0), where P is a
finite set of places, T is a disjoint finite set of transitions (or actions), F is the
flow function F : ((P × T) ∪ (T × P)) → N specifying the arc weights, and M0

is the initial marking (where a marking is a mapping M : P → N).
A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if M(p) ≥

F (p, t), for every p ∈ P . The firing of an enabled t at marking M leads to M ′,
denoted by M [t〉M ′, where M ′(p) = M(p)+F (t, p)−F (p, t), for every p ∈ P . The
notions of enabledness and firing, M [σ〉 and M [σ〉M ′, are extended in the usual
way to sequences σ ∈ T ∗, and [M〉 denotes the set of all markings reachable from
M . For an infinite sequence of transitions, σ ∈ Tω, we write M [σ〉 if M [σ′〉, for
infinitely many finite prefixes σ′ of σ. We assume that each transition is enabled
in at least one reachable marking.

Transition enabledness is monotonic, i.e., if a transition t is enabled at a
marking M and M(p) ≤ M ′(p), for every p ∈ P , then t is also enabled at M ′.

The net N can also be specified as (N ′,M0), where N ′ = (P, T, F).

Synthesis of Words. A Petri net N = (P, T, F,M0) net is bounded if the set of
reachable markings [M0〉 is finite, and its reachability graph is then defined as
the flts RG(N) = ([M0〉, T, {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′},M0). If an

An Efficient Characterization of Petri Net Solvable Binary Words 211

flts TS is isomorphic to the reachability graph of N , then N solves TS , and TS
is synthesizable (to N).

Let w = t1 . . . tm and u = tm+1 . . . tm+n be nonempty words, T =
{t1, . . . , tm}, and T ′ = {t1, . . . , tm+n}. Then w/wω/wuω is solvable if respec-
tively

TSw = ({0, . . . ,m}, T, {(i − 1, ti, i) | 1 ≤ i ≤ m}, 0)
TS c

w = ({0, . . . ,m − 1}, T, {(i − 1, ti, i) | 1 ≤ i < m} ∪ {(m − 1, tm, 0)}, 0)
TS c

w,u = ({0, . . . ,m + n − 1}, T ′,
{(i − 1, ti, i) | 1 ≤ i < m + n} ∪ {(m + n − 1, tm,m)}, 0)

is a synthesizable flts. Moreover, a Petri net N solves w/wω/wuω if respectively
the flts TSw/TS c

w/TS c
w,u is synthesizable to N (see Fig. 1).

In the rest of this paper, T is a binary alphabet and all the finite words
considered belong to T ∗. Moreover, x, y, ti typically stand for the letters in T ,
and unless stated otherwise, T = {a, b}.

•
0

•
1

•
2

•
3

•
4

a b a b a b

•••
2

a b••••

•

Fig. 1. The flts TSabab, and two Petri nets solving abab. The second net without the
middle place solves (ab)ω.

3 A Finer Characterisation of Cyclic Solvable Words

Two words, w and w′, are circular equivalent if w = uv and w′ = vu, for some u
and v. We denote this by w � w′. One can show that � is an equivalence relation.
The equivalence classes of � are circular words, and the circular word containing
w = t1 . . . tn is [w]� = {ti . . . tnt1 . . . ti−1 | 1 ≤ i ≤ n}. Hence |[w]�| ≤ n, and
if |[w]�| = n, then w is prime. One can show that, for each word w, there is a
unique prime word u and k ≥ 1 such that w = uk. The subwords of [w]� are all
the subwords of the members of [w]�.

A word w is cyclic solvable if uω is solvable, where u is the prime satisfying
w = uk, for some k ≥ 1. In such a case, every member of [w]� is cyclic solvable,
and [w]� itself is solvable. A set of nets N solves [w]� if they cyclic solve all the
members of [w]�.

The above definitions are more subtle than it might appear at a first glance.
First, notice that uω and (uk)ω ‘construct’ the same infinite word, but do so
using different periods and the solvability is tested using different flts’s, viz.
TS c

u and TS c
uk . Moreover, whenever u is not prime, no Petri net can solve uω,

212 D. de Frutos Escrig et al.

and so generate the infinite cyclic word w denoted by it using u as period. In
particular, if we take (uk)ω with k > 1, then TS c

uk would include at least two
different states generating w, and all such states should be represented by the
same marking in the reachability graph of a Petri net to which TS c

uk might be
synthesiszable. This, however, is impossible.

Situations describe above are not a problem for the definition of cyclic solv-
ability since we only consider prime periods u. For example, w = aa is cyclic
solvable because w = a2, a is prime, and the flts TS c

a = ({s}, {a}, {(s, a, s)}, s)
can be synthesized to the net Na = ({p}, {a}, F,M0) with M0(p) = 1 and the
non-zero entries of F being F (a, p) = F (p, a) = 1. On the other hand, the flts
TS c

aa = ({s0, s1}, {a}, {(s0, a, s1), (s1, a, s0)}, s0) is not synthesizable.

Fact 1 (follows from Proposition 5 in [5]). A solvable circular word does
not have both aa and bb as subwords.

Hence, we will usually assume (wlog) that aa is not a subword of cyclic
solvable words. And, in order to avoid cumbersome trivial cases in proofs, we
will disregard the solvable circular words [a]�, [b]�, and [ab]�. As a result,
we will concentrate on the remaining solvable circular words [w]�, where
w = abx1abx2 . . . abxn and x1, . . . , xn ≥ 1. Each such [w]� is a circular block-
word, each w is a block-word, and each abxi is a block. Also, a block-subword of
[w]� is ε or abxiabxi+1 . . . abxj (for i ≤ j) or abxi . . . abxnabx1 . . . abxj (for i > j).
Note that not all such [w]� are solvable, but only those that are also ‘periodic’,
in the sense to be made precise later.

Fact 2 (Theorem 3 in [5]). A circular word [w]� is solvable iff |xα|xy > |w|xy ,
for its every subword xαy with x �= y.

Following the above result, a circular word [w]� is balanced if, for its every
subword xαy with x �= y:

|xα|xy > |w|xy . (1)

Moreover, if (1) does not hold for xαy, then [w]� is xα-unbalanced. It turns out
that for circular block-words it suffices to concentrate on block-subwords.

Proposition 1. A circular block-word [w]� is not balanced iff there is a block-
subword w′ of [w]� such that [w]� is w′-unbalanced or bw′-unbalanced.

Proof. Suppose that [w]� is aα-unbalanced. Then we can extend aα by some bj

(j ≥ 0) obtaining a block-subword w′ = aαbk such that [w]� is w′-unbalanced.
Suppose that [w]� is bα-unbalanced. If |α|a = 0, then [w]� cannot be bα-

unbalanced. Hence bα = bjw′, where j ≥ 1 and w′ is a block-subword, and [w]�
is bw′-unbalanced. ��

Let w be a block-word and αγβδ � w, where α, γ, β, δ are block-subwords of
[w]�. Then α and β are complementary if γ = δ = ε, and mutually unbalanced,
denoted by α � β, if |α|b+1

|α|a ≤ |β|b−1
|β|a or |β|b+1

|β|a ≤ |α|b−1
|α|a .

An Efficient Characterization of Petri Net Solvable Binary Words 213

An alternative presentation of the balancing property of circular words is
obtained by considering complementary block-subwords. It will later be used to
show that for any unbalanced block-word one can construct a pair of mutually
unbalanced complementary block-subwords.

Proposition 2. Let α and β be complementary block-subwords of [w]�.

– If [w]� is bα-unbalanced or α′-unbalanced, where α′b = α, then α � β.
– If α � β, then w is not balanced.

Proof. Let m and k be the numbers of blocks in α and β, respectively. Then
|bα|ba = |α|b+1

m ≤ |w|ba = |β|b−1+|α|b+1
m+k is equivalent to

m|α|b + m + k|α|b + k ≤ m|α|b + m + m(|β|b − 1)

which is equivalent to k(|α|b + 1) ≤ m(|β|b − 1). And the latter is equivalent to
|α|b+1

m ≤ |β|b−1
k .

Moreover, we have that |aα′|ab = m
|aα′b|b−1 ≤ |w|ab = m+k

|aα′b|b−1+1+|β|b is equiv-

alent to m(|β|b + 1) ≤ k(|aα′b|b − 1) which is equivalent to |aα′b|b−1
m ≥ |β|b+1

k .
��

Next we show that as soon as we have two mutually unbalanced block-
subwords, one can extend one of them by the block-subword positioned ‘in
between’ the original sub-words.

Proposition 3. Let w = αγβδ be a block-word such that α, β, γ, δ are block-
subwords of [w]� and α � β. Then: (i) αγ � β or α � γβ; and (ii) α � βδ or
δα � β.

Proof. (i) It is a consequence of the following general result. Whenever we have
m1−1

n1
≥ m2+1

n2
, then for all p, q with q �= 0, we have either (m1+p)−1

n1+q ≥ m2+1
n2

or
m1−1

n1
≥ (m2+p)+1

n2+q . Indeed, the former is clearly obtained when p
q > m1

n1
, and the

latter when p
q < m2

n2
. In general, if p

q ≥ m2+1
n2

then, by m1−1
n1

≥ m2+1
n2

, we have
m1−1

n1
≥ (m2+p)+1

n2+q . And, by symmetry, if p
q ≤ m1−1

n1
then m1−1

n1
≥ (m2+p)+1

n2+q .
Note: The two cases considered in the second part of the proof cover all

possibilities, but the previous easy cases are included to improve readability.
(ii) The proof is similar as for (i) due to the fact that δ lies ‘in between’ β

and α in the circular sense. ��
A block-word w = abx1abx2 . . . abxn is block-balanced if, for all 1 ≤ j ≤ k ≤

l ≤ m ≤ n:
∑k

i=j xi

k − j + 1
>

∑m
i=l xi

m − l + 1
=⇒

∑k
i=j xi − 1

k − j + 1
<

∑m
i=l xi + 1

m − l + 1
(2)

and ∑k
i=j xi

k − j + 1
<

∑m
i=l xi

m − l + 1
=⇒

∑k
i=j xi + 1

k − j + 1
>

∑m
i=l xi − 1

m − l + 1
. (3)

214 D. de Frutos Escrig et al.

Moreover, if all block-words in [w]� are block-balanced, then w is circular block-
balanced. (Note that in the case of circular block-balancing, if all block-words in
[w]� satisfy (2), then they satisfy (3) as well.) The block-word w is contiguously
block-balanced if the conditions (2) and (3) are satisfied for l = k + 1. And w is
contiguously circular block-balanced if all the members of [w]� are contiguously
block-balanced.

Theorem 1. A block-word is cyclic solvable iff it is circular block-balanced.

Proof. Applying Proposition 3 we only need to observe that once we have w =
αγβδ, which is circular block unbalanced because α
 β, then αγ
 β or
α
 γβ, will be also mutually unbalanced. Suppose (wlog) that the former holds.
Then another application of Proposition 3 implies that αγ
 βδ or α
 γβδ
holds, and an application of Proposition 2 concludes the proof. ��
Corollary 1. A block-word is cyclic solvable iff it is contiguously circular block-
balanced.

Proof. Follows immediately from Theorem 1 and Proposition 3.

Propositions 8 and 9 in [5] imply that solvable circular words can be solved by
‘circular’ nets with two places and two transitions. For all A,B ≥ 1, let NAB be
the set of all nets NAB = ({pa, pb}, {a, b}, F,M0) such that M0(pa) + M0(pb) =
A + B − 1 and the non-zero values for F are F (pa, a) = F (a, pb) = A and
F (pb, b) = F (b, pa) = B.

Fact 3 (follows from Proposition 9 in [5]). NAB solves the unique solv-
able circular word [wAB]� satisfying |wAB |a = B and |wAB |b = A. Also, if
gcd(A,B) = 1 then wAB is prime, and if gcd(A,B) = C > 1 then w = uC ,
where u is prime.

A general result about the extendability of solvable words by prefixes is

Fact 4 (Proposition 4 in [2]). If aw is solvable, then aaw is also solvable.

In other words, a prefix a can be extended to ak without losing solvability.
This is not always possible using b instead of a, since otherwise any word would
be solvable. However, any cyclic solvable word can be prefixed by ak or bk, for
any k ≥ 1, yielding a solvable word (although, in general, not cyclic solvable,
and not even a subword of a cyclic solvable word). It seems that this fact was
not yet used in the literature, and it has indeed been one of the key observations
leading to our new characterization of (plain) solvable words.

Proposition 4. Let A,B, k ≥ 1 and NAB = ({pa, pb}, {a, b}, F,M0) ∈ NAB be
a net solving wω. Moreover, let N ′ = ({pa, pb}, {a, b}, F ′,M ′

0) be a net such that:

– F ′(pa, a) = F ′(a, pb) = A, F ′(pb, b) = B + k, F ′(b, py) = kA, and F ′(b, pa) =
B are the non-zero values of F ′, and

– M ′
0(pa) = kA + M0(pa) and M ′

0(pb) = kA + M0(pb).

An Efficient Characterization of Petri Net Solvable Binary Words 215

Then N ′ solves akwω.
Note: A symmetric construction solves bkwω.

Proof. The kA additional tokens in pa allow the firing of ak. At the same time,
b is not enabled since M0(pb)+(k−1)A < B +kA as M0(pb) > A+B. After the
firing of ak, the kA produced tokens will remain frozen at pb, and the remaining
tokens will ‘constitute’ the initial marking M0 for NAB , so that the subsequent
behaviour of N ′ will generate wω. ��

A direct consequence of the last result is that all the infinite words represented
by xkwω, where w is a cyclic solvable word, are solvable.

Given an integer e ≥ 2, a block-word abx1 . . . abxm is an e-block-word if
x1, . . . , xm ∈ {e − 1, e}. From the results in [5], it immediately follows that each
cyclic solvable block-word is an e-block-word, for some e ≥ 2. We next apply our
characterization of cyclic solvable words to demonstrate a duality between the
abe−1 blocks and abe blocks, which can be swapped without affecting solvability.

Proposition 5. An e-block-word abx1 . . . abxm is cyclic solvable iff the e-block-
word ab2e−1−x1ab2e−1−x2 . . . ab2e−1−xm is cyclic solvable.

Proof. We first observe that
∑i+m−1

s=i 2e−1−xs

m = 2e−1−
∑i+m−1

s=i xs

m . Hence we have

that
∑i+m−1

s=i xs

m >
∑j+k−1

t=j xt

k =⇒
∑i+m−1

s=i xs−1

m <
∑j+k−1

t=j xt+1

k is equivalent to:

i+m−1∑

s=i
(2e−1−xs)

m <

j+k−1∑

t=j

(2e−1−xt)

k =⇒
i+m−1∑

s=i
(2e−1−xs)+1

m >

j+k−1∑

t=j

(2e−1−xt)−1

k . �

3.1 An Efficient Algorithm to Detect Cyclic Solvable Words

Having observed (wlog) that all the solvable cyclic block-words are e-block-
words (i.e., they are built from two kinds of blocks), one can intuitively foresee
the internal periodicity of cyclic solvable block-words. This means that the full
word w not only appears as period of the corresponding infinite (cyclic) word,
but also the internal structure of w is periodic, and the blocks are distributed in
a periodic way.

Definition 1. The derivative words of an e-block-word w are defined as follows:

– ∂1(w) is obtained by replacing in w each block abe−1 by 1, and each block abe

by 2.
– ∂2(w) is obtained by replacing in w each block abe−1 by 2, and each block abe

by 1.

We use as alphabet {1, 2} in order to reflect the numerical information contained
in the blocks. Note that both derivative words ignore the actual value of e.

As shown later in Corollary 2, cyclic solvable e-block-words cannot contain
both abe−1abe−1 and abeabe. Hence, we complete the definition of derivative
words in the following way.

216 D. de Frutos Escrig et al.

Definition 2. An e-block-word w is derivable if it does not contain abe−1abe−1

or abeabe. Moreover, its derivative is defined as ∂(w) = ∂2(w) if the former
holds, and as ∂(w) = ∂1(w) otherwise.

A word bx0abx1 . . . abxmabxm+1 is semi-derivable if abx1 . . . abxm is derivable
and 1 ≤ x0, xm+1 ≤ min{x1, . . . , xm} + 1.

Hence we have ∂(w) = 1y021y121y2 . . . 21yn , for some n ≥ 1 and y1, . . . , yn ≥ 1.
Moreover, inverse transformations can integrate words like 1y021y121y2 . . . 21yn .
Since we can choose any e ≥ 2, and either abe−1 or abe to appear more often
this can be done in infinitely many ways.

Definition 3. For each e ≥ 2 and v = 1y021y121y2 . . . 21yn , we define:
∫

e,1

v = φ1 �→abe−1,2 �→abe(v) and
∫

e,2

v = φ1 �→abe,2 �→abe−1(v)

where φ1 �→z,2 �→z′ is a morphism replacing 1 by z and 2 by z′.

Hence we always have ∂i(
∫

e,i
v) = v, for all i ∈ {1, 2} and e ≥ 2.

We will now aim at a structural characterization of cyclic solvable words,
that will lead to an (optimal!) algorithm detecting such words. In order to see
how the relationship between (un)balanced words and their derivatives works,
we discuss a simple example.

Consider v = 212111 which contains two mutually unbalanced block-
subwords 21 and 2111 (note that 3−1

1 �< 1+1
1). Let us have a look at its integrals

w1 =
∫
2,1

v = (ab2ab)(ab2ababab) and w2 =
∫
2,2

v = (abab2)(abab2ab2ab2), where
the parenthesis separate contributions of the two blocks in v. Both w1 and w2

are unbalanced. In the first case, we can take the block-subwords w11 = ab2abab2

and w12 = ababab satisfying:

|w11|b−1
|w11|a = 2·2+1·1−1

2+1 �< 0·2+3·1+1
0+3 = |w12|b+1

|w12|a .

In the second case, we can take w21 = ab2ab2ab2 and w22 = abab2ab satisfying:

|w21|b−1
|w21|a = 0·1+3·2−1

0+3 �< 2·1+1·2+1
2+1 = |w22|b+1

|w22|a .

There are two things to be considered. The first is that ∂2 works in a covariant
way, so that ‘wherever’ v has ‘too many’ 1’s, w2 has in turn ‘too many’ b’s. On the
other hand, ∂1 works exactly the other way around, i.e., in a contravariant way.
Besides, in both cases the block-subwords that now are mutually unbalanced
do not coincide exactly with the integrals of the mutually unbalanced block-
subwords in v. Indeed, w11 and w22 (observe again the duality!) need to expand
the corresponding block-subword, borrowing the following block, while w12 and
w12 lose their first blocks. In the general case, we have the following:

Theorem 2. An e-block-word w is cyclic solvable iff w is derivable and ∂(w) is
cyclic solvable.

An Efficient Characterization of Petri Net Solvable Binary Words 217

Proof. First, if w contains both abe−1abe−1 and abeabe, then it is not cyclic solv-
able. Let us suppose that it contains abeabe, which corresponds to the covari-
ant case, as explained in the introduction to the proof. Now, if ∂(w) is not
cyclic solvable, then its alternative presentation v′ = 21y121y2 . . . 21yn+y0 is
not either. To simplify the notation, we consider first the case y0 = 0. Apply-
ing Theorem 1, we should have two block-subwords 21yi21yi+1 . . . 21yi+p−1 and

21yj21yj+1 . . . 21yj+k−1 , with
∑i+p−1

s=i ys−1

p ≥
∑j+k−1

t=j yt+1

k . If we consider the
corresponding block-subwords in

∫
e,2

v:

– w1 = abe−1(abe)yiabe−1(abe)yi+1 . . . abe−1(abe)yi+p−1 and w1 = abe−1w′
1

– w2 = abe−1(abe)yjabe−1(abe)yj+1 . . . abe−1(abe)yj+k−1 and w′
2 = w2abe−1

we have |w′
1|b−1

|w′
1|a =

(p−1)(e−1)+e
i+p−1∑

s=i

ys−1

(p−1)+
i+p−1∑

s=i
ys

≥
(k+1)(e−1)+e

j+k−1∑

t=j

yt+1

(k+1)+
j+k−1∑

t=j

yt

= |w′
2|b+1

|w′
2|a .

And the contravariant case can be treated in a similar way, but reversing the
inequality.

For the converse, let us consider an e-block-word w = abx1 . . . abxm and its
two block-subwords, w′

1 and w′
2, satisfying |w′

1|b−1
|w′

1|a ≥ |w′
2|b+1

|w′
2|a . Reasoning similarly

as in Proposition 1, we obtain that w′
1 = (abe)y1 . . . abe−1(abe)ym , and w′

2 =
abe−1(abe)yp . . . (abe)yp+r−1abe−1 . Also, w1 = abe−1w′

1 and w2 such that w′
2 =

w2abe−1, are block-subwords of w, so that ∂(w) contains the block-subwords
21y1 . . . 21ym and 21yp . . . 21yp+r−1 . Hence we can see that all this corresponds
to the situation that we had in the first part of the proof, so that reversing our
arguments we conclude as required. ��
Theorem 3 (efficient recursive algorithm checking cyclic solvability).
The following prolog-like algorithm checks in linear time the cyclic solvability
of an e-block-word w = abx1abx2 . . . abxm .

– if x1 = · · · = xm

then CyclicSolvable(w)
– if xi = xi+1 �= xj = xj+1, for some i, j

then ¬CyclicSolvable(w)
– if w = (abe)f (abe−1abe)n(abe−1)g, for some f, g ∈ {0, 1} and n ≥ 1

then CyclicSolvable(w)
else CyclicSolvable(w) = CyclicSolvable(∂(w))

Proof. The algorithm checks the cyclic solvability of w by Theorem 2. It termi-
nates in linear time since |w| ≥ 2 · |∂(w)|. ��

4 Relating Solvable Words and Cyclic Solvable Words

Here we present the main result of this paper, showing that all solvable words
can be obtained by prefixing with xk prefixes of cyclic solvable words.

218 D. de Frutos Escrig et al.

Theorem 4. {xkw | k ≥ 0 and w is a prefix of a cyclic solvable word } is the
set of all solvable words.

In order to prove the (⊇) inclusion (note that the reverse inclusion holds
by Proposition 6), we give an algebraic characterization of the set of prefixes of
cyclic solvable words. This is very similar to that of the cyclic solvable words in
Theorem 1. We start with recalling an important result.

Theorem 5 (Theorem 2 in [5]). A word w is solvable if, for any decomposition
w = αyβxγyδ, with x �= y, we have |yβ|yx > |xγ|yx.

The above condition is equivalent to |β|y+1
|xγ|x >

|xγ|y
|γ|x+1 , and this is indeed very

close to the conditions (2) and (3) in the definition of block-balanced words. We
have found that these are exactly the prefixes of cyclic solvable words:

Theorem 6. A word w = abx1abx2 . . . abxma is a prefix of a cyclic solvable word
iff w′ = abx1abx2 . . . abxm is block-balanced.

It is worth to note that the only differences between the statements in The-
orem 1 are first Theorem 6 is that in the latter we need to introduce a final a
in the word, in order to signal the completion of the previous block abxm . On
the other hand, we have the circular character of circular words, which ‘forces’
us to consider also block-subwords that can ‘glue’ the end of the word with its
beginning.

As it is the case for cyclic solvable words, the characterization above remains
valid when we only check contiguous block-subwords.

Theorem 7. A word w = abx1abx2 . . . abxma is a prefix of a cyclic solvable word
iff w′ = abx1abx2 . . . abxm is contiguously block-balanced.

To prove the last two theorems we need several auxiliary results.

Proposition 6. For any e ≥ 2, no solvable word w contains the subword abeabe

before the subword abe−1abe−1a.

Proof. Let us consider an occurrence of abeabe before, and as close as possible,
the occurrence of abe−1abe−1a. Then w = α(abeabe)(abe−1abe)k(abe−1abe−1)aδ.
Let y be the first a after α, β = (beabe)(abe−1abe)k−1(abe−1abe−1), x the last b
in the subsequence (abe−1abe)k, γ = abe−1abe−1, and the second y be the last a.
Then we get |aβ|a · |bγ|b = (2e−1) ·(2k+2) ·2 = (k+1) ·(2e−1) ·2 = |aβ|b · |bγ|a,
and thus |aβ|a · |bγ|b �> |aβ|b · |bγ|a. Hence, by Fact 5 w is unsolvable and thus
we obtain an obvious contradiction, finishing the proof. ��
Corollary 2. No solvable circular block-word has abeabe and abe−1abe−1 as
block-subwords.

Proof. In such a case we could always ‘put’ the occurrence of abeabe ‘before’
that of abe−1abe−1, due to the cyclic character of circular words.

Proposition 7. A solvable word cannot have both abeabe and abe−1abe−1a as
subwords, after any previous occurrence of b. ��

An Efficient Characterization of Petri Net Solvable Binary Words 219

Proof. By Proposition 6, the only possibility is that we will have abe−1abe−1a
before abeabe, possibly sharing the last a of the first, but then, reasoning as in the
proof of Proposition 6, we should have w = αb(abe−1abe−1)(abeabe−1)k(abeabe)δ.
Taking as y the first b after α, β = (abe−1abe−1)(abeabe−1)k, as x the first a
in the last block (abeabe), γ = beabe−1, and as second y the last b, we get
|bβ|b · |aγ|a = (2e − 1) · (2k + 2) · 2 �> (2k + 2) · (4e − 2) = |bβ|a · |aγ|b, obtaining
again the unsolvability of w. ��
Remark 1. It is important to observe that the total duality we had in the case
of cyclic solvable words, as shown by Proposition 5, is partially lost when we
consider solvable (plain) words. In particular, from Proposition 6 we conclude
that ab2ab2abab is not a solvable word, while ababab2ab2 is solvable, because
it can be decomposed as a(babab2ab2), and babab2ab2ab (or babab2ab) is cyclic
solvable. However, when considering prefixes of cyclic solvable words, this duality
remains valid, since it can be obtained as an immediate consequence of the
following more general result.

Proposition 8. Let abx1abx2 . . . abxm be a block balanced e-block-word. Then
ab2e−1−x1ab2e−1−x2 . . . ab2e−1−xm is block balanced.

Proof. We only need to observe that
∑k

i=j xi−1

k−j+1 <
∑m

i=l xi+1

m−l+1 is equivalent to
∑k

i=j(2e−1−xi)+1)

k−j+1 >
∑m

i=l(2e−1−xi)−1

m−l+1 , by simply observing that the following

holds:
∑k

i=j(2e − 1 − xi) = (2e − 1)(k − j + 1) − ∑k
i=j xi. ��

As we observed for cyclic solvable block-words, conjugation also preserves
plain block balancing, and this allows to simplify some proofs, by reducing the
number of cases, as in the proof of Theorem8 below.

Theorem 8. Let w = abx1abx2 . . . abxm be a block balanced derivable word, with
∂(w) = ∂2(w). Then ∂(w) = 1y021y12 . . . 21ym+1 is semi-derivable and consid-
ering dw = 21ys . . . 21yt , where s = 0 if y0 = min{y1, . . . , ym} + 1 and s = 1
otherwise; and t = m + 1 if ym+1 = min{y1, . . . , ym} + 1 and t = m otherwise,
the block-subword φ1→a,2→b(dw) is block balanced.

Proof. 1. Suppose that yi1 < yi2 − 1, where i1, i2 ∈ {1, . . . , m}. Then, the cor-
responding subwords in w, w1 = abe−1(abe)y1abe−1a and w2 = (abe)y2a,
are clearly not block balanced since ey1+2(e−1)+1

y1+2 ≤ ey2−1
y2

is equivalent to
y1 ≤ y2 − 2.

2. Exactly as above, once w contains a full sequence of blocks (abe)f−1, neither
y0 nor ym+1 can be greater than f .

3. First notice that ∂(w′) can indeed contain a nonempty prefix 1y0 , but at
the moment we will ignore this, assuming that y0 = 0. In the same way,
we will remove the (possibly) incomplete final block 21ym+1 , only keeping it
when ym+1 = e. Note that the obtained word 21y1 . . . 21yt remains block bal-
anced. Let us suppose that this is not the case. Then we have two subwords,

21yj . . . 21yj+m−1 and 21yk . . . 21yk+r−12, with
∑j+m−1

i=j yi−1

m ≥
∑k+r−1

i=k yi+1

r .

220 D. de Frutos Escrig et al.

To simplify, we write T1 =
∑j+m−1

i=j yi and T2 =
∑k+r−1

i=k yi, so that we
have rT1 − r ≥ mT2 + m.
Let us consider the two subwords of w′ that generate the two subwords
of the derivative given above, w1 = abe−1(abe)yj . . . abe−1(abe)yj+m−1 and
w2 = abe−1(abe)yk . . . abe−1(abe)yk+r−1 . We take w′

1, where w1 = abe−1w′
1,

and w′
2 = w2abe−1. Hence |w′

1|b−1
|w′

1|a ≥ |w′
2|b+1

|w′
2|a .

Since we have |w′
1|b = eT1 + (m − 1)(e − 1), |w′

1|a = T1 + (m − 1),
|w′

2|b = eT2 + (r + 1)(e − 1), and |w′
2|a = T2 + r + 1, we obtained exactly the

same situation as in the proof of Theorem 2.
And this gives (|w′

1|b − 1)|w′
2|a ≥ (|w′

2|b + 1)|w′
1|a ⇐⇒ rT1 − r ≥ mT2 + m.

Finally, when the initial prefix is 1e, the result remains valid for the whole
word 21y0 . . . 21yt . Note that, although we have introduced an additional 2 at
the beginning of the derivative in the case y0 = 0, we have also ‘removed’ the
prefix abe−1 of w1, and proceded with its continuation w′

1. Now, we simply
avoid that complication, working with the full word w1, and the rest of the
proof works in the same way as before. ��
Now we can present the proofs of Theorems 6 and 7:

Proof (Theorem 6). By the induction on the number of blocks of w. The base
case (i.e., 0) is vacuous. For the inductive case, we first apply Proposition 8 if
needed, so that we can assume ∂(w) = ∂2(w). Hence, we can apply Theorem 8
to conclude that φ1→a,2→b(dw) is also block-balanced, so that we can apply
the induction hypothesis, getting that it is a prefix of a cyclic solvable word,
cw. Now, we can consider c =

∫
e,2

cw, that contains w as a subword, since
the removed prefix and suffix (if that was the case) would clearly fit into the
blocks before and after dw in cw. Finally, to complete the proof, we just need to
undo the conjugation, if that was applied at the beginning. By Proposition 8 and
Proposition 5 conjugation preserves cyclic solvability. Hence it can be applied to
prefixes of the form w = abx1abx2 . . . abxma. ��
Proof (Theorem 7). The result follows immediately from Theorem 6, using the
arguments from the proof of Proposition 3. ��

We show that the conditions characterizing solvable words in [5], recalled
here as Theorem 5, are nearly equivalent with our block balancing property, as
the following lemmata states:

Lemma 1

1. Let w be a word and its decomposition w = αyβxγyδ disproves the solvability
of w with the use of Theorem5. Then β = xβ′y, and δ = ε or δ = xδ′.

2. Let w = akw′ and w′ = bx0abx1 . . . abxmabxm+1 , where x1, . . . , xm ∈ {e, e− 1}
and x0 > 0, for e = min{x1, . . . , xm} + 1 > 1. Then:
(a) If y = a, then yβ = abxi . . . abxi+n1−1−1 and xγ = babxi+n1 . . . bxi+n1+n2−1 .
(b) If y = b, then yβ = babxi . . . abxi+n1−1 and xγy = abxi+n1 . . . bxi+n1+n2−1 .

An Efficient Characterization of Petri Net Solvable Binary Words 221

Proof. (1) If β = yβ′, then β′ makes |β′|y < |β|y, and thus can be used instead
of β. And, similarly, if β = β′x, then we can take γ′ = xγ instead of γ; while
if δ = yδ′, we can take γ′ = γy instead of γ.

(2) This is an application of part (1) to this particular class of words. ��
Lemma 2. Let w = akw′ and w′ = bx0abx1 . . . abxmabxm+1 , where x1, . . . , xm ∈
{e, e − 1} and x0 > 0, for e = min{x1, . . . , xm} + 1 > 1, and the decomposition
w = αyβxγyδ disproves its solvability with the use of Theorem5. Then:

1. If yβ = abxi . . . abxi+n1−1−1 and xγ = babxi+n1 . . . bxi+n1+n2−1 , then yβb
 γ,
and so abxi . . . abxm+1 is not a prefix of a cyclic solvable word.
Conversely, if u
 v are sequences of blocks with |u|b−1

|u|a ≥ |v|b+1
|v|a , then αuvδ

is unsolvable, for all α and δ.
2. If yβ = babxi . . . abxi+n1−1−1 and xγy = abxi+n1 . . . bxi+n1+n2−1 , then β
 aγb,

and so abxi . . . abxm+1 is not a prefix of a cyclic solvable word.
Conversely,if u
 v are sequences of blocks with |u|b+1

|u|a ≤ |v|b−1
|v|a , then αbuvδ

is unsolvable, for all α and δ.

Proof. (1) |aβ|a
|aβ|b = |u|a

|u|b−1 ≤ |v|a
|v|b+1 = |bγ|a

|bγ|b .

(2) |bβ|b
|bβ|a = |u|b−1

|u|a ≤ |v|b+1
|v|a = |aγ|b

|aγ|a .
Note that these two cases are not totally symmetric, because in the second case
introducing at least one b before u is needed to obtain an unsolvable word. ��

And finally we can present the proof of our main theorem.

Proof (Theorem 4). Let w = akw′ and w′ = bx0abx1 . . . abxmabxm+1 , where
x1, . . . , xm ∈ {e, e − 1} and x0 > 0, for e = min{x1, . . . , xm} + 1 > 1. We
consider two possible cases:

Case 1: k = 0. Then w = bx0 . . . abxmabxm+1 . Suppose that the word
w′ = abx1 . . . abxmabxm+1 cannot be extended to a cyclic solvable word. Then, by
Theorem 7, there exists a pair of contiguous block-subwords u
 v of w′. This
gives us w = αbuvδ, for some words α and β, and we can apply one of the cases
of Lemma 2, whether we have |u|b−1

|u|a ≥ |v|b+1
|v|a or |u|b+1

|u|a ≤ |v|b−1
|v|a , getting in both

cases that w would be unsolvable, against the hypothesis.
Case 2: k > 0. Then we have w = akbx0abx1 . . . abxmabxm+1 , and applying

Lemma 2(2) again, if abx1 . . . abxmabxm+1 would not be a prefix of a cyclic solvable
word, then babx1 . . . abxmabxm+1 would not be solvable, which cannot be the case.
Therefore, abx1 . . . abxmabxm+1 must be a prefix of a cyclic solvable word, and
then be−1abx1 . . . abxmabxm+1 is also a prefix of a cyclic solvable word.

Then, the only remaining case to check corresponds to x0 = e, but then
w′ = bx0 . . . abxmabxm+1 can be extended to a cyclic solvable word iff aw =
w′ = abx0 . . . abxmabxm+1 can be extended. But if this would not be the case,
since w is assumed to be solvable, there should exist a decomposition disproving
its solvability with i = 0. This corresponds to the case y = a. But then, by
Lemma 2(2), we conclude again that w is unsolvable. ��

222 D. de Frutos Escrig et al.

4.1 An Efficient Algorithm to Detect Solvable Words

Having established that the extensions of prefixes of cyclic solvable words with
an additional prefix of the form xk are the only solvable words, we can now
verify solvability. For this purpose we use the constructive proof of Theorem8,
combined with Theorem 2, that states that derivation both preserves and reflects
cyclic solvability.

Theorem 9 (efficient recursive algorithm to check solvability). The fol-
lowing prolog-like algorithm with clauses applied in indicated order checks in
linear time the solvability of w.

– if w = xkyw′ and k > 0
then Solvable(w) = PrefixCyclicSolvable(yw′)

– if w = αxxβyyγ and x �= y
then ¬PrefixCyclicSolvable(w)

– if w = xk1yjxk2 , for k1, k2 ∈ N and j ∈ {0, 1}
then PrefixCyclicSolvable(w)

Now w = bx0abx1abx2 . . . abxmabxm+1 , where m ≥ 1 and x1, . . . , xm ≥ 1 and
x0, xm+1 ∈ N.

– if xi > xj + 1, for some j ∈ {1, . . . ,m} and i ∈ {0, . . . , m + 1}
then ¬PrefixCyclicSolvable(w)

– if x1 = · · · = xm

then PrefixCyclicSolvable(w)
– if x0 < xj, for some j ∈ {1, . . . , m}

then PrefixCyclicSolvable(w) = PrefixCyclicSolvable(abx1 . . . abxm+1)
else PrefixCyclicSolvable(w) = PrefixCyclicSolvable(abx0 . . . abxm+1)

– if xm+1 < xj, for some j ∈ {1, . . . , m}
then PrefixCyclicSolvable(w) = PrefixCyclicSolvable(abx1 . . . abxma)
else PrefixCyclicSolvable(w) = PrefixCyclicSolvable(abx1 . . . abxm+1a)

– if w = (abe)f (abe−1abe)k(abe−1)g, for some f, g ∈ {0, 1} and k ∈ N

then PrefixCyclicSolvable(w)
else PrefixCyclicSolvable(w) = PrefixCyclicSolvable(∂(w))

Proof. Follows immediately from Theorems 2 and 8. Applying the latter we know
that whenever the algorithm declares w not extendable to a cyclic solvable word,
because its derivative was proved not to be such, the decision is sound. And if the
algorithm, after some derivatives, finally reaches some trivial prefix of a cyclic
solvable word, then the application of the former theorem proves that after the
corresponding number of integrations, we would obtain a cyclic solvable word
that extends the considered word w.

The algorithm terminates in linear time, since |w| ≥ 2 · |∂w|. ��
Let us consider w = b8(ab)2ab2(ab)4ab2(ab)3ab2(ab)4ab2(ab)4ab2ab. After

removing the prefix b8, we obtain w′ with ∂(w′) = 1221421321421421, which once
the short prefix and suffix are removed, can be translated to w′′ = ab4ab3ab4ab4a.

An Efficient Characterization of Petri Net Solvable Binary Words 223

Now we have ∂(w′′) = 1212, which produces the simple word ab2, which clearly
is a prefix of a cyclic solvable word. Thus w is solvable.

One can show in an ‘effective’ way that the analysis was correct by con-
structing the primitives of the involved words, that will be cyclic solvable words
extending them (see Fig. 2). In particular, we see first that 212 proves that ∂(w′′)
is a prefix of (1)(212)(21), while the first integration produces the cyclic solv-
able word cw′′ = ab4ab3ab4, by means of which we see that w′′ is a prefix
of cw′′ ·cw′′. And finally, a new integration produces the cyclic solvable word
cw′ = (ab)2ab2(ab)4ab2(ab)3ab2(ab)2, by means of which we see that taking
w = b8w′, w′ is a prefix of cw′ ·cw′.

bbbbbbbbabababbabababababbababababbabababababbabababababbab

b8 (ab)2abb (ab)4 abb (ab)3 abb (ab)4 abb (ab)4 abbab

12 2 14 2 13 2 14 2 14 2 1
a b4 a b3 a b4 a b4 a

1 2 1 1
a b b

b b a b b a

ab2b2 a b4 a b3 a b4 a b4 a b b2

(ab)2abb (ab)4 abb (ab)3 abb (ab)4 abb (ab)4 abbab

bbbbbbbbabababbabababababbababababbabababababbabababababbababababbabab

Fig. 2. Procedure of checking solvability and deriving a circular word for suffix.

5 Characterization of Reversible Binary Words

We start by recalling the definitions of strict reverses and reversible words. A
(strict) reverse of a transition t ∈ T in a net N = (P, T, F,M0) is a new transition
t such that F (p, t) = F (t, p) and F (t, p) = F (p, t). Following [3], we now relate
the reversibility of all transitions with the solvability of the reversed sequence.

A binary word w = t1 . . . tn is reversible if the following flts is solvable:

TSw = ({0, . . . , n}, {a, b}, {(i − 1, ti, i), (i, ti, i − 1) | 0 < i ≤ n}, 0).

Fact 5. A solvable binary word w is reversible iff wrev is solvable.

We continue by showing that any cyclic solvable word is reversible, and so
any prefix of a cyclic solvable word is also reversible.

Proposition 9. A binary word w is cyclic solvable iff wrev is cyclic solvable.

Proof. By Fact 3, any cyclic solvable word w can be generated by a net NAB ,
with A = |w|a, B = |w|b. One can show that by reversing the arrows in NAB ,
and starting from the same initial marking, we generate exactly wrev , recovering
again the initial marking, and thus proving that wrev is cyclic solvable. ��

224 D. de Frutos Escrig et al.

Corollary 3. Each cyclic solvable binary word is reversible.

Proof. Follows immediately from Fact 5 and Proposition 9. ��
We can further illustrate the last result by showing that in every NAB =

({pa, pb}, {a, b}, F,M0) ∈ NAB one can introduce strict reverses without enlarg-
ing the set of reachable markings. We define NAB = ({pa, pb}, {a, a, b, b}, F ,M0),
where the non-zero values of F are F (pa, a) = F (a, pb) = F (pb, a) = F (a, pa) =
A, and F (pb, b) = F (b, pa) = F (pa, b) = F (b, pb) = B. Similarly as in NAB , every
reachable marking M of NAB satisfies the same property as the initial marking,
namely M(pa) + M(pb) = A + B − 1, and the net is reversible (i.e., from every
marking one can reach the initial marking). As a consequence, in each reachable
marking one can fire either a or b. Similarly, in each reachable marking, one can
fire either a or b. Suppose we can fire a at M . Then we cannot fire b, hence we
go from M0 to M , firing a as the last transition. The case of the initial marking
is treated similarly, thanks to the reversibility of NAB .

The result above leads to a characterization of reversible words.

Proposition 10. A binary word w = akbαabm is reversible iff both ws = bαabm

and wp = akbαa are prefixes of cyclic solvable words.

Proof. In order to be reversible, w must be solvable, and so ws must be a prefix
of a cyclic solvable word. Moreover, wrev must also be solvable, so that wrev

p

must be a prefix of a cyclic solvable word. Then, by applying Proposition 9, wp

must be also a prefix of a cyclic solvable word. ��
Corollary 4. One can decide in linear time whether a binary flts can be
reversed.

Proof. Given a word w = akbαabm, we can apply the algorithm in Theorem9 to
both akbαa and bαabm.

Note: The result could also be obtained directly, by applying the character-
ization from Proposition 10, and so applying the algorithm from Theorem9 to
both akbαa and bmaαrevb. ��

It seems that the above characterization gives us some space to find reversible
words that are not prefixes of cycle solvable words, but this can only happen in
very few simple cases.

Theorem 10. Apart from prefixes of cyclic solvable binary words, the only
reversible words are those of the form ak(ba)ibm or bk(ab)iam, where i ∈ {0, 1}
or k = 2 = m.

Proof. First, it is clear that all the ‘exceptions’ in the statement are indeed
solvable and reversible. Moreover one can see that they must appear indeed as
exceptional cases, since they do not correspond to prefixes of cyclic solvable
words, out of a few trivial instances.

Now we concentrate on the words w = xnyuztm with x �= y, z �= t ∈ {a, b},
such that w′ = yuz contains either aa or bb. We assume the latter. Using the

An Efficient Characterization of Petri Net Solvable Binary Words 225

results about the decomposition of solvable words, we know that all the blocks
abi, and reversed blocks bia in w′, must be either abe−1 or abe (resp. be−1a or
bea), for some e ≥ 2. Moreover, if x = a then n = 1, and when t = a then
m = 1. While when x = b, the cases in which m < e will immediately generate a
prefix of a cyclic solvable word, since wp = xnw′ is such a word; and, similarly,
when t = b. Hence, we can concentrate in the following on the case m = e. Next
we distinguish the remaining cases, showing that they never produce reversible
words which are not prefixes of cyclic solvable words:

– If x = b, then awp is a prefix of a cyclic solvable word, and then aw remains
solvable. Now, using our characterization of solvable words, w must be a
prefix of a cyclic solvable word. The case t = b can be dealt with in a similar
(symmetric) way.

– If x = a and t = a, we consider the contiguous blocks of b’s, bix and biy .
• If ix = e (resp. iy = e), then the cyclic word containing ws = w′ym (resp.

wp) clearly contains one a before (resp. after) its occurrence, and so w
itself is contained in that cyclic word.

• If ix = e−1 and iy = e−1 and w is not a prefix of a cyclic solvable word,
then w contains two mutually unbalanced contiguous block-subwords that
totally cover wp, since otherwise they would also prove that either ws or
wp would not be the prefix of some cyclic solvable word, contradicting our
assumption. But since the two blocks at the end of these block-subwords
will be the same (abe−1), we could remove them getting two new unbal-
anced subwords that now do not cover wp, something that we have already
shown to be impossible.

As a result, if w is not a prefix of a cyclic solvable word, then w′ = yuz
contains neither aa nor bb. Hence it is of the form (ab)i or (ba)i. ��

6 Conclusions

In this paper, we discussed three classes of binary words from the viewpoint of the
solvability of the transition systems related to them. For each class, we described
a linear algorithm which verifying its membership. Based on our results, one can
show every cyclic solvable word is reversible, and every reversible word is solvable
(moreover, the two implications cannot be reversed).

A natural direction for further research is to consider larger alphabets, and
more sophisticated flts’s, for example, those having the shape of directed rooted
trees.

Acknowledgement. This research was supported by Cost Action IC1405. The first
author was partially supported by the Spanish projects TRACES (TIN2015-67522-C3-
3) and N-GREENS (S2013/ICE-2731).

226 D. de Frutos Escrig et al.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47967-4

2. Barylska, K., Best, E., Erofeev, E., Mikulski, �L., Pi ↪atkowski, M.: Conditions for Petri
net solvable binary words. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions
on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 137–159.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 7

3. Barylska, K., Erofeev, E., Koutny, M., Mikulski, �L., Pi ↪atkowski, M.: Reversing tran-
sitions in bounded Petri nets. Fundam. Inform. 157(1–4), 341–357 (2018)

4. Barylska, K., Koutny, M., Mikulski, �L., Pi ↪atkowski, M.: Reversible computation vs.
reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018)

5. Best, E., Erofeev, E., Schlachter, U., Wimmel, H.: Characterising Petri net solvable
binary words. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698,
pp. 39–58. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4 4

6. Erofeev, E., Barylska, K., Mikulski, �L., Pi ↪atkowski, M.: Generating all minimal Petri
net unsolvable binary words. In: Proceedings of PSC 2016, pp. 33–46 (2016)

https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-662-53401-4_7
https://doi.org/10.1007/978-3-319-39086-4_4

Pattern Matching in Link Streams:
A Token-Based Approach

Clément Bertrand1(B), Hanna Klaudel1, Matthieu Latapy2,
and Frédéric Peschanski2

1 IBISC, Univ Evry, Université Paris-Saclay, 91025 Evry, France
clement.bertrand@univ-evry.fr

2 LIP6, Sorbonne Université, Paris, France

Abstract. Link streams model the dynamics of interactions in com-
plex distributed systems as sequences of links (interactions) occurring at
a given time. Detecting patterns in such sequences is crucial for many
applications but it raises several challenges. In particular, there is no
generic approach for the specification and detection of link stream pat-
terns in a way similar to regular expressions and automata for text pat-
terns. To address this, we propose a novel automata framework integrat-
ing both timed constraints and finite memory together with a recognition
algorithm. The algorithm uses structures similar to tokens in high-level
Petri nets and includes non-determinism and concurrency. We illustrate
the use of our framework in real-world cases and evaluate its practical
performances.

Keywords: Timed pattern recognition · Finite-memory automata
Timed automata · Complex networks · Link streams

1 Introduction

Large-scale distributed systems involve a great number of remote entities (com-
puter nodes, applications, users, etc.) interacting in real-time following very com-
plex network topologies and dynamics. One classical way to observe the behavior
of such complex system is to take snapshots of the system at given times and
represent the global state as a very large and complex graph. The behavior of the
system is then observed as a timed sequence of graphs. The algorithmic detection
of patterns of behaviors in such large and dynamic graph sequences is a very
complex, most often intractable, problem. The link stream formalism [11] has
been proposed to model complex interactions in a simpler way. A link stream is
a sequence of timestamped links (t, u, v), meaning that an interaction (e.g. mes-
sage exchange) occurred between u and v at time t. The challenge is to develop
analysis techniques that can be performed on the link streams directly, without
having to build the underlying global graph sequence. The patterns of interests
in link stream involve both structural and temporal aspects, which raises serious
challenges regarding the description of such patterns and the design of detection
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 227–247, 2018.
https://doi.org/10.1007/978-3-319-91268-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_12&domain=pdf

228 C. Bertrand et al.

algorithms. The problems has been mostly approached from two different angles.
First, recognition algorithms have been developed for specific patterns such as
triangles in [12]. The focus is on the performance concerns, involving non-trivial
algorithmic issues. At the other end of the spectrum, complex event processing
(CEP) has been proposed as a higher-level formalism to describe more complex
interaction patterns in generic event streams [1,19]. These generic works do not
handle the specificity of the input streams, in particular the real-time and graph-
related properties of link streams. Our objective is to develop an intermediate
approach, generic enough to cover a range of interesting structural and tem-
poral properties, while taking into account the specificities of the link streams
abstraction.

Our starting point is that of regular expressions and finite state automata
for textual patterns. We interpret link streams as (finite) words and develop a
pattern language involving both structural and temporal features. We propose
a new kind of hybrid automata, the timed ν-automata, as recognizers for this
pattern language. They are build upon finite state automata (FSA) with both
timed [2,3] and finite-memory [6,7,10] features. The patterns themselves can be
specified by enriched regular expressions, and “compiled” to timed ν-automata.
The problem of timed pattern matching has been addressed only quite recently in
e.g. [14,15,17,18]. While our model bears some resemblance with these propo-
sitions, the main novelty is the study of pattern matching in the presence of
real-time constraints together with finite memory. To our knowledge this has not
been addressed in the literature.

One interesting aspect of the automata model we propose is that the recog-
nition principles are based on a non-trivial token game. Indeed, our main inspi-
ration comes from high-level Petri nets. Based on this formalism, we developed a
prototype tool that we applied to real-world link streams analysis. Performance
issues are raised but the results are encouraging. In particular, our experiments
confirm the following key fact: timing properties often help in reducing the per-
formance cost induced by storage of information in memory.

The outline of the paper is as follows: In Sect. 2 we introduce the principles
of finding patterns in link streams. The automata model and pattern language
are formalized in Sect. 3. The prototype tool and practical experiments are then
discussed in Sect. 4.

2 Patterns in Link Streams

We consider link streams [11] defined as sequences of triples (ti, ui, vi), meaning
that we observe a link between nodes ui and vi at time ti. Figure 1 (left) shows
an example of a link stream that models interactions between nodes a, b, c and
d. For example at time t = 6 a link from node d to node b is observed, which
corresponds to a triple (6, d, b) in the stream.

A pattern in such a link stream can be seen as a series of (directed) subgraphs
observed in a given time frame. For example, at time t = 15 we observe the
subgraph described on the right of Fig. 1. This graph has been formed in the

Pattern Matching in Link Streams 229

0 2 4 6 8 10 12 14 16 18 20

d

c

b

a

a

b

c

d

Fig. 1. A link stream (left) and its graph projection in time interval [8, 15] (right).

depicted time frame of 7 s. One trivial way to detect such patterns is to build
all the intermediate graphs and solve the subgraph isomorphism problem at
each time step. This is however out of reach in most situations most notably
because: (1) real-world link streams involve very large graphs, and (2) subgraph
isomorphism is a NP-complete problem. Hence, in practice dedicated algorithms
are developed for specific kinds of subgraphs. One emblematic example is the
triangle for which specialized algorithms have been developed. A triangle is
simply the establishment of a complete subgraph of three nodes, in a directed
way. In network security this is a known trigger for attacks: two nodes that may
be identified as “attackers” negotiate to “attack” a third node identified as the
“target”. Such a trigger can be observed in Fig. 1 (right) with a and d attackers
targeting b. In real-world link streams, detecting such triangles is in fact not
trivial, as explained for example in [12].

In this paper, our motivation is to develop a more generic approach able to
handle not only such triangles but also other kinds of patterns: directed polygons,
paths, alternations (e.g. links that appear periodically), etc. We also require the
matching algorithms to be of practical use, hence with efficiency in mind. Our
starting point is the theory of finite-state automata (FSA) and regular expres-
sions. Indeed, if we ignore the timestamps, a link stream is similar to a finite
word, each symbol being a directed link (a pair of nodes). For example in the
time frame (8, 15) we observe the following “word”:

(a, b)(d, b)(a, c)(a, d)(c, b).

Based on such a view, we can use FSA as pattern recognizers and regu-
lar expressions as a high-level specification language. A regular pattern for the
triangle example is as follows:

(
((a → d) | (d → a)) · ((a → b) ⊗ (d → b))

)
⊗ (@ → @)∗

This expression uses classical regular constructs such as concatenation ·, disjunc-
tion |, the Kleene star ∗ and shuffle ⊗. The symbol @ is used as a placeholder
for any possible node, hence (@ → @) means “any possible link”. Based on

230 C. Bertrand et al.

such specification, it is easy to build a finite-state automaton to recognize the
triangles in an untimed link stream very efficiently.

However, the “regular language” approach fails to capture the timing prop-
erties of link streams. What we need is a form of real-time pattern matching.
Quite surprisingly, there are very few research works addressing this problem-
atic, despite the broad success of timed automata [2] in general. An important
starting point is the timed regular expressions formalism [3]. The basic principle
is to interpret input words, hence link streams, as timed event sequences: a suc-
cession of either symbols or delays corresponding to a passage of time. Below is
an example of a link stream as a timed event sequence:

(a, b)2(d, b)2(a, c)1(a, d)1(c, b).

A timed regular expression for the triangle pattern can then be specified, e.g.:
(
((a → d) | (d → a)) · 〈(a → b) ⊗ (d → b)〉[0,1]

)
⊗ (@ → @)∗

The delay construction 〈S〉[x,y] says that the subpattern S must be detected in
time interval [x, y]. For the triangle pattern it means that the nodes a and d are
only observed as “attacking” target b if they simultaneously link to b in the time
interval of one second.

Another fundamental aspect that we intend to capture in link stream patterns
is that of incomplete knowledge. In classical and timed automata, symbols range
over a fixed and finite alphabet. In link streams, this means that the nodes of the
graphs must be known in advance, which is in general too strong an assumption.
In an attack scenario, for example, we must consider an open system: it is very
likely that only the target is known in advance, and the two attackers remain
undisclosed.

The kind of pattern we intend to support is e.g.:
(
(�X → �Y) · 〈(X → b) ⊗ (Y → b)〉[0,1]

)
⊗ (@ → @)∗.

In this pattern, the variables X and Y represent unknown nodes corresponding
to two “attackers”. The construction �X means that the input symbol (hence
node) associated to X must be fresh, i.e., not previously encountered. In case of
a match this node is associated to X and kept in memory. With the operator X!
(the dual of �X), after matching a value associated to variable X, all the values
associated to it are discarded (i.e. the associated set is cleared).

The sub-pattern (�X → �Y) describes a link between two fresh nodes. Note
that since Y is matched after X, the freshness constraints impose that its asso-
ciated node is distinct from the one of X. To match the sub-expression (X → b),
the input must be a link from the node already associated with X in memory
to node b. This is a potential attack on the target b.

To handle such dynamic matching, one must consider a (countably) infinite
alphabet of unknown symbols. This has been studied in the context of quasi-
regular languages and finite memory automata (FMA) [10]. In this paper, we

Pattern Matching in Link Streams 231

q0 q1
q2

c ≤ 1
q3

q4

a νX, X

c := 0 X, νX

b

c ∈ [0, 1]

b

νX, X

c ∈ [0, 1]

q5

q6

q7

@ @

@@

@ @

Fig. 2. Automaton for (@ → @)∗ ⊗
(
(a → b) ∨ a → �X · 〈(X! → �X)∗ · (X! → b)

)
〉[0,1]

build upon the model of ν-automata that we developed in a previous work [6,7].
It is a variant of FMA, which is tailor-made for the problem at hand. If compared
to the classical FMA model, the ν-automata can be seen as a generalization to
handle freshness conditions [13].

The resulting mixed model of timed ν-automata is quite capable in terms
of expressiveness. The automaton formalism is a combination of both the timed
constraint and clocks reset from timed automaton and the memory management
of the ν-automaton. As an illustration, Fig. 2 depicts an automaton that detects
in a link stream all the paths from a node a to a node b such that each link is
established in at most one second. We suppose that the automaton is defined
for the alphabet Σ = {a, b}, i.e., only the nodes a and b are initially known. The
labels νX,X and X, νX are the automata variants of the operators �X and X!
discussed previously. An example of an accepting input is:

(a, y) 0.1 (y, z) 0.3 (y, b).

Initially, in state q0 the known symbol a is consumed while transiting to state
q1. The unknown symbol y is saved in the memory associated to variable X
while transiting to state q2. This only works because the symbol y is fresh, i.e.,
not previously encountered. The delay of 0.1 s is consumed in state q2 while
increasing the value of the clock c to 0.1. The state constraint c ≤ 1 is still
satisfied. The next input y may either lead to q3 (because it was previously
associated to X) or q7 (because the symbol @ accepts any input). The recognition
principle is non-deterministic so both possibilities will be tried:

– if the transition q2
X,νX−−−−→ q3 is taken, X is no longer associated to any symbol

in q3. The next input is the unknown symbol z. From q3, only the transition
q3

νX,X−−−−→
c∈[0,1]

q2 is enabled. In q2 the variable X would be associated to z.

232 C. Bertrand et al.

However, this path is doomed because the next (and last) link does not start
from z. Then at the end of the input sequence the path leads to state q2 which
is not a terminal state.

– if the transition q2
@−→ q7 is taken then the value associated to X is not

discarded and the input z leads back to the state q2 through transition q7
@−→

q2. The input 0.3 increases the clock value to c = 0.4. The next input y may
again lead either to q7 or q3 as in the previous case. In state q3 the input
b enables only the transition q3

b−−−−→
c∈[0,1]

q4, which leads to the final state q4

(since b ∈ Σ).

We reach an accepting state because the clock value c = 0.4 is still under
1 s. On the other hand, if the second delay is not 0.3 but e.g., 1.0 then the link
stream is not recognized because of a timeout in state q2.

3 Automata Model and Recognition Principles

The automata model we propose can be seen as a layered architecture with:
(1) a classical (non-deterministic) finite-state automata layer, (2) a timed layer
(based on [3]) and (3) a memory layer (based on [7]). These layers are obviously
dependent but there is a rather clean interface between them.

3.1 The Timed ν-Automata

Definition 1. A timed ν-automaton is a tuple:

A = (Σ,Q, q0, F,Δ︸ ︷︷ ︸
finite-state

, C, Γ︸︷︷︸
timed

, U , V︸︷︷︸
memory

)

The basic structure is that of a finite-state automaton. We first assume a finite
alphabet of known symbols denoted by Σ. The finite set Q is that of locations1.
The initial location is q0 and F is the set of final locations. The component Δ
is the set of transitions (explained in details below).

This basic structure is extended for the timed constraints with a set C of
clocks (ranging over c0, c1, . . .) and a map Γ that associates to each location
a set of timed constraints. A time constraint is a time interval of the form
[min,max] ∈ I = [R≥0, (R≥0 ∪ {+∞})] giving the minimum and maximum
values of the clock so that the automaton can “live” in the given location. A
transition can also be annotated with time constraints to restrict its firing. Note
that the maximum value may be infinite, which means there is no time limit
for crossing the transition. The only operations we need on intervals is that of
intersection I1 ∩ I2 and membership c ∈ I.
1 The notion of a location here corresponds to a state in classical automata theory. We

rather use the term state in the sense of actual state or configuration (as in FMAs
[10]), i.e., an element of the state-space: a location together with a memory content
and clock values.

Pattern Matching in Link Streams 233

The memory component is a finite set V of variables (ranging over X,Y, . . .)
for the memory constraints. Each variable will be associated to a (possibly
empty) set of unknown symbols ranging over a countably infinite alphabet
denoted by U . These symbols are all the symbols that may appear in an input
sequence, which are not in Σ. Unlike FMA, which are limited by the number
of their registers, the ν-automata use variables of dynamic size, which allows to
recognize words composed of an arbitrary number of distinct unknown symbols.

Definition 2. A transition t ∈ Δ of a timed ν-automaton is of the form:

q
ν, e, ν−−−−→
γ, ρ

q′

with q (res. q′) the starting (resp. ending) location, ν ⊂ V a set of variable
allocations, ν ⊂ V a set of variable releases. The event e is either a symbol in
the finite alphabet Σ, a use of a variable in V or an ε. The timed constraint γ is
a guard function of type C → I, associating to each clock a unique time interval.
Finally, ρ is the set of clocks to be reset to 0 while crossing the transition. To
simplify the notation of transitions, the empty sets are omitted.

3.2 Dynamics

For a variable X ∈ V , an allocation is a set MX of unknown symbols, a finite
subset of U , together with a flag. The flag may be M•

X (read mode, default)
or M◦

X (write mode). In read mode, the only available operation is to check if
an input symbol is already present in M•

X . In write mode, only a fresh symbol
α /∈ ⋃

X∈V MX may be added. An important property of the memory model is
the following.

Definition 3. A token is a pair k = (ktime, kmem) with ktime a function from
clocks to clock values, and kmem a mapping from variables to sets of allocations.

Definition 4. A configuration of an automaton is a mapping S from locations
Q to corresponding reachable clocks and memory valuations2.

We denote by S(q) the set of tokens associated to location q.

Property 1. INJ (memory injectivity)
For any pair of distinct variables X,Y we have MX ∩ MY = ∅.

We denote by INJ(k) the fact that token k respects Property 1. Although most
memory models do not work like this, this injectivity property is an essential
feature of finite-memory automata models (cf. [10]).

The initial configuration of every timed ν-automaton contains the single
token ({X → ∅•|∀X ∈ V }, {c → 0|∀c ∈ C}) in the initial location. The recog-
nition of a pattern in an input sequence in this setting is a non-deterministic
2 We reuse the token notion of high-level Petri nets because it is quite similar concep-

tually. The configuration roughly corresponds to the marking of a Petri net.

234 C. Bertrand et al.

process. It corresponds to the propagation of tokens over locations of the automa-
ton representing the pattern. The input is accepted if after reading the whole
input sequence there is at least one token in some final location. The token itself
allows to retrieve the admissible clock values and memory content.

The core of the recognition principle is a partial function δ that takes a token,
a transition, and an input symbol (ε if none) to produce either a new token to
put into the destination location, or nothing (⊥) if the transition is not enabled.

Definition 5. (update) Consider the transition t = q
ν,e,ν−−−→
γ,ρ

q′, a token k =

(ktime, kmem) present in q, and α an input symbol. If we pose k′
time = δtime(t, ktime)

and k′
mem = δmem(t, kmem, α), then the next token to put in location q′ is:

δ(t, (ktime, kmem), α) =
{

(k′
time, k

′
mem) if k′

time �= ⊥ and k′
mem �= ⊥

⊥ otherwise

The next token only exists if neither the functions for time update δtime or
memory update δmem yield the undefined value ⊥.

The time update function δtime corresponds to the time model of [3].

Definition 6. (time update) Let C be a set of clocks, q a location and Γq the
time constraints function. The δtime function is defined as follows:

δtime(t, ktime) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⊥ if ∃c ∈ C \ ρ, allow(c) ∩ Γq′(c) = ∅ (case 1.1)
∨∃c ∈ ρ, allow(c) = ∅ ∨ 0 /∈ Γq′(c) (case 1.2)

otherwise {c �→ k′
c | c ∈ C} (case 2)

with k′
c =

{
0 if c ∈ ρ
ktime(c) otherwise

where allow(c) = ktime(c) ∩ γ(c) ∩ Γq(c) and γ is the time constraint on t.

If at least one of the non-reseted clocks c fails to satisfy either the transition
guard or the locations constraints (case 1.1) then no token is produced. Another
case of failure is if a reseted clock fails to satisfy the initial location constraint
and transitions guards, or zero is not accepted in the destination location as the
outgoing value of the clock (case 1.2). A token is otherwise produced (case 2),
which simply consists in updating the clock to the correct value (either 0 if there
is a reset for the clock, or to the value prescribed by the input token).

The principle of updating the memory is a little bit more complex. The
memory part of the next token is computed by the memory update function
δmem from the previous memory component depending on an input symbol α.
The computation respects the following ordering: the allocation of the variables
in set ν is performed before checking the consistency between the input and
transition label, and before releasing the variables in the set ν.

Pattern Matching in Link Streams 235

Definition 7. (memory update) Let V be a set of variables, and U an infinite
set of unknown symbols. The δmem function is defined as follows:

δmem(t, kmem, α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if e /∈ V ∧ α �= e (c.1.1)
∨e ∈ V ∧ α /∈ U (c.1.2)
∨e ∈ V \ ν ∧ kmem(e) = M•

e ∧ α /∈ Me (c.1.3)
∨(e ∈ ν ∨ kmem(e) = M◦

e) ∧ ∃Y, α ∈ kmem(Y) (c.1.4)
otherwise {X �→ k′

X | X ∈ V }

with k′
X =

⎧
⎪⎪⎨
⎪⎪⎩

∅•, if X ∈ ν (c.2.1)
(MX ∪ {α})•, if X = e (c.2.2)
M◦

X , if X ∈ ν (c.2.3)
kmem(X), otherwise (c.2.4)

where e ∈ V ∪ Σ ∪ {ε} denote the input enabling transition t and the sets ν and
ν denote respectively the sets of allocated and freed variables.

In the first four cases no token can be produced. If the transition label e is
a known symbol in Σ, then the input α must exactly match else it is a failure
(c.1.1). If otherwise e corresponds to a variable, then α must be an unknown
symbol in U (c.1.2). A more subtle failure is (c.1.3) for a variable e ∈ V in
read mode. In this situation the input symbol must be already recorded in the
memory associated to e. Complementarily, if the variable e is in write mode (or
is put in write mode along the transition), then the input symbol must be fresh
(c.1.4).

If the next token is produced then for each variable X the associated memory
content MX is updated as follows. If X is to be released (in set ν) then the
memory is cleared and put in read mode (c.2.1). If it is not released and the
variable is to be read (i.e. X = e) then α is added to the memory content
(c.2.2). In (c.2.3) the variable is not read (X �= e) but it is allocated (in set ν).
In this situation the memory content is put in write mode. Otherwise (c.2.4) the
memory is left unchanged for variable X.

q1 q2

c ≤ 1

νX, X

c := 0
input: w

q1 q2

c ≤ 1

νX, X

c := 0
X → {v}•

c → 5
X → {v, w}•

c → 0

Fig. 3. Passing a transition of the automaton from Fig. 2 with input w

Example 1. Figure 3 illustrates the generation of a new token taking as an exam-

ple of the transition d = q1
{X},X,{}−−−−−−→

ρ={c}
q2 from the automaton in Fig. 2. Based

on the token ({c → 5}, {X → {v}•}) in location q1, the input w enables the
transition d producing a new token in q2, computed as follows:

236 C. Bertrand et al.

– for the time component, the value of clock c verifies the transition constraints.
In the arrival location q2 the clock is reseted and the clock value 0 verifies
the time invariant in q2. The transition would be disabled without the reset
because clock value 5 does not satisfy the invariant. Of course, the clock value
in the arrival token is c → 0.

– for the memory component, the transition d is only enabled when the input
is an unknown symbol, because transition d is labeled with a variable. Since
the alphabet Σ of known symbols is {a, b}, the symbol w is considered as
unknown, i.e., w ∈ U . Because the allocations are applied before checking the
input, the variable X is allocated and then used to enable the transition. So
the symbol w should be added to MX in the newly generated token. However,
it is only possible if the input is fresh. Since MX = {v} and X is the only
variable, this freshness constraint is satisfied. Hence, the new token associates
the memory {v, w}• to X.

As both δtime and δmem can compute a new value, a new token is generated for
the location q2. �

q2

c ≤ 1

q3

X, νX input: v

q2

c ≤ 1

q3

X, νXX → {v, w}•

c = 0.5
X → {}•

c = 0.5

Fig. 4. Passing a transition of the automaton from Fig. 2 with input v

Example 2. Figure 4 presents another example of transition in the automaton
of the Fig. 2. This example illustrates a case of memory evolution with δmem.
Here the variable X is used as the trigger and then freed. The variable’s freeing
occurs simultaneously to reset of the clocks, after checking of guards. As X is not
allocated during the transition and was neither allocated before, the transition is
enabled only if the input is an unknown symbol and belongs to MX . The input
is actually the unknown symbol v /∈ Σ = {a, b}. Furthermore, v ∈ {v, w} = MX ,
so the transition may be passed and the variable X is cleared in the newly
generated token. �

The important property of memory injectivity must be preserved through
δmem to fulfill the freshness constraints.

Proposition 1. (preservation of injectivity) Let k be a token such that INJ(k),
and suppose k′ = δ(t, k, α) �= ⊥ for some transition t and input α. Then we have
INJ(k′).

Pattern Matching in Link Streams 237

Proof. In the token k = (ktime, kmem) only the memory component kmem is
affected by the injectivity property. The main hypothesis INJ(k) means that
∀X,Y (X �= Y), kmem(X) ∩ kmem(Y) = ∅.

Suppose that the transition t = q
ν,e,ν−−−→
γ,ρ

q′ produces token k′ = δ(t, k, α) =

(k′
time, k

′
mem). We have to show INJ(k′), i.e. k′

mem(X) ∩ k′
mem(Y) = ∅ for the same

pairs of distinct variables. In the definition of δmem (Definition 7) we are mostly
concerned with cases (c.2.1) to (c.2.4) because we expect a token as output. The
memory update depends on the value of the transition trigger e and is as follows:

– If e is not a variable: e ∈ ε∪Σ, then the case c.2.2 of δmem cannot occur. So,
in the token k′ the variable domains are either empty (case c.2.1), or the same
as in k (case c.2.3 or c.2.4). Given the hypothesis INK(k) and the fact that ∅
is the zero element of intersection, we trivially have INK(k′) as expected.

– If e is a variable: e ∈ V then the case c.2.2 occurs for exactly one variable
of the generated token. As presented above, the variable domains generated
with the cases c.2.1, c.2.3 and c.2.4 have empty intersections with each other.
Only the domains generated by case c.2.2 must be handled with care. We
have to consider two situations:

• if α ∈ kmem(e) then the set Me is not modified, so the Property 1 is
trivially verified;

• or α �∈ kmem(e) then case c.1.4 ensures that α is absent in all the domains
of the other variables. Thus, Property 1 is verified as well. �

Given a global configuration S and an input α, a new configuration is com-
puted with function σ. It consists in producing all new tokens by the enabled
transitions and propagating them through all the ε-transitions.

Definition 8. (global update)

σ(S, α) =
{

σclosure(S, α) if α ∈ R
+ (time delay)

σclosure(σstep(S, α), 0) otherwise (symbol)

The input may be either a known or unknown symbol, or a time delay. In case
of a time delay the token should just be propagated through the ε-transitions,
defined by σclosure presented below. If the input is a symbol, then new tokens
shall be produced through the non ε-transitions, which is expressed by σstep,
and then propagated through the ε-closure.

Definition 9. (event handling)

σstep(S, α) = {q′ �→ {δ(t, k, α) | t = q
ν,e,ν−−−→
γ,ρ

q′ ∧ k ∈ S(q)} | q′ ∈ Q}

The σstep function simply consists in applying the local update function δ at all
locations for all non ε-transitions. The tokens belonging to S are not kept in the
new configuration.

The resulting tokens are propagated for ε transitions with a time delay fixed
to 0. In the case of a time delay, the ε-closure is applied with this fixed delay

238 C. Bertrand et al.

as argument. The function σclosure thus handles the time propagation in the
automaton. It produces all the possible next tokens in all locations reachable
through an ε-path.

Definition 10. (ε-closure)

σclosure(S, x) = { q �→ {k | ∃q0
ν1,ε,ν1−−−−→
γ1,ρ1︸ ︷︷ ︸

t1

q1
ν2,ε,ν2−−−−→
γ2,ρ2︸ ︷︷ ︸

t2

· · · qn−1
νn,ε,νn−−−−−→
γn,ρn︸ ︷︷ ︸

tn

q ∈ Δ

∧∃k0 ∈ S(q0), ∃x0 + x1 + · · · + xn = x
∧∀i ∈ [1, n], ∃ki = δ(ti, shift(ki−1, xi−1), ε)
∧k = shift(kn, xn),∀c ∈ C, ktime(c) ∈ Γq(c)}

| q ∈ Q}

where shift((ktime, kmem), x) = ({c → ktime(c) + x|c ∈ C}, kmem).
The idea behind the above is to compute a decomposition of the given delay

x as a sum x1+· · ·+xn corresponding to a specific way of waiting in the locations
encountered on the ε-path. In fact, only the existence of the decomposition is
required. Indeed, for two distinct decompositions the final value retained for a
clock c in the next token is the same (either the delay added to the initial value,
or 0 for a reseted clock).

Example 3. Figure 5 illustrates the propagation of tokens in an ε-closure,
expressed by the function σclosure. The token will be propagated with the delay
α = 4 as an input to exhibit its effect. In this example, we begin with the
configuration of step 0 containing only one token in location q0.

The tokens of this automaton are composed of a variable X and a clock c.
The initial configuration, in step 0, contains only one token k0 in q0. This token
is initialized with X in read mode and a set containing the unknown symbols
u and v. There is only one clock c initialized to 0. In step 1, the token k0
is propagated through the transition t01 = q0

ε−−−−→
c∈[0,1]

q1, which generates the

token k1 in location q1. Since t01 has no side-effect (clock or memory update),
k1 is a copy of k0. In step 2, the token k1 is propagated through the transition
t11 = q1

ε−−−−→
c∈[2,4]

q1 generating the token k′
1 in location q1. The transition has no

side-effect so the memory of k′
1 is the same as the memory of k1. However, to

fulfill the time constraint c ∈ [2, 4], the value of c has to be at least 2. To cross
the transition, the clocks values should consume some amount of the input delay
α. In step 3, both k1 and k′

1 can be propagated through t12 = q1
ε,νX−−−→ q2. This

transition has as a side-effect to clear the variable X. So both the tokens k2 and
k′
2 generated respectively from k1 and k′

1 have for variable X the value {}• (an
empty set of symbols in read mode). Step 4 consists in the propagation of tokens

k2 and k′
2 through the transition t20 = q2

νX,ε−−−→ q0. This transition has as a side
effect to allocate X. However, as t20 is an ε-transition, the set associated to X
will not be modified and X will be in write mode on the generated tokens. In
step 5 two tokens are generated in location q1, but both come from the token

Pattern Matching in Link Streams 239

Fig. 5. Example of ε-closure with an input delay 4

k′
0. As k′′

0 has c → 2, it cannot enable t01 because the clock constraint c ∈ [0, 1]
is not respected. The token with c → 0 crosses t01 and the transition t11 (as in
step 2) generating two tokens, k′′

1 and k′′′
1 , in q1 with different clock values. After

step 5 it is not possible to generate any new token in a location with a different
value than the tokens already present in it. In step 6 the propagation is over and
all the clocks are increased to k0time

(c) + α = 0 + 4.
However, only one token is kept at a location if several are generated with

identical clock and memory valuations. The step 6 corresponds to the configu-
ration returned by σclosure. �

Since there may be an infinite number of ε-paths from a given starting loca-
tion q, the following is an important Property wrt. decidability.

Proposition 2. For a given configuration S and time delay x, the function
σclosure can only produce a finite amount of tokens.

Proof. To prove the proposition, we show that both the possible memory and
clocks states are finite over the propagation through the ε-closure.

240 C. Bertrand et al.

First, we prove that the number of memory states is finite. An ε-transition
does not read any symbol. So, the only memory operations present in an ε-
closure are the allocation ν and the freeing ν. Let X be a variable of initial
valuation Ma

X , where MX is the set associated to X and a the initial mode of
X. Its reachable values in the ε-closure are:

– Ma
X in all ε-paths with no operations on X,

– M◦
X in all ε-paths where X is only allocated,

– ∅• in all ε-paths where the last memory operation used on X is a freeing ν,
– ∅◦ in all ε-paths where X was freed at least once and the last memory oper-

ation on X is an allocation ν.

As a consequence, if the tokens are composed of n variables, after the propagation
in an ε-closure at most 4n variations of each initial memory valuation can be
generated.

To prove that the number of clock valuations is finite we recall that our time
model is based on timed pattern matching [3], which implies that clock resets can
only be on non ε-transitions. Thus, the final clock values after the propagation
over an ε-closure are the initial values increased by a possible delay given as an
input. The number of clock valuations is constant through the propagation.

As the number of memory states and clocks states are both finite, the number
of combinations between them is finite too. An upper bound for the number of
tokens generated in an ε-closure is nbtokens ·4nbvars ·nbstates, where nbtokens is the
number of tokens composing the initial configuration (as an upper bound for the
number of memory valuations), nbvars is the number of variables composing a
token, and nbstates is the number of states composing the ε-closure. �

3.3 Pattern Language

The description of non-trivial patterns in link streams can become tedious if
specified directly as automata. Indeed, even simple patterns can yield very large
automata. We are looking for a more concise way to describe the patterns, in the
spirit of regular expressions. We propose the language of timed ν-expressions to
specify patterns for link streams.

The syntax of the core constructs is given in Table 1. The basic constructs
are those of traditional regular expressions. The symbols are referring to known,
unknown or arbitrary nodes. The link construct n1 → n2 symbolizes a non-
breaking connection between two nodes. The delay construct for time constraints
is the same as in [3]. The constructs for memory management are based on
variable occurrences (for unknown nodes), allocations and releases. The notation
�{X1, . . . , Xn}e (resp. e{X1, . . . , Xn}!) means that the variables X1, . . . , Xn are
allocated (resp. released) before (resp. after) recognizing the subexpression e.
The shuffle operator ⊗ is present in the language to ease the description of
patterns with independent parts.

The semantics of the pattern language is given in terms of a generated timed
ν-automaton. By lack of space, we do not describe the translation formally in

Pattern Matching in Link Streams 241

Table 1. The (core) pattern language

Node n, n1, n2 . . . ::= k (known node)
X (variable, unknown node)
@ (arbitrary node)

Expression e, e1, e2, . . . ::= n (node)
n1 → n2 (link)

(regular) e1 . e2 (concatenation)
e1 | e2 (disjunction)
e1 ⊗ e2 (shuffle)
e∗ (iteration)

(time) 〈e〉[x,y] (delaya)
(memory) �{X1, . . . , Xn}e (allocation)

e{X1, . . . , Xn}! (release)

aFollowing [3] the expression inside a delay should not be empty.

this paper but only describe it informally. We intend to investigate the formal
properties of the language (e.g. language equivalence) in a future work. Note
that the translation is relatively straightforward. The translation rules for the
regular expression constructs are the classical ones. A special case is the link
expression n1 → n2 that corresponds to a basic automaton with three states
and two transitions, one for n1 and the second for n2. One important property
is that this construction is non-breaking (e.g. it is atomic for the shuffle). For
the delay construct a thorough explanation is given in [3]. It mostly remains to
explain the translation of the memory operations.

Table 2. Automata for memory operators

aut(e)
q′
0

q0

ν{X1,...,Xn},ε

aut(�{X1, . . . , Xn}e)

aut(e)
qfi qf

ε,ν{X1,...,Xn}

aut(e{X1, . . . , Xn}!)

Table 2 illustrates how the allocation and release operators are translated:

– The function aut : expression → automaton translates a timed ν-expression
to the corresponding timed ν-automaton.

– The translation of �{X1, . . . , Xn}e gives rise to a new initial location q′
0 and

a ε-transition between q′
0 and the initial location of the automaton generated

from e, which allocates the variables X1, . . . , Xn. The new initial location of
the automaton is q′

0. The translation of e{X1, . . . , Xn}! leads to the creation
of a new final location qf and a new transition from each final location of

242 C. Bertrand et al.

the automaton generated for e to qf , each of them releasing the variables
X1, . . . , Xn. The new unique final location is qf .

In the experiments we often used the following derived constructs:

– allocation and use: �X
def= �{X}X

– use and release: X! def= X{X}!
– allocation, use and release �X! def= �{X}X{X}!

The whole translation has been implemented in a prototype tool described
in the next section.

4 Experiments

Our main objective is to develop a practical pattern matching tool for link stream
analysis. An early implementation of the tool is available online3. In this section
we present early experiments with this prototype to real-world link streams.

For starters, the worst-case complexity of our pattern matching algorithm is
exponential on the size of the link stream (the number of links). This complexity
is reached for instance in the case depicted in Fig. 6, which is a “memory-only”
scenario. If the input is a sequence of distinct symbols then the number of tokens
associated to the unique location of the automaton will double each time a
symbol is consumed. For instance, in the figure, the 8 tokens are associated to
distinct versions of the variable U (the Ui’s) after consuming the input a b c:
one for each subset of the alphabet.

νU.U

U

νN.N.νN

U0

a
b
c

U1

a
b

U2

a
c

U3

b
c

U4

a
U5

b
U6

c
U7

ε

Fig. 6. A subset automaton after input a b c.

However, timed constraints most often improve the situation by removing
expired tokens. Thus, in practice there are ways to avoid the worst-case scenarios.
This is similar to the practical “regex” tools, which in general go well beyond
regular expressions, also leading to exponential blowups in the worst case [4,5].

This makes experimental evaluation of our method particularly appealing
to estimate its practical performances and applicability. In order to do so, we
consider two link streams built from two different real-world datasets: (1) a
recording of traffic routed by a large internet trans-Pacific router [8], and (2) a
one month capture of tweets on Twitter France.
3 The MaTiNa tool repository is at: https://github.com/clementber/MaTiNA.

https://github.com/clementber/MaTiNA

Pattern Matching in Link Streams 243

Fig. 7. DDoS pattern recognition with time frames δ = 0.01 (top) and δ = 0.02
(bottom).

244 C. Bertrand et al.

Fig. 8. Triangle detection in Twitter exchanges with running time and number of
detected instances (top) and local running time (bottom).

In the case of internet traffic, our motivation is to detect potential coordi-
nated attacks. To do so, we define a variant of the triangle pattern discussed in
Sect. 2, namely 2 × 2 bicliques, i.e. squares, which [16] identified as meaningful

Pattern Matching in Link Streams 245

to this regard. Since there is approximately one link every 2µs in the stream
and the stream lasts for a whole day, it must be clear that we may not detect
all untimed patterns in the stream. In this context, the time frame of an attack
is in general quite sudden and precise, and so time is a crucial feature.

We present results for two different time frames in Fig. 7. It displays the total
running time as a function of the number of processed links, together with the
number of found instances of the pattern. As expected, the number of instances
of the pattern increases with the time frame. Also, the tool processes less links in
a given amount of time (85 h in this experiment). Although our implementation
is not optimized at all, the linear time cost of the computations w.r.t. the number
of processed links clearly appears.

Our second experiment targets communities of Twitter users. We consider
tweets over a period of a month, leading to a stream of 1.3 million links4. The
pattern we seek is an undirected complete graph between k users for a given k,
i.e. cliques of size k occurring in a time frame of ten minutes. Figure 8 presents
the results for k = 3, i.e. triangle detection. The running time experiences sharp
increases at specific times, that correspond to peak periods in Twitter exchanges.
This is confirmed by plotting the execution time at each step of the computation
(right part of the figure). During such peaks of tweets, the tool has to store more
data than usual, leading to a more costly processing of links. One way to improve
this issue would be to consider a variable time rate by e.g. decomposing the link
stream in distinct sub-streams processed with different time frame.

5 Conclusion

The language of timed ν-expressions we propose to specify patterns in link
streams is heavily inspired by regular expressions, but enriched with timed and
memory features. The language is rather low-level but with well-chosen derived
constructs we think it is usable (and has been used) by domain experts. The
language has a straightforward translation to the core outcome of our research:
the timed ν-automata formalism and the corresponding recognition principles.
Beyond the formalities, we developed a functional, and freely available, proto-
type that we experimented in a realistic setting. Non-trivial patterns have been
detected on real-world link streams, with decent performances for such an early
prototype. These early experiments give us confidence regarding the relevance
of our approach.

For future work, we plan both theoretical investigations and more practical
work at the algorithmic and implementation level. We also expect to broaden
the application domains. In particular, since our detection is performed online,
one potential area of application is that of monitoring open systems at runtime
for e.g. security or safety properties. At the theoretical level, we plan to study
the pattern language and its more precise relation to the automata framework.
Since the semantics are based on a token game, the formalism is in a way closed
4 The data come from the Politoscope project by the CNRS Institut des Systémes

Complexes Paris Ile-de-France (https://politoscope.org).

https://politoscope.org

246 C. Bertrand et al.

to the Petri nets than it is from classical automata. Hence, interesting extensions
of the formalism could be developed based on a high-level Petri net formalism,
e.g. in the spirit of [9]. Our prototype tool uses a relatively naive interpreter for
pattern matching. We plan to improve its performances by first introducing a
compilation step. Moreover, there is an important potential for parallelization
of the underlying token game.

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching
over event streams. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, pp. 147–160 (2008)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

4. Câmpeanu, C., Salomaa, K., Sheng, Y.: A formal study of practical regular expres-
sions. Int. J. Found. Comput. Sci. 14(6), 1007–1018 (2003)

5. Carle, B., Narendran, P.: On extended regular expressions. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 279–289.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2 24

6. Deharbe, A., Peschanski, F.: The omniscient garbage collector: a resource analysis
framework. In: ACSD 2014. IEEE Computer Society (2014)

7. Deharbe, A., Peschanski, F.: The omniscient garbage collector: a resource analysis
framework. Research report, LIP6 UPMC Sorbonne Universités, France (2014).
https://hal.archives-ouvertes.fr/hal-01626770

8. Fontugne, R., Borgnat, P., Abry, P., Fukuda, K.: MAWILab: combining diverse
anomaly detectors for automated anomaly labeling and performance benchmark-
ing. In: ACM CoNEXT 2010 (2010)

9. Garg, V.K., Ragunath, M.T.: Concurrent regular expressions and their relationship
to petri nets. Theor. Comput. Sci. 96(2), 285–304 (1992)

10. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134,
329–363 (1994)

11. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-
eling of interactions over time. CoRR, abs/1710.04073 (2017)

12. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data
Mining, WSDM 2017, pp. 601–610. ACM (2017)

13. Tzevelekos, N.: Fresh-register automata. In: Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT, POPL 2011, pp. 295–306. ACM (2011)

14. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10512-3 16

15. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 47

16. Viard, T., Fournier-S’niehotta, R., Magnien, C., Latapy, M.: Discovering pat-
terns of interest in IP traffic using cliques in bipartite link streams. CoRR,
abs/1710.07107 (2017)

https://doi.org/10.1007/978-3-642-00982-2_24
https://hal.archives-ouvertes.fr/hal-01626770
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47

Pattern Matching in Link Streams 247

17. Waga, M., Akazaki, T., Hasuo, I.: A Boyer-Moore type algorithm for timed pattern
matching. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp.
121–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 8

18. Waga, M., Hasuo, I., Suenaga, K.: Efficient online timed pattern matching by
automata-based skipping. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 224–243. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65765-3 13

19. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive
queries in complex event processing (2014)

https://doi.org/10.1007/978-3-319-44878-7_8
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/978-3-319-65765-3_13

Semantics and Expressiveness

Modeling Operational Semantics
with Interval Orders Represented

by Sequences of Antichains

Ryszard Janicki(B)

Department of Computing and Software, McMaster University,
Hamilton, ON L8S 4K1, Canada

janicki@mcmaster.ca

Abstract. A representation of interval orders by sequences of antichains
is discussed and its relationship to the Fishburn’s representation by
sequences of beginnings and endings is analyzed in detail. Using
sequences of antichains to model operational semantics of elementary
inhibitor nets is also discussed.

Keywords: Interval orders · Operational semantics
Elementary inhibitor nets · Sequences of antichains · Interval sequences

1 Introduction

Most operational1 semantics of concurrent systems are defined either in terms of
sequences (i.e. total orders) or step-sequences (i.e. stratified orders) [3,11,15,19].
It was argued by Wiener in [20] (and later more formally in [11]) that any
execution that can be observed by a single observer must be an interval order.
It implies that the most precise operational semantics is defined in terms of
interval orders. However generating interval orders directly is problematic for
most models of concurrency, as interval orders do not have a natural sequence
representation, as both total and stratified orders have (plain sequences and
step sequences respectively). For interval orders one might use either sequences of
beginnings and endings of events involved (Fishburn Theorem [6]), or sequences of
appropriate antichains (i.e. a kind of step sequences, but interpreted differently)
[7,11]. The former approach lead to the ideas of ST-traces [18,19] and interval
sequences [13], the latter is the subject of this paper. The problem with all
approaches based on beginnings and endings is that sequence representations
of interval orders given by Fishburn Theorem are not unique, we often have
to include all representations, which results in relatively complex and cluttered
models for even not so complex cases.

Partially supported by NSERC grant of Canada.
1 ‘Operational semantics’ is not a generally agreed concept, in this paper this will

be just a collection of all system runs (i.e. executions, observations) [3,11,15,19]. A
different meaning is used in for example [4].

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 251–271, 2018.
https://doi.org/10.1007/978-3-319-91268-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_13&domain=pdf

252 R. Janicki

In this paper we will show a detailed relationship between interval sequences
of [13] and sequences of antichains including simple algorithms that transform
one into another. Based on this relationship we will use sequences of antichains
to represent operational semantics of elementary nets with inhibitor arcs. This
will provide an alternative operational semantics in terms of interval orders for
these nets. We will show that this new semantics is consistent with the interval
sequence semantics of [13].

2 Partial Orders and Sequences

We will now present some results and notations about partial orders, sequences
and their mutual relationship that will be used in the rest of this paper.

A relation <⊆ X×X is a (strict) partial order iff it is irreflexive and transitive,
i.e. for all a, c, b ∈ X, a �< a and a < b < c =⇒ a < c. We also define:

a �< b
df⇐⇒ ¬(a < b) ∧ ¬(b < a) ∧ a �= b,

Note that a �< b means a and b are incomparable (w.r.t. <) elements of X.
In this paper we will deal mainly with interval and total orders, and often

mention stratified orders.
Let < be a partial order on a set X. Then:

1. < is total if �<= ∅. In other words, for all a, b ∈ X, a < b ∨ b < a ∨ a = b.
For clarity, we will reserve the symbol � to denote total orders;

2. < is stratified if a �< b �< c =⇒ a �< c ∨ a = c, i.e., the relation
�< ∪ idX is an equivalence relation on X;

3. < is interval if for all a, b, c, d ∈ X, a < c ∧ b < d =⇒ a < d ∨ b < c.

It is clear from these definitions that every total order is stratified and every
stratified order is interval. In this paper, most partial orders will be represented
by Hasse diagrams [7]. Figure 1 illustrates the above definition. The orders �1,

po
<1

are total, the orders <3 and
po
<1 are stratified, the order <1 is interval and the

order <2 is not an interval order.
Finite total orders can uniquely be represented sequences, for example �1

from Fig. 1 is represented by the sequence BaEaBbBcEbBdEcEd,
po
<1 from the

same figure by the sequence (of sets) {a}{b, c}{c, d} (cf. [8,12]).
Finite stratified orders can uniquely be represented by step sequences. For

example <3 from Fig. 1 is represented by the step sequence {a, b}{c, d} and
po
<2

from the same figure by the step sequence {A1}{A2, A3}{A4}, where A1 = {a, b},
A2 = {a, d}, A3 = {b, c} and A4 = {c, d}.

The partial order <2 of Fig. 1 is the simplest example of an order that is not
interval order (cf. [7]).

For the interval orders, the name and intuition follow from Fishburn’s
Theorem:

Modeling Operational Semantics with Interval Orders 253

Theorem 1 (Fishburn [6]). A partial order < on countable2 set X is interval
iff there exists a total order � on some T and two injective mappings with disjoint
codomains B,E : X → T such that for all x, y ∈ X,

1. B(x) � E(x),
2. x < y ⇐⇒ E(x) � B(y). �

Usually B(x) is interpreted as the beginning and E(x) as the end of an
interval x. To shorten our notations, we will omit parentheses and write Bx and
Ex to denote B(x) and E(x) respectively. The intuition of Fishburn’s theorem is
illustrated in Fig. 1 with <1 and �1. For all x, y ∈ {a, b, c, d}, we have Bx�1 Ex
and x <1 y ⇐⇒ Ex �1 By.

Each sequence (step sequence) of events represents a total (stratified) order
of enumerated events in a natural way. For precise definitions see for example
[8,12,15], here we will be using the following notation.

Notation

1. For each set of events Σ, let ̂Σ = {ai | a ∈ Σ, i ≥ 1} denote the set of
enumerated events generated by Σ.

2. For each sequence x ∈ Σ∗ and each step sequence z ∈ (2Σ)∗, let x̂ ∈ ̂Σ∗ and
ẑ ∈ (2 ̂Σ)∗ denote their enumerated representations.
For example, if x = abbaa then x̂ = a1b1b2a2a3, and if z = {a, b}{a, b, c}{a}
then ẑ = {a1, b1}{a2, b2, c1}{a3}.

3. For every sequence x ∈ Σ∗, �x is the total order defined by the enumerated
sequence x̂.
For example: �abbaa = a1 → b1 → b2 → a2 → a3.

4. For every step sequence z ∈ (2Σ)∗, �z is the stratified order defined by the
enumerated step sequence ẑ.
For example: �{a,b}{a,b,c}{a} = {a1, b1} → {a2, b2, c1} → {a3}.

5. For every sequence or step sequence x, let Ax denotes the set of all elements
of Σ occurring in x.
For example Aabbaac = {a, b, c}, A{a,b}{a,b,c}{a} = {a, b, c}.

6. For every sequence or step sequence x and every a ∈ Σ, we will write a ∈ x
if a ∈ Ax.
For example b ∈ abbac, b ∈ {a, b}{b, c}.

7. For x, y ∈ Σ∗ we will write x ⊆ y iff y = x1xx2 for some x1, x2 ∈ Σ∗. If
x ⊆ y, we will say that x is a subsequence of y.
For example bbc ⊆ abbcb.

8. For every sequence or step sequence x and every A ⊆ Σ, x ∩ A denote the
projection of x onto A, i.e. a sequence or step-sequence derived from x by
erasing all elements of Σ \ A (cf. erasing homomorphism [9]).
For example if x = abbcbdda, y = {a, b, d}{a, b, c, e}{a, c} and A = {a, b},
then x ∩ A = abbba, y ∩ A = {a, b}{a, b}{a}. �
We will often write a instead of a1 if this will not lead to any confusion.

2 For uncountable X it is additionally required that the equivalence relation ∼<

defined as a ∼< b ⇐⇒ ∀c ∈ X.(c < a ⇔ c < b) ∧ (a < c ⇔ b < c) has
countably many equivalence classes [6]. But in this paper we need only a simpler
version for countable X, cf. [11].

254 R. Janicki

3 Interval Sequences

In this section we recall the concept of interval sequences as presented in [13].
Conceptually the interval sequences are close to older ST-traces of [18], the
difference is that ST-traces have been defined in the framework of Petri nets,
while interval sequences do not assume any model of a system.

For every finite set (of events) Σ, the set

BE Σ = {Ba | a ∈ Σ} ∪ {Ea | a ∈ Σ},

is the set of all beginnings and endings of events in Σ.
Many sequences from BE ∗

Σ represent interval orders, for example
�BaBbEaEb = �BbBaEaEb = �BaBbEbEa = �BbBaEbEa is an interval order
a �< b, but not every sequence from BE ∗

Σ can be interpreted as an interval
order, for example BaBcBb represents no interval order.

• We say that a string x ∈ BE ∗
Σ is an interval sequence iff

∀Ba,Ea ∈ x. x ∩ {Ba,Ea} ∈ (BaEa)+.

• We will use InSeq(Σ) to denote the set of all interval sequences of BE ∗
Σ .

For example for Σ ={a, b, c} a sequence x1=BaBbEbEaBcBaBbEcEbEaBaEa
is in InSeq(Σ), as x1 ∩ {Ba,Ea} = BaEaBaEaBaEa, x1 ∩ {Bb,Eb} =
BbEbBbEb and x1 ∩ {Bc,Ec} = BcEc; but sequences x2 = EaBbEbBa or
x3 = BbEbBaEc are not in InSeq(Σ), since x2 ∩ {Ba,Ea} = EaBa and
x3 ∩ {Ba,Ea} = Ba.

Definition 1 ([13]). Let x ∈ InSeq(Σ), and let �x be a relation on ̂Σ, defined
by:

ai �x bj ⇐⇒ Eai �x Bbj .

By Theorem 1, the relation �x is an interval order, and it is called the interval
order generated by the sequence x of beginnings and ends. �

For example if x = BaEaBbBcEbBdEcEd then �x is the interval order <1 from
Fig. 1.

4 Sequences of Antichains

In this section we will show how interval orders can uniquely be represented by
appropriate sequences of antichains.

Definition 2 ([7,11]). Let < be a partial order on X (of any kind).

1. A set A ⊆ X is a maximal antichain of < if and only if

(∀a, b ∈ A. a �< b ∨ a = b) ∧ (∀a /∈ A.∃b ∈ A. a < b ∨ b < a).

The set of all maximal antichains of < will be denoted by A<.

Modeling Operational Semantics with Interval Orders 255

Fig. 1. Illustrations of partial orders definitions and Theorems 1 and 2. The order <1

is interval, while <2 is not. Antichains are connected with dotted lines. The total order
�1 is a Fishburn’s representation of the interval order <1. A stratified order <3 is
represented by a step sequence {a, b}{c, d}.

2. The relation
po
< ⊆ A< × A<, defined as

A
po
< B ⇐⇒ A �= B ∧ (∀a ∈ A \ B.∀b ∈ B \ A. a < b)

is called a principal order of < (see [11] for more details). �

For the partial orders <1 and <2 in Fig. 1,
po
<1 and

po
<2 are their principal orders

respectively. Both
po
<1 and

po
<2 are partial orders. It turns out this property holds

in general, principal orders are always partial orders of maximal antichains.
Moreover we can always recover the partial order < from its principal order

po
<.

Proposition 1 ([11]). Let < be any partial order on X.

1. The relation
po
< is a partial order.

2. ∀a, b ∈ X. a < b ⇐⇒ a �= b ∧ (∀A,B ∈ A<. a ∈ A ∧ b ∈ B =⇒ A
po
< B). �

Maximal antichains and principal orders are also convenient tools for classi-
fying partial orders.

Theorem 2 ([7,11]). A partial order < is an interval order if and only if its

principal order
po
< is a total order (of maximal antichains). �

Theorem 2 is illustrated in Fig. 1. The order <1 is interval and the principal
order

po
<1 is total while the order <2 is not interval and the principal order

po
<2 is

not total. As a simple consequence of Theorem 2 we have the following corollary.

Corollary 1. A partial order < is stratified if and only if all maximal antichains
are equivalence classes of �<. �

• When
po
< is a total order, it can be represented as an appropriate sequence of

antichains of <. We may identify this sequence representation with the total
order

po
< and write

po
< = A1 . . . An, if convenient.

256 R. Janicki

Note that Ai’s are different antichains, i.e. Ai ⊆ Aj if i = j, hence we have

Ai

po
< Aj iff i is smaller than j.

• For every sequence of antichains s = A1 . . . An, the interval order that the
sequence s represents will be denoted by ∠s.

For example ∠{a}{b,c}{c,d} equals <1 of Fig. 1. The notation ∠s does make sense
only if s is a sequence of antichains, it cannot be applied to just arbitrary step
sequence s.

Not every step sequence cannot be interpreted as a sequence of antichains. For
example neither {a, b}{a, b} nor {a, c}{a, b}{b, c} can be interpreted as sequences
of antichains, for different reasons. Each antichain is different, but the step
sequence {a, b}{a, b} contains two identical steps. While different antichains
may have common elements, common elements may belong only to consecu-
tive antichains. In the sequence {a, c}{a, b}{b, c}, the element c belongs to two
steps that are separated by another step.

Definition 3. A step sequence A1 . . . Ak of elements of X is a sequence of
antichains if and only if the following conditions are satisfied:

1. For all Ai, Aj , Ai ⊆ Aj ⇐⇒ i = j.
2. If a ∈ Ai and a /∈ Ai−1 then a /∈ Aj for all j < i − 1.
3. If a ∈ Ai and a /∈ Ai+1 then a /∈ Aj for all j > i + 1. �

The condition (1) is a simple consequence of the fact that Ai’s are maximal
antichains. The conditions (2) and (3) say that any element of Σ may occur only
is a strictly consecutive subsequence of the sequence A1 . . . Ak, i.e. we have the
pattern A1 . . . Ar−1

︸ ︷︷ ︸

a/∈Ai

Ar . . . As
︸ ︷︷ ︸

a∈Ai

As+1 . . . Ak
︸ ︷︷ ︸

a/∈Ai

.

• For every finite set X, let SA(X) denote the set of all sequences of antichains
that can be built from the elements of X.

For X = ̂Σ we additionally assume that if A1 . . . Ak ∈ SA(̂Σ) then for each
a∈Σ:

1. ai ∈ As, a
j ∈ At and s < t implies i ≤ j,

2. ai+1 ∈ As implies ai ∈ At for some t < s.

From Definitions 2 and 3, and Proposition 1, we have the following result.

Proposition 2. 1. If s = A1 . . . Ak is a sequence of antichains then there is the
unique interval order <s such that

po
<s= A1 . . . Ak.

2. For every sequence of antichains s, we have s =
po

∠s. �

For interval orders simultaneity is usually described by overlapping, i.e. a
and b are considered simultaneous if Bb occurs before Ea, or Ba occurs before
Eb (cf. [2]). Simultaneity is not transitive (as opposed to stratified orders) and
maximal antichains represent maximal sets of simultaneous events.

Modeling Operational Semantics with Interval Orders 257

Fig. 2. Partial orders generated by a sequence of sets {a, b}{b, c}, once interpreted as
a step sequence -the order �{a,c}{b,c}, and once interpreted as a sequence of antichains
- the order ∠{a,c}{b,c}

Note that while for every step sequence x ∈ (2Σ)∗, x̂ can be interpreted
as a sequence of antichains, as every stratified order is interval, not every
sequence of antichains is equal x̂ for some step sequence x ∈ (2Σ)∗. For exam-
ple {a1, c1}{b1, c1} is a sequence of antichains, but there is no step sequence
x ∈ (2{a,b,c})∗ such that x̂ = {a1, c1}{b1, c1}. This case is illustrated in Fig. 2.
Since for y = {a, c}{b, c}, ŷ = {a1, c1}{b1, c2}, then �y = �ŷ = �{a,c}{b,c}.
Clearly �{a,c}{b,c} = ∠{a1,c1}{b1,c2} and it is a stratified order, but ∠{a,c}{b,c} is
a different, interval but not stratified, order.

The basic advantage of sequences and step sequences is that their elements
may not be unique, x1 = aaa is a correct sequence and x2 = {a, b}{a, b}{b, c} is a
correct step sequence. The uniqueness required for construction of partial orders
is added later by enumeration, i.e. x̂1 = a1a2a3 and x̂2 = {a1, b1}{a2, b2}{b3, c1};
we use enumerated sequence or step sequence x̂ to produce �x. On the other
hand, sequences of antichains require all elements that appear in them to be
unique. Hence we are forced to define sequences of antichains over ̂Σ instead of
just Σ. This fact can cause some problems when the sequences of antichains are
used to represent operational semantics of concurrent systems.

5 Interval Sequences vs Sequences of Antichains

We will now analyze the mutual relationship between interval sequences and
sequences of antichains.

Let z be an interval sequence over Σ, i.e. z ∈ InSeq(Σ).

• We define sa(x), a sequence of antichains generated by z, as sa(z) ∈ SA(̂Σ)
such that �z = ∠sa(z).

For example, if z = BcBaEaBbEcEb then sa(x) = {a, c}{b, c} as �z=
∠{a,c}{b,c}.

Let s be a sequence of antichains over Σ, i.e. s ∈ SA(̂Σ).

• We define isq(s), a set of interval sequences generated by s, as

isq(s) = {x | x ∈ InSeq(Σ) ∧ ∠s = �x}.

258 R. Janicki

For example, for s = {a, c}{b, c}, we have isq(s) = {BaBcEaBbEbEc,BaBcEa
BbEcEb,BcBaEaBbEbEc,BcBaEaBbEcEb}.

The definitions of sa(z) and isq(s) are indirect, they use the equality ∠s =�z.
We will now provide a direct relationship that does not use the partial orders
equality ∠s =�z.

Let z ∈ InSeq(̂Σ) for some Σ, and x ⊆ z. Clearly x ∈ BE Σ , but it may not
belong to InSeq(̂Σ). Moreover, since z ∈ InSeq(̂Σ) is an enumerated sequence,
all its elements are distinct. We will now show how a subsequence x of z may
define some antichains of �z.

• We define
AC(x) = {ai | Bai ∈ x} \ {ai | Eai ∈ x}.

Clearly if x is an interval sequence, i.e. x ∈ InSeq(̂Σ) then AC(x) = ∅.

Lemma 1. 1. For each x ⊆ z, if AC(x) �= ∅ then AC(x) is an antichain of �z.
2. For every maximal antichain A of �z there is x ⊆ z such that A = AC(x).

Proof

(1) Suppose ai, bj ∈ AC(x) and ai �z bj . Hence Bai, Bbj ∈ x and Bai �z Eai �z

Bbj . But this implies Eai ∈ x, a contradiction.
(2) Assume A = {a1, . . . , ak} is a maximal antichain of �z. Without loss of

generality we may assume Ba1 �z . . . �z Bak. Let xA be subsequence of z
that starts with Ba1 and ends with Bak. Since A is an antichain, there is no
Eai, i = 1, . . . , k in xA, so A ⊆ AC(xA). Suppose b ∈ AC(xA) \ A. Hence we
have Ba1 �z Bb�z Bak for some Bb ∈ z and Bb /∈ A. If Bak �z Eb, then the
set A ∪ {b} is also an antichain, a contradiction as A is a maximal antichain
of �z. The other case is Ba1 �z Bb �z Eb �z Bak, but then b /∈ AC(xA), so
a contradiction again. Hence A = AC(xA). ��

Clearly not every non-empty AC(x) is a maximal antichain, and usually there
are different x1 and x2 such that AC(x1) = AC(x2).

A sequence x ⊆ z is AC-complete in z if the following properties are satisfied:

1. x = Ba1x0Bak or x = Ba1 for some Ba1, Bak ∈ z,
2. ∀Bb ∈ z. Bb �z Ba1 =⇒ Eb �z Bak,
3. ∀Bb ∈ z. Bak �z Bb =⇒ ∃Eai. Bak �z Eai �z Bb.

Intuitively, a sequence x is AC-complete in z if it is the minimal sequence
such that AC(x) is a maximal antichain of �z. Note that if x is a maximal prefix
of z built from events beginnings only, i.e. x = Ba1 . . . Bak and z = xEaiy, then
x is AC-complete.

Consider a sequence z =

x2
︷ ︸︸ ︷

BfBaBb
︸ ︷︷ ︸

x1

EaBcEbBdBe

︸ ︷︷ ︸

x3

EdEcEeEf . It has three

AC-complete subsequences: x1 = BfBaBb, x2 = BfBaBbEaBc and x3 =

Modeling Operational Semantics with Interval Orders 259

BfBaBbEaBcEbBdBe. The sequence z′ =

x′
1

︷ ︸︸ ︷

BaBbEa

x′
3

︷ ︸︸ ︷

Bc
︸ ︷︷ ︸

x′
2

EbBdBeEdEcEe, has

also three AC-complete subsequences: x′
1 = BaBb, x′

2 = BbEaBc, and x′
3 =

BcEbBdBe.
We will now show that AC-complete subsequences of z correspond to the

maximal antichains of the interval order �z.

Proposition 3. 1. If x ⊆ z is AC-complete, then AC(x) is a maximal antichain
of �z.

2. For every maximal antichain A of �z there is an AC-complete x subsequence
of z such that A = AC(x).

Proof

(1) By Lemma 1(1), AC(x) is an antichain of �z. Suppose x = Ba1x0Bak and
AC(x) ∪ {b} is also an antichain of �z and b /∈ AC(x). Since b /∈ AC(x) then
either Ba1 �z Bb �z Eb �z Bak, or Bb �z Ba1, or Bb �z Bak. In the first
case b �z ak, so AC(x) ∪ {b} is not an antichain. Since x is AC-complete,
for the second case we have Eb �z Bak, so b �z ak again, for the third case
Eai �z Bb for some Eai ∈ x, so ai �z b. Hence in both cases AC(x) ∪ {b} is
not an antichain. Thus AC(x) is a maximal antichain.

(2) It suffices to show that xA from the proof of Lemma 1(2) is AC-complete. The
first condition of AC-completeness is clearly satisfied. Suppose Bb�z Ba1 for
some Bb ∈ z. Since AC(x) is a maximal antichain we clearly have b �x ai

for some ai, so Eb � Bai � Bak, so the condition (2) also holds. Similarly
for condition (3). ��

We can easily introduce a total ordering of AC-complete subsequences of z
that will correspond to the total ordering of the maximal antichains of z.

Let x, y be AC-complete subsequences of z. We will write

x <z y ⇐⇒ ∀Bai ∈ Ax \ Ay.∀Bbj ∈ Ay. Eai �z Bbj .

Proposition 4. Let x, y ⊆ z be AC-complete sequences. Then

x <z y ⇐⇒ AC(x)
po
�z AC(y).

Proof. Since x, y are AC-complete then AC(x) and AC(y) are maximal antichains.
Moreover,

(∀Bai ∈ Ax \ Ay .∀Bbj ∈ Ay . Eai �z Bbj) ⇐⇒ (∀ai ∈ AC(x) \ AC(y).∀bj ∈ AC(y). ai �z bj).

Hence x <z y ⇐⇒ AC(x)
po
�z AC(y). ��

For z = BfBaBbEaBcEbBdBeEdEcEeEf and its three B-complete subse-
quences x1 = BfBaBb, x2 = BfBaBbEaBc and x3 = BfBaBbEaBcEbBdBe,

260 R. Janicki

we have x1 <z x2 <z xc,AC(x1)={a, b, f}, AC(x2)={b, c, f}, AC(x3)={d, e, f},

and {a, b, f}
po
�z {b, c, f}

po
�z {d, e, f}, i.e. AC(x1)

po
�z AC(x2)

po
�z AC(x3).

For z′ = BaBbEaBcEbBdBeEdEcEe and its three B-complete subse-
quences x′

1 = BaBb, x′
2 = BbEaBc and x′

3 = BcEbBdBe, we have x′
1 <z

x′
2 <z x′

3, AC(x′
1) = {a, b}, AC(x′

2) = {b, c}, AC(x′
3) = {c, d, e}, and {a, b}

po
�z

{b, c}
po
�z {c, d, e}, i.e. AC(x′

1)
po
�z AC(x′

2)
po
�z AC(x′

3).
In general it is not obvious how to derive a sequence of antichains sa(z) from

a given interval sequence z. A simple algorithm below is based on classical idea
of matching left braces, i.e. Ba’s, with appropriate right braces, i.e. Ea’s (cf.
[5]), and implicitly employs the concept of AC-complete subsequences.

The variable j, the sets Aj , A(i) and the sequences of sets sj are not parts
of the algorithm, they were included as they will be used in the proof of the
correctness of this algorithm.

Algorithm 1. Input: n > 0, z = α1 . . . αn ∈ InSeq(Σ)
i:Integer; A:set; s:sequence of sets; mode:{‘B’,‘E’};
i ← 0; A ← ∅; s ← ε; mode ← ‘B’; % j ← 1
for i = 1 to n do

if αi = Ba then do A ← A ∪ {a}; mode = ‘B’ od; (1)
if αi = Ea ∧ mode = ‘B’ then do s ← sA; % Aj ← A; sj ← s; j ← j + 1; (2a)

A ← A \ {a}; mode = ‘E’ od; (2b)
if αi = Ea ∧ mode = ‘E’ then do A ← A \ {a}; mode = ‘E’ od; (3)

% A(i) ← A;
od

Output: sa(z) = s % sa(z) = sj−1 = A1 . . . Aj−1 �

For the interval sequence z = BaBbEaBcEbBdBeEdEcEe, the above algo-
rithm returns the sequence of antichains sa(z) = {a, b}{b, c}{c, d, e} and clearly
∠sa(z) = �z.

Time complexity of Algorithm 1 is O(n log n) if the set A is implemented as
any kind of balanced tree [5]. This complexity is O(n2) if the set A is implemented
as a list or an array [5]. For the list or array implementation, the time complexity
of A∪{a} in line (1) is actually O(1) but unfortunately the complexity of A\{a}
in lines (2) and (3) is O(n).

While AC-complete subsequences do not appear explicitly in Algorithm 1,
they are essential part of its proof of correctness.

Proposition 5. For each z = α1 . . . αn ∈ InSeq(Σ) and sa(z) derived from z by
Algorithm1, we have: sa(z) ∈ SA(̂Σ) ∧ ∠sa(z) = �z .

Proof. Let hj be the value of i when the value of j has changed from j−1 to j (see
line (2a) of the algorithm). Define zj = α1 . . . αhj

and consider z1 = α1 . . . αh1 .
Since z1 is a maximal prefix of z built from Ba’s only, it is AC-complete and
A1 = AC(z1) is a maximal antichain. Hence s1 ∈ SA(̂Σ) and ∠s1 =�z1 .

Assume sj = A1 . . . Aj ∈ SA(̂Σ) and ∠sj
=�zj

and consider the case of
j + 1. The sequence sj has been constructed in line (2a) just before j has been
changed to j + 1. At the end of line (2a) we still have A = Aj .

Modeling Operational Semantics with Interval Orders 261

The lines (2b) and (3) delete from A the events that have ended so no longer
belong to the next antichain.

We have to consider two cases, Case 1, when j + 1 is the biggest value of j,
i.e. line (1) is executed that last time for i = hj+1 − 1, and Case 2 when the
value j + 2 takes place.

(Case 1) In this case the algorithm produces sa(z) = A1 . . . Aj ∈ SA(̂Σ) and
by the induction assumption we have, ∠sa(z) =�z. Moreover, the lines (2b)
and (3) delete the events that have ended from A. Since z is an interval
sequence, A becomes empty at the end of loop ‘for’, i.e. A(n) = ∅, which ends
this case.
(Case 2) Let gk be the value of i when the line (1) is executed first time
when the current value of j is k. We have i = gj+1 − 1 when the line (3)
is executed for the last time for the current j + 1. Consider A(gj+1−1). It
contains all elements of Aj that have not executed their endings yet, i.e.
A(gj+1−1) = Aj ∩ Aj+1.

Let i0 = 1 and for j ≥ 1 let ij be the smallest k such that Ba = αk

and Ba ∈ A(gj−1). New Ba’s are added to A in the loop ‘for’ from i = gj to
i = hj+1 − 1, and A(hj+1−1) = Aj+1. Define xj+1 = αij . . . αhj+1−1 ⊆ z. Clearly
AC(xj) = Aj+1. We will show that xj+1 is a AC-complete subsequence of z. The
first element of xj+1, αij is Ba type by its definition, while the last element,
αhj+1−1 is Ba type by the definition of hj+1, so the condition (1) is satisfied.

Let xj = Baj1 . . . Bajk be the AC-complete subsequence of z such that
AC(xj) = Aj . We clearly have Baj1 �z Bajk �z αhj+1−1, so the condition (2) is
satisfied for xj+1 for all Bb�z Baj1 . Consider the case Baj1 �z Bb�z αij . Hence
Bb ∈ xj and b ∈ Aj but b /∈ Aj+1. This means that b was deleted from A in
either line (2b) or (3) for i < hj+1 − 1, so Eb = αi for i < hj+1 − 1. Thus the
condition (2) of AC-completeness is always satisfied. The condition (3) follows
from the fact that αhj+1 is type Ea. This means xj+1 is AC-complete. Clearly
xj <z xj+1 which implies sj+1 = A1 . . . AjAj+1 ∈ SA(̂Σ) and ∠sj+1 =�zj+1 . ��

What about an inverse problem? For a given sequence of antichains s, how
can we derive an interval sequence z such that both s and z define the same
interval order?

Let s = A1 . . . Am be a sequence of antichains on ̂Σ, i.e. s ∈ SA(̂Σ).
For each a ∈ s, we define:

firsts(a) = Ai if a ∈ Ai and either i = 1 or a /∈ Ai−1, and
lasts(a) = Ai if a ∈ Ai and either i = n or a /∈ Ai+1.

For each Ai, we define:

Bs(Ai) = {Ba | firsts(a) = Ai} and Es(Ai) = {Ea | lasts(a) = Ai}.

Also, for every set X, let perm(X) denote the set of all permutations of the
elements of X.

262 R. Janicki

• For every sequence of antichains s = A1 . . . Am ∈ SA(̂Σ), its set of all interval
sequence representations, isr(s), is defined as:

isr(s) = perm(Bs(A1))perm(Es(A1)) . . . perm(Bs(Am))perm(Es(Am)).

For example, for s = {a, c}{b, c}, we have isr(s) = {BaBcEaBbEbEc,BaBcEa
BbEcEb,BcBaEaBbEbEc,BcBaEaBbEcEb}.

Note that the definition of isr(s) involves neither interval order ∠s nor interval
orders �z for z ∈ isr(s).

Proposition 6. For every sequence of antichains s ∈ SA(̂Σ): isq(s) = isr(s).

Proof. Let x ∈ isr(s), and a ∈ s. Note that either firsts(a) = lasts(a) or

firsts(a)
po

∠s lasts(a), which means Ba �x Ea. Now suppose a∠sb. Since a ∈
lasts(a) and b ∈ firsts(b), from Proposition 1(2), we have lasta(a)

po

∠s firsts(b).

But
po

∠s is a total order of maximal antichains, so lasta(a)
po

∠s firsts(b) if and only
if x = . . . Ea . . . Bb . . ., so a∠sb ⇐⇒ Ea �x Bb, i.e. x ∈ isq(s).

Let x ∈ isq(s). Hence for all a, b ∈ s we have Ba �x Ea and a∠sb ⇐⇒
Ea �x Bb. Suppose x /∈ isr(s). For every y ∈ isr(s) we can write x = vx1 and
y = vy1. Let y0 be such element of isq(s) that the length of the prefix v is
maximal.

We have to consider four cases:
Case 1. x = u Ba ux, y0 = u Bb uy0 . Hence x = u Ba v1 Bb v2 and y0 = u

Bb z1 Ba z2. Suppose z1 = s Ec s1, i.e. y0 = u Bb s Ec s1 Ba z2, which
means Ec �y0 Ba i.e. c∠sa. Since Ec does not appear in u, we also have x =
u Ba t Ec t1, which means Ba �x Ec, i.e. ¬(c∠sa), a contradiction. This means
z1 = Ba1 . . . Bam, so y0 = v BbBa1 . . . BamBa z2. But y0 ∈ isr(s), so by the
definition of isr(s), we have that y1 = vBaBbBa1 . . . Bam z2 ∈ isr(s), so u is
not maximal, as uBa is a prefix of both x and y1. Therefore the Case 1 cannot
happen.

Case 2. x = u Ea ux, y0 = u Eb uy0 . Hence x = u Ea v1 Eb v2 and
y0 = u Eb z1 Ea z2. Suppose z1 = s Bc s1, i.e. y0 = u Eb s Bc s1 Ea z2,
which means Bc �y0 Ea i.e. ¬(a∠sc). Since Bc does not appear in u, we also
have x = u Ea t Bc t1, which means Ea �x Bc, i.e. a∠sc, a contradiction. This
means z1 = Ea1 . . . Eam, so y0 = v EbEa1 . . . EamEa z2. But y0 ∈ isr(s), so
from the definition of isr(s), we have that y1 = vEaEbEa1 . . . Eam z2 ∈ isr(s),
so u is not maximal, as uEa is a prefix of both x and y1. Therefore the Case 2
cannot happen either.

Case 3. x = u Ba ux, y0 = u Eb uy0 . Hence x = u Ba v1 Eb v2, which means
Ba �x Eb, i.e. ¬(b∠sa), and y0 = u Eb z1 Ba z2, which means Eb �y0 Ba. i.e.
b∠sa, a contradiction, so the Case 3 is not valid.

Case 4. x = u Ea ux, y0 = u Bb uy0 . Hence x = u Ea v1 Bb v2, which
means Ea �x Bb, i.e. a∠sb, and y0 = u Bb z1 Ea z2, which means Bb �y0 Ea.
i.e. ¬(a∠sb), a contradiction, so the Case 4 is not valid too. ��

Modeling Operational Semantics with Interval Orders 263

Assume that |A1| + . . . + |Am| = n. Then constructing an element of isr(s),
directly from the definition of isr(s), is O(mn) since constructing Bs(Ai) is O(n)
and constructing Es(Ai) is also O(n).

6 Operational Semantics and Sequences of Antichains

In this section we will show how an operational semantics of elementary Petri
nets with inhibitor arcs can be expressed in terms of sequences of antichains, i.e.
interval orders.

6.1 Elementary Nets with Inhibitor Arcs

Elementary nets with inhibitor arcs [12,14] are very simple. They are just classi-
cal elementary nets of [17], i.e. one-safe place-transition nets without self-loops,
extended with inhibitor arcs3. Nevertheless they can easily express complex
behaviours involving ‘not later than’ cases [3,12,14,15], priorities, various ver-
sions of simultaneities, etc. [10,13,19].

An inhibitor net is a tuple N = (P, T, F, I,m0), where P is a set of places,
T is a set of transitions, P and T are disjoint, F ⊆ (P × T) ∪ (T × P) is a flow
relation, I ⊆ P × T is a set of inhibitor arcs, and m0 ⊆ P is the initial marking.
An inhibitor arc (p, e) ∈ I means that e can be enabled only if p is not marked.
In diagrams (p, e) is indicated by an edge with a small circle at the end. Any set
of places m ⊆ P is called a marking.

For every x ∈ P ∪ T , the set •x = {y | (y, x) ∈ F} denotes the input nodes
of x and the set x• = {y | (x, y) ∈ F} denotes the output nodes of x. The
set x◦ = {y | (x, y) ∈ I ∪ I−1} is the set of nodes connected by an inhibitor
arc to x. The dot-notation extends to sets in the natural way, e.g. the set X•

comprises all outputs of the nodes in X. We assume that for every t ∈ T , both
•t and t• are non-empty and disjoint. These requirements do not always appear
in the literature, but following [16,17] we use them for two reasons. Firstly
because they are quite natural, and secondly because they allow us to avoid
many unnecessary technicalities (cf. [17]). Additionally, both of •t and t• must
have an empty intersection with t◦. Figure 3 shows two examples of elementary
inhibitor nets, N and N1.

The firing sequences semantics, the simplest operational semantics, is defined
in almost the same way as any other kind of Petri nets. The only difference is
that for the inhibitor nets, a transition can be enabled only if no place with
which it is joined by an inhibitor arc is marked.

Formally, a transition t is enabled at marking m if •t ⊆ m and (t•∪t◦)∩m = ∅.
An enabled t can occur leading to a new marking m′ = (m \• t) ∪ t•, which

is denoted by m[t〉m′.

3 Inhibitor arcs allow a transition to check for an absence of a token. In principle they
allow ‘test for zero’, an operator the standard Petri nets do not have. They were
introduced in [1].

264 R. Janicki

• A firing sequence from the marking m1 to mk+1 is any sequence of transitions
t1. . .tk for which there are markings m2, . . .,mk satisfying:

m1[t1〉m1[t2〉m2. . .mk[tk〉mk+1.

In such case we write: m1[t1. . .tk〉mk+1.
• The set of all firing sequences from the marking m to the marking m′ is

defined as:

FSN (m→m′) = {x ∈ T ∗ | m[x〉m′}.

For the net N from Fig. 3, we have FSN ({s1, s2}→{s4, s5}) = {abc, cab}, and
corresponding total orders <tot1

N , <tot2
N .

Similarly we can define firing step sequences, FSSN (m→m′). The only dif-
ference is that sets of mutually independent transitions can be fired simultane-
ously. Let A ⊆ T be a non-empty set such that for all distinct t, r ∈ A, we have
(t• ∪• t) ∩ (r• ∪• r) = ∅.

Every such set A is called a step, and a step A is a step enabled at marking m if
•A ⊆ m and (A•∪A◦)∩m = ∅. We also denote m[A〉m′, where m′ = (m\•A)∪A•.

A firing step sequence from the marking m1 to mk+1 is any sequence of
non-empty sets of transitions A1. . .Ak for which there are markings m2, . . .,mk

satisfying:
m1[A1〉m1[A2〉m2. . .mk[Ak〉mk+1.

In such case we may write: m1[A1. . .Ak〉mk+1.
The set of all firing step sequences from the marking m to the marking m′

is defined as follows:

FSSN (m→m′) = {x ∈ (P(T) \ ∅)∗ | m[x〉m′}.

For the net N , we have FSSN ({s1, s2}→{s4, s5}) = {{a}{b}{c}, {c}{a}{b}, {a, c}
{b}}, and corresponding stratified orders <tot1

N , <tot2
N , <strat

N . The interval order
<int

N cannot be represented by plain step sequences. Moreover the step sequence
{a}{b, c} does not belong to FSSN ({s1, s2}→{s4, s5}), so the stratified order
<strat

¬N is not generated by the net N .
As it was aptly stated in [19]: “If transitions have a beginning and an end,

a system state cannot adequately be described by a marking alone; instead, it
consists of a marking together with some transitions that have started, but have
not finished yet”. One way of describing such system state is the concept of ST-
marking, proposed in [18] and explored among others in [19]. Another, slightly
simpler for elementary inhibitor nets, way is to use the model recently proposed
in [13]. The idea of this approach is briefly illustrated in Fig. 3. If inhibitor arcs
are not involved, to represent transitions by their beginnings and ends we might
just replace each transition t by the net as proposed for example
by Zuberek in [21] for Timed Petri nets. Each inhibitor arc must be replaced
by two when transformation is made and this construction is explained in detail
in [13]. Within this model, the interval order semantics of the net N in Fig. 3

Modeling Operational Semantics with Interval Orders 265

is fully represented by the firing sequence semantics of the net N1. Assuming
that we can ‘hold a token’ in transitions and holding a token in c overlap with
holding tokens in a and b, the net N can generate the interval order <N , which
is represented for example by an interval sequence BaBcEaBbEbEc which is a
firing sequence of the net N1.

In this section we will extend the model of [13], so the sequence
{a1, c1}{b1, c1} can be derived for the net N of Fig. 3, and this is the sequence
of antichains that defines the interval order <N . The net N1 in Fig. 3 is to illus-
trate intuitions and motivations only. Both in [13] and here, all the concepts
will be defined in terms of standard inhibitor nets (cf. [12,14]), i.e. the net N .
While the inhibitor arc (s3, Bc) in the net N1 is rather intuitively evident, the
need for the inhibitor arc (b,Bc) might not be so obvious. However when the
inhibitor arc (b,Bc) is deleted, the interval sequence BaEaBbBcEcEb is a firing
sequence of this new net, say N2, and �BaEaBbBcEcEb = <strat

¬N , so this new net
N2 is not equivalent to N . Moreover, we also have �BaEaBcBbEcEb = <strat

¬N ,
while the interval sequence BaEaBcBbEcEb is not a firing sequence of N2, so
the transformation of N into N2 is not sound. More detailed discussion can be
found in [13].

6.2 Interval Sequence Semantics

We will now briefly recall interval sequence semantics of elementary inhibitor
nets as proposed in [13]. The key idea is to allow tokens not only in places but in
transitions as well. A token in a transition t could be interpreted as ‘t is active’,
and removing all tokens from •t and placing one token in t can be interpreted as
an execution of Bt, while removing the token from t and placing tokens in t• can
be interpreted as executing Et. The whole definition is given below. It creates a
basic structure that we can use to formally define ‘holding a token’ operational
semantics (but without explicit notion of time) in terms of interval sequences.

Let N = (P, T, F, I,m0) be a given elementary nets with inhibitor arcs.

• For each t ∈ T we define Bt - the beginning of t and Et - the end of t, and
the set

T = {Bt | t ∈ T} ∪ {Et | t ∈ T}.

The elements of T are called BE-transitions.
• For each t ∈ T we define:

•Bt = •t, Bt• = {t},
•Et = {t}, Et• = t•,
Bt◦ = t◦ ∪ (t◦)•, Et◦ = ∅.

• We say that a set m ⊆ P ∪ T is an extended marking if: m ∩ (•m ∪ m•) = ∅.
• A BE-transition τ ∈ T is enabled at extended marking m ⊆ P ∪ T if

•τ ⊆ m and (τ• ∪ τ◦) ∩ m = ∅.

266 R. Janicki

• An enabled τ can occur leading to a new extended marking

m′ = (m \• τ) ∪ τ•,

which is denoted by: m[[τ〉〉m′.
• An extended firing sequence from the extended marking m1 to the extended

marking mk+1 is any sequence of BE-transitions τ1. . .τk for which there are
extended markings m2, . . .,mk satisfying:

m1[[τ1〉〉m2. . .mk[[τk〉〉mk+1.

In such case we write: m1[[τ1. . .τk〉〉mk+1.
• The set of all firing interval sequences from the marking m ⊆ P to the

marking m′ ⊆ P is defined as:

FISN (m→m′) = {x ∈ T ∗ | m[[x〉〉m′}

It is not immediately obvious that the definition of FISN (m→m′) is sound and
complete. This would require the set FISN (m→m′) to satisfy the following two
properties

– every element of FISN (m→m′) must be an interval sequence, and
– since all total order representations of a given interval order are considered

equivalent and none is preferred, if x ∈ FISN (m→m′), then �x =�y should
imply y ∈ FISN (m→m′).

The following two results from [13] show that the above two properties are
satisfied.

Proposition 7 ([13])

1. For all markings m,m′ ⊆ P , we have FISN (m→m′) ⊆ InSeq(T ∗).
2. For every x ∈ FISN (m→m′) and every y ∈ T ∗, if �x=�y then y ∈

FISN (m→m′). �

The proof of Proposition 7(2) is actually quite complex (cf. [13], Appendix A).
For the net N from Fig. 3, we have FISN ({s1, s2}→{s4, s4}) = FSN1({s1, s2}→
{s4, s4})

=

⎧
⎨

⎩

BcEcBaEaBbEb, BaBcEcEaBbEb, BaBcEaEcBbEb, BcBaEcEaBbEb,
BcBaEaEcBbEb, BaBcEaBbEbEc, BaBcEaBbEcEb, BcBaEaBbEbEc,
BcBaEaBbEcEb, BaEaBbEbBcEc

⎫
⎬

⎭
.

We will now very briefly discuss the relationship between the interval
sequence model of [13] and ST-trace model of [18,19]. In the model of [13] the
system states are represented by extended markings and in the model of [18,19]
by ST-markings. For a given net (with or without inhibitor arcs), an ST-marking
is a pair (mST , cST), where mST ⊆ P is a current marking of N and cST ⊆ T is
the set of currently firing transitions. Formally, for every extended marking m,
the pair mST (m) = (m ∩ P,m ∩ T), is an ST-marking.

Modeling Operational Semantics with Interval Orders 267

Fig. 3. Interval orders semantics of an inhibitor net. The stratified order <strat
¬N is not

generated by N or N1.

An extended firing sequence τ such that m[[τ〉〉m′, can also be interpreted as
a ST-trace from the ST-marking mST (m) to the ST-marking mST (m′). Despite
the name trace, ST-traces are just sequences (more precisely, prefixes of interval
sequences) of the elements of T , i.e. Bt’s and Et’s, not sets of (equivalent w.r.t.
some rules) sequences as Mazurkiewicz, step or interval traces [10,13,15].

6.3 Operational Semantics with Sequences of Antichains

We will now extend the interval sequences semantics given above, so we can
derive explicitly appropriate sequences of antichains, as {a, c}{b, c} from the net
N of Fig. 3. The basic concept in our approach is the idea of a path from one
marking to another. This idea can be traced back to at least [18], most likely
even earlier as a folklore concept.

Let m,m′ ⊆ P .

• A path x from m to m′ is a sequence of elements of 2P∪T ∪ T ,

x = mτ1m1τ2 . . . mnτnm′,

such that: m[[τ1〉〉m1[[τ2〉〉 . . . mn[[τn〉〉m′.
• In such case we will write: m{{x〉〉m′.

For the net N of Fig. 3, x0, y0 given below are paths:

x0 = {s1, s2}Ba{a, s2}Bc{a, c}Ea{s3, c}Bb{b, c}Eb{s5, c}Ec{s4, s5},

y0 = {s1, s2}Ba{a, s2}Bc{a, c}Ea{s3, c}Ec{s3, s4}Bb{b, s4}Ec{s4, s5}.

• A path mτ1m1τ2 . . . mn−1τnm′ is elementary if for all i = 1, . . . , n, mi∩T �= ∅.

Clearly every path is a composition of elementary paths (the end of pre-
ceding elementary path is the beginning of successor elementary path).

268 R. Janicki

The path x0 is elementary while y0 is not as {s3, s4} ∈ y0, and y0 is a com-
position of elementary paths {s1, s2}Ba{a, s2}Bc{a, c}Ea{s3, c}Ec{s3, s4} with
{s3, s4}Bb{b, s4}Ec{s4, s5}.

• Let x = mτ1m1τ2 . . . mn−1τnmn where m′ = mn be a path from m to m′.
We define x̂, an enumerated path of x in three steps.

1. First we construct an enumerated version of the sequence zx = τ1 . . . τn.
Assume that ẑx = τ i1

1 . . . τ in
n .

2. We now construct a sequence x̃ as follows:

x̃ = mτ i1
1 m1τ

i2
2 . . . mn−1τ

in
n m′.

For the path x0 = {s1, s2}Ba{a, s2}Bc{a, c}Ea{s3, c}Bb{b, c}Eb{s5, c}Ec
{s4, s5}:
x̃0 = {s1, s2}Ba1{a, s2}Bc1{a, c}Ea1{s3, c}Bb1{b, c}Eb1{s5, c}Ec1{s4, s5}.

3. We define enumerated markings in the following way: m̂ = m, ̂m′ = m′ and
for all k = 1, . . . , n,
(a) m̂k ∩ P = mk ∩ P , i.e. elements of P remain unchanged,
(b) ∀a ∈ T. ai ∈ m̂k ⇐⇒ a ∈ mk ∧ x̃ = x1Baix2mkx3Eaix4 for some

subsequences x1, x2, x3, x4 of x̃, i.e. we set ai for all a between Bai and
Eai in x̃.

We now set
x̂ = m̂τ i1

1 m̂1τ
i2
2 . . . m̂n−1τ

in
n

̂m′.

The sequence x̂ is an enumerated path generated by x.

For the path x0 from (2) above x̂0 = {s1, s2}Ba1{a1, s2}Bc1{a1, c1}Ea1{s3, c
1}

Bb1{b1, c1}Eb1{s5, c
1}Ec1{s4, s5}.

For each path x we define sap(x), a sequence of antichains generated by
the path x, as (see Notation 8):

sap(x) = x̂ ∩ ̂T .

In principle, sap(x) is just a projection of x̂ onto the set ̂T . For the net
N of Fig. 3 and the path x0 = {s1, s2}Ba{a, s2}Bc{a, c}Ea{s3, c}Bb{b, c}Eb
{s5, c}Ec{s4, s5}, we have: sap(x0) = {a1, c1}{b1, c1}, and ∠sap(x0) = <int

N .
We will also write m‖sap(x)〉〉m′ if m{{x〉〉m′ for some markings m,m′ ⊆ P .
We will say that a sequence of antichains s = A1 . . . Am is a generalized step,

if

Ai ∩ Ai+1 �= ∅ for i = 1, . . . , m − 1.

Intuitively, if s is a generalized step, at each time point at least two events are
overlapping. For example sap(x0) = {a1, c1}{b1, c1} is a generalized step.

Lemma 2. If x is an elementary path then sap(x) is a generalized step.

Modeling Operational Semantics with Interval Orders 269

Proof. Suppose Ak ∩ Ak+1 = ∅. This means in x, for each ai ∈ Ak, bj ∈ Ak+1,
Eai must precede Bbj so there must be a generalized marking ml ⊆ P which
resides in x between Eai’s and Bbj ’s. Hence x is not elementary. ��

The set of all sequences of antichains from the marking m to the marking m′

is defined as

SAN (m→m′) = {sap(x) | m‖sap(x)〉〉m′} = {sap(x) | m{{x〉〉m′}.

For the net N of Fig. 3 we have: SAN ({s1, s2}→{s4, s5}) = {{a1}{b1}{c1}, {c1}
{a1}{b1}, {a1, c1}{b1}, {a1, c1}{b1, c1}}, and {∠s | s ∈ SAN ({s1, s2}→{s4, s5})
= {<tot1

N , <tot2
N , <strat

N , <int
N }, where ∠{a1}{b1}{c1} = <tot1

N , ∠{c1}{a1}{b1} = <tot2
N ,

∠{a1,c1}{b1} = <strat
N and ∠{a1,c1}{b1,c1} = <int

N .
We will now present the main result of this section, that connects inter-

val sequences semantics proposed in [13] with the semantics in terms of inter-
val sequences proposed in this section. In principle this result follows from the
fact that for each path x = mτ1m1τ2 . . . mn−1τnm′, we have m{{x〉〉m′ ⇐⇒
m[[τ1 . . . τn〉〉m′ ⇐⇒ m ‖ sap(x)〉〉m′, however the proof will also require
Proposition 7(2).

Theorem 3. For all m,m′ ⊆ P ,

1. SAN (m→m′) = {sa(z) | z ∈ FISN (m→m′)},
2. FISN (m→m′) =

⋃

s∈SAN (m→m′) isq(s).
3. {�x| x ∈ FISN (m→m′)} = {∠s | s ∈ SAN (m→m′)}.

Proof

(1) Let s = A1 . . . At ∈ SAN (m→m′). Hence there is a path x such that
s = sap(x) = x̂ ∩ ̂T and m{{x〉〉m′. Since x = mτ1m1τ2 . . . mn−1τnm′

then x̂ = m̂τ l1
1 m̂1τ

l2
2 . . . m̂n−1τ

ln
n

̂m′. Since x is a path, we also have
m[[τ1〉〉m1[[τ2〉〉 . . . mn−1[[τn〉〉m′. Assume Ai = m̂ji for i = 1, . . . , t, and define
zx = τ i1

1 τ i2
2 . . . τ in

n . We will show that sa(zx) = s. Note that for each a ∈ Ai =
m̂ji , Ba must precede m̂ji in x̂ and Ea follow must m̂ji , i.e. Ba�x̂m̂ji �x̂Ea.
Let τ

ik1
ki

∈ x̂ be such Ba that a ∈ m̂ji for each b ∈ m̂ji \{a}, Ba = τ
ik1
ki

�x̂Bb.

Define xi = τ
ik1
ki

. . . τ
lji
ji

. Clearly τ
lji
ji

m̂ji ⊆ x̂, and by a reasoning very similar
to that in the proof of Proposition 5 we can show that xi is an AC-complete
subsequence of zx such that xi <zx

xj ⇐⇒ i < j and AC(xi) = Ai. Hence
sa(zx) = s, i.e. SAN (m→m′) ⊆ {sa(z) | z ∈ FISN (m→m′)}.
Let z = τ1 . . . τn ∈ FISN (m→m′), ẑ = τ i1

1 τ i2
2 . . . τ in

n , and let
xz = mτ1m1τ2 . . . mn−1τnmn, with m′ = mn, be an appropriate
path such that m{{xz〉〉m′ ⇐⇒ m[[τ1 . . . τn〉〉m′. This implies x̂z =
m̂τ l1

1 m̂1τ
l2
2 . . . m̂n−1τ

ln
n

̂m′. Assume that sa(z) = A1 . . . At, and x1, . . . , xl are
AC-complete subsequences of ẑ such that AC(xi) = Ai for i = 1, . . . , t. Sup-
pose xi = τ

ik1
ki

. . . τ
lji
ji

. Clearly τ
lji
ji

m̂ji ⊆ x̂z and, because xj is AC-complete,
we also have m̂ji = AC(xj) = Aj . But this means sa(z) = sap(xz), i.e.
{sa(z) | z ∈ FISN (m→m′)} ⊆ SAN (m→m′).

270 R. Janicki

(2) Let z ∈ FISN (m→m′). By (1) above, sa(z) ∈ SAN (m→m′), and clearly
z ∈ isq(sa(z)). Hence FISN (m→m′) ⊆

⋃

s∈SAN (m→m′) isq(s).
Let s ∈ SAN (m→m′) and z ∈ isq(s), i.e. ∠s = �z. Let xs =
mτ1m1τ2 . . . mn−1τnm′ be a path such that s = sap(x). Clearly zs =
τ1 . . . τn ∈ FISN (m→m′) and ∠s = �zs

. Hence �z = �zs
so by Propo-

sition 7(2), z ∈ FISN (m→m′), i.e.
⋃

s∈SAN (m→m′) isq(s) ⊆ FISN (m→m′).
(3) Let x ∈ FISN (m→m′). Consider �x. By (2) there is s ∈ SAN (m→m′) such

that x ∈ isq(s), so ∠s = �x, i.e. {�x| x ∈ FISN (m→m′)} ⊆ {∠s | s ∈
SAN (m→m′)}.
Let s ∈ SAN (m→m′)}. By (1) there is x ∈ FISN (m→m′) such that s =
sa(x); so ∠s = �x, which means {∠s | s ∈ SAN (m→m′)} ⊆ {�x| x ∈
FISN (m→m′)}. ��

Theorem 3 states that for elementary inhibitor nets, the interval sequence
semantics of [13] and the antichains sequence semantics of this paper are equiv-
alent. One can be derived from another and they both generate the same set of
appropriate interval orders. The advantage of antichains sequences is that each
interval order is represented by exactly one sequence of antichains.

7 Final Comments

A detailed relationship between interval sequences of [13] and sequences of
antichains, including simple algorithms that transform one into another, has
been analyzed. While Fishburn Theorem and representation by sequences of
antichains have been known for many years [7,11], this paper appears to be the
first one that provides a detailed analysis of their mutual relationship. An oper-
ational semantics of elementary nets with inhibitor arcs was defined in terms of
sequences of antichains, and was proved to be consistent with the operational
interval sequence semantics proposed in [13]. A similar sequences of antichains
semantics of nets can be derived from ST-traces of [18,19], but the model would
be much more complex.

The results of this paper can be regarded as a promising starting point for
more advanced model of behavioural semantics, equivalent to the interval traces
of [13] or step traces of [10], but with sequences of antichains as models of system
runs.

References

1. Agerwala, T., Flynn, M.: Comments on capabilities, limitations and “correctness”
of Petri nets. Comput. Architect. News 4(2), 81–86 (1973)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26,
832–843 (1983)

3. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theor. Comput. Sci. 323,
129–189 (2004)

Modeling Operational Semantics with Interval Orders 271

4. Bidoit, M., Hennicker, R., Wirsing, M.: Characterizing behavioural semantics and
abstractor semantics. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 105–
119. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57880-3 7

5. Cormen, T.H., Leiserson, C.E., Rivest, D.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

6. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J.
Math. Psychol. 7, 144–149 (1970)

7. Fishburn, P.C.: Interval Orders and Interval Graphs. Wiley, New York (1985)
8. Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427–498 (1981)
9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Automata Theory, Languages, and

Computation. Addison-Wesley, Boston (2001)
10. Janicki, R., Kleijn, J., Koutny, M., Mikulski, �L.: Step traces. Acta Inform. 53,

35–65 (2016)
11. Janicki, R., Koutny, M.: Structure of concurrency. Theor. Comput. Sci. 112, 5–52

(1993)
12. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16

(1995)
13. Janicki, R., Yin, X.: Modeling concurrency with interval orders. Inf. Comput. 253,

78–108 (2017)
14. Kleijn, J., Koutny, M.: Process semantics of general inhibitor nets. Inf. Comput.

190, 18–69 (2004)
15. Kleijn, J., Koutny, M.: Formal languages and concurrent behaviours. In: Bel-

Enguix, G., Jiménez-López, M.D., Mart́ın-Vide, C. (eds.) New Developments in
Formal Languages and Applications. SCI, vol. 113, pp. 125–182. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-78291-9 5

16. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Behavioural notions for elementary
net systems. Distrib. Comput. 4, 45–57 (1990)

17. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 14

18. van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of con-
currency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987.
LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-17945-3 13

19. Vogler, W.: Partial order semantics and read arcs. Theor. Comput. Sci. 286(1),
33–63 (2002)

20. Wiener, N.: A contribution to the theory of relative position. In: Proceedings of
the Cambridge Philosophical Society, vol. 17, pp. 441–449 (1914)

21. Zuberek, W.M.: Timed Petri nets and preliminary performance evaluation. In:
Proceedings of the 7th Annual Symposium on Computer Architecture, La Baule,
France, pp. 89–96 (1980)

https://doi.org/10.1007/3-540-57880-3_7
https://doi.org/10.1007/978-3-540-78291-9_5
https://doi.org/10.1007/3-540-65306-6_14
https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1007/3-540-17945-3_13

One Net Fits All
A Unifying Semantics of Dynamic Fault

Trees Using GSPNs

Sebastian Junges1, Joost-Pieter Katoen1,2, Mariëlle Stoelinga2,3,
and Matthias Volk1(B)

1 Software Modeling and Verification, RWTH Aachen University, Aachen, Germany
matthias.volk@cs.rwth-aachen.de

2 Formal Methods and Tools, University of Twente, Enschede, Netherlands
3 Department of Software Science, Radboud University Nijmegen,

Nijmegen, Netherlands

Abstract. Dynamic Fault Trees (DFTs) are a prominent model in reli-
ability engineering. They are strictly more expressive than static fault
trees, but this comes at a price: their interpretation is non-trivial and
leaves quite some freedom. This paper presents a GSPN semantics for
DFTs. This semantics is rather simple and compositional. The key fea-
ture is that this GSPN semantics unifies all existing DFT semantics
from the literature. All semantic variants can be obtained by choosing
appropriate priorities and treatment of non-determinism.

1 Introduction

PC

Power UPSRAM

(a) FT

PC

≤

Power UPSSwitchRAM

(b) Dynamic FT

Fig. 1. Fault tree examples

Fault trees (FTs) [1] are a popular model
in reliability engineering. They are used
by engineers on a daily basis, are recom-
mended by standards in e.g., the auto-
motive, aerospace and nuclear power
industry. Various commercial and aca-
demic tools support FTs; see [2] for a
survey. FTs visualise how combinations
of components faults (their leaves, called
basic events) lead to a system failure.
Inner tree nodes (called gates) are like
logical gates in circuits such as AND and
OR. The simple FT in Fig. 1(a) models
that a PC fails if either the RAM, or both power and UPS fails.

Standard FTs appeal due to their simplicity. However, they lack expressive
power to faithfully model many aspects of realistic systems such as spare com-
ponents, redundancies, etc. This deficiency is remedied by Dynamic Fault Trees

This work is supported by the CDZ project CAP, the DFG RTG 2236 “UnRAVeL”,
the STW project 154747 SEQUOIA, and the EU project SUCCESS.

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 272–293, 2018.
https://doi.org/10.1007/978-3-319-91268-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_14&domain=pdf

One Net Fits All 273

(DFTs, for short) [3]. They involve a variety of new gates such as spares and
functional dependencies. These gates are dynamic as their behaviour depends on
the failure history. For instance, the DFT in Fig. 1(b) extends our sample FT.
If the power fails while the switch is operational, the system can switch to the
UPS. However, if the power fails after the switch failed, their parent PAND-gate
causes the system to immediately fail1. The expressive power of DFTs allows for
modelling complex failure combinations succinctly. This power comes at a price:
the interpretation of DFTs leaves quite some freedom and the complex interplay
between the gates easily leads to misinterpretations [4]. The DFT in Fig. 2(a)
raises the question whether B’s failure first causes X to fail which in turn causes
Z to fail, or whether B’s failure is first propagated to Z making it impossible
for Z to fail any more? These issues are not just of theoretical interest. Slightly
different interpretations may lead to significantly divergent reliability measures
and give rise to distinct underlying stochastic (decision) processes.

≤

Z

X

A B

(a) DFT

FailedZ

Z

FailedX

X

FailedA

A

FailedB

B

(b) Basic scheme

λA λB

FailedA FailedB

FailedX

t1@3
t2@3

FailedZFailSafeZ

t3@2
t4@2

(c) Simplified resulting GSPN

Fig. 2. Compositional semantics of DFTs using GSPNs

This paper defines a unifying semantics of DFTs using generalised stochas-
tic Petri nets (GSPNs) [5,6]. The use of GSPNs to give a meaning to DFTs
is not new; GSPN semantics of (dynamic) fault trees have received quite some
attention in the literature [7–10]. Many DFT features are naturally captured by
GSPN concepts, e.g., the failure of a basic event can be modelled by a timed
transition, the instantaneous failure of a gate by an immediate transition, and
places can be exploited to pass on failures. This work builds upon the GSPN-
based semantics in [7]. The appealing feature of our GSPN semantics is that it
unifies various existing DFT semantics, in particular various state-space based
meanings using Markov models [11–13], such as continuous-time Markov Chains
(CTMC), Markov automata (MA) [14], a form of continuous-time Markov deci-
sion process, or I/O interactive Markov chain (IOIMC) [15]. The key is that we
capture all these distinct interpretations by a single GSPN. The structure of
the net is the same for all possible meanings. Only two net features vary: the
transition priorities and the partitioning of immediate transitions. The former

1 A PAND-gate fails if all its children fail in a left-to-right order.

274 S. Junges et al.

steer the ordering of how failures propagate through a DFT, while the latter
control the possible ways in which to resolve conflicts (and confusion) [16].

Table 1. Semantic differences between supported semantics

Monolithic
CTMC [11]

IOIMC [12] Monolithic
MA [13]

Orig.
GSPN [7]

New GSPN

Tool
support

Galileo [17] DFTCalc [18] Storm [19]

Underlying
model

CTMC IMC [15] MA [14] GSPN/CTMC
[5,6]

GSPN/MA [16]

Priority
gates

≤ < ≤ < ≤ and <

Nested
spares

Not
supported

Late
claiming

Early
claiming

Not supported Early
claiming

Failure
propagation

Bottom-up Arbitrary Bottom-up Arbitrary Bottom-up

FDEP
forwarding

First Interleaved Last Interleaved First

Non-
determinism

Uniform True
(everywhere)

True FDEP Uniform true (PAND,
SPARE)

The benefits of a unifying GSPN are manifold. First and foremost, it gives
insights in the choices that DFT semantics from the literature—and the tools
realising these semantics—make. We show that already three DFT aspects dis-
tinguish them all: failure propagation, forwarding in functional dependencies,
and non-determinism, see the last three rows in Table 1. Mature tool-support for
GSPNs such as SHARPE [20], SMART [21], GreatSPN [22] and its editor [23]
can be exploited for all covered DFT semantics. Thirdly, our compositional app-
roach, with simple GPSNs for each DFT gate, is easy to extend with more
gates. The compositional nature is illustrated in Fig. 2. The occurrence of an
event like the failure of a DFT node is reflected by a dedicated (blue) place.
The behaviour of a gate is represented by immediate transitions (solid bars) and
auxiliary (white) places. Failing BEs are triggered by timed transitions (open
bars).

Our framework allows for expressing different semantics by a mild variation
of the GSPN; e.g., whether B’s failure is first propagated to X or to Z can be
accommodated by imposing different transition priorities. The paper supports
a rich class of DFTs as indicated in Table 2. The first column refers to the
framework, the next four columns to existing semantics from the literature, and
the last column to a new instantiation with mild restrictions, but presumably
more intuitive semantics. The meaning of the rows is clarified in Sect. 2.2.

Related Work. The semantics of DFTs is naturally expressed by a state-
transition diagram such as a Markov model [11–13]. Support of nested dynamic

One Net Fits All 275

Table 2. Syntax supported by different semantics

DFT
feature

Framework Monolithic
CTMC

IOIMC Monolithic
MA

Orig.
GSPN

New GSPN

Share
SPAREs

✓ ✓ ✓ ✓ ✗ ✓

SPARE
w/subtree

✓ ✗ ✓ ✓ ✗ ✓

Shared
primary

✓ ✗ ✓ ✗ ✗ ✓

Priority
gates

PAND/POR PAND PAND PAND/POR PAND PAND/POR

Downward
FDEPs

✓ ✗ ✓ ✓ ✗ ✗

SEQs on
gates

✗ ✓ ✗ ✓ ✗ ✗

PDEP ✓ ✗ ✗ ✓ ✗ ✓

gates is an intricate issue, and the resulting Markov model is often complex.
To overcome these drawbacks, semantics using higher-order formalisms such as
Bayesian Networks [24,25], Boolean logic driven Markov processes [26,27] or
GSPNs [7,9] have been proposed. DFT semantics without an underlying state-
space have also been investigated, cf. e.g., [28,29]. These semantics often consider
restricted classes of DFTs, but can circumvent the state-space explosion. Fault
trees have been expressed or extracted from domain specific languages for relia-
bility analysis such as Hip-HOPS, which internally may use Petri net semantics
[30]. For a preliminary comparison, we refer to [1,4]. Semantics for DFTs with
repairs [8], or maintenance [31] are more involved [32], and not considered in this
paper.

Organisation of the Paper. Section 2 introduces the main concepts of GSPNs and
DFTs. Section 3 presents our compositional translation from DFTs to GSPNs
for the most common DFT gate types. It includes some elementary properties
of the obtained GSPNs and reports on prototypical tool-support. Section 4 dis-
cusses DFT semantics from the literature based on the unifying GSPN semantics.
Section 5 concludes and gives a short outlook into future work. An extended ver-
sion containing proofs and translations for more DFT gates can be found in [33].

2 Preliminaries

2.1 Generalised Stochastic Petri Nets

This section summarises the semantics of GSPNs as given in [16]. The GSPNs
are (as usual) Petri nets with timed and immediate transitions. The former

276 S. Junges et al.

model the failure of basic events in DFTs, while the latter represent the instan-
taneous behaviour of DFT gates. Inhibitor arcs ensure that transitions do not fire
repeatedly, to naturally model that components do not fail repeatedly. Transition
weights allow to resolve possible non-determinism. Priorities will (as explained
later) be the key to distinguish the different DFT semantics; they control the
order of transition firings for, e.g., the failure propagation in DFTs. Finally, parti-
tions of immediate transitions allow for a flexible treatment of non-determinism.

Definition 1 (GSPN). A generalised stochastic Petri net (GSPN) G is a tuple
(P, T, I,O,H,m0,W,ΠDom,Π,D) where

– P is a finite set of places.
– T = Ti ∪ Tt is a finite set of transitions, partitioned into the set Ti of imme-

diate transitions and the set Tt of timed transitions.
– I,O,H : T → (P → N), the input-, output- and inhibition-multiplicities of

each transition, respectively.
– m0 ∈ M is the initial marking with M = P → N the set of markings.
– W : T → R>0 are the transition-weights.
– ΠDom is the priority domain and Π : T → ΠDom the transition-priorities.
– D ∈ 2Ti , a partition of the immediate transitions.

For convenience, we write G=(N ,W,ΠDom,Π,D) and N =(P, T, I,O,H,m0).
The definition is as in [16] extended by priorities and with a mildly restricted
(i.e., marking-independent) notion of partitions. An example GSPN is given in
Fig. 2(c). Places are depicted by circles, transitions by open (solid) bars for timed
(immediate) transitions. If I(t, p) > 0, we draw a directed arc from place p to
transition t. If O(t, p) > 0, we draw a directed arc from t to p. If H(t, p) > 0,
we draw a directed arc from p to t with a small circle at the end. The arcs are
labelled with the multiplicities. For all gates in the main text, all multiplicities are
one (and are omitted). Some gates in [33] require a larger multiplicity. Transition
weights are prefixed with a w, transition priorities with an @, and may be omitted
to avoid clutter.

We describe the GSPN semantics for ΠDom = N, and assume in accordance
with [6] that for all t ∈ Tt : Π(t) = 0 and for all t ∈ Ti : Π(t) = c > 0. Other
priority domains are used in Sect. 4. The semantics of a GSPN are defined by
its marking graph which constitutes the state space of a MA. In each marking,
a set of transitions are enabled.

Definition 2 (Concession, enabled transitions, firing). The set conc(m)
of conceded transitions in m ∈ M is:

conc(m) = {t ∈ T | ∀p ∈ P : m(p) ≥ I(t)(p) ∧ m(p) < H(t)(p)}

The set enabled(m) of enabled transitions in m is:

enabled(m) = conc(m) ∩ {t ∈ T | Π(t) = max
t∈conc(m)

Π(t)}

The effect of firing t ∈ enabled(m) on m ∈ M is a marking fire(m, t) such that:

∀p ∈ P : fire(m, t)(p) = m(p) − I(t)(p) + O(t)(p).

One Net Fits All 277

Example 1. Consider again the GSPN in Fig. 2(c). Let m ∈ M be a marking
with m(FailedB) = 1 and m(p) = 0 for all p ∈ P \ {FailedB}. Then the tran-
sitions t2 and t3 have concession, but only t2 is enabled. Firing t2 on m leads
to the marking m′ with m′(FailedB) = 1 = m′(FailedX), and m′(p) = 0 for
p ∈ {FailedA,FailedZ ,FailSafeZ}.

If multiple transitions are enabled in a marking m, there is a conflict which
transition fires next. For transitions in different partitions, this conflict is resolved
non-deterministically (as in non-stochastic Petri nets). For transitions in the
same partition the conflict is resolved probabilistically (as in the GSPN semantics
of [6]). Let C = enabled(m)∩D be the set of enabled transitions in D ∈ D. Then
transition t ∈ C fires next with probability W (t)∑

t′∈C W (t′) . If in a marking only
timed transitions are enabled, in the corresponding state, the sojourn time is
exponentially distributed with exit rate

∑
t′∈C W (t′). If a marking enables both

timed and immediate transitions, the latter prevail as the probability to fire a
timed transition immediately is zero.

A Petri net is k-bounded for k ∈ N if for every place p ∈ P and for every
reachable marking m(p) ≤ k. Boundedness of a GSPN is a sufficient criterion
for the finiteness of the marking graph. A k-bounded GSPN has a time-trap if
its marking graph contains a cycle m

t1−→ m1
t2−→ . . .

tn−→ m such that for all
1 ≤ i ≤ n, ti ∈ Ti. The absence of time-traps is important for analysis purposes.

2.2 Dynamic Fault Trees

This section, based on [13], introduces DFTs and their nodes, and gives some
formal definitions for concise notation in the remainder of the paper. The DFT
semantics are clarified in depth in the main part of the paper.

Fault trees (FTs) are directed acyclic graphs with typed nodes. Nodes with-
out successors (or: children), are basic events (BEs). All other nodes are gates.
BEs represent system components that can fail. Initially, a BE is operational ; it
fails according to a negative exponential distribution. A gate fails if its failure
condition over its children is fulfilled. The key gates for static fault trees (SFTs)
are typed AND and OR, shown in Fig. 3(b) and (c). These gates fail if all (AND)
or at least one (OR) children have failed, respectively. Typically, FTs express for
which occurrences of BE failures, a specifically marked node (top-event) fails.

(a) BE

. . .

(b) AND

. . .

(c) OR

≤

. . .

(d) PAND

≤

(e) POR

p

(f) PDEP

. . .

(g) SEQ

. . .

(h) SPARE

Fig. 3. Node types in ((a)–(c)) static and (all) dynamic fault trees.

SFTs lack an internal state—the failure condition is independent of the his-
tory. Therefore, SFTs lack expressiveness [2,4]. Several extensions commonly

278 S. Junges et al.

referred to as Dynamic Fault Trees (DFTs) have been introduced to increase the
expressiveness. The extensions introduce new node types, shown in Fig. 3(d)–(h);
we categorise them as priority gates, dependencies, restrictors, and spare gates.

Priority Gates. These gates extend static gates by imposing a condition on the
ordering of failing children and allow for order-dependent failure propagation. A
priority-and (PAND) fails if all its children have failed in order from left to right.
Figure 4(a) depicts a PAND with two children. It fails if A fails before B fails.
The priority-or (POR) [29] only fails if the leftmost child fails before any of its
siblings do. The semantics for simultaneous failures is discussed in Sect. 3.2. If a
gate cannot fail any more, e.g., when B fails before A in Fig. 4(a), it is fail-safe.

Dependencies. Dependencies do not propagate a failure to their parents,
instead, when their trigger (first child) fails, they update their dependent
events (remaining children). We consider probabilistic dependencies (PDEPs)
[24]. Once the trigger of a PDEP fails, its dependent events fail with probability p.
Figure 4(b) shows a PDEP where the failure of trigger A causes a failure of BE B
with probability 0.8 (provided it has not failed before). Functional dependencies
(FDEPs) are PDEP with probability one (we omit the p then).

Restrictors. Restrictors limit possible failure propagations. Sequence enforcers
(SEQ s) enforce that their children only fail from left to right. This differs from
priority-gates which do not prevent certain orderings, but only propagate if an
ordering is met. The AND SF in Fig. 4(c) fails if A and B have failed (in any
order), but the SEQ enforces that A fails prior to B. In contrast to Fig. 4(a), SF
is never fail-safe. Another restrictor is the MUTEX (not depicted) which ensures
that exactly one of its children fails.

≤

SF

A B

(a)

SF 0.8

A B

(b)

SF

A B

(c)

SF

FW BW

W1 W2 WS

(d) (e)

Fig. 4. Simple examples of dynamic nodes [13].

Spare Gates. Consider the DFT in Fig. 4(d) modelling (part of) a motor bike
with a spare wheel. A bike needs two wheels to be operational. Either wheel can
be replaced by the spare wheel, but not both. The spare wheel is less likely to
fail until it is in use. Assume the front wheel fails. The spare wheel is available

One Net Fits All 279

and used, but from now on, it is more likely to fail. If any other wheel fails, no
spare wheel is available any more, and the parent SPARE fails.

SPAREs involve two mechanisms: claiming and activation. Claiming works as
follows. SPAREs use one of their children. If this child fails, the SPARE tries to
claim another child (from left to right). Only operational children that have not
been claimed by another SPARE can be claimed. If claiming fails—modelling that
all spare components have failed—the SPARE fails. Let us now consider activa-
tion. SPAREs may have (independent, i.e., disjoint) sub-DFTs as children. This
includes nested SPAREs, SPAREs having SPAREs as children. A spare module is
a set of nodes linked to each child of the SPARE. This child is the module rep-
resentative. Figure 4(e) gives an example of spare modules (depicted by boxes)
and the representatives (shaded nodes). Here, a spare module contains all nodes
which have a path to the representative without an intermediate SPARE. Every
leaf of a spare module is either a BE or a SPARE. Nodes outside of spare mod-
ules are active. For each active SPARE and used child v, the nodes in v’s spare
module are activated. Active BEs fail with their active failure rate, all other BEs
with their passive failure rate.

DFTs Formally. We now give the formal definition of DFTs.

Definition 3 (DFT). A Dynamic Fault Tree F (DFT) is a tuple
(V, σ,Tp, top):

– V is a finite set of nodes.
– σ : V → V ∗ defines the (ordered) children of a node.
– Tp : V → {BE} ∪ {AND,OR,PAND, . . . } defines the node-type.
– top ∈ V is the top event.

For node v ∈ V , we also write v ∈ F . If Tp(v) = K for some K ∈ {BE,AND, . . . },
we write v ∈ FK . We use σ(v)i to denote the i-th child of v and vi as shorthand.

We assume (as all known literature) that DFTs are well-formed, i.e., (1) The
directed graph induced by V and σ is acyclic, i.e., the transitive closure of the
parent-child order is irreflexive, and (2) Only the leaves have no children.

For presentation purposes, for the main body we restrict the DFTs to con-
ventional DFTs, and discuss how to lift the restrictions in [33].

Definition 4 (Conventional DFT). A DFT is conventional if

1. Spare modules are only shared via their (unique) representative. In particular,
they are disjoint.

2. All children of a SEQ are BEs.
3. All children of an FDEP are BEs.

Restriction 1 restricts the DFTs syntactically and in particular ensures that spare
modules can be seen as a single entity w.r.t. claiming and activation. Lifting this
restriction to allow for non-disjoint spare modules raises new semantic issues [4].
Restriction 2 ensures that the fallible BEs are immediately deducible. Restriction
3 simplifies the presentation, in Sect. 4.4 we relax this restriction.

280 S. Junges et al.

3 Generic Translation of DFTs to GSPNs

The goal of this section is to define the semantics of a DFT F as a GSPN
TF . We first introduce the notion of GSPN templates, and present templates
for the common DFT node types such as BE, AND, OR, PAND, SPARE, and
FDEP in Sect. 3.2. (Other node types such as PDEP, SEQ, POR, and so forth
are treated in [33].) Sect. 3.3 presents how to combine the templates so as to
obtain a template for an entire DFT. Some properties of the resulting GSPNs
are described in Sect. 3.4 while tool-support is shortly presented in Sect. 3.5.

3.1 GSPN Templates and Interface Places

Recall the idea of the translation as outlined in Fig. 2. We start by introducing
the set IF of interface places:

IF = {Failedv,Unavailv,Activev | v ∈ F} ∪ {Disabledv | v ∈ FBE}
The places IF manage the communication for the different mechanisms in a
DFT. A token is placed in Failedv once the corresponding DFT gate v fails.
On the failure of a gate, the tokens in the failed places of its children are not
removed as a child may have multiple parents. Inhibitor arcs connected to Failedv
prevent the repeated failure of an already failed gate. The Unavailv places are
used for the claiming mechanism of SPAREs, Activev manages the activation of
spare components, while Disabledv is used for SEQs.

Every DFT node is translated into some auxiliary places, transitions, and
arcs. The arcs either connect interface or auxiliary places with the transitions.
For each node-type, we define a template that describes how a node of this type
is translated into a GSPN (fragment).

To translate contextual behaviour of the node, we use priority variables π =
{πv | v ∈ F}. Transition priorities are functions over the priority variables
π, i.e., Π : T → N[π]. These variables are instantiated with concrete values in
Sect. 4, yielding priorities in N. This section does not exploit the partitioning
of the immediate transitions; the usage of this GSPN ingredient is deferred to
Sect. 4. Put differently, for the moment it suffices to let each immediate transition
constitute its (singleton) partition.

Definition 5 (GSPN-Template). The GSPN T = (N ,W,N[π],Π,D) is a
(π-parameterised) template over I ⊆ P . The instantiation of T with c ∈ N

n is
the GSPN T [c] = (N ,W,N,Π ′,D) with Π ′(t) = Π(t)(c) for all t ∈ T .

The instantiation replaces the n priority variables by their concrete values.

3.2 Templates for Common Gate Types

We use the following notational conventions. Gates have n children. Interface
places I are depicted using a blue shade; their initial marking is defined by the
initialisation template, cf. Sect. 3.3. Other places have an initial token if it is
drawn in the template. Transition priorities are indicated by @ and the priority
function, e.g., @πv. The role of the priorities is discussed in detail in Sect. 4.

One Net Fits All 281

Basic Events. Figure 5(a) depicts the template templ BE(v) of BE v. It consists
of two timed transitions, one for active failure and one for passive failure. Place
Failedv contains a token if v has failed. The inhibitor arcs emanating Failedv
prevent both transitions to fire once the BE has failed. A token in Unavailv
indicates that v is unavailable for claiming by a SPARE. If Activev holds a token,
the node fails with the active failure rate λ, otherwise it fails with the passive
failure rate μ which typically is c·λ with 0 < c ≤ 1. The place Disabledv contains
a token if the BE is not supposed to fail. It is used in the description of the
semantics of, e.g., SEQ in [33].

Activev

Disabledv

Failedv

Unavailv

fail-active

@πv

λ

fail-passive

@πv

μ

(a) BE

Failedv Unavailv

@πv

. . .

Failedv1 Failedvn

(b) AND

Failedv Unavailv

@πv @πv

Failedv1 Failedvn

. . .

. . .

(c) OR

Fig. 5. GSPN templates for basic events and static gates

AND and OR. Figure 5(b) shows the template templ AND(v) for the AND gate
v. A token is put in Failedv as soon as the places Failedvi

for all children vi
contain a token. Place Failedv is thus marked if v has failed. Firing the (only)
immediate transition puts tokens in Failedv and Unavailv, and returns the tokens
taken from Failedvi

. Similar to the BE template, an inhibitor arc prevents the
multiple execution of the failed-transition once v failed. The template for an OR
gate is constructed analogously, see Fig. 5(c). The failure of one child suffices for
v to fail; thus each child has a transition to propagate its failure to Failedv.

PAND. We distinguish two versions [11] of the priority gate PAND: inclusive
(denoted ≤) and exclusive (denoted <).

The inclusive PAND≤ v fails if all its children failed in order from left to right
while including simultaneous failures of children. Figure 6(a) depicts its template.
If child vi failed but its left sibling vi−1 is still operational, the PAND≤ becomes
fail-safe, as reflected by placing a token in FailSafe. The inhibitor arc of FailSafe
now prevents the rightmost transition to fire, so no token can be put in Failedv
any more. If all children failed from left-to-right and PAND≤ is not fail-safe, the
rightmost transition can fire modelling the failure of the PAND≤.

The exclusive PAND< v is similar but excludes the simultaneous failure
of children. Its template is shown in Fig. 6(b) and uses the auxiliary places
X1, . . . , Xn−1 which indicate if the previous child failures agree with the strict
failure order. A token is placed in Xi if a token is in Xi−1 and the child vi has

282 S. Junges et al.

Failedv UnavailvFailSafe

Failedv1 Failedv2

. . .

Failedvn

@πv @πv @πv
. . .

(a) Inclusive PAND≤

Failedv UnavailvX1 X2

. . .

Failedv1 Failedv2

. . .

Failedvn

@πv @πv

@πv

(b) Exclusive PAND<

Fig. 6. GSPN templates for inclusive and exclusive PAND

just failed but its right sibling vi+1 is still operational. A token can only be put
in Failedv if the rightmost child fails and Xn−1 contains a token. If the child vi
violates the order, the inhibitor arc from its corresponding transition prevents
to put a token in Xi−1. This models that PAND< becomes fail-safe.

The behaviour of both PAND variants crucially depends on whether children
fail simultaneously or strictly ordered. The moment children fail depends on the
order in which failures propagate, and is discussed in detail in Sect. 4.1.

SPARE. We depict the template templ SPARE(v) for SPARE in two parts:
Claiming2 is depicted in Fig. 7, activation is shown in Fig. 8.

Next1

Unavailv1

Claimed1

Failedv1

child-fail

@πv

claim @πv

unavailable

@πv

Next2

Unavailv2

Claimed2

Failedv2

child-fail

@πv

claim @πv

unavailable

@πv
. . .

. . .

. . .

Unavailvn

Claimedn

Failedvn

child-fail

@πv

claim @πv

unavailable

@πv

Failedv

Unavailv

Fig. 7. GSPN template for SPARE, the claiming mechanism

Claiming. templ SPARE(v) has two sorts of auxiliary places for each child i: Nexti
and Claimedi. A token in Nexti indicates that the spare component vi is the
next in line to be considered for claiming. Initially, only Next1 is marked as the
2 We consider early claiming; the concept of late claiming is described in [33].

One Net Fits All 283

primary child is to be claimed first. A token in Claimedi indicates that SPARE
v has currently claimed the spare component vi. This token moves (possibly via
Claimedi) through places Nexti and ends in Failedv if all children are unavailable
or already claimed. The claiming mechanism considers the Unavail places of the
children. If Unavaili is marked, the i-th spare component cannot be claimed as
either the i-th child has failed or it has been claimed by another SPARE. In this
case, the transition unavailable fires and the token is moved to Nexti+1. Then,
spare component i + 1 has to be considered next.

An empty place Unavaili indicates that the i-th spare component is available.
The SPARE can claim it by firing the claim transition. This results in tokens
in Claimedi and Unavaili, marking the spare component unavailable for other
SPAREs. If a spare component is claimed (token in Claimedi) and it fails, the
transition child-fail fires, and the next child is considered for claiming.

Activev

@πv

Activev1

. . .

@πv

Activevn

(a) Gate

Activev

@πv

Activev1

Claimed1

. . .
. . .

. . .

. . .

@πv

Activevn

Claimedn

. . .
. . .

(b) SPARE

Fig. 8. GSPN template extensions for the activation mechanism of DFT elements

Activation. When an active SPARE claims a spare component c, all nodes in
the spare module (the subtree) Mc become active, i.e., BEs in Mc now fail with
their active (rather than passive) failure rate, and SPAREs in Mc propagate the
activation downwards. The GSPN extensions for the activation mechanism are
given in Fig. 8. The activation in SPAREs is depicted in Fig. 8(b). If a token is in
Claimedi indicating that the SPARE claimed the ith-child, and the SPARE itself
is active, the transition can fire and places a token in Activevi

indicating that
the ith-child has become active. Other gates simply propagate the activation to
their children as depicted in Fig. 8(a).

FDEP. Figure 9 depicts the template templ FDEP(v) for FDEP v; the generalized
PDEP is discussed in [33]. If the first child of the FDEP fails, the dependent
children fail too. Thus, if Failedv1 is marked, then all transitions can fire and
place tokens in the Failed places of the children indicating the failure propagation
to dependent nodes. There is no arc to Failedv as the FDEP itself cannot fail.

FDEPs introduce several semantic problems for DFTs, cf. [4]. This leads to
different semantic interpretations which can be captured in our GSPN transla-
tion by different values for the priority variables πv; as elaborated in Sect. 4.

284 S. Junges et al.

Failedv1 Failedv Unavailv

@πv . . . @πv

Failedv2Unavailv2 Disabledv2 FailedvnUnavailvn Disabledvn

. . .

Fig. 9. GSPN template for FDEP

3.3 Gluing Templates

It remains to describe how the GSPN templates for the DFT elements are com-
bined. We define the merging of templates. A more general setting is provided
via graph-rewriting, cf. [7].

Definition 6 (Merging Templates). Let Ti = (Ni,Wi,N[π],Πi,Di) for i =
1, 2 be π-parameterised templates over P1 ∩ P2 = I. The merge of T1 and T2 is
the π-parameterised template over I, merge(T1, T2) = (N ,W,N[π],Π,D) with

– P = P1 ∪ P2

– T = T1 � T2, I = I1 � I2, O = O1 � O2, H = H1 � H2

– m0 = m0,1 + m0,2

– W = W1 � W2, Π = Π1 � Π2, D = D1 � D2.

An n-ary merge of templates over IF is obtained by concatenation of the binary
merge. As the (disjoint) union on sets is associative and commutative, so is the
merging of templates. Let merge(T ∪ T), where T is a finite non-empty set of
templates over some I and T is a template over I, denote merge(T ,merge(T)).

The GSPN translation converts each DFT node v into the corresponding
GSPN using its type-dependent template templTp(v).

Definition 7 (Template for a DFT). Let DFT F = (V, σ,Tp, top) and
{templTp(v)(v) | v ∈ F} be the set of templates over IF each with priority-
variable πv. The GSPN template TF for DFT F with places P ⊃ IF is defined
by TF = merge

(
{templTp(v)(v) | v ∈ F} ∪ {templ init}

)
.

Initialisation Template. The initialisation template templ init, see Fig. 10, is
ensured to fire once and first, and allows to change the initial marking, e.g.,
already initially failed DFT nodes. This construct allows to fit the initial mark-
ing to the requested semantics without modifying the overall translation. The
leftmost transition fires initially, and places a token in Activetop . The transition
models starting the top-down activation propagation from the top-level node.
Furthermore, a token is placed in the place Evidence, enabling the setting of evi-
dence, i.e., already failed DFT nodes. If {e1, . . . , en} ⊆ FBE is the set of already
failed BEs, firing the rightmost transition puts a token in each Failedei for all
already failed BE ei.

One Net Fits All 285

Init

@πinit

Activetop

Evidence

@πinit

Failede1 . . . Faileden

Fig. 10. GSPN template for initialisation

3.4 Properties

We discuss some properties of the obtained GSPN TF for a DFT F . Details can
be found in [33].

The size of TF is linear in the size of F . Let σmax = maxv∈F |σ(v)| be the
maximal number of children in F . The GSPN TF has no more than 6·|V |·σmax+2
places and immediate transitions, and 2 · |FBE| timed transitions.

Transitions in TF fire at most once. Therefore, TF does not contain time-
traps. Tokens in the interface places Failedv, Activev and Unavailv are never
removed. For such a place p and any transition t, O(p)(t) ≤ I(p)(t). Typi-
cally, the inhibitor arcs of interface places prevent a re-firing of a transition. In
templ PAND<

(v), templ SPARE(v) and templ init tokens move from left to right, and
no transition is ever enabled after it has fired.

The GSPN TF is two-bounded, all places except Unavailv are one-bounded.
Typically, either the inhibitor arcs prevent adding tokens to places that contain
a token, or a token moves throughout the (cycle-free) template. However, two
tokens can be placed in Unavailv: One token is placed in Unavailv if v is claimed
by a SPARE. Another token is placed in Unavailv if v failed. The GSPN templates
can be easily extended to ensure 1-boundedness of Unavailv as well, cf. [33].

3.5 Tool Support

We realised the GSPN translation of DFTs within the model checker Storm [19],
version 1.2.13. Storm can export the obtained GSPNs as, among others, Great-
SPN Editor projects [23]. Table 3 gives some indications of the obtained sizes of

Table 3. Experimental evaluation of GSPN translations

Benchmark DFT GSPN

#BE #Dyn #Nodes σmax #Places #Timed
Trans

#Immed.
Trans

HECS 5 5 2 np 61 10 107 16 273 122 181

MCS 3 3 3 dp x 46 21 80 7 246 92 163

RC 15 15 hc 69 33 103 34 376 138 240

3 http://www.stormchecker.org/publications/gspn-semantics-for-dfts.html.

http://www.stormchecker.org/publications/gspn-semantics-for-dfts.html

286 S. Junges et al.

the GSPNs for some DFT benchmarks from [13]. All GSPN translations could
be computed within a second. As observed before, the GSPN size is linear in the
size of the DFT.

4 A Unifying DFT Semantics

The interpretation of DFTs is subject to various subtleties, as surveyed in [4].
Varying interpretations have given rise to various DFT semantics in the lit-
erature. The key aspects are summarised in Table 1. In the following, we
focus on three key aspects—failure propagation, FDEP forwarding, and non-
determinism—and show that these suffice to differentiate all five DFT semantics,
see Fig. 11. Note that we consider the interleaving semantics of nets.

All semantics

IOIMC, Orig. GSPN

IOIMC, Orig. GSPN

IOIMC [12]

Yes

Orig. GSPN [7]

No

Non-determinism?

Interleaved with gates

FDEP forwarding?

Arbitrary

Monolithic CTMC, Monolithic MA, New GSPN

Monolithic CTMC, New GSPN

New GSPN

Yes

Monolithic CTMC [11]

No

Non-determinism?

Before gates

Monolithic MA

Monolithic MA [13]

Yes

Non-determinism?

After gates

FDEP forwarding?

Bottom-up

Failure propagation?

Fig. 11. Decision tree to compare five different DFT semantics

We expose the subtle semantic differences by considering the three aspects
using the translated GSPNs of some simple DFTs. The simple DFTs contain
structures which occur in industrial case-studies [4]. We vary two ingredients in
our net semantics: instantiations of the priority variables π, and the partition-
ing D of immediate transitions. The former constrain the ordering of transitions,
while the latter control the treatment of non-determinism. This highlights a key
advantage of our net translation: all different DFT semantics from the literature
can be captured by small changes in the GSPN. In particular, the net struc-
ture itself stays the same for all semantics. Each of the following subsections
is devoted to one of the aspects: failure propagation, FDEP forwarding, and
non-determinism. Afterwards, we summarise the differences in Table 4.

4.1 Failure Propagation

This aspect is concerned with the order in which failures propagate through the
DFT. Consider (a) the DFT F1 and (b) its GSPN TF1 in Fig. 12 and suppose B
has failed, as indicated in red and the token in place FailedB (the same example

One Net Fits All 287

≤

Z

X

A B

(a) DFT F1

λA λB

FailedA FailedB

FailedX

t1@πX

t2@πX

FailedZFailSafeZ

t3@πZ t4@πZ

(b) GSPN TF1

Fig. 12. Example for failure propagation

was used in the introduction). The question is how B’s failure propagates through
the DFT. Considering a total ordering on failure propagations, there are two
scenarios. Is B’s failure first propagated to gate X, causing PAND Z to fail, or
is B’s failure first propagated to gate Z, turning Z fail-safe?

The question reflects in net TF1 : Consider the enabled transitions t2 and t3.
Firing t2 places a token in FailedX (and in FailedB) and models that B’s failure
first propagates to X. Next, firing t4 places a token in FailedZ and models that
the failures of B and X propagate to Z. Now consider first propagating B’s
failure to Z. This corresponds to firing t3 and a token in FailSafeZ modelling
that Z is fail-safe. (B’s failure can still be propagated to X, but Z remains
fail-safe as transition t4 is disabled due to the token in FailSafeZ .)

The order of failure propagation is thus crucial as it may cause a gate to either
fail or to be fail-safe. Existing ways to treat failure propagation are: (1) allow for
all possible orders, or (2) propagate failures in a bottom-up manner through the
DFT. The former is adopted in the IOIMC and the original GSPN semantics.
This amounts in TF1 to give all transitions the same priority, e.g., πv = 1 for
all v ∈ F . Case (2) forces failures to propagate in a bottom-up manner, i.e., a
gate is not evaluated before all its children have been evaluated. This principle
is used by the other three semantics. To model this, the priority of a gate v must
be lower than the priorities of its children, i.e., πv < πvi

,∀i ∈ {1, . . . , |σ(v)|}. In
TF1 , this yields πZ < πX , forcing firing t2 before t3, see Table 4.

4.2 FDEP Forwarding

The second aspect concerns how FDEPs forward failures in the DFT. Consider
(a) the DFT F2 and (b) its GSPN TF2 in Fig. 13. Suppose B fails. The crucial
question is—similar to failure propagation—when to propagate B’s failure via
FDEP D to A. Is B’s failure first propagated via D, causing A and Z to fail, or
does B’s failure first cause Z to become fail-safe before A fails? The first scenario
is possible as Z is inclusive and A and B are interpreted to fail simultaneously.

288 S. Junges et al.

In TF2 , the scenarios are reflected by letting either of the enabled transitions t1
and t2 fire first. A similar scenario can be constructed with a PAND< and an
FDEP from A to B.

≤

Z

A B

D

(a) DFT F2 [4]

λA λB

FailedA FailedB

FailedZFailSafeZ

t2@πZ t3@πZ t1@πD

(b) GSPN TF2

Fig. 13. Example for FDEP forwarding

The order of evaluating FDEPs is thus crucial (as above). We distinguish three
options: evaluating FDEPs (1) before, (2) after, or (3) interleaved with failure
propagation in gates. The first two options evaluate FDEPs either before or after
all other gates, respectively. In TF2 , these options require that all transitions of
an FDEP template get the (1) highest (or (2) lowest, respectively) priority, i.e.,

∀f ∈ FFDEP : πf > πv,∀v ∈ F \ FFDEP (or, πf < πv respectively).

The monolithic CTMC and the new GSPN semantics4 evaluate FDEPs before
gates, whereas the monolithic MA semantics evaluate them after gates. In option
(3), FDEPs are evaluated interleaved with the other gates. This option is used by
the IOIMC and the original GSPN semantics. In TF2 , interleaving corresponds
to giving all transitions the same priority, e.g. πv = 1,∀v ∈ F , see Table 4.

4.3 Non-determinism

≤

Z

S1 S2D

A B CX

Fig. 14. Example for non-
determinism (DFT F3)

The third aspect is how to resolve non-determinism
in DFTs. Consider DFT F3 in Fig. 14 where BE X
has failed and FDEP D forwards the failure to BEs A
and B. This renders A and B unavailable for SPAREs
S1 and S2. The question is which one of the failed
SPAREs (S1 or S2) claims the spare component C?
This phenomenon is known as a spare race. How
the spare race is resolved is important: the outcome
determines whether PAND Z fails or becomes fail-
safe.

4 The new GSPN semantics needs further adaptions for downward FDEPs, cf. Sect. 4.4.

One Net Fits All 289

The spare race is represented in TF3 (depicted in [33]) by a conflict between
the claiming transitions of the nets of S1 and S2. Depending on the previous
semantic choices, the race is resolved in different ways. For the monolithic MA
semantics, the race is resolved by the order of the FDEP forwarding. For the new
GSPN semantics, the race is resolved by the order in which the claim-transitions
originating from templ SPARE(S1) and templ SPARE(S2) are handled. In the IOIMC
semantics, the winner of the race is determined by the order of interleaving.

For any semantics, the race is represented by a conflict between immediate
transitions (with the same priority). We resolve a conflict either by (1) ran-
domisation, or (2) non-determinism. We realise the randomisation by using
weights, i.e., by equipping every immediate transition with the same weight
like W (t) = 1,∀t ∈ T and letting D = Ti contain all immediate transitions.
A conflict between enabled transitions is then resolved by means of a uniform
distribution: each enabled transition is equally probable. This approach reflects
the monolithic CTMC and the original GSPN semantics for DFTs.

Case (2) takes non-determinism as is and reflects the other three DFT seman-
tics. In this case, in TF3 each immediate transition is a separate partition:
D = {{t} | t ∈ Ti}. In many DFTs, the non-determinism is spurious and its
resolution does not affect standard measures such as reliability and availability.
The example F3 however yields significantly different analysis results depending
on how non-determinism is resolved.

Table 4. GSPN differences between supported semantics

DFT semantics GSPN priority variables GSPN partitioning

Monolithic CTMC πv < πvi ∀v ∈ F ,
∀i ∈ {1, . . . , |σ(v)|}

{Ti}

πf > πv ∀f ∈ FFDEP, ∀v �∈ FFDEP

IOIMC πv = πv′ ∀v, v′ ∈ F {{t} | t ∈ Ti}
Monolithic MA πv < πvi ∀v ∈ F ,

∀i ∈ {1, . . . , |σ(v)|}
{{t} | t ∈ Ti}

πf < πv ∀f ∈ FFDEP, ∀v �∈ FFDEP

Original GSPN πv = πv′ ∀v, v′ ∈ F {Ti}
New GSPN πv ≤ πvi ∀v ∈ FAND ∪ FOR,

∀i ∈ {1, . . . , |σ(v)|}
{{t} | t ∈ Ti}

πv < πvi ∀v �∈ FAND ∪ FOR,
∀i ∈ {1, . . . , |σ(v)|}

πf ≥ πfi ∀f ∈ FFDEP,
∀i ∈ {2, . . . , |σ(v)|}

πf ≤ πf1 ∀f ∈ FFDEP

290 S. Junges et al.

Remark 1. The semantics of GSPNs [5,6] assigns a weight to every immediate
transition. These weights induce a probabilistic choice between conflicting imme-
diate transitions. If several immediate transitions are enabled, the probability
of selecting one is determined by its weight relative to the sum of the weights
of all enabled transitions, see Sect. 2.1. Under this interpretation, the stochastic
process underlying a confusion-free GSPNs is a CTMC. In order to capture the
possibility of non-deterministically resolving, e.g., spare races, we use a GSPN
semantics [16] where immediate transitions are partitioned. Transitions resolved
in a random manner (by using weights) are in a single partition, transitions
resolved non-deterministically constitute their own partition—their weights are
irrelevant. For confusion-free GSPNs, our interpretation corresponds to [5,6] and
yields a CTMC. In general, however, the underlying process is an MA.

The GSPN adaptations for the different DFT semantics are summarised in
Table 4. The last two rows of the table concern FDEPs that are triggered by
gates (rather than BEs) and are discussed in detail below.

4.4 Allow FDEPs Triggered by Gates

So far we assumed that FDEP triggers are BEs. We now lift this restriction sim-
plifying the presentation and discuss the options when FDEPs can be triggered
by a gate, see Fig. 15(b) and (c). The row “downward” FDEPs in Table 2 reflects
this notion. The challenge is to treat cyclic dependencies. Cyclic dependencies
already occur at the level of BEs, see Fig. 15(a). According to the monolithic
CTMC and new GSPN semantics, FDEPs forward failures immediately: All BEs
that fail are marked failed before any gate is evaluated, naturally matching
bottom-up propagation. The effect is as-if the BEs A and B failed simultane-
ously. For the new GSPN semantics, we generalise this propagation, and support
FDEPs triggered by gates. Consider F5 in Fig. 15(b): The failure of B indirectly
(via S and D) forwards to C. If Z is evaluated after the failure is forwarded to
C, the interpretation is that B and C failed simultaneously and the PAND fails,
as intended. To guarantee that C is marked failed before Z is evaluated, S and
D require higher priorities than Z in the net. Consequently, all children of Z are
evaluated before Z is evaluated.

Concretely, we generalise bottom-up propagation by refining the priorities:
First, we observe that only for dynamic gates, where the order in which children
fail matters, the children need to be evaluated strictly before the parents. For
other gates, we may weaken the constraints on the priorities. A non-strict order-
ing suffices: ∀v ∈ FAND ∪ FOR : πv ≤ πvi

,∀i ∈ {1, . . . , |σ(v)|}. Second, we mimic
bottom-up propagation in FDEP forwarding, meaning that dependent events
require a priority not larger than their triggers. Thus, we ensure for each FDEP
f , πf ≤ πf1 , and πf ≥ πfi for all children i=1. Equal priorities are admitted.
For FDEPs, like for static gates, the status change is order-independent.

Some DFTs (with FDEPs triggered by gates and cyclic forwarding) do not
admit a valid priority-assignment. We argue that the absence of a suitable pri-
ority assignment is natural; DFTs without valid priority assignment can model

One Net Fits All 291

A B

D E

(a) DFT F4

S D

≤

Z

A B C

(b) DFT F5

<

Z D

A B

(c) DFT F6

Fig. 15. Examples for downward FDEP forwarding

a paradox. The DFT F6 in Fig. 15(c) illustrates this. The new GSPN semantics
induce the following constraints:

πA < πZ , πB < πZ , πZ ≤ πD, and πD ≤ πB .

The constraints imply πB < πB , which is unsatisfiable. BE A has failed and the
exclusive POR Z fails too. (A detailed account of POR-gates is given in [33].)
But then B fails because of FDEP D. If we now assume A and B to fail simul-
taneously, the exclusive POR cannot fail, as its left child A did not fail strictly
before B. Then, D’s trigger would have never failed. Thus, it is reasonable to
exclude such DFTs and consider them ill-formed.

The IOIMC and the monolithic MA semantics support FDEPs triggered by
gates, but have different interpretations of simultaneity. The monolithic CTMC
semantics is in line with our interpretation, but the algorithm [34] claimed to
match this semantics produces deviating results for the DFTs in this sub-section.

5 Conclusions and Future Work

This paper presents a unifying GSPN semantics for Dynamic Fault Trees
(DFTs). The semantics is compositional, the GSPN for each gate is rather sim-
ple. The most appealing aspect of the semantics is that design choices for DFT
interpretations are concisely captured by changing only transition priorities and
the partitioning of transitions. Our semantics thus provides a framework for com-
paring DFT interpretations. Future work consists of extending the framework
to DFTs with repairs [8,31] and to study unfoldings [35] of the underlying nets.

References

1. Trivedi, K.S., Bobbio, A.: Reliability and Availability Engineering: Modeling, Anal-
ysis, and Applications. Cambridge University Press, Cambridge (2017)

2. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

3. Dugan, J.B., Bavuso, S.J., Boyd, M.: Fault trees and sequence dependencies. In:
Proceedings of RAMS, pp. 286–293. IEEE (1990)

4. Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees.
In: Proceedings of DSN, pp. 299–310 (2016)

292 S. Junges et al.

5. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for
the performance evaluation of multiprocessor systems. ACM TOCS 2(2), 93–122
(1984)

6. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. Wiley, Hoboken (1995)

7. Raiteri, D.C.: The conversion of dynamic fault trees to stochastic Petri nets, as a
case of graph transformation. ENTCS 127(2), 45–60 (2005)

8. Bobbio, A., Raiteri, D.C.: Parametric fault trees with dynamic gates and repair
boxes. In: Proceedings of RAMS, pp. 459–465. IEEE (2004)

9. Bobbio, A., Franceschinis, G., Gaeta, R., Portinale, L.: Parametric fault tree for the
dependability analysis of redundant systems and its high-level Petri net semantics.
IEEE Trans. Softw. Eng. 29(3), 270–287 (2003)

10. Kabir, S., Walker, M., Papadopoulos, Y.: Quantitative evaluation of Pandora tem-
poral fault trees via Petri nets. IFAC-PapersOnLine 48(21), 458–463 (2015)

11. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for computa-
tional engineering: a case study on dynamic fault trees. In: Proceedings of ISSRE,
pp. 270–282 (2000)

12. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible
framework for dynamic fault tree analysis. IEEE TDSC 7(2), 128–143 (2010)

13. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)

14. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of LICS, pp. 342–351. IEEE Computer Society (2010)

15. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45804-2 3

16. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp.
90–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8 6

17. Sullivan, K., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In:
Proceedings of FTCS, pp. 232–235 (1999)

18. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a
tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40793-2 27

19. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

20. Trivedi, K.S., Sahner, R.A.: SHARPE at the age of twenty two. SIGMETRICS
Perform. Eval. Rev. 36(4), 52–57 (2009)

21. Ciardo, G., Miner, A.S., Wan, M.: Advanced features in SMART: the stochastic
model checking analyzer for reliability and timing. SIGMETRICS Perform. Eval.
Rev. 36(4), 58–63 (2009)

22. Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis,
G.: The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev.
36(4), 4–9 (2009)

23. Amparore, E.G.: A new GreatSPN GUI for GSPN editing and CSLTA model check-
ing. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 170–173.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0 13

https://doi.org/10.1007/3-540-45804-2_3
https://doi.org/10.1007/3-540-45804-2_3
https://doi.org/10.1007/978-3-642-38697-8_6
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-10696-0_13

One Net Fits All 293

24. Montani, S., Portinale, L., Bobbio, A., Raiteri, D.C.: Radyban: a tool for reliability
analysis of dynamic fault trees through conversion into dynamic Bayesian networks.
Reliab. Eng. Syst. Saf. 93(7), 922–932 (2008)

25. Boudali, H., Dugan, J.B.: A continuous-time Bayesian network reliability modeling,
and analysis framework. IEEE Trans. Reliab. 55(1), 86–97 (2006)

26. Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic driven Markov processes. Reliab. Eng. Syst.
Saf. 82(2), 149–163 (2003)

27. Rauzy, A., Blériot-Fabre, C.: Towards a sound semantics for dynamic fault trees.
Reliab. Eng. Syst. Saf. 142, 184–191 (2015)

28. Merle, G., Roussel, J.M., Lesage, J.J.: Quantitative analysis of dynamic fault trees
based on the structure function. Qual. Reliab. Eng. Int. 30(1), 143–156 (2014)

29. Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: towards a full imple-
mentation of the fault tree handbook. Control Eng. Pract. 17(10), 1115–1125
(2009)

30. Chen, D., Mahmud, N., Walker, M., Feng, L., Lönn, H., Papadopoulos, Y.: Systems
modeling with EAST-ADL for fault tree analysis through HiP-HOPS. IFAC Proc.
Vol. 46(22), 91–96 (2013)

31. Guck, D., Spel, J., Stoelinga, M.: DFTCalc: reliability centered maintenance via
fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 19

32. Raiteri, D.C.: Integrating several formalisms in order to increase fault trees’ mod-
eling power. Reliab. Eng. Syst. Saf. 96(5), 534–544 (2011)

33. Junges, S., Katoen, J.P., Stoelinga, M., Volk, M.: One net fits all: a unifying seman-
tics of dynamic fault trees using GSPNs. CoRR abs/1803.05376 (2018)

34. Manian, R., Coppit, D.W., Sullivan, K.J., Dugan, J.B.: Bridging the gap between
systems and dynamic fault tree models. In: Proceedings of RAMS, pp. 105–111
(1999)

35. Engelfriet, J.: Branching processes of Petri nets. Acta Inform. 28(6), 575–591
(1991)

https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-25423-4_19

On the Structure of Cycloids Introduced
by Carl Adam Petri

Rüdiger Valk(B)

Department of Informatics, University of Hamburg, Hamburg, Germany
valk@informatik.uni-hamburg.de

Abstract. Cycloids are particular Petri nets for modelling processes
of actions or events. They belong to the fundaments of Petri’s gen-
eral systems theory and have very different interpretations, ranging from
Einstein’s relativity theory to elementary information processing gates.
Despite their simple definitions, their properties are still not completely
understood. This contribution provides for the first time a formal defini-
tion together with new results concerning their structure. For instance,
it is shown that the minimal length of a cycle is the length of a local
basic circuit, possibly decreased by an integer multiple of the number of
semi-active transitions.

Keywords: Analysis and synthesis · Structure of nets · Cycloids
General net theory

1 Introduction

Cycloids were discovered by C. A. Petri to describe fundamental processes run-
ning in time and space. They are based on Minkowski’s spacetime model, but use
causal dependence instead of numeric distance. They have been introduced in
[7] in the section on physical spaces to illustrate the shift from Galilei to Lorentz
transformation. Of particular importance to Petri was his discovery that fun-
damental gates of boolean circuits, such as XOR-transfer, majority-transfer, or
Quine-transfer, are topologically equivalent to some of his cycloids (see Fig. 9).
In private communication with the author, he explained that he discovered this
relationship by pure diligence without any methodical approach. Petri usually
introduced the concept using the regimen or organization rule for people car-
rying buckets to extinguish a fire [7] or by cars driving in line on a road with
varying distances as shown in Fig. 1 (from [9]). In the corresponding causal and
infinite net, cars are represented by black tokens moving forward in time and
space, whereas the gaps are moving also forward in time but in the opposite spa-
cial direction1. As the concept considerably differs from Minkowski’s space and

1 In the net, the gaps are also ordinary black tokens, but represented here by a cross
to distinguish them from the cars.

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 294–314, 2018.
https://doi.org/10.1007/978-3-319-91268-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_15&domain=pdf

On the Structure of Cycloids Introduced by Carl Adam Petri 295

Fig. 1. Cars in Petri space.

is based uniquely on causal dependencies, we call it Petri space2. Petri defined
the slowness of the system by the quotient of the difference of the numbers of
gap units and cars (in a suitable section of a case), divided by the sum of the
numbers of gaps and cars. In the example this is w := gaps−cars

gaps+cars = 12−4
12+4 = 1

2 .
In [9] he wrote: “The concept of slowness is a key to understanding repetitive
group behaviour. It can be applied to organization, to workflow (just-in-time
production), and to physical systems”.3 In the report [11], Stehr states that the
nets of Fig. 2 have slowness w = 0 on the left-hand side and slowness w = 1/3
on the right-hand. Intuitively it is visible that the first net is “faster” as more
transitions can occur concurrently. But the parameters α and β, which have been
used by Petri to define the slowness, are not directly visible from the net. In this
paper we show how to compute these parameters.

In this context systems are considered as finite repetitive structures. They are
constructed by folding the Petri space. In a first step, a finite space is assumed.
Hence after some finite number of steps the initial state is reached again. This
is modelled by folding the Petri space in such a way that transitions a and b (as
well as d and c) of Fig. 3 are identified. The resulting still infinite net is called
a time orthoid ([7], p. 37), as it extends infinitely in temporal direction.

Next, the analogous step is done with respect to time, i.e. transitions a and
d are identified. The resulting net is finite, and all the four vertices a, b, c
and d are identified. In the middle of the figure, the resulting net is represented
by the output of a cycloid tool4. On the right hand side, a redesign is shown

2 In his Hamburg lecture 2004 [8] and in [9] Petri introduced the denomination natural
coordinates whereas in an earlier publication [7] the term Minkowski coordinates has
been used. This shows that he also saw the necessity to use a different name.

3 See more about the notion of slowness in Sect. 4.
4 The cycloid model generator cyclogen written by Fenske, in combination with the

RENEW tool.

296 R. Valk

Fig. 2. Cycloids C(3, 3, 1, 1) and C(4, 2, 1, 1)

emphasizing the cyclic structure5. Note that the cycle leading in a straight line
from transition a via 3 other transitions to transition c, the latter identified with
a in the folding, corresponds to the cycle t1, t2, t3, t4 in the right-hand side
nets. Other examples generated with that tool are given in the Figs. 6 and 8.

Fig. 3. Folding in Petri space.

The aims of this paper are threefold:

– From the lectures and seminars, Petri gave in the years 1988–2004 at the
University of Hamburg, there is a lot of unpublished knowledge in hand-
written scripts by Petri and in the notes and the memory of the persons
which attended the events [6]. Some of this knowledge is put into writing in
this paper.

– The introduction of cycloids in [7] is rather short. This paper provides formal
definitions that allow to prove some properties.

– New properties of cycloids are found, like symmetry properties or length-of-
shortest-cycles, that allow new analytic procedures.

We acknowledge the work of Uwe Fenske, who collected much of the material
mentioned above and contributed formal Definitions 2, 3 and 8 as well as Lemma 4
5 The net is known as “oscillator net” or “four seasons net”. See also Fig. 9.

On the Structure of Cycloids Introduced by Carl Adam Petri 297

in a thesis [1]. This thesis also contains a large number of explanations and motiva-
tions of Petri’s concepts. Later he implemented the cycloid tool mentioned above,
which allowed to create numerous examples by the construction of cycloid sys-
tems in form of RENEW nets. We also acknowledge Peter Langner who wrote
the web tool “Cycloids’ Characteristics” [5], which was very useful to investigate
cycloids in the form of the fundamental parallelogram (see Figs. 6 and 8). We fur-
ther acknowledge the help of Lawrence Cabac who provided a plug-in for the com-
putation of cycles from a RENEW net. Finally thanks to Uwe Fenske, Mark-Oliver
Stehr, Bernd Neumann and Olaf Kummer for comments on this paper, the latter
for suggesting Theorem 5(b) and (c).

2 Nets, Net Systems and Petri Space

Definition 1. A net N is defined by a triple (S, T, F) where S is a set, called
set of state elements or places, a set T of transitions and a flow relation F ,
with the following restrictions:

(a) S ∩ T = ∅ (S and T are disjoint sorts)
(b) F ⊆ S × T ∪ T × S (only distinct sort elements are connected by arcs)
(c) F ∩ F −1 = ∅ (no selfloops)
(d) dom (F) ∪ ran (F) = S ∪ T (no isolated elements).

An element from X := S ∪ T is said to be a net element of N.
•
x := F−1[x]6, x

• := F [x] denote the input and output elements of an element
x, respectively.

A transition t ∈ T is active in a marking M ⊆ S if 0 ≤ |•t ∩ M | = |•t|
and t

• ∩ M = ∅. In this case the follower marking M ′ is defined and given by
M ′ = M\•

t ∪ t
• .

A transition t ∈ T with |•t| ≥ 2 is semi-active in a marking M ⊆ S if
0 < |•t ∩ M | < |•t| and t

• ∩ M = ∅.
A transition t ∈ T with |•t| ≥ 1 is input-marked or marked in a marking

M ⊆ S if 0 < |•t ∩ M | ≤ |•t| and t
• ∩ M = ∅.

A net (S, T, F) together with an initial marking M0 is called a net system.

Active transitions follow the usual definition: •
t ⊆ M and t

• ∩ M = ∅. For
a semi-active transition there are some, but not sufficiently many input tokens.
A transition, with |•t| ≥ 2, is marked if it is active or semi-active.

Definition 2. A Petri space is defined by the net
PS1 := (S1, T1, F1) where

S1 = S→
1 ∪ S←

1 , S→
1 = {s→

ξ,η | ξ, η ∈ Z} , S←
1 = {s←

ξ,η | ξ, η ∈ Z} , S→
1 ∩ S←

1 = ∅
T1 = {tξ,η | ξ, η ∈ Z} ,
F1 = {(tξ,η, s→

ξ,η) | ξ, η ∈ Z} ∪ {(s→
ξ,η, tξ+1,η) | ξ, η ∈ Z} ∪

{(tξ,η, s←
ξ,η) | ξ, η ∈ Z} ∪ {(s←

ξ,η, tξ,η+1) | ξ, η ∈ Z} .

S→
1 is called set of forward places and S←

1 the set of backward places.

6 F −1[x] is the relational image of the element x with respect to the inverse of the
relation F .

298 R. Valk

Fig. 4. Denomination of Petri space elements

The introduced denominations of the Petri space elements are shown in Fig. 4
and should be compared with Fig. 1. Contrary to the Minkowski space, the Petri
space is independent of an embedding into Z×Z. It is therefore suitable for the
modelling in transformed coordinates as in non-Euclidian space models. How-
ever, the reader will wonder that we will apply linear algebra, for instance using
equations of lines. This is done only to determine the relative position of points.
It can be understood by first topologically transforming and embedding the
space into R × R, calculating the position and then transforming back into the
Petri space. Distances, however, are not computed with respect to the Euclidean
metric, but by counting steps in the grid of the Petri space.

3 Cycloids

Definition 3. A cycloid is a net C(α, β, γ, δ) = (S, T, F) , defined by param-
eters α, β, γ, δ ∈ N+

7 as a quotient of the Petri space PS1 := (S1, T1, F1)
(Definition 2) with respect to the equivalence relation ≡ ⊆ X1 × X1 with8

≡[S→
1] ⊆ S→

1 , ≡[S←
1] ⊆ S←

1 , ≡[T1] ⊆ T1,

xξ,η ≡ xξ+mα+nγ, η−mβ+nδ for all ξ, η,m, n ∈ Z, X = X1/≡
[[x]]≡ F [[y]]≡ ⇔ ∃x′ ∈ [[x]]≡ ∃y′ ∈ [[y]]≡ : x′ F1 y′ for all x, y ∈ X1.
Isomorphic nets are denominated as cycloids, as well.

From [1] we cite the following lemma.

7
N+ denotes the set of positive integers.

8 ≡[A] is the relational image of the set A with respect to the relation ≡.
[[x]]≡ denotes the equivalence class to which x belongs in the quotient X1/≡.

On the Structure of Cycloids Introduced by Carl Adam Petri 299

Lemma 4. The natural application with respect to ≡ ⊆ X1 ×X1 and explicitely
specified by f≡ : X1 → X, f≡(xξ,η) = [[xξ,η]]≡ and the property f≡(xξ,η) =
f≡(xξ+mα+nγ, η−mβ+nδ) for arbitrary ξ, η,m, n ∈ Z is a net morphism, and par-
ticularly a folding and a quotient.

Proof. Following [10] the map f≡ is a morphism if and only if
≡ ∩ (S1 × T1) = ∅. This holds in our case as property (b) of Definition 1 is
preserved by f≡. Also by [10] f≡ is a folding and a quotient. �

As we are interested in exploring the structure of cycloids from their para-
meters, symmetries are of importance. The first symmetry will be used in later
sections, namely that the structure is preserved by exchanging α with β, and γ
with δ, respectively. This symmetry describes the exchange of forward by back-
ward lines, which are terms used by Petri. If ordinary time and space coordinates
are considered (see Fig. 1 and [7]) it describes the reversal of space orientation.
The second and third symmetry are a kind of shearing of the cycloid. They have
an interesting application in Sect. 6.

Theorem 5. The following cycloids are isomorphic to C(α, β, γ, δ):

(a) C(β, α, δ, γ),
(b) C(α, β, γ − α, δ + β) if γ > α and
(c) C(α, β, γ + α, δ − β) if δ > β.

Proof. (a) We show that the mapping ϕ : X1 → X1 defined by ϕ(xξ,η) :=
xη+β,ξ−α is an isomorphism that is congruent to ≡. To avoid confusion we
denote the second cycloid by C′(α′, β′, γ′, δ′), i.e. α′ = β, β′ = α, γ′ = δ,
δ′ = γ.
ϕ is an isomorphism on the Petri space since ϕ(xξ,η) = ϕ(xξ′,η′) ⇒ η + β =
η′ + β ∧ ξ − α = ξ′ − α ⇒ (ξ, η) = (ξ′, η′), i.e. ϕ is injective and by similar
arguments also surjective.
It remains to show, that ϕ is congruent, i.e. xξ,η ≡ xξ1,η1 ⇒ ϕ(xξ,η) ≡
ϕ(xξ1,η1). For easier reading, we omit the letter x and calculate with the
indices only: with ϕ(ξ, η) = (ξ′, η′) and ϕ(ξ1, η1) = (ξ′

1, η
′
1) we now prove

(ξ, η) ≡ (ξ1, η1) ⇒ (ξ′, η′) ≡ (ξ′
1, η

′
1). By the definition of ≡ we have (ξ1, η1) =

(ξ + mα + nγ, η − mβ + nδ) for some m,n ∈ Z and

(ξ′
1, η

′
1) = (η − mβ + nδ + β, ξ + mα + nγ − α)

= (η + β − mβ + nδ, ξ − α + mα + nγ)
= (ξ′ + m′α′ + n′γ′, η′ − m′β′ + n′δ′)

with m′ = −m and n′ = n, hence (ξ′
1, η

′
1) ≡ (ξ′, η′).

(b) Since ξ + mα + n(γ − α) = ξ + (m − n)α + nγ and η − mβ + n(δ +
β) = η − (m − n)β + nδ, the equivalence relation folding the Petri space is
the same as the original one of Definition 2. The analogous argument proves
part (c). �

300 R. Valk

Fig. 5. Fundamental parallelogram

For proving properties of cycloids particular denotations are needed. Petri
used the letters O,P,R and Q for the vertices of the fundamental parallelogram
([7], p. 41). Equations, vectors and distances with respect to these vertices will
be used (see Fig. 5).

Lemma 6. For a cycloid C(α, β, γ, δ) the vertices with their coordinates in clock-
wise order are O = (0, 0) (origin), P = (α,−β) (space), R = (α+γ, δ−β)(space
and time) and Q = (γ, δ) (time). For pairs (A,B) of such nodes the following
table gives the equation for the line AB through A and B in column 2, the vector−−→
AB from A to B in column 3 and the distance d(A,B) between A and B.

(A, B) Equation for AB Vector
−→
AB Distance d(A, B)

(O, P) η = − β
α

ξ

(
α

−β

)
= as α + β

(O, Q) η = δ
γ
ξ

(
γ

δ

)
= at γ + δ

(P, R) η = δ
γ
(ξ − α) − β

(
γ

δ

)
γ + δ

(Q, R) η = −β
α

(ξ − γ) + δ

(
α

−β

)
α + β

(P, Q) η = β+δ
γ−α

(ξ − α) − β

(
−α + γ

β + δ

)
|α − γ| + β + δ

(O, R) η = δ−β
α+γ

ξ

(
α + γ

δ − β

)
α + γ + |β − δ|

On the Structure of Cycloids Introduced by Carl Adam Petri 301

Proof. The vectors
−−→
OP and

−−→
OQ are obvious (see Fig. 5), while the vector

−−→
OR is

the sum of both.
−→
PR equals

−−→
OQ and

−−→
PQ =

−−→
OQ − −−→

OP . Similarly the equations
for the lines OP and OQ are obvious (see Fig. 5). The equation for PR is a
shift of value α of OQ in ξ-direction and of value −β in η-direction. In a similar
way QR is a shift of OP . The slope of QR and OQ follow from OP and PR,
respectively. The slope of PQ follows from

−−→
PQ while its η-intercept is computed

by ordinary methods. To prove column 4, observe that the distance is different
from Euclidean geometrie, as the steps between points of the grid are counted.

Therefore d(
(

a
b

)
,

(
c
d

)
) = |a − c| + |b − d|. �

The number of transitions of a cycloid is frequently used by Petri and called area
A ([7], p. 40). He gave a geometrical proof in his lectures, which was described
in [1]. In the proof below we use a property of determinants. This will be useful
when considering cycloids in higher dimensions.

Theorem 7

(a) A cycloid C(α, β, γ, δ) has A = |T | = αδ + βγ transitions and |S| = 2 |T |
places.

(b) The set T of transitions of such a cycloid is the union of three sets9, called
Upper Area UA, Middle Area MA and Lower Area LA. These sets are:
1. Upper Area for 0 ≤ ξ ≤ min(α, γ):

UA := {tξ,η|ξ, η ∈ Z,−β

α
ξ ≤ η ≤ δ

γ
ξ}

2. Middle Area 1 for γ ≤ α and γ ≤ ξ ≤ α:

MA1 := {tξ,η|ξ, η ∈ Z,−β

α
ξ ≤ η ≤ −β

α
(ξ − γ) + δ}

3. Middle Area 2 for α ≤ γ and α ≤ ξ ≤ γ:

MA2 := {tξ,η|ξ, η ∈ Z, | δ
γ

(ξ − α) − β ≤ η ≤ δ

γ
ξ}

4. Lower Area for max(α, γ) ≤ ξ ≤ α + γ:

LA := {tξ,η|ξ, η ∈ Z,
δ

γ
(ξ − α) − β ≤ η ≤ −β

α
(ξ − γ) + δ}

Proof

(a) It is well-known that the volume A of a parallelepiped of n vectors is the
determinant of the matrix having these vectors as columns. In our case we

have two vectors in two dimensions: A = det(
−−→
OP

−−→
OQ) =

∣∣∣∣ α γ
−β δ

∣∣∣∣ = αδ +βγ.

For each transition tξ,η there are two places s→
ξ,η and s←

ξ,η, hence |S| = 2 |T |.
9 These sets are not disjoint.

302 R. Valk

(b) The Upper Area is a triangle bordered by the lines OP , OQ and ξ =
min(α, γ) (see Fig. 5 and the table of Lemma 6). The Middle Area depends
on the value of α ≤ γ, but the proof also applies. The same holds for the
Lower Area. The special case α = γ is covered by all four cases. �

4 Cycloid Systems

As in most Petri net models, a net structure together with an initial marking
is called a net system as it gives rise to dynamic processes. The first formal
definition of an initial marking for cycloids is given by Kummer [3,4]. For the
cycloid C(4, 4, 2, 2) he gives three live initial markings having different reacha-
bility sets. This shows that the right choice of an initial marking is important.
In the same year, but not known by Kummer, Petri published the following
informal definition ([7], p. 38): We provide each cycloid with a standard mark-
ing by marking the earliest case in the fundamental parallelogram. In his earlier
lectures10 Petri gave an interpretation: shift the space repetition vector

−−→
OP = as

(see Fig. 5) in the direction of the time repetition vector
−−→
OQ = at until it does

not meet any crossing point (i.e. transitions) of the Petri space grid. The edges
of the grid which are crossed in this way are the locations of the intended initial
marking. To formalize this approach, we select transitions lying between the line
OP (having equation η = −β

αξ) and the line η = −β
α (ξ + 1). The latter results

from OP by a shift of distance 1 in negative ξ-direction. For each such tran-
sition tξ,η a token is located in its forward place s→

ξ,η. In a similar way, tokens
are introduced in backward places of transitions between lines η = −β

αξ and the
line η = −β

αξ − 1, i.e. the line shifted by 1 in negative η-direction. Between any
two of such marked places there is no directed path in the Petri grid. There-
fore these marked places are causally independent11, as required for a marking.
The definition of Fenske and Kummer are very similar and generate the same
reachability set. From the difference it becomes apparent that Petri’s informal
definition is not unambiguous. In Petri’s handwritten script [6] we found the
cycloid C(4, 3, 4, 3) (see Fig. 6), which is used for illustration. Also in Fig. 6 the
corresponding cycloid system is shown in two different representations, together
with their standard initial marking.

Definition 8. For a cycloid C(α, β, γ, δ) constructed as a quotient from the Petri
space PS1 = (S1, T1, F1) by the equivalence relation ≡ we define a cycloid system
by adding the following standard initial marking12

M0 = {s→
ξ,η ∈ S→

1 | η ≤ −β
αξ ∧ η > −β

α (ξ + 1)} /≡ ∪ (1)
{s←

ξ,η ∈ S←
1 | η ≤ −β

αξ ∧ η > −β
αξ − 1} /≡ (2)

10 Reported by Fenske.
11 They are in the concurrency relation co.
12 We will use the term initial marking, for short.

On the Structure of Cycloids Introduced by Carl Adam Petri 303

Fig. 6. Cycloid system C(4, 3, 4, 3) from [6] and redesign.

A proof that a cycloid system is strongly connected, live, safe and secure is
given in [1], drafting upon propositions by Stehr [12]13. The next lemma shows
properties that are useful for designing the initial marking and are used in the
following proofs. Parts (a) and (b) of the lemma show that the coordinates of the
first and the last14 marked transitions t1,0 and tα,1−β are the same in all cycloids
with α ≥ β. (c) proves a more general regularity, namely that the backward input
places of all marked transitions are marked. Part (d) is useful to show that some
of these transitions are semi-active, and (e) and (f) will be used to prove that
coordinates of a marked transition fulfil a certain condition.

Lemma 9. Let C(α, β, γ, δ) be a cycloid system with α ≥ β and initial marking
M0. (See Figs. 4 and 7 for the following properties.)

(a) t1,0 is active.
(b) tα,1−β is active if α = β, but is semi-active if α > β.
(c) The backward input place is marked for all marked transitions.
(d) If s←

ξ,η−1 ∈ M0 then s→
ξ,η /∈ M0.

(e) If tξ,η is a marked transition, then tξ,η−1 is not.
(f) If tξ−1,η+1 and tξ,η are marked transitions, then s→

ξ−1,η ∈ M0.

Proof

(a) The coordinates of the input places of t1,0 are (0, 0) and (1,−1) and therefore
satisfy the conditions (1) and (2) of Definition 8 due to α ≥ β.

(b) The coordinates of the backward input place of tα,1−β are (α,−β) and satisfy
the condition (2). Condition (1) for the forward input place s→

α−1,1−β is
equivalent to β ≥ β +1− β

α ∧β < β +1 and requires α = β (as we assumed
α ≥ β).

13 For the definitions of safe and secure see [7], whereas live was used in the usual form
(e.g. see [2], p. 59). For a cycloid to be secure α, β, γ, δ ≥ 2 is required.

14 First and last with respect to the space dimension.

304 R. Valk

(c) As for a marked transition tξ,η at least one input place is marked in M0, it
is sufficient to show that the backward input place is marked if the forward
input place is marked: if s→

ξ−1,η ∈ M0 then s←
ξ,η−1 ∈ M0. In fact, from the

first part of condition (1) for s→
ξ−1,η, namely η ≤ −β

α (ξ −1) and using α ≥ β

it follows η −1 ≤ −β
αξ which is the first part of condition (2) for s←

ξ,η−1. The
same holds for the second part of the conditions.

(d) If s→
ξ,η ∈ M0 then (by condition (1)) η ≤ −β

αξ which is in contradiction to
the second part of condition (2) for s←

ξ,η−1, hence s→
ξ,η /∈ M0.

(e) The following property has to be proved: if one of the two (or both) input
places s→

ξ−1,η or s←
ξ,η−1 of tξ,η are marked then by (c) the backward input

place s←
ξ,η−2 of tξ,η−1 is not marked. Indeed, let be s→

ξ−1,η ∈ M0, i.e. η ≤
−β

α (ξ − 1) ∧ η > −β
αξ implying η ≤ −β

αξ + β
α ≤ −β

αξ + 1 (condition (*)).
Assuming s←

ξ,η−2 be marked leads to η − 2 > −β
αξ − 1 and η > −β

αξ + 1 in
contradiction to condition (*). The second case for s←

ξ,η−1 is similar.
(f) If tξ−1,η+1 is a marked transition, then by (c) s←

ξ−1,η ∈ M0 (see Fig. 4) and
by the first part of condition (2) it follows η ≤ −β

α (ξ − 1). This is the same
condition (2) for s→

ξ−1,η. If tξ,η is a marked transition, then by (c) s←
ξ,η−1 ∈ M0

and by the second part of condition (2) it follows η − 1 > −β
αξ − 1. This is

equivalent to the same condition (2) for s→
ξ−1,η. �

As we are interested to find the cycloid parameters from the cycloid system
in any representation we introduce new parameters μ, μa, μ0 and τ, τa, τ0 corres-
ponding to the initial marking and the initially active transitions, respectively.

Definition 10. For a cycloid system C(α, β, γ, δ) with initial marking M0 the
following system parameters are defined:

(a) τ0 := |{t| |•t ∩ M0| ≥ 1}| is the number of transitions initially marked.
(b) τa := |{t| |•t ∩ M0| = 2}| is the number of initially active transitions.
(c) τ := |{t| |•t ∩ M0| = 1}| is the number of initially semi-active transitions.
(d) μ0 := |M0| is the number of tokens in the initial marking.
(e) μa is number of tokens activating initially active transitions.
(f) μ is number of tokens activating initially semi-active transitions.

Tokens contributing to μa and μ are called active and semi-active tokens,
respectively.

Lemma 11. The number of tokens of the initial marking M0 is μ0 = α + β.

Proof. The transitions generating the forward tokens in Definition 8 have the
number of β coordinates (0, 0), (ξ1, 1), · · · , (ξβ−1, β − 1), while those generating
the backwards tokens have α coordinates (1, η1), (2, η2) · · · , (α, ηα). The total
number is α + β. �

Petri [6] called the tokens of the former and latter class forward and back-
wards flow tokens, respectively. Their total number corresponds to the distance
d(O,P) = α + β (see Lemma 6).

On the Structure of Cycloids Introduced by Carl Adam Petri 305

Lemma 12. The number of semi-active tokens of the initial marking M0 is
μ = |α − β|.
Proof. First, we assume α ≥ β. We define a path, called m-path, containing
all marked transitions as nodes. The edges connect marked transitions tξ,η and
tξ+1,η′ with 1 ≤ ξ ≤ α.15 By Lemma 9(a) and (b) the first transition is t1,0 and
the last is tα,1−β . From this we have for the η-coordinates 0 ≤ η ≤ 1 − β, with
the following property.

The edges of the m-path are composed of edges of (vector-)type (1,−1) (diag-
onal in the ξ-η-grid) and of type (1, 0) (following a line η = const), since the
type (0,−1) is excluded by Lemma 9(e): if tξ,η is a marked transition in M0 then
tξ,η−1 is not. By (c) and (d) of the same lemma the backward input place of each
marked transition is marked, but the forward output place is not. Therefore a
(place on a) (1, 0)-edge is not marked and the transition at the higher-ξ-end of
this edge is semi-active. Furthermore the forward input place of a transition at
the end of a (1,−1)-edge is marked by Lemma 9(f). Therefore this transition is
active. As a consequence a token is semi-active if and only if it marks the place
on a (1, 0)-type edge and the number of semi-active tokens equals the number
of (1, 0)-edges on the m-path.

Both types of edges, (1, 0) and (1,−1) have the number 1 in their ξ-
component. Therefore the number of all edges of the m-path is the difference
of the ξ-components of the first transition t1,0 and the last transition tα,1−β ,
namely |1−α|. With respect to the η-component only (1,−1) contribute. There-
fore their number is the difference of the η-components of the first and the last
transition, namely |0 − (1 − β)|. The number of (1, 0)-edges is their difference
|1 − α| − |0 − (1 − β)| = |1 − α| − |β − 1| = |α − β|. This proves the number
of semi-active tokens to be |α − β|. To revoke the assumption α ≥ β we apply
Theorem 5(a) by swapping α and β keeping the structure isomorphic. �

Example 13. To illustrate the proof, consider Fig. 7. It shows the case α = β = 6.
There are 6 active transitions with coordinates (1, 0), (2,−1), · · · , (6,−5) forming
a m-path. The case α = 6 and β′ = 3 is represented in the same picture. The new
origin O′ is in the point (0,−α + β′) = (0,−3). The coordinates with respect to
the new origin are distinguished by apostrophes. The nodes of the m-path have
the coordinates (1′, 0′), (2′, 0′), (3′,−1′), (4′,−1′), (5′,−2′), (6′,−2′). The path
contains two (1, 1)-edges and three (1, 0)-edges. It is evident that the number of
(1, 0)-edges equals the distance of the two origins 0 and 0′, which is α − β′ = 3.
The initial marking is shown by small circles on edges, hence 3 transitions are
active and 3 are semi-active. To show a case with two consecutive (1, 1)-edges,
consider the case α = 6 and β′′ = 4.

15 It may be helpful for the reader to consider Fig. 7, which illustrates the proof and is
explained afterwards.

306 R. Valk

Fig. 7. Marked paths for the cases α = β = 6 and α = 6, β′ = 3

Theorem 14. Let C(α, β, γ, δ) be a cycloid system with initial marking M0

(a) τ0 = max{α, β}
(b) τa = min{α, β}
(c) τ = |α − β|
(d) μ0 = α + β
(e) μa = 2 · min{α, β}
(f) μ = |α − β|.
Proof. The propositions of (d) and (f) are proved in the preceding lemmata.

For (e) we use μa = μ0 − μ = α + β − |α − β|. For α ≥ β this gives
α+β−(α−β) = 2·β. In the same way, for α < β we obtain α+β−(β−α) = 2·α,
hence μa = 2 ·min{α, β}. The first three propositions follow immediately: There
are as many semi-active transitions as semi-active tokens: τ = μ = |α−β|. Each
active transition has two active input tokens: τa = 1

2 · μa = min{α, β}. Finally,
τ0 = τa + τ = min{α, β} + |α − β|, which is β + α − β = α if α ≥ β and
α + β − α = β if α < β. �

In his article [7] Petri introduces the notion of slowness by w = |α−β|
α+β . Using

our notation, the slowness of a cycloid is the ratio μ/μ0 of semi-active tokens
relative to all tokens in the initial marking. The more tokens are semi-active,
the higher is the slowness. In the left-hand example of Fig. 2 we have minimal
slowness w = 0 as all tokens are active, while on the right-hand side w = 1

3 as
a third of all tokens is semi-active. While Petri’s definition of slowness is non-
probabilistic, in a personal communication he wrote: “Slowness is a mass or group
phenomenon. The formula is valid for very large numbers of objects following
a uniformly distributed behaviour. By a simple rule-of-thumb, a distribution
proceeds as its slowest part”.

On the Structure of Cycloids Introduced by Carl Adam Petri 307

5 Minimal Cycloid Cycles

As another parameter which is independent of a fundamental parallelogram re-
presentation, we now look for the length of minimal cycles. In his lecture notes
[6] Petri mentions the “number of segments in local basic circuit” as γ + δ in
connection with his investigations on security. As we will see in this section,
this is in fact the length of a minimal cycloid circuit in some cases, but no
further results of Petri are known on the topic. As we investigate the property
of minimal cycles using the fundamental parallelogram, we first state that such
a cycle always appears as a normal form containing a vertex O,P,Q or R.

Lemma 15. For any cycloid C(α, β, γ, δ) there is a minimal cycle containing
the origin O in its fundamental parallelogram representation.

Proof. It is obvious that a cycloid contains cycles (closed paths). Consider a
fixed minimal cycle and a transition tξ0,η0 contained in this cycle. The mapping
ϕ : X1 → X1 defined by ϕ(xξ,η) := xξ−ξ0,η−η0 is an automorphism that is
congruent to ≡. Therefore there is a also a minimal cycle containing tξ,η which
is the origin O = (0, 0) in the Petri space. �

As shown in Fig. 8, the edges of a path can leave the limiting lines of the
fundamental parallelogram. We first consider the opposite case.

Definition 16. Let C(α, β, γ, δ) be a cycloid. A path or a cycle is called inter-
nal if it does not leave the limiting lines of the fundamental parallelogram. The
internal minimal cycle index is defined by

i0(α, β, γ, δ) = if α ≤ β then
if β ≤ δ then 1 else 0 fi

else
if α ≤ γ then − 1 else 0 fi

fi

If the parameters are given by context, the internal index is denoted by i0.

Theorem 17. The length of a minimal internal cycle of a cycloid C(α, β, γ, δ)
is cyc0(α, β, γ, δ) = γ + δ + i0 · (α − β).

Proof. As we argued above, with respect to paths and cycles in the fundamental
parallelogram and by Lemma15, it is sufficient to consider the paths between
the vertices O, P , Q and R. Therefore we can reduce our investigations to the
paths (A,B), as given in the second column of the following table. The minimal
paths between (O,Q) and (P,R) are the same and have the length of the distance
d(O,Q) = d(P,R) = γ+δ by Lemma 6. Such a path is always possible, as already
observed by Petri, in contrast to paths between O and P or Q and R. For any
such internal path, due to

−−→
OP =

−−→
QR = (α,−β) a step in negative η-direction

would be included, which is impossible.

308 R. Valk

Case (A, B) Path possible Path length i0

I (O, Q), (P, R) True γ + δ 0

II (P, Q) α ≤ γ −α + β + γ + δ −1

III (O, R) β ≤ δ α − β + γ + δ 1

(O, P), (Q, R) False

The paths between (P,Q) and (O,R) are only possible under specific conditions,
however. (P,Q) is possible if the ξ-coordinate of P is not greater than that of
Q, i.e. α ≤ γ. (O,R) is possible if and only if R = (α + γ, δ − β) (Lemma 6)
has a non-negative η-coordinate, i.e. δ ≥ β. Due to these conditions the signs
for the absolute value in Lemma6 for d(P,Q) = |α − γ| + β + δ = γ − α + β + δ
and d(O,R) = α + γ + |β − δ| = α + γ + δ − β can be omitted (column 4).
With the values for i0 in the fifth column of the preceding table, the formula
cyc0(α, β, γ, δ) = γ + δ + i0 · (α − β) reproduces the values in the fourth column.
It remains to find out which of the three cases I, II and III gives the length of
the minimal cycle. Let us compare, for instance, case I with case II. γ + δ ≤
−α + β + γ + δ is equivalent to α ≤ β, which gives the entry of the line I and
column II of the following table. Similarly, comparing case II with case III gives
−α + β + γ + δ ≤ α − β + γ + δ ⇔ β ≤ α. The other entries in the table are
computed in the same way.

Case I II III

I α ≤ β β ≤ α

II β ≤ α β ≤ α

III α ≤ β α ≤ β

Compiling these results, in the case of α ≤ β we obtain III ≤ I ≤ II, where the
case identifier stands for the cycle length. Case III is the winner if it is possible,
i.e. under the condition α ≤ β ∧ β ≤ δ with cycle length α − β + γ + δ. This
is just the right condition, namely giving i0 = 1 in Definition 16 and the correct
cycle length in Theorem 17. If case III is not possible, we obtain case I as the
minimal cycle length with condition α ≤ β ∧ β > δ and i0 = 0 which gives
again the correct cycle length γ + δ in Theorem 17.

The case β ≤ α is deduced from the case α ≤ β by using the isomorphism of
Theorem 5 applying the substitution [α → β, β → α, γ → δ, δ → γ]. �

As shown by the cycle t1, t2, t3, t4, t5, t6 of length 6 in the cycloid at the left-
hand side of Fig. 8, a minimal cycle is not necessarily internal. Looking on the
corresponding fundamental parallelogram on the right-hand side, the cycle can
be obtained by starting in the origin, proceeding in ξ-direction until meeting
the line QR1. The example is chosen in such a way that the ξ-axis and the
line QR intersect in a point in the Petri space, namely the point R3 in Fig. 8,

On the Structure of Cycloids Introduced by Carl Adam Petri 309

which is equivalent to R1. Geometrically, the point is obtained by unfolding16

the fundamental parallelogram i − 1 = 2 times. As shown in the proof below we
will obtain i = δ

β = 3. The vector
−−→
OR3 can be calculated by adding

−−→
OQ and i

times the vector
−−→
QR1 =

−−→
OP1. This vector is

−−→
OR3 =

(
γ + i · α
δ − i · β

)
=

(
6
0

)
with

length |−−→
OR3| = γ + δ + i · (α − β) = 6. The case where the intersect of the lines

is not in the Petri space is treated in the proof.

P1

Q

R1

P2

P3

R2

R3

O

Fig. 8. Cycloid C(1, 3, 3, 9) as Petri net and in fundamental diagram representation.

Definition 18. The minimal cycle index of a cycloid C(α, β, γ, δ) is defined by

i(α, β, γ, δ) = if α ≤ β then � δ

β
� else − � γ

α
� fi

If the parameters are given by context, the index is denoted by i.

Theorem 19. The length of a minimal cycle of a cycloid C(α, β, γ, δ) is

cyc(α, β, γ, δ) = γ + δ + i · (α − β).

If the parameters are given by context the cycle index is denoted by i.

16 Such unfoldings of the fundamental parallelogram have been frequently used by
Petri, see “Nets, Time and Space” [7], Fig. 11, for instance.

310 R. Valk

Proof. With respect to paths and cycles in the fundamental parallelogram and
by Lemma 15 it is sufficient to consider paths starting in the origin O.

(a) We first consider the case α ≤ β. As will be justified below, the best choice is
a line starting in the origin O in direction ξ, i.e. having the equation η = 0.
It meets the line QR with equation η = −β

α (ξ − γ) + δ (see Lemma 6) in
a point X. If this point is equivalent to Q or R (with respect to ≡), then
d(O,X) = cyc is the length of the cycle in question. Hence, setting ξ = cyc
and η = 0 in the equation above, we obtain: 0 = −β

α (cyc−γ)+ δ ⇔ β
α (cyc−

γ) = δ ⇔ cyc = δ α
β + γ ⇔ cyc = δ α

β + γ + δ − δ ⇔ cyc = γ + δ + δ
β (α − β).

If X is equivalent to Q or R with respect to ≡ then δ
β is an integer. If this is

not the case, we compute X in a different way. In fact, X can be obtained

by the following vector equation
−−→
OX =

−−→
OQ + j · −−→OP =

(
γ
δ

)
+ j ·

(
α

−β

)
=(

γ + j · α
δ − j · β

)
for some integer j. The length of this vector is |−−→OX| = γ + j ·

α + δ − j ·β = γ + δ + j · (α −β). Comparing |−−→OX| = γ + δ + j · (α −β) with
cyc = γ + δ + δ

β (α − β) from case (a) we conclude j ≤ δ
β ≤ j + 1. Due to the

causality structure of the cycloid the transition with respect to j + 1 = � δ
β �

is not directly reachable, hence j = � δ
β �. This gives cyc = γ+δ+� δ

β �·(α−β)
in the case α ≤ β. The optimality of the choice of a line in case a) becomes
evident here, since a smaller value of i results in a longer cycle, whereas a
greater value of i is impossible due to the causality structure of the cycloid.

(b) For the alternative case we look at the isomorphic cycloid C(β, α, δ, γ) (by
interchanging α and β, as well as γ and δ, see Theorem 5 which has a minimal
cycle of the same length, hence cyc = γ + δ + � γ

α� · (β − α) also in the case
α > β. Both cases together verify the theorem. �

Remark: Using Petri’s terminology and the notion of semi-active transition,
the minimal length of a cycle is the length γ + δ of a local basic circuit, possibly
decreased by an integer multiple i of the number τ = |α − β| of semi-active
transitions.

Note that Theorems 17 and 19 are consistent in the following sense. The inter-
nal minimal cycle length is obtained without unfolding the fundamental paral-
lelogram. This means that the index i is 0 or 1. If we replace � δ

β � by min{1, � δ
β �}

and −� γ
α� by max{−1,−� γ

α�} in Definition 18, we obtain Theorem 17 from
Theorem 19.

6 Computing Cycloid Parameters from System
Parameters

Next we exploit our results to find the fundamental parallelogram representation
of a cycloid from its net presentation using the system parameters τ0, τa, A and
cyc. The corresponding equivalence is denoted as σ-equivalence. The letter σ

On the Structure of Cycloids Introduced by Carl Adam Petri 311

emphasizes the use of the shortest cycle length cyc, whereas the other parameters
are more natural. It also gives room for other equivalences like λ-equivalence,
where the longest cycle length is used, instead. Similar to the theory of regions,
the following procedures do not necessarily give a unique result. But for α �= β
the resulting cyloids are isomorphic.

Definition 20. Cycloids with identical system parameters τ0, τa, A and cyc are
called σ-equivalent.

Theorem 21. Given a cycloid C(α, β, γ, δ) in its net representation where the
parameters τ0, τa, A and cyc are known (but the parameters α, β, γ, δ are not).
Then a σ-equivalent cycloid C(α′, β′, γ′, δ′) can be computed by the formulas
α′ = τ0, β′ = τa and, if α′ �= β′ the positive solutions of γ′ mod α′ = α′·cyc−A

α′−β′

and δ′ = 1
α′ (A − β′ · γ′). These equations may result in different cycloids which

are isomorphic, however. If α′ = β′ then γ′ = � cyc
2 � and δ′ = � cyc

2 � can be used.

Proof. As by Theorem 5 for the case α ≤ β, there is an isomorphic solution for
α ≥ β we can restrict to the latter case. Hence by Theorem 14 we can choose
α′ = τ0 and β′ = τa, giving α′ = α and β′ = β.

For computing γ′ and δ′ we use the following equations if α �= β: from
A = αδ′ + βγ′ we obtain δ′ = A

α − β
αγ′ and insert this value into the formula for

cyc in the case α ≥ β: cyc = γ′ +δ′ +�γ′

α � ·(β−α) = γ′ + A
α − β

αγ′ +�γ′

α � ·(β−α).
This is equivalent to γ′ − α · �γ′

α � = α·cyc−A
α−β . Using γ′ − α · �γ′

α � = γ′ mod α we
obtain one or more (positive) solutions γ′, which also give the same number of
solutions for δ′ = A

α − β
αγ′. If γ1 and γ2 are two different such solutions, we have

γ2 = γ1 + k · α for some k ∈ Z. W.l.o.g. assume k ≥ 1. Then for δ2 we obtain
δ2 = A

α − β
αγ2 = δ1 − k · β. Hence applying Theorem 5(c) (k-times) the resulting

cycloids C(α, β, γ1, δ1) and C(α, β, γ1 + k · α, δ1 − k · β) are isomorphic.
If α′ = β′ then the minimal cycle length is always γ′ + δ′. To verify again the

same values cyc′ = cyc and A′ = A in C(α′, β′, γ′, δ′), we observe: cyc′ = γ′+δ′ =
� cyc

2 � + � cyc
2 � = cyc and A′ = αδ′ + βγ′ = α(δ′ + γ′) = α · cyc′ = α · cyc = A. �

Example 22. For the cycloid system on the left-hand side of Fig. 2 we obtain
α′ = τ0 = 3, β′ = τa = 3 and α′ = τ0 = 4, β′ = τa = 2 for the right-
hand net of the same figure. To compute γ′ and δ′ we start with the net on
the right-hand side with A = 6 transitions and cyc = 2. As α′ �= β′ we obtain
γ′ mod α′ = α′·cyc−A

α′−β′ = 4·2−6
4−2 = 1. The set of positive solutions of γ′ mod 4 = 1

is {4n + 1|n ∈ Z} = {1, 5, 9, · · · }. Using these values we obtain
δ′ = 1

α′ (A − β′ · γ′) = 1
4 (6 − 2 · γ′) = {1,−1,−3, · · · }. Therefore γ′ = 1, δ′ = 1

is a unique positive solution. To compute γ′ and δ′ for the net on the left-hand
side (A = 6, cyc = 2) we obtain γ′ = � 2

2� = 1 δ′ = � 2
2� = 1, since α′ = β′.

Example 23. For the cycloid system of Fig. 6 we obtain α′ = τ0 = 4, β′ = τa =
3, A = 24, cyc = 6. As α′ > β′ we consider γ′ mod α′ = α′·cyc−A

α′−β′ = 4·6−24
4−3 = 0.

The set of positive solutions of γ′ mod 4 = 0 is {4n|n ∈ Z} = {0, 4, 8, · · · }.
Using these values we obtain δ′ = 1

α′ (A − β′ · γ′) = 1
4 (24 − 3 · γ′). Hence the set

312 R. Valk

of values for (γ′, δ′) reduces to {(0, 3
2), (4, 3), (0, 8), · · · }. Therefore γ′ = 4, δ′ = 3

is a unique positive integer solution.

Example 24. Consider the cycloid C(3, 2, 8, 2) with A = 22 and cyc = 8. Then
α′ = 3, β′ = 2 and γ′ mod 3 = α′·cyc−A

α′−β′ = 3·8−22
3−2 = 2 has a set of solutions γ′ ∈

{· · ·−1, 2, 5, 8, 11, · · · } and with δ′ = 1
α′ (A−β′ ·γ′) = 1

3 (22−2 ·γ′) also (γ′, δ′) ∈
{· · · (−1, 8), (2, 6), (5, 4), (8, 2), (11, 0), · · · }. As only positive integer values for γ′

and δ′ are possible, we obtain two cycloids C(3, 2, 2, 6) and C(3, 2, 5, 4) that are
σ-equivalent to the initial cycloid C(3, 2, 8, 2). All three cycloids are isomorphic
due to Theorem 5.

Fig. 9. Cycloid C(2, 1, 2, 1), XOR-gate and Petri’s patterns of behavior

Example 25. As mentioned in the introduction, the topological equivalence of
elementary gates of information processing on the bit level to particular cycloids
is an important result of Petri’s work. In a mail from August 28, 2007 Petri wrote
that the “oscillator” is the easiest example for the “surprising” construction of
a cycloid from the XOR-gate, which he called a “Pattern of Group Behaviour”
based on the same topology. Petri wrote that he first found such an equivalence
in the year 1964 by the example of the Quine-Transfer. Let us come back to the
XOR-gate shown on the right-hand side of Fig. 9 and its redesign in the middle.

On the Structure of Cycloids Introduced by Carl Adam Petri 313

By reorientation of the arcs, Petri built the net on the left hand side. It becomes
a cycloid system by adding a token to the place a0 in order to obtain a live net,
as in a marked graph each cycle has to contain exactly one token. The net is
known as “oscillator net” or “four seasons net” (equivalent to Fig. 3).

Here our result helps Petri’s construction: initially marked transitions: α′ =
τ0 = |{a, b}| = 2, initially active transitions β′ = τa = |{a}| = 1, minimal
cycle length cyc = 2 and A = 4, hence γ′mod 2 = α′·cyc−A

α′−β′ = 2·2−4
2−1 = 0

and δ′ = 1
α′ (A − β′ · γ′) = 2 − γ′

2 . The set of solutions for (γ′, δ′) is
{· · · (0, 2), (2, 1), (4, 0), · · · }. Therefore γ′ = 2 and δ′ = 1 is a unique positive
integer solution, giving the cycloid C(2, 1, 2, 1), as shown in Petri’s slide of Fig. 9.

7 Conclusion

In this paper a formal definition for the model of cycloids is given, enabling
proofs of known and new properties. This has been done on the basis of C. A.
Petri’s formal and informal papers, some of which are internal for the Hamburg
research group on General Net Theory. To prepare new results and also as a
mathematical tool box for further research, some technical properties are derived.
The main theorem gives a compact formula for the length of minimal cycloid
cycles. Together with three other system parameters, this allowed to compute
the cycloid parameters α, β, γ and δ solely from the cycloid net. At the end,
some examples are given, including some suggested by C. A. Petri himself.

References

1. Fenske, U.: Petris Zykloide und Überlegungen zur Verallgemeinerung. Diploma
thesis (2008)

2. Girault, C., Valk, R. (eds.): Petri Nets for System Engineering - A Guide to Mod-
elling, Verification and Applications. Springer, Berlin (2003). https://doi.org/10.
1007/978-3-662-05324-9. 585 p.

3. Kummer, O.: Axiomatic Systems in Concurrency Theory. Logos Verlag Berlin,
Berlin (2001)

4. Kummer, O., Stehr, M.-O.: Petri’s axioms of concurrency a selection of recent
results. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 195–
214. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63139-9 37

5. Langner, P.: Cycloids’ Characteristics (2013). http://cycloids.adventas.de/
6. Petri, C.A.: Collection of Handwritten Scripts on Cycloids. Lecture University of

Hamburg (1990/1991)
7. Petri, C.A.: Nets, time and space. Theor. Comput. Sci. 153, 3–48 (1996)
8. Petri, C.A.: Slides of the Lecture “Systematik der Netzmodellierung”, Hamburg

(2004). http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri
eng.html

9. Petri, C.A., Valk, R.: On the Physical Basics of Information Flow - Results
obtained in cooperation Konrad Zuse. http://www.informatik.uni-hamburg.de/
TGI/mitarbeiter/profs/petri eng.html (2008)

https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/3-540-63139-9_37
http://cycloids.adventas.de/
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

314 R. Valk

10. Smith, E., Reisig, W.: The semantics of a net is a net - an exercise in general net
theory. In: Voss, K., Genrich, J., Rozenberg, G. (eds.) Concurrency and Nets, pp.
461–479. Springer, Berlin (1987). https://doi.org/10.1007/978-3-642-72822-8 29

11. Stehr, M.O.: System specification by cyclic causality constraints. Technical report
210, Department of Informatics, University Hamburg (1998)

12. Stehr, M.O.: Characterizing security in synchronization graphs. Petri Net Newsl.
56, 17–26 (1999)

https://doi.org/10.1007/978-3-642-72822-8_29

Markings in Perpetual Free-Choice Nets
Are Fully Characterized by Their

Enabled Transitions

Wil M. P. van der Aalst(B)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. A marked Petri net is lucent if there are no two different
reachable markings enabling the same set of transitions, i.e., states are
fully characterized by the transitions they enable. This paper explores
the class of marked Petri nets that are lucent and proves that perpetual
marked free-choice nets are lucent. Perpetual free-choice nets are free-
choice Petri nets that are live and bounded and have a home cluster, i.e.,
there is a cluster such that from any reachable state there is a reachable
state marking the places of this cluster. A home cluster in a perpet-
ual net serves as a “regeneration point” of the process, e.g., to start a
new process instance (case, job, cycle, etc.). Many “well-behaved” pro-
cess models fall into this class. For example, the class of short-circuited
sound workflow nets is perpetual. Also, the class of processes satisfying
the conditions of the α algorithm for process discovery falls into this cat-
egory. This paper shows that the states in a perpetual marked free-choice
net are fully characterized by the transitions they enable, i.e., these pro-
cess models are lucent. Having a one-to-one correspondence between the
actions that can happen and the state of the process, is valuable in a
variety of application domains. The full characterization of markings in
terms of enabled transitions makes perpetual free-choice nets interesting
for workflow analysis and process mining. In fact, we anticipate new ver-
ification, process discovery, and conformance checking techniques for the
subclasses identified.

1 Introduction

Structure theory is a branch in Petri nets [8,20–23] that asks what behavioral
properties can be derived from it structural properties [10,12,13]. Many different
subclasses have been studied. Examples include state machines, marked graphs,
free-choice nets, asymmetric choice nets, and nets without TP and PT handles.
Structure theory also studies local structures such as traps and siphons that may
reveal information about the behavior of the Petri net and includes linear alge-
braic characterizations of behavior involving the matrix equation or invariants
[12,13,20].

In this paper, we focus on the following fairly general question: What is the
class of Petri nets for which each marking is uniquely identified by the set of
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 315–336, 2018.
https://doi.org/10.1007/978-3-319-91268-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_16&domain=pdf

316 W. M. P. van der Aalst

t2

p1

p4

p3

t3

t1
p2

t4

Fig. 1. A perpetual marked free-choice net (i.e., live, bounded, and having a home
cluster) that is lucent (each reachable marking is unique in terms of the transitions it
enables).

enabled transitions? We call such nets lucent. A lucent marked Petri net cannot
have two different reachable markings that enable the same set of transitions.

Consider, for example, the Petri net shown in Fig. 1. There are four reachable
markings. Marking [p1, p2] enables {t1, t2}. Marking [p1, p3] enables {t3}. Mark-
ing [p2, p4] enables {t4}. Marking [p3, p4] enables {t3, t4}. Hence, the marked net
is lucent, because each of the four markings is uniquely identified by a particular
set of enabled transitions. The Petri net shown in Fig. 2 is not lucent. After firing
either transition t1 or t2 only t3 is enabled, i.e., the two corresponding [p2, p5]
and [p2, p6] markings enable the same set of transitions. The choice between t4
and t5 is controlled by a token in p5 or p6, and this state information is not
“visible” when only t3 is enabled. As illustrated by Fig. 2, it is easy to construct
non-free-choice nets that are not lucent. Moreover, unbounded Petri nets cannot
be lucent. These examples trigger the question: Which classes of marked Petri
nets are guaranteed to be lucent?

In this paper, we will show that perpetual marked free-choice nets are always
lucent. These nets are live and bounded and also have a so-called home cluster. A
home cluster serves as a “regeneration point”, i.e., a state where all tokens mark
a single cluster. The property does not hold in general. Liveness, boundedness,
the existence of a home cluster, and the free-choice requirement are all needed.
We will provide various counterexamples illustrating that dropping one of the
requirements is not possible.

Free-choice nets are well studied [11,12,15,25]. The definite book on the
structure theory of free-choice nets is [13]. Also, see [12] for pointers to litera-
ture. Therefore, it is surprising that the question whether markings are uniquely
identified by the set of enabled transitions (i.e., lucency) has not been explored
in literature. Most related to the results presented in this paper is the work on
the so-called blocking theorem [17,26]. Blocking markings are reachable mark-
ings which enable transitions from only a single cluster. Removing the cluster
yields a dead marking. Figure 1 has three blocking markings ([p1, p2], [p1, p3],
and [p2, p4]). The blocking theorem states that in a bounded and live free-choice
net each cluster has a unique blocking marking. We will use this result, but prove
a much more general property. Note that we do not look at a single cluster and

Markings in Perpetual Free-Choice Nets 317

p1
t2

t1

t3

t4

t6

t5
p2 p3 p4

p6

p5

Fig. 2. A perpetual marked non-free-choice net that is not lucent because there are two
reachable markings ([p2, p5] and [p2, p6]) enabling the same set of transitions ({t3}).

do not limit ourselves to blocking markings. We consider all markings including
states (partially) marking multiple clusters.

We expect that the theoretical results presented in this paper will enable
new analysis techniques in related fields such as business process management
[14], workflow management [24], and process mining [4]. Lucency is a natural
assumption in many application domains and should be exploited. For example,
the worklists of a workflow management system show the set of enabled actions.
Hence, lucency allows us to reason about the internal state of the system in
terms of the actions it allows. We also anticipate that lucency can be exploited
in workflow verification, process discovery, and conformance checking [5]. Event
logs used in process mining only reveal the actions performed and not the internal
state [3,4]. Moreover, the class of perpetual marked free-choice nets considered
in this paper is quite large and highly relevant in many application domains. The
existence of a “regeneration point” (home cluster) is quite general, and liveness
and boundedness (or soundness) are often desirable. For example, the class of
short-circuited sound workflow nets is perpetual. Processes that are cyclic, often
have a home cluster. Non-cyclic process often have a clear start and end state
and can be short-circuited thus introducing a home cluster. For example, the
representational bias of the α algorithm (i.e., the class of process models for
which rediscovery is guaranteed) corresponds to a subclass of perpetual marked
free-choice nets [9].

The remainder of this paper is organized as follows. Section 2 introduces
preliminaries and known results (e.g., the blocking theorem). Section 3 defines
lucency as a (desirable) behavioral property of marked Petri nets. Section 4 intro-
duces perpetual nets and important notions like partial P-covers and local safe-
ness. These are used to prove the main theorem of this paper showing that
markings are unique in terms of the transitions they enable. Section 5 concludes
the paper.

2 Preliminaries

This section introduces basic concepts related to Petri nets, subclasses of nets
(e.g., free-choice nets and workflow nets), and blocking markings.

318 W. M. P. van der Aalst

2.1 Petri Nets

Multisets are used to represent the state of a Petri net. B(A) is the set of all
multisets over some set A. For some multiset b ∈ B(A), b(a) denotes the number
of times element a ∈ A appears in b. Some examples: b1 = [], b2 = [x, x, y], b3 =
[x, y, z], b4 = [x, x, y, x, y, z], and b5 = [x3, y2, z] are multisets over A = {x, y, z}.
b1 is the empty multiset, b2 and b3 both consist of three elements, and b4 = b5,
i.e., the ordering of elements is irrelevant and a more compact notation may be
used for repeating elements.

The standard set operators can be extended to multisets, e.g., x ∈ b2, b2�b3 =
b4, b5\b2 = b3, |b5| = 6, etc. {a ∈ b} denotes the set with all elements a for
which b(a) ≥ 1. [f(a) | a ∈ b] denotes the multiset where element f(a) appears∑

x∈b|f(x)=f(a) b(x) times.
σ = 〈a1, a2, . . . , an〉 ∈ X∗ denotes a sequence over X of length n. 〈 〉 is the

empty sequence. Sequences can be concatenated using “·”, e.g., 〈a, b〉 · 〈b, a〉 =
〈a, b, b, a〉. It is also possible to project sequences: 〈a, b, b, a, c, d〉�{a,c}= 〈a, a, c〉.
Definition 1 (Petri Net). A Petri net is a tuple N = (P, T, F) with P the
non-empty set of places, T the non-empty set of transitions such that P ∩T = ∅,
and F ⊆ (P × T) ∪ (T × P) the flow relation such that the graph (P ∪ T, F) is
connected.

Definition 2 (Marking). Let N = (P, T, F) be a Petri net. A marking M is
a multiset of places, i.e., M ∈ B(P). (N,M) is a marked net.

For a subset of places X ⊆ P : M �X= [p ∈ M | p ∈ X] is the marking
projected on this subset.

A Petri net N = (P, T, F) defines a directed graph with nodes P ∪ T and

edges F . For any x ∈ P ∪T ,
N• x = {y | (y, x) ∈ F} denotes the set of input nodes

and x
N• = {y | (x, y) ∈ F} denotes the set of output nodes. The notation can be

generalized to sets:
N• X = {y | ∃x∈X (y, x) ∈ F} and X

N• = {y | ∃x∈X (x, y) ∈
F} for any X ⊆ P ∪T . We drop the superscript N if it is clear from the context.

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉,
if each of its input places •t contains at least one token. en(N,M) = {t ∈ T |
(N,M)[t〉} is the set of enabled transitions.

An enabled transition t may fire, i.e., one token is removed from each of
the input places •t and one token is produced for each of the output places
t•. Formally: M ′ = (M\•t) � t• is the marking resulting from firing enabled
transition t in marking M of Petri net N . (N,M)[t〉(N,M ′) denotes that t is
enabled in M and firing t results in marking M ′.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N,M)[σ〉(N,M ′)
denotes that there is a set of markings M0,M1, . . . ,Mn (n ≥ 0) such that M0 =
M , Mn = M ′, and (N,Mi)[ti+1〉(N,Mi+1) for 0 ≤ i < n. A marking M ′ is
reachable from M if there exists a firing sequence σ such that (N,M)[σ〉(N,M ′).
R(N,M) = {M ′ ∈ B(P) | ∃σ∈T ∗ (N,M)[σ〉(N,M ′)} is the set of all reachable
markings.

Markings in Perpetual Free-Choice Nets 319

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

Fig. 3. A perpetual marked free-choice net [13]. The net is live, bounded, and has
so-called “home clusters” (e.g., {p7, p8, t7}). The net is also lucent.

Figure 3 shows a marked Petri net having 8 places and 7 transitions. Tran-
sitions t3 and t6 are enabled in the initial marking M = [p3, p6]. R(N,M)
= {[p3, p6], [p6, p7], [p3, p8], [p7, p8], [p1, p2], [p3, p4], [p5, p6], [p4, p7], [p5, p8]}. For
example, the firing sequence 〈t3, t6, t7〉 leads to marking [p1, p2], i.e.,
(N, [p3, p6])[〈t3, t6, t7〉〉(N, [p1, p2]).

A path in a Petri net N = (P, T, F) is a sequence of nodes ρ = 〈x1, x2, . . . , xn〉
such that (xi, xi+1) ∈ F for 1 ≤ i < n. ρ is an elementary path if xi = xj for
1 ≤ i < j ≤ n.

Next, we define a few, often desirable, behavioral properties: liveness, bound-
edness, and the presence of (particular) home markings.

Definition 3 (Liveness and Boundedness). A marked net (N,M) is live if
for every reachable marking M ′ ∈ R(N,M) and every transition t ∈ T there
exists a marking M ′′ ∈ R(N,M ′) that enables t. A marked net (N,M) is
k-bounded if for every reachable marking M ′ ∈ R(N,M) and every p ∈ P :
M ′(p) ≤ k. A marked net (N,M) is bounded if there exists a k such that
(N,M) is k-bounded. A 1-bounded marked net is called safe. A Petri net N is
structurally bounded if (N,M) is bounded for any marking M . A Petri net N
is structurally live if there exists a marking M such that (N,M) is live. A Petri
net N is well-formed if there exists a marking M such that (N,M) is live and
bounded.

The marked Petri net shown in Fig. 3 is live and safe. Hence, it is also well-
formed.

Definition 4 (Home Marking). Let (N,M) be a marked net. A marking
MH is a home marking if for every reachable marking M ′ ∈ R(N,M): MH ∈
R(N,M ′). (N,M) is cyclic if M is a home marking.

The marked Petri net shown in Fig. 3 has 8 home markings: {[p6, p7], [p3, p8],
[p7, p8], [p1, p2], [p3, p4], [p5, p6], [p4, p7], [p5, p8]}. However, the net is not cyclic
because [p3, p6] is not a home marking.

320 W. M. P. van der Aalst

2.2 Subclasses of Petri Nets

For particular subclasses of Petri net there is a relationship between structural
properties and behavioral properties like liveness and boundedness [12]. In this
paper, we focus on free-choice nets [13].

Definition 5 (P-net, T-net, and Free-choice Net). Let N = (P, T, F) be a
Petri net. N is an P-net (also called a state machine) if |•t| = |t•| = 1 for any
t ∈ T . N is a T-net (also called a marked graph) if |•p| = |p•| = 1 for any p ∈ P .
N is free-choice net if for any for any t1, t2 ∈ T : •t1 = •t2 or •t1 ∩ •t2 = ∅.
N is strongly connected if the graph (P ∪ T, F) is strongly connected, i.e., for
any two nodes x and y there is a path leading from x to y.

An alternative way to state that a net is free-choice is the requirement that
for any p1, p2 ∈ P : p1• = p2• or p1• ∩ p2• = ∅. The Petri net shown in Fig. 3
is free-choice. The Petri net shown in Fig. 2 is not free-choice because t4 and t5
shared an input place (p3) but have different sets of input places.

Definition 6 (Siphon and Trap). Let N = (P, T, F) be a Petri net and R ⊆ P
a subset of places. R is a siphon if •R ⊆ R•. R is a trap if R• ⊆ •R. A siphon
(trap) is called proper if it is not the empty set.

Any transition that adds tokens to a siphon also takes tokens from the siphon.
Therefore, an unmarked siphon remains unmarked. Any transition that takes
tokens from a trap also adds tokens to the trap. Therefore, a marked trap remains
marked.

Definition 7 (Cluster). Let N = (P, T, F) be a Petri net and x ∈ P ∪ T .
The cluster of node x, denoted [x]c is the smallest set such that (1) x ∈ [x]c,
(2) if p ∈ [x]c ∩ P , then p• ⊆ [x]c, and (3) if t ∈ [x]c ∩ T , then •t ⊆ [x]c.
[N]c = {[x]c | x ∈ P ∪ T} is the set of clusters of N .

Note that [N]c partitions the nodes in N . The Petri net shown in Fig. 3 has 6
clusters: [N]c = {{p1, p2, t1, t2}, {p3, t3}, {p4, t4}, {p5, t5}, {p6, t6}, {p7, p8, t7}}.

Definition 8 (Cluster Notations). Let N = (P, T, F) be a Petri net and
C ∈ [N]c a cluster. P (C) = P ∩ C are the places in C, T (C) = T ∩ C are the
transitions in C, and M(C) = [p ∈ P (C)] is the smallest marking fully enabling
the cluster.

Definition 9 (Subnet, P-component, T-Component). Let N = (P, T, F)
be a Petri net and X ⊆ P ∪T such that X = ∅. N�X= (P ∩X,T ∩X,F ∩(X×X))

is the subnet generated by X. N �X is a P-component of N if
N• p ∪ p

N• ⊆ X
for p ∈ X ∩ P and N�X is a strongly connected P-net. N�X is a T-component
of N if

N• t ∪ N• t ⊆ X for t ∈ X ∩ T and N �X is a strongly connected T-net.
PComp(N) = {X ⊆ P ∪ T | N �X is a P-component}. TComp(N) = {X ⊆
P ∪ T | N�X is a T-component}.

Markings in Perpetual Free-Choice Nets 321

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(d) P-component X4

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(e) T-component X5

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(f) T-component X6

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(a) P-component X1

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(b) P-component X2

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(c) P-component X3

Fig. 4. The Petri net shown in Fig. 3 has four P-components and two T-components.

The Petri net shown in Fig. 3 has four P-components and two T-components
(see Fig. 4). These components cover all nodes of the net.

Definition 10 (P-cover, T-cover). Let N = (P, T, F) be a Petri net. N has
a P-cover if and only if

⋃
PComp(N) = P ∪ T .1 N has a T-cover if and only if⋃

TComp(N) = P ∪ T .

Since the early seventies, it is known that well-formed free-choice nets have
a P-cover and a T-cover (first shown by Michel Hack).

Theorem 1 (Coverability Theorem [13]). Let N = (P, T, F) be a well-
formed free-choice net.

⋃
PComp(N) =

⋃
TComp(N) = P ∪ T .

Moreover, for any well-formed free-choice net N and marking M : (N,M) is
live if and only if every P-component is marked in M (Theorem 5.8 in [13]).

2.3 Workflow Nets

In the context of business process management, workflow automation, and pro-
cess mining, often a subclass of Petri nets is considered where each net has a
unique source place i and a unique sink place o [1].

Definition 11 (Workflow net). Let N = (P, T, F) be a Petri net. N is a
workflow net if there are places i, o ∈ P such that •i = ∅, o• = ∅, and all nodes
P ∪T are on a path from i to o. Given a workflow net N , the short-circuited net
is N = (P, T ∪ {t∗}, F ∪ {(t∗, i), (o, t∗)}).

1 ⋃
Q =

⋃
X∈Q X for some set of sets Q.

322 W. M. P. van der Aalst

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

t8

t*

t0

p9

start

complete

Fig. 5. The free-choice net without transition t∗ is a workflow net. The short-circuited
net is perpetual, i.e., live, bounded, and having a home cluster (e.g., {start , t0}). The
short-circuited net is also lucent.

The short-circuited net is strongly connected. Different notions of soundness
have been defined [6]. Here we only consider classical soundness [1].

Definition 12 (Sound). Let N = (P, T, F) be a workflow net with source place
i. N is sound if and only if (N, [i]) is live and bounded.

Note that soundness implies that starting from the initial state (just a token
in place i), it is always possible to reach the state with one token in place o
(marking [o]). Moreover, after a token is put in place o, all the other places need
to be empty. Finally, there are no dead transitions (each transition can become
enabled).

Figure 5 shows a sound workflow net. By adding transition t∗ the net is short-
circuited. The short-circuited net is live, safe, and cyclic.

2.4 Uniqueness of Blocking Markings in Free-Choice Nets

A blocking marking is a marking where all transitions in a particular cluster
are enabled while all others are disabled. For example, in Fig. 3, [p3, p6] is not
a blocking marking, but [p3, p8], [p6, p7], and [p7, p8] are examples of blocking
markings.

Definition 13 (Blocking Marking). Let (N,M) be a marked net and C ∈
[N]c a cluster. A blocking marking for C is a marking MB ∈ R(N,M) such that
en(N,MB) = T (C), i.e., all transitions in the cluster are enabled, but no other
transitions.

In [18] Genrich and Thiagarajan showed that unique blocking markings exist
for all clusters in live and safe marked graphs. This was generalized by Gaujal,
Haar, and Mairesse in [17] where they showed that blocking markings exist and

Markings in Perpetual Free-Choice Nets 323

t2

t1

t4

t3 t5

t6

p1

p2

p3

p4

p8 p9

p6

p7p5

Fig. 6. A live and safe marked free-choice net that is not locally safe and not perpetual.
Nevertheless, the net is lucent.

t1

t2

t3

t4

p1

p2
p4p3

p5

Fig. 7. A live and locally safe non-free-choice net. Cluster {p1, t1} has two reachable
blocking markings M1 = [p1, p3] and M2 = [p1, p4]. Also cluster {p5, t4} has two
reachable blocking markings M3 = [p3, p5] and M4 = [p4, p5].

are unique in live and bounded free-choice nets. Note that in a free-choice net all
transitions in the cluster are enabled simultaneously (or all are disabled). There
is one unique marking in which precisely one cluster is enabled. Moreover, one
can reach this marking without firing transitions from the cluster that needs to
become enabled. A simplified proof was given in [26] and another proof sketch
was provided in [12].

Theorem 2 (Existence and Uniqueness of Blocking Markings [17]). Let
(N,M) live and bounded free-choice net and C ∈ [N]c a cluster. There exists a
unique blocking marking for C reachable from (N,M), denoted by BC

(N,M). More-
over, there exists a firing sequence σ ∈ (T \C)∗ such that (N,M)[σ〉(N,BC

(N,M)).

The free-choice net in Fig. 6 is live and bounded. Hence, each cluster has a
unique blocking marking. The unique blocking marking of the cluster {p2, t2} is
[p2, p5]. The unique blocking marking of the cluster {p6, p7, t6} is [p6, p7, p8].

The free-choice net in Fig. 1 has three clusters. The three blocking markings
are [p1, p2], [p1, p3], and [p2, p4]. Marking [p3, p4] is not a blocking marking
because transitions from different clusters are enabled.

324 W. M. P. van der Aalst

Figure 7 illustrates that the free-choice property is essential in Theorem 2.
Cluster C1 = {p1, t1} has two reachable blocking markings M1 = [p1, p3] and
M2 = [p1, p4]. Cluster C2 = {p5, t4} also has two reachable blocking markings
M3 = [p3, p5] and M4 = [p4, p5].

3 Lucency

This paper focuses on the question whether markings can be uniquely identified
based on the transitions they enable. Given a marked Petri net we would like to
know whether each reachable marking has a unique “footprint” in terms of the
transitions it enables. If this is the case, then the net is lucent.

Definition 14 (Lucent). Let (N,M) be a marked Petri net. (N,M) is lucent
if and only if for any M1,M2 ∈ R(N,M): en(N,M1) = en(N,M2) implies
M1 = M2.

The marked Petri net in Fig. 1 is lucent because each of the four reachable
markings has a unique footprint in terms of the set of enabled transitions. The
marked Petri net shown in Fig. 2 is not lucent because there are two markings
M1 = [p2, p5] and M2 = [p2, p6] with en(N,M1) = en(N,M2) = {t3} and
M1 = M2. The marked Petri nets in Figs. 3, 5, and 6 are lucent. The non-free-
choice net in Fig. 7 is not lucent (markings [p3, p5] and [p4, p5] enable t4, and
[p1, p3] and [p1, p4] enable t1). Figure 8 shows a free-choice net that is also not
lucent (markings [p3, p7, p8] and [p3, p5, p7] both enable {t1, t4}).

Lemma 1. Let (N,M) be a lucent marked Petri net. (N,M) is bounded and
each cluster has at most one blocking marking.

Proof. Assume that (N,M) is both lucent and unbounded. We will show that
this leads to a contradiction. Since (N,M) is unbounded, we can find markings
M1 and M2 and sequences σ0 and σ such that (N,M)[σ0〉(N,M1)[σ〉(N,M2) and
M2 is strictly larger than M1. This implies that we can repeatedly execute σ get-
ting increasingly larger markings: (N,M2)[σ〉(N,M3)[σ〉(N,M4)[σ〉(N,M5)
At some stage, say at Mk, the set of places that are marked stabilizes. However,
the number of tokens in some places continues to increase in Mk+1, Mk+2, etc.
Hence, we find markings that enable the same set of transitions but that are
not the same. For example, Mk+1 = Mk+2 and en(N,Mk+1) = en(N,Mk+2).
Hence, the net cannot be lucent.

Take any cluster C and assume that (N,M) has two different reachable
blocking markings M1 and M2. This means that en(N,M1) = en(N,M2) =
C ∩ T . Hence, (N,M) could not be lucent, yielding a contradiction again. ��

We would like to find subclasses of nets that are guaranteed to be lucent based
on their structure. Theorem 2 and the fact that lucency implies the existence
unique blocking markings, suggest considering live and bounded free-choice nets.
However, as the example in Fig. 8 shows, this is not sufficient.

Markings in Perpetual Free-Choice Nets 325

t2

t6

p1

t5

t3

t8t7

p2

p8

p3 p6
p5

p4 p7

t1 t4

Fig. 8. A live and locally safe free-choice net that is not lucent because reachable
markings [p3, p7, p8] and [p3, p5, p7] both enable t1 and t4.

4 Characterizing Markings of Perpetual Free-Choice
Nets

Theorem 2 only considers blocking markings, but illustrates that the free-choice
property is important for lucency. Consider for example Fig. 7. M1 = [p1, p3] and
M2 = [p1, p4] both enable t1. M3 = [p3, p5] and M4 = [p4, p5] both enable t4.
Obviously, the property does not hold for non-free-choice nets even when they
are live, safe, cyclic, etc. However, as Fig. 8 shows, the property also does not
need to hold for free-choice nets even when they are live, safe, and cyclic. Yet, we
are interested in the class of nets for which all reachable markings have a unique
“footprint” in terms of the transitions they enable. Therefore, we introduce the
class of perpetual nets. These nets have a “regeneration point” involving a so-
called “home cluster”.

4.1 Perpetual Marked Nets

A home cluster is a cluster corresponding to a home marking, i.e., the places
of the cluster can be marked over and over again while all places outside the
cluster are empty.

Definition 15 (Home Cluster). Let (N,M) be a marked net with N = (P, T,
F) and C ∈ [N]c a cluster of N . C is a home cluster of (N,M) if M(C) is a home
marking, i.e., for every reachable marking M ′ ∈ R(N,M): M(C) ∈ R(N,M ′).

Consider the marked net in Fig. 1. There are three clusters: C1 = {p1, p2,
t1, t2}, C2 = {p3, t3}, and C3 = {p4, t4}. C1 is a home cluster because M(C1) =
[p1, p2] is a home marking. C2 is not a home cluster because M(C2) = [p3] is
not a home marking. C3 is also not a home cluster because M(C3) = [p4] is not
a home marking.

The marked net in Fig. 7 also has three clusters: C1 = {p1, t1}, C2 =
{p2, p3, p4, t2, t3}, and C3 = {p5, t4}. Since [p1], [p2, p3, p4], and [p5] are not
home markings, the net has no home clusters.

Nets that are live, bounded, and have at least one home cluster are called
perpetual.

326 W. M. P. van der Aalst

Definition 16 (Perpetual Marked Net). A marked net (N,M) is perpetual
if it is live, bounded, and has a home cluster.

The marked Petri nets in Figs. 1, 2, 3, and 5 are perpetual. The nets in Figs. 6,
7, and 8 are not perpetual. Home clusters can be viewed as “regeneration points”
because the net is always able to revisit a state marking a single cluster.

Lemma 2 (Sound Workflow Nets are Perpetual). Let N be a sound work-
flow net with source place i. The short-circuited marked net (N, [i]) is perpetual.

Proof. Soundness implies that (N, [i]) is live and bounded. Moreover, [i] is a
home cluster. It is always possible to enable and fire t∗ due to liveness. After
firing t∗, place i is marked and there can be no other tokens because otherwise
(N, [i]) would be unbounded. Hence, [i] is a home marking. {i} ∪ i• is a cluster
because the transitions in i• cannot have additional input places (otherwise they
would be dead). ��

Next to workflow nets, there are many classes of nets that have a “regen-
eration point” (i.e., home cluster). For example, process models discovered by
discovery algorithms often have a well-defined start and end point. By short-
circuiting such nets, one gets home clusters.

4.2 Local Safeness

It is easy to see that non-safe Petri nets are likely to have different markings
enabling the same set of transitions. In fact, we need a stronger property that
holds for perpetual marked free-choice nets: local safeness. Local safeness is the
property that each P-component is safe (i.e., the sum of all tokens in the com-
ponent cannot exceed 1).

Definition 17 (Locally Safe). Let (N,M) be a marked P-coverable net.
(N,M) is locally safe if all P-components are safe, i.e., for any P-component
X ∈ PComp(N) and reachable marking M ′ ∈ R(N,M):

∑
p∈X∩P M ′(p) ≤ 1.

Note that a safe marked P-coverable net does not need to be locally safe. Con-
sider for example the marked net in Fig. 6. The net is safe, but the P-component
{p1, p3, p5, p8, p6, t1, t3, t4, t5, t6} has two tokens. However, all perpetual marked
free-choice nets are locally safe.

Lemma 3 (Perpetual Marked Free-Choice Nets Are Locally Safe). Let
(N,M) be a perpetual marked free-choice net. (N,M) is locally safe.

Proof. Since (N,M) is perpetual, therefore it is live, bounded, and has a home
cluster C. N is well-formed and therefore has a P-cover. A bounded well-formed
free-choice net is only live if every P-component is initially marked (see The-
orem 5.8 in [13]). Hence, also in home marking M(C) the P-components are
marked (the number of tokens is invariant). Therefore, in any P-component one
of the places in P (C) appears. There cannot be two places from cluster C in the

Markings in Perpetual Free-Choice Nets 327

same P-component (this would violate the requirement that transitions in a P-
component have precisely one input place). Hence, each P-component is marked
with precisely one token and this number is invariant for all reachable markings.
Hence, (N,M) is locally safe. ��

The nets in Figs. 1, 3, and 5 are free-choice and perpetual and therefore
also locally safe. The net in Fig. 2 is locally safe and perpetual, but not free-
choice. The marked Petri net in Fig. 6 is not perpetual and also not locally safe.
Figure 8 shows that there are free-choice nets that are live and locally safe, but
not perpetual.

4.3 Realizable Paths

Free-choice nets have many interesting properties showing that the structure
reveals information about the behavior of the net [13]. Tokens can basically
“decide where to go”, therefore such nets are called free-choice.

The following lemma from [19] shows that tokens can follow an elementary
path in a live and bounded free-choice net where the initial marking marks a
single place and that is a home marking.

Lemma 4 (Realizable Paths in Cyclic Free-Choice Nets [19]). Let
(N,M) be a live, bounded, and cyclic marked free-choice net with M = [pH]. Let
M ′ be a reachable marking which marks place q and let 〈p0, t1, p1, t2, . . . , tn, pn〉
with p0 = q and pn = pH be an elementary path in N . There exists a firing
sequence σ such that (N,M ′)[σ〉(N,M) and each of the transitions {t1, . . . tn} is
executed in the given order and none of the intermediate markings marks pH .

Proof. See [19]. ��
Note that Lemma 4 refers to a subclass of perpetual marked free-choice nets.

A similar result can be obtained for P-components in a perpetual marked free-
choice net.

Lemma 5 (Realizable Paths Within P-components). Let (N,M) be a per-
petual mark-ed free-choice net with home cluster C. Let X ∈ PComp(N) be the
nodes of some P-component and M ′ ∈ R(N,M) an arbitrary reachable marking.
For any elementary path 〈p0, t1, p1, t2, . . . , tn, pn〉 ∈ X∗ in N with p0 ∈ M ′ and
pn ∈ P (C): there exists a firing sequence σ such that (N,M ′)[σ〉(N,M(C)) and
σ�X= 〈t1, t2, . . . , tn〉.
Proof. Let (PX , TX , FX) be the P-component corresponding to X. Note that p0
is the only place of PX that is marked in M ′. Moreover, elements in 〈p0, t1, p1, t2,
. . . , tn, pn〉 ∈ X∗ are unique because the path is elementary. In fact, the places in
{p0, p1, . . . , pn} ⊆ PX belong to different clusters because a P-component cannot
have multiple places of the same cluster. As a result also {t1, t2, . . . tn} ⊆ TX

belong to different clusters.
If p0 = pn, then the lemma holds because pn ∈ P (C) is marked and we can

also mark the other places in P (C). Theorem 2 can be applied such that all

328 W. M. P. van der Aalst

places in P (C) can be marked without firing any transitions in T (C). In fact,
there exists a sequence σB such that (N,M ′)[σB〉(N,M(C)) and σB�X= 〈 〉. σB

does not involve any transitions in TX , because T (C) transitions are not needed
and all other transitions in TX are blocked because pn is the only place in PX

that is marked. When all places in P (C) are marked, then all other places need
to be empty, otherwise (N,M) is not bounded (see Lemma 2.22 in [13]). Hence,
σB leads indeed to M(C).

If p0 = pn, then there is a firing sequence removing the token from p0 (because
M(C) is a home marking and p0 ∈ M(C)). Let (N,M ′)[σ1〉(N,M1) be the
sequence enabling a transition that removes the token from p0 (for the first time).
In M1, transition t1 ∈ p0• is enabled (because N is free-choice all transitions in
p0• are enabled). σ1 cannot fire any transitions in TX , because p0 is the only
place of PX that is marked. Therefore, transitions in [p0]c need to be enabled
first. Let M ′

1 be the marking after firing t1 ((N,M ′)[σ1〉(N,M1)[t1〉(N,M ′
1)).

Note that p1 is the only place of PX marked in M ′
1. Let (N,M ′)[σ2〉(N,M2) be

the sequence enabling a transition that removes the token from p1. Transition t2
is enabled in the marking reached after σ2: (N,M2)[t2〉(N,M ′

2). Again σ2 cannot
involve any transitions in TX and enables all transitions in p1•. M ′

2 marks place
p2 as the only place in PX . By recursively applying the argument it is possible
to construct the firing sequence σ′ = σ1 · t1 · σ2 · t2 · . . . · σn · tn which marks
pn. From the resulting marking one can fire σB leading to marking M(C). For
the case p0 = pn we explained that such a σB exists. This shows that we can
construct σ = σ′ · σB such that (N,M ′)[σ〉(N,M(C)) and σ�X= 〈t1, t2, . . . , tn〉.

��

4.4 Partial P-Covers

Hack’s Coverability Theorem (Theorem 1) states that well-formed free-choice
nets have a P-cover. Our proof that markings are distinguishable based on their
enabled transitions exploits this. In fact, we will construct nets using subsets of
P-components. Therefore, we define a notion of a Q-projection.

Definition 18 (Partial P-cover and Projection). Let (N,M) be a marked
P-coverable Petri net. Any Q ⊆ PComp(N) with Q = ∅ is a partial P-cover of
N . N�⋃

Q is the Q-projection of N . (N�⋃
Q,M�⋃

Q) is the marked Q-projection
of (N,M).

A Q-projection inherits properties from the original net (free-choice and well-
formed) and the Q-projection is again P-coverable.

Lemma 6. Let N = (P, T, F) be a P-coverable Petri net, Q a partial P-cover
of N , and N�⋃

Q= (PQ, TQ, FQ) the Q-projection of N .
⋃

Q = PQ ∪ TQ, Q ⊆
PComp(N�⋃

Q) ⊆ PComp(N), and N�⋃
Q has a P-cover.

Proof. Let Q = {X1,X2, . . . Xn} be P-components of N , Pi = Xi ∩P , Ti = Xi ∩
T , for 1 ≤ i ≤ n. N�⋃

Q= (PQ, TQ, FQ) such that PQ =
⋃

i Pi and TQ =
⋃

i Ti.
Hence, by definition

⋃
Q = PQ ∪ TQ.

Markings in Perpetual Free-Choice Nets 329

Each P-component Xi is fully described by Pi, because in any P-component,
place p is always connected to the transitions in

N• p and p
N• . All the origi-

nal components in Q used to form the partial P-cover of N are also compo-
nents of N �⋃

Q, because the subsets of places are in PQ and all surround-
ing transitions are included and no new transitions have been added. How-
ever, new combinations may be possible (covering subsets of the places in PQ).
Hence, Q ⊆ PComp(N �⋃

Q). PComp(N �⋃
Q) ⊆ PComp(N) because a partial

P-cover cannot introduce new P-components. N �⋃
Q has a P-cover, because⋃

PComp(N�⋃
Q) = PQ ∪ TQ. ��

Lemma 7. Let N = (P, T, F) be a well-formed free-choice net and Q a partial
P-cover of N . The Q-projection of N (i.e., N�⋃

Q) is a well-formed free-choice
net.

Proof. Let N �⋃
Q= NQ = (PQ, TQ, FQ). NQ is free-choice because N is free-

choice and for any added place p ∈ PQ all surrounding transitions •p ∪ p• are
also added. Hence, for any p1, p2 ∈ PQ: p1• = p2• or p1• ∩ p2• = ∅.

NQ is structurally bounded because it is covered by P-components
(Lemma 6). The number of tokens in a P-component is constant and serves
as an upper bound for the places in it.

To show that NQ is structurally live we use Commoner’s Theorem [13]: “A
free-choice marked net is live if and only if every proper siphon includes an
initially marked trap”. Places in N and NQ have identical pre and post-sets,

hence, for any R ⊆ PQ:
N• R =

NQ• R and R
N• = R

NQ• . Hence, R cannot be a

siphon in N and not in NQ (or vice versa).
N• R ⊆ R

N• if and only if
NQ• R ⊆

R
NQ• . Also, R cannot be a trap in N and not in NQ (of vice versa). R

N• ⊆ N• R

if and only if R
NQ• ⊆ NQ• R. Take any proper siphon R in NQ. This is also a

proper siphon in N . R contains a proper trap R′ in N . Clearly, R′ ⊆ PQ and is
also a proper trap in NQ. By initially marking all places, R′ is also marked and
the net is (structurally) live. Therefore, NQ is well-formed. ��

A partial P-cover of N may remove places. Removing places can only enable
more behavior. Transitions are only removed if none of the input and output
places are included. Therefore, any firing sequence in the original net that is
projected on the set of remaining transitions is enabled in the net based on the
partial P-cover.

Lemma 8. Let (N,M) be a live and locally safe marked free-choice net
(with N = (P, T, F)), Q a partial P-cover of N , and (NQ,MQ) the marked
Q-projection of (N,M) (with NQ = (PQ, TQ, FQ)). For any sequence σ ∈ T ∗

that is executable in (N,M) (i.e., (N,M)[σ〉(N,M ′)), the projected sequence
σQ = σ�TQ

is also executable in the marked Q-projection and ends in marking
M ′�⋃

Q (i.e., (NQ,MQ)[σQ〉(NQ,M ′�⋃
Q)).

330 W. M. P. van der Aalst

Proof. Let (NQ,MQ) be the marked Q-projection of (N,M). NQ has fewer
places. Removing places can only enable more behavior and never block behav-
ior. Therefore, σ is still possible after removing the places not part of any of
the included P-components. After removing these places, transitions not in any
included P-component become disconnected and can occur without any con-
straints. Hence, σ can be replayed and results in the projected marking (M ′�⋃

Q).
Removing these transitions from the sequence (σQ = σ �TQ

) corresponds to
removing them from the net. Therefore, (NQ,MQ)[σQ〉(NQ,M ′�⋃

Q). ��
By combining the above insights, we can show that the Q-projection of a

perpetual marked free-choice net is again a perpetual marked free-choice net.

Lemma 9. Let (N,M) be a perpetual marked free-choice net and Q a partial
P-cover of N . The marked Q-projection of (N,M) (i.e., (N �⋃

Q,M �⋃
Q)) is a

perpetual marked free-choice net.

Proof. Let N�⋃
Q= NQ = (PQ, TQ, FQ) and MQ = M�⋃

Q. NQ is a well-formed
free-choice net (see Lemma 7). To prove that (NQ,MQ) is perpetual, we need to
show that it is live, bounded, and has a home cluster.

Let C be a home cluster of (N,M). Every P-component of N includes pre-
cisely one place of P (C) and holds precisely one token in any reachable state.
Any P-component in NQ is also a P-component in N (Lemma 6) and therefore
also has one token in any reachable state. Hence, (NQ,MQ) is locally safe.

Every P-component of NQ is marked in M and also in MQ. (Lemma 6 shows
that PComp(N�⋃

Q) ⊆ PComp(N). This implies that all components of NQ are
also components of N and thus initially marked.) Hence, we can apply Theorem
5.8 in [13] to show that the net is live.

CQ = C ∩ (PQ ∪ TQ) is a home cluster of (NQ,MQ) because the transitions
in CQ ∩ TQ are live and when they are enabled only the places in P (CQ) are
marked. Hence, M(CQ) is a home marking. ��

4.5 Characterization of Markings in Perpetual Free-Choice Nets

We have introduced perpetual free-choice nets because it represents a large and
relevant class of models for which the enabling of transitions uniquely identifies
a marking, i.e., these nets are lucent. In such process models, there can never be
two different markings enabling the same set of transitions. Note that this result
is much more general than the blocking marking theorem which only refers to
blocking markings and a single cluster.

Theorem 3 (Characterization of Markings in Perpetual Free-Choice
Nets). Let (N,M) be a perpetual marked free-choice net. (N,M) is lucent.

Proof. Let N = (P, T, F) and M1,M2 ∈ R(N,M) such that E = en(N,M1) =
en(N,M2). We need to prove that M1 = M2.

Markings in Perpetual Free-Choice Nets 331

N has a P-cover (Theorem 1). QE = {X ∈ PComp(N) | X ∩ E = ∅}
are all P-components covering at least one transition in E. NE = N �⋃

QE
=

(PE , TE , FE) is the QE-projection of N . ME = M �⋃
QE

is the corresponding
marking. (NE ,ME) is a perpetual marked free-choice net (see Lemma 9).

M1 and M2 “agree” on the places in PE , i.e., M1(p) = M2(p) for p ∈ PE .
The places in •E are marked in M1 and M2, because the transitions in E =
en(N,M1) = en(N,M2) are enabled in both. The places in PE\•E are empty
in M1 and M2, because in any reachable marking there is precisely one token in
each P-component in QE (Lemma 3). Each place in PE\•E is part of at least one
P-component already marking a place in •E. Hence, the places in PE\•E need
to be empty in markings M1 and M2. M0 = [p ∈ •E] = M1�⋃

QE
= M2�⋃

QE
is

a shorthand for the common part of M1 and M2 in the QE-projection of N .
Let’s assume M1 = M2 and show that this leads to a contradiction. There

is a place pd for which both markings disagree: M1(pd) = M2(pd). Let Xd ∈
PComp(N) be an arbitrary P-component such that pd ∈ Xd. Xd ∈ QE because
M1 and M2 “agree” on the places in PE . Let Pd = Xd ∩ P and Td = Xd ∩ T be
the places and transitions of P-component Xd for which M1 and M2 disagree.

Obviously M1 and M2 mark different places in Pd, but both mark precisely
one of these places (P-component). Let pd

1 ∈ Pd and pd
2 ∈ Pd be the two places

marked by respectively M1 and M2. M1 �Xd
= [pd

1] and M2 �Xd
= [pd

2]. Clearly,
{pd

1, p
d
2} ∩ PE = ∅ since M1 and M2 “agree” on the places in PE . Moreover, the

transitions in Td are not enabled in both M1 and M2. T1 = pd
1• and T2 = pd

2•
are the transitions having respectively pd

1 and pd
2 as input place.

Let QF = QE ∩ {Xd}. NF = N�⋃
QF

= (PF , TF , FF) is the QF -projection of
N . MF = M�⋃

QF
is the corresponding marking. Also, (NF ,MF) is a perpetual

marked free-choice net (apply again Lemma 9).
Let MF

1 = M1�⋃
QF

and MF
2 = M2�⋃

QF
. Note that MF

1 = M0 � [pd
1] and

MF
2 = M0 � [pd

2]. Using Lemma 8, we can conclude that both MF
1 and MF

2 are
reachable from MF , i.e., (NF ,MF)[σ〉(NF ,MF

1) and (NF ,MF)[σ〉(NF ,MF
2).

Because (NF ,MF) and also (NF ,MF
1) and (NF ,MF

2) are live and bounded
free-choice nets, we can apply the Blocking Theorem (Theorem 2). There exists
a unique blocking marking B1 for the cluster involving pd

1 and T1 and a firing
sequence σ1 that leads to the blocking marking without firing transitions in T1:
(NF ,MF

1)[σ1〉(NF , B1). Note that σ1 does not contain any transitions in the set
Td (T1 is blocked and the rest is disabled because Xd is a P-component), i.e.,
σ1 ∈ (TE\Td)∗. Similarly, there is a unique blocking marking B2 for the cluster
involving pd

2 and T2 and a firing sequence σ2 that leads to the blocking marking
without firing transitions in Td: (NF ,MF

2)[σ2〉(NF , B2) and σ2 ∈ (TE\Td)∗.
The two selected places are still marked in the corresponding blocking mark-

ings: pd
1 ∈ B1 and pd

2 ∈ B2. Therefore, one can write B1 = B′
1 � [pd

1] and B2 =
B′

2 � [pd
2]. Using this notation we can write: (NF ,M0 � [pd

1])[σ1〉(NF , B′
1 � [pd

1])
and (NF ,M0 � [pd

2])[σ2〉(NF , B′
2 � [pd

2]). Clearly, σ1 and σ2 do not depend on
tokens in pd

1 or pd
2 (no transition in Td appears in σ1 or σ2). Hence, also

(NF ,M0 � [pd
2])[σ1〉(NF , B′

1 � [pd
2]) and (NF ,M0 � [pd

1])[σ2〉(NF , B′
2 � [pd

1]).
Assume that the transitions in T2 are not enabled in B′

1 � [pd
2], then B′

1 � [pd
2]

is a reachable dead marking (because in B′
1 � [pd

1] only transitions in T1 are

332 W. M. P. van der Aalst

t1

p1

t2

p2

p3

t3

p4

p5

t4

p6

Fig. 9. A live and locally safe marked free-choice net that is not perpetual. The model
is also not lucent since there are two reachable markings M1 = [p1, p3, p6] and M2 =
[p1, p4, p6] that both enable t1 and t4.

enabled, the only transitions that may be enabled in B′
1 � [pd

2] are the transi-
tions in T2). This would yield a contradiction, so the transitions T2 need to be
enabled in B′

1 � [pd
2]. By symmetry, we can also conclude that the transitions T1

need to be enabled in B′
2 � [pd

1] (otherwise we also find a contradiction). Hence,
B′

1 � [pd
1] and B′

2 � [pd
1] are blocking markings for any transition in T1 and

B′
2 � [pd

2] and B′
1 � [pd

2] are blocking markings for any transition in T2. Because
blocking markings are unique, we conclude B′

1 = B′
2. Let B′ = B′

1 = B′
2.

B1 = B′ � [pd
1] is the unique blocking marking for any transition in T1. This

marking is marking all input places of T1 and T2 except pd
2. B2 = B′ � [pd

2] is the
unique blocking marking for any transition in T2. This marking is marking all
input places of T1 and T2 except pd

1. (NF ,MF) is a perpetual marked free-choice
net with some home cluster C. Hence, we can apply Lemma 5. Let Cd = C ∩Xd.
There is one place pd

c ∈ Cd ∩ P . There exist an elementary path of the form
〈p0, t1, p1, t2, . . . , tn, pn〉 ∈ Xd

∗ such that p0 = pd
1 and pn = pd

c (because the
added P-component is strongly connected). Suppose that the elementary path
does not contain pd

2 (i.e., pi = pd
2 for any 0 ≤ i ≤ n). (Note that pd

1 = pd
2,

pd
1 = pd

c , and pd
2 = pd

c .) Then there exists a firing sequence σ such that (NF , B′ �
[pd

1])[σ〉(NF ,M(C)), σ �Xd
= 〈t1, t2, . . . , tn〉, and T2 ∩ {t1, t2, . . . , tn} = ∅. This

leads to a contradiction because B′ marks input places of T2 that cannot be
removed by σ, but disappeared in home marking M(C). Hence, we need to
assume that pi = pd

2 for some 1 ≤ i < n. This implies that there is an elementary
path of the form 〈pi, ti+1, pi+1, ti+2, . . . , tn, pn〉 ∈ Xd

∗ such that pi = pd
2, pn =

pd
c , and pj = pd

1 for all i ≤ j ≤ n. Hence, there exists a firing sequence σ
such that (NF , B′ � [pd

2])[σ〉(NF ,M(C)), σ �Xd
= 〈ti+1, ti+2, . . . , tn〉, and T1 ∩

{ti+1, ti+2, . . . , tn} = ∅. This again leads to a contradiction because B′ marks
the input places of T1 that cannot be removed by σ, but disappeared in home
marking M(C).

Hence, the assumption M1 = M2 leads to a contradiction, showing that
M1 = M2. ��

Markings in Perpetual Free-Choice Nets 333

Table 1. Overview of the examples used: Marked PN = figure showing a marked Petri
net, FreC = free-choice, Live = live, Boun = bounded, Safe = safe, LocS = locally
safe, PC = number of P-components, HClu = net has at least one home cluster, Perp
= perpetual, UnBM = net has unique blocking marking for each cluster, Lucent =
lucent, Pls = number of places, Trs = number of transitions, and RM = number of
reachable markings.

Marked PN FreC Live Boun Safe LocS PC HClu Perp UnBM Lucent Pls Trs RM

Figure 1 Yes Yes Yes Yes Yes 2 Yes Yes Yes Yes 4 4 4

Figure 2 No Yes Yes Yes Yes 2 Yes Yes No No 6 6 6

Figure 3 Yes Yes Yes Yes Yes 4 Yes Yes Yes Yes 8 7 9

Figure 5 Yes Yes Yes Yes Yes 6 Yes Yes Yes Yes 11 10 11

Figure 6 Yes Yes Yes Yes No 5 No No Yes Yes 9 6 8

Figure 7 No Yes Yes Yes Yes 2 No No No No 5 4 6

Figure 8 Yes Yes Yes Yes Yes 3 No No Yes No 8 8 12

Figure 9 Yes Yes Yes Yes Yes 3 No No Yes No 6 4 8

For the class of perpetual marked free-choice nets, markings are uniquely
identified by the set of enabled transitions. As shown before, the free-choice
property is needed and liveness and boundedness are not sufficient. The above
theorem also does not hold for live and locally safe marked free-choice nets (see
for example Fig. 8). The requirement that the net has a home cluster seems
essential for characterizing marking in terms of enabled transitions.

Consider for example the live and locally safe marked free-choice net
in Fig. 9. There are three P-components: {p1, p2, t1, t2}, {p3, p4, t2, t3}, and
{p5, p6, t3, t4}. These always contain precisely one token. However, there are
two reachable markings M1 = [p1, p3, p6] and M2 = [p1, p4, p6] that both enable
t1 and t4. This can be explained by the fact that the net is not perpetual. There
are four clusters, but none of these clusters is a home cluster. Note that the
counter-example in Fig. 9 is actually a marked graph. This illustrates that the
home cluster requirement is also essential for subclasses of free-choice nets.

5 Conclusion and Implications

We started this paper by posing the question: “What is the class of Petri nets
for which the marking is uniquely identified by the set of enabled transitions?”.
This led to the definition of lucency. The main theorem proves that markings
from perpetual marked free-choice nets are guaranteed to be lucent. Moreover,
we showed that all requirements are needed (in the sense that dropping any of
the requirements yields a counterexample). Table 1 provides an overview of the
examples used in this paper. For example, even live and safe free-choice nets
may have multiple markings having the same set of enabled transitions.

Other characterizations may be possible. An obvious candidate is the class
of Petri nets without PT and TP handles [16]. As shown in [2] there are
many similarities between free-choice workflow nets and well-structured (no PT
and TP handles) workflow nets when considering notions like soundness and

334 W. M. P. van der Aalst

P-coverability. Moreover, it seems possible to relax the notion of a regeneration
point by considering simultaneously marked clusters.

Structure theory aims to link structural properties of the Petri net to its
behavior. The connection between lucency and home clusters in free-choice nets
could be relevant for verification and synthesis problems. The ability to link
the enabling of transitions to states (i.e., lucency) is particularly relevant when
observing running systems or processes, e.g., in the field of process mining [4]
where people study the relationship between modeled behavior and observed
behavior. If we assume lucency, two interesting scenarios can be considered:

– Scenario 1: The system’s interface or the event log reveals the set of enabled
actions. At any point in time or for any event in the log, we know the internal
state of the system or process. This makes it trivial to create an accurate
process model (provided that all states have been visited).

– Scenario 2: The system’s interface or the event log only reveals the executed
actions. The internal state of the system is unknown, but we know that it is
fully determined by the set of enabled actions (some of which may have been
observed).

It is easy to create a discovery algorithm for the first scenario. The second sce-
nario is more challenging. However, the search space can be reduced considerably
by assuming lucency (e.g., learning perpetual marked free-choice nets). Hence,
Theorem 3 may lead to new process mining algorithms or help to prove the
correctness and/or guarantees of existing algorithms.

Assume that each event in the event log is characterized by e =
(σpref , a, σpost) where σpref is the prefix (activities that happened before e),
a is the activity executed, and σpost is the postfix (activities that happened
after e). The result of applying a process discovery algorithm can be seen as a
function state() which maps any event e onto a state state(e), i.e., the state in
which e occurred (see [5,7] for explanations). Hence, events e1 and e2 satisfying
state(e1) = state(e2) occurred in the same state and can be viewed as “equiv-
alent”. This way discovery is reduced to finding an equivalence relation on the
set of events in the log. Given such an equivalence relation, we can apply the
approach described under Scenario 1. Viewing process discovery as “finding an
equivalence relation on events” provides an original angle on this challenging
and highly relevant learning task.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Workflow verification: finding control-flow errors using
Petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A.
(eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45594-9 11

https://doi.org/10.1007/3-540-45594-9_11

Markings in Perpetual Free-Choice Nets 335

3. van der Aalst, W.M.P.: Mediating between modeled and observed behavior: the
quest for the “Right” process. In: IEEE International Conference on Research Chal-
lenges in Information Science (RCIS 2013), pp. 31–43. IEEE Computing Society
(2013)

4. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin
(2016)

5. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining Knowl. Discov. 2(2), 182–192 (2012)

6. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

7. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

8. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes: A Petri Net Ori-
ented Approach. MIT Press, Cambridge (2011)

9. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

10. Best, E.: Structure theory of Petri nets: the free choice hiatus. In: Brauer, W.,
Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 168–205.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2 8

11. Best, E., Desel, J., Esparza, J.: Traps characterize home states in free-choice sys-
tems. Theor. Comput. Sci. 101, 161–176 (1992)

12. Best, E., Wimmel, H.: Structure theory of Petri nets. In: Jensen, K., van der
Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions on Petri Nets
and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 162–224. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38143-0 5

13. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

14. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Berlin (2013)

15. Esparza, J.: Reachability in live and safe free-choice Petri nets is NP-Complete.
Theor. Comput. Sci. 198(1–2), 211–224 (1998)

16. Esparza, J., Silva, M.: Circuits, handles, bridges and nets. In: Rozenberg, G. (ed.)
ICATPN 1989. LNCS, vol. 483, pp. 210–242. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-53863-1 27

17. Gaujala, B., Haar, S., Mairesse, J.: Blocking a transition in a free choice net and
what it tells about its throughput. J. Comput. Syst. Sci. 66(3), 515–548 (2003)

18. Genrich, H.J., Thiagarajan, P.S.: A theory of bipolar synchronization schemes.
Theor. Comput. Sci. 30(3), 241–318 (1984)

19. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of
control flow in workflows. Acta Informatica 39(3), 143–209 (2003)

20. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

21. Reisig, W.: Petri Nets: Modeling Techniques, Analysis, Methods, Case Studies.
Springer, Berlin (2013)

22. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. LNCS,
vol. 1491. Springer, Berlin (1998). https://doi.org/10.1007/3-540-65306-6

https://doi.org/10.1007/978-3-540-47919-2_8
https://doi.org/10.1007/978-3-642-38143-0_5
https://doi.org/10.1007/3-540-53863-1_27
https://doi.org/10.1007/3-540-53863-1_27
https://doi.org/10.1007/3-540-65306-6

336 W. M. P. van der Aalst

23. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets II: Applications. LNCS,
vol. 1492. Springer, Berlin (1998). https://doi.org/10.1007/3-540-65307-4

24. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.: Workflow Patterns: The
Definitive Guide. MIT Press, Cambridge (2016)

25. Thiagarajan, P.S., Voss, K.: A fresh look at free choice nets. Inf. Control 61(2),
85–113 (1984)

26. Wehler, J.: Simplified proof of the blocking theorem for free-choice Petri nets. J.
Comput. Syst. Sci. 76(7), 532–537 (2010)

https://doi.org/10.1007/3-540-65307-4

Tools

ePNK Applications and Annotations:
A Simulator for YAWL Nets

Ekkart Kindler(B)

Software Engineering Section, DTU Compute,
Technical University of Denmark, Kgs. Lyngby, Denmark

ekki@dtu.dk

Abstract. The ePNK is an Eclipse based platform and framework for
developing and integrating Petri net tools and applications. New types
of Petri nets can be realized and plugged into the ePNK without any
programming by simply providing a model of the concepts of the new
Petri net type. Moreover, the ePNK allows developers to customize the
graphical appearance of the features of a new Petri net type.

In this paper, we discuss how to implement applications for the ePNK,
and how they can interact with the end user by so-called annotations.
This is discussed by the example of a simulator for YAWL nets.

Keywords: Petri net tools · Framework
Petri Net Markup Language (PNML) · Applications · Annotations

1 Introduction

The ePNK is an Eclipse based platform and framework for developing and inte-
grating Petri net tools and applications. One of its core features is that the
ePNK can be easily equipped with new types of Petri nets: they can be realized
and plugged into the ePNK without any programming by providing a model of
the concepts of the new type, the so-called Petri net type definition (PNTD)
as introduced for the Petri Net Markup Language (PNML) [1,2]. Moreover, the
ePNK allows developers to customize how the features of a new Petri net type
are represented in the graphical editor of the ePNK.

The main idea and features of the ePNK as a tool that fully supports PNML
have been presented before [3,4]. One important aspect of the ePNK, however,
has not been discussed yet: ePNK applications and how to realize them. This,
in particular, includes visualizing the result of an application on top of the
Petri net in the graphical editor of the ePNK by using annotations, and ePNK’s
mechanism for an application to interact with the end user via annotations.

In this paper, we give an overview of the concepts of ePNK applications
by discussing the implementation of a simulator for YAWL nets [5]. Moreover,
we briefly discuss how the ePNK’s annotations could be used as a basis for
interchanging analysis results between different Petri net tools; this could be a
good starting point for a future extension of PNML and ISO/IEC 15909 [1,2]
for standardizing the exchange of analysis results of Petri nets.
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 339–350, 2018.
https://doi.org/10.1007/978-3-319-91268-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_17&domain=pdf

340 E. Kindler

2 The Result

Before we discuss how to realize YAWL nets and the YAWL simulator for the
ePNK, we give a brief overview of the final result. Moreover, we use the example
for briefly explaining the main concepts of YAWL nets.

Figure 1 shows a YAWL net, which is open in the graphical editor of the
ePNK and with two YAWL simulator applications running on it, which are
shown in the ePNK application view at the bottom. In this view, one simulator,
called YAWL Simulator 1, is selected as the active one. The current marking of
that simulator is shown in the graphical editor by additional annotations in the
YAWL net, and some additional information is high-lighted: A blue number at
the top-right of a place indicates the number of tokens in the current marking
of the net in the active simulator; if there is no such number at a place, the
place has currently no tokens. A blue overlay for a transition indicates that the
transition is currently enabled. The red overlays for places, transitions and arcs
indicate a path on which a token might arrive on place c4 at the enabled OR-join
transition a6. This serves as a warning for the user that transition a6 should not
be fired yet, since an OR-join transition should wait for tokens that might still
arrive along the red path1.

Fig. 1. ePNK with two YAWL simulators running (Color figure online)

In Fig. 1, you can also see some specific features of YAWL nets. We use this
example for briefly explaining the main concepts of YAWL. Like normal Petri
1 This is a subtlety of YAWL OR-joins, which we do not discuss in detail in this paper.

ePNK Applications and Annotations: A Simulator for YAWL Nets 341

nets, YAWL nets consist of places, transitions and arcs, where arcs can connect
places and transitions. In YAWL, places are called conditions, and transitions are
called actions. YAWL has distinguished start conditions and finish conditions,
which is a special attribute associated with conditions; and these conditions
are graphically distinguished by special symbols as shown for start condition i
and finish condition o. YAWL nets, actually, require that there is exactly one
start condition and one finish condition. Moreover, YAWL actions can define
different ways, how an action with multiple incoming arcs synchronizes incoming
tokens, called AND-, OR- and XOR-joins; we call this the join type of the action.
Likewise, a YAWL action with multiple outgoing arcs can define different split
types, called AND-, OR- and XOR-splits, which define how many outgoing arcs
of the action should produce a token when the transition fires. The join and split
types are two attributes of an action, which also is indicated in the graphical
representation of the action. For example, a1 is an OR-split action, and a6 is an
OR-join action indicated by the diamond symbol on the right or left side of the
respective action. YAWL nets have some additional features like reset arcs. But,
for simplicity, our example from Fig. 1 does not use reset arcs.

Once a YAWL simulator application is running on a YAWL net and selected
as the active one in the ePNK application view, the user can interact with the
simulator by double clicking on the enabled transitions. This will fire the respec-
tive transition and then show the successor marking. Moreover, the user can
go back and forth to the previous or next marking by pressing the backwards
and forwards button in the toolbar of the application view. From the application
view, it is also possible to save the current state of the simulator with the save
button and to start new applications via the drop down menu, which will show
all the ePNK applications that are applicable for the net in the currently active
editor. Moreover, the user can shut down applications or load an application
from a state that was saved earlier.

3 ePNK Applications: Overview

The ePNK comes already with different Petri net types and simulators for the
different net types. But, the main purpose of the ePNK are not the Petri net
types and the applications it comes with, but the possibility to create and plug
in new Petri net types and new applications.

Basically, an ePNK application is some additional software on top of the
ePNK, which is started on a Petri net, which can show some results or inter-
mediate states with some graphical overlays on top of the graphical editor of
the underlying net and interacts with the end user via these overlays and the
buttons in the ePNK application view as discussed for the YAWL simulator in
Fig. 1. The only limitation is that each application is associated with one Petri
net only—unless you are willing to do major programming.

Typically, your own extension of the ePNK would be done in two steps.
First, defining the concepts of your Petri net type by a Petri net type definition
(PNTD), which is discussed in more detail in Sect. 4; you can also customize

342 E. Kindler

the graphical appearance of the elements of your Petri net type in the graphical
editor. Note that the definition of a new Petri net type is purely syntactic: it
defines which objects may or may not be in this Petri net and how the elements
may be related to each other. The Petri net type definition does not define the
semantics or the firing rule of the new type. This would be defined along with
the applications, in particular for simulators.

If you use an existing Petri net type, either because it comes with the ePNK
or is provided by some third party, you can, of course, skip the first step.

The second step, would be defining a new ePNK application, which consists
of two sub-steps. The first one would be defining the runtime information of
your application, which makes up the state of the application. This is done
by defining annotations, which is discussed in Sect. 5.1. The second sub-step is
defining handlers, which define how the annotations of the runtime information
are presented to the end user, and which actions should be taken, when the end
user interacts with an annotation. This is discussed in Sect. 5.2. The semantics
of a Petri net type is actually defined in these actions.

4 The YAWL PNTD

In this section, we briefly discuss how to define a new Petri net type. The concepts
of a Petri net type are defined by providing a class diagram2. This is called a
Petri net type definition (PNTD). Figure 2 shows the PNTD for YAWL nets.
Note that the new concepts, which are shown in light colour, extend the concepts
from the PNML core model, which are shown in magenta on the left-hand side
and the class Attribute. YAWL’s Conditions are derived from Places of the PNML
core model. Conditions have an additional attribute type, saying whether it is
a normal, a start or a finish place. Actions are derived from Transitions of the
PNML core model ; they have two additional attributes, defining the join- and
the split-type of the transition: these attributes can have values AND, XOR
and OR. Likewise YAWL’s Arcs extend the Arcs from the PNML core model :
YAWL arcs have one additional attribute defining the type of the arc, which can
be NORMAL or RESET.

In addition to the concepts defined in the model, there are some constraints.
Generally, constraints are used to express subtle restrictions on the combination
of objects or the legal values of attributes that would be difficult or inconvenient
to express in class diagrams. In UML, these are often expressed in OCL. For our
example, there is a constraint saying that a YAWL net must have exactly one
start and exactly one finish place; an other constraint is that a start place should
not have incoming arcs; and a finish place should not have outgoing arcs—and
some more. In the EMF technology underlying the ePNK [6], these additional
constraints can be formulated either in OCL or programmed in Java. But, we do
not discuss the technical details here. If you are interested, you can look them
up in the plugin project for YAWL nets (see Sect. 8).
2 Technically, it is an Ecore model, which is kind of a light-weight version of UML
class diagrams used by EMF [6].

ePNK Applications and Annotations: A Simulator for YAWL Nets 343

Fig. 2. PNTD for YAWL

In contrast to earlier versions of the ePNK, which required some minor pro-
gramming, version 1.2 of the ePNK does not need any programming for plugging
in a new PNTD; the model from Fig. 2 and the code generated from it by EMF [6]
can be plugged directly into the ePNK.

In addition to the PNTD, we would also like to customize the graphical
appearance of start and end places, reset arcs and the split- and join-types of
transitions so that they look like YAWL nets. For each object type, we, basically,
need to program a class with a method that draws the respective object depen-
dent on its context and its different attributes; and then, plug these classes into
the ePNK. Then, the graphical editor of the ePNK is able to show YAWL nets
as shown in Fig. 1. You will find the details in the implementation of the YAWL
plugin projects (see Sect. 8).

5 The YAWL Simulator

Next, we discuss how to realize a simulator for YAWL nets as an example of how
to realize an ePNK application.

5.1 The Annotations

The first step is to define the runtime information of the application. Of course,
it depends on the specific application what constitutes this runtime information.
For our YAWL simulator, this runtime information is the current marking of the
net along with the sequence of all markings up to the current one. Technically,

344 E. Kindler

the runtime information of an ePNK application is defined by annotations, which
are associated with the net itself and with the net’s objects.

Figure 3 shows the class diagram defining the annotations for the YAWL
simulator. This diagram consists of three parts: The two classes PetriNet and
Object on the left come from the PNML core model [1] and represent the Petri
net and its different kinds of objects. These are the objects which are supposed
to be annotated. The classes at the top in dark orange, represent the general
annotations that are built into the ePNK. These are extended by the annotations
of a specific application, which, in our case, are the three classes at the bottom.

Fig. 3. YAWL annotations (Color figure online)

Let us have a closer look at these concepts: The two concepts PetriNet and
Object represent Petri nets along with their objects: places, transitions, and arcs;
but also pages, reference transitions and reference places. As said already, these
are the objects annotations refer to. The orange classes at the top are ePNK’s
built-in concepts of annotations. An ObjectAnnotation annotates exactly one
object, which is represented by the reference object. Note that a Petri net and
its objects do not know anything about their annotations at all, since applica-
tions should be detached from the net they are running on. A NetAnnotation
refers to one Petri net and consist of many object annotations. These constitute
a specific situation in the application at runtime; in the YAWL simulator, this
would be a marking. The class NetAnnotations comprises all the annotations
of a running application, a sequence of net annotations; one NetAnnotation is
pointed out as the application’s current one, which is the one shown with labels
and overlays on top of the graphical editor of the net, when the application is
active. In our YAWL simulator, this would be the current marking. An ePNK
application is actually associated with exactly one NetAnnotations object, which
in turn contains all the application’s relevant runtime information in its associ-
ated sequence of NetAnnotation objects. The interpretation of this sequence is

ePNK Applications and Annotations: A Simulator for YAWL Nets 345

up to the concrete application, but the default interpretation is a sequence of net
annotations. In our YAWL simulator, it represents a sequence of markings, with
one distinguished as the current one. The class NetAnnotations has some addi-
tional attributes, which are relevant when an application—actually its state—is
saved. In particular, the appId is used for identifying the application from which
the annotations have been saved; this is used for starting the same application
again when the end user loads the application from its saved state.

The three classes at the bottom of Fig. 3 define the annotations for our YAWL
simulator: EnabledTransition, SelectArc and Marking, which we have seen repre-
sentations of in Fig. 1 already. Note that we do not define specific annotations
for high-lighting the path of possible tokens arriving at an OR-join here, since
we can reuse ObjectAnnotation for this purpose, which is defined by the ePNK
already. The ePNK annotation model has an abstract class TextualAnnotation.
An ePNK application, by default, presents annotations inheriting from Textu-
alAnnotation as textual labels at the top-right of the object in the graphical
editor, showing the value of its text or value attribute. In our YAWL simulator,
Marking is an example of such a textual annotation. All other annotations are,
by default, shown as red overlays of the respective object. But, we will see later
that an application can change this. The annotation SelectArc is used for indi-
cating which arcs of an enabled transition can be selected by the user, and which
of the arcs are currently selected, represented by the attribute selected. This is
relevant for the arcs of XOR-join and -split transitions and for OR-split transi-
tions in order for the end user to be able to select from which places tokens are
to be consumed and on which places tokens should be produced when the tran-
sition fires. To this end, the user will be able to select a combination of arcs for
the respective transition (the selected ones shown in blue, the not selected ones
shown in grey). In order to program the logic of the arc selection, the SelectArc
annotation is associated with the respective EnabledTransition annotation.

Altogether, the classes from Fig. 3 allow a running simulator to store its state
with a NetAnnotations object as its root. We call this the runtime information of
the simulator. Note, that this can be much more than what is currently shown
to the end user; only the current NetAnnotation is shown to the end user.

Associating exactly one NetAnnotations object with each application makes
it easy for the ePNK to save the runtime information of an application to a file.
And the ePNK can load this file again, and start the corresponding application,
since the application’s id is stored as an attribute of the top-level NetAnnotations
object. This way, a developer of an ePNK application does not need to program
anything for realizing the load and save feature of the application. By overriding
the isSavable() method, the application can decide whether it should be possible
to save its runtime information or not.

This mechanism makes it possible to exchange the runtime information of
applications among different tools, as long as they agree on the annotation mod-
els, the underlying PNML core model, and on the way the instances of the anno-
tation model are serialized. The ePNK currently uses XMI [7] for this purpose.
But, it would be possible to define a dedicated XML-format that would closely

346 E. Kindler

resemble the mapping of the PNML core model to XML. This way, we have a
format for interchanging analysis results of Petri nets among different tools. Of
course, this helps exchanging the information on a technical or syntactic level
only. The conceptual work of defining the meaning of the different annotations
and devising standard annotations for the most relevant ones would be up for
discussion in the Petri net community, which then could lead to an extension of
the ISO/IEC 15909-2 standard [2].

5.2 The Application

In addition to defining its runtime information, an application must implement
three different things: the initialization, some presentation handlers, and some
action handlers. The initialization computes the initial net annotations that
represent the initial state (the initial marking in our case); the presentation
handlers define how the different object annotations should be presented to
the end user as labels or overlays in the graphical editor, if the ePNK’s default
representations are not sufficient; the action handlers define what should happen
when the end user interacts with an annotation (or actually its presentation) in
the graphical editor.

Separating the definition of the runtime information, the presentation han-
dlers and the action handlers in applications follows the architectural pattern of
model-view-controller (MVC).

Here, we cannot discuss all the details of implementing the action handlers
and the presentation handlers, for which you can have a look into the YAWL
plugins (see Sect. 8). But, we give a brief overview here. The YAWL simulator has
two action handlers: one for firing the transition when the end user double clicks
on an enabled transition annotation, and one for selecting or unselecting an arc
when the user clicks on a select arc annotation. The enabled transition handler,
basically, adds a new net annotation to the state of the simulator with the
annotations representing the new marking, and it makes this new net annotation
the current one. This is where the actual semantics of YAWL is implemented. The
select arc handler, basically, toggles the selected attribute taking the semantics
of the respective split or join into account.

A presentation handler, basically, returns an overlay figure for the graphical
figure that represents the annotated object in the graphical editor. In our case,
it returns a blue overlay for an enabled transition and, dependent on the selected
attribute of the SelectArc annotation, a blue or grey overlay for the annotated
arc. For all other annotations, ePNK’s default presentation handler kicks in,
returning a red overlay.

6 Discussion

In the previous sections, we have discussed the main steps of realizing YAWL
nets and a simulator for them. In both parts, models played a major role: the
concepts of YAWL nets are represented in the model shown in Fig. 2; likewise,

ePNK Applications and Annotations: A Simulator for YAWL Nets 347

the model of the runtime information is shown in Fig. 3. Based on the model of
the runtime information, an ePNK application is realized following the MVC-
pattern: the runtime information is represented in the model as annotations, the
presentation handlers define how the annotations should be shown on top of the
net in a graphical editor, and the action handlers define the controllers.

Defining the runtime information of an application by a model has an addi-
tional advantage: It allows the ePNK to generically save and load the state of the
application without any additional programming by the developer. This could
be the basis for an interchange format of analysis results, as discussed in the end
of Sect. 5.1.

ePNK and YAWL
annotations
meta models

+

M3 Ecore (~ EMOF)

M2 ePNK and YAWL
meta models

M1 YAWL net (model)

M0 YAWL case (simulation instance)

Fig. 4. MOF levels: YAWL nets and simulator (Color figure online)

Figure 4 gives an overview of the different models and meta models involved
in defining Petri nets and the annotations used for applications, as well as the dif-
ferent instances of these models. It shows the models, meta models and instances
on the levels of the so-called MOF hierarchy [8]. On level M2, there are the PNML
core model, which is also the meta model of the ePNK, and the meta model for
the PNTD of YAWL—which together define what YAWL nets are. On level M1,
there are the YAWL nets which are instances of the meta models on M2, which
is indicated by the red arrow. On level M2, there are also the meta models of the
runtime information (annotations) of the applications. An instance of that meta
model would be a running simulation, a case of a YAWL net, with its current
marking; this is shown on level M0. Note that, conceptually, a case is an instance
of a YAWL net on level M1, indicated by the dashed red arrow; but technically,
a YAWL case is an instance of the annotation meta models on level M2. There-
fore, the technical instance jumps one level. Note, in particular, the difference

348 E. Kindler

between the solid red arrows that represent a technical is instance relation and
the dashed red arrow that represents a conceptual is instance relation. On level
M3, is the meta model defining the concepts of Ecore diagrams, which are used
to formulate the PNTD of YAWL and the annotations for the YAWL simulator.

7 Related Work and Limitations

The ePNK was developed for fully exploiting the concepts of PNML [1] and, in
particular, the concept of Petri net type definitions. There are many tools that
support PNML in some form or the other (a few of them are listed on the PNML
Home page [9]). But, most tools support only a fixed set of Petri net types, and it
is not easily possible to define a new one. The PNML Framework [10] is a notable
exception, in that it is made for defining new Petri net types by using PNTDs.
The limitation of the PNML Framework, however, is that the complete code
of the PNML Framework needs to be recompiled for a new PNTD. The ePNK
allows plugging in new PNTDs without recompiling the ePNK itself. Moreover,
the PNML Framework does not have a graphical editor for Petri nets.

There are several Petri net and Petri net related tools, which allow to plug in
new functionality, which we could call applications in our context. Some examples
are CPN Tools [11], ProM [12], and Renew [13]. ProM is explicitly made for
plugging in new process mining techniques and also allows implementing new
notations, but not in the sense of PNTDs. CPN Tools and Renew mostly use a
fixed Petri net type (coloured nets and reference nets, respectively). But they
allow to plug in new applications. And it is possible to give feedback in the
respective graphical editor.

So, the ePNK with its plugin mechanism for easily defining new Petri net
types as well as applications fills a very special niche: it is easy to define an
application on a new or slightly extended version of Petri nets. Concerning the
definition of new notations or new Petri net types, the limitation of the ePNK is
that the new notation needs to be a “kind of a Petri net” since it needs to extend
the PNML core model by design: so the new notation should have two cardinal
types of nodes (place-like and transition-like nodes); of course, the ePNK could
be abused, since it is possible to squeeze in many different kinds of nodes and
arcs by additional attributes for places and transitions and arcs. But, we would
consider that to be artificial. The example of YAWL nets, however, shows that
notations that have nodes of many different kinds and with attributes can easily
represented as a PNTD, if they fall into two major categories.

What concerns applications, the limitations are that the main information of
an application is supposed to be shown on top of the graphical nets. Of course, an
application can implement additional views—an example would be the ePNKs
simulator for high-level nets, which has a view for the complete history of the
simulation. But, that requires much more programming and defies to some extent
the original idea of the ePNK.

We believe that within these limits, the ePNK will be of use for people
who would want to quickly experiment with an idea for a new Petri net type

ePNK Applications and Annotations: A Simulator for YAWL Nets 349

or a simple application. They would get a graphical editor and the graphical
presentation of results of their application and the interaction with the end user,
basically, for free. For us, the ePNK came in handy when we needed a notation
for defining the life-cycle of objects in the context of the Event Coordination
Notation (ECNO) [14]: We could very quickly define ECNO nets by a Petri
net type definition for the ePNK. From these models plus ECNO’s coordination
model, running software could be generated fully automatically.

8 Technical Details

The ePNK is realized as an extension of Eclipse. In order to install it on your
computer, you need to install Java and Eclipse3. Then, you can install the ePNK
from inside Eclipse (Help→Install New Software . . .). Version 1.2 of the ePNK
can be installed by creating a new update site http://www2.compute.dtu.dk/
∼ekki/projects/ePNK/1.2/update/ and then selecting all ePNK features. The
update site includes a “YAWL net type, graphical extension and simulator”
feature, which includes all YAWL extensions discussed in this paper as well as
some YAWL example nets.

These projects come with the complete source code, so that you can look up
the technical details and implementation issues, which we could not discuss in
this paper. To this end, open the “Plug-ins” view of Eclipse (Window→Show
View→Other. . .) and, in this view, select all YAWL projects, which have the
prefix dk.dtu.compute.mbse.tutorial.yawl; right-click on them and select Import
As→Source Project. After that, you will have five new projects in your Eclipse
workspace.

The project dk.dtu.compute.mbse.tutorial.yawl.examples contains three PNML
files with YAWL nets—among others, the file simple yawl.pnml, which is the
example shown in Fig. 1. You can open it by double-clicking on it. Note that the
file opens in the ePNK’s tree editor; you can fold out the document’s objects
until the pages appear, and then open the graphical editor by double-clicking on
the page. Then, you should open the “ePNK: Applications” view as discussed
above for the “Plug-ins” view. From there, you can start a new YAWL simulator
via the drop down menu; from there, you can also load the example simula-
tion (simple yawl.apnml) discussed in this paper by “Load Application” and then
navigate back and forth in this simulation.

For looking up technical details of the implementation, you can look into
the other projects: dk.dtu.compute.mbse.tutorial.yawl contains the definition of
YAWL nets. dk.dtu.compute.mbse.tutorial.yawl.graphics implements the custom
graphics for YAWL nets, and dk.dtu.compute.mbse.tutorial.yawl.simulator imple-
ments the YAWL simulator. The last project, dk.dtu.compute.mbse.tutorial.yawl.
edit contains automatically generated code only.

3 If you intend to use the ePNK for developing own Petri net types or applications, it
is recommended to install the “Eclipse Modeling Tools” package of Eclipse.

http://www2.compute.dtu.dk/~ekki/projects/ePNK/1.2/update/
http://www2.compute.dtu.dk/~ekki/projects/ePNK/1.2/update/

350 E. Kindler

9 Conclusion

By the example of YAWL nets and the YAWL simulator, we have discussed the
main idea of ePNK applications and how they are realized based on the ePNK’s
annotation model. Like the definition of YAWL nets themselves, the runtime
information of the simulator is defined by a model as an extension of ePNK’s
annotations model. Using models not only for defining new types, but also for
representing the runtime information, makes it easier to load and save the state
of applications in a uniform and generic way. This could actually be used as a
basis for a generic but yet extensible standard interchange format for analysis
results of Petri nets as an extension of PNML [1,2].

References

1. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Treves, N.: A primer on the Petri
net markup language and ISO/IEC 15909–2. In: Jensen, K. (ed.) 10th Workshop
on Coloured Petri Nets, CPN 2009, pp. 101–120 (2009)

2. ISO/IEC: systems and software engineering - high-level Petri nets - part 2: transfer
format, International Standard ISO/IEC 15909–2:2011 (2011)

3. Kindler, E.: The ePNK: an extensible Petri net tool for PNML. In: Kristensen,
L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 318–327.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21834-7 18

4. Kindler, E.: The ePNK: a generic PNML tool - users’ and developers’ guide for
version 1.0.0. Technical report IMM-Technical report-2012-14, DTU Informatics,
Kgs. Lyngby, Denmark (2012)

5. van der Aalst, W., ter Hofstede, A.: YAWL: yet another workflow language. Inf.
Syst. 30(4), 245–275 (2005)

6. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Boston (2006)

7. OMG: XML metadata interchange (XMI) specification, version 2.0. Technical
report formal/03-05-02, The Object Management Group, Inc. (2003)

8. OMG: Meta Object Facility (MOF) specification, version 1.4.1. Technical report
formal/05-05-05, The Object Management Group, Inc. (2005)

9. PNML Team: PNML.org: the Petri net markup language home page. http://www.
pnml.org/

10. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: an extendable
reference implementation of the Petri net markup language. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13675-7 20

11. CPN Tools: home page. http://cpntools.org/
12. PRoM Tools: home page. http://www.promtools.org/doku.php
13. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,

D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
484–493. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27793-
4 29

14. Kindler, E.: Coordinating interactions: the event coordination notation. Technical
report DTU Compute Technical report 2014–05, DTU Compute, Kongens Lyngby,
Denmark (2014)

https://doi.org/10.1007/978-3-642-21834-7_18
http://www.pnml.org/
http://www.pnml.org/
https://doi.org/10.1007/978-3-642-13675-7_20
http://cpntools.org/
http://www.promtools.org/doku.php
https://doi.org/10.1007/978-3-540-27793-4_29
https://doi.org/10.1007/978-3-540-27793-4_29

Petri Net Model Checking with LoLA 2

Karsten Wolf(B)

Institut für Informatik, Universität Rostock, Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. LoLA 2 offers a suite of algorithms for verifying place/
transition Petri nets. It combines structural with state space methods
and general purpose with Petri net-specific techniques. The methods are
easily accessible to people with little knowledge of Petri nets since there
is a uniform query language based on temporal logic, and the tool takes
care of sound application of its methods. Unlike its predecessor LoLA 1,
LoLA 2 is based on a strict modularisation and integration of various
standard tools. A careful software engineering approach has been used
for coding. Through its code quality and its frequent comparison to other
tools in the yearly model checking contests, LoLA 2 has become one of
the most reliable verification tools for distributed systems.

1 Introduction

Work on LoLA started in 1997. Originally, the intention was to have just
enough code for experimental validation of new state space reduction methods
[20,32–34]. This code collection was presented as LoLA 1.0 in [35].

LoLA has been applied in various case studies stemming from different
domains. It proved to be useful for finding hazards in asynchronous circuits
[37], for validating and comparing Petri net semantics of web service modeling
languages [25], for analysing interacting web services [23,24], for ontology-based
service composition [28], in the automotive area [27], and for self-adaptive sys-
tems [10].

Several researchers used LoLA as a reference representing the state of the
art in Petri net verification. They compared the performance of LoLA with their
own, domain specific tool to justify their algorithms. Examples for this approach
include the verification of parameterised Boolean programs [16], verification of
multiprocessor code [2], or new ideas for CTL model checking [6].

Several tools integrated LoLA or offer an export to the LoLA input format.
This way, the technology implemented in LoLA is available in their particular
frameworks. An incomplete list includes tools for design, analysis and simulation
such as Snoopy [13] from Cottbus and Renew [22] from Hamburg, packages that
try to integrate analysis and synthesis of nets such as APT [1] from Oldenburg
and Travis [26] from Hagen, tools in the area of business process management
such as ProM [42] or Oryx [3], or for the exploration of biochemical reaction
chains such as the Pathalyzer tool [7].

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 351–362, 2018.
https://doi.org/10.1007/978-3-319-91268-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_18&domain=pdf

352 K. Wolf

As far as these activities did not directly include members of our group, they
typically did not require any consulting from our side. This underpins the ease
of use and integration of LoLA. However, as the code grew further, several initial
design decisions turned out to be less than optimal. In particular, tool control
via a configuration file (with the necessity to re-compile LoLA for every use) was
good enough for the initial purpose of LoLA but not very comfortable for being
integrated into other tools. Additionally, the poor code structure inhibited the
further development via student projects.

Consequently, we decided to completely re-implement LoLA. LoLA 2.x was
designed from the very beginning as a tool targeting two use cases. First, we
understand LoLA as a community service making state-of-the-art verification
technology publicly available thus taken the burden off other scientists to imple-
ment Petri net verification methods themselves. Thus, LoLA is designed such
that integration into other tools is as simple as possible. Second, LoLA remains
our experimental platform for new verification algorithms. This way, we hope
that we can keep LoLA competitive in the future.

Code quality was a core issue for LoLA 2. Consequently, we completely re-
implemented the tool and did not re-use any piece of code of LoLA 1. First, LoLA
2 got a clear modular structure, benefitting from the experience with LoLA
1. Second, we used a systematic software engineering approach that includes
continuous integration management, frequent code reviews and broad discussions
on major design decisions. Test case coverage is close to 100% in the core parts
of the tool (some code, e.g. reaction to exceptions in the interaction with the
operating system, cannot be covered by test cases). In addition, participation in
the model checking contest [8] (LoLA is the only tool that participated every
year so far) is an excellent platform for adding trust into the produced result. In
2017, results of LoLA were overwhelmingly consistent with the results of other
tools, in some categories even 100%. Remaining issues typically concern fresh
algorithms and the (in some cases quite involved) translation of PNML and
XML input into the input format of LoLA.

In the sequel we shall give an overview on the offered functionality and the
concepts for integration. Then we survey the architecture of LoLA 2, briefly
surveying the core modules. Finally, we report on use cases and success stories.

2 Installation and Usage

LoLA 2 can be downloaded from www.service-technology.org and is installed
using the automake procedures. Petri net input can be generated using an ASCII
editor, or by modeling tools that offer an export to LoLA. Then LoLA is called on
the command line of any UNIX (LINUX or MACOS) terminal where command
line options control the property to be verified as well as the technology to be
applied. Results appear on the screen or in a file. The package includes a user
manual that describes in detail the installation procedure, the file formats, the
output, and the options of LoLA 2.

www.service-technology.org

Petri Net Model Checking with LoLA 2 353

3 Supported Properties

Generally, LoLA 2 can operate in full, none, or model checking mode. In full
mode, it just computes a (complete or reduced) state space, without investiga-
tion of a property. This might be useful for analysing the impact of a verification
technique. In none mode, it just pre-processes the net, without any state space
generation. This way, the user might gather structural information on the net
that is calculated in LoLA 2 prior to state space exploration. The most impor-
tant mode for using LoLA 2, however, is the model checking mode. The user
formulates a query (on the command line or in a file). The query language per-
mits the specification of a bound expression or a formula in the temporal logic
CTL* [5].

A bound expression is a formal sum using places as variables. LoLA 2 com-
putes the maximum value that this expression can get in any reachable marking.
A CTL* formula is first pre-processed based on an integrated term rewriting sys-
tem. Processing aims at

– Removing syntactic sugar (e.g. replacing implication by disjunction);
– Detecting logical tautologies and contradictions in sub-formulas;
– Separating the formula into as many as possible subproblems that are con-

nected via Boolean operations only;
– Pushing the subproblems into any of the fragments LTL or CTL of CTL*.

Looking for tautologies may appear to be odd, but actually we believe that
both place/transition nets and their properties are typically the result of a sys-
tematic and partly automatic translation process from other kinds of specifica-
tion. The translation procedures are not necessarily optimised for getting rid of
tautologies.

For the resulting Boolean combination, each subproblem is then categorised
into one of the following classes:

– Initial satisfaction (can be decided just by inspecting the initial marking);
– Reachability of deadlocks or deadlock freedom;
– Reachability or invariance of a state predicate;
– TSCC based property (AG EF φ, EF AG φ, AG EF AG φ, EF AG EF φ)
– LTL property;
– CTL property;
– CTL* property.

If a property falls into the CTL* category, LoLA cannot verify it and terminates
with result unknown. For each category, LoLA offers specific verification tech-
niques and specific variants of general techniques. For all classes, state space
exploration is available with a category-specific version of the stubborn set
method (deadlock: [40], reachability: [32], LTL: [41], CTL: [12]) and a prop-
erty preserving version of the symmetry method [33,34] being available. For the
two reachability categories, we further offer the sweep-line method [19] (with
automatic calculation of the progress measure [21]), a random search [31], and

354 K. Wolf

specific structural techniques based on Commoner’s theorem [29] and the state
equation [44]. For TSCC based properties, a specific search algorithm to find the
terminal strongly connected components (TSCC) of the net is used. This cate-
gory contains Petri net standard properties such as liveness and reversibility.

The atomic propositions in LoLA 2 comprise place based properties such
as p1 + 2 · p2 ≥ 13, transition based properties such as FIREABLE(t3), and
the global properties INITIAL and DEADLOCK. For being able to capture
boundedness, we introduced a constant oo representing ∞. So, unboundedness
of place p7 can be specified as EF p7 ≥ oo. For such properties, LoLA can
construct the coverability graph instead of the reachability graph.

The set of properties that can be specified and analysed in LoLA 2 is signif-
icantly larger than in LoLA 1. LoLA 1 did not support formal sums of places,
nor DEADLOCK, nor INITIAL, nor the boundedness properties. Categorisation
was left to the user thus requiring more knowledge on Petri nets.

If more than one verification technique is available, LoLA 2 runs a portfolio
approach. That is, the user can choose to run several methods sequentially or
in parallel. The first algorithm that returns a value different from unknown
determines result and run-time.

4 Integrating LoLA 2

As its predecessor, LoLA 2 is purely command-line oriented. It can process inputs
from the UNIX standard input stream and produce results on the standard
output. Alternatively, appropriate files can be used. Petri nets are specified in a
language that is machine readable and permits, (to our own taste better than
PNML [9]) the manual generation of LoLA input for small models. Translation
from PNML to the LoLA input is available as a helper tool that is shipped
with the LoLA 2 distribution. Results are presented in human readable form
on the terminal (together with data collected during computation and status
information). Additionally or alternatively, output can be organised according
to the Javascript Object Notation (JSON) format which is very convenient for
further computer aided post-processing. For supporting the execution of LoLA
2 on remote servers, the output can be broadcasted via the UDP protocol. A
listener tool that is part of the distribution can then catch the broadcasted
messages and display them. It can also send messages to LoLA 2 forcing it to
terminate. With all these features, LoLA 2 supports being run in complex scripts,
or being remotely called from other tools.

5 Architecture of LoLA 2

LoLA 2 is strictly modularised thus making it easy to locate the right place for
adding code. In the sequel, we shall briefly survey the most important modules.

Parsing. Using the bison and flex standard tools, input files are transformed
into a syntax tree. We use the term processor kimwitu++ for post-processing

Petri Net Model Checking with LoLA 2 355

the syntax tree. Kimwitu is able apply rewriting rules and to systematically
traverse the tree, for instance for final generation of the internal data structures.
We experienced that managing the rewriting and traversing rules of Kimwitu is
much more convenient, less error-prone, and easier extensible than the manual
implementations we used in LoLA 1.

Net. Places, transitions, and arcs used to be objects in LoLA 1. In LoLA 2,
places and transitions are just indices. Information on a place or transition is
found under that index in big arrays. This way, retrieving information on the
actual Petri net boils down to the traversal of an array rather than traversal of a
linked list. This leads to a more “cache friendly” access to the net. Additionally,
on a 64 bit architecture, we may still work with 32 bit numbers for representing
the net while pointers and object references would consume 64 bits each.

Preprocessing. The data computed here help us to speed up subsequent state
space exploration. We explicitly store, for each transition, arrays containing the
pre-set and post-set, respectively. This way, we can implement enabledness check
as well as transition occurrence very efficiently. We further store, for every tran-
sition t, the set of conflicting transitions (•t)• which is frequently needed in
stubborn set calculations. Also for stubborn set calculations, we compute the set
of conflict clusters using Tarjan’s union/find algorithm [39]. For a net [P, T, F]
with set of places P , set of transitions T , and set of arcs F ⊆ (P ×T)∪ (T ×P),
a conflict cluster is a class of the partition generated by the symmetric, reflexive,
and transitive closure of F ∩ (P × T). Last but not least, we gather information
on place and transition invariants to be used for saving memory.

Formula. The formula is internally stored as a tree. The module contains pro-
cedures for evaluating and updating state predicates (the temporal parts of the
formula are evaluated during the actual state space exploration). Evaluation
determines the value in the initial state. Updating computes the impact of a
fired transition t occurrence to the formula value. Here, we exploit locality (only
subformulas related to t, •t, and t• are re-evaluated) and linearity (for instance,
a predicate “p > 1” is only re-considered if it is false and p ∈ t•, or it is true and
p ∈ •t). Necessary dependencies between formula and net structure are calcu-
lated during pre-processing. This way, we again save a lot of run-time (given that
we need to update a formula millions of times during state space exploration).
The module further contains procedures for transforming a state predicate into
disjunctive normal form. This is a prerequisite for applying the state equation
to reachability problems. Since the formula may explode during this construc-
tion (something that frequently occurred in the model checking contests), we
have taken this transformation out of the Kimwitu term processor. Additionally,
we have implemented an abstract interpretation approach to the sub-formulas.
Using that approach, we are able to detect duplicate formulas and can thus
alleviate the formula explosion during normalisation.

Planning. This component gathers the information from the categorisation of
the property and the command line options. It determines the verification work-
flow and configures several modules (exploration, firelist, encoding, store) such

356 K. Wolf

that the property under investigation is preserved. For a reachability property,
the workflow may consist of a sequential or parallel execution of state space
exploration, random walk exploration, and structural verification (siphon/trap
property or state equation). For parallel execution of several methods, we use
threads. The siphon/trap property is coded as a Boolean formula and shipped to
the Minisat SAT checker [4]. The state equation is explored through a call to the
tool Sara that extends the evaluation of the state equation with an abstraction
refinement approach [44]. The planning component also schedules the verifica-
tion of more than one property, This may happen if the user specifies more than
one property in the command line, or if the property is a Boolean combination of
sub-problems which we evaluate separately. As every sub-problem may require
state space exploration, we do not support parallel execution in this case as we
want to avoid competition for available memory. For supporting more than one
state space exploration, we had to solve a severe problem. Since a state space
exploration may generate millions of states, we would need to release millions
of data objects which may consume a measurable amount of run-time. To avoid
this, we clone the process that runs LoLA using the UNIX fork command which
generates a copy of the process and its whole memory image. Thus, the cloned
child process already has all the parsed and pre-processed data and can proceed
as if it would execute the first state space exploration. In the end, it commu-
nicates its result to the parent process and terminates. Using this mechanism,
switching from one subproblem to another takes virtually no time.

Exploration. This is actually a collection of different state space exploration
methods. These include

– Simple depth first search for deadlock and reachability properties;
– Coverability graph generation [17] for boundedness properties;
– The sweep-line method [19], including the automated calculation of a progress

measure [21];
– A random walk algorithm for deadlock and reachability properties;
– An LTL model checker based on [11] that computes the product system of the

reachability graph and a Büchi automaton that is generated from the formula
using the ltl2ba tool [30];

– A CTL model checker based on [43];
– A depth first search algorithm for TSCC properties that uses a simplification

of Tarjan’s algorithm for finding the strongly connected components [38];
– A depth first search algorithm for computing bounds.

The actual algorithm is selected by the planning component (see above). Explo-
rations are parameterised concerning their firelist generation, the particular
property to be verified, and the way states are encoded and stored (see below).
All algorithms implement the on-the-fly principle. That is, they terminate as
soon as the result of the verification is determined. For positive queries (tar-
get state turns out to be reachable), the on-the-fly approach is crucial for the
excellent performance of explicit state space methods [45].

Petri Net Model Checking with LoLA 2 357

Fire List Generation. This task has been organised as a separate module as
it implements the essence of the stubborn set method. From a base class that
implements brute force exploration (all enabled transitions form the fire list), we
derive classes for stubborn set methods preserving deadlock, reachability, TSCC,
boundedness, bounds, LTL, and CTL. Encapsulation in an own module helps us
to keep the code for the actual search algorithms reasonably small.

Encoding. The exploration modules basically work on an integer vector repre-
senting the current marking of the search. Before actually storing such a vector,
we transform it into a bit vector, aiming at less memory consumption. Our
compression techniques include

– No compression at all: 32 bits are used per marking and place (useful for
unbounded nets);

– Bit compression: Based on place bounds given in the model, as many bits as
necessary for representing the numbers between 0 and the place bound are
used (useful for bounded nets with bounds that are known by construction);

– Huffman encoding [14] (new in LoLA 2): this is suitable for nets with no
knowledge of token bounds;

– Place invariant compression (combinable with the other methods): we exempt
places from being stored if their value can be computed from the remaining
places using a place invariant [36].

As a specific way of encoding, the calculation of canonical representatives of the
symmetry method [15,34] is placed here. It is implemented as an encoder that
can be parameterised with any other encoder. It canonises a marking and then
encodes it using the other encoder. This way, the symmetry method is completely
encapsulated for the remaining state space exploration.

Storing. The store maintains information about the already seen states. It is
crucial for termination but also for memory consumption and run-time. Accord-
ing to our own profiling, about 90% of the run time of a state exploration is
consumed for searching and inserting states. LoLA supports prefix trees and
Bloom filters (new in LoLA 2). A Bloom filter just records hash values of visited
markings, so we may miss states thus producing an under approximation of the
state space. This is taken care of in the result presentation. Instead of not reach-
able, we would return unknown while the result reachable is preserved by Bloom
filtering. We can reduce the probability of hash collision by adding more hash
tables with independent hash functions. The user may choose the number of
hash tables. We can further calculate the likelihood of remaining hash collisions.

Symmetry. While the application of symmetries is integrated into encoding, their
calculation remains a separate task. It is executed prior to state space explo-
ration but after starting alternative parallel verification technique (so they do
not need to wait for termination of the sometimes lengthy symmetry calcula-
tion). Symmetries are calculated based on graph automorphisms. This graph is
composed of the Petri net under investigation and the property (the formula
tree). The two graphs are linked at the atomic propositions of the property.

358 K. Wolf

This way, symmetries are computed such that the given property is preserved.
This general approach is new in LoLA 2. In LoLA 1, the symmetry method
could only be applied to global properties that were known not to break symme-
try at all. Although LoLA 2 just computes a polynomial size generating set of
the graph automorphism group [18], number of generators and run-time may be
prohibitive. We counter this problem by the opportunity to compute symmetries
in parallel (exploiting the multicore nature of today’s computers) and by user
definable bounds for run-time and number of generators. We then continue with
a subgroup of the symmetry group of the net.

Siphon/Trap Property. If every siphon contains a marked trap, a Petri net (under
mild restrictions concerning the arc multiplicities) cannot have deadlocks. If the
given property asks for reachability of deadlocks, evaluation of this siphon/trap
property permits early abortion of an otherwise time-consuming state space
exploration. We evaluate the siphon/trap property by coding it as a Boolean
formula [29] which we ship to the Minisat SAT solver [4]. This approach appears
to outperform by orders of magnitude other known approaches for evaluating the
siphon/trap property. In the model checking contest, this approach is respon-
sible for about 30% of the negative answers (no target state reachable) that
LoLA produces to deadlock queries. This takes quite some burden off state space
exploration since the on-the-fly principle does not work in the negative case, so
negative queries consume much more memory and time.

State Equation. We transform the reachability problem to a list of convex sub-
problems (only conjunctions of place-based atomic propositions) and ship this
list to the Sara tool [44]. Sara generates a linear program for a convex problem
that is based on the state equation and uses the lp solve tool. It checks whether
the resulting firing count vector can be arranged to an executable firing sequence.
If so, it has solved the original problem. If not, it modifies the linear program
based on missing tokens that have been detected in the fireability check. If no
modification yields a result, it has a negative answer to the original problem. As
the siphon/trap property, the state equation approach takes a lot of burden off
state space verification, this time for reachability queries other than deadlock
checks. Sara is even more supportive in the model checking contest than the
siphon/trap check.

For plain reachability problems, the offered methods perfectly complement
each other. While state space exploration performs excellent on positive queries
(target state reachable), the structural methods have their merit especially (but
in case of Sara not limited to) negative queries. Altogether, the portfolio app-
roach of LoLA 2 yields excellent performance. For more complex properties, it is
the rewriting and categorisation that propels the performance of LoLA 2. In the
model checking contest, about 15% of CTL properties can be characterised as
reachability problems and solved using the powerful portfolio described above.
Other CTL problems could be categorised as LTL problems, so the more efficient
LTL model checker would be available (recently, LoLA solved more than 90%
of the LTL queries but only about 70% of the CTL queries). We are not using
this opportunity in the model checking contest since there are subtle semantic

Petri Net Model Checking with LoLA 2 359

deviances in case of deadlocks between LTL and CTL, regarding the semantics
fixed for the contest.

With already a few years experience with LoLA 2, we experienced no major
problems concerning its modular structure. The most convincing observation
is the fact, that all major state space reduction methods have their natural
place: symmetries in the encoder, stubborn sets in firelist generation (only the
ignorance problem [41] must be taken care of in the exploration), Bloom filtering
in the store, the sweep-line method and coverability graph generation in the
exploration, and the structural methods as part of our portfolio. Several student
project showed that the code base of LoLA 2 is much better extensible than
LoLA 1. We believe that this fact contributes to the stability of the tool.

6 Conclusion

The title Petri net model checking for this article was chosen with two thoughts
in mind. First, LoLA 2 reads place/transition nets and is thus a model checker for
Petri nets. Second, much of the performance of LoLA comes from Petri net theory
and from exploiting the defining features or Petri nets, monotonicity, linearity,
and locality. The monotonicity of the firing rule is used for optimising many
basic routines, and enables coverability graphs and the siphon/trap property.
Linearity, that is the view of Petri nets being vector addition systems, helps
for state compression as well as the state equation approach. Locality is useful
for the stubborn set method which is the most powerful state space reduction
method in LoLA 2. Consequently, the performance of LoLA 2 can hardly be
transferred to other modelling formalisms.

LoLA is focussed on verification technology. Instead of offering our own
graphical user interface, we designed LoLA for easy integration into other frame-
works. These design goals were confirmed in several case studies and actual
integration examples. In the future, we shall continue to work on powerful veri-
fication technology. Additionally, we shall include the last remaining features of
LoLA 1 that have not yet made it into LoLA 2 (such as printing the state space,
or searching home states).

References

1. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceed-
ings ICE. EPTCS, vol. 189, pp. 53–67 (2015)

2. Das, D., Chakrabarti, P.P., Kumar, R.: Functional verification of task partitioning
for multiprocessor embedded systems. ACM Trans. Des. Autom. Electron. Syst.
12(4), 44 (2007)

3. Decker, G., Overdick, H., Weske, M.: Oryx – an open modeling platform for the
BPM community. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 382–385. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85758-7 29

https://doi.org/10.1007/978-3-540-85758-7_29
https://doi.org/10.1007/978-3-540-85758-7_29

360 K. Wolf

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

5. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)

6. Dalsgaard, A.E., et al.: Extended dependency graphs and efficient distributed fixed-
point computation. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017.
LNCS, vol. 10258, pp. 139–158. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57861-3 10

7. Dill, D.L., Knapp, M.A., Gage, P., Talcott, C., Laderoute, K., Lincoln, P.: The
pathalyzer: a tool for analysis of signal transduction pathways. In: Eskin, E., Ideker,
T., Raphael, B., Workman, C. (eds.) RRG/RSB-2005. LNCS, vol. 4023, pp. 11–22.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-48540-7 2

8. Kordon, F., et al.: Homepage of the Model Checking Contest, June 2017. http://
mcc.lip6.fr/

9. Billington, J., et al.: The Petri net markup language: concepts, technology, and
tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679,
pp. 483–505. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-
1 31

10. Cardozo, N., et al.: Modeling and analyzing self-adaptive systems with context
Petri nets. In: Proceedings of the TASE, pp. 191–198. IEEE (2013)

11. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with
Tarjan’s algorithm. Theoret. Comput. Sci. 345(1), 60–82 (2005)

12. Gerth, R., Kuiper, R., Peled, D.A., Penczek, W.: A partial order approach to
branching time logic model checking. In: Proceedings of the International Sym-
posium on Theory of Computing and Systems, ISTCS 1995, Tel Aviv, Israel, 4–6
January 1995, pp. 130–139. IEEE Computer Society (1995)

13. Heiner, M., Richter, R., Schwarick, M.: Snoopy - a tool to design and ani-
mate/simulate graph-based formalisms. In: Proceedings of the PNTAP (2008)

14. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. IRE 40, 1098–1101 (1952)

15. Junttila, T.A.: Computational complexity of the place/transition-net symmetry
reduction method. J. UCS 7(4), 307–326 (2001)

16. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 55

17. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

18. Knuth, D.E.: Efficient representation of perm groups. Combinatorica 11(1), 33–43
(1991)

19. Kristensen, L.M., Mailund, T.: A generalised sweep-line method for safety prop-
erties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
549–567. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45614-7 31

20. Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods
for state properties. Form. Methods Syst. Des. 29(3), 215–251 (2006)

21. Schmidt, K.: Automated generation of a progress measure for the sweep-line
method. STTT 8(3), 195–203 (2006)

22. Kummer, O., Wienberg, F.: Renew - the reference net workshop. In: Petri Net
Newsletter, pp. 12–16 (2000)

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-57861-3_10
https://doi.org/10.1007/978-3-319-57861-3_10
https://doi.org/10.1007/978-3-540-48540-7_2
http://mcc.lip6.fr/
http://mcc.lip6.fr/
https://doi.org/10.1007/3-540-44919-1_31
https://doi.org/10.1007/3-540-44919-1_31
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/3-540-45614-7_31

Petri Net Model Checking with LoLA 2 361

23. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: verifi-
cation and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007.
LNCS, vol. 4937, pp. 46–60. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-79230-7 4

24. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54
(2008)

25. Lohmann, N., Verbeek, E., Ouyang, C., Stahl, C.: Comparing and evaluating Petri
net semantics for BPEL. IJBPIM 4(1), 60–73 (2009)

26. Meis, B., Bergenthum, R., Desel, J.: travis - an online tool for the synthesis and
analysis of Petri nets with final states. In: van der Aalst, W., Best, E. (eds.) PETRI
NETS 2017. LNCS, vol. 10258, pp. 101–111. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57861-3 7

27. Mrasek, R., Mülleand, J., Böhm, K., Becker, M., Allmann, C.: Property specifica-
tion, process verification, and reporting - a case study with vehicle-commissioning
processes. Inf. Syst. 56(C), 326–346 (2016)

28. Niewiadomski, A., Wolf, K.: LoLA as abstract planning engine of PlanICS. In:
Proceedings of the PNSEi. CEUR, vol. 1160, pp. 349–350 (2014)

29. Oanea, O., Wimmel, H., Wolf, K.: New algorithms for deciding the Siphon-Trap
property. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp.
267–286. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-
7 16

30. Oddoux, D., Gastin, P.: LTL 2 BA: fast translation from LTL formulae to Büchi
automata. http://www.lsv.fr/∼gastin/ltl2ba/

31. Schmidt, K.: LoLA wird Pfadfinder. In: Proceedings of the AWPN, CEUR Work-
shop Proceedings, p. 26 (1999)

32. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48745-X 4

33. Schmidt, K.: How to calculate symmetries of Petri nets. Acta Inf. 36(7), 545–590
(2000)

34. Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf,
S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 315–330. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0 22

35. Schmidt, K.: LoLA: a low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44988-4 27

36. Schmidt, K.: Using Petri net invariants in state space construction. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 473–488. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36577-X 35

37. Stahl, C., Reisig, W., Krstic, M.: Hazard detection in a GALS wrapper: a case
study. In: Proceedings of the ACSD, pp. 234–243. IEEE (2005)

38. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

39. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

40. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

https://doi.org/10.1007/978-3-540-79230-7_4
https://doi.org/10.1007/978-3-540-79230-7_4
https://doi.org/10.1007/978-3-319-57861-3_7
https://doi.org/10.1007/978-3-319-57861-3_7
https://doi.org/10.1007/978-3-642-13675-7_16
https://doi.org/10.1007/978-3-642-13675-7_16
http://www.lsv.fr/~gastin/ltl2ba/
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/3-540-46419-0_22
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-36577-X_35
https://doi.org/10.1007/3-540-53863-1_36

362 K. Wolf

41. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

42. van der Aalst, W.M.P., et al.: ProM: the process mining toolkit. In: Proceedings
of the BPMDemos. CEUR, vol. 489 (2009)

43. Vergauwen, B., Lewi, J.: A linear local model checking algorithm for CTL. In:
Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 447–461. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57208-2 31

44. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. Log.
Methods Comput. Sci. 8(3) (2012)

45. Wolf, K.: Running LoLA 2.0 in a model checking competition. In: Koutny, M.,
Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Con-
currency XI. LNCS, vol. 9930, pp. 274–285. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53401-4 13

https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-57208-2_31
https://doi.org/10.1007/978-3-662-53401-4_13
https://doi.org/10.1007/978-3-662-53401-4_13

Integrating Simulink Models
into the Model Checker Cosmos

Benôıt Barbot1, Béatrice Bérard2, Yann Duplouy3,4(B), and Serge Haddad4

1 LACL, Université Paris -Est Créteil, Créteil, France
2 Sorbonne Université, LIP6, CNRS UMR 7606, Paris, France

3 IRT SystemX, Paris-Saclay, Palaiseau, France
4 LSV, ENS Paris-Saclay, CNRS, Inria, Université Paris-Saclay, Cachan, France

duplouy@lsv.fr

http://cosmos.lacl.fr/simulink.html

Abstract. We present an implementation for Simulink model execu-
tions in the statistical model-checker Cosmos. We take profit of this
implementation for hybrid modeling and simulations combining Petri
nets and Simulink models.

Keywords: Performance evaluation · Hybrid systems
Statistical model checking · Simulink

1 Introduction

The validation of safety properties is a crucial concern for the design of com-
puter guided systems, in particular for cyber-physical systems. For instance, in
transport systems, a classical approach consists in analyzing the interactions
of a randomized environment (roads, cross-sections, etc.) with a vehicle con-
troller, often derived from a Simulink R© model. However, while largely used in
practice by industrial system designers, Simulink does not benefit from a formal
semantics. Thus engineers usually have to infer the behaviours of their models
from experiments which weakens the validation process. For this reason, several
works proposed formal translations from (subsets of) Simulink blocks to other
models like hybrid automata [1,15], or languages like Lustre [16]. Other works
directly define exact semantics [10] or operational semantics [11] for Simulink.
We follow the latter approach and propose semantics for a significant fragment
of Simulink. We proceed in two steps: we first develop an exact version, and
then enrich it with effective procedures that were integrated into the statistical
model checker Cosmos. With the resulting tool, we obtain performance indices

This research work has been carried out in the framework of IRT SystemX, Paris-
Saclay, France, and therefore granted with public funds within the scope of the
French Program “Investissements d’Avenir”.
S. Haddad—The work of this author is supported by the project ERC EQualIS
(FP7-308087).

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 363–373, 2018.
https://doi.org/10.1007/978-3-319-91268-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_19&domain=pdf

364 B. Barbot et al.

for models combining a randomized environment described by a stochastic Petri
net and a controller described in Simulink, as illustrated for a double heater
system.

2 Cosmos and Simulink

2.1 Cosmos

In [2], HASL an expressive temporal logic was introduced in order to analyze
stochastic and hybrid discrete event systems. Its formulas are described by a
Linear Hybrid Automaton (LHA) and an expression involving state variables
and using path and stochastic operators. This logic is supported by a tool
named Cosmos which performs statistical model checking of (ordinary or col-
ored) stochastic Petri nets with general distributions. The main algorithm of
this tool randomly simulates the net according to its stochastic semantics and
synchronizes it with the execution of the formula’s automaton. During the syn-
chronization, it evaluates the expression of the formula providing a numerical (or
boolean) value per trajectory. A statistical procedure decides when to stop the
simulation and produces a confidence interval for the HASL expression. Cosmos
includes a family of statistical methods depending on the nature of the formula
and the assumptions on the model ([12–14,17]).

1

1

x

y

(a)

UNIF(0,1)

e1

UNIF(0,1)

e2

(b)

ẋ = 1
ẏ = 0

s0

ẋ = 0
ẏ = 1

s1

s2

s3

e1 e2; x
2 + y2 ≤ 1; r := 4

e2; x2 + y2
> 1; r := 0

E(LAST(r))

(c)

Fig. 1. Computing an approximation of π with a HASL formula over a stochastic
Petri net

Figure 1 illustrates the computation of an estimation of π by the Monte-Carlo
method. It consists in uniformly sampling points (x, y) in the square [0, 1]× [0, 1]
and checking whether they belong to the quarter disc with measure π/4 testing

Integrating Simulink Models into the Model Checker Cosmos 365

x2 + y2 ≤ 1 (see Fig. 1a). A trajectory is obtained by synchronizing the LHA
(Fig. 1c) with the Petri net (Fig. 1b), producing random values for x (firing
delay of e1) and y (firing delay of e2) respectively. The last value of r is then 4
if x2 + y2 ≤ 1, leading to one final state and 0 otherwise, leading to the other
final state. Then the expression E(LAST (r)) corresponds to the expected value
of r at the end of a trajectory.

The tool Cosmos consists of about 22000 lines of C++ code and is freely
available at [4] under GPLv3. It relies on code generation to perform efficient
simulation. It is divided into three main parts:

1. The parsing and code generation part reads the input files and the command
line to build data structures for the net and the automaton. Then optimised
C++ code simulating both the synchronized behaviour of the net and the
automaton is generated.

2. The simulator library implements the core algorithm for synchronization and
the generation of events using a pseudo random number generator. The main
data structure used by the library is an Event Queue corresponding to the
next transition firing.

3. The server part launches several copies of the simulator built from the library
and the generated code and aggregates their results. According to statisti-
cal parameters, a procedure decides whether enough trajectories have been
simulated and stops all simulators when needed. Then, HASL expressions are
evaluated.

Cosmos has been successfully applied in the context of flexible manufacturing
systems [2] and biological networks [3,7]. In addition, it has also been customised
in order to address the challenges raised by different projects: simulation of rare
events [8], cosimulation of a pacemaker software with a model of the human
heart [9], sampling uniform trajectory for timed automata [5].

2.2 Simulink

Simulink R©1 is a graphical programming environment for modeling and simu-
lating dynamic systems. The main interface is a graphical block diagramming
tool, with customizable libraries. It is used, for example, in the development of
embedded systems for autonomous vehicles.

We introduce Simulink models, called in the sequel SK -models, through the
example of Fig. 2 (a formal syntax can be found in report [6]).

Informally an SK -model is a set of blocks connected by links transporting
signals, where a signal is a mapping from a time interval to a real value. A block
contains a set of operators generating output signals from input signals. Blocks
are classified according to three criteria:

(i) Whether they are continuously evaluated or sampled, in which case the
block is said discrete and a sampling delay must be provided;

1 https://fr.mathworks.com/products/simulink.html.

https://fr.mathworks.com/products/simulink.html

366 B. Barbot et al.

>0

B1

1

1
s

B2

init2 = 0
B3

r3 = 1
init3 = 0

1
s

B4

init4 = 0

ẏ y ż z

Fig. 2. An example of Simulink model

(ii) Whether there is a latency for evaluation of inputs, and whether this latency
is infinitesimal or not. A latency is infinitesimal if it is either null (the block
is said immediate) or such that the output value at time t only depends on
the inputs on [tinit, t] (like in integration). A non infinitesimal latency is said
positive. A non null latency is a positive or infinitesimal non null latency.

(iii) Whether the output value depends on threshold crossing by an input signal,
called critical input and denoted by ic. In this case, the threshold values
(vi)i∈I must be specified, as a countable increasing sequence without accu-
mulation point.

For instance, the SK -model shown in Fig. 2 features: a Switch block B1 (con-
tinuous, immediate, with null latency and a single threshold) with operator:
op(i1, ic, i2)(t) = if(ic(t) > 0, i1(t), i2(t)); an Integrator block B2 (continuous
with infinitesimal latency) with operator defined by op(i)(t) =

∫ t

tinit
i(τ)dτ ; and

a Transport Delay block B3 (continuous) which outputs its input signal with a
latency r = 1.

3 Extensions to Cosmos

3.1 Simulink Semantics

Exact Semantics. Simulink R© models represent hybrid systems, combining dis-
crete and continuous components. The trajectory of an SK -model M, if it
exists, is the vector w of all values of output signals over the simulation interval
[tinit, tend]. Signal evaluation requires to split this interval into a finite sequence
of contiguous sub-intervals, on which the trajectory is the solution of a system
of differential equations. Discrete samplings and threshold crossings are located
at the boundaries of these sub-intervals.

Due to blocks with positive latency, the specification of the differential equa-
tions over a sub-interval [ti, ti+1] depends on the trajectory over previous inter-
vals. Moreover, it also depends on the mode of the threshold blocks i.e. the
position of each critical input signal with respect to its threshold values.

For instance, in the SK -model of Fig. 2 over [0, 2], the initial values are t0 = 0,
y(0) = 0, and z(0) = 0. Choosing t1 = 1, the differential equations over [0, 1]
are ẏ = 1 and ż = 0 (since block B3 has a delay r3 = 1, it uses its default value

Integrating Simulink Models into the Model Checker Cosmos 367

init3 = 0). Those yield z(t) = 0 and y(t) = t over [0, 1[, which are consistent
with the mode of block B1 (z ≤ 0). Over the next interval]1, 2[the differential
equations are ż(t) = t − 1 (due to the value of y over [0, 1]) and ẏ(t) = z(t)
assuming the mode of block B1 is z > 0. The associated solution is z(t) =
(t − 1)2/2 and y(t) = (t − 1)3/6 + 1 which are consistent with the hypothetical
mode.

This example illustrates the issues of defining an appropriate mode for spec-
ifying the differential equation systems related to the current interval. This
requires to introduce a minimal length of time interval εT such that the solutions
of the differential equations remain consistent on such a small interval. Conse-
quently, a Simulink model does not necessarily admit a trajectory: either if such
a mode does not exists or if some differential equation (like ẏ = 2y) cannot be
solved on the simulation interval. With suitable hypotheses on the operators, we
prove that if a trajectory exists, it is unique. Unfortunately, as is often the case
for hybrid systems, the existence of a trajectory is an undecidable problem.

Approximate Semantics. Since the resolution of differential equations and the
determination of threshold crossings are not effective operations, an approximate
version of the semantics above is needed for efficient implementation in the tool
Cosmos.

The search for a trajectory relies on an iterative construction of a partition
into sub-intervals [tinit, tend] =

⋃N−1
i=0 [ti, ti+1]. We emphasize three main features:

(1) The signal values are only stored at times (ti)0≤i≤N : For each output signal
o of a block B, an array WB,o[i] of its values is kept for each time ti. This
implies interpolation operations to compute signal values at intermediate
times.

(2) When t0, . . . , ti are built, the determination of the next evaluation time ti+1

must take into account variable integration steps, as done in the Runge-
Kutta-Fehlberg (aka ODE45) method used here. Here, we omit the adapta-
tion details of these classical procedures, performed with the constant mode
of ti, which produce the new evaluating time ti+1 and the associated values.

(3) In addition to εT, we introduce the accuracy parameter εV to handle the
termination tests in the adaptative integration method (like Runge-Kutta-
Fehlberg).

Besides the implementation objective, the other main purpose of this approx-
imate semantics is to find suitable hypotheses ensuring that if a trajectory exist
w.r.t. exact semantics, then there exists a close approximate one: for any ε > 0
there exist εT and εV such that for each output o of block B and for all i,
|WB,o[i] − wB,o(ti)| < ε.

Implementation. Integrating this semantics in Cosmos is done through a code
generator reading Simulink models (in MATLAB .slx format) and producing
C++ code with a similar programming interface to the one used for nets. It has
one transition, and dynamic arrays (explained above) for each signal. Its single
event is scheduled at the next evaluation time. Cosmos currently supports a
subset of representative Simulink blocks, showcasing thresholds and integration.

368 B. Barbot et al.

3.2 Simulink/Petri Net Communication

In order to simultaneously manage a Petri net and a Simulink model, we need
to specify how they interact, implying transformation of discrete values (like the
number of tokens in places) into continuous ones (like signal values), and vice-
versa. We have chosen to perform these operations via special transitions called
interface transitions.

Interface Transitions. There are two kinds of interface transitions: SK -in tran-
sitions, directed from the net to the SK -model and SK -out transitions in the
other direction.

The input arcs of a SK -in transition (see Fig. 3a) are test arcs (explained
with the firing) connected to places of the net. Any output arc is connected
to the input of a Simulink block. An SK -in is enabled when the content of at
least one of its input place is modified. The firing of such a transition proceeds
as follows: a function is associated with each output arc, taking as parameters
the contents of the input places. When the firing takes place, the function is
evaluated. This function can be specified by a multiset of tokens as illustrated,
or by a C code associated with the arcs.

The input arcs of an SK -out transition (see Fig. 3b) are output signals of
an SK -model and the output arcs are overwriting arcs connected to places that
can only be connected to ordinary transitions of the net by read arcs. Similarly
to SK -in transitions, the output arcs are labelled by functions of the incoming
signals. Such a transition is activated at every sampling time of the SK -model.
Upon firing, it rewrites the contents of the output places according to the eval-
uation of the function.

(a) An SK -in transition (b) An SK -out transition

Fig. 3. Petri net/Simulink Interface transitions

Simulation Loop. We now describe in more details the simulation loop, which
enhances the standard Cosmos simulation loop. All enabled transitions are stored
into an event queue implemented as a binary heap, with their time of occurrence,
their priority and weight. The next Simulink step is added as a possible event. At
each simulation step, the earliest event is chosen. Among simultaneous events,
the (decreasing) priority order is the following: 1. SK -out firings, 2. ordinary
transition firings, 3. SK -in firings, 4. SK -event. In case of equal priorities, the
choice is randomized according to the weights. Once an event is selected:

– If it is an ordinary transition firing, the marking is updated, the associated C
code is executed; transitions that are newly enabled trigger new events while
events corresponding to disabled transitions are removed.

Integrating Simulink Models into the Model Checker Cosmos 369

– If it is an SK -in firing, the Simulink signals are updated and the time of the
Simulink event is set to the current time.

– if it is the SK -event, all output signals are updated and the time of the
Simulink event is updated as presented in Sect. 3.1. Finally, the SK -out tran-
sitions are added to the event queue with the current time.

– if it is a SK -out firing, the contents of output places are updated.

To simulate a discrete event system, at each step, one only has to compute
what the next event will be and increase the simulation time to the time of this
event. This is how ordinary Petri net transitions are fired in Cosmos. This leads
to aoDon efficient simulation of such system as the time to compute a simulation
depends on the number of events and not on the simulated time. Unfortunately,
this property is lost when simulating hybrid systems: the SK -event is triggered
at least at a fixed frequency (δmax). In the next section we experimentally study
the impact of integration on simulation time.

Implementation. Given a stochastic Petri net and a Simulink model, Cosmos
generates code simulating each model as well as a code synchronizing them. This
synchronization is done by dispatching the events according to their model, with
a ad hoc handling of sychronisation transitions (SK -in and SK -out) which may
update both signals and markings.

4 Benchmarks

Among the multiple systems that can be modeled within this framework, we
choose a well known toy (but still relevant) example: a device with two heaters
prone to faults and using bang-bang controllers to keep the temperature in a
room between 20 ◦C and 25 ◦C. The system is modeled by a stochastic Petri net
(Fig. 4) with randomized faults and repairs. The evolution of room temperature
and heater behaviours are hybrid and thus are modeled in Simulink (Fig. 5). The
fault transitions of the net have an exponential time distribution (with different
rates). The repairman, initially at the Idle state, randomly chooses which (faulty)
heater he will repair, then proceeds in fixed time and goes back to the Idle state.
By default, both heaters are working (places Op1 and Op2 have a token).

Fig. 4. Petri net handling faults and repairs of a double heater

370 B. Barbot et al.

The Simulink model handles the differential equations for both heaters, and
for the outside temperature which is modelled by a sine wave (Text). The differen-
tial equation is: Ṫ = 1On1c1(Th1 −T)+1On2c2(Th2 −T)+cext(Text−T) where c1,
c2, and cext are the respective thermal conductivity coefficients, Th1 and Th2 are
the respective temperatures at which each heater functions, and On1 and On2

are the respective states of each bang-bang controller which should maintain the
temperature between Tmin = 20 ◦C and Tmax = 25 ◦C. A bang-bang controller
is a very simple hysteresis controller where the heater is switched on (Oni = 1)
when the temperature decreases to Tmin and switched off (Oni = 0) when the
temperature increases to Tmax. The inputs F1 and F2 receive respectively the
content of places Op1 and Op2.

Fig. 5. A Simulink model computing differential equations for the double heater. It
contains four parts: the two heater temperatures, the external temperature and the
block completing the differential equation

5

10

15

20

25

Text

T
Op1
Op2

On1

On2

Fig. 6. A trace of simulation: T and Text represent the inside and outside temperatures,
Opi corresponds to heater i being operational and Oni corresponds to heater i being
switched on. Gray areas highlight failure of at least one heater when Text < Tmin.

Figure 6 shows a simulation of the system. In the first period there is only a
small failure of heater 2, and we can observe the bang-bang behaviours of the
system. In the second period both heaters fail at the same time while the outside
temperature is low, thus the temperature quickly drops to 13 ◦C before the first
heater is repaired.

Integrating Simulink Models into the Model Checker Cosmos 371

We are interested in several performance indices. The first type concerns
the reliability of the model measured by two indices: the minimal temperature
observed along a trajectory (I1) and the time spent in a state where the temper-
ature is below 20 ◦C (I2). The second type concerns the average behaviour: the
average temperature (I3), the average number of switched-on heaters (I4), which
is correlated with the energy consumption of the system, and the average time
during which the repairman is idle (I5).

These indices are specified in HASL with an LHA (Fig. 7) which accepts
the trajectories after Stime time units. The LHA contains a hybrid variable tc
with derivative 1 when the temperature is below 20 ◦C and 0 otherwise. The
HASL expressions start with a probability operator : here AVG is used for all
indices to specify the average value over all trajectories; then a path operator
(Min, Last, Mean) which is defined along each path. Path operators take as
parameters algebraic expressions over the Petri net places and the LHA variables.
For example, I1 specifies the minimal temperature along a trajectory and then
the average value over all trajectories.

I1 : AVG(Min(T))
I2 : AVG(Last(tc))
I3 : AVG(Mean(T))
I4 : AVG(Mean(Active1 +Active2))
I5 : AVG(Mean(Idle))

(a) HASL formulas

l1 : ṫc = 0
T ≥ 20

l2 : ṫc = 1
T < 20

l3l3

#, t = Stime

#, t = Stime

All All

All

All

(b) LHA

Fig. 7. HASL specification for performance indices

The model as it is described above is referred to as M0. In order to study the
overhead of integral computations over the stochastic simulation, we build two
additional alternative models. The first one M1 is a model where the integration
block in the Simulink diagram has been replaced by a discrete time integrator.
In the model M2, the simulink part is omitted, keeping only events that are
transition firings.

Table 1. Simulation results

Indices M0 M1

I1 [18.698 ; 18.716] [18.272 ; 18.289]
I2 [66.344 ; 67.217] [92.921 ; 93.927]
I3 [22.439 ; 22.442] [22.485 ; 22.488]
I4 [0.4999 ; 0.5006] [0.4884 ; 0.4890]
I5 [0.9239 ; 0.9242] [0.9239 ; 0.9241]

Models Build time Sim. time
M0 5.74s 6 885s
M1 5.73s 1 145s
M2 1.31s 1.810s

Each model was run for 500 000 simulations of 2 000 s, with εV = 0.01 and
δmax = 1. The sine wave frequency was 0.01 and oscillating between 5 ◦C and

372 B. Barbot et al.

25◦C, and the time step of the discrete-time integrator was δmax (1 s). We used
Th1 = 55 ◦C, Th2 = 65 ◦C, c1 = 0.02, c2 = 0.013 and cext = 0.04. Results are
reported in Table 1. The left table reports the computed confidence interval for
the different indices, the right one reports simulation and building times.

Tool Analysis. The build time is always less than the simulation time and
becomes negligible when models include a Simulink part. The critical factors
for simulation time are: (i) the speed of step firing, about 10−7 s. for net firing
compared to 10−6 s. for Simulink steps, and (ii) the number of steps per trajec-
tory, about 40 for M2 vs. 2000 for M1. As expected, the use of a discrete-time
Integrator yields a faster simulation, albeit still far longer than the net alone,
while it affects the accuracy of the index values and more precisely triggers a
larger variation of temperature over time.

Property Analysis. We focus on the most pertinent model M0, with two antag-
onist goals: minimizing the installation cost (depending on the parameters of
heaters and repairman), and maximizing the comfort of the user (depending on
the temperature evolution). With the current parameters, each heater is active
about 1/4 of the time and the repairman is idle 92% of the time. The average
temperature is about 22 ◦C, reaching the objective, while the minimal tempera-
ture is slightly above 18 ◦C.

5 Conclusion and Future Work

We have presented a standalone tool that synchronously simulates a stochastic
Petri net and a Simulink model. The simulation trace is defined by a formal
semantics. Using HASL formulas, one can define complex performance indices,
on which the tool evaluates confidence intervals.

We plan to apply this approach to more challenging models, such as the
evaluation of autonomous vehicle controllers into various vehicular environments
or for analyzing strategies for energy consumption in data centers.

We plan to increase the number of Simulink blocks supported by Cosmos,
and enhance the expressivity of high-level Petri nets with floating-points colors.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations. Electr. Notes Theor.
Comput. Sci. 109, 43–56 (2004)

2. Ballarini, P., Barbot, B., Duflot, M., Haddad, S., Pekergin, N.: HASL: a new app-
roach for performance evaluation and model checking from concepts to experimen-
tation. Perform. Eval. 90, 53–77 (2015)

3. Ballarini, P., Duflot, M.: Applications of an expressive statistical model checking
approach to the analysis of genetic circuits. Theor. Comput. Sci. 599, 4–33 (2015)

4. Barbot, B., Ballarini, P., Djafri, H.: http://cosmos.lacl.fr

http://cosmos.lacl.fr

Integrating Simulink Models into the Model Checker Cosmos 373

5. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for
timed automata with application to language inclusion measurement. In: Agha, G.,
Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 175–190. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43425-4 13

6. Barbot, B., Bérard, B., Duplouy, Y., Haddad, S.: Integrating simulink models
into the model checker cosmos. Research report, March 2018. https://hal.archives-
ouvertes.fr/hal-01725835

7. Barbot, B., Haddad, S., Heiner, M., Picaronny, C.: Rare event handling in signalling
cascades. Int. J. Adv. Syst. Meas. 8(1–2), 69–79 (2015)

8. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 331–346. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28756-5 23

9. Barbot, B., Kwiatkowska, M., Mereacre, A., Paoletti, N.: Building power consump-
tion models from executable timed I/O automata specifications. In: Proceedings
of HSCC 2016, pp. 195–204. ACM (2016)

10. Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M.: Non-standard semantics of
hybrid systems modelers. J. Comput. Syst. Sci. 78(3), 877–910 (2012)

11. Bouissou, O., Chapoutot, A.: An operational semantics for simulink’s simulation
engine. In: Proceedings of the 13th ACM SIGPLAN/SIGBED, LCTES 2012, pp.
129–138. ACM, New York (2012)

12. Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential con-
fidence intervals for the mean. Ann. Math. Stat. 36, 457–462 (1965)

13. Clopper, C., Pearson, E.S.: The use of confidence or fiducial limits illustrated in
the case of the binomial. Biometrika 26, 404–413 (1934)

14. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

15. Tiwari, A.: Formal semantics and analysis methods for simulink stateflow models.
Technical report, SRI (2002)

16. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Trans. Embed. Comput. Syst. 4(4), 779–818 (2005)

17. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

https://doi.org/10.1007/978-3-319-43425-4_13
https://hal.archives-ouvertes.fr/hal-01725835
https://hal.archives-ouvertes.fr/hal-01725835
https://doi.org/10.1007/978-3-642-28756-5_23
https://doi.org/10.1007/978-3-642-28756-5_23

LocalProcessModelDiscovery: Bringing
Petri Nets to the Pattern Mining World

Niek Tax1,2(B), Natalia Sidorova1, Wil M. P. van der Aalst3,
and Reinder Haakma2

1 Department of Mathematics and Computer Science, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{n.tax,n.sidorova}@tue.nl
2 Philips Research, Prof. Holstlaan 4, 5665 AA Eindhoven, The Netherlands

{niek.tax,reinder.haakma}@philips.com
3 RWTH Aachen, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. This paper introduces the tool LocalProcessModelDiscovery,
which is available as a package in the process mining toolkit ProM.
LocalProcessModelDiscovery aims to discover local process models, i.e.,
frequent patterns extracted from event logs, where each frequent pat-
tern is expressed in the form of a Petri net. Local process models can be
positioned in-between process discovery and Petri net synthesis on the
one hand, and sequential pattern mining on the other hand. Like pattern
mining techniques, the LocalProcessModelDiscovery tool focuses on the
extraction of a set of frequent patterns, in contrast to Petri net synthesis
and process discovery techniques that aim to describe all behavior seen
in an event log in the form of a single model. Like Petri net synthesis
and process discovery techniques, the models discovered with LocalPro-
cessModelDiscovery can express a diverse set of behavioral constructs.
This contrasts sequential pattern mining techniques, which are limited
to patterns that describe sequential orderings in the data and are unable
to express loops, choices, and concurrency.

Keywords: Petri nets · Frequent pattern mining · Process discovery

1 Introduction

LocalProcessModelDiscovery is a novel tool for the discovery of frequent pat-
terns in the form of Petri nets from event logs. This paper aims to present this
Petri-net-based tool and provide some insights into the discovery techniques
used. The tool is implemented as a package in the Java-based process mining
framework ProM [12] and is publicly available at https://svn.win.tue.nl/repos/
prom/Packages/LocalProcessModelDiscovery/ and in the ProM package man-
ager. After installing the LocalProcessModelDiscovery package to ProM, the tool
can be started by importing an event log in XES [26] format into ProM and then

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 374–384, 2018.
https://doi.org/10.1007/978-3-319-91268-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_20&domain=pdf
https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscovery/
https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscovery/

LocalProcessModelDiscovery: Bringing Petri Nets 375

(a) (b)

LPM 1)

LPM 2)

(c)

Fig. 1. The Petri net model mined from the MSNBC dataset with (a) the Inductive
Miner [21], (b) the ILP Miner [25], and (c) two LPMs mined from the MSNBC dataset.
Black transitions correspond to silent transitions.

running the ProM plugin Search for Local Process Models using this event log
as input. The algorithms that we developed for the mining of frequent Petri net
patterns from event logs [10,22–24] form the core of the LocalProcessModelDis-
covery tool.

Mining of Local Process Models (LPMs) can be positioned in-between the
research areas of Petri net synthesis and process discovery on the one hand
and frequent pattern mining on the other hand. Frequent pattern mining [17]
techniques focus on extracting local patterns from data. Sequential pattern min-
ing [14] techniques are a type of frequent pattern mining that focuses on the
extraction of frequent patterns from sequence data. While process discovery
[1] and Petri net synthesis techniques aim to discover an end-to-end process
model, sequential pattern mining techniques aim to extract a set of patterns
where each pattern describes a subsequence that frequently occurs in the event
log. Sequential pattern mining techniques can be used to generate insights from
event data that only contain weak relations between the activities, i.e., that have
a relatively high degree of randomness. From such event logs, process discovery
and Petri net synthesis techniques generate either overgeneralizing models that
allow for too much behavior, or generate a ‘spaghetti’-model that is accurate in
the allowed behavior but is not understandable and often overfitting. Figure 1a
gives an example of an overgeneralizing process model, showing the process
model discovered with the Inductive Miner [21] from web click data from the

376 N. Tax et al.

Event sequences

〈A,A,C,B,A,A,C,B,B,C〉
〈C,A,C,B,A,A,A,B,C,B〉
〈A,A,B,D,C,D,A,B,C,B〉
〈C,A,C,B,B,B,A,D,B,C〉
〈B,A,B,C,C〉
〈D,A,C,B,C,A,A,C,A,B〉
〈D,A,B,C,D,C,A,C,A,B,C〉

(a)

A 13/21

B 13/20

C 13/19

(b)

B
A

C
D

(c)

Sequential
patterns Support

〈A,B,C〉 7
〈B,A,B〉 7
〈A,B,A〉 6
〈A,C,A〉 6
〈A,C,B〉 6
〈B,A,C〉 6
〈C,A,C〉 6

(d)

Fig. 2. (a) A log L with highlighted instances of the frequent pattern. (b) An example
local process model that shows some frequent behavior in L. (c) The Petri net discov-
ered from L with the Inductive Miner tool [21]. (d) The sequential patterns discovered
from L with the PrefixSpan algorithm [18] (with minimum support= 6).

MSNBC.com news website1 (note that most activities can be skipped and/or
repeated allowing for any behavior). Figure 1b gives an example of a non-
interpretable ‘spaghetti’-like process model, discovered from the same dataset
with the ILP Miner [25]. The first LPM of Fig. 1c, however, shows that activity
10 is generally followed by multiple instances of activity 2.

2 What Is Local Process Model Mining?

The process models that can be discovered with process discovery and Petri
net synthesis techniques can describe a rich set of process constructs, such as
concurrency, inclusive and exclusive choices, loops, and sequential execution. In
contrast, the patterns that are discovered with sequential pattern mining tech-
niques are limited to sequential orderings. The mining of Local Process Models
(LPMs) [24] extends sequential pattern mining techniques to Petri nets, allowing
for the discovery of local patterns of non-sequential behavior, including choices,
concurrency, and loops. Figure 2 illustrates an example local process model on
an example event log, and highlights the instances of the LPM in the event log
in blue. Note that instances of an LPM in the event log do not have to consist of
consecutive events, i.e., there can be gaps within a pattern instance. The LPM
instances that contain gaps are indicated in the event log with underline.

The LocalProcessModelDiscovery tool provides an implementation of the local
process model mining algorithm presented in [24]. Intuitively, the local pro-
cess model mining algorithm works by iteratively expanding patterns into larger
candidate patterns, for which it calculates the support by calculating an align-
ment [2] between the pattern and the event log. Patterns that satisfy a minimum
support threshold that is provided by the user are then expanded further in the
next expansion iteration of the algorithm. The local process model mining algo-
rithm returns a ranked list of patterns, where the patterns are ranked according
to a weighted average over the following quality criteria:

1 http://kdd.ics.uci.edu/databases/msnbc/msnbc.data.html.

www.msnbc.com/
http://kdd.ics.uci.edu/databases/msnbc/msnbc.data.html

LocalProcessModelDiscovery: Bringing Petri Nets 377

Support. Relates to the number of times that the behavior that is described
by the Petri net pattern is found in the event log.

Confidence. A pattern has high confidence when a high ratio of the events
in the event log of the activities that are described in the pattern belong to
instances of the pattern.

Language Fit. Relates to how much behavior that is allowed by the Petri net
pattern is actually observed in the event log at least once. A Petri net that
allows for many behavior that was never observed has low language fit.

Determinism. Relates to the average number of enabled transitions during
replay of the pattern instances on the pattern. A purely sequential model has
optimal determinism, while a model that allows for more behavior might have
higher support but will have lower determinism.

Coverage. Relates to how many events in the event log are described by the
pattern.

Related Tools
Several tools for Petri net synthesis (see [3] for an overview of synthesis

techniques) have been implemented throughout the years, including APT [5],
GENET [6], and Petrify [9]. APT [5] allows for the synthesis and analysis of
Petri nets and transition systems. GENET [6] allows for the synthesis of a Petri
net from automata. Petrify [9] allows for the synthesis of Petri nets and asyn-
chronous circuits. VipTool [4] allows for the synthesis of a Petri net from a finite
partial language. Furthermore, ProM [12], APROMORE [20], PMLAB [7], and
bupaR [19] are tools that provide implementations of process discovery algo-
rithms. SPMF [13] is a pattern mining tool that provides implementations of a
wide variety of frequent pattern mining algorithms, including sequential pattern
mining algorithms. Additionally, several frequent pattern mining algorithms have
been implemented in the data mining toolkit WEKA [16]. Another related tool
is WoMine [8] which provides an implementation of the w-find algorithm [15]
for mining frequent behavioral patterns from a process model, allowing a user to
find frequent subprocesses in a process model. The Episode Miner [21] provides
functionality to mine frequent partial orders from an event log. Diamantini et
al. [11] provide a related tool to mine frequent behavioral patterns from event
logs. Unlike LocalProcessModelDiscovery, the behavioral patterns mined with
this tool and with the Episode Miner are not able to discover choice relations
and loops.

3 The LocalProcessModelDiscovery Tool

Figure 3 shows the main screen of the LocalProcessModelDiscovery tool, consist-
ing of three panels: on the left side a panel to configure the mining parameters, in
the middle a panel that presents the mining results when mining has completed,
and on the right side a panel to interact with and navigate through the mined
local process models.

378 N. Tax et al.

Fig. 3. The home screen of the LocalProcessModelDiscovery tool.

3.1 Configuring the Local Process Model Miner

Figure 4 shows the mining parameters panel. Located at the top of the panel is
a maximum number of transitions in the LPMs slider, which allows the
user to set the maximum number of non-silent transitions for the local process
models. The maximum number of non-silent transitions puts an upper bound on
the number of expansion iterations in the local process model mining algorithm,
therefore, setting this slider to higher values enables the tool to discover larger
patterns at the cost of higher computation time.

The number of LPMs to discover slider lets the user specify a maximum
number of patterns that he or she wants to obtain, allowing him or her to prevent
mining an overload of patterns. Note that the local process model discovery
algorithm returns a ranked list of patterns, therefore, the algorithm returns the
patterns with the highest weighted score to the user.

The allow duplicate transitions toggle allows the user to specify whether
or not he or she wants to mine patterns that contain multiple transitions with
the same label. Enabling this option comes at the price of higher computation
cost.

The operator section of the parameter panel allows the user to include or
exclude patterns with certain control-flow constructs in the search space of the
mining procedure.

In the pruning section of the parameter panel the user can specify a min-
imum number of occurrences of the pattern in the log (i.e., minimum sup-
port), and a minimum determinism value for the pattern. Patterns that do not
meet these thresholds set by the user are not presented in the results and are
not expanded into larger patterns, thereby pruning the search space of the local
process model mining algorithm.

LocalProcessModelDiscovery: Bringing Petri Nets 379

Fig. 4. The parameters panel of the LocalProcessModelDiscovery tool.

Instances of a local process model in the event log do not have to be con-
secutive, i.e., there can be other events that do not fit the behavior specified
by the LPM in-between. When this is not desired, constraint-based mining of
LPMs can be used to put restrictions on the instances of LPMs, thereby not
including instances in the event log that do not comply with there constraints,
even when it fits the behavior specified by the LPM. The parameters section
allows the user to specify event gap constraints and time gap constraints.
An event gap constraint puts a maximum on the number of non-fitting events
in-between two fitting events of an instance of an LPM in the log. For example,
a sequence 〈a, b, x, x, c〉 is considered to be an instance of a Petri net N with
language L(N) = {〈a, b, c〉} when the event gap constraint is set to 2, but is
not considered to be an instance when the event gap constraint is set to 1. For
event logs containing timed events, time gap constraints can be used to specify
an upper bound on the time difference between two consecutive events that fit
the behavior of an LPM.

The computational complexity of mining LPMs is exponential in the number
of activities in the event log [24]. Several heuristic mining techniques have been
proposed in [22] to make the mining of LPMs on event logs with large numbers of
events feasible. These heuristic techniques work by detecting clusters of activities
that frequently occur close to each other in the event log, and then mining
the LPMs for each cluster individually, restricting the expansion steps of the

380 N. Tax et al.

Fig. 5. (a) An example LPM in the results panel of the LocalProcessModelDiscovery
tool, and (b) an example of the overlay feature in the navigation panel, projecting the
resource information on top of the pattern.

LPM mining to activities that are part of the same cluster of activities. The
projections section of the mining parameters panel allows the user to configure
the tool to use these approaches.

When starting the LocalProcessModelDiscovery tool, it automatically sets
the minimum support parameter and the projections configuration to a default
value that is dependent on the event log, using information such as the number
of events and the number of activities in the event log.

3.2 Interpreting Local Process Model Results

Figure 5a shows grouping of local process models in the mining results panel. The
figure shows a single local process model mined from a hospital event log that

LocalProcessModelDiscovery: Bringing Petri Nets 381

Fig. 6. The navigation panel of the LocalProcessModelDiscovery tool, which allows the
user to interact with the mining results and perform more in-depth follow-up analysis.

describes the behavior that a lab test and an X-ray are performed in arbitrary
order, finally followed by an echography. Printed below the Petri net are the
scores of the pattern in terms of the local process model quality criteria. The
local process models are ranked by the aggregated score of the LPM (shown as
score), and the tabs in the bottom of the panel can be used to navigate through
the LPMs in the ranking. Typically, the mining procedure results in multiple
local process models that specify behavior over the same alphabet of activities.
By default, the resulting local process models are grouped by the alphabet of
activities that they describe. The group tabs above the Petri net can be used
to explore the LPMs that describe different alphabets of activities.

3.3 Navigating Local Process Model Results

The navigation panel provides several functionalities to interactively navigate
through the resulting local process models obtained through mining. A weighted
average over the quality criteria of local process models is used to rank the
resulting local process models, and the results are presented in the order of the
ranking. The user can reconfigure the weights assigned to each of the quality
criteria in the ranking section of the navigation panel, resulting in an updated
ranking of local process models in the results panel.

The overlay functionality in the navigation panel allows the user to project
data attributes of the events in the log onto the local process models. The overlay
functionality consists of a drop-down selector where the user can select one of
the global event attributes (i.e., an event attribute that is set for every event
in the log). Figure 5b illustrates the overlay functionality and shows the mining
results panel when selecting the org:resource event attribute for the local process

382 N. Tax et al.

model of Fig. 5. The results show that the X-ray and Echography events that
fit the behavior of this local process model are most frequently performed by
employee Alex, while the Lab Test events that fit the behavior of this pattern
are most frequently performed by employee Jo. Note that this does not say
anything about the X-ray events that do not fit the behavior of this pattern,
i.e., the X-ray events that are not performed concurrently to the Lab Test and
before Echography.

The filters section of the results panel allows the user to filter out local
process models from the results that do not comply with certain specifications
that are provided by the user, such as a minimum number of activities in the
log. In the grouping section, the user can select a strategy for grouping mined
local process models into groups of local process models for the visualization
in the results panel. By default, the ranking-based grouping strategy is used,
which adds one local process model A to the same group as another local process
model B if (1) the set of activities of A is a subset of the set of or equal to the
activities of B and (2) A has a lower aggregated score than B.

4 Conclusion

This paper presents the tool LocalProcessModelDiscovery, which allows for the
mining of frequent patterns (called local process models) from event logs that are
expressed as Petri nets. Local process models are positioned in-between process
discovery and Petri net synthesis on the one hand, and frequent pattern mining
on the other hand. The local process models that can be mined with this tool
extend existing sequential pattern mining approaches: while sequential patterns
are restricted to mining frequent sequential behavior, local process models allow
the frequent patterns to describe a more general language over the activities by
expressing the patterns as Petri nets. LocalProcessModelDiscovery supports the
mining of local process models as well as functionality to navigate through the
mining results and to relate discovered local process models back to the event
log for a more in-depth analysis.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disc. Rev.: Data Min. Knowl. Discovery 2(2), 182–192 (2012)

3. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

4. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri nets from
finite partial languages. Fundamenta Informaticae 88(4), 437–468 (2008)

5. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceed-
ings of the 8th Interaction and Concurrency Experience (2015)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-47967-4

LocalProcessModelDiscovery: Bringing Petri Nets 383

6. Carmona, J., Cortadella, J., Kishinevsky, M.: GENET: a tool for the synthesis
and mining of Petri nets. In: Application of Concurrency to System Design, pp.
181–185. IEEE (2009)

7. Carmona, J., Solé, M.: PMLAB: an scripting environment for process mining. In:
Proceedings of the BPM Demo Sessions, pp. 16–20 (2014). CEUR-ws.org

8. Chapela-Campa, D., Mucientes, M., Lama, M.: Towards the extraction of frequent
patterns in complex process models. Jornadas de Ciencia e Ingenieŕıa de Servicios,
pp. 215–224 (2017)

9. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Trans. Inf. Syst. 80(3), 315–325 (1997)

10. Dalmas, B., Tax, N., Norre, S.: Heuristics for high-utility local process model min-
ing. In: Proceedings of the International Workshop on Algorithms & Theories for
the Analysis of Event Data, pp. 106–121 (2017). CEUR-ws.org

11. Diamantini, C., Genga, L., Potena, D., Storti, E.: Discovering behavioural patterns
in knowledge-intensive collaborative processes. In: Appice, A., Ceci, M., Loglisci,
C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2014. LNCS (LNAI), vol.
8983, pp. 149–163. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17876-9 10

12. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: a new Era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 25

13. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15(1),
3389–3393 (2014)

14. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of
sequential pattern mining. Data Sci. Pattern Recogn. 1(1), 54–77 (2017)

15. Greco, G., Guzzo, A., Manco, G., Pontieri, L., Saccà, D.: Mining constrained
graphs: the case of workflow systems. In: Boulicaut, J.-F., De Raedt, L., Man-
nila, H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS (LNAI),
vol. 3848, pp. 155–171. Springer, Heidelberg (2006). https://doi.org/10.1007/
11615576 8

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

17. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Min. Knowl. Discovery 15(1), 55–86 (2007)

18. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Pre-
fixSpan: mining sequential patterns efficiently by prefix-projected pattern growth.
In: Proceedings of the International Conference on Data Engineering, pp. 215–224.
IEEE (2001)

19. Janssenswillen, G., Depaire, B.: BupaR: business process analysis in R. In: Pro-
ceedings of the BPM Demo Sessions, pp. 160–164 (2017). CEUR-ws.org

20. La Rosa, M., Reijers, H.A., Van Der Aalst, W.M.P., Dijkman, R.M., Mendling,
J., Dumas, M., Garćıa-Bañuelos, L.: APROMORE: an advanced process model
repository. Expert Syst. Appl. 38(6), 7029–7040 (2011)

21. Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs.
In: Ceravolo, P., Russo, B., Accorsi, R. (eds.) SIMPDA 2014. LNBIP, vol. 237, pp.
1–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27243-6 1

http://ceur-ws.org/
http://ceur-ws.org/
https://doi.org/10.1007/978-3-319-17876-9_10
https://doi.org/10.1007/978-3-319-17876-9_10
https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/11615576_8
https://doi.org/10.1007/11615576_8
http://ceur-ws.org/
https://doi.org/10.1007/978-3-319-27243-6_1

384 N. Tax et al.

22. Tax, N., Sidorova, N., van der Aalst, W.M.P., Haakma, R.: Heuristic approaches
for generating local process models through log projections. In: Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining, pp. 1–8. IEEE
(2016)

23. Tax, N., Genga, L., Zannone, N.: On the use of hierarchical subtrace mining for
efficient local process model mining. In: International Symposium on Data-Driven
Process Discovery and Analysis (2017). CEUR-ws.org

24. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process
models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016)

25. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.)
PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68746-7 24

26. XES Working Group: IEEE standard for eXtensible Event Stream (XES) for
achieving interoperability in event logs and event streams. IEEE Std 1849-2016,
pp. 1–50, November 2016

http://ceur-ws.org/
https://doi.org/10.1007/978-3-540-68746-7_24

A Model Checker Collection for the
Model Checking Contest Using Docker

and Machine Learning

Didier Buchs, Stefan Klikovits, Alban Linard(B), Romain Mencattini,
and Dimitri Racordon

Software Modeling and Verification (SMV) Group, Faculty of Science,
University of Geneva, Geneva, Switzerland

{didier.buchs,stefan.klikovits,alban.linard,romain.mencattini,
dimitri.racordon}@unige.ch

Abstract. This paper introduces mcc4mcc, the Model Checker Collec-
tion for the Model Checking Contest, a tool that wraps multiple model
checking solutions, and applies the most appropriate one based on the
characteristics of the model it is given. It leverages machine learning algo-
rithms to carry out this selection, based on the results gathered from the
2017 edition of the Model Checking Contest, an annual event in which
multiple tools compete to verify different properties on a large variety
of models. Our approach brings two important contributions. First, our
tool offers the opportunity to further investigate on the relation between
model characteristics and verification techniques. Second, it lays out the
groundwork for a unified way to distribute model checking software using
virtual containers.

1 Introduction

The Model Checking Contest @ Petri Nets [16] (MCC) is an annual event, held
during the Petri Nets Conference. Initially launched in 2011, its objective is to
investigate on the relation between model characteristics and verification tech-
niques. Over the years, the MCC has proven successful to compare the perfor-
mance of model checking tools with respect to different problems, and increase
the confidence in the results they produce. For perspective, the 2017 edition
saw 10 tools competing in 9 categories on 77 models. Despite the results being
interesting and valuable to the model checking community, they do not clearly
address the primary objective of the MCC. Indeed, a clear relation between
model characteristics and verification techniques has still to be found.

Although a compelling theoretical answer to this problem may still be out of
reach, seven years of MCC results opened the door to an empirical study. As each

D. Racordon—This project is supported by: FNRS STRATOS: Strategy based Term
Rewriting for Analysis and Testing Of Software, the Hasler Foundation, 1604 CPS-
Move and COST IC1404: MPM4CPS.

c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 385–395, 2018.
https://doi.org/10.1007/978-3-319-91268-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_21&domain=pdf

386 D. Buchs et al.

tool exports the list of employed verification techniques (e.g. decision diagrams,
explicit or bounded model checking, etc.), it is possible to use the results of pre-
vious iterations of the MCC to shed light on this relation. We therefore created
the Model Checker Collection for the Model Checking Contest (mcc4mcc), a tool
that aims at establishing a relation between model characteristics and verifica-
tion techniques. The tool serves as a wrapper around the model checking tools
that competed in past iterations of the MCC, and leverages machine learning
algorithms to select the most appropriate one, given a model and examination
type. mcc4mcc uses virtual containers to provide homogeneous packaging and
execution.

Our contributions to the research community are two-fold:

– While the current way of participation to the MCC (submission of virtual
machines) is a valid means to enter, the re-use of tools can be burdensome
and requires a lot of resources. We show that virtual container systems such as
Docker1 can be leveraged to create lightweight, uniform distribution systems
that invite re-use of the tools.

– Based on the availability of such lightweight tools, we propose the Model
Checker Collection as a means to empirically evaluate the relation between
model characteristics and verification techniques. We show that mcc4mcc is
capable of finding the best-suited tool amongst a range of candidates and
provide details about machine learning algorithms we use for decision making.

This paper describes the methodology we have used to create Docker images
containing the MCC model checkers, as well as the machine learning process
that is implemented in mcc4mcc. Our tool is available at https://github.com/
cui-unige/mcc4mcc, and is released under the open source MIT license.

2 Creation of Docker Containers

Tool authors who wish to compete in the MCC have to provide a virtual machine
(VM) for their tool. Submissions have to be completely self-contained, i.e. con-
tain the tool, its dependencies, models and their precomputed equivalents (for
some tools). In the context of the MCC, this approach presents two significant
advantages. First, examiners do not need to struggle with installation proce-
dures, and authors can ensure their tool is run under the best configuration
possible. Second, tools are guaranteed to be executed in identical, reproducible
environments, which is obviously desirable for a competition.

However, when the tool is to be used as a classic software, such VM com-
partmentalization might present some inconveniences. Exchanging data with a
virtual machine can only be done by the means of virtual networks, usually
through a secure shell2. This limits, or at least significantly complicates the
options a final user has to run the tool in a pipelined process. Disk space can

1 https://www.docker.com/.
2 https://en.wikipedia.org/wiki/Secure Shell.

https://github.com/cui-unige/mcc4mcc
https://github.com/cui-unige/mcc4mcc
https://www.docker.com/
https://en.wikipedia.org/wiki/Secure_Shell

A Model Checker Collection for the Model Checking Contest 387

be listed as another major inconvenience. Table 1 shows the size of each tool’s
virtual machine, submitted to the MCC. A virtual machine for a MCC tool typ-
ically uses at least 2 Gigabytes with some requiring up to 8.5 Gigabytes of disk
space. In a setting such as our research goal, where multiple tools need to be
used, this may quickly reach problematic proportions.

Table 1. MCC tools and their licenses, virtual machine sizes and docker image sizes.
Docker images include the models translated into the tool-specific format taken from
the virtual machines.

Virtual Machine Docker

Tool License granted Size System Size System

GreatSPN [7] Closed 2.9 Gb Debian 278 Mb Debian

ITS-Tools [27] GNU GPL v3 3.3 Gb Debian 843 Mb Debian

LoLA [25] GNU APL v3 8.5 Gb Debian 14 Mb Alpine

LTSMin [15] BSD 3 Clause 3.4 Gb Debian 668 Mb Debian

Marcie [11] Non commercial 2.3 Gb Debian 21 Mb Alpine

Smart [8] Closed 2.7 Gb Debian 284 Mb Debian

Spot [10] GNU GPL v3 7.0 Gb Debian 2 Gb Debian

Tapaal [14] GNU GPL v2 2.3 Gb Debian 69 Mb Alpine

Tina [3] Freeware 2.6 Gb Debian 830 Mb Debian

Total 35 Gb 4.9 Gb

This caveat lead us to question the means of packaging model checkers within
VMs. In general, we see three possibilities to produce an easily distributable,
reusable mcc4mcc wrapper that incorporates the MCC submissions:

Embedding existing virtual machines. One possibility is to create one
monolithic VM that wraps around the VMs that were submitted by the
developers. This requires the ability to run nested virtualization (i.e. virtual
machines within virtual machines). While it is technically possible, this tech-
nique usually results in poor performances [21]. Moreover, the result would
suffer from the disk space issue mentioned above, as the enclosing virtual
machine would weigh around 40 Gigabytes. This approach clearly violates
the constraint of facilitated distribution.

Merging of virtual machines. This technique addresses some of the perfor-
mance issues. In addition, its also leads to a far lighter virtual disk, as it
does not involve the duplication of many shared files and binaries. Unfortu-
nately, such a virtual machine is very susceptible to possible configuration
conflicts between the dependencies of the different tools. This approach heav-
ily increases maintenance, modification and update complexity.

Packaging tools in virtual containers. The third approach relies on virtual
containers [2], rather than virtual machines. Contrary to VMs, virtual con-
tainers do not provide their own operating system and do not require hard-
ware support. They share central resources such as a file system or a network

388 D. Buchs et al.

interface with their host machine, if required. Due to their isolated virtual-
memory region they remain independent. Virtual containers cause less system
overhead and have the potential for increased performance. They are usually
lightweight and include only the bare necessities for program execution. This
means that most of them abstain from including a user interface and unnec-
essary libraries.

We chose the third approach to create the mcc4mcc. We use Docker3 to
compose and execute the virtual containers. The tools inside the containers are
built either from the tool sources when available, or by copying the required files
from the virtual machines or binary distributions of the tools.

Docker containers [20] are instantiated virtual containers that package pro-
grams and files. These instances are created based on “container snapshots”
called docker images. Images store a container’s file system state and, upon run-
ning, create exact runtime copies of the snapshot. For our purposes we create
Docker images that contain the tools and any other files which are required
for the tool execution. Additionally, certain Linux files and programs are pro-
vided by the base image. Base images are docker images that contain a minimal
execution environment and are extended by our images.

The disk space required by the tool docker images is stated in the last two
columns of Table 1 (alongside the base image). The severe reduction results in
images sizes of less than 400 megabytes, which facilitates distribution. On aver-
age, we achieved a reduction of over 90%. For LoLA and and Marcie we achieved
drastic size reductions of 99.9% and 99.1%, respectively. This is due to the
fact that we could use the Alpine base image, which measures only around 4
megabytes.

In general, Docker container images can be stored within private
or public repositories for easy distribution. The usual naming scheme
<organization>/<tool>:<tag>, organization is e.g. the university, labora-
tory or team name, tool is the tool name, and tag is an optional tag, such as
version number or variant, facilitates the identification of each specific image.
We follow this naming scheme in this article, and propose a standardized way to
provide Docker images for tools, designed to ease both the diffusion of the tools,
and their wrapping for the MCC. We split each tool into two Docker images:

– <organization>/<tool>, an image that contains only the tool, with the man-
ual page and examples if needed, for instance unirostock/LoLA. This image
should ideally be provided and maintained by the tool developers, and may
be tagged for instance with the tool version.

– mccpetrinets/<tool>, a wrapper dedicated to the Model Checking Contest,
that is built on top of <organization>/<tool> and creates an entry point
(the default executable script in the image) conforming to the Model Checking
Contest specifications. This image may also embed additional data, such as
precomputed data for known models, and may tagged, for instance with the
year of the participation.

3 https://www.docker.com.

https://www.docker.com

A Model Checker Collection for the Model Checking Contest 389

The two images are built using docker’s configuration files, called Dockerfiles4.
These typically describe the build process (e.g. how to build a tool from source),
various configuration settings and more importantly an entry point that points to
the command (or set thereof) that is ran when the container starts. The Dock-
erfiles we used for the build are available in the respective subfolders of our tool
repository5.

Once the Docker images are configured, a tool can be run within its confined
environment. By default, tools run in a completely isolated environment, and do
not have access to the host file system. Hence it is necessary to explicitly mount
a path to the host directory holding the models’ data. We communicate other
information by the use of environment variables, as it is the MCC’s convention.

Running a container will try to find the image within the local repository,
and – if not available – search in online repositories (e.g. docker hub6) for the
image and download it if found. Online distribution is useful for tool developers
to share their tool more easily than using binary archives. Uploading an image
does not distribute the tool sources, as it contains the result of executing the
Dockerfile, and thus the binaries.

This is especially important for tool developers who wish to keep the tool’s
source code private, as is the case for some MCC competitors. While most tools
are open-source, such as LoLA or Spot, closed-source but freeware, such as Tina,
a few programs explicitly require licenses to be used (e.g. GreatSPN, Smart).
Table 1 lists the individual licenses for the tools that competed in the 2017 MCC.
The table also states a license has been granted, if necessary.

3 Using Machine Learning to Choose the Right Tool

Our second research question examines whether we can use empirical methods
to choose a well-suited tool for a model checking problem. This evaluation is
based on the results of the 2017 MCC. In the MCC, tools participate in different
examinations such as state space exploration or deadlock reachability. Table 2
cross-references the MCC’s competing tools and the respective examinations
they participated in.

In each examination the tools try to solve their objective on three categories
of models: known, stripped and surprise. Known models are taken from a catalog
and known before the competition. Tool developers can hence optimize their
tools towards solving them. Stripped models, similar to known models are taken
from a catalog, however the precise model will not be identified beforehand.
4 https://docs.docker.com/engine/reference/builder/.
5 https://github.com/cui-unige/mcc4mcc.
6 https://hub.docker.com/.

https://docs.docker.com/engine/reference/builder/
https://github.com/cui-unige/mcc4mcc
https://hub.docker.com/

390 D. Buchs et al.

Table 2. Examinations performed by the tools

Tool

S
ta
te
S
p
a
c
e

U
p
p
e
r
B
o
u
n
d
s

Reachability CTL LTL

C
a
rd
in
a
li
ty

D
e
a
d
lo
ck

F
ir
e
a
b
il
it
y

C
a
rd
in
a
li
ty

F
ir
e
a
b
il
it
y

C
a
rd
in
a
li
ty

F
ir
e
a
b
il
it
y

GreatSPN

ITS-Tools

LoLA

LTSMin

Marcie

Smart

Spot

Tapaal

Tina

The challenge lies in performing the correct optimizations and try to provide a
performance as if the model were known. Surprise models are new models that
have not been used before. It is the hardest category, as tool developers cannot
create optimizations for their tools.

Each model might also be parameterized, meaning that there are different
configurations for this model. An example is the model philosophers, which can
specify the number of dining philosophers as parameter. This information is pub-
lished in a supporting document alongside the respective model, which contains
all other model characteristics. These characteristics can be e.g. whether the
model is reversible, contains sink places or quasi liveness. Table 3 lists the model
characteristics for a few models. Note that the characteristics are Boolean, but
unknown for certain models (marked with “?”).

Table 3. Characteristics of some models

Model O
rd
in
a
ry

S
tr
o
n
g
ly

C
o
n
n
e
c
te
d

R
ev
e
rs
ib
le

C
o
lo
re
d

P
la
c
e
/T
ra
n
si
ti
o
n

S
in
k
P
la
c
e

S
im

p
le
F
re
e
C
h
o
ic
e

S
u
b
-C
o
n
se
rv
a
ti
v
e

D
e
a
d
lo
ck

S
ta
te
M
a
ch
in
e

M
a
rk
e
d
G
ra
p
h

S
o
u
rc
e
T
ra
n
si
ti
o
n

E
x
te
n
d
e
d
F
re
e
C
h
o
ic
e

S
o
u
rc
e
P
la
c
e

Q
u
a
si
L
iv
e

P
a
ra
m
et
e
ri
z
e
d

L
iv
e

S
a
fe

S
in
k
T
ra
n
si
ti
o
n

C
o
n
n
e
c
te
d

L
o
o
p
F
re
e

C
o
n
se
rv
a
ti
v
e

N
e
st
e
d
U
n
it
s

Eratosthenes ?

CSRepetitions ? ? ? ?

TokenRing ? ?

IBM703 ?

PhilosophersDyn ? ? ? ? ?

A Model Checker Collection for the Model Checking Contest 391

The MCC results are provided in the form Tool, Instance,Examination →
Time,Memory, where Instance is the combination of a Model and its Parameter.
Using these results and the information about model characteristics, we can
evaluate which tools are best-suited for a model with certain characteristics.
Self-evidently the term “best-suited” varies depending on the application. We
might e.g. be interested in choosing the tool that computes the highest number of
instances for a model, requires the least amount of time or resources, or produces
the fewest of errors.

To perform this selection empirically mcc4mcc employs machine learning tech-
niques to choose the best-suited tool. The principle of machine learning is “to
predict the future based on the past” [19]. This means that existing data is
analyzed and used to draw conclusions about new data.

There are numerous different analysis techniques, of which we use a subset
that is commonly referred to as classification algorithms. These kinds of problems
typically involve an existing data set providing observations and their classifica-
tion, i.e. their correlated value. This data set is referred to as learning or training
set. Through analysis of this data set, classification predictions can be made for
new data, i.e. the test set.

For mcc4mcc five of the algorithms provided in the scikit-learn [22] Python
library were evaluated:

k nearest neighbors [26] This algorithm places the data points in a multidi-
mensional coordinate system. New data is classified by choosing a predefined
number (i.e. k) of neighbours based on the Euclidean distance (or different
distance measure) and choosing the best-suited classification using this infor-
mation – usually the most common class amongst the neighbors.
Support vector machines [9] represent data as points in space, divided by
a clear gap that is as wide as possible. This algorithm builds a hyper-plane
based on the inner product of the new data’s vectors and all observation’s
vectors.
Neural network classification [17] uses a learning algorithm that estab-
lishes a layered graph. The data is mapped onto the input layer which repre-
sents the data’s features. Each node (neuron) in the graph takes input from
the previous layer, performs a small calculation and offers this information
to the following layer adding a weight measure. The final (output) layer is
the classification. Using the learning set it is possible to adjust the weight of
individual neurons to guide the classification.
Naive Bayes classifier [24] This method uses the Bayes theorem [6] to
calculate the new data’s membership probability for each class. The class
with the highest probability is chosen.
Decision Trees [5] The creation of a decision tree is a supervised learning
method where characteristics are used to create a tree structure. The nodes
in this tree are decision points on individual characteristics, the classes are
the leaf nodes of the tree. Decision trees can be represented simply using
highly nested if-then-else nodes. The goal of the algorithm is to find data
characteristics that serve as discriminators for the classification.

392 D. Buchs et al.

In order to evaluate the algorithms’ efficiency, it is interesting to compute the
score that mcc4mcc would have obtained during the Model Checking Contest.
Table 4 provides these results, where the score is computed by awarding 12 points
to a tool whenever it can find an answer for an instance and examination, and 2
points if it uses the least amount of time or memory. Note that the computation
of the scores differs slightly from the rules of the Model Checking Contest for
simplicity of implementation. For instance, the score is computed for each tool,
instance and examination, whereas the Model Checking Contest computes a
score for each formula contained in the examination. Multipliers depending on
the status of models (known, stripped or unknown) are also not applied in the
custom scoring function of this paper. Thus the reader can observe that the
scores provided in this article do not correspond to the scores available on the
webpage7 of the contest.

Table 4. Comparison of scores for tools and machine learning algorithms

T
o
ta
l

S
ta
te
S
p
a
c
e

U
p
p
e
r
B
o
u
n
d
s

Reachability CTL LTL

C
a
rd
in
a
li
ty

D
e
a
d
lo
ck

F
ir
e
a
b
il
it
y

C
a
rd
in
a
li
ty

F
ir
e
a
b
il
it
y

C
a
rd
in
a
li
ty

F
ir
e
a
b
il
it
y

– Decision Tree 11.173 1.171 1.266 1.228 1.241 1.235 1.240 1.262 1.233 1.293

– SVM 10.919 566 1.287 1.260 1.253 1.269 1.281 1.324 1.316 1.360

– Neural Network 10.552 426 1.224 1.268 1.220 1.253 1.270 1.241 1.319 1.237

LoLA 10.540 0 1.287 1.335 1.253 1.345 1.318 1.324 1.316 1.360

– KNN 9.889 584 1.259 1.232 962 1.243 1.245 1.245 1.062 1.053

LTSMin 8.680 718 1.051 1.039 594 1.044 1.043 1.043 1.088 1.057

ITS-Tools 6.746 989 680 747 851 745 522 594 830 785

– Naive Bayes 6.406 975 632 743 824 775 749 750 599 355

Marcie 4.392 907 671 539 642 577 514 539 0 0

Tapaal 4.391 435 325 768 761 612 837 650 0 0

GreatSPN 4.211 1.052 742 438 645 441 464 424 0 0

Tina 1.096 1.096 0 0 0 0 0 0 0 0

Smart 714 714 0 0 0 0 0 0 0 0

Spot 632 0 0 0 0 0 0 0 632 0

4 Conclusion and Future Works

This article presents the Model Checker Collection for the Model Checking Con-
test (mcc4mcc). Our tool acts as a wrapper around the tools that participate in
the Model Checking Contest (MCC), hosted annually at the Petri Nets confer-
ence. Using the tools of the 2017 edition and knowledge about their performance,
we employ empirical evaluation to choose the most-suited tool for a problem.
7 https://mcc.lip6.fr/2017/results.php.

https://mcc.lip6.fr/2017/results.php

A Model Checker Collection for the Model Checking Contest 393

Our research contributions are two-fold: First, we present how the packaging
of tools in virtual containers is beneficial in terms of disk space and orchestra-
tion. mcc4mcc relies on Docker images, which are light-weight and closer to the
execution hardware, to provide the execution environment. We provide proof-of-
evidence of this efficiency by reducing the required disk size of the distributed files
by over 85% on average. This allows easier distribution and execution. Docker
has been further shown to be more resource efficient as it does not need to
emulate an entire operating system, but merely the necessary applications.

Our second contribution, the choice of tool based on an empirical evaluation
of existing model checking results uses this framework. This paper introduces
the five machine learning algorithms employed for the evaluation and shows that
three algorithms have the potential to achieve a higher overall score than the
2017 MCC winners. While mcc4mcc still has potential for improvement, it already
shows promising results, choosing well-performing tools amongst ten competi-
tors. Our tool has been published online8 so that others might use information
for own analyses. To prove the efficacy of our tool, mcc4mcc participates in the
2018 Model Checking Contest.

Although our research shows promising results, we do plan on adding further
improvements. We subsequently list the most important ones:

Firstly we plan to augment the prediction capabilities of our machine learning
engine, by using additional machine learning algorithms, and adding domain-
specific customizations. Additionally we plan on adding the results of all previous
MCC competitions to increase the learning data set. To ease the storage and
analysis of results we are planning a homogeneous data format that can be
used with a standardized API. We propose a collaboration with the Petri nets
repository [12], which already contains all the MCC models of the alongside their
characteristics.

Second, mcc4mcc allows us to discover which model characteristics are most
important when selecting the best tool. We can further use the data to propose
new characteristics to the MCC organizing committee.

Third, due to specific requirements we were not capable of creating virtual
container images for all 2017 MCC tools. We propose a collaboration with tool
developers in order to help them create virtual container images themselves. Next
to the facilitated distribution, tool developers can then rest assured knowing that
the tools are correctly installed and executed in their intended environment.
We believe that this will ease the requirements to support different operating
systems and configurations. We also plan to create containers for tools that have
been developed within our team, and have competed in previous editions of
the MCC: AlPiNA [13], StrataGEM [4], and Yadd [23]. The CosyVerif [1] and
Ardoises [18] projects, that aim at creating an environment for formal modeling
and verification should also use the containers of the various tools.

Lastly, we propose to change the MCC’s submission format to virtual con-
tainer images. The use of such containers requires less effort, disk space and
system knowledge, while maintaining the same advantages of virtual machines.

8 https://github.com/cui-unige/mcc4mcc.

https://github.com/cui-unige/mcc4mcc

394 D. Buchs et al.

As this change could have a great impact on the infrastructure of the contest, it
should be carefully discussed and tested with the organizers.

References

1. André, É., Lembachar, Y., Petrucci, L., Hulin-Hubard, F., Linard, A., Hillah, L.,
Kordon, F.: Cosyverif: an open source extensible verification environment. In: 2013
18th International Conference on Engineering of Complex Computer Systems, Sin-
gapore, 17–19 July 2013, pp. 33–36. IEEE Computer Society (2013)

2. Bernstein, D.: Containers and cloud: from LXC to Docker to Kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

3. Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Third
International Conference on the Quantitative Evaluation of Systems (QEST 2006),
Riverside, California, USA, 11–14 September 2006, pp. 123–124. IEEE Computer
Society (2006)

4. López Bóbeda, E., Colange, M., Buchs, D.: StrataGEM: a generic Petri net veri-
fication framework. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS,
vol. 8489, pp. 364–373. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07734-5 20

5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont (1984)

6. Broemeling, L.D.: Bayesian Analysis of Linear Models. Statistics: A
Series of Textbooks and Monographs. Taylor & Francis, London (1984).
https://books.google.ch/books?id=b8wPjIm9wcYC

7. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: graphical
editor and analyzer for timed and stochastic Petri nets. Perform. Eval. 24(1–2),
47–68 (1995)

8. Ciardo, G., Miner, A.S.: SMART: the stochastic model checking analyzer for reli-
ability and timing. In: 1st International Conference on Quantitative Evaluation
of Systems (QEST 2004), Enschede, The Netherlands, 27–30 September 2004, pp.
338–339. IEEE Computer Society (2004)

9. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, Cambridge
(2010)

10. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 - a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

11. Heiner, M., Rohr, C., Schwarick, M.: MARCIE – model checking and reachability
analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013.
LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38697-8 21

12. Hillah, L.M., Kordon, F.: Petri Nets Repository: a tool to benchmark and debug
Petri Net tools. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS,
vol. 10258, pp. 125–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57861-3 9

13. Hostettler, S., Marechal, A., Linard, A., Risoldi, M., Buchs, D.: High-level Petri
net model checking with AlPiNA. Fundam. Inf. 113(3–4), 229–264 (2011)

https://doi.org/10.1007/978-3-319-07734-5_20
https://doi.org/10.1007/978-3-319-07734-5_20
https://books.google.ch/books?id=b8wPjIm9wcYC
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-38697-8_21
https://doi.org/10.1007/978-3-642-38697-8_21
https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/978-3-319-57861-3_9

A Model Checker Collection for the Model Checking Contest 395

14. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 16

15. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

16. Kordon, F., et al.: Report on the model checking contest at Petri nets 2011. In:
Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn,
J., Kristensen, L.M. (eds.) Transactions on Petri Nets and Other Models of Con-
currency VI. LNCS, vol. 7400, pp. 169–196. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35179-2 8

17. Kubat, M.: Neural Networks: A Comprehensive Foundation by Simon Haykin.
Macmillan, Basingstoke (1994). ISBN 0-02-352781-7. Knowl. Eng. Rev. 13(4), 409–
412 (1999)

18. Linard, A., Buchs, D.: Ardoises: collaborative & interactive editing using layered
data. In: 17th International Conference on Application of Concurrency to Sys-
tem Design, ACSD 2017, Zaragoza, Spain, June 25–30, 2017, pp. 136–145. IEEE
Computer Society (2017)

19. Mitchell, T.M.: Machine learning. McGraw Hill Series in Computer Science.
McGraw-Hill, New York (1997)

20. Negus, C.: Docker Containers, 2nd edn. Addison-Wesley Professional, Boston
(2015)

21. Pan, Z., He, Q., Jiang, W., Chen, Y., Dong, Y.: Nestcloud: towards practical nested
virtualization. In: 2011 International Conference on Cloud and Service Comput-
ing, CSC 2011, Hong Kong, 12–14 December 2011, pp. 321–329. IEEE Computer
Society (2011)

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

23. Racordon, D., Buchs, D.: Verifying multi-core schedulability with data decision
diagrams. In: Crnkovic, I., Troubitsyna, E. (eds.) SERENE 2016. LNCS, vol. 9823,
pp. 45–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45892-2 4

24. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach. Prentice Hall
Series in Artificial Intelligence, 2nd edn. Prentice Hall, Upper Saddle River (2003)

25. Schmidt, K.: LoLA a low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44988-4 27

26. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-neighbor methods in learning
and vision. IEEE Trans. Neural Netw. 19(2), 377 (2008)

27. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 20

https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/978-3-319-45892-2_4
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/978-3-662-46681-0_20

Arduino Library Developed for Petri Net
Inserted into RFID Database and Variants

Carlos Eduardo Alves da Silva,
José Jean-Paul Zanlucchi de Souza Tavares(&),

and Marco Vinícius Muniz Ferreira

Universidade Federal de Uberlândia, Uberlândia, Brazil
dasilva.carloseduardo@hotmail.com,

jean.tavares@ufu.br, marcomuniz@outlook.com

Abstract. This work has the purpose of present the implementation of an
innovative approach called PNRD (elementary Petri Net inside a RFID dis-
tributed Database) and its variation, the inverted PNRD. In this approach, the
theoretical model widely studied and developed of Petri Nets is the base to
define a data structure to be recorded in RFID tags. The tags are used as an
object distributed database. The result is a highly adaptive, distributed, scalable
and applicable control system. Therefore, this work describes the design,
implementation, and validation of a library for the Arduino® platform which
simplifies the development of new applications that uses the PNRD approach as
well as the inverted PNRD.

Keywords: Petri net � RFID � PNRD � Inverted PNRD

1 Introduction

Radio frequency identification (RFID) is a wireless communication technology that lets
computer read the identity of inexpensive electronic tags from a distance [1]. This
technology is based on the detection and modulation of electromagnetics signals cre-
ated by RFID readers and emitted by antennas. The RFID tags can store information
and respond to the reader signal to pass their data. Typically, the tag is associated with
an item which is tracked thought a production or distribution system. Although there
are many applications for this technology, such as access control, department store
security, equipment tracking, baggage and logistics [2], its usage is usually linked with
a back-end database which contains the information of several tagged items. This
database is used to control the system. This solution depends on a network infras-
tructure connecting all RFID readers, computers, and subsystems to track items and
control the application. As presented in [3] mobile application have connectivity issues.
This issue can block an entire system if there is only a centralized approach work on it.
In order to reach a more reliable system, a contingent and complementary solution
would be desirable.

Petri nets are a graphical and mathematical modeling tool applicable to many
systems [4]. They can be used to analyze systems characterized as being concurrent,
asynchronous, distributed, parallel, nondeterministic, and/or stochastic. Such versatility

© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 396–405, 2018.
https://doi.org/10.1007/978-3-319-91268-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_22&domain=pdf

makes the Petri nets applicable on the description and visualization of complex
workflows systems as YAWL [5].

A different approach regarding the RFID systems and Petri net was proposed by
[6]. Instead of relying on a unique database, they used the tags themselves as a disperse
database. Therefore, they defined a formal data structure based on the Petri nets model
that contains information about the current state of the item as well as the process it
belongs. Such data structure is stored in the tags and it is updated through the process
execution. This new approach is called Elementary Petri Nets inside RFID Database
(PNRD). Another approach called iPNRD [7] or inversed PNRD changes Petri net data
structure between RFID readers and tags compared to the original approach.

To improve the use of the PNRD for different applications, a library was developed
for the Arduino® platform. This platform was chosen as a starting point to prototype
future low-cost embedded systems. In addition to that, the Arduino® platform also have
a large developer community and the variety of compatible electronics systems that
includes some RFID readers.

The next section shows the PNRD approach, so that the library can be presented
more clearly in Sect. 3. There are two applications in Sect. 4: the first one is a PNRD
approach while the other one is an iPNRD approach. At last, Sect. 5 presents this paper
conclusions, followed by the acknowledgment and references.

2 PNRD Approach

PNRD is a formal data structure based on the elementary Petri Net formalism or
Low-Level Petri Net (LLPN) [6] created to integrate the RFID system with the Petri
nets model. It assumes that the process in which the tags are inserted can be described
by a Petri net model, so that the workflow of the tagged item can be defined by an
incidence matrix (AT) and its current state by a marking (Mk). These two information,
along with the tag ID and a timestamp, characterize the typical tag data structure of a
PNRD. The timestamp is included so it is possible to analyze time related performance
indicators in the process. The antennas and RFID readers, on the other hand, are
responsible for the definition of the adequate trigger vector (uk) in each situation. The
equation that defines the next marking is as follows (Eq. 1):

Mkþ 1 ¼ Mk þAT � uk k ¼ 0; 1; 2; . . .:; n ð1Þ

If the result is a marking with negative values, it means there weren’t enough
tokens to fire the transition, and the result of the firing is perceived as an exception.
This exception analysis allows the PNRD to automatically detect and handle errors at
runtime.

In this context, a set of information is needed to determinate the trigger vector, this
set may include the tag ID, tag state, antenna ID, and other additional data [8]. In a
similar way, a transition is not necessarily linked to a unique antenna. Consequently,
the addition of more antennas performing the same type of function does not result in a
change in the system control. This allows the system to be able to include more
machines without undergoing a major modification on its operation. Therefore, the

Arduino Library Developed for Petri Net Inserted into RFID Database 397

PNRD approach helps in the scalability of the process control system. Another feature
of the PNRD is the distribution of process data in the tags and readers, reducing the
necessity to query a central database, speeding up the data flow and lowering local
network costs.

If the PNRD approach can be used to control passive items through a workflow, the
inverted PNRD (iPNRD) can be used to control active agents that moves in different
places [7] generating a variation of original PNRD. In this approach, the tag contains
the trigger vector rather than the token vector and the incidence matrix. This variation
was developed in the context of search and rescue of people on walking trails for
robots. It makes the PNRD concept practical in applications in which the installation of
RFID readers at transition points is too costly. The inverted iPNRD uses mobile RFID
antennas to read labels positioned at fixed transition points. Thus, the RFID reader is
responsible for storing the marking of the system, while the tag determines its tran-
sition. An exception in this context indicates that the RFID antenna carrier is following
the wrong path or performing an action it is not supposed to do. This new approach
also brought a need to store a history of the readers that visited the tag. In the search
and rescue application, for example, it would be essential to determinate which people
went through a route.

3 Library Overview

The library was developed using the object-oriented programming paradigm to pro-
mote the understandability and usability of the library. The Arduino® Library devel-
oped is divided in three modules, which were organized in a top-down hierarchy [9] as
indicated by the Fig. 1. The Petri nets module is responsible for the mathematical base
of the library. It defines the marking, trigger vector and incidence matrix, computes the
resultant marking in firing events and check for exceptions. The PNRD module inte-
grates the RFID system with the Petri nets module. It can select which kind of
information is going to be stored on the tags. Consequently, it can support iPNRD
applications and other variants. It can also automatically create a tag history containing
the state of the tag, the reader Id and the timestamp of the more recent fire events. The
PN532 Reader module handles the communication between a tag and a specific reader
installed in an Arduino® - the Elechouse’s NFC PN532 RFID module V3.

Each module intrinsically depends only on its predecessor. In other words, the Petri
nets module can be used separately for purposes other than developing PNRD applica-
tions. As it contains the mathematical base of Petri nets firing, it may be useful for
developing Petri-nets-based state-machines or communication protocols. In the Petri nets
module each transition can be associated with a Boolean condition. The transition can
only be fired if the associated condition is true. This tool is used so that the application can
define which transition to fire in the case of a conflict. The PNRD and Petri nets modules
are independent from the third module to allow these modules to be compatible with
different types of RFID readers. This effect was achieved through the usage of an abstract
adapter class of the PNRD module that can be used as base for implementation of
different kinds of readers. The PN532 Readermodule contains the implementation for the
Elechouse’s PN532 reader, however others can be added in future development.

398 C. E. A. da Silva et al.

The software development was guided by the constraints faced when dealing with
embedded systems. The very limited memory size and processing power of the
Arduino® platform compelled the development process to focus on the optimization of
the core methods and memory usage of its data structures. Having those considerations
in mind, instead of organizing the encapsulated data to match an incidence matrix, the
arcs information is stored in adjacency lists. Each transition has two adjacency lists,
one containing its inputs places and other containing its output places. Therefore, in the
case of a fire event, instead of testing each element of a matrix column to search for
inputs and outputs of the transition, it is only necessary to go through the lists. In
practical cases, the adjacency list data model will be more efficient to calculate fire
events and often be less memory consuming. Most of the Petri nets models have a very
limited number of input and output places per transition. Elementary Petri nets, which
are the basis of PNRD, have this characteristic in the extreme. To stay safe and its
marking to be limited to one token, each transition must have one input and one output
only.

In an incidence matrix, each element consumes two bits of information, because it
can have three different values: 1, 0, −1. In the adjacency list each element consumes the
quantity of memory large enough to store the code of the place. The library uses an 8-bit
code to define a place. Consequently, for safe Petri nets with more than 4 places, the
adjacency list data model becomes less memory consuming. There were other aspects
analyzed before deciding for the adjacency list approach, the resume of these analysis is
shown in Table 1. The main downsides of applying an adjacency list structure is an
increase of the complexity in the setting of the Petri net’s arcs and in the determination of
the relationship between a determinate place and a transition. The first is an operation
that occurs mostly in the configuration process, executed only once in an application.
The second operation is rarely necessary. Therefore, the better performance in the firing
computation, which occurs continuously and several times in most of the applications,
makes the tradeoff worthy.

Fig. 1. Architecture of the library modules and their main features

Arduino Library Developed for Petri Net Inserted into RFID Database 399

The library also tries to avoid memory fragmentation, which is a problem that may
occur when the application constantly reallocates memory during its execution. The
result of this action is the portioning of blocks of free memory separated by blocks of
memory in use, in such a way it becomes impossible to allocate a large block of
memory, because none of the available blocks have the required size. This problem is
commonly addressed by the operational system or by allocation algorithms that reor-
ganize the memory blocks. However, the Arduino® platform is deprived of an oper-
ational system and the usage of allocation algorithms capable of rearranging memory
blocks would come with a computation cost and a EEPROM memory cost, reducing
the library performance and the total memory available for the application code. The
solution found to this issue is to use mainly static size data structures, to avoid real-
location of memory. This choice makes the library more reliable in long-term execu-
tion, however it limits the application. One example of limitation caused by this option
is that it is mandatory to inform the maximum quantity of transitions and places upon
the creation of an object of the PetriNet class. Therefore, any tags containing a Petri net
model with a bigger quantity of transitions and places can’t be treated by this object. It
is also recommended to define the maximum amount of outputs and inputs that each
transition can have, so the data structure occupies less memory.

Because of the current limited size of the RFID tags ─ 128 KB at most ─ the
library has a limitation of a maximum of 255 places and 255 transitions for the Petri net
model. Due to the possibility of future adaptation of this library for custom assembled
embedded systems, the size of the Arduino® memory wasn’t taken into account in the
design of this intrinsic limitation. Therefore, depending on the application configura-
tion, on the type of Arduino® used and on the RFID tag used, the size limitation can be
more restrictive.

Table 1. Analysis of the incidence matrix and adjacency list data structures performances.

Comparison parameters Structure Comparison Better performance
structureIncidence

matrix
Adjacency list

Necessary memory (bytes) t� p
4

tðmaxin þmaxoutÞ Depends on the
Petri net density

Setting an arc O(1) O(kin) or O(kout) Incidence matrix
Determinate the relation between
a transition and a place

O(1) O(kin + kout) Incidence matrix

Verifying if a transition firing
results in exception

O(p) O(kin) Adjacency list

Computing a transition firing
event

O(p) O(kin + kout) Adjacency list

t = number of transitions;
p = number of places;
kin = quantity of places in the input list;
kout = quantity of places in the output list;
maxin = maximum quantity of input places;
maxout = maximum quantity of output places;

400 C. E. A. da Silva et al.

To implement both iPNRD and PNRD applications, the library allows the setting of
which kinds of information will be saved in the tags. Considering an application using
classical PNRD, the adjacency list information and the token vector must be saved in
the tag. In contrast, in a iPNRD application the trigger vector must be stored in the tag.

As it is possible to set separately each of the data structures to be recorded in the
tag, it is possible to create other variations of the PNRD and iPNRD approaches,
although only PNRD original and iPNRD original have been in use. Table 2 specifies
the main possible arrangements of data between the reader and the RFID tag.

In addition to these Petri net-based information, the library also makes it possible to
record the Boolean conditions state in the tag as well as a tag history, with the result of
the latest fire events of the tag.

4 Application Implementation

The usage of the library to implement a PNRD application can be divided in three
phases.

1. Firstly, it is important to set the initial configuration of the application. The program
needs to instantiate the reader and PNRD objects, start the reader communication
and define the data structures to be recorded on the tag.

2. After that, the application can retrieve the information from a tag and realizes a
firing and other associated actions, depending on the tags state.

3. Finally, the application updates the information in the tag, so the system can
continue its workflow.

To illustrate a simple PNRD application, consider a factory that produces bearings.
After the production of a specific part, it is necessary to inspect evaluating the
roughness of its surface. If the test fails, the part is placed in a queue to be reworked. If
the tests conform to standards, the piece is stored in stock.

Considering a PNRD approach, each machined part is endowed with an RFID tag.
This tag contains the Petri net incidence matrix information and the current tag vector.
At the beginning of the process, the initial marking is the same as that shown in Fig. 2.

Table 2. Arrangement of data between reader and RFID tag

Formalism Reader Tag

PNRD Original uK MK and AT

Variant 1 AT MK and uK
Variant 2 MK AT and uK

iPNRD Original MK and AT uK
Variant 1 MK and uK AT

Variant 2 AT and uK MK

Arduino Library Developed for Petri Net Inserted into RFID Database 401

The machine that checks the cylindricity of the piece is equipped with an RFID
reader/antenna. The reader/antenna, when perceiving a new part, acquires its data, in
other words, its marking and its incidence matrix. It performs the transition T0 firing,
computes the tag next state and updates the tag information. Then, in accordance with
the new tag status, it sends a command to begin the test. Depending on the test result,
the verification system sends a message to the PNRD application. Depending on the
message received, the PNRD application fires whether the T1 or the T2 transition and
updates the tag’s new token vector. After firing the transition T1 or T2, the piece is sent
to recycling or to the stock. Both places are equipped with RFID antennas that read the
label and try to fire a new transition. If the result of this firing is an exception, the
system realizes the piece was not sent to the correct place. Likewise, untested parts sent
to the stock will be detected.

To simulate this system, three different Arduinos® Mega were used, each one
equipped with a different RFID reader. The first one made the initial recording of the
tag, storing the information of the incidence matrix of the process and the initial
marking. The second one is the machine responsible for the verification of the parts.
The test was simulated with two buttons as illustrated in Fig. 3, the yellow one indi-
cated that the part was approved, the red one indicated it was reproved. The last
Arduino® was the stock manager. It determinates whether the part could be put on the
stock or not.

The result of this simulation can be seen in the Fig. 4 that indicates the Arduino® 2
and 3 log messages. The tags with ids DF and EF, were accepted in the test, so they
could be stored in stock. The tag id 6F was rejected, therefore it caused an exception.
After the exception the system indicates that the tag has a token in P3 (rework queue).

As an example of an iPNRD application, it was developed the code for the simulation
of two different robots. One roaming a circle of tags clockwise through five different
regions, and another roaming the circle anti-clockwise using the same regions. Each tag
contained a trigger vector with one different transition is settle down in each region. The
only difference between the robots was the initially defined incidence matrix.

The Petri model for the clockwise robot, a physical schema, and the result of this
simulation is presented in the Fig. 5. The PN model presents five places (P0 to P4)
related with each region, and five transitions (T0 to T4) attached to each tag. P0 is the
initial marking. The figure contains a scheme of the tags spatial disposition as well as
the log messages of a robot that should follow the clockwise sense. However, after the
transition T3, it goes the wrong way and returns to the tag containing the transition T1.
The result is an exception.

Fig. 2. Petri model of the verification process of a tagged bearing part

402 C. E. A. da Silva et al.

Fig. 3. The assembly of an Arduino® simulating a machine that realizes roughness tests. (Color
figure online)

Fig. 4. Log messages from Arduinos® 2 (on the left) and 3 (on the right).

Fig. 5. Petri model and simulation of a robot following a circular track of tags clockwise. On the
left the scheme of the tags, on the right the robot log messages.

Arduino Library Developed for Petri Net Inserted into RFID Database 403

Those examples are illustrative problems in which the library could be applied.
However, real applications tend to have more intricate workflow and, consequently, a
more complex Petri net model. Although the increase of the model complexity, the
control process remains the same. It continues following the simple steps of configu-
ration, getting the tag data, performing a firing event, and updating the tag information.
Consequently, in complex systems it becomes easier to use this kind of approach than a
set of intricate network messages. It is noticeable that even the communication between
devices is facilitated because the process information flows alongside the tags.

5 Conclusion

The Arduino® library described in this article is a developing interface for the
implementation of PNRD and iPNRD applications as well as other variants of dis-
tributed data based on Petri nets and RFID systems. The fact the library was developed
for an embedded system platform causes it to have certain limitations regarding the size
of the Petri net model of the application. Nevertheless, it can be used in several contexts
as a developing framework for process control systems. It also can be associated with
Petri net analysis tools to store a more reliable and efficient PN process.

The library and the PNRD/iPNRD transform the system into a distributed system in
which the logic is spread between devices using well known and low-cost microcon-
trollers. There are three PNRD implementation types and three iPNRD implementation
types and only one was explored. The original PNRD is usually applied to manufac-
turing industries where the product follows a path in the production line and there is a
need to monitor the evolution of the product through the factory. The PNRD variant 1
or iPNRD variant 1 can be applied to update systems configuration. In this case this
approach can be a setup for the system to change its’ Petri net data. Studies on these
variants should be further developed. The PNRD variant 2 also works on manufac-
turing industry as a reactive system. A tag attached to a product can change the marking
in a machine, so another action can be trigged in an assembly line. This approach does
not work as a exception state detection such as the original approach. The original
iPNRD can be applied to mobile robots in swarms where the robot carries the marking
and the incidence matrix, while the environment or another device carries the trigger
vector. In this scenario, the marking is related to robot’s behavior. The iPNRD variant 2
is applied to systems where the tag stores only information of the marking, such as, in a
timed traffic light where the tag must store the color (red, orange, or green), and the
reader has the trigger vector and the incidence matrix to toggle colors.

In further development, this library will be used to control the behavior of coop-
erative robots and can be applied as an easy to implement, scalable, and error handling
control tool. New types of readers must be incorporated.

The PNRD approach must be integrated with typical centralized RFID solution and
a complete centralized and distributed system can be designed to be complementary
and contingent to each other.

404 C. E. A. da Silva et al.

The library developed is open source and available at: ftp://ftp.mecanica.ufu.
br/LIVRE/MAPL/ArduinoPnrdLibrary.zip. It presents some examples that illustrates
how to use the library.

Acknowledgement. CAPES, CNPQ, FAPEMIG and UFU supported this research.

References

1. Nath, B., Reynolds, F., Want, R.: RFID technology and applications. IEEE Pervasive
Comput. 5(1), 22–24 (2006)

2. Ahsan, K., Shah, H., Kingston, P.: RFID applications: an introductory and exploratory study.
Int. J. Comput. Sci. Issues 7(3), 1–7 (2010)

3. Kristensen, L.M., Taentzer, G., Vaupel, S.: Towards verification of connection-aware
transaction models for mobile applications. In: Proceedings of the International Workshop on
Petri Nets and Software Engineering (PNSE 2017), pp. 227–228 (2017)

4. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580
(1989)

5. ter Hofstede, A.H., van der Aalst, W.M.: YAWL: yet another workflow language. Inf. Syst.
30(4), 245–275 (2005)

6. Tavares, J.J.P.Z.S., Saraiva, T.A.: Elementary Petri nets inside RFID database (PNRD). J. Int.
J. Prod. Res. 48(9), 2563–2582 (2010)

7. Fonseca, J.P.S.; Tavares, J.J.P.Z.S.: Petri net with RFID distributed database for autonomous
search and rescue in trails and crossings. In: Proceedings of the International Workshop on
Petri Nets and Software Engineering (PNSE 2017), pp. 229–230 (2017)

8. Tavares, J.J.P.Z.S., Murofushi, R.H., Silva, L.H., Silva, G.R.: Petri net Inside RFID database
integrated with RFID indoor positioning system for mobile robots position control. In:
Proceedings of the International Workshop on Petri Nets and Software Engineering (PNSE
2017), pp. 157–176 (2017)

9. Meyer, B.: Object-Oriented Software Construction, 2nd edn. ISE Inc., Santa Barbara (1997)

Arduino Library Developed for Petri Net Inserted into RFID Database 405

OMPetri - A Software Application
for Modeling and Simulation Using
Extended Hybrid Petri Nets by

Employing OpenModelica

Christoph Brinkrolf(B) and Philo Reipke

Bioinformatics Department, Faculty of Technology,
Bielefeld University, Bielefeld, Germany
cbrinkro@cebitec.uni-bielefeld.de

Abstract. In this paper we present OMPetri, a new tool for model-
ing, simulation, and analyzing of a powerful unifying Petri net concept:
extended hybrid Petri nets (xHPN). The software features a modern,
lightweight, and intuitive graphical user interface that focuses on users
who are new to Petri nets, while also enabling experienced users to model
more complex and advanced systems. It has not been designed for any
specific application cases. Thus it is as universal as the related Petri net
formalism that can be applied for modeling systems of various research
areas, such as systems biology, business processes, and industrial work-
flows.

It greatly enables and simplifies the modeling of discrete, continuous,
and hybrid Petri nets. New models can be created and existing models
can be modified and improved quickly and easily due to two different
model views. During the process of modeling, the Petri net may change
its class (discrete, continuous, hybrid) and solving strategies for conflicts
can be defined.

The tool employs OpenModelica and the advanced Modelica Petri
net library PNlib to provide an elaborated and powerful simulation envi-
ronment. Additionally, it provides basic features to check and evaluate
the model and to analyze simulation results generated by the simulation
back-end.

Both, the tool, as well as OpenModelica are open source and free
of charge for academic usage. Java source code, executable JAR and a
tutorial are available at: https://agbi.techfak.uni-bielefeld.de/OMPetri.

Keywords: Petri net editor · User-friendly · Modeling · Simulation
Extended timed hybrid functional Petri net · xHPN · JavaFX
PNlib · OpenModelica

1 Introduction and Objectives

Modeling has always been essential for science and engineering to understand and
possibly to acquire new insights into complex systems. Due to decreasing costs for
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 406–415, 2018.
https://doi.org/10.1007/978-3-319-91268-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_23&domain=pdf
https://agbi.techfak.uni-bielefeld.de/OMPetri

OMPetri - A Software Application for Modeling and Simulation 407

computational resources, modeling became increasingly popular for applications
aside of classical scientific research, and it got more and more relevant for topics
such as business workflow or industry process optimization [1].

Modeling and simulating complex systems, nowadays, is often cheaper and
faster than performing real-world experiments, but the generation of a sensible
model requires existing knowledge of the system. This data might have been
acquired in previous experiments. The model based on such data should then be
able to reproduce the given results, and testing new hypothesis on a good model
can then lead to new insights of the modeled system.

There exist various modeling approaches, such as formal languages/
automata, ODEs, and graphs. The basic formalism of Petri nets [2], which can
be represented as graphs, has been extended over the past years. While this also
extended the general modeling capabilities of Petri nets, additional simulation
environments and software for analyzing generated results made them an even
more powerful approach.

The software environments for modeling, simulating and analyzing Petri nets
available today feature many different Petri net concepts and formalisms. How-
ever, these environments have often been designed for specific scientific topics,
mostly related to synthetic or systems biology (i.e. Cell Illustrator [3] and its
predecessor Genomic Object Net [4]). Additionally, the underlying Petri net
concepts mostly have not been well defined, so that the user does not have all
information about the simulation process to fully comprehend the simulation
results. For example, the usage of proprietary software and non-complete spec-
ified behavior for resolving conflicts (e.g. Snoopy [5]) are reasons for missing
transparency and black-box simulations [3,4].

We specified the following requirements for a modern and powerful Petri
net modeling and simulation environment that could possibly minimize most
limitations of already existing solutions:

– use a timed Petri net formalism, supporting at least HFPN [6]
– fully support this formalism in an easy to use graphical user interface (GUI)
– validate for model inconsistencies (e.g. syntax of mathematical expressions)
– support hierarchical structures
– autonomous and transparent simulation
– visualization of simulation results
– persistent models (import and export)
– best practice for code design and structure, modern technologies
– use open source software for Petri net formalism and simulation.

The xHPN formalism [7] is a powerful formalism for timed hybrid functional
Petri nets that is also featuring stochastic and functional components, as well as
conditions and strategies for conflict resolution. It is implemented as a Modelica
[8] library called PNlib [7]. The comprehensive library, as well as the Modelica
compiler shipped with OpenModelica [9], are both open source. Unfortunately,
there is no editor which supports all aspects of PNlib in a user friendly way,
until today.

408 C. Brinkrolf and P. Reipke

2 Simulation Back-End Technologies

The presented software does not implement a new, but relies on an existing, well-
elaborated and open source solution for its simulation back-end that features
OpenModelica and the Modelica language-based library PNlib.

2.1 Modelica

Modelica is a non-proprietary, object-oriented, equation-based language for com-
ponent-oriented modeling of complex systems developed by the non-profit Mod-
elica Association [10]. The free Modelica Standard Library offers a large set
of models, for example, libraries for electrical, magnetic, mechanical, or fluid
components, control systems, and functions.

2.2 xHPN and PNlib

The xHPN formalism has first been implemented in the Modelica library PNlib
to enable the graphical hierarchical modeling, hybrid simulation, and anima-
tion of processes in life sciences using timed Petri nets. Since then it has been
enhanced and improved to enable the modeling of various kind of processes,
including any technical or industrial applications. The PNlib allows to model
all features associated to an xHPN and transparently implements the activation
and firing process as well as solutions for conflicts. Additionally, it allows to
assign physical units to markings or transitions functions that can be validated
in order to assist the detection of syntax errors in mathematical expressions.

2.3 OpenModelica and the OMC

The Modelica open source environment OpenModelica is a modeling and simu-
lation environment for industrial and academic applications that is developed by
the Open Source Modelica Consortium (OSMC) [11]. Its goal is to create a com-
prehensive open source Modelica modeling, compilation, and simulation environ-
ment based on free software, distributed in binary and source code for research,
teaching, and industrial usage that allows the reuse and exchange of models in
a standardized format. While OpenModelica comes with a set of programs with
graphical user interfaces, its heart is the OpenModelica compiler (OMC). This
compiler can process Modelica source code and generate executable binary code,
for example a simulation of a PNlib model.

3 User Front-End Technologies

The front-end represents the actual software environment that provides all soft-
ware features to the user and maintains the connection to the simulation back-
end. It is written in Java 8, featuring JavaFX and the widely adopted Spring
framework.

OMPetri - A Software Application for Modeling and Simulation 409

3.1 JavaFX

JavaFX was completely revised in version 2 before it was finally released as a
fully-fledged part of JavaSE, making it the new standard toolkit for developing
graphical user interfaces in Java 8 [12]. Swing still exists but is since then in
maintenance-only mode, meaning that no new functionality will be added to it
in future. JavaFX is a toolkit for desktop (and potentially mobile) application
development, supporting model-view-controller (MVC) type architectures via
FXML files for defining a (mostly) passive view which can specify controller
classes using an attribute on the root element. This feature has been used to
decompose the GUI into various smaller, independent and therefore maintainable
modules.

3.2 Spring

The Spring framework [13] provides a comprehensive programming and con-
figuration model for modern enterprise applications with core features such as
dependency injection, aspect-oriented programming, MVC concepts, and Java
database connections. It usually finds heavy adoption for developing web ser-
vices. It has been implemented in OMPetri for its dependency injection and
inversion of control features that greatly simplify connecting of components
throughout an application.

4 Design and Implementation

To facilitate future extensions, maintainability and reusability, the applica-
tion implements two models that were designed and implemented in separate
libraries: data model and graphical model.

4.1 Data Model

The data model enables storing of Petri nets. It covers all elements and properties
of xHPN, as well as providing some additional features that further extend the
usability inside the developed software. This includes:

– arcs, places, transitions, and individual subtypes
– colours, weights, tokens
– functions, and function expression validation
– parameters, usable inside functions.

The model allows the modification of its components (adding, removing,
and editing of properties) while autonomously maintaining the model integrity.
The removal of an element is always validated before it is performed, and all
remaining references and related objects will be removed upon successful deletion
as well.

The data model library also provides the basic connection to the PNlib and
OpenModelica. Any model can be converted to a Modelica model which is impor-
tant for the process of simulation.

410 C. Brinkrolf and P. Reipke

4.2 Graphical Model

The graphical model has basically been designed to enable visualization of any
kind of directed or undirected graphs, providing a set of basic shapes that can
be styled dynamically using CSS. It is developed in a separate library and inside
the application it acts as the mediator between user and data model, allowing to
handle the visual representation separately from the Petri net data. This enables
functionalities, such as hierarchical structuring, without altering the model itself.
The chosen visualization for Petri nets adapts the visualization of HFPN [6].
Discrete elements have a single border and continuous elements have a double
border.

4.3 Architecture

The software has been implemented featuring a modern multi-layer architecture
in which presentation (view, controller), application processing, and data access
are separated. This highly facilitates future changes and extensions to the appli-
cation. Interaction between the various layers is facilitated by using dependency
injection.

View. The view (or GUI) has been implemented using FXML and is highly mod-
ularized, each window consists of multiple components that are joined upon con-
struction. Each frame gets assigned its own controller class. This highly increases
code readability and maintainability of controller classes.

Controller and Handler. The controller and handler classes manage all user
interactions, transform user inputs, and interact with the application processing
(service) layer.

Processing. Application processing is managed by various service classes that
mediate between the presentation layer (controller/handler) and the data access
layer (data/graphical model). This layer is used for validating user requests,
producing responses, and other nonspecific functionality.

Data Access. Access to the data and graphical model is granted only
through data access objects. They autonomously manage the application’s model
integrity by ensuring that no references remain inside the model upon remov-
ing an entity. Removing a place will also remove all connected arcs and related
parameters.

Simulation and Communication with OMC. For simulation, the selected
Petri net model is exported as a Modelica model. The OMC then compiles this
Modelica model using the PNlib and generates an executable simulation. The
simulation is executed while simulation results are sent via TCP/IP as a byte
stream to OMPetri and get processed and stored in OMPetri.

OMPetri - A Software Application for Modeling and Simulation 411

Data Import/Export. A Petri net model, as well as simulation results, can
be stored and loaded as XML file. Additionally, a JSBML import for a Petri net
is supported as well.

5 Graphical User Interface and Features

The GUI is composed of three different windows which are presented in the
following, as well as their main features.

5.1 Main Application Window

The main window features the general modeling and editing functionalities,
including the creation, export and import of models. To enhance operationality
and to improve support of working on large-scale Petri nets, two different views
are available: general graph view and inspector (or explorer) view.

Graph View. The graph view enables the user to create new and edit existing
Petri net models using a lightweight and well-structured interface which is shown
in Fig. 1. All menu panes can be minimized and expanded. While the general
panes on the left, such as model info, tools, and simulation options, are always
enabled, the identifier and property panes are only available when an element has
been selected. Element properties can be edited quickly by using the available
input fields. Malformed or conflicting inputs will be highlighted, and the changes
rejected. The graph view also enables the user to structure its model hierarchi-
cally, increasing productivity and the general readability of large-scale models.
Selected nodes can be clustered to a hierarchical node (tools pane Cluster) and
a hierarchical node can be flattened by Restore. If a selected place enables a
conflict, a conflict resolution strategy (probability or priority) can be chosen.
For each corresponding edge, if selected, the value of the resolution strategy can
be set. Options for simulating an active model can be specified in the simulation
pane, and the simulation can be started and stopped.

Features: visualization, modeling (adding/removing/connecting), editing
properties, input validation, hierarchical structuring.

Inspector View. The inspector view, shown in Fig. 2, features a different kind
of approach than the graph view. Instead of graphically visualizing the model
structure, the user can here work on the mere data. This is best suitable when the
general model has already been established and only certain element properties
must be changed. All available elements can be accessed from a list that can be
filtered using element names and/or labels. Selecting an element grants access
to its properties, also highlighting elements that are related, which are usually
all neighboring places/transitions and/or the connecting arcs.

It also grants access to the list of parameters that can be used inside the
functions of arcs and transitions. Parameters feature different types: global (can

412 C. Brinkrolf and P. Reipke

Fig. 1. Shows the interface of the graph view inside the main application window.
A model is always stored inside a tab, and the software can manage multiple tabs
at the same time. All titled panels in the graph view can be minimized or expanded
dynamically, and the panels on the right side are only visible when an element is being
selected, allowing to quickly edit element’s identifiers and properties.

be used across the entire Petri net), local (only usable for a specific element), and
reference (related to the value of an element during simulation, e.g. the current
token count of a place). While local and global parameters can be created by
the user, referencing parameters are managed by the application.

To support the creation and maintaining of functions, the inspector view pro-
vides an enhanced visualization of mathematical expressions by rendering them
using a LaTEX library. This comes along with a general syntax validation, as well
as ensuring that all used parameters are valid. In functions, a user can reference
the current token count of places or the current firing rate/speed of transitions
by simply typing an element’s name. In the background, the application will then
create a referencing parameter, linking it to that distinct element. Future name
changes of referenced elements will automatically reflect to the names specified
in a function.

OMPetri - A Software Application for Modeling and Simulation 413

Fig. 2. Outlines the modularization and features of the element inspector view. (1)
Navigation bar. (2) List of nodes. (3) Lists the element identifiers. (4) Lists elements
related to a select element. (5) Lists element properties. (6) Displays latest simulation
results. (7) Lists parameters and allows creation, editing, and removal of parameters.

Features: data listing, editing properties, input validation, function printing,
parameter management.

5.2 Result Viewer Window

The results viewer, shown in Fig. 3, features basic results visualization and analy-
sis features for generated simulation results. The user can open multiple windows
at the same time. Results can be added individually or for all places or transi-
tions of a model at once, displaying token counts over time, transition firing rates
or enabled-states, and/or the token flow across selected arcs. A handy feature
is that already chosen elements can be selected and future results are added to
the current chart automatically. Using checkboxes in the list of selected results,
data can be dropped, disabled, and/or added/removed for future simulation data
added to the chart.

Additionally, the application can export results using a combination of XML
and CSV. This enables the import of previous results and allows to reassign any
results to their models and elements.

Features: multiple windows, individual result selection, result comparison,
auto-adding results, result import.

414 C. Brinkrolf and P. Reipke

Fig. 3. Shows the result viewer window. The table on the left stores all data that has
been selected to be displayed in the current window.

5.3 Logging Window

The application also features its own logging service that currently forwards all
captured messages to an additional logging window. The window opens itself
on startup, but it can always be re-opened from the main window. Generally,
the user should not have to worry about any serious error messages being gen-
erated. However, it can still give additional information on why an action did
not take place as expected, for example when editing a model. Also, the logging
window prints all information that is generated when generating and running a
simulation using the OMC.

Features: notification logging, error logging, simulation logging.

6 Conclusion and Outlook

Petri nets are widely used to model and simulate various systems in research and
industry. The more complex the systems get, the more features have to be avail-
able in the chosen Petri net formalism. Beside the formalism, the transparency
of the simulation is important to fully understand the simulation results. Unfor-
tunately, there is no such Petri net modeling and simulation environment for
hybrid functional Petri nets. OMPetri closes this gap.

It features the xHPN formalism, implemented as Modelica library PNlib, a
formalism which also considers conflict resolution strategies, and simulations are
generated using the OpenModelica compiler. All components are open source.

OMPetri - A Software Application for Modeling and Simulation 415

Another advantage is its graphical user interface which is easy to use but still
comprehensive, providing access to all properties defined by the xHPN formal-
ism, supporting hierarchical modeling and the use of parameters and mathemat-
ical expressions which get validated and rendered using LaTEXengine, a feature
that is important especially for functional modeling.

The usage of modern technologies and its architecture facilitate future exten-
sions. Upcoming versions of OMPetri will feature the support of different time
concepts for transitions and the support of colored Petri nets.

References

1. Dotoli, M., Fanti, M.P., Giua, A., Seatzu, C.: Modelling systems by hybrid Petri
nets: an application to supply chains. In: Petri Net, Theory and Applications, pp.
91–112. InTech (2008)

2. Petri, C.A.: Dissertation: Kommunikation mit Automaten. Schriften des Rheinisch-
Westfälischen Institutes für Instrumentelle Mathematik an der Universität Bonn
(1962)

3. Nagasaki, M., Saito, A., Jeong, E., Li, C., Kojima, K., Ikeda, E., Miyano, S.: Cell
illustrator 4.0: a computational platform for systems biology. Silico Biol. 10(1),
5–26 (2010)

4. Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic Object Net: I. A platform
for modelling and simulating biopathways. Appl. Bioinf. 2(3), 181–184 (2003)

5. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying
petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol.
7347, pp. 398–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31131-4 22

6. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopath-
ways representation and simulation on hybrid functional Petri net. Silico Biol. 3(3),
389–404 (2003)

7. Proß, S., Bachmann, B.: Pnlib - an advanced Petri net library for hybrid pro-
cess modeling. In: Proceedings of the 9th International MODELICA Conference,
Munich, Germany, 3–5 September 2012, no. 76, pp. 47–56. Linköping University
Electronic Press, Linköpings universitet (2012)

8. Fritzson, P., Bunus, P.: Modelica - a general object-oriented language for con-
tinuous and discrete-event system modeling. In: Proceedings of the 35th Annual
Simulation Symposium, pp. 14–18 (2002)

9. Fritzson, P., Aronsson, P., Lundvall, H., Nyström, K., Pop, A., Saldamli, L., Bro-
man, D.: The openmodelica modeling, simulation, and software development envi-
ronment. Simul. News Eur. 44(45), 8–16 (2005)

10. Modelica: Modelica association. https://www.modelica.org/. Accessed 22 Jan 2018
11. OSMC: Open source modelica consortium. https://openmodelica.org/home/

consortium. Accessed 22 Jan 2018
12. Oracle: Java 8 documentation. https://docs.oracle.com/javase/8/docs/. Accessed

22 Jan 2018
13. Pivotal Software: Spring framework. https://projects.spring.io/spring-framework/.

Accessed 22 Jan 2018

https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1007/978-3-642-31131-4_22
https://www.modelica.org/
https://openmodelica.org/home/consortium
https://openmodelica.org/home/consortium
https://docs.oracle.com/javase/8/docs/
https://projects.spring.io/spring-framework/

GreatTeach: A Tool for Teaching
(Stochastic) Petri Nets

Elvio Gilberto Amparore(B) and Susanna Donatelli(B)

Dipartimento di Informatica, Università di Torino, Turin, Italy
{amparore,susi}@di.unito.it

Abstract. GreatSPN is a collection of tools for modelling and analysis
of systems using (stochastic) Petri nets. It features a modern Java-based
graphical interface. But being technologically advanced does not mean
that the tool learning curve is significantly simplified. In the tool the
simple features that are needed for educational purpose are intermixed
with more advanced features that require a deeper understanding of the
formalisms and of the solvers. This paper presents GreatTeach, a stream-
lined and enriched version of GreatSPN meant for teaching resulting from
our experience in teaching Petri nets to master students.

Keywords: GreatSPN · Teaching · Modelling · Verification

1 Introduction

Tools play a central role in teaching formal methods: most classes we know of
use some form of tool support to teach students the basic concepts and to let
them experiment the learned concepts on a (more or less realistic) examples with
the help of a tool. Petri nets are very appealing when it comes to teach for-
mal methods: the basics of the formalism are very simple (just the enabling and
firing rule), and there is a widely accepted graphical representation. But Petri
nets comes also in a large variety of definitions, with a rich set of analysis tech-
niques, so typically Petri nets tools are rather rich in features. Moreover many
tools also support the extension of Petri nets to consider time (non determinis-
tic or stochastic), which increases the complexity. Once decided to teach Petri
nets in a course, the teacher has a wide choice of tools that have rather diverse
characteristics: from very simple educational tools that concentrate only on the
token game, visualization of the incidence matrix and firing rule exemplifica-
tion like in [15], to very powerful tools like CPN-tools [14] a tool for construct-
ing, simulating, and performing analysis of Colored Petri Nets (CPN) models
(timed and untimed). CPN-tools has a large community of users, a book [13]
is available to learn the formalism, the tool and its industrial applications; the
book also includes a chapter on teaching CPN as a full course. A feature to
automatically grade student exercises (the Grade/CPN tool) is also available.
The tool is quite tight to colored Petri nets and the graphical interface has some
uncommon features, not obvious for newcomers. In between there are a large
c© Springer International Publishing AG, part of Springer Nature 2018
V. Khomenko and O. H. Roux (Eds.): PETRI NETS 2018, LNCS 10877, pp. 416–425, 2018.
https://doi.org/10.1007/978-3-319-91268-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91268-4_24&domain=pdf

GreatTeach: A Tool for Teaching (Stochastic) Petri Nets 417

number of tools stemming from research groups that are made available. Exam-
ples of tools for the definition and analysis of P/T nets, Stochastic Petri Nets
(SPN) and various extensions are the suite made of the trio Snoopy, Charlie, and
Marcie [11,12,16], GreatSPN [3], and TimeNet [20]. There are also tools that
have been initially developed for teaching, in particular as a platform for letting
students (and other researchers) add new analysis techniques, like, for example,
PetriDotNet [19] and the Snoopy suite to a certain extent. A comprehensive sur-
vey can be found in [17], while [19] includes a comparison table for various tools.

The authors of [8] advocate that students should use industrial-size tools:
indeed while it is true that a simple tool with few features it is likely to be more
portable and easier to learn, it is also true that, having to change tool to access to
more advanced features can significantly slow down the learning process. As far
as we know there is no tool that has been explicitly designed with the objective
of offering at the same time a rich set of analysis techniques and an easy-to-use
tool for lab classes.

Motivations and Objectives. As a teacher of a course in verification of con-
current processes for master students in computer science at the University of
Torino, one of the authors of this paper has taught for many years various for-
malisms and the associated analysis techniques. Students in the course learn
and experiment (colored) Petri nets and CTL with the support of GreatSPN,
guarded command languages and LTL/CTL with the support of nuSMV [10],
and timed automata with Uppaal [6]. The use of GreatSPN in the course has
been one of the main drivers behind the introduction of the new Java-based
graphical interface (GUI) of GreatSPN [2] a few years ago. Although with the
new GUI we observed a great increase in acceptance and appreciation from the
students (GreatSPN surpassed Uppaal in the preferences of the students), the
learning curve of the tool proved to be still quite steep. Observing the students
during the lab classes and examining their questions and e-mails we realized that
the students spent a significant amount of time in struggling among the numer-
ous options and features offered by the tool. And this aspect was not mitigated
neither by the precise indications given during lab classes nor by the availability
of a number of video tutorials. From our “observation in the wild” we concluded
that teaching requires the introduction of a “limitation of scope” in the tool.

We also observed, as many other teachers have done (see for example [8]) that
the learning approach of the students has significantly changed over the years
and that more and more the students tend to use the “learning by example”
approach. The authors of [8] conclude that “formal methods are best taught
by examples”. In our course we do not totally follow this paradigm, since the
course has also the learning objective of reading and writing formal statements
and definitions, but over the years we have inverted the order of presentation
of the material: we start with examples using the tools (we draw a net and we
play the token game) and drive back to the formal definitions, possibly with a
number of iterations. Of course to start with examples you need an adequate
tool support: for each learning objective there should be adequate graphical tool

418 E. G. Amparore and S. Donatelli

support. For example teaching decision diagrams (DD) for storing a reachability
set (RS) is much easier if the tool also visualize the RS in DD form. In a similar
manner, if I want to convey the information that DD size can heavily depend on
the variable order (place order) I can use examples of Boolean functions from
the literature or I can show a P/T net in which, by changing the place order
in the DD, the DD size changes significantly, which requires a tool in which it
is easy to change the variable order. In our experience this approach is effective
only if the tool provides the required features in a straightforward manner.

Based on the above insights we have decided to produce a streamlined and
enhanced version of GreatSPN [18], called GreatTeach. It is streamlined because
it presents to the user an easy access to a subset of the GreatSPN resources
(intended as Petri net classes, solution techniques, facilities) and it is enhanced
because it has some new visualization possibilities that have been introduced as
a support for teaching. At the same time all previous solvers are still available.

The paper develops as follows: Sect. 2 describes the architectural view of
the new interplay between GUI and solvers, Sect. 3 describes how GreatTeach
supports the learning objectives of a course on Petri nets, and Sect. 4 concludes
with a discussion of the current status of GreatTeach and of future work.

2 GreatTeach, an Architectural View

GreatSPN includes facilities for drawing and solving many classes of nets, but
for teaching we typically use only four of them: P/T nets and colored “well-
formed” nets (WN) [9] in verification courses; (Generalized) stochastic Petri nets
- (G)SPN [1] and colored extensions of Stochastic WN (SWN) [9] in performance
evaluation courses.

The Status Quo. GreatSPN does not have a strict enforcement of the net type,
which is instead computed “on-the-fly” depending on the included elements. For
example a P/T net becomes a GSPN if a rate is added to a transition, and a P/T
net becomes a WN if a color class is added to the net declarations. This choice is
coherent with the idea that qualitative (untimed) and quantitative (stochastic)
analysis should work in an integrated and synergistic manner.

Figure 1[A] shows the GreatSPN GUI for a P/T net. There are two menu
bars: a command bar with icons to “manage” a net and a “project” (set of nets
with associated measures) together with a few commands for quick analysis; a
net editing bar which is the drawing bar for the net displayed in the main canvas.
Tooltips are associated with the icons to make buttons self-explanatory. The net
editing bar is context sensitive: if a WN is loaded in the canvas the editing bar
shows additional elements, to include drawing elements for colors (color defini-
tion, color variables, etc.). The command bar instead is not context sensitive: so
the command bar for P/T in Fig. 1[A] includes the unfolding command (useful
only for colored nets). A similar situation is present for WN: the bar includes the
icons for the computation of P- and T-semiflows, for which there is no solution
algorithm in GreatSPN. If this feature is selected the tool notifies that this is

GreatTeach: A Tool for Teaching (Stochastic) Petri Nets 419

Net editing bar

Command barGreatSPN:

The command bar is
grouped by logic levels.

A0 and A1 commands
are context-sensitive.

GreatTeach:

Token Game. P-semiflows. T-semiflows. Place bounds.
Show RG. Unfolding. Model composition. Analysis (A1).

Command icons in the command bar:

[A]

[B]

Fig. 1. The GUI for P/T nets: GreatSPN (left) and GreatTeach (right).

not possible for colored net. This is not a problem for an expert user, but it is
annoying and quite distracting in lab classes.

Let us now consider how to an analysis when it is part, or when it is not
part, of the command bar. P-semiflows are on the command bar: by pushing
the button the P-semiflows are computed and graphically displayed in the main
canvas over the net and textually on a lateral canvas, without any input from
the user. A“close” button allows to come back to the normal net visualization.
Reachability graph (RG) computation and visualization is not on the command
bar. To run it the user has to: (1) go to the command bar and click the “add new
page” button; (2) select “add a new list of measures” from the drop-down menu,
which switches the GUI to the frame depicted in Fig. 2[A]; the figure depicts
the remaining steps that are: (3) select the Petri net for which to perform the
analysis; (4) select which target measure (in this case RG) to compute from the
drop-down menu of the “Add measure” button; (5) select which solver to use;
(6) set the additional parameters required by the solver (for example the type
of algorithm and the maximum number of markings that we want to graphically
display); (7) push the “compute” button, which opens a window with a log that
allows, if necessary, to kill the solution; (8) once the computation has terminated
push the “view result” button for the computed measure that, in this case, will
open a pdf file with the RG visualization as a graph. Obviously 8 steps for
an RG computation lead to a high cognitive load for a newcomer to the tool
(imagine having to explain this in a lab class), while they could be acceptable
for an expert, who may desire exactly this flexibility to try different solution
algorithms (there are many ways of computing the RG in GreatSPN).

420 E. G. Amparore and S. Donatelli

Uninitialized list of measures in GreatSPN.

3) Select model.

5) Select solver.

6a) Select solver mode.

4) Add solution
target (starts empty)

6b) All solver
parameters are
shown

Build the Reachability Graph after redesign (1 click) in GreatTeach.

Only relevant
solver parame-
ters are shown

Solver selection
is pre-initialized
and blocked.

Solution targets are
initialized automatically

[A]

[B]

Fig. 2. Calling a solution in GreatSPN and in GreatTeach.

GreatTeach Architecture. The previous example clearly shows that Great-
SPN and its GUI were designed for researchers, and that using a research tool to
teach, although very desirable in our opinion, may not be effective with students.
We have therefore re-structured the interplay between nets, solvers and target
measures into three classes, called architectural levels:

A0. Commands accessible with a “push button”. These are commands for which
we have decided that there should be no additional interaction with the user,
not even to kill the solver or to assign required parameters, that should be
substituted by pre-defined, built-in, values.

A1. Commands that require an interaction with the user, but this interaction is
in a simplified form; again, if a more complex interaction is needed by the
solver, it should be simplified by making pre-defined choices.

A2. The full set of commands, solver and options currently available through
the “list of measures” page.

GreatTeach: A Tool for Teaching (Stochastic) Petri Nets 421

The command bar has been re-organized into boxes: File, Edit, Basic, and
Advanced, as in Fig. 1[B]. Commands designed according to the architectural
level A0 are all placed in the “Basic” box. The ones designed at level A1 are put
in the “Advanced” box, and they can be selected from a drop-down menu that
is associated to the “Analysis” button (rightest button on the command bar).
An example of the menu for P/T net is shown in Fig. 3[A]. Commands at level
A3 are accessible through the standard “List of measure” page.

A good example for explaining the three levels is again the RG computation
for which users of different expertise may require different types of computation.
Indeed the first net drawn by a student has good chances to have an unbounded
number of states, or too many states to make the picture of the RG meaningful,
so the “push button” could be a good option but it should be carefully designed.
A researcher working on very large nets may want instead to tailor all possi-
ble parameters. GreatTeach therefore has one RG computation for level. In A0
there is a “limited RG” solution, accessible through the button “showRG” (see
Fig. 1[B]), that generates at most 10.000 states and displays the pdf of only the
first 80 states and relative (possibly dangling) arcs. The pdf also includes standard
statistics (number of states and of dead markings). This is a solver that is new to
GreatTeach. At level A1, when RG computation is selected from the drop-down
menu, a customized measure page is presented. This page is shown in Fig. 2[B]:
the net name (target model) and the solver have been pre-selected and they are
not modifiable, and the user can select a single parameter (the number of states
to be drawn in the pdf of the RG). The target measures and parameters are pre-
initialized. So the user can simply press the “Compute” button and, in two clicks,
he/she gets with GreatTeach the same results that requires 8 steps in GreatSPN.
Again, this feature has been developed specifically for GreatTeach. At level A2
the computation is as in GreatSPN: fully flexible but with 8 interactions.

Another important architectural change in GreatTeach is that also the com-
mand bar has been made context-sensitive to the type of the net currently dis-
played in the tool canvas. As can be observed by comparing the command bar
portions of the GreatTeach GUI shown in Fig. 3 for P/T net (case A), for GSPN
(case B) and for WN (case C) the available commands in the Basic and in the
advanced box and drop down menu are now different. Note that the command
bar implements the same full flexibility that GreatSPN has in changing the net
editing bar: in GreatTeach if the canvas shows a P/T net and we add a color to
a place, both the net editing bar and the command bar change accordingly to
provide support for WN drawing and solution.

3 GreatTeach, a Teaching View

The choice of having three architectural levels was guided by a restructuring of
our learning objectives into three levels. This classification is totally based on
our experience since, as far as we know, there is no shared and accepted notion
of basic or advanced knowledge for Petri nets. The idea is that the first two
levels are for master courses, while the third level is for final projects. A generic
description of the levels is:

422 E. G. Amparore and S. Donatelli

L0: basic knowledge, sufficient for a student to produce and analyse simple prop-
erties on simple models, for all net classes

L1: intermediate knowledge, aimed at understanding an extended set of analysis
techniques

L2: advanced knowledge, in particular to experiment and compare different
solvers for the same target objectives.

In the remaining of the section we identify the learning objectives for each net
class and we connect it with the organization into the three architectural levels
of the solvers. For P/T we have, at a minimum:

L0: Understand and experiment with enabling and firing rule, RS and RG defi-
nition, bound of places, P- and T-invariants.

L1: Understand use of decision diagrams for RS computation, define and model-
check CTL properties, build nets through net composition.

L2: Every other learning objective supported by GreatSPN, like to understand
the differences between vanishing vs. tangible states, to generate plots based
on parametric analysis, and to experiment and compare different solvers.

The matrix of learning objective levels vs. architectural levels of solvers should
have a full diagonal: for an objective at level Li there should be at least one
method at architectural level Ai, and this is indeed what we have now available
in GreatTeach. The association of commands to a learning objective can be easily
described with the support of the screenshots of the command bar included in
Fig. 3. For P/T nets (Fig. 3[A]) the Basic box (level A0 commands) includes the
icons for Token Game (to learn enabling and firing), place bounds computation,
P- and T- semiflows computation and visualization and (limited) RS and RG

[A] Command bar and net editing bar for P/T models.

[B] Command bar and net editing bar for GSPN models.

Token Game. P-semiflows. T-semiflows. Place bounds. Show RG.
Symbolic RG. Show CTMC. Unfolding. Model composition.
Direct analysis (A1) dropdown menu.

Context-sensitive items in the Command Bar:

[C] Command bar and net editing bar for WN models.

Fig. 3. Command bars in GreatTeach (Color figure online)

GreatTeach: A Tool for Teaching (Stochastic) Petri Nets 423

computation and visualization. In the legenda of the icons, we have used the
boldface to emphasize the solver that have been expressly developed or modified
for GreatTeach. The icon for the “Direct analysis (A1) drop-down menu” is in
bold since all the solvers in the drop-down menu (level A1 solvers) have been
explicitly developed or modified for GreatTeach. The Advanced box (level A1
commands) includes an icon for Model Composition (according to [7]) and a
drop down menu with the three commands shown in the Figure, that meets
the learning objectives in L1 and that can support a more complete analysis of
the RS and RG computation (with respect to the level L0 commands present
in the Basic box). Due to lack of space we cannot show an example, but the
“Reachability set using Decision Diagram” builds the RS and produces a pdf of
the decision diagram, a graphical feature that we have explicitly developed for
GreatTeach, “Build the full RG” leads to the page shown in Fig. 2, and “Start
CTL model checking” leads to a page in which the user can, with a single click,
evaluate [4] a predefined CTL formula, or change it to fit their needs. The user
can also specify a predefined variable order or a manual one. CTL can also be
run at level A2, to experiment with different heuristics [5] for variable ordering.
For GSPNs we have identified, at a minimum:

L0: as for P/T, plus the distinction between vanishing and tangible markings,
the construction of the Continuous Time Markov Chain (CTMC) of the net
with attention to the probabilities computed for conflict resolution.

L1: as for P/T, plus CTMC solution (transient and steady-state) based on RS
or on simulation and computation and visualization of basic performance
indices (token distribution in places and throughput of transitions).

L2: everything else, including model checking of the stochastic logic CSLTA,
definition of generic performance indices, advanced solution techniques.

Figure 3[B] is the command bar for GSPN. The solvers in the Basic box are the
same as for P/T plus a CTMC computation and visualization at level A0. The
visualized CTMC has the explicit indication of the rate computation, to learn
the interplay between rates of exponential transitions and weights of immediate
ones. The showRG icon builds a RG in which vanishing and tangible states are
distinguished. The Advanced box has a drop down menu with four more options
for transient/steady-state solution based on CTMC computation or simulation.
These are level A1 solvers: they build a measure page that requires the minimum
interaction from the user.

A similar identification of learning objectives has been done for WN and
SWN. Without listing the full set of objectives, we can emphasize that the
learning objectives for WN are basically the same as for P/T nets, plus the
specific objectives connected to the definition and comprehension of the colors,
of the colored and symbolic RG definition and of their differences (level L0).
Figure 3[C] shows the command bar of WN. In the Basic box we have the Token
game (colored), limited RG and limited SRG computation and the unfolding of
a WN into an equivalent P/T, while the Advanced box includes Model Com-
position and the full construction of RG and SRG. For SWN the menu of the
advanced box is enriched with the four stochastic solvers, as in the GSPN case,
combined with the choice of using a CTMC built on the RG or on the SRG.

424 E. G. Amparore and S. Donatelli

4 Conclusions and Future Work

Literature reports many studies on teaching formal methods in general and Petri
nets in particular. In almost all cases, the authors agree that a course needs a
mixture of theoretical concepts and practical experiments with software tools.
In our teaching experience we could observe that a graphically nice interface
helps, but it is not enough. The interface should be designed with teaching in
mind and this is what we have done with GreatTeach. GreatTeach has some
enhanced features for graphical visualization (DD and CTMC among others)
and a streamlined interface: easy and/or basic learning objectives should require
an easy interaction with the tool. The more the student learns, the deeper the
interaction with the tool can be. There are many things we want to add as a
support for teaching, among others: some RG analysis algorithms are currently
not accessible, rewards for SPN should make the definition of measures signif-
icantly easier, and we need to include an easy way to introduce the students
to our stochastic model-checker for CSLTA. In introducing these new features
we shall first define the level Li of the learning objective, and then design the
solver according to the chosen architectural level. This approach, we believe, is
a contribution of the paper that goes beyond the specific tool considered.

The learning objectives of the previous section, and therefore the choice of
the properties that are analyzable at level A0 and A1 are strongly dependent
on the courses that we teach at the University of Torino. Different courses may
need a different characterization. The newest release of GreatSPN is available
at github.com/greatspn/SOURCES: having the source code available on Github
should allow other research group to develop their own customization based on a
specific choice of learning objective. Distribution to students of a frozen version
is also important when working in lab classes, to ensure that all students work
with exactly the same tool. A Virtualbox image of GreatTeach is available at
http://www.di.unito.it/∼greatspn/VBox/GreatTeach.ova.

The attentive reader may have noticed that the name of the editor on top of
the GUI in Figs. 1 and 2 is GreatSPN on both sides. This is not an error: the
architectural choices of GreatTeach led to a GUI that is more structured and
has a number of additional features and solvers specifically developed for it. We
believe that GreatTeach can work well also for expert researchers, therefore we
have decided to use GreatTeach as the next release of GreatSPN, which also
avoids the creation of a branch in the development process. In the paper we
retain the two separate names for clarity.

References

1. Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. Wiley, Hoboken (1995)

2. Amparore, E.G.: Reengineering the editor of the GreatSPN framework. In: PNSE@
Petri Nets, pp. 153–170 (2015)

3. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years
of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and
Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30599-8 9

http://github.com/greatspn/SOURCES
http://www.di.unito.it/~greatspn/VBox/GreatTeach.ova
https://doi.org/10.1007/978-3-319-30599-8_9

GreatTeach: A Tool for Teaching (Stochastic) Petri Nets 425

4. Amparore, E.G., Beccuti, M., Donatelli, S.: (Stochastic) model checking in Great-
SPN. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp.
354–363. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5 19

5. Amparore, E.G., Beccuti, M., Donatelli, S.: Gradient-based variable ordering of
decision diagrams for systems with structural units. In: D’Souza, D., Narayan
Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 184–200. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68167-2 13

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

7. Bernardi, S., Donatelli, S., Horváth, A.: Implementing compositionality for stochas-
tic Petri nets. Softw. Tools Technol. Transf. J. 3(4), 417–430 (2001)

8. Cerone, A., Roggenbach, M., Schlingloff, H., Schneider, G., Shaikh, S.: Teaching
formal methods for software engineering - ten principles. In: Informatica Didactica.
University of Potsdam, Germany (2015)

9. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11),
1343–1360 (1993)

10. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 44

11. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying
Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS,
vol. 7347, pp. 398–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31131-4 22

12. Heiner, M., Schwarick, M., Wegener, J.-T.: Charlie – an extensible Petri net analy-
sis tool. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115,
pp. 200–211. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19488-
2 10

13. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

14. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri nets and CPN tools for
modelling and validation of concurrent systems. Softw. Tools Technol. Trans. J.
9(3), 213–254 (2007)

15. Mei, C., Zhang, X., Zhao, W., Periyasamy, K., Headington, M.: A tool for teaching
Petri nets. J. Comput. Sci. Coll. 26(5), 181–188 (2011)

16. Schwarick, M., Heiner, M., Rohr, C.: MARCIE - model checking and reachability
analysis done efficiently. In: International Conference on Quantitative Evaluation
of Systems, pp. 91–100 (2011)

17. Thong, W.J., Ameedeen, M.A.: A survey of Petri net tools. In: Sulaiman, H.A.,
Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C. (eds.) Advanced Com-
puter and Communication Engineering Technology. LNEE, vol. 315, pp. 537–551.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-07674-4 51

18. University of Torino: the GreatSPN tool homepage. http://www.di.unito.it/
∼greatspn/index.html

19. Vörös, A., Darvas, D., Molnár, V., Klenik, A., Hajdu, Á., Jámbor, A., Bartha, T.,
Majzik, I.: PetriDotNet 1.5: extensible Petri net editor and analyser for education
and research. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698,
pp. 123–132. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4 9

20. Zimmermann, A.: Modelling and performance evaluation with TimeNET 4.4. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 300–303.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7 19

https://doi.org/10.1007/978-3-319-07734-5_19
https://doi.org/10.1007/978-3-319-68167-2_13
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1007/978-3-319-19488-2_10
https://doi.org/10.1007/978-3-319-19488-2_10
https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-319-07674-4_51
http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~greatspn/index.html
https://doi.org/10.1007/978-3-319-39086-4_9
https://doi.org/10.1007/978-3-319-66335-7_19

Author Index

Amparore, Elvio Gilberto 416

Barbot, Benoît 363
Bérard, Béatrice 363
Bertrand, Clément 227
Best, Eike 117
Bønneland, Frederik 143
Brinkrolf, Christoph 406
Buchs, Didier 385

da Silva, Carlos Eduardo Alves 396
de Frutos Escrig, David 207
de Souza Tavares, José Jean-Paul

Zanlucchi 396
Devillers, Raymond 19, 82
Donatelli, Susanna 416
Duplouy, Yann 363
Dyhr, Jakob 143

Ferreira, Marco Vinícius Muniz 396

Giua, Alessandro 164
Gribovskaya, Nataliya 117

Haakma, Reinder 374
Haddad, Serge 363
Hujsa, Thomas 19

Jančar, Petr 184
Janicki, Ryszard 251
Jensen, Peter G. 143
Johannsen, Mads 143
Junges, Sebastian 272

Katoen, Joost-Pieter 272
Kindler, Ekkart 339
Klaudel, Hanna 227
Klikovits, Stefan 385

Kordon, Fabrice 3
Koutny, Maciej 207

Latapy, Matthieu 227
Lefaucheux, Engel 164
Leroux, Jérôme 184
Linard, Alban 385

Mencattini, Romain 385
Mikulski, Łukasz 207

Peschanski, Frédéric 227

Racordon, Dimitri 385
Reipke, Philo 406
Rosenke, Christian 40

Schlachter, Uli 82, 99
Seatzu, Carla 164
Sidorova, Natalia 374
Srba, Jiří 143
Stoelinga, Mariëlle 272
Sutre, Grégoire 184

Tax, Niek 374
Thierry-Mieg, Yann 3
Tredup, Ronny 40

Valk, Rüdiger 294
van der Aalst, Wil M. P. 315, 374
Virbitskaite, Irina 117
Volk, Matthias 272

Wimmel, Harro 99
Wolf, Karsten 40, 60, 351

	Preface
	Organization
	Contents
	Invited Talk
	Self-adaptive Model Checking, the Next Step?
	1 Introduction
	2 Information Gathered from the Model Checking Contest
	3 What is Self-adaptive Model Checking?
	4 Impact on Model Checkers Architecture
	5 The Decision Process
	6 Conclusion
	References

	Petri Net Synthesis
	Analysis and Synthesis of Weighted Marked Graph Petri Nets
	1 Introduction
	2 Classical Definitions, Notations and Properties
	3 Properties of WMGs and Larger Persistent Classes
	3.1 Previous Results and Notions Related to Persistence
	3.2 Equivalent Sequences and Backward Persistence
	3.3 Fireability of T-Vectors in WMGs

	4 Synthesis of Connected, Bounded, Weakly Live WMGs
	4.1 Necessary Conditions for Solvability with Connected WMGs
	4.2 Constraints and Subsets of States Relevant to WMG-Synthesis
	4.3 Computational Synthesis in the General Cyclic Case
	4.4 Computational Synthesis in the General Acyclic Case

	5 Conclusions and Perspectives
	References

	Elementary Net Synthesis Remains NP-Complete Even for Extremely Simple Inputs
	1 Introduction
	2 Preliminaries
	3 Unions, Transition System Containers
	4 The Hardness of ESSP and Feasibility
	5 The Hardness of SSP
	6 Conclusion
	References

	Petri Net Synthesis with Union/Find
	1 Introduction
	2 Transition Systems, Petri Nets, Synthesis
	3 Union/Find
	4 Backtracking in a Union/Find Structure
	5 Theory
	6 Proto-Regions of 1-Petri Nets
	7 Proto-Signatures of 1-Petri Nets
	8 Simple Deductions Between Proto-Region and Proto-Signature
	9 Topological Deductions
	10 Branching the Search Space
	11 Detecting a Region
	12 Managing the Separation Problems
	13 A Walkthrough
	14 Quality of Resulting Net
	15 Complexity
	16 Implementation
	17 Experiments
	18 Conclusion and Future Work
	References

	Factorisation of Petri Net Solvable Transition Systems
	1 Introduction
	2 Labelled Transition Systems and Petri Nets
	3 Disjoint Product of lts and Disjoint Sum of Petri Nets
	4 Factorisation of a Connected lts
	5 The Petri Net Synthesis Case
	6 Experimental Results
	7 Concluding Remarks
	References

	A Geometric Characterisation of Event/State Separation
	1 Introduction
	2 Labelled Transition Systems
	3 Regions
	4 Pure Event/State Separability
	5 General Event/State Separability
	6 Further Examples
	7 Restrictions and Extensions
	7.1 Two-Letter Words
	7.2 Infinite Labelled Transition Systems

	8 Conclusion
	References

	From Event-Oriented Models to Transition Systems
	1 Introduction
	1.1 Prime Event Structures, and Motivating Remarks
	1.2 Event-Oriented Models to Be Considered in This Paper

	2 Removal Operators for Some Event-Oriented Models
	2.1 Extended Prime Event Structures
	2.2 Bundle and Dual Event Structures
	2.3 Flow Event Structures
	2.4 Stable and General Event Structures
	2.5 Configuration Structures
	2.6 Correctness of the Removal Operators in Different Semantics

	3 Transition Systems TC(.) and TR(.), and Main Results
	4 Concluding Remarks
	A Proofs
	References

	Analysis and Model Checking
	Simplification of CTL Formulae for Efficient Model Checking of Petri Nets
	1 Introduction
	2 Preliminaries
	3 Logical Equivalence of Formulae
	4 Formula Simplification via State Equations
	4.1 Simplification Procedure

	5 Implementation and Experiments
	5.1 Implementation Details of the Simplification Procedure
	5.2 Experimental Setup
	5.3 Evaluation of Formula Simplification Techniques
	5.4 Comparison with LoLA

	6 Conclusion
	References

	Basis Coverability Graph for Partially Observable Petri Nets with Application to Diagnosability Analysis
	1 Introduction
	2 Background on Petri Nets and Coverability Graph
	2.1 Petri Nets
	2.2 Coverability Graph

	3 Basis Coverability Graph
	3.1 Building the Basis Coverability Graph
	3.2 Properties of the Basis Coverability Graph

	4 Diagnosability of Unbounded Net Systems
	4.1 Definition of Diagnosability
	4.2 Diagnosability Analysis

	5 Conclusion
	References

	Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition Systems with States
	1 Introduction
	2 Preliminaries
	3 Co-finiteness and Co-emptiness of Reachability Sets
	3.1 Decidability of the General Problems
	3.2 Finitely Many Initial Configurations

	4 Single Initial Configurations
	4.1 EXPSPACE-Hardness
	4.2 EXPSPACE-Membership

	5 Applications of the Co-emptiness Problem
	6 Conclusion
	References

	Languages
	An Efficient Characterization of Petri Net Solvable Binary Words
	1 Introduction
	2 Basic Notions
	3 A Finer Characterisation of Cyclic Solvable Words
	3.1 An Efficient Algorithm to Detect Cyclic Solvable Words

	4 Relating Solvable Words and Cyclic Solvable Words
	4.1 An Efficient Algorithm to Detect Solvable Words

	5 Characterization of Reversible Binary Words
	6 Conclusions
	References

	Pattern Matching in Link Streams: A Token-Based Approach
	1 Introduction
	2 Patterns in Link Streams
	3 Automata Model and Recognition Principles
	3.1 The Timed -Automata
	3.2 Dynamics
	3.3 Pattern Language

	4 Experiments
	5 Conclusion
	References

	Semantics and Expressiveness
	Modeling Operational Semantics with Interval Orders Represented by Sequences of Antichains
	1 Introduction
	2 Partial Orders and Sequences
	3 Interval Sequences
	4 Sequences of Antichains
	5 Interval Sequences vs Sequences of Antichains
	6 Operational Semantics and Sequences of Antichains
	6.1 Elementary Nets with Inhibitor Arcs
	6.2 Interval Sequence Semantics
	6.3 Operational Semantics with Sequences of Antichains

	7 Final Comments
	References

	One Net Fits All
	1 Introduction
	2 Preliminaries
	2.1 Generalised Stochastic Petri Nets
	2.2 Dynamic Fault Trees

	3 Generic Translation of DFTs to GSPNs
	3.1 GSPN Templates and Interface Places
	3.2 Templates for Common Gate Types
	3.3 Gluing Templates
	3.4 Properties
	3.5 Tool Support

	4 A Unifying DFT Semantics
	4.1 Failure Propagation
	4.2 FDEP Forwarding
	4.3 Non-determinism
	4.4 Allow FDEPs Triggered by Gates

	5 Conclusions and Future Work
	References

	On the Structure of Cycloids Introduced by Carl Adam Petri
	1 Introduction
	2 Nets, Net Systems and Petri Space
	3 Cycloids
	4 Cycloid Systems
	5 Minimal Cycloid Cycles
	6 Computing Cycloid Parameters from System Parameters
	7 Conclusion
	References

	Markings in Perpetual Free-Choice Nets Are Fully Characterized by Their Enabled Transitions
	1 Introduction
	2 Preliminaries
	2.1 Petri Nets
	2.2 Subclasses of Petri Nets
	2.3 Workflow Nets
	2.4 Uniqueness of Blocking Markings in Free-Choice Nets

	3 Lucency
	4 Characterizing Markings of Perpetual Free-Choice Nets
	4.1 Perpetual Marked Nets
	4.2 Local Safeness
	4.3 Realizable Paths
	4.4 Partial P-Covers
	4.5 Characterization of Markings in Perpetual Free-Choice Nets

	5 Conclusion and Implications
	References

	Tools
	ePNK Applications and Annotations: A Simulator for YAWL Nets
	1 Introduction
	2 The Result
	3 ePNK Applications: Overview
	4 The YAWL PNTD
	5 The YAWL Simulator
	5.1 The Annotations
	5.2 The Application

	6 Discussion
	7 Related Work and Limitations
	8 Technical Details
	9 Conclusion
	References

	Petri Net Model Checking with LoLA 2
	1 Introduction
	2 Installation and Usage
	3 Supported Properties
	4 Integrating LoLA 2
	5 Architecture of LoLA 2
	6 Conclusion
	References

	Integrating Simulink Models into the Model Checker Cosmos
	1 Introduction
	2 Cosmos and Simulink
	2.1 Cosmos
	2.2 Simulink

	3 Extensions to Cosmos
	3.1 Simulink Semantics
	3.2 Simulink/Petri Net Communication

	4 Benchmarks
	5 Conclusion and Future Work
	References

	LocalProcessModelDiscovery: Bringing Petri Nets to the Pattern Mining World
	1 Introduction
	2 What Is Local Process Model Mining?
	3 The LocalProcessModelDiscovery Tool
	3.1 Configuring the Local Process Model Miner
	3.2 Interpreting Local Process Model Results
	3.3 Navigating Local Process Model Results

	4 Conclusion
	References

	A Model Checker Collection for the Model Checking Contest Using Docker and Machine Learning
	1 Introduction
	2 Creation of Docker Containers
	3 Using Machine Learning to Choose the Right Tool
	4 Conclusion and Future Works
	References

	Arduino Library Developed for Petri Net Inserted into RFID Database and Variants
	Abstract
	1 Introduction
	2 PNRD Approach
	3 Library Overview
	4 Application Implementation
	5 Conclusion
	Acknowledgement
	References

	OMPetri - A Software Application for Modeling and Simulation Using Extended Hybrid Petri Nets by Employing OpenModelica
	1 Introduction and Objectives
	2 Simulation Back-End Technologies
	2.1 Modelica
	2.2 xHPN and PNlib
	2.3 OpenModelica and the OMC

	3 User Front-End Technologies
	3.1 JavaFX
	3.2 Spring

	4 Design and Implementation
	4.1 Data Model
	4.2 Graphical Model
	4.3 Architecture

	5 Graphical User Interface and Features
	5.1 Main Application Window
	5.2 Result Viewer Window
	5.3 Logging Window

	6 Conclusion and Outlook
	References

	GreatTeach: A Tool for Teaching (Stochastic) Petri Nets
	1 Introduction
	2 GreatTeach, an Architectural View
	3 GreatTeach, a Teaching View
	4 Conclusions and Future Work
	References

	Author Index

