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Abstract. The fundamental issue of data clustering is an evaluation
of results of clustering algorithms. Lots of methods have been proposed
for cluster validation. The most popular approach is based on internal
cluster validity indices. Among this kind of indices, the Silhouette index
and its computationally simpled version, i.e. the Simplified Silhouette,
are frequently used. In this paper modification of the Simplified Sil-
houette index is proposed. The suggested approach is based on using an
additional component, which improves clusters validity assessment. The
performance of the new cluster validity indices has been demonstrated
for artificial and real datasets, where the PAM clustering algorithm has
been applied as the underlying clustering technique.
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1 Introduction

Data clustering aims to discover natural existing structures in a dataset. For
this purpose, data are partitioned into groups (clusters) of objects. Objects
within a cluster are similar, whereas they are dissimilar in different clusters.
Since there is a large variety of datasets different clustering algorithms and
their configurations are still created, e.g. [9,11,12,31]. Note that among clus-
tering methods two major categories are distinguished: partitioning and hierar-
chical clustering. For example, the well-known partitioning algorithms are, e.g.
K-means, Partitioning Around Medoids (PAM) [5,24] and Expectation Maxi-
mization (EM) [21]. Whereas the agglomerative hierarchical clustering includes
such methods as, e.g. the Single-linkage, Complete-linkage or Average-linkage
[16,22,25]. Data clustering is applied in many areas, such as biology, spatial
data analysis, business and so on. It can be noted that there is no a clustering
algorithm, which creates the right data partition for all datasets. Moreover, the
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same algorithm can also give different results depending on the input parame-
ters. Therefore, cluster validation should be used to assess the results of data
clustering. Generally, it is a very difficult task and is the most frequently realized
by validity indices. Techniques of the cluster validation are usually classified into
three groups, i.e. external, internal and relative validation [16,30]. The external
validation is based on a comparison of partitions of a dataset obtained by a
clustering algorithm with the correct partition of this data. In turn, the internal
approach uses only the intrinsic properties of the dataset. On the other hand,
the relative validation method compares the data partitions obtained by chaining
input parameters of a clustering algorithm. It should be noted that the number
of clusters is the key parameter for many clustering algorithms. So far, a number
of authors have proposed different validity indices or modifications of existing
indices, e.g., [1,10,18,29,32,33,36,38]. Among internal cluster validity indices,
the Silhouette (SIL) [26] and Simplified Silhouette (SimSIL) [15] indices are
frequently used to evaluate the efficacy of the clustering algorithms in detecting
the right data partitioning. It is important to note that clustering methods in
conjunction with cluster validity indices can be used during a process of design-
ing various neural networks [2–4,6,17], neuro-fuzzy structures [7,8,20,27,28] and
creating some algorithms for identification of classes [13,14].

In this paper, new cluster validity indices called the SimSILA and the
SimSILAv1, are presented. These new indices modify the Simplified Silhouette
(SimSIL) index. The proposed approach is based on an additional component
and it is a detailed explanation in Sect. 3. In order to present effectiveness of
the validity indices, several experiments were performed for various datasets.
This paper is organized as follows: Sect. 2 presents a detailed description of the
Silhouette, SILA and SILAv1 indices. In Sect. 3 the Simplified Silhouette,
SimSILA and SimSILAv1 indices are outlined. Section 4 illustrates experimen-
tal results on datasets. Finally, Sect. 5 presents conclusions.

2 Modification of the Silhouette Index

In this section modification of the Silhouette (SIL) index is described. This app-
roach was proposed and discussed in papers [34,35]. Let us denote K-partition
scheme of a dataset X by C = {C1, C, ..., CK}, where Ck indicates kth cluster,
k = 1, ..,K. The original SIL index is presented as follows:

SIL =
1
K

K∑

k=1

SIL(Ck) (1)

where SIL(Ck) is the Silhouette width for the given cluster Ck and is defined as:

SIL(Ck) =
1
nk

∑

x∈Ck

b(x) − a(x)
max (a(x), b(x))

(2)

nk is a number of elements in Ck, and a(x) is the within-cluster mean distance,
i.e. it is the average distance between x and the rest of the patterns belonging to
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the same cluster, b(x) is the smallest of the mean distances of x to the elements
belonging to the other clusters. The values of the index are from the range −1
to 1 and a maximum value (close to 1) provides the best partitioning of the
dataset.

Now let us turn to the modification of this index [34]. This approach is based
on using an additional component, which improves a performance of the index.
The new index is called SILA index and it is defined as follows:

SILA =
1
n

(
∑

x∈X

(
b(x) − a(x)

max (a(x), b(x))
· 1
(1 + a(x))q

))
(3)

where the exponent q is equal 1 and n is the number of elements in a dataset.
A maximum value of the new index indicates the right partition scheme. Noted
that the choice of the value of the q is very important and q = 1 can be too
small for the very large differences of distances between data points. Hence, the
new concept was proposed in paper [35]. This new index, called SILAv1, can
be presented by Eq. (3), where q is defined as below:

q = 2 +
K2

n
(4)

Generally, the SILA and SILAv1 indices ensure a better performance compared
to the original Silhouette index. In the next section, a detailed explanation of
modification of the Simplified Silhouette index is presented.

3 Modification of the Simplified Silhouette Index

It can be noted that the Silhouette index depends on of the computation of all
the distances between data elements and it can lead to a computational cost
O(mn2) [37], where m is the number of features. On the other hand, the Sim-
plified Silhouette index is much less computationally expensive, and the over-
all complexity of the computation of the index is estimated as O(kmn) [37].
Although the Simplified Silhouette index is similar to the Silhouette index, there
are very significant differences. First, the distance of x to the cluster is not the
average distance between x and the rest of the elements belonging to the same
cluster. It is calculated as the distance between x and the centroid of the cluster
and can be written as follows:

â(x) = d
(
x, C̄k

)
(5)

where C̄k is the centroid of the cluster Ck and d
(
x, C̄k

)
is a function of the

distance between x and C̄k. Next, the distance of x to the other cluster is defined
as follows:

b̂(x) =
K

min
l=1
l �=k

d(x, C̄l) (6)
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where C̄l is the centroid of the cluster Cl and l �= k. Finally, the
Simplified Silhouette (SimSIL) index is defined as:

SimSIL =
1
n

∑

x∈X

b̂(x) − â(x)

max(â(x), b̂(x))
(7)

where n is the number of elements in the dataset X. The value of the index is
also from the range −1 to 1 and a maximum value indicates the right partition
scheme.

As in the previous index, the modification of the Simplified Silhouette index
is based on using the additional component, which is expressed as:

Â(x) =
1

(1 + â(x))q
(8)

For the exponent q = 1, the newly proposed index is called SimSILA and can
be written as:

SimSILA =
1
n

⎛

⎝
∑

x∈X

⎛

⎝ b̂(x) − â(x)

max
(
â(x), b̂(x)

) · 1
(1 + â(x))q

⎞

⎠

⎞

⎠ (9)

It can be noted that the additional component Â(x) corrects the value of the
index. When a clustering algorithm greatly increases sizes of clusters, the ratio of
1/(1+ â(x))q decreases significantly and the value of the index is also decreased.
However, the value q = 1 can be too small to appropriately correct the SimSILA
index. Hence, the issue of the choice of the exponent q for Â(x) is a very signif-
icant problem. As with the previous index, the new index called SimSILAv1 is
proposed and contains a formula of the change of the exponent q depending on
the number of clusters. This formula is expressed by (4). Thus, the SimSILAv1
index can be presented by Eq. (9), where q is calculated by (4). It should be noted
that the new indices can take values between 1/(1+â(x))q and −1/(1+â(x))q. A
maximum value of the index selects the right data partitioning for a dataset. In
the next section, the results of the experimental studies are presented to confirm
the effectiveness of these new indices.

4 Experimental Results

In this section, several experiments have been conducted on artificial and real
datasets using the Partitioning Around Medoids (PAM) clustering algorithm.
This algorithm is a realisation of K-medoid clustering, which is a more robust
version of K-means method. Both K-medoids and the K-means algorithm are par-
titional, but the first method searches K representative data elements (medoids)
among all elements of a dataset. After finding K medoids, K clusters are created
by assigning each data point to the nearest medoid. In contrast to the K-means,
the K-medoids algorithm chooses data elements as centers (medoids). Moreover,
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the Manhattan Norm is used to define distances between elements of the dataset.
These make that the PAM algorithm is robust to noise and outliers. As men-
tioned in Sect. 1, the different parameter configurations of clustering algorithms
can lead to different results. Thus, the choice of these input parameters is a key
issue. Furthermore, one of the essential configuration parameters is a number of
clusters. This parameter should be set before the start of the algorithm, but it
is not usually known in advance. The common way to resolve this problem is to
run the clustering algorithm multiple times with a different number of clusters
and select the best result. For the clustering analyze, the range of the differ-
ent number of clusters should be varied from Kmin = 2 to Kmax =

√
n, [23].

Whereas, the evaluation of results is usually realized by cluster validity indices.
In experiments conducted on artificial and real datasets, the six indices, i.e. the
Silhouette (SIL), SILA, SILAv1, Simplified Silhouette (SimSil), SimSILA
and SimSILAv1 are used to determine the right number of clusters. To show
the efficacy of the new validity indices, the results are also presented on the
plots. It is assumed that the value of the validity indices equals 0 for K = 1.
Furthermore, the min-max normalization of data has been applied to all the
datasets used in the experiments. In order to better compare of the new indices,
the maximum value of all the indices is modified and it is equal to 1.

4.1 Datasets

In the conducted experiments four artificial and six real datasets are used. The
artificial data was called Data 1, Data 2, Data 3 and Data 4 and they were
2-dimensional with 3, 5, 8 and 11 clusters, respectively. Note that they con-
sist of various cluster structure and densities. The scatter plot of these data is
presented in Fig. 1. As it can be observed on the plot the distances between
clusters are very different and some clusters are quite close. Generally, clusters
are located in groups and some of the clusters are very close and others quite
far. Moreover, the sizes of the clusters are different and they contain the various
number of elements. Hence, many clusters validity indices can provide incorrect
partitioning schemes. The real datasets are numeric data from the UCE Irvine
Machine Learning Repository [19]: Diabetes, Ecoli, Glass, Iris, Spectf , Wine.
The Diabetes dataset includes results of studies relating to the signs of diabetes
in patients. This set includes 768 instances belonging to 2 classes and each item
is described by 8 features. The second set is Ecoli dataset consisting of 336
instances, and the number of attributes equals 7. It has 8 classes, which repre-
sent the protein localization sites. Next comes the Glass dataset, which contains
information about 6 types of glass defined in terms of their oxide content. The
set has 214 instances and each of them is described by 9 attributes. The well-
known Iris data are extensively used in many comparisons of classifiers. This set
has three classes, which contain 50 instances per class. Moreover, each item is
represented by four features. The Spectf dataset describes diagnosing of cardiac
Single Proton Emission Computed Tomography images. This set includes 267
instances and each of them is described by 44 features. It has 2 classes. Finally,
the Wine dataset shows the results of a chemical analysis of wines. It comprises
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(a) (b)

(c) (d)

Fig. 1. 2-dimensional artificial datasets: (a) Data 1, (b) Data 2, (c) Data 3, and (d)
Data 4

Table 1. A detailed description of the artificial datasets

Datasets No. of elements Features Classes

Data 1 300 2 3

Data 2 170 2 5

Data 3 495 2 8

Data 4 665 2 11

Diabetes 768 8 2

Ecoli 336 7 8

Glass 214 9 6

Iris 150 4 3

Spectf 267 44 2

Wine 178 13 3

three classes of wines. Altogether, the dataset contains 178 patterns, where each
of them is described by 13 features.

Additionally, Table 1 shows a detailed description of these datasets used in
experiments.
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Fig. 2. Variations of the Silhouette, SILA and SILAv1 indices with respect to the
number of clusters for 2-dimensional datasets: (a) Data 1, (b) Data 2, (c) Data 3, and
(d) Data 4 partitioned by the PAM method.

4.2 Experiments

The experimental analysis is designed to evaluate the performance of the new
indices. In these studies, the partitional PAM method as the underlying cluster-
ing method was adopted to clustering of the datasets. First of all, the Silhouette,
SILA and SILAv1 indices are analyzed. For this purpose, the 2-dimensional
Data 1, Data 2, Data 3 and Data 4 datasets have been clustered by the PAM
algorithm. As shown in Fig. 1, these datasets create groups of clusters, which are
far away from each other and their sizes are very different. As mentioned above,
the number of clusters is the key configuration parameter of clustering methods
and it is usually varied from Kmin = 2 to Kmax =

√
n. It is assumed that the

value of the validity indices is equal 0 for K = 1. In Fig. 2 the comparison of
the variations of the Silhouette, SILA and SILAv1 indices with respect to the
number of clusters is presented for the artificial datasets. It is also noticeable
that the SILA and SILAv1 indices provide the correct number of clusters for all
the artificial datasets. In addition, the value of the SILAv1 index more decreases
than the value of SILA for the small number of clusters, i.e. when the number
K < c∗ (where c∗ is the right number of clusters). This means that the addi-
tional component A(x) used in the SILAv1 index more reduces the value of the
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index than the value of the SILA index. On the other hand, when the number
of clusters K > c∗ the component A(x) can increase the values of these indices
slightly (see Fig. 2). On the contrary, the Silhouette index incorrectly selects all
partitioning schemes and mainly provides the greatest values when the number
of clusters K = 2. Next, the Simplified Silhouette, SimSILA, and SimSILAv1
indices are analyzed. As with the previous studies, four artificial datasets, i.e.
Data 1, Data 2, Data 3 and Data 4 have been clustered by the PAM algorithm.
The comparison of the variations of the Simplified Silhouette, SimSILA and
SimSILAv1 indices with respect to the number of clusters is presented in Fig. 3.
Despite the fact that the differences of distances between clusters are large, the
SimSILA and SimSILAv1 indices provide the correct partitioning for all these
data. It can be noted that the component Â(x) strongly reduces values of the
SimSILAv1 index when the number of clusters K < c∗. This is due to the fact
that the exponent q in Â(x) is calculated by the formula (4). Generally, the com-
ponent Â(x) improvements the results especially when the clustering algorithm
combines clusters into larger ones and differences of distances between clusters
are large. Then the influence of the separability measure is significant and con-
sequently, it can strongly affect the value the index. On the other hand, when
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Fig. 3. Variations of the Simplified Silhouette, SimSILA and SimSILAv1 indices
with respect to the number of clusters for 2-dimensional datasets: (a) Data 1, (b)
Data 2, (c) Data 3, and (d) Data 4 partitioned by the PAM method.
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K > c∗ the values of these new indices are increased slightly. It can be noted
that the Simplified Silhouette and the Silhouette indices incorrectly select the
number of clusters, whereas the new indices provide the right results for all the
artificial datasets. The next experiments are related to the real datasets. As out-
lined above, the real datasets are numeric data: Diabetes, Ecoli, Glass, Iris,
Spectf , Wine. In the experimental process, these datasets have been clustered
by the PAM algorithm. Moreover, for the evaluation of the clustering validity,
the six indices have been used. Table 2 shows the comparison of these indices
taking into account the number of clusters, which is the configuration param-
eter for the clustering algorithm. In addition, the Table also includes results
from previous experiments related to the artificial data. From the Table 2, it can
be noted that for the real datasets the best results are achieved by the SILA,
SILAv1, SimSILA and SimSILAv1 indices. Moreover, for the Glass and Iris
data, the results of the SimSILAv1 index are better in comparison with other
indices. Based on these results, it can be concluded that for all the experiments
carried out on artificial and real data the best clustering results are selected by
using these new indices.

Table 2. Comparison of the number of clusters obtained when using the PAM algo-
rithm in conjunction with the SIL, SILA, SILAv1, SimSil, SimSILA and SimSILAv1
indices. N denotes the actual number of clusters in the datasets.

Datasets N Number of clusters

SIL SILA SILAv1 SimSIL SimSILA SimSILAv1

Data 1 3 2 3 3 2 3 3

Data 2 5 2 5 5 2 5 5

Data 3 8 6 8 8 6 8 8

Data 4 11 4 11 11 4 11 11

Diabetes 2 2 2 2 2 2 2

Ecoli 8 4 4 4 4 4 4

Glass 6 2 2 7 2 7 7

Iris 3 2 2 2 2 2 3

Spectf 2 2 2 2 2 2 2

Wine 3 2 3 3 2 3 3

5 Conclusions

In this paper new indices called SimSILA and SimSILAv1 are proposed, which
are the modification of the Simplified Silhouette index. As mentioned above,
neither the Simplified Silhouette index nor the Silhouette index performs well
when there are large differences of distances between clusters in a dataset. Sim-
ilarly to the modification of the Silhouette index, the change of the Simplified
Silhouette relies on the application of the additional component, which improves
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the performance of the index. This additional component contains a measure of
cluster compactness and reduces the high values of the index caused by large dif-
ferences between clusters. In these conducted experiments, several datasets were
used, where the number of clusters varied within a wide range. Moreover, the
PAM clustering algorithm was selected for clustering of all the artificial and the
real datasets. It has been noticeable that the SILA, SILAv1, SimSILA and
SimSILAv1 indices have provided the best results. However, the Simplified
Silhouette index is much less computationally expensive than the Silhouette
index. From this perspective, the SimSILA and SimSILAv1 indices have the
competitive performance to the SILA and SILAv1 indices in the selection of the
right clustering results. All the presented results confirm the very high efficiency
of the newly proposed indices.
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