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Abstract. We study mining incomplete data sets with two interpreta-
tions of missing attribute values, lost values and “do not care” conditions.
For data mining we use characteristic sets and generalized maximal con-
sistent blocks. Additionally, we use three types of probabilistic approxi-
mations, lower, middle and upper, so altogether we apply six approaches
to data mining. Since it was shown that an error rate, associated with
such data mining is not universally smaller for any approach, we decided
to compare complexity of induced rule sets. Therefore, our objective is
to compare six approaches to mining incomplete data sets in terms of
complexity of induced rule sets. We conclude that there are statistically
significant differences between these approaches.
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1 Introduction

We study mining incomplete data sets with two interpretations of missing
attribute values, lost values and “do not care” conditions. A missing attribute
value is interpreted as lost if the original value existed but currently is unavail-
able, for example it is forgot or erased. A “do not care” condition means that
the missing attribute value may be replaced by any value from the attribute
domain. A “do not care” condition may occur as a result of a refusal to answer
a question during the interview.

For data mining we use probabilistic approximations, a generalization of the
lower and upper approximations, well known in rough set theory. A probabilistic
approximation is associated with a parameter α, interpreted as a probability.
When α = 1, a probabilistic approximation becomes the lower approximation; if
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α is small positive number, e.g., 0.001, a probabilistic approximation is the upper
approximation. Initially, probabilistic approximations were applied to completely
specified data sets [9,12–19]. Probabilistic approximations were generalized to
incomplete data sets in [8].

Characteristic sets, for incomplete data sets with any interpretation of miss-
ing attribute values, were introduced in [7]. Maximal consistent blocks, restricted
only to data sets with “do not care” conditions, were introduced in [11]. Addi-
tionally, in [11] maximal consistent blocks were used as granules to define only
ordinary lower and upper approximations. A definition of the maximal consis-
tent block was generalized to cover lost values and probabilistic approximations
in [1]. The applicability of characteristic sets and maximal consistent blocks for
mining incomplete data, from the view point of an error rate, was studied in [1].
As it happened, there is a small difference in quality of rule sets induced either
way. Thus, we decided to compare characteristic sets with generalized maximal
consistent blocks in terms of complexity of induced rule sets. In our experiments,
the Modified Learning from Examples Module, version 2 (MLEM2) was used for
rule induction [6].

2 Incomplete Data

In this paper, the input data sets are presented in the form of a decision table.
An example of a decision table is shown in Table 1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7, 8}. Independent variables
are called attributes and a dependent variable is called a decision and is denoted
by d. The set of all attributes is denoted by A. In Table 1, A = {Temperature,
Headache, Cough}. The value for a case x and an attribute a is denoted by a(x).

We distinguish between two interpretations of missing attribute values: lost
values, denoted by “?” and “do not care” conditions, denoted by “∗”. Table 1
presents an incomplete data set with both lost values and “do not care” condi-
tions.

The set X of all cases defined by the same value of the decision d is called
a concept. For example, a concept associated with the value yes of the decision
Flu is the set {1, 2, 3, 4}.

For a completely specified data set, let a be an attribute and let v be a value
of a. A block of (a, v), denoted by [(a, v)], is the set {x ∈ U | a(x) = v} [4].

For incomplete decision tables the definition of a block of an attribute-value
pair (a, v) is modified in the following way.

– If for an attribute a and a case x we have a(x) = ?, the case x should not be
included in any blocks [(a, v)] for all values v of attribute a,

– If for an attribute a and a case x we have a(x) = ∗, the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.

For the data set from Table 1 the blocks of attribute-value pairs are:
[(Temperature, normal)] = {3, 6, 8},
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Table 1. A decision Table

Attributes Decision

Case Temperature Headache Cough Flu

1 high yes ? yes

2 high no * yes

3 * ? yes yes

4 high no ? yes

5 ? no * no

6 normal * no no

7 high no yes no

8 * no ? no

[(Temperature, high)] = {1, 2, 3, 4, 7, 8},
[(Headache, no)] = {2, 4, 5, 6, 7, 8},
[(Headache, yes)] = {1, 6},
[(Cough, no)] = {2, 5, 6},
[(Cough, yes)] = {2, 3, 5, 7}.
For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the

intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) = ? or a(x) = ∗, then K(x, a) = U .

For Table 1 and B = A,
KA(1) = {1},
KA(2) = {2, 4, 7, 8},
KA(3) = {2, 3, 5, 7},
KA(4) = {2, 4, 7, 8},
KA(5) = {2, 4, 5, 6, 7, 8},
KA(6) = {6},
KA(7) = {2, 7},
KA(8) = {2, 4, 5, 6, 7, 8}.
A binary relation R(B) on U , defined for x, y ∈ U in the following way

(x, y) ∈ R(B) if and only if y ∈ KB(x)

will be called the characteristic relation. In our example R(A) = {(1, 1), (2, 2),
(2, 4), (2, 7), (2, 8), (3, 2), (3, 3), (3, 5), (3, 7), (4, 2), (4, 4), (4, 7), (4, 8), (5,
2), (5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (6, 6), (7, 2), (7, 7), (8, 2), (8, 4), (8, 5),
(8, 6), (8, 7), (8, 8)}.



304 P. G. Clark et al.

We quote some definitions from [1]. Let X be a subset of U . The set X is
B-consistent if (x, y) ∈ R(B) for any x, y ∈ X. If there does not exist a B-
consistent subset Y of U such that X is a proper subset of Y , the set X is called
a generalized maximal B-consistent block. The set of all generalized maximal B-
consistent blocks will be denoted by C (B). In our example, C (A) = {{1}, {2, 4,
8}, {2, 7}, {3} {5, 8}, {6}}.

Let B ⊆ A and Y ∈ C (B). The set of all generalized maximal B-consistent
blocks which include an element x of the set U , i.e. the set

{Y |Y ∈ C (B), x ∈ Y }
will be denoted by CB(x).

For data sets in which all missing attribute values are “do not care” condi-
tions, an idea of a maximal consistent block of B was defined in [10]. Note that
in our definition, the generalized maximal consistent blocks of B are defined for
arbitrary interpretations of missing attribute values. For Table 1, the generalized
maximal A-consistent blocks CA(x) are
CA(1) = {{1}},
CA(2) = {{2, 4, 8}, {2, 7}},
CA(3) = {{3}},
CA(4) = {{2, 4, 8}},
CA(5) = {{5, 8}},
CA(6) = {{6}},
CA(7) = {{2, 7},
CA(8) = {{2, 4, 8}, {5, 8}}.

3 Probabilistic Approximations

In this section, we will discuss two types of probabilistic approximations: based
on characteristic sets and on generalized maximal consistent blocks.

3.1 Probabilistic Approximations Based on Characteristic Sets

In general, probabilistic approximations based on characteristic sets may be
categorized as singleton, subset and concept [3,7]. In this paper we restrict our
attention only to concept probabilistic approximations, for simplicity calling
them probabilistic approximations based on characteristic sets.

A probabilistic approximation based on characteristic sets of the set X with
the threshold α, 0 < α ≤ 1, denoted by apprCS

α (X), is defined as follows

∪{KA(x) | x ∈ X, Pr(X|KA(x)) ≥ α}.

For Table 1 and both concepts {1, 2, 3, 4} and {5, 6, 7, 8}, all distinct
probabilistic approximations, based on characteristic sets, are
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apprCS
0.5 ({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 7, 8},

apprCS
1 ({1, 2, 3, 4}) = {1},

apprCS
0.667({5, 6, 7, 8}) = {2, 4, 5, 6, 7, 8},

apprCS
1 ({5, 6, 7, 8}) = {6}.

If for some β, 0 < β ≤ 1, a probabilistic approximation apprCS
β (X) is

not listed above, it is equal to the probabilistic approximation apprCS
α (X)

with the closest α to β, α ≥ β. For example, apprCS
0.2 ({1, 2, 3, 4}) =

apprCS
0.5 ({1, 2, 3, 4}).

3.2 Probabilistic Approximations Based on Generalized Maximal
Consistent Blocks

By analogy with the definition of a probabilistic approximation based on char-
acteristic sets, we may define a probabilistic approximation based on generalized
maximal consistent blocks as follows:

A probabilistic approximation based on generalized maximal consistent blocks
of the set X with the threshold α, 0 < α ≤ 1, and denoted by apprMCB

α (X), is
defined as follows

∪{Y | Y ∈ Cx(A), x ∈ X, Pr(X|Y ) ≥ α}.

All distinct probabilistic approximations based on generalized maximal con-
sistent blocks are

apprMCB
0.5 ({1, 2, 3, 4}) = {1, 2, 3, 4, 7, 8},

apprMCB
0.667 ({1, 2, 3, 4}) = {1, 2, 3, 4, 8},

apprMCB
1 ({1, 2, 3, 4}) = {1, 3},

apprMCB
0.333 ({5, 6, 7, 8}) = {2, 4, 5, 6, 7, 8},

apprMCB
0.5 ({5, 6, 7, 8}) = {2, 5, 6, 7, 8},

apprMCB
1 ({5, 6, 7, 8}) = {5, 6, 8}.

4 Experiments

Our experiments were conducted on eight data sets that are available in the
University of California at Irvine Machine Learning Repository. For any such
data set a template was created by replacing (randomly) 5% of existing specified
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Fig. 1. Error rate for the bankruptcy
data set with lost values

Fig. 2. Error rate for the breast cancer
data set with lost values

Fig. 3. Error rate for the echocardio-
gram data set with lost values

Fig. 4. Error rate for the hepatitis data
set with lost values

Fig. 5. Error rate for the image seg-
mentation data set with lost values

Fig. 6. Error rate for the iris data set
with lost values

attribute values by lost values, then adding another 5% of lost values, and so
on, until an entire row was full of lost values. The same templates were used
for constructing data sets with “do not care” conditions, by replacing “?”s with
“∗”s, so we created 16 families of incomplete data sets.

In our experiments we used the MLEM2 rule induction algorithm of the
LERS (Learning from Examples using Rough Sets) data mining system [2,5,
6]. We used characteristic sets and generalized maximal consistent blocks for
mining incomplete datasets. Additionally, we used three different probabilistic
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Fig. 7. Error rate for the lymphography
data set with lost values

Fig. 8. Error rate for the wine recogni-
tion data set with lost values

Fig. 9. Number of rules for the
bankruptcy data set with “do not care”
conditions

Fig. 10. Error rate for the breast
cancer data set with “do not
care”conditions

Fig. 11. Error rate for the echocardio-
gram data set with “do not care” con-
ditions

Fig. 12. Error rate for the hepatitis
data set with “do not care”conditions

approximations, lower (α = 1), middle (α = 0.5) and upper (α = 0.001). Thus our
experiments were conducted on six different approaches to mining incomplete
data sets. These six approaches were compared by applying the Friedman rank
sum test combined with multiple comparisons, with a 5% level of significance.
We applied this test to all 16 families of data sets, eight with lost values and
eight with “do not care” conditions.
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Fig. 13. Error rate for the image seg-
mentation data set with “do not care”
conditions

Fig. 14. Error rate for the iris data set
with “do not care”conditions

Fig. 15. Error rate for the lymphogra-
phy data set with “do not care” condi-
tions

Fig. 16. Error rate for the wine recog-
nition data set with “do not care” con-
ditions

Results of our experiments are presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15 and 16, where “CS” denotes a characteristic set and
“MCB” denotes a maximal consistent block. For eight data sets with lost val-
ues, the null hypothesis H0 of the Friedman test saying that differences between
these approaches are insignificant was rejected for four families of data sets
(breast cancer, hepatitis, image recognition and iris). However, the post-hoc test
(distribution-free multiple comparisons based on the Friedman rank sums) indi-
cated that the differences between all six approaches were statistically insignif-
icant for breast cancer and hepatitis. Results for image recognition and iris are
listed in Table 2.

For eight data sets with “do not care” conditions, the null hypothesis H0

of the Friedman test was rejected for all eight families of data sets. Addition-
ally, for three families of data sets (bankruptcy, echocardiogram and hepatitis
families of data sets the post-hoc test shown that the differences between all
six approaches were insignificant. Results for the remaining five data sets are
presented in Table 2. Obviously, for data sets with “do not care” conditions,
concept upper approximations based on characteristic sets are identical with
upper approximations based on maximal consistent blocks [11].
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Table 2. Results of statistical analysis

Data set Friedman test results
(5% significance level)

Image recognition, ? Lower, CS is better than Middle, CS and Upper, CS

Lower, CS is better than all three approaches with MCB

Iris, ? Lower, CS is better than Upper, CS

Breast cancer, * Upper, CS is better than Lower, MCB

Upper, MCB is better than Lower, MCB

Image recognition, * Lower, CS is better than Upper, CS; Middle, MCB and
Upper MCB

Lower, MCB is better than Upper, CS; Middle, MCB and
Upper MCB

Iris, * Upper, CS is better than Lower, CS and Lower, MCB

Upper, MCB is better than Lower, CS and Lower, MCB

Lymphography, * Middle, CS is better than Lower, MCB

Wine recognition, * Lower, CS is better than Middle, CS and Middle, MCB

5 Conclusions

Our objective was to compare six approaches to mining incomplete data sets
(combining characteristic sets and generalized maximal consistent blocks with
three types of probabilistic approximations). Our conclusion is that the choice
between characteristic sets and generalized maximal consistent blocks and
between types of probabilistic approximation is important, since there are sta-
tistically significant differences in complexity of induced rule sets. However, for
every data set all six approaches should be tested and the best one should be
selected. There is no universally best approach.
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