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Abstract. We propose a modified classifier that is based on the max-
imum a posteriori probability principle that is applied to images hav-
ing the matrix normal distributions. These distributions have a special
covariance structure, which is interpretable and easier to estimate than
general covariance matrices. The modification is applicable when the esti-
mated covariance matrices are still not well-conditioned. The proposed
classifier is tested on synthetic images and on images of gas burner flames.
The results of comparisons with other classifiers are also provided.
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1 Introduction

Our aim is to discuss classifiers dedicated to image recognition. We consider
images as matrices of their gray levels. In opposite to the mainstream literature
in the field, we avoid a feature selection as the first step before image recognition.
Conversely, we consider images to be recognized as whole entities. Additionally,
we avoid the vectorization of matrices because for large images (10 MPix, say)
it is not only inconvenient but also destroys their covariance and neighborhood
structures.

We adopt random matrices as models of images. We confine our attention to
random matrices having Gaussian distributions since their description requires
the knowledge of the mean and covariance matrices. However, we have to confine
even more, because the covariance matrix of a 100× 100 pixels image has about
108 elements and their estimation would require a huge amount of data. Thus, we
need a class of random matrices with a more specialized covariance structure.
The so-called matrix normal distribution (see [7]) seems to be a good choice,
because their overall covariance matrices have a special structure that can be
fully described by two matrices of covariances between rows and columns, respec-
tively. These matrices are much smaller and easier to estimate (see Section. . . for
details). Furthermore, it seems that inter-row and inter-column covariances are
dominating for a sufficiently broad class of real-life images.
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Clearly, images as inputs of classifiers re-appeared in the literature starting
from the perceptron for classifying hand-written digits ([3] and the bibliogra-
phy therein). Also later on random matrices with spatially Markov structure,
generated by cliques, were extensively studied (see [5]). However, according to
our knowledge, random normal matrices as models of images to be recognized
are not considered. The research that is closest to ours was done by Krzysko [4]
who considered the problem of recognizing random normal matrices that arise
by stacking vectors, having their own interpretation, into a matrix. This idea
was extended in [8] to recognizing sequences of images by stacking them into
longer matrices.

The paper is organized as follows.

– In Sect. 2 we state the problem and describe basic properties of random nor-
mal matrices for the reader’s convenience.

– The derivation of the Bayes recognizer is presented in Sect. 2 and then its
empirical version is proposed, which is based on the plug-in principle, using
the matrix learning sequence for the maximum likelihood estimation of inter-
row and inter-column covariances.

– The quality of the proposed algorithm is compared with the well known meth-
ods: the nearest neighbor (NN) and the support vector machine (SVM). The
comparison is done by extensive simulations of the Monte-Carlo (MC) type,
assuming that the assumed covariance structure is an adequate one.

– Finally, the proposed algorithm is compared with NN classifying a sequence of
real-life images of gas burner flames. This time the method of cross-validation
is used for comparisons and we are not sure whether the assumed covariance
structure is an adequate one.

We notice that a similar sequence of gas burner flames was used for comparisons
in [10,11]. In the latter paper a more traditional classifier – based on features
extraction – was used. In the former, the classifier is based on whole images
(without features extraction), but a special structure of the covariance matrix is
not assumed. Instead, firstly medoid-based clustering is done. Thus, the results
are incomparable with presented here, because of different assumptions.

2 Problem Statement

MND as Class Densities and Their Estimation. We assume that prob-
ability distributions of gray-level images from class j = 1, 2, . . . , J have MND
with probability density functions (p.d.f.’s) of the form:

fj(X) =
1
cj

exp
[
−1

2
tr[U−1

j (X − Mj)V −1
j (X − Mj)T ]

]
, (1)

where T stands for the transposition and det[.] denotes the determinant of a
matrix in the brackets, while F the normalization constants are given by:

cj
def
= (2π)0.5nm det[Uj ]0.5n det[Vj ]0.5m, (2)
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where n × m matrices Mj ’s denote the class means matrices. Concerning the
covariance structure of MND class densities:

1. n×n matrix Uj denotes the covariance matrix between rows of an image from
j-th class,

2. m × m matrix Vj stands for the covariance matrix between columns of an
image from j-th class.

The above definitions are meaningful only when det[Uj ] > 0, det[Vj ] > 0. Later
on, we shall write shortly,

X ∼ Nn,m(Mj , Uj , Vj), for j = 1, 2, . . . , J (3)

Remark 1. In order to reveal to what extent MND is a special case of a general
class of Gaussian p.d.f.’s let us notice that the formally equivalent description
of MND is the following:

vec(X) ∼ Nnm(vec(Mj), Σj), for j = 1, 2, . . . , J, (4)

where vec(X) is the operation of stacking columns of matrix X, while Σj is
a nm × nm covariance matrix of j-th class, which is the Kronecker product
(denoted as ⊗) of Uj and Vj, i.e.,

Σj
def
= Uj ⊗ Vj , j = 1, 2, . . . , J. (5)

Thus, MND densities have special covariance structure in comparison to a gen-
eral multivariate Gaussian densities. Namely, their covariance matrices do not
have inter rows-columns covariances, which makes them much easier to estimate.

Now, let us consider the case when Mj , Uj , Vj ,s are unknown and they have
to be estimated from learning sequences.

Further on, we assume that we have J learning sequences of the following
form: X(j)

i , i = 1, 2, . . . Nj , j = 1, 2, . . . , J . They are used for calculating esti-
mates, further denoted by the same letter with the hat .̂

We estimate the class mean matrices and a priori class probabilities in a
classical way, i.e.,

M̂j = N−1
j

Nj∑
i=1

X(j)
i , p̂j = Nj/N, j = 1, 2, . . . , J. (6)

The necessary condition for estimating the covariance matrices is to have a suffi-
cient number of observations. In [6] it was proved that the following requirements
should be satisfied:

Nj ≥ max
{ n

m
,
m

n

}
+ 1, j = 1, 2, . . . , J. (7)

These conditions are less demanding than the classic one: Nj > m n. The reason
is that the overall covariance matrix has a special structure.
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The maximum likelihood estimates (MLE) of the inter-row and inter-column
covariance matrices for classes are coupled by the following set of equations
(see [6,12]):

Ûj =
1

Nj m

Nj∑
i=1

(Xi − M̂j) V̂ −1
j (Xi − M̂j)T , (8)

V̂j =
1

Nj n

Nj∑
i=1

(Xi − M̂j)T Û−1
j (Xi − M̂j) (9)

for j = 1, 2, . . . , J . Equations (8) and (9) can be solved by the freezing method.
In more detail:

Step 1. Ûj in (8) is calculated replacing V̂ −1
j by the identity matrix,

Step 2. Ûj is substituted into (9) and V̂j is calculated,
Step 3. V̂j is substituted into (8) and return to Step 2 (until convergence).

It was proved in [12] that one can perform only one iteration between Step 3
and Step 2 to obtain the efficient estimates of Uj and Vj .

When the estimates Ûj and V̂j are obtained, then one can easily define and
calculate estimates ĉj for cj ’s. Indeed, the empirical, plug-in type, version of (2)
is the following:

ĉj = (2π)0.5nm det[Ûj ]0.5n det[V̂j ]0.5m. (10)

Thus, we have estimators for all the unknown parameters of the matrix normal
class densities.

A Modified MAP Classifier for Matrices. In this section we firstly derive
the maximum a priori probability (MAP) classifier, assuming for a while that fj ’s
are known. Then we consider its empirical version of the plug-in type. Finally,
we add an important modification, namely occasionally switching to the nearest
mean classifier, when the estimates of the covariance matrices are ill-conditioned.
When new images appear and improve the estimated covariance matrices, then
we return to the proposed classifier, which is later called the matrix classifier
(MCL).

Denote by pj > 0, j = 1, 2, . . . , J ,
∑

pj = 1, a priori class probabilities. It is
well known that in a general case the MAP classifier assigns X to class j∗ such
that

j∗ = arg max
j

[pj fj(X)], (11)

where arg maxj [ ] stands for the argument for which the maximum is attained.
It is also well known that this rule is the optimal one when the 0–1 loss function
is used (see, e.g., [2]). Applying this rule to (1) and using the fact that the
logarithm is a strictly increasing function we obtain the following decision rule:
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When Mj and Uj , Vj , pj , j = 1, 2, . . . , J are known, then from (11) and (1)
we obtain: classify matrix (image) X to Class j∗ if

j∗ = arg min
j

[
1
2

tr[U−1
j (X − Mj)V −1

j (X − Mj)T ]
]

− log(pj/cj) (12)

The expressions in the brackets play the role of the Mahalanobis distances. The
matrices U−1

j and V −1
j de-correlate rows and columns of an image, respectively.

Thus, in a general case, the optimal classifier is quadratic in X and we have to
know (or to estimate) all parameters: Mj and Uj , Vj , pj , j = 1, 2, . . . J . Their
estimators were proposed in the previous subsection. Substituting them into
(12), we obtain the following empirical MAP classifier: classify image (matrix)
X to the class ĵ, where

ĵ = arg min
1≤j≤J

[
1
2

tr[Û−1
j (X − M̂j)V −1

j (X − M̂j)T ]
]

− log(p̂j/ĉj). (13)

Although this classifier is the empirical version of the optimal one, it does not
give a full guarantee that it works well in practice. The reasons are (at least)
the following:

1. Condition (7) is the minimal one in the sense that it yields the existence of
the inverse matrices Û−1

j and V̂ −1
j . However, we even do not know whether Ûj

and V̂j are sufficiently well-conditioned, which is a prerequisite for obtaining
their inverses in a numerically stable way.

2. It is not clear to what extent (13) retains its good properties in the case when
underlying class distributions are not matrix normal.

We tackle problem 1 in this section, while problem 2 is discussed in the last
section.

Recall that for symmetric and positive definite matrix A, its (Euclidean)
condition number κ is defined as follows:

κ =
λmax(A)
λmin(A)

, (14)

where λmax(A) and λmin(A) denote the largest and the smallest eigenvalue of
A, that are real and positive. It is also known that κ acts as an amplifier of
errors that occur during matrix inversion. When κ is in the range between 1 and
about 100, one can expect low numerical errors in matrix inversion algorithms.
In practice, especially for large matrices, easily computable bounds for κ are
used. However, in our computational experiments, reported in the section before
last, we used directly (14) for matrices of a moderate size.

Taking the above discussion into account, we propose the following algorithm
for classifying images (matrices) having the matrix normal distribution with class
densities given by (1).
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Matrix Classifier (MCL)

Step 0. Select 0 < κmax < 100.
Step 1. Initial learning phase: calculate p̂j , Ûj , V̂j , ĉj , M̂j , j = 1, 2, . . . , J for

the learning sequence.
Step 2. Check whether all the inequalities:

κ̂
(1)
j

def
=

λmax(Uj)
λmin(Uj)

< κmax, j = 1, 2, . . . , J (15)

as well as

κ̂
(2)
j

def
=

λmax(Vj)
λmin(Vj)

< κmax, j = 1, 2, . . . , J (16)

are fulfilled. If so, go to Step 3, otherwise, go to Step 4.
Step 3. Classify new image (matrix) X according to the rule described as (13),

acquire the next image (matrix) for classification and repeat Step 3.
Step 4. Classify new image (matrix) X according to the nearest mean rule, i.e.,

classify it to the class

j̃ = arg min
j

||X − M̂j ||2, (17)

where the squared distance ||X − M̂j ||2 is defined as follows:

||X − M̂j ||2 = tr[(X − M̂j) (X − M̂j)T ]. (18)

Update the estimates of Ûj̃ and V̂j̃ by adding current X to the learning
sequence as (X, j̃) and go to Step 2.

Notice that the update of Ûj̃ and V̂j̃ can be done recursively. A distinguishing
feature of the MCL algorithm is that it has not only the learning phase (as usual),
but also it learns at the recognition phase when the result of classification may be
unreliable. Conditions (15) and (16) serve as indicators of this. The additional
learning is supported by a surrogate classifier, which can be arbitrary. Here,
we use the nearest mean classifier for this purpose as it is closest to the MAP
classifier and does not need to store the whole learning sequence.

3 Performance Evaluation by Monte Carlo Experiments

In this section, we provide the results of extensive Monte Carlo (MC) simula-
tions for evaluating the performance of MCL. We take advantage that in MC
simulations we can repeat 1000 times the learning and the testing phase, having
proper classifications for comparisons with MCL outputs. The results of these
simulations are also used for comparisons of MCL performance with the classi-
fication errors committed by the nearest neighbor (NN) and the support vector
machine (SVM) classifiers, implemented in the Wolfram’s Mathematica ver. 11.
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Fig. 1. Excerpt of samples from Class 1.

Fig. 2. Excerpt of samples from Class 2.

The following parameters were used during simulations. Classified 6 × 6 matri-
ces (images) were drawn at random from two classes, each having the MND with

– mean matrices M1 being a 6× 6 matrix of zeros, while M2 is a 6× 6 constant
matrix with 0.05 as elements.

– covariance matrices: U1 = 0.1 I6, V1 is a 6 × 6 tridiagonal matrix with 2 at
the main diagonal and 1 along the bands running above and below the main
diagonal, U2 = V1, V2 = I6, where I6 is a 6 × 6 identity matrix,

– p1 = p2 = 0.5.

Samples of the simulated learning sequences are shown in Figs. 1 and 2 for classes
1 and 2, respectively. As one can notice, class densities were selected in such a way
that the samples are not easily distinguishable. The results of testing are shown in
Figs. 3 and 4. Each point at these figures was obtained from 1000 MC simulation
runs. They present statistics of the percentage of errors (% Err) committed by
MCL, SVM and NN classifiers as a function of the learning sequence length Nd,
i.e., N1 = N2 = Nd. From Fig. 3 it is clear that MCL provides a much smaller
mean and median of errors than those of NN and SVM classifiers. Furthermore,
also maximal classification errors, calculated as the maximal % of errors from
1000, is essentially smaller for MCL (see the left panel in Fig. 4). The variability
of % Err, measured by the dispersion, is also smaller for MCL than for NN
and SVM classifiers (see the right panel in Fig. 4). Thus, one can expect a more
reliable classification for different learning sequences.

Fig. 3. The mean and the median of % of classification errors.
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Fig. 4. The maximal % Err (Left), the dispersion of % Err (right).

As the conclusion from the above MC simulations, one can say that the MCL
classifier outperforms the NN and SVM classifiers when MND assumptions hold.

4 Testing MCL on Images of Flames of a Gas Burner

Our aim in this section is to test the MCL on real data, namely on images of
flames of an industrial gas burner. We also compare its performance with the 10
nearest neighbors (10–NN) classifier, where the number of neighbors was selected
as the best after a series of preliminary experiments. The images of flames are
classified to three classes (see Fig. 6). Namely,

Class 1 – improper combustion – too high air supply rate,
Class 2 – proper combustion – proper air supply rate,
Class 3 – improper combustion – too low air supply rate.

The result of the classification of a current flame image can be used to decide
whether to decrease, leave unchanged or increase the air supply rate, respectively.
This classification is rather rough and serves mainly for illustration purposes. We
refer the reader to [9,13] for more detailed explanations of relationships between
flames images and the combustion process.

Preparation of Flames Images. The original images of flames were stored as
170 × 352 RGB images. Before using them for classification, they were converted
to [0, 1] gray-levels scale and their size is reduced to 17 × 36 by 10 times down-
sampling. An example of an original image and its downsampled version is shown
in Fig. 5.

Fig. 5. An original image and its down-sampled version.
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Fig. 6. Examples of images: Classes 1–3 (from the left).

Learning, Testing and Comparing Classifiers. The sequence of flames
images that was at our disposal consists of 145 items. They were classified to
the above-mentioned classes by the author. The resulting labeled sequence will
be further denoted as H145.

The Methodology of Cross-Validation Testing
In opposite to the MC testing, here we do not have the freedom of generating
learning and testing examples freely. Instead, we used the well-known cross-
validation (CV) methodology of testing:

Step 1. Select from H145 (at random with the same probabilities) a learning
sequence of the length 45 and denote it as L45. The rest of H145 denote as
T100 and use it for testing.

Step 2. Learn MCL and 10-NN classifiers, using the L45 sequence.
Step 3. Test the classifiers from Step 2, applying them to T100, calculate and

store the percentages of errors committed by them.
Step 4. Repeat Steps 1–3 1000 times.

Notice that this is an intensive testing procedure because we have to estimate
three matrices of the means and six covariance matrices 1000 times when learning
MCL. Also, 10-NN method is time-consuming at the testing phase.

In order to illustrate the testing procedure, we provide the results of learning
from only one of its runs.

A priori probabilities, estimated from the frequencies of occurrence in this
run, are the following p̂1 = 0.37, p̂2 = 0.34, p̂3 = 0.29. In other CV runs this
pattern is similar.

Mean images for each class in this particular CV run are shown in Fig. 7
and again, in other runs these images are similar. In Fig. 8 the inter-column
36 × 36 covariance matrices for the same CV run and for all three classes are
shown as images (black pixels correspond to larger (co-)variance). In the case of
covariance matrices, the variability between CV runs is larger than for the mean,
but the general pattern remains similar. Namely, Class 1 images have almost
uncorrelated columns and the correlation grows for Classes 2 and 3. In Fig. 9 the
inter-column 17 × 17 covariance matrices for the same CV run and for all three
classes are shown as images (black pixels correspond to larger (co-)variance).
As above, the variability between CV runs is larger than for the mean, but the
general pattern, although different than for columns, remains similar. Namely,
for Class 1 almost all rows are similarly correlated, while for Class 2 mainly the
central rows have higher correlations. In opposite, for Class 3 almost all rows are
correlated. This justifies the hope that MCL will have a low classification error
also in this case.
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Fig. 7. Mean images for classes in one of the CV runs.

Fig. 8. Inter-column 36 × 36 covariance matrices in one CV run.

Fig. 9. Inter-rows 17 × 17 covariance matrices in one CV run.

The Results of Cross-Validation Testing. The results of testing of the
MCL (with κmax = 50) and 10-NN algorithm, using the above described CV
methodology, are shown in Table 1. The analysis of Table 1 is equivocal. The
mean % Err of the 10-NN method is smaller than that of the MCL, but the
comparison of the medians yields the opposite results. A partial explanation of
this behaviour is shown in Fig. 10. As one can notice, % Err of the MCL is much
more concentrated around the mean than that of 10-NN (although the estimated
dispersions suggest the opposite). Another partial explanation of this behavior
is presented in the next subsection.

Table 1. The CV comparison of MCL and 10-NN % errors.

% Err. Mean Med.

10-NN 12.5 12.2

MCL 15 10
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Fig. 10. The histograms of % Err for the MCL (left) and the 10-NN (right).

Baringhaus-Henze Test for Classes. The Baringhaus-Henze test (see, e.g.,
[1]) for the multivariate normality of observations from Classes 1–3 was per-
formed. The results are summarized in Table 2. As one can observe, for obser-
vations from Classes 2 and 3 the test rejects the hypothesis that observations
are multivariate normal. In fact, this test should be performed before MCL was
used. We provide its results here, as one more partial explanation that the 10-
NN classifier behaves comparably well or slightly better than the MCL, which
is optimal, but only when observations have multivariate normal distributions
with the special structure of the covariance matrix.

Table 2. The results of testing the multivariate normality of classes.

Statistic P-value

Class 1 0.999997 0.379991

Class 2 1.00041 0

Class 3 1.00006 0

5 Recommendations and Conclusions

A modified MAP classifier for images (matrices) having matrix normal distribu-
tion was derived and extensively tested both on synthetic MND data as well on
down-sampled images of gas burner flames. Conclusions and recommendations
from testing MCL are the following.

– When images (matrices) come from classes having matrix normal distribu-
tions, then the MCL essentially outperforms the SVM and the NN classifiers
and can safely be recommended. The Baringhaus-Henze test can be used in
order to test MND for classes.

– When for the observations the Baringhaus-Henze test fails, then the classifi-
cation errors of the MCL and the 10-NN are comparable and it can be more
reliable to apply the xx-NN or another nonparametric classifier (see [2]).

It can be of interest to develop nonparametric classifiers dedicated to classifying
images (matrices).
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