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Abstract. Demand-side management is a useful and necessary strat-
egy in the context of smart grids, as it allows to reduce electricity con-
sumption in periods of increased demand, ensuring system reliability
and minimizing resources wastage. In its range of activities, Demand
Response programs have received great attention in recent years due to
their potential impact measured in several studies. In this work, different
approaches of the Particle Swarm Optimization algorithm are applied to
the autonomous and distributed demand response optimization model
based on energy price. In addition, a stochastic mechanism is proposed
to mitigate the structural bias problem that such algorithm presents,
boosting its application in the analyzed problem. Results provided by
computational simulations show that the proposed approach contributes
significantly to reduce the energy consumption costs in relation to tariff
variations, as well as minimizing the use of residential equipment during
peak hours of a group of consumers.
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1 Introduction

Until the 1970s, power distribution utilities planned their energy delivery capac-
ity according to demand growth, once energy consumption was highly pre-
dictable. However, since the 1980s, due to economic, political, social and tech-
nological factors, demand has started to become less and less predictable [1].
Currently, the use of renewable sources has increased such volatility.

In this context, Demand-Side Management (DSM) was conceived as the plan-
ning, implementation and monitoring of activities that aim to influence the use
of electricity in a way that produces desired changes in the load curve of utili-
ties [2]. The DSM covers a set of actions for load management, which include,
for example, the adoption of variable tariffs, measures for rational energy use,
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renewable sources, energy efficiency, and Demand Response (DR). In this way,
DSM mitigates the risks that can compromise the efficiency, reliability and sta-
bility of the power system, since it allows the relief of the power grid during peak
hours.

According to [3], with the advances in data communication technologies and
energy metering infrastructure, an adequate scenario is presented for the efficient
management of energy resources. Therefore, in [4], the authors demonstrate that
recent literature presents several studies that discuss the need of automatic load
management and consumer behaviour analysis for DR programs to enable DSM
actions. In addition, the authors argue that sustainable management of energy
resources can be achieved through cooperation between the utility and its con-
sumers, balancing the benefits between them.

Following this context, this paper addresses the DSM issue as a DR optimiza-
tion problem, which aims to obtain the residential load scheduling that minimizes
the cost of the energy consumed in face of tariff variations, respecting consumer
habits as well as the characteristics of their electrical equipment. Another, but
no less important goal concerns the reduction of the peak consumption that
could be generated by a group of consumers. Thus, the reduction of this peak of
consumption maximizes the reliability of the power system.

2 Demand Response and Load Scheduling

Demand Response methods refer to mechanisms that aim to manage the con-
sumption patterns of end consumers in response to generation, supply, environ-
mental, economic, and other conditions [5]. In this way, six load modulation
strategies are defined by means of DR programs: peak reduction, valley filling,
strategic growth, load shifting, strategic energy conservation, and flexible load
curve.

Based on the ability of consumers to respond to an action by the system
operator due to the change in energy prices, the potential impact of the DR is
estimated to reduce peak demand. There are several ways to implement price-
based DR programs, such as the Time-of-Use (TOU) pricing model, where the
utility establishes prices that vary according to predefined time periods, which
can include hours of the day, days of the week or seasons of the year, for example.

From the advances on Information and Communication Technologies and
the consequent introduction of the Smart Grid concept, together with the DSM
mechanisms, consumers play an important role in the energy scenario, since they
can manage their consumption in an appropriate manner, selecting a preferred
supplier and scheduling the operation of each residential load. Obviously, the
scheduling of loads is not a trivial task, since it should consider a large set of
information, objectives and constraints governed by mutual benefit among all
agents of the system. Therefore, the DSM as an optimization problem leads to
the development of decision support methods that meet the objectives of the
utility and its consumers.
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3 Autonomous and Distributed Modelling

From mathematical models that represent the loads and profile of residential
consumers, it becomes possible to maximize the advantages of joining DR pro-
grams. Therefore, the choice of these models considers different factors related
to the energy consumption.

Thus, this paper considers an autonomous and distributed model, published
by [6], which was idealized for price-based DR programs. In this model, it is
assumed that a group of nearby consumers, connected on the same power grid,
has a bidirectional communication with the utility and interact with each other.
It is also assumed that each consumer has a device called Energy Consumption
Scheduler (ECS), which is responsible to obtain measurements and manage the
flow of information between consumers. In addition, all communication between
them and the utility is carried out via LAN (Local Area Network).

Considering the minimization of the cost for energy consumption, the Peak-
to-Average Ratio (PAR) reduction is also part of the objective function of this
model. The PAR corresponds to the ratio between the maximum demand and the
average consumption demand, which reflects how much demand is concentrated
in the peak period [3], being an important element that contributes to the energy
price.

In the autonomous and distributed model, η denotes the group of consumers,
where the number of consumers is N

.= |η|. For each consumer n ∈ η, the
total energy consumption at the time h ∈ H

.= {1, ...,H} is denoted by lhn,
where H = 24. Aiming to maintain the generalization of the model, the time
discretization considered is one hour. Therefore, the daily consumption profile
for the consumer n is denoted by ln

.= {l1n, ..., lHn }. Based on these definitions,
the total consumption at each hour of the day (h ∈ H) considering all consumers
can be calculated as:

Lh
.=

∑

n∈η

lhn. (1)

Peak and average daily consumption can be calculated respectively by:

Lpeak = max
h∈H

Lh, (2)

Lavg =
1
H

∑

h∈H

Lh. (3)

Therefore, the PAR of load demand is given by:

PAR =
Lpeak

Lavg
=

H maxh∈H Lh∑
h∈H Lh

. (4)

For each consumer n ∈ η, An denotes the set of electrical devices present in
the residence. For each load/appliance a ∈ An, it was defined a power consump-
tion planning vector xn,a

.= {x1
n,a, ..., xH

n,a}, where the scalar xh
n,a represents the
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planned energy consumption by the consumer n for the load/appliance a at time
h. Thus, the total hourly consumption of each consumer is obtained as follows:

lhn
.=

∑

a∈An

xh
n,a. (5)

In this model, the objective of the ECS of each consumer is to calculate,
through the optimization algorithm, the best power consumption planning vec-
tor (xn,a) for each residential load. Thus, it can be defined the daily consumption
profile of the consumer. Clearly, the definition of feasible planning should con-
sider the preferences and needs of consumers throughout the day, as well as the
operating characteristics of each load. It is important to mention that the objec-
tive is not to change the total amount of energy consumed, but rather to manage
and allocate the loads efficiently to reduce the total daily energy cost paid by
the consumer as well as reduce consumption at times of peak demand.

For this purpose, the consumer should define the beginning αn,a ∈ H and end
βn,a ∈ H of time interval in which each load/appliance can be turned on, so that
αn,a < βn,a. The definition of this operating window imposes time constraints
on the planning vector and the total energy consumption previously determined
must be carried out within the established range, such that

∑βn,a

h=an,a
xh

n,a = En,a

and xh
n,a = 0,∀h ∈ H\Hn,a. Thus, Hn,a

.= {αn,a, ..., βn,a} is the operating
window of each device defined a priori. For each load/appliance, this time interval
must be greater than the interval required to perform its function completely.

Therefore, it can be noticed that the daily energy consumed by all
loads/appliances is equal to the sum of the total consumption of each
load/appliance of each consumer. In this sense, the energy balance ratio will
be maintained: ∑

h∈H

Lh
.=

∑

n∈η

∑

a∈An

En,a. (6)

In general, the operation of certain equipment is not as flexible as the changes
in the schedule. Therefore, the ECS does not impact on the consumption plan-
ning of such equipment. Thus, for each load/appliance a ∈ An, the minimum
energy consumption in standby mode (γmin

n,a ) and the consumption relative to
the maximum power (γmax

n,a ) are defined, so that γmin
n,a ≤ xh

n,a ≤ γmax
n,a ,∀h ∈ Hn,a.

Thus, given the assumptions established in the autonomous and distributed
model, the problem of minimizing the diary energy bill can be expressed as
follows:

min
xn,a,∀n∈η,∀a∈An

H∑

h=1

Ch

(
∑

n∈η

∑

a∈An

xh
n,a

)
, (7)

where Ch is the function that defines the energy cost in the hour h. This model
considers a previously known and strictly convex function for the energy cost.

In addition to the cost, the reduction of PAR is also necessary to obtain
efficient consumption planning [6]. In this way, it is possible to represent the
PAR of the energy consumption planning vectors as:
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H maxh∈H

(∑
n∈η

∑
a∈An

xh
n,a

)

∑
n∈η

∑
a∈An

En,a
. (8)

Therefore, having prior knowledge of all consumers’ needs, the solution to
the problem results in an efficient planning of energy consumption with respect
to PAR:

min
xn,a,∀n∈η,∀a∈An

H maxh∈H

(∑
n∈η

∑
a∈An

xh
n,a

)

∑
n∈η

∑
a∈An

En,a
. (9)

Given the planning vectors, the terms H and
∑

n∈η

∑
a∈An

En,a are con-
stants. Consequently, they can be removed from Eq. 9, so that the following
equivalent problem can be determined:

min
xn,a,∀n∈η,∀a∈An

max
h∈H

(
∑

n∈η

∑

a∈An

xh
n,a

)
(10)

According to the described mathematical modeling, the problem discussed in
this paper can be solved by a variety of optimization approaches, such as meta-
heuristics. In this sense, the application of the PSO algorithm is feasible to solve
the established price-based Demand Response problem, given its algorithmic
simplicity and its ability to solve these category of problems.

4 Particle Swarm Optimization

4.1 Classical and Linear Decreasing Weight PSO

The PSO algorithm was proposed by [7] as an evolutionary computational opti-
mization technique where the solution of a problem, or a particle, is found within
a swarm containing a fixed number of particles. With its coordinates, each par-
ticle has a record of its best-known fitness, called pBest, and the best overall
fitness of the swarm, gBest. Therefore, the swarm always moves towards the
best solutions found.

The position of a particle is determined based on its previous position,
Pi(X1, ...,Xn) , and by its velocity, Vi(X1, ...,Xn), so that {X1, ...,Xn} are the
coordinates of the particle. Therefore, according to [7], the movement of the
swarm is governed by the equations:

V
(t+1)
i = ω ∗ V t

i + φ1r1
(
Xt

pBesti − Xt
i

)
+ φ2r2

(
Xt

gBesti − Xt
i

)
, (11)

X
(t+1)
i = Xt

i + V
(t+1)
i , (12)

where V
(t+1)
i is the velocity coordinate at the next iteration; V t

i is the current
coordinate of the velocity; X

(t+1)
i is the coordinate of the position at the next

iteration; Xt
i is the current coordinate of the position in the iteration t; Xt

pBesti

and Xt
gBesti

are the best coordinates for a particle and for the swarm, respec-
tively; φ1 and φ2 are factors for local and global exploration, respectively (namely
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cognitive and social parameters); and finally r1 and r2 are random numbers uni-
formly distributed between 0 and 1, which insert a stochastic characteristic in
the process of exploration of the search space.

It should be noticed that the inertia factor ω in Eq. 11 is not part of the
original PSO, since it was proposed by [8] in a new approach called Linear
Decreasing Weight PSO (LDW-PSO). The authors proved that this factor sig-
nificantly increases the performance of the algorithm in relation to classical PSO
in many cases. In the LDW-PSO, ω is the inertia factor, which usually decreases
linearly from 0.9 to 0.4. According to the authors, the value of the inertia factor
can be obtained through the equation:

ω = ωmax − ωmax − ωmin

itermax
∗ iter, (13)

where, ωmax represents the maximum value that the inertia factor can obtain,
ωmin is the minimum value, itermax is the maximum number of iterations that
the PSO will execute, and iter refers to the current iteration of the algorithm.
According to [8], a large value for the inertia factor guarantees the global explo-
ration of the search space. Otherwise, a small value helps with local explorations.

4.2 Proposed PSO Based on Stochastic Population Mechanism

A potential deficiency of meta-heuristics, including the PSO algorithm, referred
to as structural bias, is discussed by [9]. According to the authors, a heuristic
algorithm is structurally biased when it is more likely to visit some parts of
the search space than the others. This behavior is not justified by the objective
function. The authors further suggest that the structural bias has a greater
impact on the exploration efficiency of the search space according to the level
of difficulty inherent in solving the problem. In addition, the adoption of an
effective particle sampling strategy increases the chance of PSO convergence.

Thus, assuming the autonomous and distributed modelling and the exposed
objectives, a stochastic mechanism for the generation of particles is proposed
(Algorithm 1), which aims to potentiating the application of LDW-PSO to the
DR problem. The main idea of this mechanism is to generate individuals in
function of the energy tariff in order to stochastically define viable candidate
solutions that present better fitness and to explore more efficiently the search
space of the problem. Therefore, this paper design a new PSO algorithm, which
will be treated in this paper as SPM-PSO (Stochastic Population Mechanism
PSO).

5 Results and Discussions

Based on the autonomous and distributed model presented, this paper aims to
conduct an effective comparison regarding the performance of the PSO algo-
rithms proposed in Sect. 4, highlighting the particularities of these algorithms
when applied to solve the autonomous and distributed model of DR problem.
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Thus, to represent a complete cycle of consumption behavior in a residence, a
planning horizon of 24 h was analyzed. The data considered were generated by
the Load Profile Generator software. The simulations were performed consid-
ering a set three residences, inhabited by 3 persons (2 adults and 1 child). In
addition, each residence has 40 electrical load/appliances, which have their own
operating configurations.

Aiming to minimize the cost of energy consumption and the PAR, factors rep-
resented by Eqs. 7 and 10, the objective function considered in the implemented
algorithms was described as:

λcost

∑

h∈H

(
Ch

∑

n∈η

∑

a∈An

xh
n,a

)
+ λPAR max

h∈H

(
∑

n∈η

∑

a∈An

xh
n,a

)
, (14)

where h, H, n, η, a, An, Ch, and xh
n,a have the meanings already expressed

above. λcost and λPAR are used to weight the impact of the minimization of
each factor of Eq. 14, both having value 1 in the realized tests.

Each PSO was tested 10 times, using a swarm of 50 individuals and limited
to 1000 iterations. The parameters φ1 and φ2 were both defined equal to 2.05.
For both the LDW-PSO and the SPM-PSO, ωmax equal to 0.9 and ωmin equal
to 0.4. For function Ch, the TOU tariff was adopted so that the kWh between
6 pm. and 8 pm. is R$0.50. For the remaining hours the cost is R$0.35. The
individual was considered as a vector of dimension 2880, which represents 40
loads/appliances for 3 residences in 24 h of the day.

In the subsequent analysis, only the best result of each PSO will be considered
among all the tests performed. Table 1 presents the summary of the obtained
results.
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The Fitness line represents the final value obtained for the objective function,
the Cost line is the amount paid for the energy consumption (first term of
the objective function), Peak Consumption line is the quantity of load (in kW)
scheduled in the peak, i.e., for the second term of the objective function, and
finally the line PAR is the ratio between the maximum and average demands.

Table 1. Summary of the performances reached by each PSO algorithm.

Parameter Classical PSO LDW-PSO SPM-PSO

Fitness 28.901 28.675 23.526

Cost 22.115 22.086 21.414

Peak Consumption 6.786 6.589 2.112

PAR 3.075 3.093 4.127

As can be seen, SPM-PSO presented the highest efficiency in relation to the
objective function, resulting in a Fitness of 23.526. In contrast, the classical PSO
and LDW-PSO reached 28.675 and 28.901, respectively. Separating the first and
second terms of Eq. 14, it is possible to obtain the total Cost and Peak Con-
sumption for a period of 24-hours. In this sense, the SPM-PSO presented light
reduction of the cost of energy consumption. However, the energy consumption
for peak times was drastically reduced by using the proposed SPM-PSO when
compared to the alternative approaches. Thus, it is important to mention that
this reduction is expected by utilities in order to relieve the load of the power
grid. This behavior is evident in Fig. 1, which shows the optimized load pro-
file of the best solution obtained by the classical PSO, the LDW-PSO and the

Fig. 1. Optimized load profile obtained by the algorithms: (a) classical PSO; (b) LDW-
PSO; (c) SPM-PSO.
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Fig. 2. Convergence analysis of each PSO (classical PSO, LDW-PSO and SPM-PSO).

Fig. 3. Optimized individual residence consumption planning.

proposed SPM-PSO, where the red vertical lines delimit the period where the
energy presents high costs (peak times).

Regarding the convergence of the best solution found by each algorithm
(Fig. 2), SPM-PSO presented an advantage over all the others, since the stochas-
tic mechanism acts to distribute the loads for periods in which the energy has
the lowest cost, avoiding peak times. It is worth mentioning that the pro-
posed stochastic mechanism is used in the initialization of the swarm. This
choice is justified by the need to measure the impact of this mechanism on the
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convergence process of the algorithm within feasible search space, i.e., the objec-
tive is to verify if the proposed mechanism is efficient in the context of the ana-
lyzed problem. Thus, this result corroborates with [9], since the classical PSO
and LDW-PSO algorithms are susceptible to have structural bias, necessitating
strategies to mitigate such undesirable effect, especially in the case of the DR
problem, which fitness has strong correlation with an external function (energy
tariff Ch).

Therefore, based on the best solution obtained by SPM-PSO, it is possible
to observe the optimized daily load profile for each residence (Fig. 3).

The residences have optimized plans that are different from each other, hav-
ing as a common characteristic the avoidance of energy consumption at times
when the tariff presents the highest cost, respecting the individual preferences of
the consumers. Therefore, the precepts discussed in this paper are evidenced in
Fig. 3, in which SPM-PSO optimizes load scheduling efficiently in face of energy
price variations.
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