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Abstract. Ten variants of migration model are compared with six adap-
tive differential evolution (DE) algorithms on real-world problems. Two
parameters of migration model are studied experimentally. The results
of experiments demonstrate the superiority of the migration models in
first stages of the search process. A success of adaptive DE algorithms
employed by migration model is systematically influenced by the studied
parameters. The most efficient algorithm in the comparison is proposed
migration model P15x50. The worst performing algorithm is adaptive
DE.
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1 Introduction

In many areas of research and industry arises necessity to solve various prob-
lems. Each problem to be solved is represented by an objective function. These
functions should be very simple, but in prevalent cases, the computational costs
to solve more complex problems are non-negligibly high. An essential feature of
the real problems is their dimensionality that substantially influences the total
computational costs of the solution process.

In last decades, a favorite kind of optimization techniques called evolutionary
algorithms (EAs) is rapidly developed. An essence of this fact is that EAs are very
effective even in the solution of complex problems with higher dimensionality.
Popularity of EAs is given also by its simplicity because the main idea is to
use randomness to reduce time demands and keep the quality of the provided
solution.

One of the most widely studied and applied representatives of EAs is differen-
tial evolution (DE). Differential evolution is very popular optimization technique
used to search the solution of problems in many areas of research and industry.
It was introduced by Storn and Price in 1995, and its popularity could be also
measured by more than 7500 citations of the original paper [14].
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Although DE algorithm is very useful optimizer there are even real complex
problems which DE is not able to solve. In last decades, many researchers of
optimization tasks developed adaptation mechanisms of DE control parameters
to increase the possibility of finding the global solution of the tasks. Beside the
adaptive DE variants, many other principles increasing algorithm efficiency are
included in original DE. A comprehensive review of state-of-the-art in a case of
DE algorithms are in [7,8].

The main motivation for this experimental study is applied the existing par-
allel migration model [4] to real-world problems. These problems are defined by
various dimensionality, therefore it is necessary to study two main control param-
eters of migration model to find out the proper settings. Although the experi-
ments of parallel migration model are performed on single CPU computer, the
efficiency measured by the number of the objective function evaluations should
detect some good and poor migration settings compare to the original adap-
tive DE variants. Given results and conclusions of this experiment could provide
potential ways how to set parameters of migration model and solve complex
problems in physical parallel computational grids.

There are several existing works focused on parallel DE algorithm and real
problems. In a first, a multi-objective maximization problem of an amount of
ethylene and propylene in a petrochemical industry process is solved by parallel
DE in [16]. Several settings A short-term hydro scheduling problem of power
plants generator is solved by the parallel model of self-adaptive DE [9]. Authors
of [12] study many parameters of migration model of DE. The state-of-the-art
of parallel evolutionary algorithms containing deep analysis of various parallel
models, several parallel programming frameworks and hardware for distributed
computing is summed in [10].

In this paper, a migration model of adaptive DE variants is applied to real-
world optimization problems CEC 2011. The main goal is to show how several
various settings of migration of individuals influence the efficiency of the pro-
posed model. The performance of the migration model is also compared with the
original adaptive DE variants. The remaining part of the paper is organized as
follows. A brief review of adaptive state-of-the-art DE variants used in this paper
is explained in Sect. 2. Details of the migration model are described in Sect. 3.
A test suite of real-world problems CEC 2011 with the experiment settings is
introduced in Sect. 4. Results of the experimental comparison of the migration
model are presented in Sects. 5 and some remarks are provided in Sect. 6.

2 Adaptive Variants of Differential Evolution

Although DE is efficient optimizer there exist many various adaptive variants of
DE which are widely used to solve optimization problems. In this experimental
study, four state-of-the-art adaptive DE algorithms [1,11,13,18] have been com-
pared experimentally with DE algorithm using composite trial vector generation
strategies and control parameters (CoDE) [17] and with a variant of competitive
DE [15]. The main purpose to select this sixth of adaptive DE is to tie up to
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the previous successful experimental study [4] and show that simple idea should
provide significant increasing of the performance. Necessary to note that more
sophisticated adaptive DE variants arisen latter should be also implemented in
presented migration model. A very brief familiarization of used adaptive DE
follows. More details are provided in the original references.

Self-adaptive jDE algorithm proposed by Brest et al. [1] uses the DE/rand-
/1/bin strategy with an evolutionary self-adaptation of F and CR. Differential
Evolution with Strategy adaptation (SaDE ) [13] uses four strategies which are
preferred according to its success rate in the previous LP generations. JADE
variant of adaptive differential evolution [18] extends the original DE concept
with three different improvements – current-to-pbest mutation, a new adaptive
control of parameters F and CR, and archive. Next adaptive DE variant using
Ensemble of Parameter values and mutation Strategies (EPSDE ), has mutation
strategies and the values of control parameters F and CR stored in pools and
was proposed in [11]. In competitive DE H strategies (in this study b6e6rl uses
H = 12 strategies) are used with their control-parameter values held in the pool
and each strategy is preferred according to its success rate in the preceding step.
DE algorithm with three well-studied composite trial vector generation strate-
gies simultaneously applied on each point in population and control parameters
(CoDE ) has been recently presented [17].

3 Migration Model of DE

There are several scenarios to distribute operations of DE algorithm to achieve
better results. A migration model used in this experiment is widely-used because
of its simplicity and possibility of exchange information between parallel pro-
cesses [2,3,5]. Migration model is controlled by several parameters which setting
is provided as follows. A comprehensive state-of-the-art of distributed evolution-
ary algorithms is available in [10].

In general migration model there are k islands and each contains one sub-
population, Pj , j = 1, 2, . . . , k. Each island is linked only to a special island
called mainland and individuals can migrate only between the linked islands.
This topology is called star. A pseudocode of experimentally compared parallel
migration model is shown in Algorithm1. Sub-populations has the same size, Np

is an input parameter. Each sub-population is developed independently by one
of the six adaptive DE algorithm described above until the moment to migration
is reached. Necessary to note that in one studied model only b6e6rl variant is
performed in all sub-populations and also mainland population (the name of this
variants is in an index). The migration from the islands to the mainland occurs
after performing a given number of generations nde (studied input parameter of
the algorithm). In the migration model used here, the individual with the least
function value of the ith sub-population (xbest,i) replaces the ith individual (xm

i )
of the mainland population, and Nrnd other randomly chosen points of the sub-
population (except xbest,i) overwrite Nrnd individuals of mainland population
on places corresponding to kth sub-population, Nrnd is also an input parameter.
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In this study, this parameter is not deeply studied, and it is set to Nrnd = 4.
Thus, Nrnd + 1 individuals from each island are copied to central mainland sub-
population. It is obvious the size of the mainland sub-population Nm should
be set up to Nm ≥ k × (Nrnd + 1). If Nm = k × (Nrnd + 1), the mainland sub-
population is refreshed completely in each epoch, and the elitism of the migration
model is ensured. In order to satisfy this condition, the input parameter Nrnd

was set up to Nrnd = 4 and Nm = 6 × 5 = 30 in all the experiments.
After finishing the migration of the selected individuals from the islands

to the mainland, the search process continues applying a DE variant on the
mainland until the stopping condition for the current epoch (1) is reached. In the
proposed migration model, competitive b6e6rl as the most reliable in preliminary
experiments was chosen for the mainland sub-population. Only in the one case of
migration model setting, the fastest JADE variant was performed on mainland
sub-population (the name of JADE algorithm is in the index of the model).
The stopping condition for the mainland, and the current epoch was formed as
follows:

fmax − fmin < 1 × 10−6 OR FESm > 10(epoch−1) × 2 × nde × Nm, (1)

where fmax and fmin are the worst and the best objective function values of
the mainland sub-population, respectively, and FESm is the number of function
evaluations in the mainland population during this epoch. Notice that in early
epochs the evolution on the mainland tends to stop due to the given limit of
allowed function evaluations (after 2 × nde generations in the first epoch) while
in late epochs due to the small difference of the function values in the mainland
population. The whole search process of the algorithm is stopped after the pre-
defined number of objective function evaluations given by used benchmark set
of CEC 2011.

Algorithm 1. Migration Model of Adaptive Differential Evolution
initialize mainland population, and sub-populations Pi, i = 1, 2, . . . , k
epoch = 1
while stopping condition not reached do

for i = 1, 2, . . . , k do
perform nde generations of ith sub-population by ith adaptive DE
migrate the best point and Nrnd points randomly chosen from Pi to mainland

end for
while stopping condition (1) not reached do

develop mainland sub-population by a adaptive DE variant
end while
for i = 1, 2, . . . , k do

migrate 1 + Nrnd points from the mainland to ith island
end for
epoch = epoch + 1

end while
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4 Experimental Settings

The test suite of 22 real-world problems selected for CEC 2011 competition in
Special Session on Real-Parameter Numerical Optimization [6] is used as one
benchmark in the experimental comparison. The functions in the benchmark
differ in the computational complexity, and in the dimension of the search space
which varies from D = 1 to D = 240, the dimensionality of most problems
exceeds D = 20. For each algorithm and problem, 25 independent runs were
carried out. The run of the algorithm stops if the prescribed number of objec-
tive function evaluations MaxFES = 150000 is reached. The partial results of
the algorithms after reaching one third and two-thirds of MaxFES were also
recorded. The point in the terminal population with the smallest function value
is the solution of the problem found in the run. The population size of original
adaptive DE variants N = 100 was used in all CEC 2011 problems. The sub-
populations size of the proposed migration models is studied parameter set to
Np = 10, 15, 45 and 90. The number of generations performed on all k islands
before migration of individuals is second analysed parameter and its values are
nde = 5, 10, 20, and 50. The migration models are labelled based on using explicit
Np, and nde settings ‘P+Np+x+nde’, i.e. ‘P15x5’. The other control parameters
are set up according to a recommendation of authors in their original papers.
All the algorithms are implemented in Matlab 2010a, and all computations were
carried out on a standard PC with Windows 7, Intel(R) Core(TM)i7-4790 CPU
3.6 GHz, 16 GB RAM.

5 Results and Discussion

In this experimental study six original adaptive DE variants are compared with
ten newly proposed migration models. Because the lack of place, detailed results
are not provided. In Table 2 medians of all algorithms on all real-world problems
are presented. The best value is underlined and printed bold, algorithms on
second place has median printed bold, and median of algorithm on third place is
only underlined. We can see that the best performing algorithms are among the
original DE variants, and also migration models. The least median value is not
the best testified statistics. Therefore in the last four rows of this table numbers
of significant best, second, third and last positions based on Kruskal-Wallis test
are printed. Each migration model in study is able to be competitive with the
original DE variants. The most migration models are never the worst performing
except P10x5 and P15x5. Combination of small sub-population size and frequent
migration causes worse results.

Kruskal-Wallis non-parametric one-way ANOVA test was applied to each test
problem. It was found that the performance of the algorithms in comparison dif-
fers significantly, the null hypothesis on the same performance is rejected in all
the problems with achieved significance level p < 0.000005. Multiple comparison
was then applied using Kruskal-Wallis z method (Dunn’s test). The details of the
significant positions of the Kruskal-Wallis test for each problem are in Table 1.
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Table 1. Significantly best, second, third and worst performing algorithms from
Kruskal-Wallis test.

Fun D 1st 2nd 3rd last

T01 6 p45x5 p15x50b6e6 b6e6rl CoDE

T02 30 p15x50jade p15x50 p15x20 CoDE

T03 1 No significant difference

T04 1 No significant difference

T05 30 p15x50jade p15x10 p15x20 EPSDE

T06 30 JADE SaDE p15x50 EPSDE

T07 20 p15x10 p15x5 p10x5 EPSDE

T08 7 No significant difference

T09 126 SaDE b6e6rl jDE CoDE

T10 12 b6e6rl EPSDE SaDE p10x5

T11.1 120 p15x5 p15x50b6e6 p45x5 b6e6rl

T11.2 240 p45x5 p15x50b6e6 p15x20 CoDE

T11.3 6 b6e6rl b6e6rl b6e6rl p15x5

T11.4 13 b6e6rl SaDE p90x50 p10x5

T11.5 15 b6e6rl EPSDE p90x5 JADE

T11.6 40 CoDE EPSDE p90x50 p10x5

T11.7 140 CoDE EPSDE p90x50 jDE

T11.8 96 CoDE EPSDE b6e6rl jDE

T11.9 96 JADE EPSDE b6e6rl jDE

T11.10 96 CoDE EPSDE b6e6rl jDE

T13 26 p15x50 p10x5 p15x5 CoDE

T14 22 p90x5 p15x10 p45x5 CoDE

We can see that in three problems all algorithms perform similarly. The best per-
forming original algorithms are b6e6rl, JADE, and CoDE. The best performing
migration models are P15x50jade and P45x5. The worst performing algorithms
are CoDE, jDE, EPSDE, and P10x5. The CoDE variant provides good perfor-
mance only for problems T11.1–T11.10. These problems are very similar, and
therefore CoDE is able to solve ’one kind’ of CEC 2011 problems.

For better comparison of 16 algorithms on 22 problems in three equidistant
stages the Friedman test on medians is applied, and results are depicted in
Fig. 1. The test was carried out on medians of minimal function values at three
stages of the search, namely after FES = 50,000, 100,000, and 150,000. The null
hypothesis on the equivalent efficiency of the algorithms was rejected at the all
stages of the search with p < 5 × 10−6. The algorithms in this table are ordered
from left to right with respect to their mean rank from Friedman test at the
finish of the search, i.e. after reaching MaxFES = 150, 000.
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Fig. 1. Mean ranks from Friedman tests at three stages of the search, CEC 2011 test
suite, FES = 50000, 100000, 150000.

In Fig. 1 the mean rank of all the compared algorithms are provided. We can
observe a good performance of most migration models in the first stage. This result
is important when a restrict number of evaluations is provided. The worst perform-
ing migration model is P10x5, the small sub-populations size (Np = 10), and fre-
quent migration (nde= 5) decreases the efficiency. The best performing model is
P15x50, therefore the model with JADE on mainland, and model with b6e6rl on
all sub-populations employs these settings. The performance of P90x5 variant is
increased with increasing number of function evaluations. This conclusion means
better performance for algorithms with ‘casual’ population size in DE. Although
the best population size, and the good number of generations before migration is
combined, unfortunately the performance of P90x50 is rather worse. When the
number of function evaluations increases, the performance of migration models
decreases whereas the performance of the original DE is rather increasing. The
best performing P15x50 is slightly outperformed in the last stage by b6e6rl.

Further success of adaptive DE variants in migration model is analyzed. Each
sub-population is developed by one DE, and the number of successfully generated
individuals of each sub-population is weighted to % and depicted in Fig. 2. The
most successful original algorithm is EPSDE, but the efficiency decreases with
increasing sub-populations size Np. The higher efficiency of EPSDE variant in
migration model in most experiments could be caused by a huge number of small
positive changes. Further research will be focused on an analysis of the diversity
of the sub-populations during the search process.
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Fig. 2. Success of adaptive DE variants in migration models (%).

6 Conclusion

The results of the experimental comparison of ten various migration adaptive
DE models with six popular adaptive DE algorithms demonstrate clearly very
good efficiency of most of the migration models. The best performing algorithm
in comparison is migration model P15x50, worst performing is adaptive jDE.
Most of the migration models perform better than the original DE in the first
stage of CEC 2011. This fact is important for real problems restricted by small
function evaluation amount. The most successful adaptive DE in migration mod-
els is EPSDE, the efficiency of this variant is decreased with increasing sub-
populations size. Although migration model of adaptive DE provide very good
performance, further study of another migration parameters is fundamental for
next research.
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