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Abstract. The paper presents a parallel approach to the Levenberg-
Marquardt algorithm (also called LM or LMA). The first section contains
the mathematical basics of the classic LMA. Then the parallel modifica-
tion to LMA is introduced. The classic Levenberg-Marquardt algorithm
is sufficient for a training of small neural networks. For bigger networks
the algorithm complexity becomes too big for the effective teaching. The
main scope of this paper is to propose more complexity efficient approach
to LMA by parallel computation. The proposed modification to LMA
has been tested on a few function approximation problems and has been
compared to the classic LMA. The paper concludes with the resolution
that the parallel modification to LMA could significantly improve algo-
rithm performance for bigger networks. Summary also contains a several
proposals for the possible future work directions in the considered area.
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1 Introduction

The methods of Artificial Intelligence are broadly used in the modern world.
Genetic algorithms, neural networks and their applications are the subject of
many researches [11,12,14,15]. The most common use of the modern AI can be
found in the areas of optimization, classification and recognition of the given pat-
terns [1,2,13,16,17,21]. The Levenberg-Marquardt algorithm (also called LM or
LMA) is a highly efficient and a popular teaching method for feedforward neural
networks [9]. It is classified as a quasi-Newton method which finds a wide usage
in areas of function minimization problems such as neural networks teaching
[8]. One of the biggest downfalls of the LMA is a huge complexity contrary to
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classical teaching methods as e.g. the well known Back Propagation algorithm
with all its variants [3,7,10]. That limitation makes LMA impractical as a teach-
ing algorithm for bigger networks. The following paper describes the parallel
modification for LMA which can be applied to any feedforward multi-layered
neural network.

2 The Classic Levenbert-Marquardt Algorithm

The Levenberg-Marquard method is an iterational algorithm mostly used for
non-linear function optimization. It combines the advantages of a steepest
descent and the Gauss-Newton methods. In order to teach a neural network,
LMA is used to minimize the following error function

E (w (n)) =
1
2

Q∑

t=1

NL∑

r=1

ε(L)2

r (t) =
1
2

Q∑

t=1

NL∑

r=1

(
y(L)

r (t) − d(L)
r (t)

)2

(1)

where ε
(L)
i stands for non-linear neuron error and can be depicted as
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while d
(L)
r (t) is the r-th expected network response to the t-th teaching sample.

In the Levenberg-Marquardt algorithm weights delta is given by

Δ (w(n)) = −[∇2E (w(n))
]−1∇E (w(n)) (3)

where ∇E (w(n)) stands for the gradient vector

∇E (w(n)) = JT (w(n)) ε (w(n)) (4)

and ∇2E (w(n)) stands for the Hessian matrix

∇2E (w(n)) = JT (w(n))J (w(n)) + S (w(n)) (5)

while J (w(n)) is the Jacobian matrix
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The non-linear errors ε
(lr)
i of the neurons in hidden layers are calculated as

follows

ε
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That creates a possibility to calculate contents of the Jacobian matrix across all
weights in the network
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In the classic LMA all weights of a neural network are stored as a single vector.
The S (w(n)) factor from Eq. (5) is depicted as
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In the Gauss-Newton method it is assumed that S (w(n)) ≈ 0, so the Eq. (3)
can be simplified

Δ (w(n)) = −[
JT (w(n))J (w(n))

]−1
JT (w(n)) ε (w(n)) . (11)

For the Levenberg-Marquardt algorithm needs it is assumed that S (w(n)) = μI
so the Eq. (3) takes the form

Δ (w(n)) = −[
JT (w(n))J (w(n)) + μI

]−1
JT (w(n)) ε (w(n)) . (12)

Let
A (n) = − [

JT (w(n))J (w(n)) + μI
]

h (n) = JT (w(n)) ε (w(n))
(13)

so the Eq. (12) can be depicted as

Δ (w(n)) = A(n)−1h (n) . (14)

At this stage the QR decomposition can be used to solve Eq. (14). This results
with obtaining a desired weight update vector Δ (w(n)).

QT (n)A (n) Δ (w(n)) = QT (n)h (n) , (15)

R (n) Δ (w(n)) = QT (n)h (n) . (16)
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For the results presented in Sect. 4 the QR decomposition based on Givens
rotations has been used. The summary of the Levenberg-Marquardt teaching
algorithm can be presented in 5 steps:

1. Calculate network outputs and errors across all teaching samples and solve
the goal criterion.

2. Run backpropagation method and calculate the jacobian matrix.
3. Perform QR decomposition in order to obtain Δ (w(n)).
4. Apply Δ (w(n)) for a neural network and calculate the goal criterion once

again. If the new error is smaller than the original one commit the weights,
divide μ by β and proceed to step 1. If the new error is bigger than the original
one, multiply μ by β and go back to step 3.

5. The algorithm is deemed to be finished once the gradient is reduced below
the accepted threshold or the network error satisfies the predefined error goal.

3 Parallel Modification

As shown in the previous section (especially in Eq. (6)), the classic LMA requires
computing a jacobian, which is a [no · np] × [nw] matrix of error derivatives.
Where no stands for a number of network outputs, np is a number of teaching
samples and nw is a total number of weights in considered network. Then the
Eq. (14) needs to be solved what involves the inversion of [nw] x [nw] size matrix.
The clue of a presented modification is to create a set of jacobians, unique for
each neuron of the network. Then the computation can be done in parallel for
all neurons. In such case the algorithm complexity is significantly reduced to the
biggest weight vector for the respective neuron.

The neural network shown in Fig. 1 is taken into further considerations. The
network contains 2 inputs and 3 layers. The two hidden layers consist of 100 neu-
rons while the output layer contains a single neuron. To simplify the calculations
teaching vector is assumed to contain 100 samples. In the classic Levenberg-
Marquardt algorithm (from now on also called LMC) the jacobian size is the
following

[no · np] ×
[

L∑

l=1

Nl · (Nl−1 + 1)

]
. (17)

By filling the above equation with considered network’s values the jacobian size
calculates as follows

[1 · 100] × [100 · 3 + 100 · 101 + 1 · 101] = [100] × [10501] . (18)
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Fig. 1. The considered neural network. One of the neurons with the biggest weight
vector and its connections are highlighted.

In a parallel approach to the Levenberg-Marquardt algorithm (from now on
also called LMP) the separate jacobian matrix is created for each neuron of the
network so it’s size can be depicted as

[np] × [max (Nl−1 + 1)] , (19)

which in considered network translates into the biggest jacobian of size

[100] × [101] . (20)

It is easy to see that the smaller jacobian matrix is, the faster QR decom-
position is completed. Table 1 shows the comparison of jacobians sizes across
all layers in the considered network for both LMC and LMP. Table 2 presents
the average times of solving Eq. 14 for matrices of size [10501] × [10502] and
[101]× [102]. Intel core i7 CPU with the frequency set to 4.40 GHz has been used
for computation.

Table 1. Sizes of jacobians in LMC and LMP comparison (LMP is divided into layers).

LMC LMP

— 1 2 3

[100] × [10501] [100] × [3] [100] × [101] [100] × [101]
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Table 2. Average times for solving Eq. (14) for matrices of size [10501] × [10502] and
[101] × [102] in milliseconds.

LMC LMP

628791,2 0,7942649

4 Results

4.1 Approximating y = 4x(1 − x) Function

The first teaching problem is a logistic curve approximation given by the formula
y = 4x(1 − x). A fully connected 1-5-1 network has been used. Teaching set
consists of 11 samples to cover the argument range in x ∈ [0, 1]. As a teaching
goal the maximum error of value 0.001 has been set. The best teaching results
LMP algorithm achieved with the narrow initial weight values winit ∈ [−0.5, 0.5]
and the small value of β ∈ [1.2, 4] factor. Figure 2 shows the networks outputs
trained by LMC, LMP and the expected curve. Figure 3 shows the error for all
teaching samples after a neural network training with LMP algorithm.

4.2 Approximating y = sinx · log x Function

The second teaching problem is a curve approximation given by the formula
y = sin x · log x. A fully connected 1-15-1 network has been used. Teaching set
consists of 40 samples to cover the argument range in x ∈ [0.1, 4]. As a teaching

Fig. 2. Comparison of network outputs for y = 4x(1 − x) function approximation
problem. Teaching target is set as max epoch error < 0.001.
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goal the maximum error of value 0.001 has been set. The best teaching results
LMP algorithm achieved with the narrow initial weight values winit ∈ [−0.5, 0.5]
and the small value of β ∈ [1.2, 4] factor. Figure 4 shows the networks outputs
trained by LMC, LMP and the expected curve. Figure 5 shows the error for all
teaching samples after a neural network training with LMP algorithm.

Fig. 3. Network error for y = 4x(1 − x) function approximation problem trained by
LMP. Teaching target is set as max epoch error < 0.001.

Fig. 4. Comparison of network outputs for f (x) = sinx · log x function approximation
problem. Teaching target is set as max epoch error < 0.001.
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Fig. 5. Network error for f (x) = sinx · log x function approximation problem trained
by LMP. Teaching target is set as max epoch error < 0.001.

5 Conclusion

Parallelization of the teaching algorithms seems to be a good direction for neu-
ral networks training optimization. This topic has been approached multiple
times by many researchers e.g. [5,18–20]. The parallel approach to the popular
Levenberg-Marquardt neural network teaching algorithm has been presented in
this paper. In the classic form the LMA is characterized by a very high com-
putational complexity which goes to the square of a network size. The pre-
sented parallel modification to the Levenberg-Marquardt algorithm seems to
overcome this limitation maintaining the reasonable accuracy and performance
of the archetype. As shown in Sect. 4 in both approximation problems, networks
trained by LMP achieved the assumed requirements. The LMP method seems
to be a good direction for Levenberg-Marquardt algorithm optimization.

In the near future additional consideration in this matter can be taken. First,
the complete parallel implementation of the LMP algorithm can be performed
e.g. using CUDA platform and GPU capabilities. Then, more complex approx-
imation problems can be trained e.g. higher dimension functions. Also in deep
analysis of influence of parameter β and initial network weights can be per-
formed. Finally LMP implementation can be compared to similar neural network
training algorithm parallel optimizations e.g. [4,6].
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