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Abstract Predicting the quality of machine translation (MT) output is a topic that
has been attracting significant attention. By automatically distinguishing bad from
good quality translations, it has the potential to make MT more useful in a number of
applications. In this chapter we review various practical applications where quality
estimation (QE) at sentence level has shown positive results: filtering low quality
cases from post-editing, selecting the best MT system when multiple options are
available, improving MT performance by selecting additional parallel data, and
sampling for quality assurance by humans. Finally, we discuss QE at other levels
(word and document) and general challenges in the field, as well as perspectives for
novel directions and applications.

Keywords Translation quality assessment · Principles to practice · Translation
errors · Translation models · Post-editing effort · Statistical machine translation ·
Machine translation system ranking · Machine translation system selection ·
Quality estimation

1 Introduction

Machine Translation (MT) systems are becoming widely adopted both for gisting
purposes and to produce professional quality translations. However, the quality of
automatic translation is still below an acceptable level in many cases. This makes
evident the need for automatic metrics for predicting the quality of a translated
segment. These metrics are referred to as Quality Estimation (QE). The goal of QE
is to provide an estimate on how good or reliable a translated text is without access to
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reference (human) translations. This is, therefore, different from standard evaluation
methods where the task is to compare system translations with their reference
counterparts, which are generally created by linguistic experts with knowledge of
the languages involved. While MT systems can be evaluated using reference datasets
and their average quality can be measured on those data points, it is known that
the quality on individual inputs can vary considerably depending on a number of
factors. QE is not aimed at estimating overall MT system performance, but rather
performance on individual translations. The main motivation is to make applications
more useful in real world settings, where information on the quality of each output
is needed and reference outputs are not available. QE is aimed at MT systems in
use. As such, QE metrics have several applications in the context of MT, which we
discuss in this chapter. QE approaches also have the advantage of allowing for a
flexible modelling of the concept of quality, depending, among other things, on the
user or intended use of the MT system’s output.

Work in QE for MT started in the early 2000s. Inspired by the confidence scores
used in Speech Recognition, initial research explored information coming from the
statistical MT models, such as word translation probabilities, language model scores
and other statistical indicators. Back then it was called confidence estimation, a
narrower term that reflects the fact that the statistical indicators used are related to
the confidence of the MT system in the translation produced. A 6-week workshop
on the topic at Johns Hopkins University in 2003 (Blatz et al. 2004) set as its
goal the estimation of automatic metrics such as BLEU (Papineni et al. 2002) and
WER (Word Error Rate) (Levenshtein 1966). These metrics are difficult to interpret,
particularly at the sentence level. Given the metrics used and the fact that the overall
quality of MT was considerably lower at the time, pinpointing the very few good
quality MT segments was a much harder problem. As a consequence, results of
multiple experiments proved unsuccessful. Also, no software or datasets were made
available after the workshop.

A new surge of interest in the field started around 2010, motivated by the
widespread use of MT systems in the translation industry, as a consequence of better
translation quality, more user-friendly tools, and higher demand for translation. In
order to improve the utility of MT in this scenario, a quantification of the quality
of translated segments is needed. In a way, this quantification can be thought of as
similar to “fuzzy match scores” from translation memory (TM) systems. However,
QE work addresses this problem using more complex metrics that go beyond
matching the source segment against previously translated data. In addition, QE can
be useful for users other than professional translators, such as end-users reading
translations for gisting, particularly those who cannot read the source language.
Recent work focuses on estimating more interpretable metrics where “quality” is
defined according to the task at hand, such as post-editing, gisting, sampling, etc.
(see also Sect. 3.3 of Way in this volume).

A number of positive results have been reported. Examples include improving
post-editing efficiency by filtering out low-quality segments which would require
more effort or time to be corrected than translating from scratch (Specia et al. 2009;
Specia 2011), selecting high-quality segments to be published as they are, without
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post-editing (Soricut and Echihabi 2010), selecting a translation from either an MT
system or a TM for post-editing (He et al. 2010), selecting the best translation from
multiple MT systems (Specia et al. 2010; Avramidis 2013), and highlighting sub-
segments that need revision (Bach et al. 2011; Quang et al. 2014).

QE is generally addressed as a supervised machine learning task using a
variety of algorithms to induce models from examples of translations described
through a number of features and annotated for quality. For an overview of various
algorithms and features we refer the reader to the WMT12–161 shared task on QE
(Callison-Burch et al. 2012b; Bojar et al. 2013, 2014, 2015, 2016). Most of the
research work lies on deciding which aspects of quality are more relevant for a
given task and designing feature extractors for them. These can go from simple,
language-independent features, to advanced, linguistically-motivated features. They
can include features that rely on information from the MT system that generated
the translations, as well as features that are independent of the way translations
were produced. While simple features such as counts of tokens and language model
scores can be easily extracted, feature engineering for more advanced and useful
information can be very labour- and resource-intensive. Different feature sets are
necessary for different language pairs or for optimisation against specific quality
scores, where translations are created with different applications in mind (e.g. post-
editing time vs translation adequacy).

In this chapter we focus on sentence-level experiments and results for what we
believe are some of the most promising and practical applications of QE to date.
Each of these applications has been developed around a specific objective:

• Estimate how much effort will be needed to post-edit a segment.
• Select among alternative translations produced by different MT systems.
• Decide whether the translation can be used for self-learning of MT systems.
• Select samples of translations for manual inspection.

In what follows, we first explain the general experimental settings, including
features and learning algorithms, for the various QE applications to be covered
(Sect. 2). For consistency purposes, across all datasets and applications we use the
same feature sets and learning algorithms where possible. In the remainder of the
chapter (Sects. 3, 4, 5, and 6), we present our work on the various above-mentioned
applications and benchmark the results on freely available datasets.

2 Experimental Settings

Our experiments with all applications of QE are performed using QuEst++ (Specia
et al. 2013, 2015a)- an open source framework for quality estimation containing

1The Workshop (now Conference) on Machine Translation runs annual competitive MT system
evaluations for a range of tasks. See http://www.statmt.org/wmt17/ for the latest in the series.

http://www.statmt.org/wmt17/
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a number of features, covering complexity, adequacy and, fluency of segments
using a machine-learning algorithm. Amongst the learning algorithms available in
QuEst++, we choose the Support Vector Regression algorithm given its promising
performance in previous work.

2.1 Support Vector Regression (SVR)

SVR (Chang and Lin 2011) is the most commonly used algorithm for sentence-
level QE. This is a very popular and powerful machine-learning algorithm used
when the score to predict is numeric and distributed over an ordinal or continuous
range, for example, post-editing time or Likert scores in {1,5}. To make our results
comparable with most previous work, we use a kernel version of this algorithm with
a radial basis function (RBF) kernel, which has been shown to perform very well in
this task (Callison-Burch et al. 2012a). Kernel parameters are optimised using grid
search with five-fold cross-validation.

2.1.1 Feature Sets

As feature sets, we consider the following for the sentence-level tasks:

• BL: 17 simple but effective baseline features that perform well across languages
and were used as baseline in the WMT12–16 shared tasks on QE.

• AF: All features available in QuEst++ across the datasets, for example, 80
language and MT system-independent features for sentence-level prediction.

2.1.2 Evaluation Metrics

We use two main error metrics to evaluate our sentence level regression models:
Mean Absolute Error (MAE), shown in Eq. 1 and Root Mean Squared Error
(RMSE), shown in Eq. 2.

MAE =
∑N

i=1 |H(si) − V (si)|
N

(1)

RMSE =
√

∑N
i=1(H(si) − V (si))2

N
(2)

where:

N = |S| is the number of test instances
H(si) is the predicted score for si
V (si) is the human score for si
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For the classification results, we use the standard Accuracy metric.
In addition, we use application-specific metrics, such as BLEU for MT system

evaluation based on data selected through QE in Sect. 5.

2.1.3 Baselines

We compared our regression results with the Mean score, i.e., the score obtained
by assigning the mean value of the training set labels to all test set instances. For
classification experiments, we compared our results to the Majority Class score,
i.e., the score obtained by assigning the most frequent label of the training set to all
test set instances.

3 QE for Predicting Post Editing Effort

In this section we focus on QE for outbound purposes, i.e. a dissemination scenario.
In this scenario, a judgement on the quality of translations has to take into account
both the fluency and adequacy of such translations, and in some cases, it has to
conform to style guides. MT is followed by manual post-editing and/or revision
by human translators to achieve publishable quality. Our objective is to support
human translators by designing QE methods to distinguish translations that are good
enough for post-editing from those that are too bad, and so should be translated
from scratch. A common distinction includes at least three levels of “effort”: (i)
translations that are good enough to be left untouched by human post-editors (but
possibly still revised); (ii) translations which require further effort (post-editing) to
be published; and (iii) translations that should better be discarded, as they require
more effort from human translators to correct them than what is involved in manual
translation from scratch. In the following we benchmark QE on various datasets
annotated for post-editing effort in different ways.

3.1 Datasets

All datasets used in the experiments are available for download.2 Statistics about
these datasets are shown in Table 1. They differ in size, language pair and label for
post-editing effort.

• WMT14 (Task-1.1) English-Spanish news sentence translations. The dataset
contains news source sentences and their human translations, as well as three

2http://www.dcs.shef.ac.uk/~lucia/resources.html

http://www.dcs.shef.ac.uk/~lucia/resources.html
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Data Languages Training Test Label

WMT14 en-es 3,816 600 PEE 1–3

WMT12 en-es 1,832 422 PEE 1–5

EAMT11 en-es 900 64 PEE 1–4

EAMT11 fr-en 2,300 225 PEE 1–4

EAMT09-s1 en-es 3,095 906 PEE 1–4

EAMT09-s2 en-es 3,095 906 PEE 1–4

EAMT09-s3 en-es 3,095 906 PEE 1–4

EAMT09-s4 en-es 3,095 906 PEE 1–4

Table 1 Language pairs, number of training and test sen-
tences and type of label in the datasets for the post-editing
effort prediction

versions of MT output: by a statistical MT (SMT) system, a rule-based MT
(RBMT) system and a hybrid system. Each translation was labelled by pro-
fessional translators with 1–3 (lowest-highest) scores for perceived post-editing
effort.

• WMT12 English-Spanish sentence translations produced by a phrase-based (PB)
Moses “baseline” system (Koehn et al. 2007),3 and judged for post-editing effort
in 1–5 (highest-lowest), taking a weighted average of three annotators.

• EAMT11 English-Spanish (EAMT11 (en-es)) and French-English (EAMT11
(fr-en)) sentence translations produced by a PBSMT “baseline” Moses system
and judged for post-editing effort in 1–4 (highest-lowest).

• EAMT09 English sentences translated by four SMT systems into Spanish and
scored for post-editing effort in 1–4 (highest-lowest). Systems are denoted by
s1–s4.

3.2 Feature Selection

Given the large number of features available, it is often beneficial to select only
the most relevant for the dataset at hand. We performed feature selection using
Gaussian Processes, which has proved very effective in previous work (Shah et al.
2015). Gaussian Processes (GPs) (Rasmussen and Williams 2006) are a Bayesian
non-parametric machine learning framework considered the state-of-the-art for
regression. GPs have been used successfully for MT quality prediction (Shah et al.
2013), among other tasks. We use GPs with radial basis function (RBF) with
automatic relevance determination, as in (3).

3http://www.statmt.org/moses/?n=Moses.Baseline

http://www.statmt.org/moses/?n=Moses.Baseline
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k(x, x′) = σ 2
f exp

(

−1

2

D∑

i

xi − x′
i

li

)

(3)

where the k(x, x′) is the kernel function between two data points x and x′, and
D is the number of features; σf and li ≥ 0 are the kernel hyper-parameters,
which control the covariance magnitude and the length scales of variation in each
dimension, respectively. This is closely related to the RBF kernel used with SVR,
except that each feature is scaled independently of the others, i.e. li = l for SVR,
while we allow for a vector of independent values. Following standard practice we
also include an additive white-noise term in the kernel with variance σ 2

s . The kernel
hyper-parameters (σf , σn, l) are learned via gradient descent with a maximum of
100 iterations and cross-validation on the training set.

Feature selection is done by fitting per-feature RBF widths (also known as
the automatic relevance determination kernel). The learned length scale hyper-
parameters can be interpreted as the per-feature RBF widths which encode the
importance of a feature: the narrower the RBF (the smaller the li), the more
important a change in the feature value is to the model prediction. Therefore, the
outcome of a model trained using GPs can be viewed as a list of features ranked by
relevance, and this information can be used for feature selection by discarding the
lowest-ranked (least useful) features. GPs on their own do not provide a cut-off point
on this ranked list of features; instead this needs to be determined by evaluating loss
on a separate dataset to determine the optimal number of features.

3.3 Results

The error scores for all datasets using SVR as the learning algorithm are reported in
Table 2. It can be seen that adding more features (systems AF) improves the results
in most cases as compared to the baseline system with 17 features BL. However, in
most cases the improvements are not significant. This behaviour is to be expected
as adding more features may bring more relevant information, but at the same time
it makes the representation more sparse and the learning prone to overfitting.

Our experiments with feature selection using GPs led to significant further
improvements in all cases. The FS(GP) figures are produced from selecting the
fixed 17 top-ranked features (i.e. the same number as that of the baseline features).
FS(GP) outperforms other systems despite using considerably fewer features (17
in all datasets). These are very promising results, as they show that it is possible to
reduce the resources and overall computational complexity for training the models,
while achieving similar or better performance.
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Dataset System # Features MAE RMSE
EAMT11(en-es) Mean – 0.6027 0.7314

BL 17 0.4867 0.6288

AF 80 0.4696 0.5438

FS(GP) 17 0.4397 0.5224
EAMT11(fr-en) Mean – 0.5411 0.6927

BL 17 0.4387 0.6357

AF 80 0.4275 0.6211

FS(GP) 17 0.4166 0.6176
WMT12 Mean – 0.8278 0.9898

BL 17 0.6802 0.8192

AF 80 0.6703 0.8373

FS(GP) 17 0.6224 0.7645
WMT14 Mean – 0.4585 0.6678

BL 17 0.5241 0.6591

AF 80 0.4896 0.6349

FS(GP) 17 0.4850 0.6331
EAMT09-s1 Mean – 0.5382 0.7092

BL 17 0.5294 0.6643

AF 80 0.5235 0.6558

FS(GP) 17 0.5045 0.6392
EAMT09-s2 Mean – 0.6854 0.7926

BL 17 0.4604 0.5856

AF 80 0.4734 0.5973

FS(GP) 17 0.4514 0.5735
EAMT09-s3 Mean – 0.6753 0.7751

BL 17 0.5321 0.6643

AF 80 0.5437 0.6827

FS(GP) 17 0.5130 0.6572
EAMT09-s4 Mean – 0.4990 0.6112

BL 17 0.3583 0.4953

AF 80 0.3569 0.5000

FS(GP) 17 0.3383 0.4811

Table 2 Results with black-box features and SVR as learning
algorithm. For each dataset, bold-faced figures are significantly
better than all others (paired t-test with p ≤ 0.05)

4 QE for System Selection

In this section the goal is to model quality estimation by contrasting the output of
several translation sources for the same input sentence. The outcome of this process
is a ranking of alternative translations based on their predicted quality. For the
system selection application, we are more interested in correctly ranking the best
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translation at the top, as opposed to obtaining a complete ranking of all alternative
translations. This top-ranked translation could either be provided to a human post-
editor for revision, or used as is.

For all experiments, we use the features and settings for these experiments as
those described in Sect. 2. We treat the problem as a machine-learning regression
task, where SVR models are trained to estimate a continuous score within {1,3}.
In the first round of experiments (Sect. 4.2) we evaluate different settings of these
models following a standard regression setting, while in the second round of
experiments we apply the models to select a given translation option for each
segment and evaluate the outcome in terms of document-level translation quality
(Sect. 4.3).

4.1 Datasets

The datasets used here are a superset of the WMT14 dataset described in the
previous section. They consist of news domain texts in four language pairs (Table 3):
English-Spanish (en-es), Spanish-English (es-en), English-German (en-de), and
German-English (de-en). For each language pair, the data contains a different
number of source sentences and their human translations, as well as 2–3 versions of
MT outputs: by an SMT system, an RBMT system and, for en-es/de only, a hybrid
system. The translations were produced by top MT systems of each type (SMT,
RBMT, and hybrid; hereafter system2, system3, system4) which participated in
the translation shared task, plus the professional translation given as reference
(system1).

Each translation in this dataset has been labelled by a professional translator with
{1,3} scores for “perceived” post-editing effort, where:

• 1 = perfect translation, no editing needed.
• 2 = near miss translation: maximum of 2–3 errors, and possibly additional errors

that can be easily fixed (capitalisation, punctuation).
• 3 = very low quality translation, cannot be easily fixed.

The distribution of true scores in both training and test sets is given in Figs. 1
and 2, for each language pair, and for each language pair and translation source
(MT system or human), respectively.

Languages # Training Src/Tgt # Test Src/Tgt

en-es 954/3,816 150/600

en-de 350/1,400 150/600

de-en 350/1,050 150/450

es-en 350/1,050 150/450

Table 3 Number of training and test source (Src)
and target (Tgt) sentences in each dataset for the
system selection experiments
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Fig. 1 Distribution of true scores by language pair

Fig. 2 Distribution of true scores for each MT system and language pair

4.2 Regression Results

For the standard regression evaluation, we compare prediction error for models
trained (and tested) on pooled translations from all MT systems (and humans)
together (Table 4), versus models trained on each dataset individually, considering
two settings at test time:

• The system used to produce the translation is unknown (Table 5 blind setting),
and so all models are applied, one by one, to predict the quality of this translation
and the average prediction is used as output.

• The system is known and thus the model for the same translation system/human
is used for prediction (Table 5 non-blind setting).

These two variants may be relevant depending on the application scenario. We
consider a scenario where system identifiers are known by developers at model
building time, but unknown at test time, to be very realistic, e.g. if QE is provided
as a web service with pre-trained models. In all tables, Mean – assigning the mean
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System # Features MAE RMSE
en-de Mean – 0.6831 0.7911

BL 17 0.6416 0.7620
AF 80 0.6303 0.7616

de-en Mean – 0.6705 0.7979

BL 17 0.6524 0.7791
AF 80 0.6518 0.7682

en-es Mean – 0.4585 0.6678

BL 17 0.5240 0.6590

AF 80 0.5092 0.6442
es-en Mean – 0.5825 0.6718

BL 17 0.5736 0.6788

AF 80 0.5662 0.6663

Table 4 SVR to build prediction models for each
language pair combination, with all translation
sources (including human) pooled together

of the training set labels to all test set instances – represents a strong baseline, given
the large variation in scores across MT systems and human translators.

Comparing the two variants of the blind setting (Table 4 – blind training and test –
and Table 5, blind test only), we see that pooling the data from multiple translation
systems for blind model training leads to significantly better results than training
models for individual translation sources but testing them in blind settings. This is
likely to be due to the larger quantities of data available in the pooled models. In
fact, the best results are observed with en-es, the largest dataset overall.

Comparing scores between blind versus non-blind test settings in Table 5, we
observe a substantial difference in the scores for each of the individual translation
system. This shows that the task is much more challenging when QE models are
trained independently but the identifiers of the systems producing the test instances
are not known.

There is also a considerable difference in the performance of individual models
for different translation systems, which can be explained by the different distribution
of scores (and also indicated by the performance of the Mean baseline). However,
in general the prediction performance of the individual models seems less stable,
and even worse than the baseline in several cases. Interestingly, the individual
models trained on human translations only (system1) do even worse than individual
models for MT systems. This can be an indication that the features used for quality
prediction are not sufficient to model human translations.

In all cases, the use of all features (AF) instead of baseline features (BL)
comparable or better results.
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System # Features Blind Non-blind

MAE RMSE MAE RMSE
en-de-system1 Mean – 1.0351 1.2133 0.3552 0.4562

BL 17 1.0487 1.2348 0.3350 0.4540

AF 80 1.0510 1.2375 0.3325 0.4545
en-de-system2 Mean – 0.7780 0.9339 0.4857 0.5487

BL 17 0.7006 0.9499 0.3615 0.4634
AF 80 0.6924 0.9124 0.3570 0.4644

en-de-system3 Mean – 0.7369 0.8426 0.5577 0.6034

BL 17 0.6354 0.7950 0.4535 0.5363
AF 80 0.6572 0.8127 0.4482 0.5245

en-de-system4 Mean – 0.7231 0.8215 0.5782 0.6433

BL 17 0.6438 0.7842 0.4912 0.5834
AF 80 0.6386 0.7905 0.4818 0.5741

de-en-system1 Mean – 0.8594 1.0882 0.2506 0.3409

BL 17 0.8747 1.1299 0.2123 0.3421

AF 80 0.8747 1.1299 0.2065 0.3415
de-en-system2 Mean – 0.7321 0.8484 0.5412 0.6678

BL 17 0.6897 0.8330 0.4745 0.5931
AF 80 0.7122 0.8509 0.4604 0.5850

de-en-system3 Mean – 0.8137 0.9253 0.6000 0.6640

BL 17 0.7472 0.8903 0.4965 0.6011
AF 80 0.7629 0.9300 0.4828 0.5901

en-es-system1 Mean – 0.8542 0.9923 0.3883 0.4353

BL 17 0.8956 1.0480 0.3633 0.4390

AF 80 0.8957 1.0480 0.3519 0.4381
en-es-system2 Mean – 0.5567 0.6952 0.4232 0.5314

BL 17 0.5275 0.6827 0.3812 0.4951
AF 80 0.5302 0.6884 0.3730 0.4893

en-es-system3 Mean – 0.5653 0.6998 0.4288 0.5213

BL 17 0.5155 0.6711 0.3821 0.4844
AF 80 0.5184 0.6704 0.3714 0.4761

en-es-system4 Mean – 0.5573 0.6955 0.4300 0.5321

BL 17 0.5103 0.6680 0.4022 0.5162
AF 80 0.5206 0.6727 0.3902 0.5016

es-en-system1 Mean – 0.6617 0.8307 0.3026 0.3916

BL 17 0.6617 0.8307 0.3022 0.3917

AF 80 0.6617 0.8308 0.3023 0.3915
es-en-system2 Mean – 0.5637 0.6931 0.4494 0.6027

BL 17 0.5588 0.7023 0.4384 0.6061

AF 80 0.5567 0.7026 0.4309 0.6053
es-en-system3 Mean – 0.6602 0.8129 0.4720 0.6245

BL 17 0.7233 0.8621 0.4993 0.6220

AF 80 0.6973 0.8435 0.4974 0.6198

Table 5 SVR to build individual prediction models for each language pair and translation source
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4.3 System Selection Results

In what follows we turn to using the predictions from SVR models we have just
described for system selection. The task consists of selecting, for each source
segment, the best machine translation among all available: two or three depending
on the language pair. For these experiments, we disregarded the human translations,
as they do not tend to be present in settings for system selection, and would normally
be better than the MT outputs in all cases. Another reason to rule out human
translations from the selection is that they are used as references to compute BLEU
scores of the selected sets of sentences, as explained below.

To provide an indication of the average quality of each MT system, Table 6
presents the BLEU scores on the QE test and training sets for individual MT
systems. The bold-face figures for each language test set indicate the (BLEU)
quality that would be achieved for that test set if the “best” system were selected on
the basis of the average (BLEU) quality of the training set (i.e., no system selection).
There is a significant variance in terms of quality scores, as measured by BLEU,
among the outputs of 2–3 MT systems for each language pair, with training set
quality being a good predictor of test set quality for all but en-es, once again, the
largest dataset.

We measure the performance of the selected sets in two ways: (i) by computing
the BLEU scores of the entire sets containing the supposedly best translations, using
the human translation available in the datasets as reference, and (ii) by computing
the accuracy of the selection process against the human labels, i.e., by computing
the proportion of times both system selection and human agree (based on the pre-
defined 1–3 human labels) that the sentence selected is the best among the 2–3
options (2–3 MT systems). We compare the results obtained from building pooled
(all MT systems) against individual prediction models (one per MT system).

Table 7 shows the selection results with various models trained on MT transla-
tions only:

• Best-SVR(I): Best translation selected with regression model trained on data
from individual MT systems, where prediction models are trained per MT
system, and the translation selected for each source segment is the one with the

system2 system3 system4

WMT14 Test Training Test Training Test Training

en-de 15.39 12.79 13.75 13.83 17.04 16.19

de-en 27.96 24.03 22.66 20.19 − −
en-es 25.89 34.13 32.68 28.42 29.25 31.97

es-en 37.83 40.01 23.55 25.07 − −
Table 6 BLEU scores of individual MT systems, without system selection. Bold-faced figures
indicate scores obtained when selecting the best system on average (using BLEU scores for the
training set)
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System # Features Best-SVR(I) Best-SVR(P)
en-de MC – 16.14 15.55

BL 17 17.20 17.05

AF 80 18.10 17.55
de-en MC – 25.81 25.17

BL 17 28.39 28.13

AF 80 28.75 28.43
en-es MC – 30.88 30.29

BL 17 32.92 32.81

AF 80 33.45 33.25
es-en MC – 30.13 29.70

BL 17 38.10 38.11

AF 80 38.73 38.41

Table 7 BLEU scores on best selected translations
(I = Individual, P = Pooled)

highest predicted score among these independent models. This requires knowing
the source of the translations for training, but not for testing (blind test).

• Best-SVR(P): Best translation selected with regression model trained on pooled
data from all MT systems. This assumes a blind setting where the source of the
translations for both training and test sets is unknown, and thus pooling data is
the only option for system selection.

Table 7 shows that the regression models trained on individual systems – Best-
SVR(I) – with AF as feature set yield the best results, despite the fact that error
scores (MAE and RMSE) for these individual systems are worse than for systems
trained on pooled data. This is somewhat expected as knowing the system that
produced the translation (i.e., training models for each MT system) adds a strong
bias to the prediction problem towards the average quality of such a system, which
is generally a decent quality predictor. We note, however, that the Best-SVR(P)
models are not far behind in terms of performance. More important, we note the
gains in BLEU scores as compared to the bold-face test set figures in Table 6,
showing that our system selection approach leads to best-translated test sets rather
than simply picking the MT system with best average quality (BLEU).

5 QE for Self-Training

One of the most efficient ways to improve the quality of an MT system is to
supplement it with additional parallel training data. In some scenarios, monolingual
data on either source or target languages (or both) can be abundant. However,
parallel data has to be created by having humans translate monolingual content,
which is an expensive process. Clever selection techniques to choose a subset with
only the most useful sentences to translate from monolingual data can result in
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systems with higher quality using less training data. These techniques are usually
referred to as Active Learning (AL) (Settles 2010).

The majority of AL methods for MT are based on sentence (dis)similarity with
the training data, with particular focus on domain adaptation. Eck et al. (2005)
suggest a TF-IDF metric to choose sentences with words absent in the training
corpus. Ambati et al. (2010) propose a metric of informativeness relying on unseen
n-grams.

Similar to the work described here, Banerjee et al. (2013) proposed a data
selection guided by automatic QE to identify poorly-translated sentences in the
target domain. They restrict the reference set to the sentences that were poorly
translated by the baseline model instead of using the entire target-domain data as
reference for data selection.

An alternative approach is to select source sentences based on their estimated
translation quality by a baseline MT system before the addition of new data. It
is assumed that if a sentence has been translated well with the existing data, it
will not contribute to improving the translation quality. If, however, a sentence
has been translated poorly, it might have words or phrases that are absent or
incorrectly represented. Haffari et al. (2009) use features including n-grams and
phrase frequency, MT model score, etc. to decide which sentences to select.
Ananthakrishnan et al. (2010) build a pairwise classifier that ranks sentences
according to the proportion of n-grams they contain that can cause errors. For
quality estimation, Banerjee et al. (2013) train language models of well- and badly-
translated sentences. The usefulness of a sentence is measured as the difference of
its perplexities in these two language models.

Logacheva and Specia (2014) proposed a new quality-based AL technique which
is based on a more complex and therefore potentially more reliable QE framework.
It employs a wider range of features, which go beyond those used in previous work,
covering information from both source and target sentences. The approach adds
post-edited or reference translations for MT outputs predicted to have low quality.

In this section we describe a similar quality-informed strategy, but focus on the
addition of new data that has been translated by MT, rather than human references.
Machine-translated segments predicted to have high enough quality are added to
the training corpus of an SMT system. Therefore, we rely only on monolingual
data. The assumption is that the MT segments added to the training corpus can help
by reinforcing statistics on existing data.

Another direction we investigate here is the potential of using translations
from an RBMT system to supplement the training data of an existing (iteratively
improved) SMT system. In this case, in addition to reinforcing statistics on existing
data, translations can also provide new information to the SMT system, helping,
for example, to deal with out-of-vocabulary words. We compare the improvements
obtained by an SMT system enhanced with either SMT or RBMT data, as well as
against the improvements obtained by an SMT system enhanced with additional
reference translations instead of MT outputs as in Logacheva and Specia (2014).
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5.1 Active Learning Strategy

Four sets of data are necessary in our experiments: (i) parallel sentences to train an
initial, baseline SMT system (including a subset for tuning), (ii) an additional pool
of parallel sentences to select from (or monolingual sentences only, in the case of
adding machine-translated segments to the SMT training corpus), (iii) source-MT
segment pairs labelled for quality to train a QE model, and (iv) a held-out parallel
test set to evaluate the performance of the baseline and improved SMT systems. We
describe these datasets in Sect. 5.4.

Once a QE model is trained, the active learning pipeline includes the following
steps:

1. Train a baseline SMT system.
2. Translate the pool of active learning data.
3. Predict the quality for the pool of AL data.
4. Select top n sentences based on QE scores and a given selection criterion to add

to the SMT training data.
5. Remove top n sentences from the pool of AL data.
6. Retrain the SMT models including the additional selected data.
7. Go to step 2 until the AL pool is empty.

The SMT models are retrained incrementally with the additional QE selected
data. The selection criteria are explained in the next section.

5.2 Selection Criteria

One of the aims of this work is to compare the use of MT against the use of
reference translations, i.e. translations produced by humans. We therefore consider
two scenarios as bases for the type of data to be added to the SMT training corpus:
(i) reference translation sentences, which simulate a real AL setting where we
would resort to humans to provide a translation for poorly-translated segments, (ii)
machine-translated sentences (by an SMT or an RBMT system), where we assume
human intervention is not possible or too costly, and so resort to the self-training of
the SMT systems with their own or third party MT outputs.

In the second scenario, machine translations can be noisy and lead to degradation
in MT performance. However, our hypothesis is that by filtering the candidates with
a QE-based AL selection, we will select higher quality data to be added to the SMT
training data, leading to improvements in overall performance.

More specifically, we experiment with the following settings to select data from
the AL pool:

• SMT translations (source sentences and their machine translations) for the
translations predicted as having highest QE scores (scenario 2, above).
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• References (source sentences and their references) for the translations predicted
as having the lowest QE scores (scenario 1, above).

• RBMT translations (source sentences and their machine translations) for the
translations predicted as having highest QE scores (scenario 2, above).

5.3 SMT Models

We use the Moses toolkit to train our SMT system with phrase-based models using
14 standard features.4 These feature functions include phrase and lexical translation
probabilities in both directions, seven features for a lexicalised distortion model,
word and phrase penalties, and a target language model. MERT (Och 2003) is used
to tune the weights of these feature functions. For simplicity, our experiments use
only the QuEst 17 baseline features, i.e., the BL set.

5.4 Datasets

We assume a common real-world scenario that explores two types of data: a
relatively small parallel dataset and an additional (often larger) pool of source
language only sentences. We use the former to train a baseline SMT system,
translate the latter using this baseline SMT system and then inject a subset of
sentences selected as outlined in Sect. 5.2 (either a human translation or the
automatic translation produced by the MT system) to the initial parallel corpus and
retrain the SMT system. The following datasets were used in the experiments. Their
statistics are given in Table 8:

• SMT training: To train the initial SMT models we randomly selected 70% of
the News Commentary training data for two language pairs: en-de and de-en. We
set aside 30% of the corpus as AL pool.

• SMT tuning and test: We used the official WMT14 (translation task) tuning and
test sets.

• QE training: To train our QE models we used data provided for WMT14 QE
Task 1.1 (both training and test sets pooled together). The QE dataset and its
labels are explained in Sect. 4.1.

Before we turn to the AL experiments, we look at the quality of the different
versions of the AL pool data (reference, SMT and RBMT translations) in two ways.
We first measured the BLEU score obtained for the SMT translations in the entire
∼ 60k AL pool (produced by the baseline version of the SMT system with ∼140k
parallel sentences) versus the BLEU score obtained for the RBMT translations in

4http://www.statmt.org/moses/?n=moses.baseline

http://www.statmt.org/moses/?n=moses.baseline
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Corpora de-en en-de

Initial data (baseline SMT system)

Training – 70% of News Commentary corpus 140,900 140,900

Tuning – WMT newstest-2013 3,000 3,000

Test – WMT newstest-2014 3,000 3,000

Additional data (AL data)

AL pool data – remaining 30% of News Commentary corpus 60,388 60,388

QE data

Training QE models – WMT14 QE task 1,500 2,000

Table 8 Statistics of the datasets used for the self-learning experiments

de-en en-de

SMT translations 13.71 11.29

RBMT translations 13.30 11.09

Table 9 BLEU score for sentences in the AL
pool against the reference translations. SMT
translations are generated by the baseline SMT
system (before any incremental learning)

de-en en-de

Source-reference 16.83 12.12

Source-SMT translations 14.99 10.84

Source-RBMT translations 14.66 10.70

Table 10 BLEU score for test sentences from
models built with variants of the AL pool data
only (∼60 K parallel sentences)

the entire ∼60k AL pool, both against the reference translations. These are shown
in Table 9. The quality, in terms of BLEU, of both datasets is very similar, with the
SMT translations achieving slightly higher figures for both languages.

Second, we built an SMT system using only the ∼60k AL pool data for training,
without incremental training with either the baseline SMT translations, the RBMT
translations, or the reference translations. These models were tested on the official
test set (WMT newstest-2014) and the results in terms of BLEU scores are shown
in Table 10. Surprisingly, the SMT and RBMT translations seem equally useful as
SMT parallel training corpora. We had hypothesised that SMT translations tend to
be closer to the source segments than the latter in word order and style, leading to
better word-alignment performance, which in turn leads to better translation models.
This, however, does not seem to be the case with this dataset. Reference translations
are clearly more helpful in building better SMT systems.
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5.5 Results

We conducted a set of experiments to show the improvement rate of our main
selection strategy (adding MT data) compared to reference/random data selection.
With the SMT translations, at every iteration, based on quality predictions for
translations in the AL pool produced by the current SMT system, batches of
10 K sentences from the pool with the predicted highest/lowest scores (depending
upon MT or reference translation as selection criterion) were selected. These were
added to the training data of the SMT system, which was then retrained using the
incremental training option in Moses5 to skip some of its initial, time-consuming
steps. The selected sentences were removed from the AL pool. The new SMT
system was applied to translate the held-out test set, and the performance was
measured using BLEU. The process was repeated until the pool was empty. We
note that the updated SMT system is also used to translate the remaining sentences
in the AL pool.

RBMT translations were generated by the Lucy system, which is known to
achieve the state-of-the-art performance for English↔German. The process here
was slightly different: since the RBMT system cannot be easily updated based on
quality predictions, the SMT system was updated with RBMT translations. Also
different from the experiments with SMT translations, the AL pool was translated
once, and each translation had its quality predicted also only once. The AL was then
sorted by highest predicted quality and batches of 10 K (best-worst) were taken for
every step and added to the SMT training corpus. As in the remaining experiments,
the SMT system was retrained to translate the test set at every step.

In order to compare the impact of SMT, RBMT and (Reference) translations
on SMT quality, we added these variants of translations to baseline SMT systems
(10 K sentences at each iteration), starting with the baseline, using 70% of the News
Commentary corpus. To evaluate the effectiveness of the QE predictions for the
SMT translations, we also add a baseline that selects the 10 K batches of SMT
translations randomly (Random). This allows us to contrast simply adding more
data against adding more supposedly good quality data. Results are shown in Figs. 3
and 4, for each language pair. All BLEU figures are reported based on the test set.
The BLEU scores show that adding more data significantly improves the results
using all variants of the selection strategy.

Overall, as expected, the use of reference translations leads to better performance
than using machine-translated segments. However, the performance obtained with
the use of SMT translations follows closely behind. The use of SMT translations
is even better than References for one particular step (iteration 3) with English-

5As detailed in http://www.statmt.org/moses/?n=Moses.AdvancedFeatures#ntoc37, instead of pro-
ducing a phrase table with pre-calculated scores for all translations, the entire source and target
corpora are stored in memory as a suffix array along with their alignments, and translation scores
are calculated on the fly. When new training data is available, the word alignments are simply
updated.

http://www.statmt.org/moses/?n=Moses.AdvancedFeatures#ntoc37
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Fig. 3 Performance of de-en enhanced with data selected by different AL strategies

German translation. More importantly, the differences in the final scores (iteration 6)
for SMT and References are virtually non-existent for de-en, and very marginal for
en-de. This is a very positive result, as it shows that the same level of improvements
can be obtained with machine-translated segments instead of reference translations.
Another very interesting observation was that we observed that the performance for
both language pairs is higher by using smaller amounts of data selected with QE
rather than using the entire dataset. In particular, for de-en, at iteration 4 the BLEU
score achieved is slightly superior to the score achieved when the entire AL pool is
used (both with references and machine translations). This could indicate that some
references may be noisy or difficult to align to their corresponding source segments,
proving less helpful to the SMT system. The use of RBMT translations, on the other
hand, does not seem very helpful, as its performance is close to or worse than that
of randomly selecting SMT translations.

To highlight some important differences in terms of impact on SMT systems’
performance with various settings, we look more closely at the following compar-
isons: The impact of each system can be observed in Figs. 3 and 4.

• SMT vs. Reference: In a first comparison between SMT translations and
reference translations on SMT quality, it seems very encouraging that we
get similar final scores (or very close) with both additional references and
additional SMT data. SMT translations are much cheaper to obtain than reference
translations. While our AL pool was relatively small, one could rely on much
larger collections of monolingual data for this approach.

• RBMT vs. Reference: This comparison inspects the impact of RBMT systems
versus reference translations on SMT quality. RBMT translations seem to
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perform substantially worse than reference translations. We note that the RBMT
system has not been customised in any manner to translate the type of data used
in the experiments (news).

• SMT vs. RBMT: The improvements with SMT data are consistently higher
than RBMT for both directions. One reason for that is the incremental versus
static version of the experiments with both types of translations. As previously
mentioned, in the RBMT setting, the translations in the remaining AL pool
cannot be updated as the SMT system is updated, since they are generated
from an RBMT system. Additionally, intuitively translations produced by RBMT
systems are less close to the source segments than translations produced by SMT
systems. The latter can thus be potentially more easily word-aligned by automatic
tools, rendering them more useful to SMT retraining.

• SMT vs. Random: Here we compare our selection technique from SMT data
against randomly selecting SMT data. From Figs. 3 and 4 we can see that our
selection strategy with SMT data consistently outperforms random selection.

• RBMT vs. Random: Finally we compare our selection technique from RBMT
data against randomly selecting data. RBMT data and random selection perform
very similarly.

One final aspect investigated was the effects of incremental training, as opposed
to batch training, on the final translation quality. We tested the performance of
an SMT system built from the entire parallel corpus of source and reference
translations, by simply concatenating the original ∼140k and the additional ∼60k
segment pairs and training a batch model for it. For the batch mode, the scores
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obtained are 19.63 (de-en) and 14.65 (en-de). We recall that the BLEU scores
obtained by these systems with the iterative AL setting (at the final iteration 6)
are lower: 19.43 (de-en) and 14.43 (en-de). This shows that incremental learning
leads to some performance degradation. If time is not an issue, one solution to this
problem is to retrain the SMT models from scratch at every AL iteration, instead of
using incremental training.

6 Sampling QE for Quality Assurance

Human assessment of translations for quality assurance purposes is a cognitively
intensive and time-consuming task. While various assessment methods exist (e.g.
the LISA QA model; see also the chapters by Popović and Lommel in this volume)
that provide insight into translation quality, they cannot be implemented within the
rapid development cycles that characterise the use of MT. Even with HT, quality
assessment is often done on small samples of translations.

Traditionally, samples for quality assessment are selected at random. Random
selection is a valid choice if enough data can be sampled for analysis, as this
would reflect the natural distribution of errors across the entire set. However, more
often than not, very small samples of translations are selected, potentially leaving
out certain issues. In addition, for different purposes, it may be desirable to focus
the assessments on the lower/higher quality cases translations. In this section we
propose a quality-informed sampling method where translations estimated to have
a certain level of quality (e.g. average, top or lower levels) are selected for human
inspection. We contrast this method against random selection in terms of the number
of selected translations that can be effectively assessed and the distribution of issues
found.

We compare the task of quality assessment on data selected at random against
data selected according to quality predictions for four language pairs. The two sam-
ples are given to human translators for error annotation using the Multidimensional
Quality Metrics (MQM) error typology (see Lommel et al. (2014) and Lommel in
this volume). Translations with quality predicted to be around average for the set
are selected. This decision was based on the fact that translations with high quality
do not require human inspection, and translations with very low quality are too
hard – if not impossible – to have errors identified. One of our hypotheses was that
translators could find more errors in samples of translations selected using QE, as
many samples selected at random are too bad to be annotated. However, our analysis
showed that this is not the case: the absolute number of errors found with randomly
selected cases is still higher. Nevertheless, the error distributions in both types of
samples were very similar. This indicates that samples with average quality, which
are potentially easier and less time-consuming to annotate, still offer an advantage
for human quality assessment over random samples.
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6.1 Datasets

The datasets used for training the models were taken from official WMT14 task 1.1
on QE, which was described in Sect. 4.1. However, here we only use translations
produced by the statistical phrase-based system. We train four QE models, one
per language pair, with 500 instances for all but the en-es data, which has 1104
instances.

We apply the models to generate predictions for the WMT10–11 translation task
test sets, taking only those segments whose source is originally in the language of
interest (∼600 segments).

6.2 Sampling and Error Annotation

After training QE models for each of the datasets, we took a sample of 100
sentences whose quality predictions are the closest possible to 2 (good enough).
The hypothesis here is that QE is helpful to select near-miss segments for manual
inspection in order to perform systematic QE: perfect cases do not need to be
inspected, worst cases are too bad to be inspected manually. It is worth mentioning
that other selection criteria could be defined, such as selecting sentences with the
lowest predicted quality. For comparison purposes, we selected a non-overlapping
random sample of another 100 sentences.

For each language pair, we generated a combination of 100 QE-based and 100
random samples consisting of source segments and their translation. We gave these
segments for annotation without disclosing the source of the sample. translate5 was
used as annotation tool.6 Each segment was annotated by four professional trans-
lators who received training on the annotation task and on translate5. Annotators
were requested to annotate only cases with errors and mark segments that were too
bad to be annotated as “fully unintelligible”. In total, annotations were performed
on 3,200 segments, i.e., 200 segments for four language pairs, with four annotators
for each segment.

For human annotation we used a subset of MQM. This set of issues provides
a reasonably comprehensive set of analytic issues that can be applied to spans
within segments to identify specific issues at a fairly granular level. MQM issues
are arranged in a hierarchy with more and less general types. A selection of core
MQM issues which was designed specifically to analyse MT output is used here:

• Accuracy. Issues related to the relationship of the target and source content.

– Omission. Content present in the source is improperly omitted in the target.

6http://test.translate5.net/

http://test.translate5.net/
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– Mistranslation. Content is translated with a different meaning from the
source.

– Untranslated. Content present in the source remains in the source language.
– Addition. Content not present in the source has been added to the target text.

• Fluency. Issues related to the linguistic properties of the target language itself
without regard to the fact that it is a translation.

– Spelling. The text is misspelled (including capitalisation problems).
– Typography. The text does not follow typographic conventions (other than

spelling).
– Grammar. There is a grammatical problem with the text.

· Word Form. The text uses an incorrect word form.

· Part of speech. The text uses the wrong part of speech.
· Agreement. The text shows problems with number, gender, or case

agreement.
· Tense/aspect/mood. Verbs show incorrect tense, aspect, or mood.

· Word Order. Portions of the text appear in the wrong order.
· Function word. Function words (e.g. articles, prepositions) are used

incorrectly

· Extraneous. The text contains unneeded function words.
· Missing. The text is missing needed function words.
· Incorrect. The text uses function words incorrectly.

– Unintelligible. The meaning of the text cannot be recovered. Used for cases
in which a serious break-down of fluency has occurred.

As these issues are hierarchical in nature, if none of the subtypes for a given
category apply, then the parent may be chosen. In addition to these categories,
annotators were given an additional option to select: fully unintelligible. This
annotation was used for cases where the annotators found the fluency or accuracy
of the target segment so bad that they would not be able to identify individual errors
in the translation.

6.3 Results and Analysis

In what follows we summarise the most important findings when comparing the
annotation of QE-based samples versus random samples.
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6.3.1 Fully Unintelligible, Perfect and Annotated Segments

Figure 5 shows the number of three types of segments in each dataset, where
“QuEst” represents the QE-based selection:

• Perfect: Segments that are not annotated at all as they are perfectly good
translations.

• Fully unintelligible: Segments that are so bad that they cannot be annotated.
• Annotated: The remaining segments which are neither perfect nor fully

unintelligible and are good enough for annotation.
Fewer fully unintelligible cases were found across all datasets with the QE-based

sampler than the random sampler for en-es, de-en, and en-de. This finding is in
line with our hypothesis that systematic quality evaluation can help in discarding
segments which are too bad for annotation. However, in the case of es-en, we did
not find the expected difference.

Although we are not certain why es-en results were different, annotators for this
pair seem to have been much more critical of the output, annotating almost half of
all segments as fully unintelligible. In previous annotation work,7 we found that
es-en translations were particularly prone to grammar problems, especially with
incorrect subject and object pronouns, when compared to the other language pairs.
Because Spanish is a “pro-drop” language with considerable verbal syncretism
that relies on context for disambiguation, segments often lack sufficient syntactic
and morphological information for proper translation without a consideration of
their context. Since pronouns and verbal forms are particularly important for

7See QTLaunchPad Deliverable D1.3.1, “Barriers for High-Quality Machine Translation”, p 15–
20, at http://www.qt21.eu/launchpad/system/files/deliverables/QTLP-Deliverable-1_3_1-v2.0.pdf

http://www.qt21.eu/launchpad/system/files/deliverables/QTLP-Deliverable-1_3_1-v2.0.pdf
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understanding the meaning of sentences, it may be that annotators found many
sentences unintelligible at first glance, which would have been intelligible in other
language pairs.

As expected, the number of perfect segments is low in all datasets. This finding
is true even for the QE sampler, given that segments were selected to have average
rather than good quality. Nevertheless, more perfect segments were selected by
QE than by the random sampler. As long as this number is still much lower in
comparison to the remaining selected segments, it should not be a problem, as
perfect segments can be easily skipped by annotators.

6.3.2 Total of Errors Annotated

The number of errors for each of the datasets, on a per-annotator basis, is shown
in Fig. 6. The number of errors found in random samples is clearly larger than
in QE samples, except for es-en, where the figures are very close, probably for
the same reasons as noted above: the annotators were more critical in rejecting
sentences outright. While different annotators annotated different numbers of errors,
the relative differences in error counts between QE-based and random samples are
maintained across annotators. For this analysis a fully unintelligible segment is
counted as one error. However, those segments would most likely contain multiple
errors had they been annotated. This may also explain the difference between
annotators, as some annotators chose to mark more entire segments as unintelligible
than others. Finally, it could also explain the case of es-en, where many of the
segments were marked as fully unintelligible by all of the annotators. The fact that
QE led to a higher proportion of “perfect” segments being sampled will naturally
decrease the number of errors found in its samples.

For a more detailed analysis, we excluded from the counts the segments marked
as fully unintelligible. The total number of errors per language pair (all annotators
together) can be seen in Fig. 7. There is a clear drop in the number of errors for all
language pairs, but the trend between random sampling and QE-based sampling is
maintained: a higher number of errors is found with the randomly selected samples,
except for es-en, where the number of errors in both samples is virtually the same:
648 (random) and 652 (QE). This is most likely a consequence of the fact that
annotators discarded nearly 50% of the cases that are too complex to annotate in
both samples, and thus the remaining sets in both cases will contain translations of
similar levels of quality.

One important finding that stands out from Fig. 7 is the fact that, with the
random sample, there are fewer segments annotated (more were rejected), but in
absolute terms they contain more errors than the larger sets of segments selected by
QE. Therefore, the proportion of errors per segment is much higher with random
samples. Since we could not log annotation time, it is unclear whether annotating
fewer segments with more errors is more time-consuming than annotating more
segments with fewer errors. We can however hypothesise that samples with fewer
errors per segment may lead to more consistent annotations, as multiple errors are
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often interrelated, making annotation harder and therefore more prone to mistakes
and inconsistencies, particularly across annotators.

6.3.3 Distribution of Error Types

For a closer look at the overall distribution of errors, in Fig. 8 we combine
annotations from all translators for each language pair and plot the proportion
of each type of error, i.e., we normalise the counts of each error type by the
total number of errors for that language pair (all annotators). The figures were
obtained after excluding all segments marked as fully unintelligible. Across all
datasets, mistranslation is the most common error type, followed by word order
issues. A significant proportion of errors fall under the “unintelligible” category,
particularly for es-en. This category covers unintelligible parts of a segment, as
opposed to representing cases where the entire segment is too bad to be annotated.
Given the small number of samples, particularly after excluding fully unintelligible
cases, it is to be expected that certain types of errors will not be observed at all.
Surprisingly however, this is only the case for very few error types, and these are
mostly general error types, which work as fall back options when the exact error
cannot be identified, such as the accuracy and fluency categories.
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Interestingly, the distribution of errors are very similar between random and QE-
based samples. This shows that both sampling techniques will lead to spotting
the same types of errors, in the same proportions. However, as was mentioned
before, different annotators chose to annotate different segments, as they considered
a different number of (potentially non-overlapping) fully unintelligible or perfect
segments. In Fig. 9 we further analyse the error distributions by excluding all
segments which at least one of the four annotators judged to be either perfect or
fully unintelligible. In other words, given a segment and its four annotations, if
one or more of these annotations was set as “perfect” or “fully unintelligible”, the
remaining 1–3 annotations were also set as “perfect” or “fully unintelligible” and
removed from the analysis. The counts of each error type were thus normalised by
the total number of errors for that language pair (all annotators) that remained after
the exclusion. This was an attempt to isolate any disagreements between annotators.

Mistranslation and word order are still the most common error types across
all datasets. The distribution of errors is still similar between random and QE-
based samples. The effect of removing potentially conflicting segments is very
visible for all language pairs, and particularly for es-en: the proportion of partially
unintelligible cases became virtually zero. These were probably cases which some
annotators had chosen to mark as fully unintelligible, while others had gone to the
effort of marking parts of the segment as unintelligible.

7 Discussion and Future Directions

We have presented a number of applications of QE. While a number of evaluation
campaigns and other benchmarking efforts have been made in recent years to
measure progress in QE (we refer the reader to Callison-Burch et al. (2012b) and
Bojar et al. (2013, 2014, 2015, 2016) for comprehensive experiments), our intention
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Fig. 9 Proportion of error types for all annotators per language pair, after excluding all fully
unintelligible annotations as set by at least one annotator. (a) de-en. (b) en-de. (c) en-es. (d) es-en
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was to shed some light on promising practical uses of QE and on more intuitive
evaluation approaches for these applications. Our focus was on sentence-level QE.

QE for predicting post-editing effort as described in Sect. 3 is perhaps the most
widely studied variant of the task, with very clear application in the translation
industry: translators are often required to post-edit the output of MT systems, but
for many segments the effort required to fix the MT output is greater than that
of translating the source segment from scratch. Filtering out these cases is very
desirable to improve productivity and user experience. In addition, this information
could be used to customise pricing of MT post-editing, as well as to estimate the
time a post-editing job would require to be completed. Work done in this direction
has showed promising results, but an important topic that is still to be researched
is the investigation of the reliability and utility of quality labels in translation
workflows. Preliminary experiments have been done in Turchi et al. (2015) and
Specia (2011). The former focused on the usefulness of showing the translator a
binary (good/bad) quality prediction for the sentence during post-editing, without
performing any filtering on the MT output. The latter compared the time taken to
post-edit sentences predicted to have high quality according to QE against sentences
selected at random. While it showed that the QE-selected sentences can be post-
edited in much shorter time, it did not factor in the translation from scratch of
sentences predicted to have low quality.

The utility of QE for MT system selection can be more easily validated by
checking the final quality of the selected dataset in terms of automatic metric scores
such as BLEU, as was done in Sect. 4. As long as a reference set is provided
to compute such metrics, this can be done automatically, without further human
intervention. The results of the experiments presented in this chapter are very
promising, showing that QE-selected sets are able to demonstrate improvements
of up to 7.56 BLEU points over individual MT systems.

The same evaluation criterion can be used in the employment of QE for MT “self-
learning” (Sect. 5). Our results using QE to select sentences predicted to have high
enough quality to add to the SMT training corpus showed consistent improvements
of around 1 BLEU point, which is virtually the same level of improvement obtained
from adding the corresponding reference (human) translations to the SMT training
corpus.

Work presented in Sect. 6 is a clear attempt to validate QE in a real-world
application where the purpose is effective error annotation by human translators
for quality assurance. The results of our experiments were, however, somewhat
inconclusive, potentially due to the criterion used for the QE-based sampling:
average quality translations. Future experiments should include selecting sets with
different levels of quality, leading to a more general sample for quality assurance.
This criterion is highly dependent on the objective of the error annotation process:
finding the largest number of errors, annotating the largest number of segments, etc.

It is also important to mention that although we have focused on quality
prediction for sentences, QE can be performed at other textual levels. QE has been
gaining increasing attention at word and document levels. Word-level QE is useful
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for pinpointing specific errors in the words of a translated segment. It has various
interesting applications, among others:

• Highlight words that need editing in post-editing tasks.
• Inform readers of portions of the sentence that are not reliable.
• Select the best words/phrases among options from multiple MT systems for

system combination.
• Guide automatic post-editing.

Most of the work on word-level QE has focused on prediction of automatically
derived labels. These are obtained mainly by aligning the MT output to its post-
edited version, as has been done in most of the WMT shared tasks on QE (Bojar
et al. 2013, 2015, 2016). To minimise the amount of annotated data that is needed
and reduce data sparsity, errors are often conflated into one category, resulting in a
binary classification task: correct versus incorrect target words. In 2014, the word-
level QE shared task at WMT instead provided specific errors manually annotated
according to 21 error categories from MQM. However, this introduced significant
sparsity in the data, which made learning from it virtually impossible. Existing work
exploits classification and sequence-labelling algorithms with a range of word-level
and contextual features. Overall, this looks likely to remain a more challenging task.
The context plays an important role in deciding whether a target word is an incorrect
translation, but often words in context are also incorrect. A much larger number of
examples is necessary to represent occurrences of target words in various contexts,
and often the modelling is hindered by skewed class distributions: most words in a
sentence tend to be correct.

Document-level QE focuses on more coarse-grained assessments to judge the
overall quality of entire documents. While certain sentences are perfect in isolation,
their combination in context may lead to an incoherent document. Conversely,
while a sentence can be poor in isolation, when put in context it may benefit
from information in surrounding sentences, leading to a good quality document.
Document-level QE is needed particularly for gisting purposes where post-editing
is not an option. An example application is quality prediction for translations of
product reviews in order for readers to decide whether or not they are understandable
and to select a subset of reviews for a given product that are good enough to be
published. This level of prediction has been included in recent years as part of
the WMT shared task on QE (Bojar et al. 2015, 2016), but has attracted very few
participants.

Document-level QE is also very challenging as it requires annotations for quality
at document level and modelling of discourse features (Scarton et al. 2015). No
standard quality labels exist that capture all potential issues at document level. As
for discourse features, very few processing tools are available to extract discourse-
wide information. Moreover, the performance of existing tools (mostly for English)
is negatively impacted by the various types of errors in the MT output.

Sentence-level QE, despite its popularity, is far from a solved problem. While
extensive work has been done on feature engineering, this continues to be an
active topic, with recent research showing the value of combinations of shallow
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and linguistically-motivated features (Bojar et al. 2016). Various approaches also
explore neural models, including using them to generate features (Shah and Specia
2016) and to train prediction models (Kim and Lee 2016; Kim et al. 2017). Larger
datasets have been produced in recent years (15K samples in WMT16 instead
of 2.2K in WMT12), with additional post-editing data also used, where the edit
distance between the original and revised MT output is taken as the quality label.

In recent years, a number of software toolkits have been made available to
facilitate research and use of QE approaches. These include QuEst++ (Specia et al.
2015b), Marmot (Logacheva et al. 2016), WCE LIG (Servan et al. 2015), and
Qualitative (Avramidis 2016). These tools generally differ in the feature set they
extract and the type of machine-learning algorithms they provide, since they focus
on different levels and types of prediction.

Overall, we believe that successful approaches to QE have immense potential
to make MT more useful to end-users of various types. As a research area, many
aspects of the problem require further investigation. Therefore, it is likely that QE
at all levels will continue to be an active area of research, with continuing efforts by
the community to push the field forward, ideally in collaboration with end-users to
validate the proposed solutions.
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