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Abstract Noise control in acoustic tube systems is a classical problem. The use

of periodic geometries and resonators is also classic in acoustic filter design. The

phononic approach to the problem is much more recent. Looking at this classic prob-

lem with a novel approach may lead to innovative solutions. This work investigates

the band gaps created in acoustic pipe systems using axisymmetric finite element

models, wave finite element models and experiments. Periodic geometry variations

are investigated. The Floquet-Bloch theorem is used on a transfer matrix of the peri-

odic cell rearranged from a dynamic stiffness matrix to obtain the dispersion dia-

grams that reveal the band gaps caused by Bragg scattering. Numerical predictions

of the forced response obtained with the full finite element axisymmetric model of a

duct system with five cells are compared with a wave finite element model and with

experimental results.
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1 Introduction

The study of periodic structures began with Mead’s work in the 70s [5–7]. In the

80s the growing of computational power available allowed the widespread use of

numerical methods and the solution of engineering problems without analytical solu-

tion. Early this century a new method, called Wave Finite Element (WFE) method

was proposed to predict the behavior of a structure by applying the periodicity
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condition of Floquet-Bloch’s theorem [8]. This method consists in modeling a peri-

odic cell using conventional Finite Element Method (FEM) and then using propaga-

tion models to predict the forced response of a periodic structure.

Acoustic ducts have applications in a large variety of engineering problems. The

most ordinary examples are exhaust systems of combustion engines and ventila-

tion systems [10]. The noise propagation in such systems can be controlled via

the use of acoustic filters. For this purpose, the design of periodic geometries and

Helmholtz resonators is a classical way to reduce noise at a specified frequency

bands. Boström [1] studied the wave propagation in ducts with a periodic variation of

cross-sectional area. Bradley [2] investigated acoustic wave propagation in periodic

waveguides. More recently, Munday et al. [9] addressed the problem of band gaps

in periodic waveguides, and Wang and Mak [11] investigated ducts with a periodic

array of Helmholtz resonators.

This work investigates band gaps generated by an acoustic tube system, consisting

of a five cells constructed with pipes and expansion cavities. A numerical solution

by the finite element model is developed using axisymmetric triangular elements.

The numerical predictions and experimental results are compared for validating the

finite element model.

2 Acoustic Finite Element Formulation

The non-dissipative wave equation can be written in terms of acoustic pressure as [4]:

∇2p = 1
c2

𝜕
2p
𝜕𝑡2

(1)

where c is the velocity of sound, p is acoustic pressure and t is time. The acoustic

pressure field in tube systems excited by plane waves can be modeled as axisym-

metric. This characteristic allows solving a three-dimensional problem using a two-

dimensional model. The problem is formulated using cylindrical coordinates (radial

distance r, height z, azimuth 𝜃) with no dependency of 𝜃, and Eq. (1) can be rewritten

as
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(2)

To solve Eq. (2) in a specified volume, boundary conditions must be applied at its

surface boundaries. Applying p = 0 on a surface implies a free surface of fluid. For

a rigid boundary, the boundary condition is

𝜕p
𝜕n

= −𝜌ün (3)
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where 𝜌 is the mass density of the fluid, n is the outward unit surface normal vector

and ün is the boundary acceleration in direction of n.

This boundary value problem is usually solved by finite element analysis, using

Galerkin’s Method to obtain an approximated solution [3]. After discretization, the

system of equations to be solved is

𝐌𝐚p̈ +𝐊𝐚p = f (4)

where 𝐊𝐚 is the acoustic stiffness matrix, 𝐌𝐚 is the acoustic mass matrix, f is the

acoustic excitation vector and p is the acoustic pressure nodal vector. For an axisym-

metric element model, the acoustic element mass matrix, the acoustic element stiff-

ness matrix and the acoustic load vector are given, respectively, by [3]

𝐊(𝐞)
𝐚 = 2𝜋r̄∫A

(
sTr sr + sTz sz + sT

𝜽

s
𝜽

)
dA (5)

𝐌(𝐞)
𝐚 = 2𝜋r̄

c2 ∫A
sTsdA (6)

f (e) = −𝜌sTünA (7)

where r is the radial distance of element centroid,A is the element revolution area, s is

the shape function and 𝐬𝐫 , 𝐬𝐳 and 𝐬
𝜃

are its derivatives with respect to each cylindrical

coordinate.

The dynamic stiffness matrix can be obtained as

𝐃 = 𝐊𝐚 − 𝜔
2𝐌𝐚 (8)

which can be partitioned in terms of internal, left-sided and right-sided degrees of

freedom by

⎡⎢⎢⎣
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(9)

From Eq. (9), the internal pressures can be obtained as

pi = 𝐃−𝟏
𝐢𝐢

(
𝐃𝐢𝐥 pl + 𝐃𝐢𝐫pr

)
(10)

Substituting Eq. (10) into Eq. (9), the condensed acoustic stiffness matrix is obtained

as [
𝐃𝐥𝐥 𝐃𝐥𝐫
𝐃𝐫𝐥 𝐃𝐫𝐫

]{
pl
pr

}
=
{
fl
fr

}
(11)
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where 𝐃𝐥𝐥 = 𝐃𝐥𝐥 − 𝐃𝐥𝐢𝐃−𝟏
𝐢𝐢 𝐃𝐢𝐥, 𝐃𝐫𝐥 = 𝐃𝐫𝐥 − 𝐃𝐫𝐢𝐃−𝟏

𝐢𝐢 𝐃𝐢𝐥, 𝐃𝐥𝐫 = 𝐃𝐥𝐫 − 𝐃𝐥𝐢𝐃−𝟏
𝐢𝐢 𝐃𝐢𝐫 and

𝐃𝐫𝐫 = 𝐃𝐫𝐫 − 𝐃𝐫𝐢𝐃−𝟏
𝐢𝐢 𝐃𝐢𝐫 .

The periodicity condition allows predicting the behavior under harmonic distur-

bance of a periodic system modeling a unit-cell only. In this method the dynamic

stiffness matrix of a unit-cell modeled by WFE is used to apply the periodicity con-

dition in a harmonic disturbance propagating through the system. Using Floquet-

Bloch’s theorem [8], the periodicity condition results in an eigenvalue problem.

Equation (11) can be rearranged using the Transfer Matrix formulation, resulting

in {
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−fr

}
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𝐓
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⏟⏟⏟

ql

(12)

where T is the transfer matrix that relates the left state vector ql with the right state

vector qr of the unit-cell.

Considering now two consecutive unit-cells, m and m+1, the continuity condition

of medium states that pr(𝑚) = pl(𝑚+1) and fr(𝑚) = −fl(𝑚+1), resulting in

ql(𝑚+1) = 𝐓ql(𝑚) (13)

For wave propagation in an infinite periodic system, Floquet-Blochs theorem pro-

duces an eigenvalue problem given by

𝐓ql = e𝜇ql (14)

where e𝜇 is the eigenvalue, ql is the eigenvector, 𝜇 = −ikL is the attenuation constant,

L is the unit-cell length, k is the wavenumber and i is the imaginary unit. This solution

provides the behavior in terms of wave propagation.

3 Simulated Model and Experimental Setup

3.1 Simulation Description

The system that was later experimentally verified is numerically modeled with a

script implemented in Matlab
Ⓡ

. The unit-cell is discretized with 618 triangular ele-

ments, and the whole system with five cells was simulated. Dispersion relations and

Frequency Response Functions (FRFs) were obtained for each cell. The pipes and

cavity walls are assumed rigid. The fluid inside the tube system is air at ambient tem-

perature and atmospheric pressure, with 1.21 kg∕m3
and 20

◦
C. With these physical

proprieties, FRFs and dispersion relations of the system were obtained.
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3.2 Experimental Setup Description

A tube system was built with five unit cells made of polyvinyl chloride (PVC), which

were constructed with two pipes connected to an expansion chamber. Each pipe

has 150 mm length and 37.5 mm internal diameter. The expansion chambers have

165 mm length and 145 mm internal diameter. Table 1 summarizes the geometric

properties. A scheme of the experimental setup is shown in Figs. 1 and 2 illustrates

the unit-cell and its dimensions.

The system is excited with a volume acceleration at one end. This excitation was

applied using a PVC piston with circular cross section of 37 mm diameter, coupled

to an electrodynamic shaker. Mounted on the piston, a piezoelectric accelerometer

measures the piston acceleration, linearly proportional to the air volume accelera-

tion. The gap between the tube wall and the piston is sealed by a rubber membrane.

At the other system termination, a microphone supported on a bar measures the pres-

sure at the system end. Each cavity is simply supported with polypropylene foam.

The FRF of pressure caused by volume acceleration was measured with ten averages,

a frequency band of 1125 Hz and frequency discretization of 0.625 Hz. The specifi-

cations of measurement instruments are summarized in Table 2. Figure 3 shows the

experimental setup with all measurement instruments.

Table 1 Tube system

geometric parameters
Geometric parameter Value

Pipe length (m) 0.150

Cavity length (m) 0.165

Total length (m) 2.325

Pipe diameter (mm) 37.5

Cavity diameter (mm) 145

Number of unit-cells 5

Fig. 1 Schematics of the experimental setup
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Fig. 2 Unit-cell dimensions

Table 2 Measurement instrument list

Instrument Manufacturer and model Sensitivity Measure range

Accelerometer Kistler 8614A500M1 3.41 mV/g ± 500 g

Microphone G.R.A.S 26CA 46.6 mv/Pa ± 0.2 dB

Shaker TMS K2004E – 0–11 kHz

Data Acquisition LDS Dactron Photon II – –

Fig. 3 Experimental setup: a system overview; b piston with accelerometer; c microphone on exit

termination
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4 Results and Conclusions

Figure 5 shows the dispersion diagram for the acoustic periodic cell. Two band gaps

are evident, one in the 100–500 Hz range and one in the 500–900 Hz range. These

are typical Bragg scattering band gaps, where the band gap is caused by interference

of reflected waves. The FRF in Fig. 4 shows that at the band gaps the response is

strongly attenuated. A good agreement is found between the FE and the WFE solu-

tions and a good qualitative agreement is observed between numerical predictions

and experiment.

The methodology exposed in this work may be used to design and optimize peri-

odic duct geometries to attenuate duct noise in practical applications. The dispersion

analysis of a single periodic cell is sufficient to predict the existence and frequency

range of the band gaps. A similar analysis may be conducted with a different strat-

egy consisting of introducing periodic Helmholtz resonators. This may be shown to

create band gaps at lower frequencies, but band gaps caused by this local resonance

effect are much narrower.

The WFE method may be used to compute the forced response of a finite periodic

structure with a lower computational cost compared with a full finite element solu-

tion. The experimental results show that numerical methods may be used to predict

band gaps that are reasonably robust with respect to small variations of the periodic

cell, unavoidable when building the acoustic duct system.
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