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Abstract In this article the nonlinear dynamics of a parametric pendulum con-
sidering a reciprocating excitation is addressed. The interest in the study of this kind
of forcing lies in its wide use in machines and industrial equipment including a
crank-rod mechanism. The work aims at the further development of pendulum
devices for energy harvesting. In this context, the study is focused on pendulum
rotations, which are highly energetic. Although reciprocating excitation is similar to
the classic sinusoidal excitation, a different and more complex rotational behavior is
observed and more rotating attractors are found as new rotation zones arise in the
space of forcing parameters. It is shown that the existence of these additional
rotating attractors, which depend on crank-rod ratio and the amount of damping,
increases the possibilities of energy extraction.
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1 Introduction

Energy harvesting from the parametric pendulum is a topic of growing interest for
scientists and engineers [1–4], due to the high kinetic energy available in its
rotational motion. The basic idea of the devices consists of a pendulum with a
vertical motion induced by an ambient energy source. If stable rotations of the
pendulum can be reached, a generator attached to the axis of rotation could extract
electrical energy. Being the parametric pendulum a problem of escape from a
potential well [5], rotations are required because they represent the most energetic
motion [6]. Although conceptually simple, this technology is still at a laboratory
stage mostly due to the complex nonlinear dynamics of the system. Two sources of
ambient vibrations are mainly considered as external excitation: vibrating machines
and the motion of the sea waves. In both cases, rotations are possible only in some
forcing scenarios. But while sea waves present a stochastic behavior, machine
vibrations are generally of harmonic nature, with a consequent high degree of
predictability. This is an important feature in the design of suitable pendulum
harvesters because the physical dimensions of the system can be defined in terms of
the forcing parameters. The goal of the design always is to improve the ability of
reaching rotational motion.

In this work, reciprocating motion is regarded as external excitation. This motion
is interesting because it can be found in a wide range of industrial machines,
including engines and pumps, where a crank-rod system is used. Reciprocating
motion is similar to sinusoidal, which is the classical excitation in literature, but
slightly more complex [7]. The study of differences and similarities among these
two excitations is interesting since many experimental devices aimed to the study of
the classic parametric pendulum employ a crank-rod mechanism due to its sim-
plicity [2, 8, 9].

The article is organized as follows. After this introduction, the governing
equation of the system under study is presented. The central part of the paper is
devoted to the exploration of rotatory dynamics of the pendular system, including
an overview of rotating responses, a parametric study and an integrity analysis of
the basins of rotations. Finally, the main conclusions of the study are summarized
and discussed.

2 The Parametric Pendulum Under Reciprocating
Excitation

The governing differential equation of the parametrically excited pendulum of
Fig. 1 can be set up by using Lagrange’s equation for single-DOF non conservative
systems, and its derivation can be easily followed in any classic book of nonlinear
dynamics [5, 10]. It is a second-order ordinary differential equation given by
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where m is the mass of the pendulum bob, l the distance between the center of
gravity and the pendulum axis, c the viscous damping coefficient, τ the time, g the
acceleration of gravity, y the vertical displacement of the pendulum system, and θ is
the angle positively measured anticlockwise from the hanging position. A recipro-
cating motion provided by a crank-rod system [7] constitutes the imposed motion
y to the pendulum device. This is shown in Fig. 1. The connecting joint between
rod and crank rotates at a constant frequency Ω, following a circumferential tra-
jectory. Thus, the displacement of that joint projected horizontally or vertically is

Fig. 1 The parametric
pendulum excited by a
reciprocating motion in
vertical direction
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sinusoidal in time. However, the angle between the rod and the vertical direction is
continuously changing during the cycle of motion. Therefore the linear motion of
the upper end of the rod is more complex than a simple sine function. Such
excitation gives to the pendulum system the following displacement

y= r 1− cosΩτð Þ+ L 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− λ2 sin2 Ωτ

p� �
ð2Þ

where r is the crank radius, L is the length of the rod and the crank-rod ratio is
λ = r/L.

Now, introducing (2) into (1), a non-dimensional equation is obtained as

θ ̈+ βθ ̇+ R cosωt+ λ3R
Λ3

Λ3
1

+ λR
Λ2
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+ 1

� �
sin θ=0 ð3Þ

where the following definitions have been made
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ffiffig
l

p
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l ,
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1− λ2 sin2 ωt

p
, Λ2 = cos2 ωt− sin2 ωt, Λ3 = cos2 ωt ⋅ sin2 ωt
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The superimposed dot in (3) means derivation with respect to dimensionless
time t. The magnitudes R, ω and β are non-dimensional parameters associated to the
forcing amplitude, forcing frequency and damping, respectively. Depending on λ,
R, ω and β, and initial conditions θ0 and θ0̇, different steady states of the system can
be obtained [11]. These responses include: rest position, oscillations, rotations and
chaos.

3 Exploring Rotating Attractors

3.1 Overview

The dynamics of rotating attractors is explored, for different configurations of the
parametric pendulum under reciprocating excitation. Equation (3) is solved
numerically by employing a dimensionless simulation time of ts = 2500, with the
purpose of ensure steady state responses. Control spaces, bifurcation diagrams and
basins of attraction are constructed, based on extensive numerical simulations,
considering different settings of the control parameters λ, R, ω and β. To avoid
transients, the first td = 2300 are discarded in the construction of all the diagrams.

Steady state rotations are classified in four categories [12]: pure rotations,
oscillating rotations, straddling rotations and large amplitude rotations. Pure rota-
tions have a very significant attribute: the angular velocity always keeps the same
sign (θ ̇>0 or θ ̇<0). This ensures no change in the direction of rotation, implying
no oscillatory motion of any kind. Pure rotations exist in conjugate pairs: clockwise
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and anticlockwise [13]. A pure rotation is highly energetic, being the desired
motion for energy harvesting purposes. In this article, pure rotations are regarded as
synonymous of rotations, while the other categories are considered merely as
oscillations.

For a given set (R, ω), the coexistence of periodic and chaotic solutions is
possible, evidencing the nonlinear nature of the system. This coexistence depends
on initial conditions. As an example, the control space R-ω of Fig. 2 shows all the
possible steady states. This map is constructed as follows: for each fixed pair (R, ω),
several simulations are performed employing different initial conditions, which
produces different dynamical patterns; the topology of all these patterns is com-
puted to give the color classification of the corresponding point (R, ω) in the control
space. It can be seen that, for low excitation amplitudes, the rest position is the
commonest solution. As R increases, oscillations, rotations and tumbling chaos
appear. Rotations are the dominant type of stable solutions in the main resonance
zone (ω = 2), but for most of the scenarios they coexist with other responses.
Besides, there is a wide range of the control space where rotations are not possible,
irrespective of the initial conditions.

3.2 Influence of the Crank/Rod Ratio λ

In Fig. 3, control spaces R-ω are presented for different values of λ, with fixed
damping of β = 0.1.

Figure 3a corresponds to the classic parametric pendulum (sinusoidal forcing),
which can be recovered from (3) by setting λ = 0. For low λ (say λ ≾ 0.3, Fig. 3b, c),
the bifurcational behavior is topologically similar to the classic system. For higher λ
(Fig. 3d), an additional rotation zone appears due to the significance of λ-terms in
(3). These additional rotating attractors are studied by means of the bifurcation

Fig. 2 Control space R-ω showing the physical responses of a system with λ = 0.126 and
β = 0.1. Rotn=1 means “pure rotations of period 1” while Rotn=2+ means “pure rotations of period
2 or higher”
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diagrams of Fig. 4. Figure 4a, b are constructed by fixing ω in the control space of
Fig. 3d and plotting Poincaré points of the steady state response (a sampling time 2
π/ω is employed). In Fig. 4a, the main resonance (ω = 2) is studied. Up to R ≈ 1.31,
the system is topologically similar to the classic parametric pendulum (see [11] for
an equivalent bifurcation diagram with λ = 0): two period-1 symmetric rotations
appear at a saddle-node bifurcation (R ≈ 0.42), then undergo a period-doubling
cascade (R ≈ 1.07) and vanish at a crisis scenario (R ≈ 1.31). Then, after a narrow
strip of tumbling chaos, a period-6 oscillation (actually a large amplitude rotation)
appears as the only stable solution for a relatively broad range of R, until it also
vanishes in a crisis. At R ≈ 1.58 tumbling chaos take place. The additional rotating
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Fig. 3 Control space R-ω for the purely rotating attractors (clockwise and anticlockwise) with
β = 0.1 and: a λ = 0 (classic parametric pendulum); b λ = 0.126; c λ = 0.185; d λ = 0.356. ( ):
period-1 rotations; ( ): period-2 or higher rotations; ( ): coexisting period-1 and period-2 or higher
rotations
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attractors appear at R ≈ 2.31, maintaining as solutions of the physical system up to
R = 3.5 and above. Two minor period-3 rotating attractors are born at R ≈ 2.89, but
they soon vanish in a crisis at R ≈ 2.9, after a rapid period-doubling cascade.
Rotations and tumbling chaos coexists with the inverted pendulum solution from
R ≈ 3.35 on. Bifurcation diagram of Fig. 4b shows the three pairs of rotating
attractors which can be obtained for sufficiently high values of λ and β = 0.1.
Attractors appearing at R ≈ 0.36 and R ≈ 2.44 exist in the classic parametric pen-
dulum, while attractors at R ≈ 1.88 are exclusive of the reciprocating excitation.
Figure 4c is associated to the control space of Fig. 3b, i.e. a low-λ scenario. As
expected, additional rotation zones cannot be found in such situation, with a
bifurcational behavior similar to the classic parametric pendulum.

(a) (b)

(c) (d)

Fig. 4 Bifurcation diagram of the non-dimensional angular velocity for β = 0.1 and: a ω = 2,
λ = 0.356; b ω = 1.45, λ = 0.356; c ω = 1.82, λ = 0.126; d R = 2.7, ω = 2. ( ): clockwise
rotations, ( ): anticlockwise rotations, ( ): rest, ( ): oscillations, ( ): tumbling chaos
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Figure 3c shows a bifurcation diagram of λ, obtained by fixing R, ω and β in
such a way to ensure the existence of the additional rotational attractors for a high
value of λ (say λ = 0.356 as in Fig. 3d). As expected from Fig. 3a–c, there are not
stable rotating solutions for low λ, but as λ is increased rotations appear at a
saddle-node bifurcation (λ ≈ 0.303). Now, considering λ = 0.4 as an upper prac-
tical limit of mechanical systems, results of Fig. 4d seem to indicate that an almost
extreme value of λ is needed to ensure the existence of those additional rotating
attractors. This is correct for β = 0.1, but not for lower amounts of damping, as
shown in the next subsection.

3.3 Influence of the Damping Parameter β

The previous study was conducted assuming a fixed damping of β = 0.1. Besides
speeding numerical integration, this choice allows us to compare our results with
those in many other works of literature [6, 11–14]. But it has been demonstrated [6]
that damping must be of β < 0.1 to ensure a viable energy extraction. Thus, a
scenario with lower damping must be studied.

For λ = 0, it is known that a change in damping moves the control space R-ω
downwards or upwards, by decreasing or increasing β respectively [8, 12–15] In
fact, it has been pointed [8] that an increase of the excitation amplitude (R in our
system) is equivalent to a decrease of β and vice versa. A more complex damping
behavior was found for reciprocating excitation. This is evidenced in Fig. 5.
Control space of Fig. 5a can be compared with that of Fig. 3b, since for both cases
λ = 0.126 but with different β. From this comparison it is clear that with a
decrement of β, an additional rotation zone appears, just as happened when the
parameter λ was increased (Fig. 3a–d). The bifurcation diagram of Fig. 5b shows
that as β decreases with fixed R, ω and λ, a pair of rotational attractors arise at a
saddle node bifurcation (β ≈ 0.118). This saddle node is the same of Fig. 4b but
projected on the β-θ ̇ plane instead of the λ-θ ̇ plane. An imaginary motion picture of
the bifurcation diagram in Fig. 5b as λ decreases should show the saddle node
moving left, until the rotating attractors completely vanish when λ = 0, leaving
behind only tumbling chaos. In conclusion, with an adequate (not necessarily
extremely high) value of the crank-rod ratio λ, the additional rotating attractors exist
for a range of β where energy extraction is feasible [6].

Finally, Fig. 5b suggests that the rotational response at low β deserves some
attention. For β = 0.01, most of the rotations has period-1 (some period-4 motions
are observed). However, steady states can be preceded by long periods of transient
tumbling chaos [16]. In such cases, a very large simulation is required to avoid the
transient. Figure 6 shows an example where a non-dimensional time of td = 10,000
must be discarded to obtain a steady period-1 rotation. This phenomenon explains
the “blurred” rotating attractor of Fig. 5b and also the intermittencies of Figs. 3d
and 5a.
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3.4 Robustness and Probability of Rotations

After establishing the parameter settings where rotations are possible, the dynamics
of the basins of attraction must be studied. This is necessary to know how difficult it
is to achieve a steady state rotation, and how predictable could be this motion.

(a) (b)

Fig. 5 a Control space R-ω for the purely rotating attractors (clockwise and anticlockwise) with
λ = 0.126, β = 0.027. ( ): period-1 rotations; ( ): period-2 or higher rotations; ( ): coexisting
period-1 and period-2 or higher rotations. b Bifurcation diagram of the non-dimensional angular
velocity for R = 2.7, ω = 2, λ = 0.356. ( ): clockwise rotations, ( ): anticlockwise rotations, ( ):
rest, ( ): oscillations, ( ): tumbling chaos

(a) (b)

Fig. 6 Phase portraits and Poincaré sampling for R = 2.7, ω = 2, λ = 0.356 and β = 0.01. Initial
conditions θ = 2 and θ = –1.88. Simulation time ts = 45,000. a Discarded time td = 7500,
transient tumbling chaos is present. b Discarded time td = 10,000, transient tumbling chaos is
avoided and period-1 rotation is obtained. ( ): pendulum response, ( ): Poincaré points
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The dynamics of the basins of rotation is followed, as R increases. Figure 7
shows basins of attraction associated to the bifurcation diagram of Fig. 4a. The
birth of rotations at a saddle node bifurcation (R ≈ 0.425) is observed and, as
R increases, the basin of rotations grows (Fig. 7a, b). After the homoclinic tangency
[5], the basin boundary initiates its fractalization: fractal fingers sweep across the
basin of oscillations, leading to the erosion of the entire basin (Fig. 7c–e). At
R = 1.3 (Fig. 7f) the basin of rotations is almost fully eroded; there is a high final
state sensitivity: small variations of the initial conditions modifies the attractor
ultimately chosen [5]; rotating chaos is present [8, 13], but it is about to be replaced
by tumbling chaos. At R ≈ 1.32 there is a crisis and then, for a broad range of R,
tumbling chaos is the only stable attractor. At R ≈ 2.22 a new basin of rotations
appears inside the chaotic basin (Fig. 7g). This basin evolves until it fractalizes
from R ≈ 2.75 on. At R = 3, both the basin of rotations and tumbling chaos are

(a) (c)(b)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Basin sequence for ω = 2, λ = 0.356, β = 0.1 and: a R = 0.45, born of period-1 rotations;
b R = 0.6, basin of rotations grows; c R = 0.65, fractal erosion starts; d R = 0.75 and e R = 1,
progress of erosion; f R = 1.3, basins of oscillations and rotations almost vanish; g R = 2.22, born
of period-3 rotations; h R = 2.7, basin of rotations grows; i R = 3, new erosion. ( ): clockwise
rotations, ( ): anticlockwise rotations, ( ): oscillations, ( ): tumbling chaos
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eroded. Rotations are of period-1 and they evidence long chaotic transients, as
discussed in the previous subsection.

A visual inspection of Fig. 7 allows qualitative observations on the interaction
among attractors. But with a view on energy harvesting, a quantitative evaluation of
the robustness is required. For this purpose, the integrity factor (IF) is considered,
which is defined in 2D as the normalized radius of the largest circle entirely
belonging to a basin [17]. As rotations are studied regardless of its period, the IF
can be thought as a measure of sensitivity of rotations to initial conditions: with a
high IF (IF → 1), a small variation of the initial conditions also produces a steady
rotation; meanwhile, with a low IF (IF → 0), the opposite happens. Besides, since
initial conditions usually cannot be accurately determined in practice, it is important
to know what happens given an unknown initial state. Thus PRot is defined as the
probability of occurrence of rotations, for random initial conditions into a given
range. Being IF and PRot two normalized magnitudes, they can be compared
directly.

Results of the robustness/probabilistic analysis are presented in Fig. 8. Up to
fractalization (R ≈ 0.65, see Fig. 7c), PRot and IF give increasing values since
rotations are confined into their basin. The peak of robustness is at R ≈ 0.6
(IF = 0.129). As erosion evolves, the IF decays as the final state sensitivity
increases, but PRot keeps growing since more initial conditions give rotations
(Fig. 7d, e). At R = 1.2 the basin of oscillations is almost fully eroded and there is
not possible in practice to predict the direction of rotations. PRot reaches a maxi-
mum: PRot = 0.66. Right before the crisis (R ≈ 1.32), rotations vanish and PRot fall
dramatically. At the crisis, a few initial conditions produce rotations: IF = 0 and
PRot ≈ 0. Similar behavior is observed for the rotational attractors at R ≈ 2.22,
which are exclusive of reciprocating excitation. The peak probability is PRot = 0.71
(R = 3.5), as 71% of the initial conditions produce rotations.

It is interesting to note that for some settings of the parameters it could be
PRot = 1. This means that all initial states produce rotations. Actually, Fig. 9 has a
“red zone” where all the responses are rotational with period-1. Due to the erosion
of the basin, final state sensitivity is high; but the choice is reduced to clockwise or
anticlockwise rotations, thus only direction of motion is unpredictable.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.001
0.01
0.1
1

R

P
R

ot
, I

F

Fig. 8 Integrity and probabilistic analysis of rotations as R is increased, for ω = 2, λ = 0.356 and
β = 0.1. ( ): probability of rotations, PRot; ( ): integrity factor, IF

Rotations of the Parametric Pendulum Excited by … 395



4 Conclusions

The dynamics of the parametric pendulum with a reciprocating excitation was
addressed with a view on energy harvesting. A rich dynamic behavior is elucidated,
with substantial differences with respect to the classic sinusoidal forcing. Crank/rod
ratio and viscous damping are crucial for rotational dynamics of the system: with a
sufficiently high crank/rod ratio and/or a sufficiently low damping, new rotating
attractors appear which are impossible with a sinusoidal excitation. These attractors
exist for ranges of damping where energy extraction is feasible, more that more
excitation scenarios allow rotational motion, increasing the possibilities for energy
extraction.

The structural stability of the attractors and probabilities of obtaining rotations
with unknown initial conditions were studied. It is shown that both robustness and
probability of rotations grow until fractal erosion of the phase portrait starts. After
this, robustness decays due to fractal erosion, but probability keeps growing since
more initial conditions produce rotations. This means that rotations are easy to
obtain but direction of rotation is difficult to predict due to a high final state
sensitivity. The first is good for energy harvesting purposes, while the second
should not lead to great difficulties in practical applications: rotations are desired,
regardless of their direction.

A main conclusion of this work is that rotations are reachable and predictable
with an adequate configuration of forcing and damping parameters. These param-
eters are closely related to the design of a suitable pendulum harvester. As exci-
tation source is commonly known, damping depends only on the pendulum system
and must be measured. Of course, a low friction is desired in energy harvesting
applications.
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