
Operational Modal Parameters
Identification Using the ARMAV Model

Heraldo N. Cambraia, Leonardo M. L. Contini
and Paulo R. G. Kurka

Abstract Applied system identification is an important issue in science and
engineering. Experimental modal analysis is used to describe the dynamical
behavior of structures, in general, for a given set of input and output data. This
article deals with multidimensional modal parameters identification valid for
output-only data—operational modal analysis (OMA). This approach is interesting
when the input is not known or difficult to be measured. A linear, time-invariant and
finite dimensional mechanical system is considered, which is described mathe-
matically by an autoregressive-moving-average-vector (ARMAV) model, excited
by unknown operating forces assumed to be a white Gaussian process—a persistent
excitation. The focus of the study is, both, theoretical and practical aspects, of the
use of the ARMAV model in OMA. Specifically, it discusses the need of using an
output-vector as reference for output-only parameters identification scheme. The
model order is identified by inspection of the most significant singular values of a
block Hankel matrix derived directly from the formulation of the model. The AR
parameters matrices of the ARMAV model, contained in a companion matrix, are
determined via least-squares technique. Natural frequencies, damping factors and
modal shapes are identified by means of eigenvalues and eigenvectors of that
companion matrix. Examples using computational simulated data are presented.
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1 Introduction

Mathematical modeling is an analytical approach used to describe the dynamic
behavior of a natural phenomenon based on physical laws. System identification is
an experimental approach, where parametric models are fitted from measured data
[1]. Both approaches are important in system analysis, design and control problems.

Modal parameters can be used in analysis, modal updating via finite elements,
damage detection and control. Modal parameters identification techniques, in the
time domain, are classically based on the information contained in the impulse
response functions (IRF) or in the input-output relationship [2]. In general terms, a
modal identification test is conducted under certain laboratory conditions, where the
structure is fixed to a test bench and hammers or actuators are used to produce
controlled types of input forces, which are required to match a linear time-invariant
mathematical model, covering a certain frequency range of interest. However, in
many applications, the real operating conditions may differ significantly from those
applied during the modal tests, where the input forces are not known, or just
impossible to be measured. Parameters identification based on the knowledge of
output-only responses, without using excitation information, is known as opera-
tional modal analysis (OMA) [3]. The subject is of actual scientific and industrial
interest in mechanical and civil engineering opening a way for damage detection
and structural health analysis [1, 4–6].

OMA is present in several practical engineering applications. Lardies and Ta [5]
have used OMA to assess the structural health and damage detection of stay cables
in cable stayed bridges.

Vu et al. [6] proposed a method for the automatic identification procedure to
discriminate physical modes from spurious ones using a multivariate autoregressive
(AR) model whose parameters are estimated via a least squares (LS) method.
Zaghbani and Songmene [7] proposed a methodology based on OMA to compare
the modal parameters of machine tools, demonstrating how OMA can be indus-
trially exploited. Rainieri and Fabbrocino [8] present a literature review on auto-
mated operational modal-based damage detection for civil engineering structures.
Ramos et al. [9] performed structural identification of monuments in Portugal by
OMA to assess damage by means of vibration signature.

According to Peeters and Roeck [10], there are many methods used to perform
the OMA parameters identification. Formally, for a completely unknown input, it
can be assumed that the system is excited by a white Gaussian process known as a
persistent excitation. A multivariate linear time-invariant autoregressive-moving-
average-vector (ARMAV) model can be used to fit the data, adopting a least
squares, maximum likelihood or prediction method as optimization criterion to
calculate the model’s parameters [1, 3]. Maximum likelihood optimization proce-
dure leads to a highly non-linear minimization problem in order to calculate the
parameters of the model. The solution of such a problem has a very high compu-
tational cost, especially for the multivariable parameters case.
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The focus of the present paper is on, both, theoretical and practical aspects of the
use of the ARMAV model in OMA. Despite OMA parameters identification is a
well documented subject, some problems remains to be studied. Specifically, the
need of using a output vector as reference for an output only parameters identifi-
cation scheme. Practical aspect consists in the computational implementation of an
ARMAV model identification algorithm.

In the present technique, the OMA parameters are identified from eigen
decomposition of a companion matrix that contains the AR coefficients of the
ARMAV model obtained via least squares optimization of a block Hankel matrix
formed by correlation matrices between output measured data. The problem with
the least squares approach is the adopting an initial over parametrization of the
model order resulting in a number of spurious numerical modes that must be
separated from the true modes of the system. The correct order of the ARMAV
model is identified via inspection of the more significant singular values of the
block Hankel matrix above mentioned, using singular value decomposition (SVD).

The performance of the presented technique is demonstrated using data gener-
ated by means of computational simulation. Impulse responses (which have a type
of self-reference given by their impulsive force) and input-output data without using
excitation information are considered.

The paper is organized as follows: Next section present the multivariate
ARMAV model. The algorithm is then introduced. An application based on sim-
ulation using data from mechanical system is discussed. Finally, it is brings the
main conclusions of the work.

2 The ARMAV Model

The autoregressive-moving-average-vector (ARMAV) model is largely used in
multivariate system identification [3]. ARMAV model can represent a multivariate
time series from a linear time-invariant dynamical system by means of a multi-
variate difference equation as,

yðk+ pÞ− ∑
p

i=1
αiyðk+ p− iÞ= ∑

q

i=1
βieðk+ q− iÞ ð1Þ

where yðkÞ= y1ðkÞ . . . ymðkÞf gT are the m×1 vectors representing the measure-
ments of m outputs variables of the system at discrete time kΔt, with the superscript
“T” denoting vector transposition. The vector eðkÞ= e1ðkÞ . . . emðkÞf gT is a
non-observable stochastic m× 1 vector process of with zero mean and nonsingular
m×m covariance matrix Σ, representing the extraneous noise contained in the
measurements. The limits p and q represent, respectively, the orders of the
autoregressive (AR) and moving-average (MA) matrix parameters. The generic
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scalar elements αi’s and βi’s are, respectively, the p AR and the q MA parameter
matrices of dimension m×m.

Multivariable ARMAV model described by Eq. (1) can be converted to fol-
lowing first order difference equations as,

Yðk+1Þ=α YðkÞ+ βEðkÞ ð2Þ

where the mp×1 vectors are,

YðkÞ= yTðkÞ yTðk+1Þ ⋯ yTðk+ p− 1Þ� �T ð3Þ

EðkÞ= eTðkÞ eTðk+1Þ ⋯ eTðk+ q− 1Þ� �T ð4Þ

and the AR parameters are contained in the following mp×mp companion matrix
as,

α=

0 I 0 ⋯ 0
0 0 I . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 I
αp αp− 1 αp− 2 ⋯ α1

2
66664

3
77775 ð5Þ

and the MA parameters are contained in the mp×mq matrix as,

β=

0 0 0 ⋯ 0
0 0 0 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0
βq βq− 1 βq− 2 ⋯ β1

2
66664

3
77775 ð6Þ

Let’s define the following vectors,

YfutðkÞ= yTðkÞ yTðk+1Þ ⋯ yTðk+ p− 1Þ� �T ð7Þ

YpasðkÞ= yTðkÞ yTðk− 1Þ ⋯ yTðk− s+1Þ� �T ð8Þ

EfutðkÞ= eTðkÞ eTðk+1Þ ⋯ eTðk+ p− 1Þ� �T ð9Þ

where Yfut and Ypas are, respectively, mp×1 and ms×1 vectors and Efut is mp×1,
with the superscripts fut and pas denoting, respectively, future and past data.

Now, for a quantity of measured data of Np points, post-multiplying Eq. (2) by
Ypas Tðk− 1Þ and taking the expectation values and assuming that the process Efut

and Ypas are uncorrelated, i.e., E EfutðkÞYpasTðk− 1Þ� �
= 0, results in,
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E Yfutðk+1Þ YpasTðk− 1Þ� �
=α E YfutðkÞ YpasTðk− 1Þ� � ð10Þ

where E means the expectation operation.
Let’s define the following matrices,

Hð1Þ =E YfutðkÞ YpasTðk− 1Þ� �
=

R1 R2 ⋯ Rs

R2 R3 ⋯ Rs+1

⋮ ⋮ ⋱ ⋮
Rp Rp+1 ⋯ Rp+ s− 1

2
664

3
775 ð11Þ

and

Hð2Þ =E Yfutðk+1Þ YpasT ðk− 1Þ
h i

=

R2 R3 ⋯ Rs+1

R3 R4 ⋯ Rs+2

⋮ ⋮ ⋱ ⋮
Rp+1 Rp+2 ⋯ Rp+ s

2
664

3
775 ð12Þ

as block Hankel matrices of dimension mp×mr formed by m×m covariance
matrices defined as,

Ri =E yðkÞ yTðk− iÞ� � ð13Þ

where i means the correspondent lag of Ri, for a quantity of lags used to build the
matrices Hð1Þ and Hð2Þ equal to Nlags = p+ s.

Equation (10) can be rewritten as,

Hð2Þ =α Hð1Þ ð14Þ

Assuming matrix Hð1Þ to be nonsingular, it follows that the companion matrix α
can be calculated by solving the overdetermined system of linear equation as,

α=Hð2ÞHð1ÞTðHð1ÞHð1ÞTÞ− 1 =Hð2ÞHð1Þ+ ð15Þ

where Hð1Þ+ =Hð1ÞTðHð1ÞHð1ÞTÞ− 1 denotes the Moore-Penrose pseudo inverse of
H(1).

3 Reference-Vectors for OMA Identification Scheme

Theoretically, in classical modal analysis, the impulsive or white Gaussian forces,
used as excitation for, respectively, IRF’s or input-output modal tests, have constant
spectrum. These signals work as a type of reference in the modal parameters
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identification, for a certain frequency range of interest. However, in OMA
parameters identification, where the input forces are not known, it is important to
define some coordinates of reference to calculate the modal parameters of the
system. The output vector of dimension m×1 is defined as,

yðkÞ= yrðkÞ
ynrðkÞ

� �
ð16Þ

where yrðkÞ is the reference-output vector of dimension r × 1. The vector ynrðkÞ of
dimension ðm− rÞ×1 represents the part of non-referenced of the output vector
yðkÞ. The relation between yrðkÞ and ynrðkÞ is given by,

yrðkÞ=LyðkÞ ð17Þ

with L= Ir 0½ � of dimension r ×m.
In OMA parameters identification, the non-referenced covariance matrices

defined by Eq. (13) must be substituted by referenced-covariance matrices between
the complete output vector yðkÞ and the reference-output-vector yrðkÞ defined as,

Rr
i =E yðkÞ yTr ðk− iÞ� �

=Ri LT =E yðkÞ yTðk− iÞ� �
LT ð18Þ

For the example, in the case of only one reference as the jth variable yjðkÞ, the
referenced-covariance matrix Rr

i becomes,

R j
i =RiLT =

Rið1, 1Þ ⋯ Rið1, j− 1Þ Rið1, jÞ ⋯ Rið1,mÞ
Rið2, 1Þ ⋯ Rið2, j− 1Þ Rið2, jÞ ⋯ Rið2,mÞ

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
Riðm, 1Þ ⋯ Riðm, j− 1Þ Riðm, jÞ ⋯ Riðm,mÞ

2
664

3
775

0
⋮
0
1
⋮
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

=

Rið1, jÞ
Rið2, jÞ

⋮
Riðm, jÞ

8>><
>>:

9>>=
>>;

ð19Þ

The above equation shows how referenced covariance matrix Rr
i can be obtained

from non-reference covariance matrix Ri.

4 Modal Parameters Identification

The input-output relationship, based on Eq. (1), can be written as,

yðk+ pÞ− ∑
p

i=1
αiyðk+ p− iÞ= uðkÞ ð20Þ
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where uðkÞ denotes the m×1 input-vector related to the external forces applied to
the system.

In order to obtain a scheme to estimate the modal parameters of the mechanical
system, the z-transform is applied to both sides of Eq. (20) giving the following
equations,

zpI− zp− 1α1 − zp− 2α2 −⋯−αp
� �

YðzÞ=UðzÞ ð21Þ

zpI− zp− 1α1 − zp− 2α2 −⋯− z αp− 1 −αp
� �

HðzÞ= I ð22Þ

where Y(z) and U(z) are, respectively, the z-transform of y(k) e u(k) and H(z) is the
m×m transfer function between Y(z) and U(z) in the z-domain.

Equation (22) can be re-written in terms of a companion matrix α as,

zI 0 ⋯ 0 0
0 zI ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ zI 0
0 0 ⋯ 0 zI

2
66664

3
77775−

0 I ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 I
αp αp− 1 ⋯ α2 α1

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

I
zI
⋮

zp− 2I
zp− 1I

8>>>><
>>>>:

9>>>>=
>>>>;
HðzÞ=

0
0
⋮
0
I

8>>>><
>>>>:

9>>>>=
>>>>;
ð23Þ

The above equation can be written in a more compactly form as,

zI−α½ �Iz̃HðzÞ= B̃ðzÞ ð24Þ

where

Iz̃ =

I
zI
⋮

zp− 2I
zp− 1I

8>>>><
>>>>:

9>>>>=
>>>>;

and B̃ðzÞ=

0
0
⋮
0
I

8>>>><
>>>>:

9>>>>=
>>>>;

ð25Þ

are pm×m matrices.
The eigenvalue problem of companion matrix α can be written, from Eq. (24),

as,

zjI−α
� �

φ ̃j = 0 ð26Þ

which leads to the calculation of a quantity of mp z-poles zj’s, where mp – n of then
are computational poles and may be separated from the identification process.

The minimal order of the model n can be identified by inspection of the more
significants singular values of matrix Hð1Þ.
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In general, mechanical systems are modeled in continuous-time in nature using
for example Newton’s second law. The relation between the continuous-time poles
λl’s and the discrete-time poles zl’s is given by,

λj =
lnðzjÞ
Δt

with j=1: n ð27Þ

where Δt is the sampling time interval.
The natural frequencies ωj and modal damping ξj, for the case of underdamped

vibratory systems, are estimated from λj, respectively, according to,

ωj = λj
�� �� and ςj =

ReðλjÞ
ωj

ð28Þ

where symbol || denotes absolute value.
Finally, the mp eigenvectors ϕj of the companion matrix α, from Eq. (26), can

be used to estimate the mode-shapes ϕj of the mechanical system using the fol-
lowing relation [2],

ϕj = Izϕj ð29Þ

where ϕj is identified as,

ϕj = ðITz IzÞ− 1ITz ϕj ð30Þ

where ϕj is a pm× 1 vector and ϕj is a m× 1 mode-shape vector.

5 The ARMAV Algorithm

The ARMAV algorithm for OMA parameters identification consists in the following
steps:

(1) Calculation of the matrices Hð1Þ and Hð2Þ, as Eqs. (11) and (12), for a total of a
number of lags equal to Nlags = p+ s, using referenced-covariance-matrices Rr

i
obtained by Eq. (18) for a quantity of Np measured data,

(2) Calculation of the companion matrix α that contains the matrices parameters of
the ARMAV model by Eq. (15),

(3) Calculation of a quantity of mp eigenvalues zi’s and the associated mp eigen-
vectors ϕi of the companion matrix α, with i=1, . . . ,mp. The poles mp λi’s of
the mechanical system described in continuous time are calculated according to
Eq. (27). For underdamped systems, the natural frequencies ωj and damping
factors ξj are calculated by Eq. (28),
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(4) The mode-shape vectors and ϕj are obtained using Eq. (30),
(5) The minimum order of the system n can be obtained by means of inspection of

the number of repeated poles identified by the former step or by the number of
significant singular values of Hankel block matriz Hð1Þ.

6 Examples of Application

In order to show the capabilities of the present OMA parameters identification
technique using the ARMAV model, a SIMO numerical experiment is conducted.
The collection of impulse responses and output-only data are obtained by numerical
simulation from the five degrees of freedom mass-spring oscillator without damp-
ing, as shown in Fig. 1.

6.1 OMA Parameters Identification Using IRF’s

Data of a SIMO, 1-input and 5-outputs, test are then numerically simulated with the
unit impulse force acting in block 1. In the present test, it is adopted a number of
2000 data samples for each term hijðkÞ for a quantity of 500 lags to build the
covariance matrix R1

i and the order of AR part of the model p=4, resulting in a pair
of matrices Hð1Þ and Hð2Þ both of dimension 20× 496. The time sampling interval
Δt used is 0.025 s. Table 1 shows the exact and identified modal parameters.

The order of the system is identified to be equal to 10 by inspection of most
significant singular values of matrix Hð1Þ is shown in Fig. (2). Based on this cri-
terion, it is adopted p=2 in the identification process resulting the five modes and
modal identified parameters present in the Table 1.

Figure 3 shows the five identified mode shapes associated to five natural fre-
quencies as compared to exact modes derived from numerical simulation.

Theoretically, it is important to note that the modal parameters identification
using IRF’s data, using the present method, does not require the use of
reference-vectors in the identification scheme, as discussed in previous section. This
type of data has their own references due to the impulsive forces as integrant part of
calculation of IRF’s.

Fig. 1 Five degrees of freedom oscillator system
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6.2 OMA Parameters Identification Using Output-Only
Data

A SIMO 1-input and 5-outputs test is shown. Adopting as input u1(k), a mean zero
white Gaussian noise signal with amplitude equal to 10 N, that acts on the blocks 1,
the responses yðkÞ’s are obtained by evaluating the following sum of convolution,

yiðkÞ= ∑
Np − 1

s=0
hi1ðsÞ u1ðk− sÞ i=1, . . . , 5 ð31Þ

In the present test, it is adopted a number of 2000 data samples for each term
yiðkÞ for a quantity of 500 lags to build the covariance matrix R1

i and the order of

Table 1 Exact and identified modal parameters

Mode number Exact natural frequency (Hz) Identified natural frequency (Hz) Error (%)

1 5.2105 5.2105 0
2 10.0658 10.0658 0
3 14.2353 14.2353 0
4 17.4346 17.4346 0
5 19.4457 19.4459 0.001

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5
x 10

-3

order

sv
d(

H
)

Fig. 2 Singular values of matrix H1
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AR parameters of the model p=4, resulting in a pair of matrices Hð1Þ and Hð2Þ both
of dimension 20 × 496. The time sampling interval Δt used is 0.025 s.

The order of the system is identified to be equal to 10 by inspection of most
significant singular values of matrix Hð1Þ shown in Fig. 4. Based on this criterion,

0 1 2 3 4 5 6
0

2

4

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-5

0

5

Fig. 3 Exact (green) and identified (blue) mode shapes
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0

50

100

150

order

sv
d(

H
)

Fig. 4 Singular values of matrix H1
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the order of AR parameters is changed to p=2 resulting in a total of five identified
modes. The exact and identified parameters present in the Table 2.

Figure 5 shows the five identified mode shapes associated to five first natural
frequencies as compared to exact modes derived from numerical simulation.

7 Conclusion

OMA is a very attractive field in mechanical and civil engineering and several
techniques has been proposed in the literature. The present OMA parameter iden-
tification, method based on ARMAV model, is very simple, has robust numerical
properties and relatively low computational cost, using only linear algebra

Table 2 Exact and identified modal parameters

Mode number Exact natural frequency (Hz) Identified natural frequency (Hz) Error (%)

1 5.2105 5.2049 0.1074
2 10.0658 10.0713 0.0546
3 14.2353 14.2413 0.0415
4 17.4346 17.4381 0.0207
5 19.4457 19.4479 0.0113

0 1 2 3 4 5 6
0

1

2

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-2

0

2

Fig. 5 Exact (green) and identified (blue) mode shapes
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manipulations. The tests based on numerical simulated data show that the presented
method can be regarded as a way to perform the modal identification—natural
frequencies, damping factors and associated mode shapes. The need of an
output-vector as reference in the output-only parameters identification is high-
lighted. The present paper encourages a future implementation of the present
algorithm using a more precise (accurate) optimization technique for the parameters
identification using, for example, the maximum likelihood technique.
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