
ABCM Series on Mechanical Sciences and Engineering

Proceedings
of DINAME 2017

Agenor de T. Fleury 
Domingos A. Rade 
Paulo R. G. Kurka Editors

Selected Papers of
the XVII International Symposium on
Dynamic Problems of Mechanics



Lecture Notes in Mechanical Engineering

ABCM Series on Mechanical Sciences and Engineering

Series editors

Heraldo da Costa Mattos, Niterói, Rio de Janeiro, Brazil
Maria Laura Martins Costa, Niterói, Rio de Janeiro, Brazil
João Laredo dos Reis, Niterói, Rio de Janeiro, Brazil



More information about this series at http://www.springer.com/series/14172

http://www.springer.com/series/14172


Agenor de T. Fleury • Domingos A. Rade
Paulo R. G. Kurka
Editors

Proceedings of DINAME
2017
Selected Papers of the XVII International
Symposium on Dynamic Problems
of Mechanics

123



Editors
Agenor de T. Fleury
Escola Politécnica
Universidade de São Paulo
São Paulo, São Paulo
Brazil

Domingos A. Rade
Divisão de Engenharia Mecânica
Instituto Tecnológico de Aeronáutica
São José dos Campos, São Paulo
Brazil

Paulo R. G. Kurka
Faculdade de Engenharia Mecânica
Universidade Estadual de Campinas
Campinas, São Paulo
Brazil

ISSN 2195-4356 ISSN 2195-4364 (electronic)
Lecture Notes in Mechanical Engineering
ISSN 2524-6011 ISSN 2524-602X (electronic)
ABCM Series on Mechanical Sciences and Engineering
ISBN 978-3-319-91216-5 ISBN 978-3-319-91217-2 (eBook)
https://doi.org/10.1007/978-3-319-91217-2

Library of Congress Control Number: 2018941223

© Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-5916-4486


Foreword

This book is the first volume of ABCM Series on Mechanical Sciences and
Engineering—Proceedings of International Symposium on Dynamic Problems of
Mechanics—DINAME and brings together the work of some Brazilian leaders on
research concerning the broad area of Dynamics. This book presents a compendium
of works presented at DINAME 2017, covering traditional subjects in the area such
as dynamic systems, vibration, control, as well as new and non-less exciting sub-
jects in contemporary Dynamics such as robotics and intelligent materials.

The ABCM Series on Mechanical Sciences and Engineering is a result of an
agreement set by Springer and ABCM and its first volume was an initiative of the
organizers of DINAME 2017 supported by the ABCM Direction Board—biennium
2015–2017.

The ABCM Direction Board expects that these proceedings become a disclosure
vehicle for the best works presented in our events. We also hope that in a close
future, the continuity of this series of books becomes reference material to graduate
students, professors, and professionals developing research in the area of Dynamics.

The ABCM Direction Board and the authors and participants in DINAME 2017
gratefully acknowledge the support to this event received from Coordination for the
Improvement of Higher Education Personnel—CAPES, National Council for
Scientific and Technological Development—CNPq, and São Paulo Research
Foundation—FAPESP, recognizing that without the success of this symposium,
this book would not be possible.

The Board of Directors of ABCM is also grateful to the ABCM Committee of
Dynamics and the professionals that have actively participated in the elaboration of
this book as organizers authors, co-authors, and reviewers. In particular, we and the
ABCM community thank our colleagues who took the responsibility of being the

v



chairs of the DINAME 2017 and editors of ABCM Series: Agenor de T. Fleury
from University of São Paulo (USP), Domingos A. Rade from Aeronautics Institute
of Technology (ITA), and Paulo R. G. Kurka from University of Campinas
(UNICAMP).

São Carlos, SP, Brazil Gherhardt Ribatski
(President of ABCM)
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Preface

The International Symposium on Dynamic Problems of Mechanics—DINAME—is
a biannual symposium promoted since 1986 by the Brazilian Society of Mechanical
Sciences and Engineering (ABCM), and organized by its Committee of Dynamics.

Along the years, the Symposium became a vivid forum for scientists, academics,
and practitioners to present and discuss developments related to dynamic problems
of mechanics.

The meetings are traditionally held in quiet and pleasant sites, away from
overcrowded areas, in a regime of immersion, which enables cross-fertilization of
ideas, strong scientific exchanging and socialization among participants. In order to
maximize the exchange of scientific ideas, achievements, and trends on topics
related to the broad area of Dynamics, a single-session format is adopted for the oral
presentations of the papers. The acceptance for presentation and inclusion of the
papers in the proceedings is based on a two-phase peer-reviewing process of
abstracts and full-length (10 pages) manuscripts.

The 2017 edition of DINAME was held from March 5 to March 10, 2017, at
Beach Hotel Sunset and Cambury, in São Sebastião, which is located on the sea-
shore of the State of São Paulo, in Brazil. The technical program comprised 100
regular papers, 2 invited papers, 7 keynote lectures, and 2 short courses, the latter
intended for the education of young researchers in topics encompassed by the scope
of the symposium.

In the context of an existing agreement between Springer and ABCM, an ini-
tiative was launched by ABCM Direction Board and the organizers of DINAME
2017 aiming at publishing the symposium proceedings as the first volume of the
ABCM Series on Mechanical Sciences and Engineering—Proceedings of DINAME
2017: Selected Papers of the XVII International Symposium on Dynamic Problems
of Mechanics. For this purpose, after DINAME 2017, the authors were invited to
submit improved versions of their papers, which were subjected to another
peer-reviewing process. This process led to the selection of 39 papers that compose
the present volume, which are believed to be a representative sample of the best
research works presented in the symposium.
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The papers are organized according to the sessions established in the sympo-
sium, namely: Rotordynamics, Vibrations and Structural Dynamics, Robotics and
Mechatronic Systems, Control of Mechanical Systems, Nonlinear Dynamics,
Vehicle Dynamics and Multibody Systems, Wave Propagation, Acoustics and
Vibroacoustics, and Uncertainty Quantification and Stochastic Mechanics.

The organization of DINAME 2017 had the financial support of the following
Brazilian research agencies, to which the organizers are very grateful:

• CAPES Foundation (Brazilian Ministry of Education)
• National Council for Scientific and Technological Development—CNPq

(Brazilian Ministry of Science, Technology and Innovation)
• São Paulo State Research Foundation—FAPESP

We sincerely hope that these proceedings will be useful to Brazilian and interna-
tional readers interested in dynamic problems of mechanics.

São Paulo, Brazil Agenor de T. Fleury
São José dos Campos, Brazil Domingos A. Rade
Campinas, Brazil Paulo R. G. Kurka
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Estimation of Rotordynamic Seal
Coefficients Using Active Magnetic
Bearing Excitation and Force
Measurement

Christian Wagner, Wataru Tsunoda, Tobias Berninger, Thomas Thümmel
and Daniel Rixen

Abstract In high-speed rotational machinery such as pumps or compressors, con-

tactless seals are commonly used to separate different fluids or gases and pressure

levels. However, the presence of a leakage flow through the seal gap exerts forces on

a rotor. These can culminate in stiffening, restoring, and damping effects as well as in

unstable, self-excited vibrational behavior. The JEFFCOTT rotor model and rotordy-

namic seal coefficients are put under investigation to prevent instability in the rotat-

ing machinery and to determine the rotor-seal systems dynamic behavior. This paper

focuses on an experimental methodology, examined on a flexible rotor-seal test rig

using an active magnetic bearing for excitation. Coefficient identification problems

due to unknown random force (noise) in the experiment are shown and a solution is

described in detail and validated on the test rig. The presented methodology leads

to a calculation of rotordynamic seal coefficients during safe operating conditions.

They are ultimately used to describe the system’s behavior and to predict the onset

speed of instability.

Keywords Rotordynamic ⋅ Seal ⋅ Instability ⋅ Self-excited vibration

Active magnetic bearing ⋅ Coefficient estimation

1 Introduction

Seals in turbopumps are mostly used to minimize leakage flow from high pressure

areas to low pressure parts. Because of the high rotational speeds of common cen-
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trifugal pumps or compressors, contactless seals, such as floating ring, labyrinth

or small gaps are inserted between the rotating and the stationary parts. The ever-

present clearance around these contactless seals permits fluid flow through the gap.

For an eccentric rotor position, the fluid-velocity distribution inside the seal becomes

unsymmetrical, which entails forces on the rotor. These can induce effects such as

stiffening, damping, and added mass, but they can also end up in a rotor instability, a

self-excited vibration which can destroy the machinery. Seal effects can engender the

critical speeds that should be avoided in stationary operation. Thus, dry predictions

of the rotor-system’s behavior, such as those for critical speeds, damping or stability

limits, are unusable under real operating conditions.

The seal forces within a rotor system are mostly modeled as rotordynamic coeffi-

cients:

−𝐡s =
[
mxx 0
0 myy

]
�̈� +

[
cxx cxy
cyx cyy

]
�̇� +

[
kxx kxy
kyx kxx

]
𝐪 (1)

with the motion of the rotor, 𝐪, the seal reaction force, 𝐡s, and the rotordynamic seal

coefficients m, c and k for added mass, the fluid’s inertia, damping, and stiffness with

cross-coupling parts. The coupling inertia terms in the mass matrix are neglected.

The different types of seals in a pump can usually be simplified to a cylindrical annu-

lar seal for a rotordynamic analysis.

To ensure safe rotor-seal system operation, validated models and methods for

characterizing the seals’ behavior, the rotordynamic seal coefficients, in simulation

and experiment are needed.

2 Literature Overview

The prediction of seal forces and effects mostly leads to a calculation of their rotordy-

namic coefficients. Several efforts have been made for theoretical and experimental

prediction. Simple and fast models are based on bulk-flow theory, which is a simpli-

fication of the NAVIER-STOKES equations assuming a constant fluid velocity along

the seals clearance.

One of the first efforts to determine restoring seal forces was made by [2]. They

used the bulk-flow theory and incompressible fluid flow through a short annular seal.

They express equilibrium through the axial momentum equation using turbulent wall

friction models and the given pressure gradient over the seal as a boundary condition.

For a centered rotor position, a perturbation analysis with small dynamic motion

results in differential equations of the fluids motion. Moreover, a linearization of the

fluid forces in reaction to the perturbation leads to the rotordynamic seal coefficients

for the centered shaft position. The circumferential flow is supposed to be a fully

developed, turbulent COUETTE flow. The assumption of constant fluid velocity in

the axial and circumferential directions leads to a constant wall-friction factor, 𝜆, for

the whole seal [1].
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Also based on the bulk-flow theory [3] introduced a closed-form analytical solu-

tion for the rotordynamic coefficients of a short, plain annular seal. He also used a

perturbation analysis to solve the differential equations. The model’s improvement

is the consideration of fluid inertia terms and the inlet swirl, the circumferential fluid

velocity at the seal’s entrance [1]. The simulation agrees well overall with measure-

ments [15].

Padavala and Palazzolo [10] developed a more detailed model, but with higher

computational costs. Based on bulk-flow theory, the model discretized the annulus

into finite parts to consider a variation of wall-friction factors in the circumferential

and axial directions. In contrast to the finite difference methods used in [5] or [12],

Padavala’s model uses continuous functions, created by cubic splines to fit the dis-

tribution of the variables, pressure, velocity, and so forth. With this technique, it is

possible to solve the bulk-flow equations for every finite part to get the pressure and

velocity distribution within the seal. Although this model gives good to excellent

agreement with measurements, its computational costs are high [15].

Further methods, based on finite volume CFD calculations like those in [17], or

finite difference methods, or using the REYNOLDS equation known for journal bear-

ings with turbulence correction factors and solved it with finite element methods,

see [13], gives high quality results.

The consequence of seal forces acting on the rotordynamics of the whole system

are well described in [4, 6]. The effect of self-excited vibrations and rotor instability

like the “oil-whip” phenomenon are illustrated in [9] for a system with two degrees

of freedom. Parametrization and variable description of the JEFFCOTT rotor model

used are attributable to [11, 14].

Others focus on coefficient measurements using an AMB rotor system to mea-

sure transfer functions. Zutavern [18] for example gets good measurement results

for frequency domain identification methods. The use of a rotor seal system in jour-

nal bearings with AMB excitation, in [7], with the variation of stiffness and damping

of the AMB controller leads to the rotordynamic seal coefficients for steam turbine

seals.

3 Modeling: Jeffcott Rotor Model

The simplified JEFFCOTT rotor model (see Fig. 1) with liquid annular seals is used

for theoretical explanation, simulation and as far as possible, experiments on the test

rig.

The JEFFCOTT rotor models a flexible, massless shaft with a mass disk symmet-

rically arranged between rigid bearings; see [6]. Here, the center of mass, S, has

the distance 𝜖 from the disk’s geometric center, M. Hence, 𝐫M gives the position for

M . 𝐫S = 𝐫M + 𝜖 is the position of S. Lumping the shaft stiffness, kr, onto the rotor’s

center, M, and taking as degrees of freedom the two translations 𝐪 = 𝐫M leads to

dynamic equilibrium for the rotor with mass mr and rotational speed 𝛺:
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Fig. 1 JEFFCOTT rotor model according to [11, 14]

[
mr 0
0 mr

]
�̈� +

[
kr 0
0 kr

]
𝐪 = 𝐡 (2)

𝐡u = mr𝜖𝛺
2[cos(𝛺t) sin(𝛺t)]T (3)

with the equivalent forces 𝐡 = 𝐡u + 𝐡e + 𝐡s... (unbalance, external forces, seal forces,

and so forth). The rotor’s natural frequency is 𝜔crit =
√

kr
mr

, its critical speed.

3.1 Contactless Seal: Minimal Model and Coupling to Rotor
System

Defining the seal as system with spring, mass, damper and coupling to the rotor using

force 𝐡s leads to the dynamic equilibrium for the whole rotor seal system:

[
mr + mxx 0

0 mr + myy

]
�̈� +

[
cxx cxy
cyx cyy

]
�̇� +

[
kr + kxx kxy
kyx kr + kyy

]
𝐪 = 0 (4)

Assuming that

𝐪 = �̂�e𝜆t (5)

yields the eigenvalue problem with eigenvalues 𝜆 = 𝛿 ± j𝜔. For self-excited

vibration, i.e. rotor instability, the positive real parts, 𝛿, must be observed. The seal

coefficients’ speed dependency, mainly the increasing of cross-coupled parts of the

stiffness, kxy and kyx, sets a speed limit for safe operation: the onset speed. A sub-

synchronous, self-excited vibration at the rotors natural frequency arises when the

onset speed is reached.

Calculating the seal coefficients is essential in this case to avoid rotor instability

for safe operation.
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3.2 Bulk-Flow Modeling and Seal Simulation

The bulk-flow theory is derived from the NAVIER-STOKES equations by neglecting all

changes to the fluid flow parameters in radial direction and setting them to constant

values or zero.

These assumptions lead to a pressure- and shear-driven fluid flow and a pertur-

bation analysis about a steady state position leads to the fluid forces as a function

of the rotor’s movement. Simplifications made by Black and Jenssen [2], Childs [3]

and Padavala and Palazzolo [10] are used to solve the fluid momentum equations to

get the rotordynamic seal coefficients. The detailed description of the used equations

and the solving process is well explained in the cited literature. The three models are

implemented in MATLAB and called now as Black, Childs and Padavala model. The

simulation results will be discussed in later chapters.

4 Experiments: Test Rig Setup

The test rig design is shown in Figs. 2 and 3. It is based on a flexible shaft 1 and a

mass disc 2 rotating within a pressurized chamber with length lc and clearance cc.
The shaft support is realized with stiff ball bearings 3 and the rig is driven by a servo

motor 4. The fluid is injected into the chamber and flows through two symmetric

Fig. 2 Seals test rig, photograph
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Fig. 3 Seals test rig, see [16]

Table 1 Test rig and seal parameters

Name Value Name Value

Seal clearance 0.17 mm Rotational speed 𝛺 0–100 rps

Chamber clearance cc 2 mm Rotor mass mr 5 kg

Seal length lc 20 mm Shaft stiffness kr 2.93 × 105 N/m

Chamber length 40 mm Density at 40 ◦
C 880 kg/m

3

Pressure difference at

the seals 𝛥p
2 × 105 Pa Viscosity at 40 ◦

C 0.04048 Pa s

Sealless natural

frequency 𝜔0

38.6 Hz Seal diameter 0.1 m

annular seals 5 to the environment. Two eddy current sensors measure the rotor’s

motion. A dynamometer 6 under the stator seal is used to get the seal’s reaction

forces. Further, the fluid inlet pressure, temperature, rotational speed, leakage flow

and torque are measured. An active magnetic bearing 7 is used as an actuator for

dynamic system excitation.

Table 1 list the test rig, the fluid and seal parameters used for simulation and mea-

surements. The rotor’s “dry” first natural frequency 𝜔0 is at 38.6 Hz. It is decreased

by the seal influence to about half the rotational speed 𝛺, see Fig. 7.

4.1 Measurement Methods for Seal Coefficients

For a symmetrical rotor seal system, the coefficients in Eq. (1) can be written,

according to [6]: Ms = mxx = myy, Cs = cxx = cyy, cs = cxy = −cyx, Ks = kxx = kyy
and ks = kxy = −kyx. To determine the rotordynamic seal coefficients, the seal reac-

tion forces in Eq. (1) are FOURIER transformed into the frequency, see [8]:
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[
Ks + j𝜔Cs − 𝜔

2Ms ks + j𝜔cs
−ks − j𝜔cs Ks + j𝜔Cs − 𝜔

2Ms

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

̃𝐀

[
x̃
ỹ

]
⏟⏟⏟

�̃�

=
[
̃fx
̃fy

]
⏟⏟⏟

̃𝐡s

(6)

̃𝐀 is the system’s dynamic stiffness matrix for every frequency, 𝜔, �̃� the rotor com-

plex displacement amplitudes, and ̃𝐡s the seal complex reaction force amplitudes.

Using the notation

a(𝜔) = Ks + j𝜔Cs − 𝜔

2Ms

b(𝜔) = ks + j𝜔cs
(7)

Equation (6) becomes:

[
a b
−b a

] [
x̃
ỹ

]
=
[
̃fx
̃fy

]
⇔

[
x̃ ỹ
ỹ −x̃

] [
a
b

]
=
[
̃fx
̃fy

]
⇔

[
a
b

]
= 1

x̃2 + ỹ2

[
x̃̃fx + ỹ̃fy
ỹ̃fx − x̃̃fy

]
(8)

Equation (8) can be solved for a and b at several excitation frequencies and for mul-

tiple measurements using a least squares method. Separation into the real (Re) and

imaginary (Im) part let us use linear and quadratic fit curves to calculate the rotor-

dynamic coefficients:

Re{a(𝜔)} = Ks − 𝜔

2Ms

Im{a(𝜔)} = 𝜔Cs

Re{b(𝜔)} = ks
Im{b(𝜔)} = 𝜔cs

(9)

Measuring seal forces, ̃𝐡s, and displacements, �̃�, with one directional excitation in

the y direction at several frequencies, 𝜔, using the AMB yields the values for a and

b shown in Fig. 4 for the test-rig parameters in Table 1.

The blue line in Fig. 4, which represents Re{a(𝜔)} = Ks − 𝜔

2Ms, should be a

quadratic curve. At about 42 (rps) ≈ 𝛺∕2, a discontinuous point—a “jump-effect”—

disturbs the curve fitting and coefficient identification. Even when the rotational

speed changes, the same noise effect occurs in every real and imaginary part of a
and b at about half rotational speed; see Fig. 4.

Instead of using the x-y coordinate system, Eq. (6) can be transformed to complex

coordinate in the forward whirl direction z = x + jy by summing up the first equation

of (6) and the second equation multiplied by j, one obtains after rearranging:

[−𝜔2Ms + 𝜔cs + Ks + j(Cs𝜔 − ks)] ⋅ z̃ = ̃fz (10)

̃fz
z̃
= −𝜔2Ms + 𝜔cs + Ks + j(Cs𝜔 − ks) (11)
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Fig. 4 Noise effect: a and b measured at 𝛺 = 80 rps
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Fig. 5 Real and imaginary part of
̃fz
z̃

measured at 𝛺 = 80 rps

Separated in real and imaginary parts:

Re

(
̃fz
z̃

)
= −𝜔2Ms + 𝜔cs + Ks

Im

(
̃fz
z̃

)
= Cs𝜔 − ks

(12)

Figure 5 shows that fitting the rotordynamic coefficients with linear and quadratic

curves is possible using the coordinate transformation. No jump effect at half rota-
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tional speed occurs in the complex coordinate description and the blue lines agree

well with the dotted red quadratic and linear fitted functions. The noise at 80 Hz

occurs due to the dominant unbalance force response polluting the measurement at

rotational speed 𝛺 = 4800 rpm.

4.2 Discussion of Noise Effect

The experiments show a noise effect at half rotational speed in the x-y coordinate

measurement. A transformation to complex coordinate solves this problem. The

explanation can be found analyzing the block diagram for Eq. (8), shown in Fig. 6,

with the unknown noise force, ̃

𝛥f (t), acting on the rotor. The relation for the dis-

placement errors ̃

𝛥x and ̃

𝛥y, is given by:

̃

𝛥x = −b
a
̃

𝛥y and ̃

𝛥y = ̃

𝛥f (t)∕a (13)

Using for the rotor displacement:

x̃ = x̃0 + ̃

𝛥x and ỹ = ỹ0 + ̃

𝛥y (14)

For the displacement and forces these substitutions can be done:

q =
ỹ
̃fy
=

ỹ0 + ̃

𝛥y
̃fy

= q0 + 𝛥q

p = x̃
̃fy
=

x̃0 + ̃

𝛥x
̃fy

= p0 +
̃

𝛥x
̃fy

= p0 −
b
a
𝛥ỹ
̃fy

= p0 −
b
a
𝛥q

r =
̃fx
̃fy

(15)

Fig. 6 Block diagram of

random noise influence
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Set into Eq. (8) leads to a new description for a and b:

[
a
b

]
= 1

p2 + q2

[
p ⋅ r + q
q ⋅ r − p

]
(16)

Making the assumption fy ≫ fx, (4 × 101N ≫ 0 ) and AMB excitation in y direction,

so r ≈ 0. Substitution into Eq. (11):

̃fz
z̃
= a − jb = 1

p2 + q2
[q + jp] = 1

p2 + q2
[q0 + 𝛥q + jp0 − j b

a
𝛥q] (17)

Looking back at the block diagram in Fig. 6 and Eq. (13), it follows that

x̃0 = −b
a
ỹ0 and p0 = −b

a
q0 (18)

For the part,

b
a
=

jcs𝜔 + ks
−Ms𝜔

2 + Ks + jCs𝜔
(19)

At around the frequency 𝜔 = 𝛺∕2, where the former “jump effect” occurs, the

assumptions ks ≫ cs𝜔, (4 × 106 N∕m ≫ 6 × 105 N∕m) andCs𝜔 ≫ (−Ms𝜔
2 + Ks),

(4 × 106 N∕m ≫ 5 × 105 N∕m) can be made, so:

b
a
≈

ks
jCs𝜔

= −j
ks
Cs𝜔

(20)

using the rotational speed dependency of the coupled stiffness [9], ks ≈ Cs ⋅𝛺∕2,

(3.7 × 106 N∕m ≈ 3.9 × 106 N∕m), b
a
≈ −j at about 𝜔 = 𝛺∕2. So Eq. (17) can be

rewritten and the displacement error gets subtracted out:

̃fz
z̃
= 1

p2 + q2
[q0 + 𝛥q + jp0 − j(−j𝛥q)] = 1

p2 + q2
[q0 + jp0] (21)

For the fraction
1

p2+q2
of Eq. (21), the displacement error is subtracted out, too:

p2 + q2 = p20 + q20 + 2𝛥q(q0 −
b
a
p0) = p20 + q20 + 2𝛥q(q0 +

(b
a

)2
q0) = p20 + q20

(22)

By neglecting terms of second order, (𝛥q)2. The displacement error 𝛥x and 𝛥y due

to the unknown noise force 𝛥f (t) can be eliminated using the complex coordinate,

as shown. However, it is possible to apply this method to determine rotordynamic

seal coefficients using one-directional, active magnetic bearing excitation in a flex-
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ible rotor system with additional unknown forces. The determined coefficients are

needed to validate simulation models and to describe the rotor-seal systems behavior

including stability prediction.

5 Instability Prediction

5.1 Simulation and Eigenvalue Analysis

The rotor-seal system eigenvalues, 𝜆 = 𝛿 ± i𝜔, are calculated using the simulated

seal coefficients. The zero crossing of the real part gives the rotors onset speeds

of instability at about 𝛺 = [160, 124 and 136] rps for the three simulation models:

Black, Childs and Padavala. The systems simulated natural frequency agrees with

the test rig behavior at higher rotational speeds, where the natural frequency is about

half the rotational speed, 𝛺∕2.

5.2 Coefficient Measurement and Experimental Predictive
Eigenvalue Analysis

The system’s eigenvalues can be calculated using the measured seal coefficients and

the dry test rig parameters; see Fig. 7. Using “least squares” to fit a linear function to

the real eigenvalues enables you to extrapolate the zero crossing and the onset speed

of instability to 𝛺 = 171 rps.
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Fig. 7 Measured system: calculated real and imaginary parts of the eigenvalues
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Comparing the estimated onset speed shows that the experimental method pre-

dicts 38% higher rotational speed than Childs’, 26% higher than Padavala’s, and 7%
higher than Blacks simulation model. The systems natural frequency is always about

𝛺∕2 –half the rotational speed, see Fig. 7, which agrees well with the real test rig

behavior.

6 Conclusion

The influence of seals on rotordynamics is shown in this paper. Models from the well-

known literature for calculating rotordynamic coefficients are examined and used to

determine the rotor system’s vibrational behavior. A test-rig design, the measure-

ment concept, details for solving noise problems to get a robust method, and calcu-

lated eigenvalues using the determined coefficients are shown. The model coupling

of seal and rotor leads to a prediction of the stability limit and rotordynamic behavior.

Because of the early state, these are preliminary results for the test-rig and the imple-

mented simulation models. The differences between simulated and measured results

are mostly caused by anisotropic and misalignment effects at the test rig. This is con-

firmed by the movement of the unloaded rotor from the complete rotor-stator contact

at 𝛺 = 0 rps nearly to the seal center at 𝛺 = 100 rps. Additional investigations to

improve the test rig design and to avoid disturbances such as increasing fluid temper-

ature, misalignment, and so forth are planned. Future works also involves increasing

the rotational speed to get the real onset speed of instability. On the simulation side,

improved models will be implemented for the fluid motion and the resulting forces

in future.
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Experimental Estimation of Equivalent
Damping Coefficient of Thrust Bearings

Thales Freitas Peixoto , Gregory Bregion Daniel
and Katia Lucchesi Cavalca

Abstract A specific class of rotary machines is the high rotation turbochargers, to
automotive application, wherein the shaft is continually subjected to axial forces of
different magnitudes due to gas flows in the turbine and the compressor. These
forces are supported by axial lubricated thrust bearings. The thrust bearings are
modeled through equivalent stiffness and damping coefficients and the objective of
the work is to get good estimates of these coefficients, comparing simulated results
with experimental results. The stiffness coefficient is first obtained by small per-
turbation around the equilibrium position and used in a finite element model of the
system at specific rotational speeds, and this value is compared to experimental
results. Then, the damping coefficient is estimated, by running an optimization
problem on this parameter, to approximate the simulated dynamic response of the
system to experimental results of the turbocharger excited by an impact hammer,
where both the displacement and force were measured.

Keywords Hydrodynamic thrust bearing ⋅ Stiffness coefficient
Damping coefficient

1 Introduction

A shaft is a rotating member of circular cross section used to transmit power and
motion. A rotary machine is the assembly of a rotating shaft supported by bearings,
with one or more rotors. A very specific class of rotary machines is the high rotation
turbochargers, to automotive application. The turbocharger is an equipment added
to internal combustion engines to raise its power or efficiency, using the exhausting
gases of the engine to move the turbine attached to a compressor. The compressor
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raises the air pressure entering the combustion chamber of the engine, allowing a
larger mass flow rate with respect to naturally aspirated engines [1].

The turbochargers have, essentially, four elements: the rotating shaft, the turbine,
the compressor, and the bearings. The radial inflow turbine is the element that
drives the whole system. The centrifugal compressor is the element that improves
the combustion process and the shaft is responsible for transferring the energy
produced by the turbine to the compressor.

The bearings are responsible for supporting the loadings in the shaft. Because of
unbalanced mass, inherently to every rotating system, there is radial vibration in the
shaft, which are supported by journal bearings. Moreover, the gas flows in the
turbine and the compressor are not constant and these flows produce radial and axial
forces of different amplitudes. The axial forces produce axial displacements and the
use of thrust bearings is necessary, to absorb the shaft axial loadings and dis-
placements. The thrust bearings must be designed to let the oil film between the
bearing and the collar attached to the shaft sustain the shaft axially, avoiding contact
between the surfaces in relative motion, to mitigate friction and premature wear of
these surfaces [2].

The axial vibration of the entire turbocharger is the object of analysis. It is
assumed that this vibration can be modeled by concentrated parameters and the
thrust bearings can be approximated by its dynamic characteristics, i.e., its equiv-
alent damping and stiffness coefficients. Lund [3] introduced the concept to
approach the dynamic characteristics of bearings through its equivalent coefficients,
which basically consists in solve the governing equation for the pressure distri-
bution to find the equilibrium position of the system and recalculate the pressure
distribution applying small perturbations around the previously found equilibrium
position.

The governing equation for the pressure distribution in lubricated bearings is the
Reynolds’ Equation [4], a second order partial differential equation governing the
pressure distribution of thin viscous fluid films, which can be derived from
the continuity and Navier-Stokes equations, neglecting the higher order terms that
consider the (small) thickness of the oil film. Specifically to thrust bearings,
Hamrock et al. [5] obtained an analytical solution to bearings whose pads radial
dimensions were much higher than its circumferential dimensions. With this
assumption, the radial flows crossing the interface between the bearing and the
collar (shaft) can be neglected. This solution, however, is not always adequate,
since the oil flow in the radial direction can be considerable, depending on the radial
and circumferential dimensions of the thrust bearings. Pinkus and Lynn [6] was the
first to obtain a numerical solution to the Reynolds’ Equation, by the Finite Dif-
ference Method, to thrust bearings, whose oil film thickness linearly varies with the
circumferential length.

Pinkus idea to apply numerical methods to solve the Reynolds’ Equation was not
restricted to hydrodynamic analysis (HD analysis), considering other effects in the
bearings, besides the pressure distribution and the hydrodynamic forces. Numerical
methods began to consider thermal effects on the bearings creating the
thermo-hydrodynamic analysis (THD analysis). Dowson [7] published one of the
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main works in the THD analysis, deriving the generalized Reynolds’ Equation,
which takes into account the variation of fluid properties, such as the viscosity and
density and his work contributed to future works that covered the THD lubrication.
Recent works in solving the Reynolds’ Equation in thrust bearings can be cited,
such as Arghir et al. [8], that utilized the Finite Volume Method to obtain the
pressure distribution in thrust bearings with discontinuities in the oil film and
Alqmvist et al. [9], that compared simulated THD results with experimental results.
Dadouche et al. [10] empirically observed the influence of various parameters, such
as axial load applied, rotation speed and the replacement oil temperature, over the
pressure and temperature field in the bearings and Dadouche et al. [11] compared
experimental results obtained in the previous experimental bench with simulated
results. Finally, Ahmed et al. [12] based their work in Dowson equation to obtain a
solution to the THD problem using the generalized Reynolds’ Equation to thrust
bearings.

In this paper, the coefficients are estimated using experimental results. Daniel
et al. [13] estimated the stiffness coefficient, solving the governing equations for the
journal bearings to estimate the oil inlet temperature in the thrust bearing, necessary
to solve the Reynolds’ Equation taking into account thermal effects. The objective
of this paper is to estimate the equivalent damping coefficient of the system, by
running an optimization algorithm so that a simulated transient response of the shaft
displacement matches the measured displacement of the shaft.

2 Materials and Methods

A scheme of the turbocharger is shown in Fig. 1a. The turbocharger in Fig. 1a
consists of a turbine and a compressor attached to the shaft, supported by two thrust
bearings. This turbocharger can be modeled by the equivalent system in Fig. 1b,
considering that there is only relative motion between the collar and the thrust
bearings, increasing or decreasing the oil film thickness. It is assumed that the thrust
bearings are clamped and the collar moves only in the axial direction (defined as the
x coordinate). The thrust bearings support the external forces ΔF to maintain the
system working properly. The springs and viscous dampers are the equivalent

Fig. 1 a Scheme of turbocharger b equivalent system of the thrust bearing
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coefficients of the oil film between the bearings and the collar. The geometric
dimensions of the thrust bearings are shown in Table 1, through the ratios of the
main design parameters. The main variables of the thrust bearings, also shown
schematically in Fig. 2, are the inner ðriÞ and outer ðroÞ radius, the angular length of
the pad ramp ðθrampÞ, the angular length of the pad ðθ0Þ, the minimum ðh0Þ and
maximum ðhmaxÞ oil thickness and the number of pads ðnpadÞ of the bearing.

The turbocharger axial vibration is modeled as a one degree of freedom
(DOF) system [2], admitting that its entire mass M is concentrated in the collar of
the shaft. The springs and dampers of Fig. 1b are in parallel to each other, i.e., the
equivalent stiffness and damping coefficients are the sum of those coefficients,
Kxx =Kxx1 +Kxx2 and Cxx =Cxx1 +Cxx2. Therefore, the equation of motion of the
system is

Mx ̈ðtÞ+Cxxx ̇ðtÞ+KxxxðtÞ=FðtÞ ð1Þ

which can be numerically evaluated, by integrating Eq. (1) using the state space
model defined as [14]:

x ̇ðtÞ
x ̈ðtÞ

� �
=

0 1
− Kxx

M − Cxx
M

� �
xðtÞ
x ̇ðtÞ

� �
+

0
FðtÞ
M

� �
ð2Þ

Table 1 Geometric ratios of
the bearings [2]

Variable Bearing 1 Bearing 2

ro ̸ri 1.5 1.7
ri ̸h0 350 340
hmax ̸h0 2.4 2.0

θramp ̸ θ0 − θramp
� �

5.0 4.0

npad 3 3

Fig. 2 a Bearing pad and b fluid thickness profile (adapted from [2])
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In the test condition, the turbine is driven by compressed air, while the com-
pressor is open to the atmosphere. An impact hammer, in the shaft end, axially
excites the system. The axial displacement of the system is measured, as well as the
force applied by the hammer, in time domain, as illustrated schematically in Fig. 3.

The aim of this work is to estimate the equivalent coefficients of the bearings, so
the simulated response is compatible with the experimental results obtained, due to
an impulsive excitation force. The stiffness coefficient can be estimated as described
by [13], which consists in solving the Reynolds’ Equation utilizing a THD model,
by the Finite Volume Method (FVM), to obtain the pressure distribution of the oil
film circulating in the thrust bearings, accounting for parameters like the geometry
of the bearings and the temperature distribution in the oil film.

The Reynolds’ Equation is the governing equation for pressure distribution in
the oil film. To account for the temperature variation of the oil film, which changes
the oil viscosity along the bearing, the generalized Reynolds’ Equation must be
utilized. This equation was introduced by [7] and is written in cylindrical coordi-
nates as

1
r
∂

∂θ
F2

∂p
∂θ

� 	
+

∂

∂r
rF2

∂p
∂r

� 	
=Ωr

∂

∂θ

F1

F0

� 	
+ r

∂h
∂t

ð3Þ

in which Ω is the rotational speed of the shaft and the functions F0, F1 and F2 are
introduced to account for the temperature distribution in the oil film, which changes
the oil viscosity ðμÞ along the mesh. These functions are defined as

F0 =
Zh

0

1
μ
dx, F1 =

Zh

0

x
μ
dx, F2 =

Zh

0

x
μ

x−
F1

F0

� 	
dx ð4Þ

Fig. 3 Scheme of experimental setup of the turbocharger (adapted from [2])
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These integrals are responsible for the coupling between the viscosity variation
along the oil film and the pressure to be calculated by the Reynolds’ Equation
(Eq. 3).

Daniel et al. [13] approached the problem to obtain the equivalent stiffness
coefficient of the thrust bearing as suggested by Lund [3], by solving the Reynolds’
Equation applying small perturbations around the previously calculated equilibrium
position, disregarding the fluid film thickness variation with the time ð∂h ̸∂t=0Þ.
However, to estimate this coefficient, it is necessary to observe that the circulating
oil in the thrust bearing enters the turbocharger through journal bearings, which
causes an increase in its temperature. A THD model of the journal bearing is first
solved to estimate the temperature of the oil leaving the journal bearing, assumed as
the temperature of the oil inlet in the thrust bearing.

The results obtained by [13] are checked using the one DOF equation (Eq. 1)
and a finite element method (FEM) to discretize the turbocharger, following the
method suggested by [15, 16]. Peixoto et al. [15] compared the natural frequency of
the system obtained by the one DOF system, by a FEM solution and the equation of
longitudinal vibration of uniform bars with discontinuities of concentrated masses
and springs. Peixoto [16] calculated the oil thickness of the fluid in the thrust
bearing, using a step force and the equivalent stiffness coefficient calculated in
the simulations of [13], comparing the values with measured, empirical results. The
stiffness coefficient is estimated from the experimental results by dividing the
measured force by the measured axial displacement of the system.

The oil thickness was calculated according to Fig. 4. The oil thickness of each
thrust bearing is originally h01 and h02, for thrust bearings 1 and 2, respectively. The
collar attached to the shaft changes its equilibrium position by Δx after an external
excitation, modeled as a step excitation, acts on the system. The collar changes its
static equilibrium position due to the step excitation, which causes the oil thickness
to change an amount equal to h0±Δx. The minimum estimated oil thickness of the
bearing is h0 − Δxj j and this value is compared to the experimental measurements.

To check the oil thickness change of the model means to verify if the estimated
stiffness coefficient is in agreement with experimental results. However, the stiff-
ness coefficient changes only the static equilibrium position of the system, but gives
little information on its dynamic response. To fully add the flexibility of the oil film

Fig. 4 Simplified scheme of the assembly bearings and collar (adapted from [16])
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in the dynamic response, it is also necessary to obtain the equivalent damping
coefficient. This coefficient is estimated by optimizing this parameter, setting as the
objective function the difference between the simulated and the experimental
response, during the transient response of the system.

The optimization problem is constructed admitting that the objective function to
minimize is the maximum absolute difference between the experimental response
xexp


 �
and the simulated response xsimf g:

min
cmin ≤Cxx ≤ cmax

max xsimf g− xexp

 ��� ��� �� � ð5Þ

The vector xexp

 �

is obtained from experimental measured results [2], along
with the time vector ftg, while the simulated response xsimf g is obtained from the
numerical integration of the system (Eq. 2), which is a function of the damping
coefficient Cxx. The input force for the simulation is the force measured in the
impact hammer, during the experiment. It is important to notice that the max
function returns the largest element of the array, ⋅j j is the element-wise absolute
value function and the minð ⋅ Þ function is the min operator, which returns the
minimum value of the function.

The system is numerically integrated, with initial conditions x0 = 0, i.e., the
system starts from rest, and x0̇ = v0, i.e., with an initial velocity given by

v0 =
dx
dt

≅
x½2�− x½1�
t½2�− t½1� ð6Þ

so, the initial velocity of the system is estimated by the forward difference
approximation, utilizing the measured values of displacement and time. The opti-
mization problem is solved using the fmincon function from MATLAB

®

, using
the interior point algorithm [17]. The range admitted for the damping coefficient, in
the case studied here, is 0 <Cxx <106 N s/m.

3 Results

The turbocharger analyzed here has a total mass of 165 g. For a rotational speed of
14,100 rpm, the results obtained in the experiment schemed in Fig. 3 are shown in
Fig. 5. Figure 5a shows the applied force by the impact hammer and Fig. 5b shows
the axial displacement measured, both as a function of time. The collar bearing has
an outer diameter of 30 mm, a thickness of 1.5 mm and a clearance of 49.9 μm
(equal for both bearings). For this operation condition, the measured minimum oil
thickness is 23.8 μm, the replacement oil temperature entering the turbocharger was
measured in 37 °C and the temperature of the inlet oil in the thrust bearing was
estimated in 60.6 °C, given by [13]. The equivalent stiffness coefficient and the
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force supported by each thrust bearing in Fig. 4 were estimated and are shown in
Table 2.

The equivalent stiffness coefficient is, therefore, 6.724 MN/m (the sum of the
values shown in Table 2). With this value of the equivalent stiffness coefficient of
the thrust bearings, the natural frequency of the system was estimated for a lumped
parameters model (the one DOF equation, Eq. 1), by the FEM (using linear and
quadratic elements) and by the equation of longitudinal vibration of bars (known as
the distributed parameters models, following the work of [15]). These values are
shown in Table 3. Since the distributed parameters is the actual governing equation
for axial vibration of the turbocharger, this value is considered the reference in
calculating the percentage difference between the approximated models.

It can be argued from Table 3 that the lumped parameters model is good enough
to observe the turbocharger axial vibration, since the natural frequency is almost the
same for every model. The linear differential equation to model the one DOF
system requires less computational effort of the solver in order to find the optimum

Fig. 5 Experimental results: a measured force of hammer b axial displacement of shaft

Table 2 Estimated supported forces and equivalent stiffness coefficients of the thrust bearings, for
a rotation speed of 14,100 rpm (adapted from [13])

Thrust Bearing Supported force (N) Equivalent stiffness coefficient (106 N/m)

1 32.75 2.264
2 −38.03 4.460

Table 3 Estimated first
natural frequency of the
turbocharger axial vibration
(Ω = 14,100 rpm)

Model ωn (rad/s) Percentage difference

Distributed parameters 6,375 –

Lumped parameters 6,383 0.133%
Linear finite element 6,684 4.85%
Quadratic finite element 6,707 5.22%
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value of the damping coefficient and is utilized instead of the more onerous
equations.

The value of the stiffness coefficient can also be checked calculating the new
static equilibrium position under a step excitation with the same magnitude of the
resultant of the forces shown in Table 1 acting on the system, as in [16]. The
estimated oil film thickness was 24.2 μm, while the measured minimum oil
thickness is 23.8 μm (equal to the measured shaft displacement), which confirms
the estimation of the equivalent stiffness coefficient. This value is adequate while
running the optimization problem.

It is important to notice that the estimated stiffness coefficient is constant for the
rotation speed of 14,100 rpm. This coefficient is estimated based on the system
static equilibrium position, for each rotational speed, after it reaches steady state.
The minor fluctuations in the rotational speed, typical of a turbocharger, does not
alter the estimated stiffness coefficient. Vieira [2] inspect this coefficient variation
with rotational speed and the minor fluctuations in the speed are not big enough to
observe a difference on the estimated stiffness coefficient. Furthermore, since this
coefficient is estimated from the static equilibrium position, this parameter can be
estimated disregarding the dynamic characteristics of the system, which is also the
reason to why it is not taken into account on the optimization process. The only
optimization variable is the damping coefficient, which is fundamentally a dynamic
quantity, and the optimization problem takes into account the dynamic response of
the system and the already estimated stiffness coefficient to estimate the damping
coefficient.

The first estimated damping coefficient is obtained (by [13]) solving the Rey-
nolds’ Equation, considering the ∂h ̸∂t term, applying a perturbation of velocity h,̇
giving a value of 6.165 kN s/m. Due to the lack of information on the variables that
influence the damping coefficient, the estimated value for this coefficient is inad-
equate. This can be observed integrating the equation of motion of the system, with
the values obtained for the mass and the stiffness and damping coefficients (Fig. 6).
Consequently, it is necessary to find the correct damping coefficient, which is
achieved optimizing this parameter, so the simulated response gets closer to the
experimental results.

The optimization problem (Eq. 5) estimates the damping coefficient, setting
Eq. 2 as the equation of motion of the system, using the values of the turbocharger
mass and the previously estimated stiffness coefficient. The damping coefficient is
identified during the transient response of the system, which limits the time duration
of the impulse applied by the hammer (Fig. 7a) and the measured axial displace-
ment (Fig. 7b). Also, due to fluctuations in the measured force, this coefficient
identification was carried on under two conditions of external forces, as shown in
Fig. 7a: considering the force measurements of the impact hammer (dotted blue
line) and considering an adjusted force, disregarding those fluctuations (solid red
line). Figure 7b shows the displacement of the shaft considered in the optimization,
covering the same amount of time of the force, and is only the transient response of
the shaft.
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The first optimization of the damping coefficient, utilizing the experimental force
(dotted line, Fig. 7a), returns a value of 1.090 kN s/m. The dynamic (simulated)
response of the system with this value, to the external excitation, is shown in
Fig. 8a. The optimization was run with a small tolerance for the objective function,
to ensure the value obtained is the global minimum, not a local minimum. The
initial value used for the algorithm was the previously calculated damping coeffi-
cient of 6.165 kN s/m.

It can be seen from Fig. 8a that the general behavior tendency of the shaft
displacement given by the simulations is the same as the experimental results.
However, the displacement amplitude is not in good accordance between both
curves. A second optimization was carried on, using the adjusted force shown in

Fig. 6 Simulated and experimental results (first estimation of equivalent damping coefficient)

Fig. 7 Parameters considered during the optimization problem: a adjusted experimental force and
b transient shaft displacement during the force application
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Fig. 7a, disregarding the minor fluctuations in the experimental measured forces.
This optimization returns a value for the damping coefficient of 1.121 kN s/m and
the dynamic response for this system is shown in Fig. 8b, bringing a better
accordance between the experimental and simulated displacement of the collar
clamped to the shaft.

Using the value of the initial estimated equivalent damping coefficient, the
damping factor ξ of the system is estimated in 2.92, whereas the damping factor
utilizing the value for the damping coefficient obtained from the second opti-
mization (Fig. 8b) is 0.532. From the agreement between the curves of Fig. 8b and
the more plausible value for the damping factor, it can be said that the original value
estimated for the damping coefficient was not adequate. One can assume that, for
this particular system, the perturbation model utilized to approach the damping
factor may be not well suited. Moreover, in turbochargers, one aim is to reduce
vibrations to a minimum. For a desirable transient response, the damping factor
must be between 0.4 and 0.8, which was satisfactorily obtained, because small
values of ξðξ<0.4Þ yield excessive overshoot in the transient response, and a
system with a large value of ξðξ>0.8Þ responds sluggishly [18]. This is achieved
by designing a thrust bearing with a relative high damping factor. However,
overdamped systems, although do not present vibrations, respond slower, i.e., the
settling time is usually higher than the settling time of systems with a damping ratio
close to unity. Therefore, the value of 0.532 for this system is more acceptable and
suitable for the thrust bearing performance.

Finally, it is also important to notice that the adjusted experimental force utilized
on the simulations seems more appropriate. The peaks observed on the measured
experimental force (Fig. 7a) are probably measurement errors, since the experi-
mental response of the system does not have peaks accompanying the input force.
Moreover, the simulations disregarding the peaks on the input force provide a better
response, which is another indication that the correct force applied by the hammer is
just one single impact on the turbocharger.

Fig. 8 Comparison of simulated (Sim Resp) and experimental (Exp Resp) results: optimization
run with a experimental force (Exp Force) and b adjusted force (Adj Force)
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4 Conclusions

With the damping coefficient obtained from the second optimization, the damping
factor is 0.532, which indicates that this system is underdamped and its impulse
response decays fast enough. The amplitude difference of the measured displace-
ment and the simulated response with the adjusted force is about 4 μm. Besides, the
oscillation frequency of the simulated response approaches the experimental results
frequency, as observed in Figs. 7b and 8b, because both curves have the same
shape.

It must also be noted that the numerical integration must be made utilizing the
actual experimental force as an input. Although the force applied by the impact
hammer approaches an impulsive excitation, which could be modeled using the
Dirac delta function, the fundamental period of the system (the inverse of the
natural frequency) is about 1 × 10−3 s, so the input of the system cannot be
approximated by an impulse. This approximation is only valid if the time duration
of the force is much smaller than the fundamental period of the system, which is not
true for the case in analysis.

Furthermore, two other important points must be noted. First, because of the
high rotational speed of the system, the estimation of the stiffness coefficient must
be made utilizing a THD model, because heat is generated by viscous dissipation,
due to fluid shear. This must be taken into account, even for steady state operation,
which gives a good estimate for the stiffness coefficient. To do a THD analysis on
the thrust bearing, the inlet temperature of the oil must be known. This temperature
was estimated utilizing a THD model to obtain the outlet temperature of the oil
leaving the journal bearings of the turbocharger. Once the stiffness coefficient is
obtained, the damping coefficient can be estimated.

The second important point here is that the damping coefficient is estimated by
an optimization problem, requiring that the dynamic response of the system must be
close enough to experimental measured results. These estimated coefficients are
nearly constant for the rotational speed of the system, since minor variations on the
rotational speed provokes little variation on these coefficients. The order of mag-
nitude of these variations are much smaller than the order of magnitude of these
parameters, so the estimates are good enough to simulate dynamic response of
systems in steady state conditions, for constant rotational speeds.
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Analysis of the Dynamic Behavior
of a Cracked Rotating Shaft by Using
the Harmonic Balance Approach

Aldemir Ap Cavalini Jr. , Tobias Souza Morais ,
Nicolò Bachschmid and Valder Steffen Jr.

Abstract There are several SHM techniques proposed in the literature for crack
detection in rotating machines. Among them, the ones based on vibration mea-
surements are recognized as useful tools in the industrial context. Although widely
used, when applied under non-ideal conditions, such techniques can only detect
cracks that eventually have already spread significantly along the cross section of
the shaft. Therefore, currently, the researchers’ attention is turning to more
sophisticated methods capable of identifying incipient cracks, which represent a
type of damage that are hardly observable in classical vibration analysis. In a
previous contribution, a crack identification methodology based on a nonlinear
approach was proposed. The technique uses external applied diagnostic forces at
certain frequencies attaining combinational resonances, together with a
pseudo-random optimization code, known as Differential Evolution, in order to
characterize the signatures of the crack in the spectral responses of flexible rotor. In
the present paper, the favorable conditions to apply the proposed methodology are
investigated. The analysis procedure is confined to the operating parameters of the
system, being characterized by the rotation speed of the rotor and the amplitude and
frequency of the diagnostic forces. The harmonic balance approach is used to
determine the vibration responses of the cracked rotor system and the open crack
behavior is simulated according to the FLEX model. For illustration purposes, a
rotor composed by a horizontal flexible shaft, two rigid discs, and two self-aligning
ball bearings is used to compose a FE model of the system.
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1 Introduction

Shaft crack detection is an important issue in rotor dynamics and machines that are
suspect of having a crack must be treated with the upmost concern [1]. The
importance attributed to this problem is addressed to the serious consequences
when cracks are not early identified in rotating systems. Thus, manufacturers have
adopted design concepts, as well as special procedures for start-up, operation,
monitoring, and maintenance, in order to minimize the appearance and growth of
cracks in different rotors, such as steam turbines, centrifugal compressors, and
generator units found in power plants. Various structural health monitoring
(SHM) techniques devoted to crack detection in rotating machines have been
proposed in the last decade. Therefore, the methodologies that use harmonic
excitations as diagnostic forces has attracted the attention of several researchers and
two interesting results are here recalled.

Mani et al. [2] presented a theoretical analysis considering a simple rotor model
with 2 degrees of freedom containing a breathing crack. The method of multiple
scales was used to solve the equations of motion of the system, in which the
stiffness of the shaft was affected by the nonlinearity (i.e., the breathing crack). The
so-called combination vibrations were defined in the context of rotating cracked
shafts. It was shown that the vibration amplitudes associated with the combination
vibrations are directly proportional to the time dependent stiffness; in other words,
to the crack depth. Ishida and Inoue [3] made accurate numerical and analytical
analyzes on a cracked Jeffcott rotor. The stiffness of the cracked shaft has been
modeled by using two different approaches, namely, (i) a piecewise linear stiffness,
and (ii) by using power series. The effects of the excitation intensity (diagnostic
forces) on the forward and backward whirl vibration responses of the rotor system
at the combination frequencies were evaluated according to the crack severity. An
experimental validation of the proposed method was presented, in which the
combination vibrations were demonstrated on the vibration responses of the con-
sidered rotating machine.

More recently, Cavalini Jr. et al. [4] have analyzed the possibility of identifying
the severity of transverse cracks (i.e., position and depth) in rotating shafts by using
the so-called diagnostic forces and the combination vibrations. The frequencies of
the diagnostic forces were determined by using the method of multiple scales. This
model based approach (i.e., considering the finite element model of the system—FE
model) was applied in a rotor test rig composed by a horizontal shaft, two rigid
discs, two self-alignment ball bearings, and one electromagnetic actuator used to
apply the harmonic excitations. The horizontal vibration responses of the rotating
machine were measured by using displacement sensors located near to the discs.
The dynamic behavior of the system was investigated considering the breathing and
open crack models. The crack models were formulated from the Mayes model
(breathing crack) allied to the linear fracture mechanics approach (breathing and
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open cracks). Vibration responses in the time domain have been determined for
different crack positions and depths. In a given test case, the proposed methodology
was able to identify, with good accuracy, the severity of the crack by using the
Differential Evolution optimization method [5]. In that contribution, constant
rotation speed and various diagnostic excitations at frequencies suitable for exciting
two combination vibrations were considered.

The purpose of applying the diagnostic forces in a cracked shaft at frequencies Ω
d different from the rotation speed Ω is to exciting combination vibrations. The
natural frequency (Ωn; i.e., forward and backward natural frequencies of the shaft
operating at Ω) and rotation speed of the rotor are used to determine the conditions
in which the combination vibrations appear, which results in the frequencies of the
diagnostic forces (i.e., Ωd = 2Ω − Ωn, Ωd = −2Ω + Ωn, Ωd = 4Ω − Ωn, Ω
d = −4Ω + Ωn, etc.—in the case of open crack). Significant vibration amplitudes
can be observed at these frequencies, allowing to distinguish the resonance peak
from other vibration components and noise. The natural frequencies of the shaft
must be known, so that the frequencies of the diagnostic forces can be selected in
advance. However, the problem consists in determining the amplitude and fre-
quency of the diagnostic forces to generate measurable peaks on the vibration
spectrum at the combination vibrations. This is an important issue, mainly when the
proposed technique is applied in industrial machinery due to the limitations
regarding the applicable force amplitude and position.

Therefore, the vibration response of the system at the combination vibrations
depends on the damping, the location of the crack in the shaft, the locations where
the diagnostic forces are applied, and the amplitude of the diagnostic forces. In this
paper, the dynamic behavior of a cracked rotating shaft is analyzed to determine the
most favorable conditions to apply the mentioned SHM technique by using the
harmonic balance approach. This quasi-linear methodology is able to determine the
vibration amplitudes at the combination vibrations generated by the presence of the
crack when the external diagnostic forces are applied in the rotor system. Addi-
tionally, the obtained results are compared to the ones determined from the
trapezoidal rule integration scheme, which was coupled with the Newton-Raphson
iterative method for nonlinear analysis [6].

It is worth mentioning that cracks may be always open or they can breathe
depending on the rotating machine and operating conditions. Shafts affected by
open cracks behave according to linear systems with parametric excitation. Dif-
ferently, shafts with breathing cracks becomes really non-linear when dominated by
vibrations. It may occur in vertical shafts or in horizontal light and weakly damped
shafts. However, shafts with breathing cracks may also be considered linear sys-
tems when the dynamic behavior is weight dominated, as occurs in horizontal
rotating heavy shafts. In this contribution, the study is restricted to linear systems
with parametric excitation. Thus, the so-called FLEX model for open cracks is used
[7].
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2 Rotor Test Rig

Figure 1a shows the rotor test rig used to represent the analyzed rotor system,
leading to the numerical simulations shown in this work. Thus, a model with 33
finite elements (Timoshenko’s beam elements with 4 degrees of freedom per node;
Fig. 1b) was used to mathematically characterize the system. It is composed of a
flexible steel shaft with 860 mm length and 17 mm diameter (E = 205 GPa,
ρ = 7850 kg/m3, υ = 0.29), two rigid discs D1 (node #13; 2.637 kg; according to
the FE model) and D2 (node #23; 2.649 kg), both of steel and with 150 mm
diameter and 20 mm thickness (ρ = 7850 kg/m3), and two roller bearings (B1 and
B2, located at nodes #4 and #31, respectively). Displacement sensors are

(a)

(b)

X
Y

Z

Y

Z

Crack

Fd

S8 S28

Fig. 1 Rotor test rig used in the numerical simulations of the SHM technique: a Test rig; b FE
model
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orthogonally mounted at nodes #8 (S8X and S8Z) and #28 (S28X and S28Z) to measure
the shaft vibration. The system is driven by an electric DC motor.

Equation (1) governs the dynamic behavior of the cracked flexible rotor sup-
ported by roller bearings [8].

Mq̈+ D+ΩDg
� �

q̇+KðΩtÞq=W+Fu +Fd ð1Þ

where M is the mass matrix, D is the damping matrix, Dg is the gyroscopic matrix,
and K(Ωt) is the periodic stiffness matrix with variable values due to the crack (i.e.,
Ωt is the angular position of the shaft). W stands for the weight of the rotating parts,
Fu represents the rotating unbalance forces, and Fdiag represents the diagnostic force
applied in the rotor (force fixed in space), and q is the generalized displacement
vector.

A model updating procedure was used in order to obtain a representative FE
model, considering the rotor system in a pristine condition (Fig. 1). In this sense, a
heuristic optimization technique (Differential Evolution) was used to determine the
unknown parameters of the model, namely the stiffness and damping coefficients of
the bearings, the proportional damping added to D (coefficients γ and β; Dp = γ M
+ β K), and the angular stiffness kROT due to the coupling between the electric
motor and the shaft (added around the orthogonal directions X and Z of the node
#1).

The proposed identification process (i.e., the comparison between simulated and
experimental frequency response functions, FRF) was performed 10 times, con-
sidering 100 individuals in the initial population of the optimizer. However, in this
case only the regions close to the peaks associated with the natural frequencies were
taken into account. Table 1 summarizes the parameters determined at the end of the
minimization process associated with the smaller fitness value (i.e. objective
function value). Figure 2 presents the Campbell diagram of the rotating machine, in
which the first two forward critical speeds were determined at, approximately, 1714
rev/min and 5912 rev/min. More details about the model updating procedure
adopted in this work can be found in Cavalini Jr. et al. [4].

Table 1 Parameters determined by the model updating procedure

Parameters Values Parameters Values Parameters Values

kX/B1 8.551 × 105 kX/B2 5.202 × 107 γ 2.730
kZ/B1 1.198 × 106 kZ/B2 7.023 × 108 β 4.85 × 10−6

dX/B1 7.452 dX/B2 25.587 kROT 770.442
dZ/B1 33.679 dZ/B2 91.033
k stiffness (N/m)
d damping (Ns/m)
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3 Open Crack Model

Three models are the most currently used to represent the breathing behavior. The
models proposed by Gasch [9] and Mayes and Davies [10] are weight dominated.
In both, the mechanism for opening and closing the crack is described by simple
mathematical functions. The Gasch’s model considers the crack as opening and
closing abruptly, while the Mayes’ model allows a smooth transition between the
fully opened and fully closed crack. Finally, there is the more sophisticate model,
known as FLEX model, as proposed by Bachschmid et al. [7].

The FLEX model was originally formulated for breathing cracks, in which the
dynamic phenomena is characterized by the stress distribution on the crack
cross-section [σFLEX; see Eq.( 2)]. For a given angular position Ωt of the shaft, the
locations of the crack cross-section presenting tensile stresses are considered open.
Differently, compressive stresses represent crack closed regions.

σFLEX =
MZIXX +MXIXZ
IXXIZZ − I 2XZ

Xcr −
MXIZZ +MZIXZ
IXXIZZ − I 2XZ

Zcr ð2Þ

where IXX, IZZ, and IXZ, are the area inertia moments related to the geometric center
(GC) of the shaft cross-section with crack. Xcr and Zcr are the distances obtained
along the same cross section along the directions X and Z, respectively, from GC to
the position where tension is calculated. MX and MZ are the dynamic moments
around the X and Z directions, respectively. These moments are given by the
strength of materials theory and dependent of the external loads applied to the shaft.

The FLEX model results in a symmetrical 8 × 8 stiffness matrix named KFLEX

[see Eq. (3)], which is included in the FE model presented by Fig. 1b and Eq. (1) to
evaluate the dynamic behavior of the cracked rotor system.

Fig. 2 Campbell diagram of
the rotating machine
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KFLEX =

bF pF − qF − dF − bF − pF − qF − dF
aF cF qF − pF − aF cF qF

eF rF qF − cF fF sF
hF dF − qF sF gF

bF pF qF dF
aF − cF − qF

eF rF
SYM hF

2
66666666664

3
77777777775

ð3Þ

in which,

aF = 12EIZZ
L3FLEX 1+ ϑFZZð Þ

bF = 12EIXX
L3FLEX 1+ ϑFXXð Þ

cF = 6EIZZ
L2FLEX 1+ ϑFZZð Þ

dF = 6EIXX
L2FLEX 1+ ϑFXXð Þ

eF =
EIZZ 4+ ϑFZZð Þ
LFLEX 1+ ϑFZZð Þ

fF =
EIZZ 2− ϑFZZð Þ
LFLEX 1+ ϑFZZð Þ

gF =
EIXX 2− ϑFXXð Þ
LFLEX 1+ ϑFXXð Þ

hF =
EIXX 4+ ϑFXXð Þ
LFLEX 1+ ϑFXXð Þ

pF = 12EIXZ
L3FLEX 1+ ϑFXZð Þ

ð4aÞ

qF = 6EIXZ
L2FLEX 1+ ϑFXZð Þ

rF =
EIXZ 4+ ϑFXZð Þ
LFLEX 1+ ϑFXZð Þ

sF =
EIXZ 2− ϑFXZð Þ
LFLEX 1+ ϑFXZð Þ

ϑFXX = 12EIXX
GSL2FLEX

ϑFZZ = 12EIZZ
GSL2FLEX

ϑFXZ = 12EIXZ
GSL2FLEX

ð4bÞ

with G being the shear modulus, S is the cross-section area of the shaft, and LFLEX is
the length of the element as a function of the crack depth [7].

For the breathing crack model, the stiffness matrix KFLEX is updated according to
the applied external loads for each angular position of the shaft. The iterative
process is based on the identification of the remaining cracked area cross section,
which is given by the stress distribution σFLEX determined by Eq. (2). Thus, the area
moments of inertia presented in Eq. (4a) and (4b) are determined allowing the
stiffness matrix calculation of the cracked element. In the open crack model, the
stiffness matrix KFLEX is only dependent of the angular position Ωt and the area
moments of inertia can be written as follows:

IXXðΩtÞ= Ixx + Izz
2

+
Ixx − Izz

2
cosð2ΩtÞ

IZZðΩtÞ= Ixx + Izz
2

−
Ixx − Izz

2
cosð2ΩtÞ

IXZðΩtÞ= −
Ixx − Izz

2
sinð2ΩtÞ

ð5Þ

where Ixx and Izz are the area moments of inertia of the shaft cross-section with
crack about rotating x- and z-axes as defined by Al-Shudeifat [11].

As mentioned, the open crack behavior is a function of the shaft angular position
Ωt only. Therefore, the periodic stiffness matrix of the shaft K(Ωt) [see Eq.( 1)] can
be written according to Eq. (6).
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KðΩtÞ=Km + ∑
3

j=1

1
2

ΔKjei jΩt +ΔK*
j e

− i jΩt
� �

ð6Þ

where Km is the mean stiffness matrix of the shaft with the crack and ΔKj (j = 1, 2,
and 3) are the stiffness variation related to the 1X, 2X, and 3X vibration compo-
nents of the rotor speed. ΔK*

j is the complex conjugate of ΔKj. The Fourier
expansion of the periodic stiffness is truncated at the third harmonic component.
Figure 3 shows the behavior of the stiffness terms described in Eq. (6) considering
a 50% depth open crack located at the element #18 of the FE model (see Fig. 1b).
Note that the open crack behavior is represented only by the mean stiffness matrix
and the component ΔK2, which is in accordance with the area inertia moments of
Eq. (5).

4 Harmonic Balance Approach

As a result of the described open crack model, the equation of motion that governs
the dynamic behavior of the flexible rotor can be rewritten as follows:

Mq̈+ D+ΩDg
� �

q̇+Kmq=W+Fu +Fd −
1
2

ΔK2ei 2Ωt +ΔK*
2e

− i 2Ωt� �
q ð7Þ

in which, the vector of degrees of freedom q can be expressed as a Fourier series, as
shows Eq. (8).

Fig. 3 Campbell diagram of the rotating machine. Stiffness behavior in fixed coordinates (── K
(Ωt); - - - Km; -- -- ΔK1; -- - -- ΔK2; -- -- ΔK3): a stiffness coefficient bF; b stiffness coefficient
aF [see Eq. (3)]
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q=qst +
1
2

qde
iΩdt + q*de

− iΩdt
� �

+
1
2

q1e
iΩt + q*1e

− iΩt� � ð8Þ

where qst is the static displacement, qj (j = d and 1) are the dynamic displacements
related to the diagnostic force and 1X vibration components of the rotor speed due
to the unbalance (q*j is the complex conjugate of qj).

Equation (8) is included in Eq. (7), resulting in new vibration components [i.e.,
from the last RHS term in Eq. (7)]. Therefore, the vector of degrees of freedom
must be updated as presents Eq. (9).

The two last terms of Eq. (9) are the so-called combination vibrations. The
resonant condition is induced in the cracked rotating shaft when one of the com-
bination frequencies equals one of the critical speeds (i.e., Ωc = 2Ω + Ωd and
Ωc = 2Ω − Ωd). The substitution process continues including Eq. (9) in Eq. (7).
Different vibration components and combination vibrations are determined.

q=qst +
1
2

qde
iΩd t + q*de

− iΩd t
� �

+
1
2

q1e
iΩt +q*1e

− iΩt� �
+

1
2

q2e
i 2Ωt +q*2e

− i 2Ωt� �

+
1
2

q3e
i 3Ωt +q*3e

− i 3Ωt� �
+

1
2

q2Ω+Ωd
ei ð2Ω+ΩdÞt + q*ð2Ω+ΩdÞe

− ið2Ω+ΩdÞt
� �

+
1
2

q2Ω−Ωd
ei ð2Ω−ΩdÞt +q*ð2Ω−ΩdÞe

− i ð2Ω−ΩdÞt
� �

ð9Þ

Equation (10) presents the amplitudes of the equivalent forces Fj associated with
the vibration components 0, Ωd, Ω, 2Ω, 3Ω, and 4Ω, and the combination vibrations
2Ω + Ωd, 2Ω − Ωd, 4Ω + Ωd, 4Ω − Ωd, 6Ω + Ωd, and 6Ω − Ωd (j = st, Ωd, 1, 2,
…, 6Ω + Ωd, and 6Ω − Ωd). The forces were obtained from subsequent substi-
tutions of the vector of degrees of freedom in the last RHS term of Eq. (7). Note that
the forces at Ω and 3Ω (F1 and F3, respectively) are obtained from q1, q3, q*1 q1

*, and
q5; i.e., odd vibration components. Differently, Fst, F2, and F4 are proportional to
even vibration components and qst. Additionally, the equivalent forces at the
combinations resonances depend on the frequency of the diagnostic force Ωd and
the even vibration components 2Ω, 4Ω, 6Ω, and 8Ω. Similar behavior is observed
considering the amplitudes at −Ωd, −Ω, −2Ω, −3Ω, −4Ω, −(2Ω + Ωd), −(2Ω −
Ωd), −(4Ω + Ωd), −(4Ω − Ωd), −(6Ω + Ωd), and −(6Ω − Ωd). Therefore, the odd
vibration components, as well as the unbalance excitation [Fu in Eq. (7)], can be
disregarded in the analysis of combination vibrations induced in rotating shafts
affected by open cracks.

Analysis of the Dynamic Behavior of a Cracked Rotating Shaft … 39



Fst = 1
4ΔK2q*2 +

1
4ΔK

*
2q2

Fd = 1
4ΔK2q*2Ω−Ωd

+ 1
4ΔK

*
2q2Ω+Ωd

� �
eiΩdt

F1 = 1
4ΔK2q*1 +

1
4ΔK

*
2q3

� �
eiΩt

F2 = 1
2ΔK2qst + 1

4ΔK
*
2q4

� �
ei 2Ωt

F3 = 1
4ΔK2q1 + 1

4ΔK
*
2q5

� �
ei 3Ωt

F4 = 1
4ΔK2q2 + 1

4ΔK
*
2q6

� �
ei 4Ωt

F2Ω+Ωd =
1
4ΔK2qd + 1

4ΔK
*
2q4Ω+Ωd

� �
ei ð2Ω+ΩdÞt

F2Ω−Ωd =
1
4ΔK2q*d +

1
4ΔK

*
2q4Ω−Ωd

� �
ei ð2Ω−ΩdÞt

F4Ω+Ωd =
1
4ΔK2q2Ω+Ωd

+ 1
4ΔK

*
2q6Ω+Ωd

� �
ei ð4Ω+ΩdÞt

F4Ω−Ωd =
1
4ΔK2q2Ω−Ωd

+ 1
4ΔK

*
2q6Ω−Ωd

� �
ei ð4Ω−ΩdÞt

F6Ω+Ωd =
1
4ΔK2q4Ω+Ωd

+ 1
4ΔK

*
2q8Ω+Ωd

� �
ei ð6Ω+ΩdÞt

F6Ω−Ωd =
1
4ΔK2q4Ω−Ωd

+ 1
4ΔK

*
2q8Ω−Ωd

� �
ei ð6Ω−ΩdÞt

ð10Þ

Figure 4 presents the vibration responses of the cracked rotating shaft (see
Fig. 1b; 50% depth crack located at the element #18) determined by using the
trapezoidal rule integration scheme. In this case, two unbalance forces are applied
separately to the disc D1. The diagnostic force was applied along the X direction at
the node #4 of the FE model (Ωd = 2Ω − Ωn = 40 – 28.5 = 11.5 Hz; amplitude of
25 N). Note that only the vibration amplitudes at Ω and 3Ω changed according to
the unbalance levels, as previously announced.

The equation of motion [see Eq.( 7)] can be rewritten in a matrix form,
according to the considered vibration components and combination vibrations.
Equation (11) presents the problem formulated to determine the vibration responses
of the cracked rotating shaft, in which Hj (j = d, 2Ω, 4Ω, 6Ω, …, 2Ω + Ωd, 2Ω −
Ωd, 4Ω + Ωd, 4Ω − Ωd, etc.) is given by Eq. (12) (H*

j is the complex conjugate of
Hj).

Ωd

Ω 2Ω
3Ω

4Ω

Ωn

2Ω
 +

 Ω
d

4 Ω
 - 
Ω

d

Ωd
Ω 2Ω

3Ω

4Ω

Ωn

2Ω
 +

 Ω
d

4Ω
 - 
Ω

d

(a) (b)

Fig. 4 Vibration responses of the rotating shaft operating at 1200 rev/min (O 100 g.mm/0o; ──
300 g.mm/0o): a S28X; b S28Z
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Km 0 0 1
4ΔK

*
2

1
4ΔK2 ⋯ 0 0 ⋯

0 Hd 0 0 0 ⋯ 1
4ΔK

*
2 0 ⋯

0 0 H*
d 0 0 ⋯ 0 1

4ΔK2 ⋯
1
2ΔK2 0 0 H2 0 ⋯ 0 0 ⋯
1
2ΔK

*
2 0 0 0 H*

2 ⋯ 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋯
0 1

4ΔK2 0 0 0 ⋯ H2Ω+Ωd 0 ⋯
0 0 1

4ΔK
*
2 0 0 ⋯ 0 H*

2Ω+Ωd
⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

2
66666666666664

3
77777777777775

qst
qd
q*d
q2
q*2
⋮

q2Ω+Ωd

q*2Ω+Ωd

⋮

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

=

W
1
2F1d
1
2F1d

0
0
⋮
0
0
⋮

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
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The diagnostic force Fd is also expressed as a Fourier series. Thus,

Fd =F1d cos Ωdtð Þ= 1
2
F1d eiΩdt + e− iΩd t

� � ð13Þ

where F1d is the amplitude of the diagnostic force.

5 Numerical Results

Figure 5 compares the vibration responses of the rotating machine (measuring plane
S28) determined by using the harmonic balance approach and the trapezoidal rule
integration scheme.

This analysis was performed for the rotor under two different structural condi-
tions. The first one comprises the shaft with a crack located at the element #18 with
25% depth. The second test was performed for the shaft with a crack located at the
same element with 50% depth. The operational rotation speed of the rotor Ω was
fixed to 1200 rev/min and the unbalance forces were disregarded in these results.
The diagnostic force was applied along the X direction in the node #4 of the FE
model (Ωd = 2Ω − Ωn = (40 – 28.5) Hz = 11.5 Hz = 690 rev/min, and amplitude
of 25 N). Note that the obtained vibration responses are very close, thus validating
the formulation based on the harmonic balance approach. The responses determined
along the plane S8 are similar to the previous ones. It is worth mentioning that
vector of degrees of freedom used in this work encompasses the following vibration
components: qst, qΩd, q2Ω, q4Ω, …, q10Ω, q2Ω + Ωd, q2Ω − Ωd, q4Ω + Ωd, q4Ω − Ωd,
…, q10Ω + Ωd, q10Ω − Ωd [see Eq. (11)].

Figures 4 and 5 showed that the amplitudes at the combination vibrations are too
small (<1.0 μm), affecting the applicability of the considered dynamic phenomenon
in crack detection or identification techniques [4, 12]. As mentioned, the problem
consists in determining the amplitude and frequency of the diagnostic forces to
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generate measurable peaks along the vibration spectrum at the combination
vibrations.

Figure 6 presents the vibration responses of the rotor obtained by the sensor S28Z
at the frequencies 2Ω + Ωd, 2Ω − Ωd, 4Ω + Ωd, 4Ω − Ωd, 6Ω + Ωd, and 6Ω − Ωd,
varying Ωd from 0 to 85 Hz in steps of 0.1 Hz. The diagnostic forces were applied
along the X direction in the node #4 of the FE model with 25 N, 50 N, and 100 N
of amplitude, separately. These tests were performed for the shaft with a crack
located at the element #18 with 50% depth. The operational rotation speed of the
rotor Ω was fixed to 1200 rev/min. No unbalance forces are being considered. Note
that measurable peaks (>1.0 μm) are obtained only at the combinations 2Ω + Ωd

and 2Ω − Ωd (Fig. 6a and Fig. 6b, respectively). Small vibration amplitudes were
obtained for the higher combination frequencies (i.e., 8Ω + Ωd, 8Ω − Ωd,
10Ω + Ωd, 10Ω − Ωd, etc.). Similar results were observed for the remaining
sensors.

Figure 6a shows highest vibration amplitudes at 27.5 and 57.6 Hz. In Fig. 6b,
significant vibration responses are observed at 13.0, 27.0, and 67.5 Hz. It is worth
mentioning that the first five natural frequencies of the cracked rotor operating at
1200 rev/min are given by (frequencies in Hz): 26.46 ≤ Ω1n ≤ 26.71,
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Fig. 5 Vibration responses of the cracked rotating shaft (── time integration; O harmonic
balance): a 25% crack depth/S28X; b 25% crack depth/S28Z; c 50% crack depth/S28x; d 50% crack
depth/S28Z
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27.85 ≤ Ω2n ≤ 28.14, 91.03 ≤ Ω3n ≤ 91.34, 97.43 ≤ Ω4n ≤ 97.62, and
123.76 ≤ Ω5n ≤ 123.84 (variation according to the angular position of the shaft).
A resonance condition is obtained for Ωd = 27.5 Hz (frequency close to Ω1n and
Ω2n), as well as for Ωd = 27.0 Hz. Differently, combination vibrations are observed
at Ωd = 57.6 Hz ∼ 2Ω + Ω2n, Ωd = 13.0 Hz ∼ 2Ω − Ω1n, and Ωd = 67.5 Hz ∼
2Ω + Ω2n. Figure 7 presents the vibration responses of the rotor obtained by the
sensor S28X. The highest vibration amplitudes are obtained at 27.5, 51.2, 83.7 Hz

Fig. 6 Vibration responses obtained by the sensor S28Z at the combination vibrations according to
Ωd (── F1d = 25 N; - - - F1d = 50 N; -- - -- F1d = 100 N): aa2Ω + Ωd; b 2Ω − Ωd; c 4Ω + Ωd;
d 4Ω − Ωd; e 6Ω + Ωd; f 6Ω − Ωd
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(see Fig. 7a), 13.0, 27.0, and 67.6 Hz (see Fig. 7b). Note that along the X direction,
new combination vibrations are observed at Ωd = 51.2 Hz ∼ Ω3n − 2Ω and
Ωd = 83.7 Hz ∼ Ω5n − 4Ω.

6 Conclusions

The presented results validate a promising methodology of fault detection, based on
the application of a diagnostic force to detect cracks in rotating machines, coupled
with a quasi-linear harmonic balancing methodology. This approach exhibits
considerable computational time saving as compared with a pure integration in
time; besides, it promotes better understanding about the components of the forces
acting on the rotating system. Considering the case of a shaft with an open crack, it
was demonstrated that the observed effect on the combination vibrations is just due
to the even vibration components. Consequently, in the present case, the odd
vibration components, as well as the unbalance influence have been neglected in the
analysis. When it was produced a sweep of the diagnostic force frequency, it was
observed the combinations 2Ω + Ωd and 2Ω − Ωd produced the highest measurable
peaks exciting the critical speeds below 85 Hz. Finally, the evaluation of the
diagnostic force level showed important contribution on the combination vibration
emerging. Although, when applied to structure under operating conditions, the
amplitude of the diagnostic forces must be regulated to keep the system functioning
safely on an acceptable vibration level. The potential of the conveyed techniques
will be explored in future research work using combination vibrations.
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Tunable Auxiliary Mass Damper
with Friction Joint: Numerical
Assessment

Humberto Tronconi Coelho , Francisco Paulo Lépore Neto
and Marcelo Braga dos Santos

Abstract Auxiliary Mass Dampers (AMD) are often used to reduce excessive
vibration amplitude in mechanical systems. It is also known that their performances
are susceptible to changes in the frequency or in the nature of the excitation force.
Therefore, to improve the robustness of the AMD it is necessary to design new
systems which are adaptable to the excitation, i.e., tunable devices that could be
used over large frequency range. In this work a friction damper, which is the
association of an elastic element and a scratcher, is used to tune the AMD by
changing the normal force in the scratcher at the same time that it dissipates the
mechanical energy of the principal mass. This AMD is named Tunable Auxiliary
Mass Damper (TAMD). Three normal force control strategies, and two combina-
tions of them, are studied: (i) The normal force is assumed constant; (ii) The normal
force is obtained from the solution of the equation of motion assuming null dis-
placement for the principal mass; (iii) The normal force is obtained based on the
vibratory system’s movement, warranting that the direction of the friction force
promotes the movement of the principal mass toward its static equilibrium position.
The effectiveness of the proposed TAMD is numerically evaluated based on mass
and frequency ratios variations for each strategy. Therefore, a multi-degree-
of-freedom (MDOF) system analysis is made in order to verify the TAMD’s
robustness and efficiency.
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1 Introduction

Auxiliary masses are frequently attached to vibrating systems by means of elastic
elements and damping devices aiming to reduce the excessive vibration amplitude.
Depending on the application, these auxiliary mass systems fall into one of two
distinct classes. A Dynamic Vibration Absorber (DVA) that is an auxiliary mass on
a compliant suspension, which has a damping factor as lower as possible, and once
it is tuned to the frequency of the excitation force a system’s antiresonance is
introduced, reducing the primary system’s vibration amplitudes. If it is necessary to
provide damping, an auxiliary mass with viscous damping is attached to the
structure, so that, the auxiliary mass system works as a particular type of damper. It
is called Damped Absorber or Auxiliary Mass Damper (AMD) being an extension
of the DVA concept [1].

AMD enables to reduce vibration amplitudes without energy consumption,
within a narrow frequency band for which the AMD has been tuned. Unfortunately,
when changes in the excitation’s nature or in the system’s parameters occur, its
performance drops drastically. To improve the AMD’s performance in the vibration
attenuation some researchers use an active device on its suspension. These devices
are active springs, made with memory shape alloys, piezo stacks and other actuators
able to tune the AMD in the desired frequency [2]. Other solutions are the
semi-active systems, which use friction dampers [3, 4] or magnetorheological
dampers [5] to tune the frequency of the AMD system and simultaneously dissipate
the mechanical energy.

Such a device has its physical parameters, as consequence also its impedance,
adjustable. Associated to a suitable control law it is possible to adapt the system to a
variety of excitations reducing the vibration amplitude. In this way, this system
becomes a Tunable Auxiliary Mass Damper (TAMD).

In this work, a semi-active mechanism called semi-active friction damper, which
is an association in series of a friction joint and an elastic element, is used in the
TAMD’s suspension. This semi-active mechanism has been deeply studied by
Santos et al. [6] due its capacity to dissipate the mechanical energy of a vibratory
system in the friction joint.

This approach is interesting since the energy necessary to tune the TAMD is
much less than the energy necessary to achieve the same attenuation using active
actuators, once for the active systems the energy is expended to work against the
excitation force.

This work aims to evaluate the proposed TAMD’s adaptability that is obtained
by controlling the normal force of a smart friction damper. The numerical study
demonstrates the effectiveness of the developed strategies and indicates the mass
and frequency ratios to be used. These chosen ratios are used in a
multi-degree-of-freedom (MDOF) system analysis in order to verify the TAMD’s
robustness and its vibration attenuation capacities.
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2 Theoretical Approach

The TAMD has been initially applied to a one-degree-of-freedom (DOF) vibratory
system as shown on Coelho et al. [7] and Guerineau et al. [8], the schema of the
studied system is shown in Fig. 1a. It is a two-DOF system that can be modeled as a
one-DOF linear vibratory system (m1, in black) with an AMD coupled to it using a
semi-active friction damper in its suspension (ma, in red).

The adaptability is achieved using a semi-active friction damper (Fig. 1b). This
damper is an association in series of an elastic element and a scratcher which will
tune the TAMD. This system enables to dissipate the mechanical energy of the
principal mass at same time that, by changing the normal force on the scratcher, the
apparent damping coefficient and stiffness of the TAMD’s suspension are modu-
lated [6]. The force between nodes (1) and (3), indicated in Fig. 1b, is F13 and can
be written as presented in Eq. (1) [9].

Ff =F13 =
kT x3 − x1ð Þ if kT x3 − x1ð Þj j≤ μN
μN otherwise

�
ð1Þ

Points (1) and (3) from friction damper, as shown in Fig. 1b, are attached to
mass m1 and ma of the vibratory system, respectively. The TAMD’s suspension is
composed by the stiffness ka and the damping ca, as linear elements, and the
nonlinear component characterized by the tangential stiffness kT and the scratcher
which has its force as defined in Eq. (1). The suspension between m1 and the
inertial frame is composed by the stiffness k1 and the damping c1. The equation of
motion for the entire system becomes:

m1 0
0 ma

� �
x ̈1
x ̈a

� �
+

c1 + ca − ca
− ca ca

� �
x ̇1
x ̇a

� �
+

k1 + ka − ka
− ka ka

� �
x1
xa

� �
=

1
− 1

� �
Ff +

1
0

� �
Fexc ð2Þ
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kT

c1
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μ
N

ma

ka ca

xa

x1

Fexc

kT

μ

N

1
3

2
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Fig. 1 a Schema of the studied system and b semi-active friction damper model
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The equation of motion has been integrated using the methodology proposed by
Lu et al. [3] which uses the state space formulation for the linear system and dispose
the nonlinear force from friction damper as part of the excitation forces.

Knowing that mass ma ̸m1ð Þ and frequency ωa ̸ω1ð Þ ratios affect DVA’s and
AMD’s behavior, the numerical assessment aimed to determine the best ones to be
used for the future experimental workbench, under design. As mentioned before
TAMD works associated normal force control law. Five control laws are used in an
attempt to minimize the vibration amplitude of the principal mass by directing the
energy to the TAMD and use the relative displacement promoted in the friction
damper to dissipate the mechanical energy. All control laws aim to produce an
efficient energy sink.

There are three main normal force control strategies, and two combinations of
them: (i) The normal force is assumed constant [S1]; (ii) The normal force is
obtained, from Eq. (3), which is the solution of the equation of motion assuming
null displacement for the principal mass, i.e. x1 = 0 [S2]; (iii) When Ff induces a
movement of m1 towards its static equilibrium position the normal force is stem-
ming from Eq. (4), otherwise it is null [S3]. The strategy [S4] uses the same logic
described for [S3], but now the normal force is calculated using Eq. (3). And [S5]
also uses the logic developed for [S3], however, as for [S1], it uses a constant value
for the normal force N1.

N1 =
maxä + caxȧ + kaxaj j

μ
ð3Þ

N1 =
kT xa − x1ð Þ

μ
ð4Þ

Table 1 summarizes the control strategies operation.
To compare all control methodologies, it is necessary to establish a criterion that

enables to show the reduction of the resonance amplitude peak simultaneously to
the reduction of the amplitude of the receptance over the entire interested frequency

Table 1 Control strategies operation

Control
strategy

Condition Normal force

S1 Applied all the time N =N1 a constant valueð Þ
S2 N =N1 from Eq. (3)
S3 Conditional applicability (applied when Ff

induces a movement of m1 towards its static
equilibrium position)

N =
N1 from Eq. 4ð Þ
0

�

S4
N =

N1 from Eq. 3ð Þ
0

�

S5
N =

N1 a constant valueð Þ
0

�
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band. It is clear from the literature that DVA split the original resonant peak in two
new resonant peaks, which, can be disastrous to the vibratory system if the exci-
tation force contains harmonics with these new resonant frequencies. Normally, two
parameters are used simultaneously to describe the performance of the control
systems: Maximum Value L∞ normð Þ and the L2 norm. The former indicates the
maximum amplitude expected for the system response and the second the overall
mean value of the response. A similar statement has been used in the control
technique H∞ ̸H2 [10]. Therefore, in this work the performance parameter Pp

� �
is

defined as the ratio L∞ normð Þ ̸ L2 normð Þ where the best control law performance
will provide the lowest values for both norms. In this work the performance
parameter Pp

� �
is defined as:

Pp =
maximum receptance amplitude
receptance amplitude norm

ð5Þ

Assuming a column vector A= ε ε ε⋯A1⋯ε ε ε½ �1×N , where ε is a real constant
closest to zero and A1 a real positive constant, which represents the receptance with
one peak only on the frequency spectrum A=A1δ f1ð Þ, where δ f1ð Þ is the Dirac
function on the frequency f1, the parameter Pp can be written as:

Pp = lim
ε→ 0

Pp = lim
ε→ 0

A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − 1ð Þε2 +A2

1

p =
A1

A1
= 1 ð6Þ

The other extreme is a constant amplitude receptance, which are represented by
the column vector A= ε ε ε⋯ε ε ε½ �1×N for which the parameter Pp is written as:

Pp = lim
ε→ 0

Pp = lim
ε→ 0

εffiffiffiffiffiffiffiffi
Nε2

p =
1ffiffiffiffi
N

p ð7Þ

Equations (6) and (7) give the maximum and minimum values of the perfor-
mance parameter as defined in Eq. (5).

3 Numerical Results for a Single-Degree-of-Freedom
System

To obtain a reasonable comparison among the obtained results and those of the
literature, mass and frequency ratios are the same described by Harris and Piersol
[1]. The effectiveness of the proposed TAMD, where the adaptability is obtained by
controlling the normal force on the smart friction damper, is evaluated based on
mass and frequency ratios variations for each strategy. In this work, the mass ratios
studied are ma ̸m1 = 0.1, 0.2, 0.3, 0.4, 0.5½ � and for the frequency are
ωa ̸ω1 = 0.1, 0.5, 1½ �. These ratios with the five control strategies are compared to

Tunable Auxiliary Mass Damper with Friction Joint … 53



the correspondent optimum viscous damping AMD, to a well-tuned DVA and to
the 1 DOF uncontrolled vibration response.

The numerical results presented in this section have been obtained using the
following physical properties values, which represent the parameters from a
designed modification of the experimental workbench used on previously works
[7, 8], m1 = 4.14 kg, c1 = 3.93N s ̸m and k1 = 70.3 kN ̸m. The physical properties
for the secondary system ma, cað and kaÞ are deduced from the mass and frequency
ratios aforementioned. The contact parameters are the tangential stiffness
kT =1.16MN ̸m and the friction coefficient μ=0.33. The auxiliary damping ca
used in the simulations is fixed and equal to 1.0N s ̸m, a small damping to ensure
that most of the damping promoted by the TAMD becomes from the friction
damper. And the optimum viscous damping for the AMD is copt =18.1N s ̸m
obtained following Den Hartog’s procedure as Harris and Piersol [1].

All receptances have been obtained using a harmonic force excitation with an
amplitude of 10N. The excitation force frequency has been swept from 5Hz up to
100Hz, in steps of 0.1Hz. For strategies which use constant normal force value,
N1 = 20N has been applied. Again, these values come from previous tests, which
also had determined that the ratio N1 ̸Fexc =2 is the best to be used for constant
normal force [7, 8].

The responses for all combinations of control strategies, mass and frequency
ratios are placed in Fig. 2. There are 15 combinations for each strategy, only the
best of each is indicated as a filled circle. Additionally, for comparison reasons, the
performance parameter for 1 DOF uncontrolled vibration system, the vibratory
system coupled to AMD with optimum viscous damping and the system coupled to
a well-tuned DVA are also shown in Fig. 2 as a filled circle.

In Fig. 2 the color bar indicates the value of Pp and the arrows indicate the
location of the best result for each control strategy, also for the location of the DVA,

Fig. 2 Maximum amplitude and receptance norm chart
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optimum viscous damping AMD and the 1DOF uncontrolled vibration. The last
one refers to the system composed only by m1, k1 and c1.

It is possible to observe that the performance parameter is efficient in locate the
responses with the lowest norms and smaller maximum amplitudes, i.e., that are
located in the lower left corner in the figure. At the enlargement is noted that the
best responses from strategies S3 and S4 are better than the other approaches and
much better than the DVA and the 1 DOF uncontrolled vibration response. It is also
possible to see that the optimum viscous damping AMD is nowadays the most
efficient passive approach.

In Fig. 3 the responses for the best of each control strategy are presented and
compared with the best optimum viscous damping AMD result, the well-tuned
DVA and the 1 DOF uncontrolled vibration response.

The best receptances are for S3½ � and S4½ �, they present, at the same time, the
lowest peaks and the lowest norm. Based on these receptance results, it can be
concluded that the proposed semi-active suspension almost entirely suppressed the
resonance peaks. Should be also observed that the receptances for S3½ � and S4½ � had
almost their entirely values at the same levels or lower than the static response,
which is a great advantage for the proposed TAMD.

These results demonstrate that the TAMD can be effective in a wide frequency
range, since all strategies promote an improvement in the attenuation of the reso-
nant peaks as well as in the L2 norm value. They are also promoting a better
response than that obtained by optimal viscous damped AMD. Strategies [S1], [S2]
and [S5] also present good receptances, almost as good as the optimum damping
AMD, their highest values for Pp are due to the maximum amplitude of the
receptance, which are a little higher than [S3] and [S4] maximum amplitude. It
should be noticed that all strategies give better results than the well-tuned DVA.

Table 2 summarizes the mass and frequency ratio combinations on which the
lowest values for Pp for each strategy were obtained. This table also presents the

Fig. 3 Receptance results for the best of each strategy
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ratios used to tune the DVA, those that presented the best optimum viscous
damping AMD response and their respective performance parameter value. The 1
DOF uncontrolled vibration also had its receptance quantified by using the per-
formance parameter Pp.

As observed, strategies [S3] and [S4] presented excellent results, however with
mass ratio ma ̸m1 = 0.5, which is too much mass to be added. Strategies [S2] and
[S5] have their best performance for mass ratio ma ̸m1 = 0.1 and frequency ratio
ωa ̸ω1 = 1. So, for this ratio combination the Pp values for the optimum viscous
damping AMD, [S1], [S3] and [S4] were 0.15, 0.17, 0.11 and 0.12 respectively,
which are excellent values when compared to the mass reduction that was possible
to achieved. Note that strategies [S3] and [S4] performance parameter values
remain smaller than for [S2] and [S5] presented on Table 2.

Here it becomes clear that there is a compromise solution between the mass ratio
and the performance parameter. Changing the mass ratio for 10% and recalculating
again the receptances it is possible to verify that strategies [S3] and [S4] remain the
better ones, as shown in Fig. 4.

The symbol *ð Þ in the legend indicates the optimum viscous damping AMD
receptance previously obtained with a mass ratio ma ̸m1 = 0.5. Besides the good
aspect of the receptances, presented in the Fig. 4, they are little worse than those
presented in Fig. 3. Concerning the compromise solution between the mass ratio
and the performance of the proposed TAMD, the worsening of the receptances is
justified by the great reduction in the mass to be added in the system. Besides,
strategies [S3] and [S4] receptance remains better than optimum viscous damping
AMD in almost one order of magnitude attenuation for the receptance maximum
value on the chosen ratios.

The natural frequency of the TAMD is 20.73Hz, which is close to the resonant
frequency of the original vibratory system. The TAMD acts similarly to a
well-tuned DVA; however, introducing two new resonant peaks less significative
than as is expected in the application of DVAs. The discontinuity in the receptance
shows that the selected physical properties for the auxiliary system makes more
difficult for the TAMD to work against the resonance frequency and maintain lower
amplitude levels.

Table 2 Ratios combination
and Pp value for the bests of
each strategy

Control strategy Ratios combination Pp

ωa ̸ω1 ma ̸m1

1 DOF −ð Þ −ð Þ 0.57
DVA 1.0 0.1 0.36
AMD 0.5 0.5 0.09
Strategy S1 0.5 0.5 0.11
Strategy S2 1.0 0.1 0.15
Strategy S3 0.1 0.5 0.08
Strategy S4 0.1 0.5 0.08
Strategy S5 1.0 0.1 0.18
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To evaluate the robustness of the TAMD with the chosen mass and frequency
ratios, a numerical study with other types of excitation force for strategies [S3] and
[S4] were also performed. These are clearly better than strategies [S1], [S2] and
[S5]. Figure 5 presents the system’s time response of m1 displacement to a 10N
impact excitation applied at 0.5 s to the 2 DOF presented in Fig. 1a.

It can be noted that strategies [S3] and [S4] presents the lowest settling time
showing an excellent damping capability. They show better responses than

Fig. 4 Receptance results for ma ̸m1 = 0.1 and ωa ̸ω1 = 1. Optimum viscous damping AMD
response with a mass ratio ma ̸m1 = 0.5 (AMD*), optimum viscous damping AMD response
(AMD), TAMD response using strategy S3 (S3) and TAMD response using strategy S4 (S4)

Fig. 5 Time response to an impact excitation for ma ̸m1 = 0.1 and ωa ̸ω1 = 1. Uncontrolled
vibration response of without auxiliary mass (1 DOF), well-tuned DVA response (DVA), optimum
viscous damping AMD response (AMD), TAMD response using strategy S3 (S3) and TAMD
response using strategy S4 (S4)
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optimum viscous damping AMD, which in turn is better than the DVA’s response.
Figure 6 presents the time response to a random excitation varying up to 10N.

Normally it is too difficult to deal with random excitations due its nature,
especially for semi-active systems, which try to tune the vibratory system to the
excitation force, maximizing the performance of the TAMD. It can be noted that the
DVA presents a better response than 1 DOF system’s uncontrolled vibration, with
RMS amplitude of 45.1 μm and 162.2 μm, respectively. A good improvement is
obtained with optimal viscous damped AMD response with RMS amplitude of 27.2
μm and even better responses can be observed for the results obtained with [S3] and
[S4]. The RMS values for these responses are 19.8 μm and 21.2 μm, respectively
for S3½ � and S4½ �, which are less than half of the DVA’s RMS and eight times
smaller than the 1 DOF system’s uncontrolled vibration RMS.

The time response of each strategy and DVA for chirp excitation with its fre-
quency sweeping from 5Hz up to 100Hz, changing in a ratio of 19Hz ̸s, are
presented in Fig. 7. The 1 DOF response presents a maximum amplitude of
2.28mm near to 1.0 s, which is bigger than DVA’s response with 1.48mm around
1.5 s. The optimal viscous damped AMD maximum amplitude is 0.82mm. The
strategies [S3] and [S4] presents better results than AMD’s response with the lowest
amplitudes, in which the passage through resonance is almost imperceptible, with
maximum amplitudes of 0.37mm and 0.39mm, respectively. This last fact could be
useful for applications in rotating machines, permitting a smoother passage through
critical speeds.

Therefore, in this numerical study of the TAMD it was also verified that the
proposed control strategies’ efficiencies are independent of the excitation force
nature. It was also verified that strategies [S3] and [S4] present better results than

Fig. 6 Time response to a random excitation for ma ̸m1 = 0.1 and ωa ̸ω1 = 1. Uncontrolled
vibration response of without auxiliary mass (1 DOF), well-tuned DVA response (DVA), optimum
viscous damping AMD response (AMD), TAMD response using strategy S3 (S3) and TAMD
response using strategy S4 (S4)
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the optimal viscous damped AMD, which is nowadays some of the best design
alternatives for this vibration attenuation approach.

Since they make use of friction dampers, strategies [S3] and [S4] can be
employed in heavy and big structures applications, even under low velocities of
vibration, were viscous dampers are inefficient or unfeasible due to their size.

4 Numerical Results for a Multiple-Degree-of-Freedom
System

In their work Santos et al. [6] have used a semi-active friction damper between the
inertial frame and the first DOF of a three-DOF vibratory system. In this section, the
same vibratory system is used to analyze the system’s behavior when the proposed
TAMD is placed above the first DOF as presented in Fig. 8. It is a four-DOF system
that can be modeled as a three-DOF linear vibratory system (composed by m1,m2

and m3 in black) with the TAMD mað , in red) coupled to m1.
This assembly aims to dissipate the energy introduced by the work done by Fexc

on mass m1, preventing the DOFs to receive too much energy; therefore, reducing
the vibration amplitude levels. In this way, the equation of motion for the entire
four-DOF system becomes as Eq. (8).

Fig. 7 Time response to a chirp excitation for ma ̸m1 = 0.1 and ωa ̸ω1 = 1. Uncontrolled
vibration response of without auxiliary mass (1 DOF), well-tuned DVA response (DVA), optimum
viscous damping AMD response (AMD), TAMD response using strategy S3 (S3) and TAMD
response using strategy S4 (S4)
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The complementary physical properties values are presented in Table 3. The
physical properties for the auxiliary system mað and kaÞ are deduced from the
aforementioned mass and frequency ratios, i.e., ma =0.41 kg, ka =7.03 kN ̸m and
ca =1N s ̸m. The contact parameters remain the same, the tangential stiffness is
kT =1.16MN ̸m and the friction coefficient is μ=0.33.

Figure 9 show the receptances obtained as in previous section, however now
with excitation force frequency sweeping from 5Hz up to 50Hz, also in steps of
0.1Hz. For the multi degree of freedom case, only results obtained with the
strategies S3 and S4 are presented. Once again, these were the best strategies to
modulate the normal force in a TAMD.

As can be observed in Fig. 9, the use of the proposed TAMD and strategies
promote excellent results suppressing the second resonant peak of the MDOF
vibratory system. This happens due to the natural frequency of the TAMD, which is
20.73Hz, is close to one of the resonant frequencies of the original MDOF

k1

kT

c1

m1

μ
N
ma

ka ca
xa

x1

k2c2

m2 x2

k3c3

m3 x3

Fexc

Fig. 8 Schema of the studied
three-DOF vibratory system
with the TAMD

Table 3 Complementary
physical properties values of
the three-DOF system

Physical properties 1st DOF 2nd DOF 3rd DOF

Mass (kg) m1 = 4.14 m2 = 1.97 m3 = 0.93
Stiffness (kN/m) k1 = 70.3 k2 = 9.67 k3 = 24.44
Damping (N s/m) c1 = 3.93 c2 = 2.35 c3 = 0.99
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vibratory system. Acting similarly to a well-tuned DVA, however, without intro-
ducing two new resonant peaks as is expected in the application of DVAs. Over
again the discontinuity in the receptance shows the TAMD working against the
resonance frequency to maintain lower amplitude levels.

The semi-active friction damper is an energy sink in the proposed TAMD,
dissipating the energy in the frequency range for which the TAMD has been
previously adjusted.

The proposed TAMD do not present a significant attenuation of the resonant
peaks around 8 and 32Hz. This occurs due to the TAMD’s natural frequency, as
mentioned before. Someone can design the parameters of the TAMD using an
optimization procedure aiming to widen the frequency band in which the TAMD is
efficient.

To evaluate the robustness of the TAMD in a MDOF vibratory system, when it
is positioned at m1, the system was subjected to other types of excitation force.
Figure 10 presents the envelope of the absolute time response to a 10N impact
force applied at 0.5 s on m1.

It can be noted in Fig. 10 that the TAMD placed on m1 can be extremely
effective. The amplitude of the mass m1 has been reduced from 11 to 9 μm, the
vibration damping was impressive, but it was reduced to insignificant levels in
fractions of second. The RMS amplitude levels were reduced from 3.4 to 0.6 μm.
The proposed TAMD can also promote a good attenuation in the displacement of
m3 with the maximum amplitude coming from 10 to 9 μm and RMS amplitude
levels from 2.2 to 1.7 μm. Also, a little vibration suppression was observed for m2

with the maximum amplitude value coming from 6.1 to 5.9 μm and RMS levels
from 1.58 to 1.53 μm.

Fig. 9 Receptance results for the three-DOF system with ma ̸m1 = 0.1 and ωa ̸ω1 = 1.
Uncontrolled vibration response (3 DOF), TAMD response using strategy S3 (S3) and TAMD
response using strategy S4 (S4)
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Figure 11 presents the envelope of the absolute time response to a random
excitation varying up to 10N. It can be observed that the proposed TAMD achieves
again an excellent performance for m1, with the RMS value coming from 0.12 to
0.02mm. A reasonably attenuation of the displacement of m3 is also observed, with
RMS level reducing from 0.06 to 0.05mm and maintaining the RMS levels of m2.

The envelope of the absolute time responses of each strategy to a chirp excitation
with its frequency sweeping from 5Hz up to 50Hz, changing in a ratio of 9Hz ̸s,

Fig. 10 Envelope of the absolute time response to an impact excitation for the three-DOF system
with ma ̸m1 = 0.1 and ωa ̸ω1 = 1. Uncontrolled vibration response (3 DOF), TAMD response
using strategy S3 (S3) and TAMD response using strategy S4 (S4)

Fig. 11 Envelope of the absolute time response to a random excitation for the three-DOF system
with ma ̸m1 = 0.1 and ωa ̸ω1 = 1. Uncontrolled vibration response (3 DOF), TAMD response
using strategy S3 (S3) and TAMD response using strategy S4 (S4)
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are presented in Fig. 12. Over again the efficiency over x1 is excellent, m1 is almost
insensitive to the passage through the resonances, the maximum displacement value
is reduced from 3.0 to 0.5mm, and the RMS level is reduced from 0.89 to 0.13mm,
using the proposed TAMD. Despite the maximum displacement value was not
significantly reduced for m3, the TAMD is effective, especially after 2.0 s, as it
reduces the RMS value from 0.60 to 0.48mm. And for m2, although the maximum
displacement value was maintained the same, a small attenuation of the RMS
levels, from 0.44 to 0.42mm, is achieved.

Although the proposed TAMD could not prevent the energy to achieve the
others DOF, it was extremely effective in attenuating the vibration amplitude from
the DOF in which it was attached. The TAMD removes a significative amount of
energy from m1, but not enough to present the same efficient in the others DOF.

5 Conclusions

A performance parameter has been defined and was shown to be effective as a
metric for optimization procedures, identifying the receptance with the lowest peak
and the lowest L2 norm over the analyzed frequency band. Through the presented
numerical simulations, it is possible to state that the proposed TAMD model pre-
sents better results than the traditional DVA.

TAMD’s selected strategies are capable of achieving excellent performance,
with low mass ratios, for different kinds of excitation. For the 1 DOF vibratory
systems, the proposed TAMD presented results even better than the optimal viscous
damped AMD, which is nowadays one of the best design passive alternatives for

Fig. 12 Envelope of the absolute time response to a chirp excitation for the three-DOF system
with ma ̸m1 = 0.1 and ωa ̸ω1 = 1. Uncontrolled vibration response (3 DOF), TAMD response
using strategy S3 (S3) and TAMD response using strategy S4 (S4)
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vibration attenuation. Results presented herein suggest that the TAMD is able to be
used in a wide range of applications, and the fact that it requires only a 10% mass
addition means they can be used on embedded systems with weight restriction.

Great results were also obtained for a MDOF vibratory system where the
vibration suppression achieved in the receptances clarifies the device’s and strate-
gies’ potential to be effective in a wide frequency range and demonstrate its
capacity to work in cases of different types of excitations, especially for the DOF in
which the TAMD is attached.

Future works will investigate positioning of the TAMD in a MDOF vibratory
system, intending to make the TAMD effective for all DOFs and vibration modes.
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The Mechanical Behavior of Viscoelastic
Materials in the Frequency Domain

Isadora R. Henriques, Lavinia A. Borges and Daniel A. Castello

Abstract In the last few decades, a growing need for new materials for several

applications led to the development and increase of studies in new theories such

as viscoelasticity. Many efforts have been done to understand and characterize the

mechanical behavior of these materials. The purpose of this work is to determine

the viscoelastic Poisson’s ratio in the frequency domain, 𝜈
∗(𝜔), for a viscoelas-

tic material in order to characterize its three-dimensional behavior. To do so, the

work is based on the elastic-viscoelastic correspondence principle (EVCP) and the

time-temperature superposition principle (TTSP). Measurements of the complex

shear modulus, G∗(𝜔), and the complex modulus, E∗(𝜔), were performed using a

dynamic mechanical analyzer (DMA). To consider eventual uncertainties, each spe-

cific mechanical test was carried out using three test-specimens.

Keywords Viscoelastic poisson’s ratio ⋅ Mechanical characterization

Dynamical mechanical analysis

1 Introduction

Viscoelastic materials are used in many applications such as structural components

to control vibrations [5, 15, 28], tooth reconstruction [9], adhesives [12], among oth-

ers. As their fields of applications have been continuously enlarging, several studies

attempt to characterize and predict the mechanical behavior of these materials focus-

ing mainly on properties such as the complex moduli [13]. Nevertheless, few stud-

ies investigated the Poison’s ratio (PR), or a property analogous to it, on this type

of materials. In fact, to the authors’s best knowledge, its own definition seems to

I. R. Henriques ⋅ L. A. Borges ⋅ D. A. Castello (✉)

Mechanical Engineering Department, Universidade Federal do Rio de Janeiro,

Rio de Janeiro, RJ 21941-972, Brazil

e-mail: dnl.castello@gmail.com

I. R. Henriques

e-mail: ir.henriques@mecanica.coppe.ufrj.br

© Springer International Publishing AG, part of Springer Nature 2019

A. de T. Fleury et al. (eds.), Proceedings of DINAME 2017, Lecture Notes

in Mechanical Engineering, https://doi.org/10.1007/978-3-319-91217-2_5

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91217-2_5&domain=pdf


66 I. R. Henriques et al.

remain ambiguous; moreover, one would say that investigations on the experimental

procedures to its determination are not closed yet.

The viscoelastic Poisson’s ratio (PR) does not present a well established defini-

tion. In most cases, this ratio is considered to be constant but its thermo-temporal

dependency has been supported by experimental evidence as early as 1987. Accord-

ing to Lakes and Wineman [20], its time (or frequency) dependence varies even with

the test modality chosen to evaluate it. Furthermore, it also depends on the stress and

strain states, and the environmental conditions [16].

Due to its frequency dependence, it can also be seen as a complex number known

as complex Poisson’s ratio with its real part known as dynamic Poisson’s ratio and its

imaginary part known as loss component. The later is related to a phase lag between

the lateral and axial strains. Both parts of this ratio are frequency and temperature

dependent, presenting a much more complex behavior that leads to additional diffi-

culty on its experimental characterization [25]. Further, it can be determined once

one obtains two other complex properties such as the complex modulus and the com-

plex shear modulus [31].

Many techniques to measure viscoelastic properties as a function of temperature

and frequency are available in the literature and may be found in the review article

by Lakes [21]. Among them, one of the most common methods is the one based on

Dynamic Mechanical Analysis (DMA). This technique consists of the application

of a force to a test-specimen in a cyclic manner in order to obtain the material’s

response. It can be performed at different frequencies and temperatures, allowing

us to obtain information about the thermo-mechanical behavior of some specific

material. Additionally, one can perform different tests at the same conditions and

also, study the composition and its physical properties [19]. It should be emphasized

that although DMA may provide both the complex modulus and the complex shear

modulus, they do not provide any information about the PR.

As for the viscoelastic PR characterization, some recent works should be men-

tioned here. Bonfiglio and Pompoli [4] proposed an experimental procedure for

determining the viscoelastic PR over the frequency domain. In their methodology,

the material was excited by an electromagnetic shaker and then, the axial and the

radial velocities were measured over the frequency using laser vibrometers. Yu et al.

[35] modeled the viscoelastic PR after measuring the lateral expansion as a function

of the axial compression in a flat punch test.

The purpose and contribution of this work is to assess the estimates of the

complex Poisson’s ratio (PR) 𝜈
∗(𝜔) that are obtained by the manipulations of the

mechanical properties provided by the Dynamic Mechanical Analyzer (DMA). More

especifically, the complex modulus, E∗(𝜔), and the complex shear modulus, G∗(𝜔),
were measured using two different operational modes: single cantilever bending and

simple shear modes, respectively. The elastic-viscoelastic correspondence princi-

ple (EVCP) [22] was employed to obtain the viscoelastic relation between these

complex properties. Additionally, the thermorheologically simple behavior was ver-

ified by both the Cole-Cole Diagram and Black Space and consequently, the time-

temperature superposition principle (TTSP) [10] was applied to build the master

curves for the viscoelastic material properties.
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The paper is organized as follows. Section 2 gives the principal aspects related

to the complex Poissons ratio, and the experimental set-up is explained in Sect. 3.

The experimental results and the master curves are shown in Sect. 4, followed by

conclusions.

2 Fundamentals

According to the theory of viscoelasticity, the Poisson’s ratio does not have unique

definition. It is rather defined in several ways ranging from seven different categories

sorted by their physical meaning as stated by Hilton in [17]. However, all the defi-

nitions present an important similarity: the viscoelastic Poisson’s ratio is not a con-

stant value; it is a time- or frequency-dependent function as well as other viscoelastic

material properties.

Its time-domain dependence can even vary with the modality of the mechanical

test that is chosen to evaluate it [1, 6, 20, 31]. The viscoelastic PR in creep and in

relaxation present different time dependence. However, it can be neglected for small

to moderate relaxation levels. In this case, the differences are minor as stated by

Lakes and Wineman [20].

Unlike Tschoegl et al. [31], Lakes and Wineman [20] established that the vis-

coelastic Poisson’s ratio need not increase with time and it need not be monotonic.

Later on, Charpin and Sanahuja [6] showed both theoretical and experimentally that

it is possible to have this property presenting any evolution over time: increasing,

decreasing and even non-monotonic.

Therefore, the assumption of a constant PR is inconsistent with the theory devel-

oped so far and with the experimental data as well. Even if it sometimes simplifies

some mathematical formulations, this assumption may cause errors in engineering

design.

2.1 Complex Poisson’s Ratio, 𝝂∗(𝝎)

According to Tschoegl et al. [31], the complex Poisson’s ratio corresponds to the

lateral contraction ratio measured in an infinitesimally small uniaxial deformation

of a viscoelastic material in response to a steady-state sinusoidally oscillating axial

strain. Mathematically, this statement may be expressed as

𝜈
∗
j1(𝜔) = −

𝜀
∗
jj(𝜔)

𝜀
0
11

, j ≠ 1 (1)
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where 𝜀
0
11 is the amplitude of the sinusoidal steady-state axial strain, 𝜀

∗
jj(𝜔) is the

complex sinusoidal steady-state lateral contraction and 𝜔, the angular frequency in

radians per second.

Being 𝜈
∗(𝜔) a complex property, it can be decomposed in its real and imaginary

parts. The former is associated with the elastic response (stored energy), whereas the

latter one is associated with the viscous response (energy dissipation). Therefore, the

PR may be recast as

𝜈
∗(𝜔) = 𝜈

′(𝜔) − j𝜈′′(𝜔) = 𝜈
′(𝜔)[1 − j𝜂

𝜈
(𝜔)], (2)

where 𝜈
′(𝜔) is the dynamic Poisson’s ratio and 𝜈

′′(𝜔) is the loss component and

𝜂
𝜈
(𝜔) is the Poisson’s loss factor defined as [25]

𝜂
𝜈
(𝜔) = 𝜈

′′(𝜔)
𝜈
′(𝜔)

. (3)

In case of perfectly elasticity, the loss component is zero and, consequently, the

Poisson’s loss factor is also zero. The negative sign in Eq. (2) is related to the com-

pliance nature of the viscoelastic PR. Hence, the absolute value of complex PR can

be obtained through

|𝜈∗(𝜔)| =
√
𝜈
′(𝜔)2 + 𝜈

′′(𝜔)2 (4)

Besides that, the complex PR can be determined indirectly through any two

other viscoelastic functions using the elastic-viscoelastic correspondence principle

(EVCP) [32]. The elastic interrelationship between the Young’s modulus, E, the

shear modulus, G, and the Poisson’s ratio, 𝜈 is [2]:

𝜈 = E
2G

− 1. (5)

Thus, the viscoelastic interrelationship in the frequency domain after applying the

EVCP into Eq. (5) is

𝜈
∗(𝜔) = E∗(𝜔)

2G∗(𝜔)
− 1, (6)

where G∗(𝜔) is the complex shear modulus and E∗(𝜔) is the complex Young’s mod-

ulus which is simply denoted throughout the paper as complex modulus.

The real and imaginary parts of the complex PR can be written in terms of the

real and imaginary parts of the complex modulus (E′(𝜔), E′′(𝜔)) and the complex

shear modulus (G′(𝜔), G′′(𝜔)) as follows

𝜈
′(𝜔) = 1

2
E′(𝜔)G′(𝜔) + E′′(𝜔)G′′(𝜔)

[G′(𝜔)]2 + [G′′(𝜔)]2
− 1 (7)
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and

𝜈
′′(𝜔) = 1

2
E′(𝜔)G′′(𝜔) − E′′(𝜔)G′(𝜔)

[G′(𝜔)]2 + [G′′(𝜔)]2
. (8)

In principle, once one obtains measurements from E∗(𝜔) and G∗(𝜔), Eqs. (7) and

(8) may be used to obtain estimates of 𝜈
∗(𝜔). In this work, they will be used based on

the measurements provided by a DMA and the estimates of 𝜈
∗(𝜔) will be properly

assessed.

3 Experimental Set-Up

3.1 Materials and Test-Specimens Preparation

Two groups of test-specimens were built. The first one was composed of a pure

epoxy material. The second one was built by adding a certain amount of flexibilizer.

The epoxy resin was Es260 br, a cold-setting one. AradurTM E35, a cycloaliphatic

amine based curing agent with low viscosity, was used as hardener for the curing

process. Finally, the flexibilizer used was DY 3601. All reagents were purchased

from Advanced Vacuum Materials (São Paulo, Brazil).

Firstly, a mixture of epoxy resin and curing agent in a proportion of 45 phr were

poured in a becker and were gently mixed using a glass tube. Afterwards, half of the

mixture was carefully transferred to a second becker and both beckers were weighted

to ensure their equal content. Then, the flexibilizer was added to the first becker in a

proportion corresponding to 10% weight of the mixture and this new epoxy system

was mixed again to homogenize it. Finally, both beckers were put on an ultrasonic

bath for 30 min to avoid the presence of air bubbles. After the bath, the mixtures

were poured into the cavities of silicone rubber molds with appropriate dimensions

for the DMA tests. The curing process was performed at room temperature for 24

h, followed by a post-curing cycle at 60
◦
C for 6 h. To avoid residual stresses, the

test-specimens were then slowly cooled to room temperature inside the oven.

Furthermore, in order to eliminate variations in material properties caused by

processing, all test-specimen were manufactured from only one batch.

3.2 Tests by DMA

Dynamic tests were carried out with a DMA Q800 dynamic mechanical analyzer

(produced by TA Instrument Corporation) to measure and investigate the complex

modulus E∗(𝜔) and the complex shear modulus G∗(𝜔). For that purpose, the test-

ing configuration was set in two different operational modes, respectively: single

cantilever bending mode and simple shear mode. The former consists of a test-
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specimen anchored on one end by a stationary clamp and by a moveable clamp

on the other which applies a controlled force. The test-specimen’s dimensions are

35.00mm × 12.70mm × 3.18 mm. The latter mode consists of two equal-size test-

specimens sheared between a fixed and a moveable plate. In this situation, the test-

specimen’s dimensions are 10.0mm × 10.0mm × 2.5 mm.

For both operational modes, frequency sweeps from 1 to 100 Hz, measuring 10

points per decade in logarithmic scale, were carried out at seven temperatures from

60 to 90
◦
C. Isotherms were maintained for 5 min every 5

◦
C and the heating rate

was 2
◦
C/min.

4 Results and Discussion

Following recommendations provided in [23] to reduce experimental errors, each

modality test was performed on three test-specimens of each material. Through the

results, the terms pure epoxy and epoxy with flexibilizer will be used extensively

and replaced by PE and EWF, respectively.

4.1 Complex Modulus, E∗(𝝎)

Figure 1 shows the real part of complex modulus E′(𝜔), also known as storage modu-

lus, as a function of frequency for both materials. Both materials presented the same

pattern: storage modulus decreased with the increase in temperature and increased

with the increase in frequency. This may be more noticeable at high temperatures

and for EWF. This trend is coherent with the classical behavior of polymeric mate-

rials [29]. Comparing both materials, PE presented a higher modulus value for all

temperature range.

The imaginary part of complex modulus E′′(𝜔), known as loss modulus, is then

represented in Fig. 2. Differences can be observed among the results. For PE, below

80
◦
C, it increased with the increase in temperature and did not vary with frequency.

From 80
◦
C, it decreased with temperature and increased with frequency. For EWF,

on the other hand, the loss modulus presented a similar behavior as the storage mod-

ulus.

The thermorheologically simple behavior [7] of these materials was verified

through the Cole-Cole Diagram [8] and the Black Space [33] as shown, respectively,

in Fig. 3 and Fig. 4. The E′(𝜔) versus E′′(𝜔) and E′′(𝜔)∕E′(𝜔) versus |E∗(𝜔)| curves

in double logarithmic scales at different temperatures coincided in one continuous

curve for most points. Points that deviate from the curves are related to measure-

ments at high frequencies and they may be related to resonance phenomena in the

DMA [24]. Additionally, both diagrams show a slight temperature dependence of

complex modulus of both materials, indicating a need for vertical shifting [27].
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Fig. 1 Storage modulus (E′(𝜔)) versus frequency (𝜔). a PE b EWF
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Fig. 2 Loss modulus (E′′(𝜔)) versus frequency (𝜔). a PE b EWF
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Fig. 4 Black diagrams: E′′(𝜔)∕E′(𝜔) versus |E∗(𝜔)|. a PE b EWF

Therefore, it is possible to apply the time-temperature superposition principle

(TTSP) to characterize the materials on a broader frequency range. Briefly speak-

ing, when assuming that the time-temperature superposition holds, one may write a

relation between a viscoelastic property measured at two different temperatures as

follows

Q∗(𝜔;T) = Q∗(aT × 𝜔,T0) (9)

where Q∗(𝜔,T) corresponds to some viscoelastic property in the frequency domain

at the temperature T , T0 is a reference temperature and aT is the thermal shift factor

(aT ), also known as horizontal shift coefficient [10].

Concerning the thermal shift factor aT , one of the most used models is given

by the Williams-Landel-Ferry (WLF) equation [34]. Here, the thermal-shift factors

were computed for all three test-specimens as a function of the relative temperature

and were fitted by the Williams-Landel-Ferry (WLF) equation:

log aT = −
C1(T − T0)

C2 + (T − T0)
, (10)

with T0 as the reference temperature in Kelvin, T as the temperature in Kelvin and

C1 and C2 as parameters that depend on the material and the reference temperature.

The reference temperature was 348 K (75
◦
C) and the parameters C1 = 19.07 and

C2 = 43.17 K were estimated for PE system, while C1 = 15.28 and C2 = 68.41 K

for EWF. These parameters were estimated through the least squares method. From

Fig. 5, it can be observed that the thermal shift factor presented high levels of corre-

lation with measured data.

Finally, the master curves were built by using the method described by Rouleau et

al. in [27]. They are presented in Figs. 6 and 7. The frequency range is up to approxi-

mately 106 rad/s. The storage and loss moduli present an asymptotic
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Fig. 5 Thermal shift factors for WLF Equation from E∗(𝜔) − T0 = 348 K. a PE: C1 = 19.07 and

C2 = 43.17 K. b EWF: C1 = 15.28 and C2 = 68.41 K
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Fig. 6 Master curves for storage modulus E′(𝜔). a PE b EWF

behavior. However, the superposition of these curves makes evident the presence

of some discontinuities between them for the highest frequencies. This could proba-

bly be circumvented by the use of the vertical shift coefficients as shown by Rouleau

et al. [27].

4.2 Complex Shear Modulus, G∗(𝝎)

The real part of the complex shear modulus G′(𝜔), known as shear storage modu-

lus, is shown in Fig. 8. The imaginary part G′′(𝜔), known as shear loss modulus, is

depicted in Fig. 9. As for the dependence of the complex shear modulus G∗(𝜔) with
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Fig. 8 Shear storage modulus (G′(𝜔)) versus frequency (𝜔). a PE b EWF
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Fig. 9 Shear loss modulus (G′′(𝜔)) versus frequency (𝜔). a PE b EWF
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Fig. 10 Cole-cole diagrams: G′′(𝜔) versus G′(𝜔). a PE b EWF
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Fig. 11 Black diagrams: G′′(𝜔)∕G′(𝜔) versus |G∗(𝜔)|. a PE b EWF

temperature and frequency, it presents the same pattern as the one presented by the

complex modulus E∗(𝜔).
The validity of the TTSP was also assessed with the results of complex shear

modulus. Figure 10 shows the Cole-Cole Diagram and Fig. 11, the Black Space.

Most points coincided along one single continuous curve, fulfilling the characteris-

tics of the thermorheologically simple material postulate. This validates the hypoth-

esis made when using the results of E∗(𝜔).
Once again, a model for the thermal shift factor aT (C1,C2) was calibrated using

the complex shear modulus data. Figure 12 presents the measured data and the model

built with the estimated parameters. Comparing the results shown in Figs. 5 and 12,

one can observe that the models are highly correlated and even the empirical con-



76 I. R. Henriques et al.

Relative Temperature (T - T0) [K]

-8

-6

-4

-2

0

2

4

6

8

10

12

H
or

iz
on

ta
l S

hi
ft 

C
oe

ffi
ci

en
ts

 lo
g(

a T(T
,T

re
f))

WLF Fit
Test-specimen 1
Test-specimen 2
Test-specimen 3

-15 -10 -5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20

Relative Temperature (T - T0) [K]

-8

-6

-4

-2

0

2

4

6

8

10

12

H
or

iz
on

ta
l S

hi
ft 

C
oe

ffi
ci

en
ts

 lo
g(

a T(T
,T

re
f))

WLF Fit
Test-specimen 1
Test-specimen 2
Test-specimen 3

(a) (b)

Fig. 12 Thermal shift factors for WLF Equation from G∗(𝜔) − T0 = 348 K. a PE: C1 = 19.07 and
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Fig. 13 Master curves for shear storage modulus G′(𝜔). a PE b EWF

stants C1 and C2 were found the same. It should be emphasized that Arzoumanidis

and Liechti in [3] also obtained similarities between the thermal shift factor esti-

mated using different test modalities.

The master curves were finally obtained at a reference temperature T0 = 348 K

(75
◦
C). Figures 13 and 14 show, respectively, the master curves of shear storage

modulus and shear loss modulus. One may notice that they are not so continuous for

the PE material. This could probably be circumvented by the use of the vertical shift

coefficients.
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Fig. 14 Master curves for shear loss modulus G′′(𝜔). a PE b EWF

4.3 Complex Poisson’s Ratio, 𝝂∗(𝝎)

After measuring E∗(𝜔) and G∗(𝜔), the real and imaginary components of complex

Poisson’s ratio 𝜈
∗(𝜔)was, respectively, estimated using Eq. (7) and Eq. (8). However,

the results of the real component, 𝜈
′(𝜔), were not consistent with the limits of 0.5

and −1 [14].

As the estimates of the complex Poisson’s ratio were meaningless from the physi-

cal point of view, a further look at the DMA specific experimental apparatus revealed

a systematic error due to a scale factor that was also reported in the literature [11,

18, 30]. Firstly, it was observed then that there was a discrepancy in scale with the

results of the complex shear modulus.

Therefore, the complex shear modulus measured in this work were compared to

the ones reported by Rao et al. in [26] which allowed us to estimate a proper scale

factor. It is worth noting that the shift factors for temperatures close to glass transition

temperature were quite difficult to identify due to the great variations of the moduli

within this range. Figures 15, 16 and 17 show, respectively, the results obtained for

the dynamic Poisson’s ratio 𝜈
′(𝜔), the loss component 𝜈

′′(𝜔) and the absolute value

|𝜈∗(𝜔)| for each material.

For PE, the dynamic Poisson’s ratio and the loss component had different behav-

iors according to temperature. For temperatures below 75
◦
C, both components were

almost constant over the frequency range. However, for the ones above 75
◦
C, the

dynamic Poisson’s ratio increased with the increase in frequency whereas the loss

component decreased. For EWF, on the other hand, the dynamic Poisson’s ratio

increased with the increase in frequency, whereas the loss component decreased.

For both materials, the absolute value presents quite similar behavior.
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Fig. 15 Dynamic poisson’s ratio (𝜈′(𝜔)) versus frequency (𝜔). a PE b EWF
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Fig. 16 Loss component (𝜈′′(𝜔)) versus frequency (𝜔). a PE b EWF
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Fig. 17 Absolute value (|𝜈∗(𝜔)|) versus frequency (𝜔). a PE b EWF
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5 Conclusion

This work proposes an approach to estimate the complex Poisson’s ratio through an

indirect method. The complex modulus and the complex shear modulus were first

determined by performing two different tests using a dynamic mechanical analyzer.

Afterwards, the estimates for complex Poisson’s ratio are provided by the use of the

elastic-viscoelastic correspondence principle.

The complex Poisson’s ratio based on the modulus provided from DMA output

software proved meaningless from the physical point of view. Therefore, the use

of the shear modulus provided by DMA required a correction scale factor that was

estimated using measured data provided by works found in the literature.

A key point to be emphasized is that investigations in the literature have been

indicating that the viscoelastic properties provided by DMA equipment present great

levels of discrepancy in scale depending on the test modality chosen for the mate-

rial characterization as reported in [11, 18, 30].Therefore, based on these articles

found in the literature and on the data analyzed in this work, two main points are

worth to be highlighted here: (i) DMA seems to be an efficient tool aimed at exam-

ining material properties for quality control, research and development, and also for

the establishment of optimum processing conditions; (ii) care should be taken when

comparing viscoelastic properties provided directly from DMA software that come

from different test modalities inasmuch as these are possibly affected by a biased

scale factor.
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Curvature Effects on Vibrational Power
Flow of Smooth Bent Beams

Paulo Martins and Arcanjo Lenzi

Abstract This study discusses an approach to analyze curvature effects on the vibra-

tional powerflow of slender beams. A finite element method (FEM) model was used

to calculate transmitted and reflected power via the “propagating wave approach”.

Previously, the same investigation was addressed with focus on the analytical for-

mulation of curved beams, and an FEM model was programmed using simple two-

node straight (Euler-Bernoulli) beam elements. However, the model could simulate

in-plane vibrations only, with restrictions to high frequencies (lower than two wave-

lengths inside the curvatures length). Hence, a new model was proposed, and the

curvature parametrization was updated. A novel method to parametrize the curva-

ture in 3D is discussed using quaternions. Results from the updated FEM model

and analytical approach were compared for validation. Moreover, the algorithm per-

formed almost exactly like the analytical model, even at high frequencies, which

made it suitable to simulate power flow based on the wave approach. The algorithm

allows any type of curve configuration to be tested. Curvature effects for in- and

out-of-plane vibrations are shown as well. Finally, this work introduces a basis for

designing and optimizing slender pipe structures from the perspective of vibration

control.

Keywords Curvature ⋅ Power flow ⋅ Quaternion ⋅ FEM ⋅ Wave approach

1 Literature Background

The present work mitigates the changes in power flow of vibrational waves while

propagating through curved slender beams. The current literature reveals a rea-

sonable amount of work on “smooth bends” and “curves”, but the majority only
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addresses static applications (e.g., structural analysis or civil engineering). There-

fore, behavior under a dynamic/vibrational perspective is not well explored for curve

configurations.

One can highlight studies that aimed at dynamic behavior, such as the work of

Walsh and White (see [1]), who studied the vibrational power transmission of waves

traveling in the same curves plane. They provided the equations of motion consider-

ing different theories: Loves approximations, Flugge’s, only rotary inertia, only shear

deformation, and Timoshenko (both rotary inertia and shear deformation). They also

compared the curved beams wave numbers with that of a straight beam. The latter

was also conducted by Lee et al. [2], who linked wave numbers to power flow by

determining analytically how real or imaginary wave numbers can change the power

transmission. Lee also reported a “displacement ratio”, which is a robust approach to

understand how curvatures couple both flexural and longitudinal movement. Wu and

Lundberg [3] also analyzed the vibration in the plane of curvature; they explained the

wave propagation approach in a very detailed manner, which consolidated a basis for

the present work. They also proposed a non-dimensional set of parameters for anal-

ysis that strengthened understanding on the curvatures behavior. Results for con-

stant frequency and curves parameters were also discussed. For vibrations occurring

perpendicular to a curves plane (out-of-plane vibrations), in [4] was investigated

the natural frequencies for a continuous bent beam and also provided the governing

equations for this type of movement. In the numerical approach, in [5] was provided

a semi-infinite straight beam element based on its dynamic stiffness, and in [6] was

derived a consistent constant curvature beam element. Both elements are used in

finite element analysis.

The next section explains how the curvature will be analyzed, how power from

wave constants is obtained, and how the power coefficients are calculated. The third

section explains the numerical tool, which is tailored specifically to solve the frame-

work proposed in the second section. The fourth section explains the use of an ana-

lytical approach to validate the numerical tool presented in the third section. The

fifth section is dedicated to the results and discusses a “map” of curvature effects

over power flow. Finally, the last section presents the concluding remarks, as well as

some suggestions for future work.

2 Wave Propagation Approach

Consider an arbitrary wave propagating through a semi-infinite media, which may

be longitudinal, torsional or flexural (Fig. 1). As this incident wave (superscript I)
reaches a curvature (discontinuity), part is reflected (superscript R) and part is trans-

mitted, i.e., passes through and continues (superscript T). The “wave propagation

approach” obtains the amplitude constant for each wave type. As this work addresses

only the curvature effects, any type of losses or damping are neglected from the struc-

ture.

To obtain the amplitude constants of waves, continuity between both straight and

curved interfaces must be guaranteed, i.e., all forces and displacements should be the
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Fig. 1 Diagram of a typical

wave approach setup

same at curves ends. Therefore, the formulations of both straight and curved parts

are necessary.

First, a straight beams longitudinal wave is known to have two wave numbers

(one for each waves traveling direction). However, for a single longitudinal wave

propagating through a medium in a single direction, can be written

u(x, t) = ūe−j(kux+𝜔t), (1)

where ū is the wave constant, j =
√
−1, ku is the longitudinal wave number, x is the

beams position, 𝜔 the angular frequency in rad/s, and t is the time. The other wave

solutions can be given in the form

𝜃x(x, t) = ̄
𝜃xe−j(k𝜃x+𝜔t), (2)

w(x, t) = w̄pe−j(kwx+𝜔t) + w̄ee−(kwx+j𝜔t), (3)

where ̄
𝜃x is the propagating torsional constant, w̄p is the propagating wave constant

and w̄e is the constant of evanescent part. Similarly, the flexural motion on a perpen-

dicular plane will be the same as before if the beam is symmetric. Otherwise, only

the wave number kw is changed.

The wave numbers for a straight beam are

ku = 𝜔

√
𝜌∕E, kw =

√
𝜔
2
𝜌A∕EIz,

kv =
√

𝜔
2
𝜌A∕EIy, k

𝜃

= 𝜔

√
𝜌∕G,

(4)

where 𝜌 is the density per length, E is Young’s modulus, A is the cross-sections area,

Iz and Iy are the areas second moment of inertia on z and y axes, respectively, and

G is the shear modulus. Hence, with the configuration shown in Fig. 1, the balanced

equations for “in-plane” and “out-of-plane” vibration can be written. Bear in mind

that inlet waves should consider the incident waves as propagation only and reflected
waves with both propagating and evanescent parts. Outlet waves should consider

both parts as well, but pure transmission only (no further reflections).
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Given that the four incident constants are known, a total of twelve “straight” wave

constants need to be determined for the setup. Note that “in-plane” (and subsequently

“out-of-plane”) is presented in quotation marks because it is referring to a straight

beam, whereas a curved section creates a plane for analysis.

Walsh and White [1] used the propagating wave constants to obtain “in-plane”

longitudinal and flexural and “out-of-plane” flexural and torsional powers as follows:

Wu =
1
2
EA𝜔kuū2, Wv = EI𝜔k3v v̄

2
,

Ww = EI𝜔k3ww̄
2
, W

𝜃

= 1
2
GJ𝜔k

𝜃

̄
𝜃

2
x ,

(5)

where J is the torsional constant, which can be given by Iz + Iy for a symmetric beam

(and rotation axis equals to the centerline).

In the present paper, the concept of “power coefficient” is used to standardize

the results as a ratio of transmitted (or reflected) power over the incident power. For

example,WT
u ∕W

I
ip would be a longitudinal transmission coefficient, withWI

ip = WI
u +

WI
w; and WR

v ∕W
I
op would be an “out-of-plane” reflection coefficient, with WI

op =
WI

v +WI
𝜃

.

The use of this approach is detailed in the next section, in which the finite element

method (FEM) is used to obtain the wave constants and power coefficients.

3 Finite Element Solution

The developed FEM algorithm is suitable to simulate any geometry based on beam-

like elements. Moreover, it considers both ends of the geometry as semi-infinite

straight beams. Finally, the algorithm provides power coefficients as output.

Common Euler-Bernoulli’s straight beam elements are used to assemble the

global problems mass and stiffness matrices. The elements of two nodes, and six

degrees of freedom per node (three translations and three rotations), can be deter-

mined using formulations that are easily found on the Internet.

For completions sake, the work of Zienkwickz and Taylor (see [7]) is recom-

mended, from where Kel and Mel matrices were given.

Euler’s theory of curved beam element for in-plane vibration can be found in the

work of Davis and Warburton (see [6]).

The dynamic stiffness of semi-infinite element and force input (to simulate a wave

that is propagating through an infinite media) was taken from [5].
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3.1 Geometry Crafting

Building curvatures in a single plane is somewhat trivial (a single angle and single

radius are sufficient to its parametrization), but thinking about three dimensions is

much more complicated. One can work with Eulers angles or Rodrigues’ rotation,

but all of them leave up to three independent angles of rotation and three radii (one

for each plane).

To simplify parametrization, inspiration from aviation has been sought, with con-

cepts of an airplane “rolling” (for creating a plane of curve) and “pitching” (for “fly-

ing” a curve).

This choice of angles allows a sequence of curved and straight lines to be built

using only three known parameters per section: length L, roll angle 𝜃x, and pitch angle

𝜃y. The radius of curvature R is obtained as a function of L and 𝜃y, and it is designated

as the “pitching movement”. One has chosen for the “rolling movement” to occur

instantly, before any other “movement” takes part. For example, if the instruction was

L = 10 mm, 𝜃x = 30◦ and 𝜃y = 90◦, the hypothetical airplane would be tilted (rolled)

30◦ from the ground, and start climbing until an arch of 90◦ withR ≈ 6.37mm would

be drawn.

To automate this instruction set, the “geometry builder” algorithm used the con-

cept of “quaternions” introduced by Irish mathematician Hamilton [8]. Also another

good reference in this matter is the work of Kuipers (see [9]).

4 Analytical Validation

All the analytical formulation for curves and equations of motion for in-plane and

out-of-plane vibrations can be found in the works of [1–4]. Thus they will be omitted

here for the sake of simplicity.

For an arbitrary curvature of 𝛩y = 90◦ and R = 38.2 mm (as depicted in the left

of Fig. 2), frequency range of 0–10 kHz, and prescribing a unitary longitudinal wave,

the curves of Fig. 2 can be obtained. The right plot shows the differences between

numerical and analytical power coefficients for this setup. The curves represents

the coefficients type. The line is longitudinal transmission WT
u , dashed is flexural

(in-plane) transmission WT
w , dash-dotted is longitudinal reflection WR

u , and dotted is

flexural reflection WR
w . Figure 2 indicates a maximum difference of 0.05%.

For the same geometry, by prescribing a unitary flexural wave, the differences are

approximately 0.06%, showing an almost exact concordance between numerical and

analytical analyses for the in-plane vibration.

Unitary flexural wave perpendicular to the plane of curvature (out-of-plane wave)

and torsional wave inputs were also tested and the differences between analytical and

numerical approaches where consistently low.

The worst case scenario was at 𝛩y = 30◦ for a prescribed torsional wave ( ̄𝜃
I
x),

with difference of approximately 6% for frequency until 10 kHz. This discrepancy
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Fig. 2 Arbitrary geometry for testing the tool performance, with R = 30 mm and 𝛩y = 90◦ (a).

Differences between numerical and analytical power coefficients, with longitudinal wave input (b)

is due to a numerical error generated by the straight elements, because they are not

designed to fully represent torsion-to-flexural coupling.

Nevertheless, for the frequency range and application type, the numerical

approach is considered validated and good for use.

5 Curvature Effects on Vibrational Powerflow

This section provides a more general understanding of which curve configurations

are prone to let incoming waves pass through (transmit) the bend. This knowledge

will allow a sort of “curvature map” of power flow effects. The sub-sections will

address the effects over vibrations occurring in the same curves plane and then focus

on an out-of-planes effects.

5.1 In-plane Curvature Effects

This analysis involves three parameters (curvature radius R, angle 𝛩y and

frequency f ), so the coefficient of transmitted power is plotted in a level curve man-

ner. That is, for a given radius R, we chose the horizontal slices to represent the

transmitted power coefficient per frequency, while each vertical line represents a

given angle 𝛩y, from 0◦ to a full loop (360◦). In other words, vertical slices shows

transmitted power per angles. So, this will be the standard for all level curve plots

herein.

Changes in radius simply shift the level curves to the left or right in frequency,

as shown for R = 30, 100 and 200 mm (Fig. 3). Therefore, this method is robust in

mapping curvature effects on vibrations.
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Fig. 3 Sum of all power coefficients of transmitted waves with varying radius. figures shows results

for R = 30 mm a, for R = 100 mm b and for R = 200 mm c. These images shows that the “main

curve behavior” is maintained

For an arbitrarily chosen radius of 100 mm and prescribing a unitary flexural

wave, several repeating regions can be identified over the flexural transmitted power

(Fig. 4).

A region of medium to low transmission is present over a wide range of frequency,

which occurs for angles 0◦ < 𝛩y < 150◦. This area is particularly interesting because

of its “reflective nature”. A high flexural transmission region exists on the plots top-

right portion, which reveals that curvatures are negligible for sufficiently small wave

length. Meanwhile, the lowest transmission region can be found at the plots top-left

area (around 180◦ < 𝛩y < 350◦). This region is heavily dependent on the flexural

wave length being greater than 2𝜋R
√
3, which is the condition for the first cutoff fre-

quency 𝛺1 and will be explained immediately after. A discontinuity can be observed

from 𝛩 ≈ 200◦, which occurs because of a longitudinal transmission predominance

(Fig. 5).

Figure 5 shows only longitudinal transmissionWT
u for the same prescribed flexural

wave in 3D. In a region of almost no longitudinal transmission located on the plots

left, a small peak (≈15%) of longitudinal transmission can be found.

As was observed in [1–3], those three “cutoff” frequencies are due to a curved

beams wave numbers. It is known that the wave numbers behave as real numbers

before 𝛺1 (or in part I of Fig. 6); then, two wave numbers becoming complex at

region II, and later turning completely imaginary at III, and finally one of the wave

numbers returning to be a real number at IV.
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Fig. 4 Mapping of total transmission of power coefficients for a generic curvature type. This shows

a single arbitrary curve with a R = 100, varying angle from 0◦ → 360◦, while prescribing a flexural

wave of unitary amplitude

Fig. 5 Longitudinal wave

predominance found in

region I, with flexural wave

input, occurring in angles

higher than 180◦
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Figure 6 shows these curved beams wave numbers (𝛾1, 𝛾2 and 𝛾3) and compares

them with a straight beam wave numbers (𝛾u longitudinal and 𝛾v flexural). Lee et al.

[2] also pointed out that 𝛺1 and 𝛺2 are approximately

𝛺1 ≈

√
EIz
𝜌A

3R2 , 𝛺2 ≈

√
EIz
𝜌A

R2 , (6)

which leads to the flexural wavelength 𝜆f ≈ 2𝜋R
√
3 and 𝜋R respectively. This last

“cutoff frequency” is called the ring frequency, and it is expressed as
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Fig. 6 Wave numbers for in-plane vibration of a curved beam

𝛺3 =

√
Iz
A

R
, (7)

which depends only on geometric properties and occurs at a longitudinal wave length

𝜆l = 2𝜋R.

One can categorize the first medium-low transmission region as 0◦ < 𝛩y < 150◦
below 𝛺3, the very low transmission region as 180◦ < 𝛩y < 350◦ until mid-

frequency of part II (between 𝛺1 and 𝛺2), and finally, by exclusion, all other regions

as high transmission.

For the longitudinal transmission discontinuity, the following formula can be fit

as follows:

𝛺d(𝛩y) ≈ 0.9𝛺1 −
4.3

𝛩
2
y +

√
𝛩y

, (8)

≈
0.3

√
EIz
𝜌A

R2 − 4.3
𝛩

2
y +

√
𝛩y

, (9)

which depend only on the angle 𝛩y and 𝛺1, because the discontinuity grows asymp-

totically to it, as shown in the Fig. 4.

This fitted formula can be used to estimate a critical scenario of longitudinal

waves, e.g., in an application which this kind of transmission should be avoided by

design.

5.2 Out-of-Plane Curvature Effects

The level curve plots for out-of-plane vibrations are almost the same of those from in-

plane vibrations. The main difference is the coupling between flexural out-of-plane

and torsional vibrations. However, given that the wave numbers for this case are also
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very similar to those in the previous case, all discussion about “transmission regions”

is valid by analogy (in- and out-of-plane flexural waves, as well as longitudinal and

torsional waves, are similar).

A new approach is necessary to investigate 3D effects, so the following setup is

proposed: Let there be a simple curve with angle 𝛩y (which is the same “curves

angle” 𝛩y from before) and length L with an in-plane prescribed flexural wave. This

curve will be sliced in the middle (𝛩y∕2 , therefore L∕2) and a “rolling” of 𝛩x will

be applied to the second section.

As this case will be tested for 𝛩y from 0◦ to 360◦, 𝛩x from 0◦ to 180◦, and fre-

quency f from 0 to 10 kHz, the level curve approach will not suffice because of the

extra variable. Therefore, a mean power over frequency is used as a parameter in the

form of

̄W = 1
nf

nf∑

i=1
W. (10)

This parameter condenses the results, allowing another “level curve-like” plot. The

only disavantage to this approach is the loss of detailed frequency analysis.

To simplify even further for preliminary analysis, the observed transmitted power

is a sum of all transmission coefficients

W = WT
u +WT

w +WT
v +WT

𝜃x, (11)

so that details about a waves direction are not overwhelming. The results are shown in

Fig. 7, in which x shows the variation for pitch angles and y axis shows the variation

in “rolling angles” (𝛩x), for a R = 6 mm configuration.

One may immediately detect in Fig. 7 some low transmission areas, which are

highlighted by black contours: Region I on the left with curves from 30◦ to 120◦ and

rolling angles up to about 140◦ (about 63% of mean power transmission); Region II,

a small one with low transmission levels (about 34%), with curves from 180◦ to 330◦
but rolling angles only going up to 60◦; and Region III, the region of lowest lowest

Fig. 7 Condensed mean

transmission for out-of-plane

flexural vibration acting over

a R = 6 mm curve
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Fig. 8 Power coefficients

for a flexural out-of-plane

vibration acting over a single

R = 6 mm curve (without

the “rolling aspect”)
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transmission (reaching below 12%), with curves going from 180◦ all the way up to

a full loop, and rolling angles above 120◦.

These regions can be explained by an in-plane level curve map with R = 6 mm,

resulting in Fig. 8. In- and out-of-plane vibrations are changed in a very similar man-

ner, so it makes clear why regions above 180◦ are prone to low transmission lev-

els, given that a small radius will increase the cutoff frequencies, especially the first

(𝛺1 ≈
√
EIz∕𝜌A∕3R2

).

Thus, for a small radius, the best configuration possible is a series of 𝛩x = 180◦
curves aligned in the same plane.

As the radius increases (now R = 50 mm), the low transmission regions for pitch

angles 𝛩y > 180◦ vanishes, as illustrated in Fig. 9.

This phenomenon is due to the low cutoff frequencies, which result from the high

transmission region discussed in the previous section. Hence, for 50 mm radius, the

“medium-to-low transmission” region appears as the best option, with curve angle

𝛩y from 20◦ to 120◦ and rolling angles higher than 95◦ (highlighted by the black

line).

When the radius is increased even further, the tendency is to obtain more trans-

mission overall. However, starting from R = 100 mm, low power transmission starts

to concentrate between 30◦ < 𝛩y < 60◦ and high rolling angles.

Fig. 9 Condensed mean

transmission for out-of-plane

flexural vibration acting over

a R = 50 mm curve.

Highlighted area shows the

minimum transmission

region
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In general, from a vibrations perspective, best case scenario is when the struc-

ture have a succession of 50◦ curves, aligned in the same plane. Evidently, for more

complex structures, the curves radius should be considered to yield better results.

6 Conclusions

The present work investigated the changes in power flow of vibrational waves, while

propagating through smooth bent slender beams. This paper presented the wave

propagation approach, as well as the standardization of results using power coef-

ficients.

Subsequently, an FEM program was constructed to simulate the proposed

approach. The power coefficients were obtained through this numerical tool. Ana-

lytical validation was carried out, with all formulations for both in-plane and out-of-

plane vibrations. Differences between the two were discussed.

With the validated FEM tool, the effects of in-plane and out-of-plane vibrations

were discussed in detail. Moreover, different setups for obtaining results from each

case were proposed. First, longitudinal and torsional waves do not transmit mean-

ingful vibrational power through curves, except for curve angles nearing 0◦ and for

one “discontinuity line” given by 𝛺d(𝛩y) ≈ 0.9𝛺1 − 4.3∕(𝛩2
y +

√
𝛩y).

Both in- and out-of-plane vibrations are similarly changed when their paths have a

smooth bend. Longitudinal waves are analogous to torsional ones, and flexural waves

on the same plane of a curve are analogous to the plane perpendicular to the curve.

For the effects of in-plane vibration, three major regions were identified: medium-

to-low transmission/wide frequency range, very low frequency/low frequency range

and high transmission.

Finally, for sequential out-of-plane curves, the radius plays a huge influence over

overall transmitted power. If the cutoff frequencies are sufficiently high, two impor-

tant low-transmission regions exist for curve angles above 180◦. Otherwise, the pre-

viously mentioned medium-to-low region is highlighted, showing that the lowest

transmission values are between 30◦ and 120◦ curves.

This study aimed to enlighten the curvature effects on vibrations, for the benefit

of engineers to design of new products that use curved slender structures.
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Nonlinear Identification Using
Polynomial NARMAXModel
and a Stability Analysis of an Aeroelastic
System
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José M. Balthazar and David F. C. Zúñiga

Abstract This work describes the nonlinear identification applied to an aeroelas-

tic pitch-plunge system using polynomial NARMAX model and a stability analy-

sis. The apparatus is available and consists of a wing typical section with pitch and

plunge degrees of freedom. The identification procedure aims to obtain the param-

eters for the mathematical model including the torsional stiffness as a quadratic

polynomial function. The candidate structure to the polynomial model is obtained

from discretization of a continuous-time state-space model and the predictions are

obtained via the identification procedure using simulated data. The simulation is per-

formed considering the aerodynamics with free stream velocity increased within an

established velocity range which includes the flutter phenomenon. In future work,

a data acquisition from the experimental apparatus will be performed. The NAR-

MAX model indicates a polynomial function of fourth order for the nonlinearity and

a stability analysis, discussed in this work, mapping the nonlinear regions.

Keywords Nonlinear system identification ⋅ Polynomial NARMAX model

Aeroelastic system ⋅ Stability analysis

1 Introduction

Recent researches exhibited aeroelastic systems presenting phenomena such as limit

cycle oscillation (LCO) occurring due to nonlinearities. Many of these studies

demonstrate the aeroelasticity of aircraft wings based on typical section model. In

other work O’Neil et al. [1] demonstrates the LCO caused by the nonlinearity and

considers the free stream velocity as the main parameter to increase oscillations

amplitudes.
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The stiffness nonlinearity is also estimated through the experiments by O’Neil

and Strganac [2], where they proposed an aeroelastic system composed by a rigid

wing supported by cubic springs. Indeed, unstable regions associated to LCO are

predicted and evidences of internal resonance behavior is verified in the apparatus.

Strganac et al. [3] presents the identification of a limit cycle oscillation (LCO)

in an aeroelastic system, concluding that sometimes a nonlinear approach is neces-

sary for designing a control system. Based on this research other control strategies

are discussed for the suppression of LCO, for instance the nonlinear adaptive con-

troller. More recently Xu et al. [4] report a nonlinear flutter control law based on state

variable feedback that is designed to suppress the LCO to an airfoil system with a

hysteresis as nonlinearity.

The researches on nonlinear aeroelastic systems have been stated and the system

identification has been performed to identify or adjust the characteristic of the struc-

tural nonlinearities (cubic, quadratic, hysteresis or freeplay) using its time history.

In this work an identification procedure is applied to the experimental apparatus of a

typical section intending the posterior stability analysis based on the model perfor-

mance. In the model the torsional spring has a nonlinear stiffness that behaves as a

fourth order polynomial, and for which the nonlinear effects are investigated in this

research. The experimental apparatus is presented in Fig. 1.

Some methodologies for nonlinear identification are described in the literature.

Popescu et al. [5] presents the identification the nonlinearities based on nonparamet-

ric estimation. On the other hand, the parametric estimation proposed by Kukreja

[6] is performed using the polynomial NARMAX (nonlinear autoregressive moving

average exogenous) to identify the quadratic nonlinearity from the experimental data

of an airfoil without control surface. Additionally, Obeid [7] presented a closed loop

feedback control of an airfoil with high angles of attack using a NARMAX model.

Fig. 1 Airfoil apparatus available at the laboratory
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In this way, the nonlinear model is identified from simulated data using a poly-

nomial NARMAX model to capture the static nonlinearity due to torsional spring.

The identified model explains the system behavior, e.g., the flutter phenomenon that

causes the limit cycle oscillations, useful to the feedback control system design and

the evaluation of the airfoil performance. This procedure will be used in a future

work with the experimental data acquisition of the experimental apparatus.

2 Nonlinear Aeroelastic Model

The equations of motion of the typical section as depicted in Fig. 2 consider two

degrees of freedom as functions of time, plunge h(t) and pitch 𝛼(t), for the dynamic

response of the system. The trailing edge control surface angle 𝛽 is considered as a

control input of the model.

The coefficients of the dynamic model consist of mass mT , linear stiffness kh
related to the translation (plunge), moment of inertia I

𝛼
and nonlinear torsional stiff-

ness k
𝛼
(𝛼) related to the angular displacement of pitch. The inherent damping of

the system is modeled as produced exclusively by the deformation of the elastic ele-

ments. The damping coefficients are obtained from modal testing.

Aerodynamic lift L and moment M are external efforts applied to the dynamic

system. Some coefficients are chosen in accordance with experimental apparatus as

shown in Table 1 and some others are defined according to O’Neil [8]. The mathe-

matical model of the aeroelastic system is presented as

[
mT mTx𝛼b

mTx𝛼b I
𝛼

]{
ḧ
�̈�

}
+
[
ch 0
0 c

𝛼

]{
ḣ
�̇�

}
+
[
kh 0
0 k

𝛼
(𝛼)

]{
h
𝛼

}
=
[
−L
M

]
(1)

The influence of aerodynamic lift and moment on the airfoil is considered under

free stream velocity V∞. Additionally, the model includes the angular position of

the control surface 𝛽. With some coefficients adopted as referred in Kukreja [6], the

quasi-steady aerodynamic lift and moment are evaluated as

Fig. 2 Typical section

model of an airfoil [9]
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Table 1 Continuous model coefficients

Coefficient Value Coefficient Value Coefficient Value

mT (kg) 8 𝜉h 0.022 k
𝛼0

(N m/rad) 3

Ia (kg m
2
) 0.0505 𝜉

𝛼
0.03 k

𝛼1
(N m/rad

2
) −30

xa (m) 0.084 ch (N s/m) 6.6373 k
𝛼2

(N m/rad
3
) 6600

b (m) 0.1064 c
𝛼

(N s/m) 0.2939 k
𝛼3

(N m/rad
4
) −21000

a −0.8 kh (N/m) 2844.4 k
𝛼4

(N m/rad
5
) 48000

L = 𝜌U2bCl𝛼

[
𝛼 + ḣ

U
+
(

1
2
− a

)
b �̇�

U

]
+ 𝜌U2bCl𝛽𝛽 (2)

M = 𝜌U2b2Cm𝛼

[
𝛼 + ḣ

U
+
(

1
2
− a

)
b �̇�

U

]
+ 𝜌U2b2Cm𝛽𝛽

The nonlinear torsional stiffness is modeled as a polynomial of fourth order

k
𝛼
(𝛼, t) = k

𝛼0
+ k

𝛼1
𝛼 + k

𝛼2
𝛼
2 + k

𝛼3
𝛼
3 + k

𝛼4
𝛼
4

(3)

Rearranging the terms from Eq. 1 the stiffness and damping matrices are obtained

including the aeroelastic influence under the free stream velocity as

[
mT mTx𝛼b

mTx𝛼b I
𝛼

]{
ḧ
�̈�

}
+
[
ch 0
0 c

𝛼

]{
ḣ
�̇�

}
+
⎡⎢⎢⎣
𝜌UbCl𝛼 𝜌Ub2Cl𝛼

(
1
2
− a

)
𝜌Ub2Cm𝛼 −𝜌Ub3Cm𝛼

(
1
2
− a

)⎤⎥⎥⎦
{

ḣ
�̇�

}

+
[
kh 0
0 k

𝛼
(𝛼)

]{
h
𝛼

}
+
[
0 𝜌U2bCl𝛼
0 −𝜌U2b2Cm𝛼

]{
h
𝛼

}
=
[
−𝜌bCl𝛽
𝜌b2Cm𝛼

]
U2

𝛽 (4)

The constant value of the plunge stiffness and the coefficients of the nonlinear

torsional stiffness are informed in the Table 1, in the same way as some other neces-

sary coefficients. The system response is evaluated with constant free stream velocity

V∞ = 6 m/s. The plunge h and pitch 𝛼 responses are based on their initial conditions.

Two upper graphics on Fig. 3 show the time history for displacements with the initial

conditions h(0) = 0.1 m and 𝛼(0) = 0.01 rad. In these graphics the control surface

is located in the neutral angular position, 𝛽 = 0◦ . It is not possible to note the influ-

ence of the stiffness nonlinearity considering these responses only. The two graphics

below in the same figure show the time history for linear and angular velocities.

In Fig. 3 the nonlinear influence is very difficult to be noted, but it is better

observed in Fig. 6. After some calculations the angular moment is showed as a func-

tion of the angular displacement 𝛼, being the static nonlinearity conveniently mod-

eled as k
𝛼
(𝛼) = 3(1 − 10𝛼 + 2200𝛼2 − 7000𝛼3 + 16000𝛼4). The time history con-

siders also the free stream velocity V∞ = 6 m/s and a pitch angle of −15◦ is out-

lined as initial condition. The angular displacement is set to 𝛽 = 15◦, considering it
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Fig. 3 Time history for initial conditions h(0) = 0.1m and 𝛼(0) = 0.01 rad: a vertical displacement

and velocity; b angular displacement and velocity

positive or negative, as specified for the maximum nominal angular displacement of

the control surface.

3 Nonlinear Identification Using Polynomial
NARMAXModel

After obtaining the time history from system simulation, the nonlinear identifica-

tion procedure is applied to obtain a discrete-time model that represents the system

dynamics. The nonlinear system identification is performed considering the mea-

surement noise applied to the linear velocity and angular velocity.

System identification using only input-output experimental data allows for a black

box model. In this section the nonlinear identification using a polynomial NARMAX

model is applied, but the structure selection is in some sense based on the continuous-

time model from the previously section. Therefore the known system, narrow box

model, is used and a relationship between a continuous-time model and an identi-

fied discrete-time model is possible. Finally the model is not totally unknown and

a plunge stiffness estimating can be obtained based on the procedure presented in

Kukreja [6].

The nonlinear identification using polynomial NARMAX model consists in the

representation of the system output as a polynomial function of y(n), u(n) and e(n)
with nonlinearity order l. It follows

y(n) = Fl[y(n − 1),… , y(n − ny), u(n − nu − d),… , u(n − nu), (5)

e(n − 1),… , e(n − ne)] + e(n)

The following section presents the structure obtained to represent the system

dynamics. The model structure have two outputs, ḣ(n) and �̇�(n), with delays ny = 1,



102 R. C. M. G. Barbosa et al.

nu = 1, ne = 1, dead time d = 0, nonlinearity order l = 5 corresponding to polyno-

mial of fourth order to represent the torsional stiffness k
𝛼
(𝛼). The nonlinear identifi-

cation deals with a typical least square problem. As so, the nonlinearities appear in

the regression matrix and the problem is linear in the parameters. It becomes

y(n) = 𝜓
T (n − 1)�̂� + 𝜉(n) (6)

3.1 Model Structure Selection

The model structure considered to this system is represented by a NARMAX model

based in results obtained by Kukreja [6], whose quadratic stiffness type is described

in [10]. In order to describe the model used in the identification process, it is mass-

normalized as

ẍ +M−1Cẋ +M−1Kx = M−1Q (7)

where, ẍ =
{

ḧ
�̈�

}
and Q =

{
−L
M

}
.

Rearranging, the continuous-time model is represented as

{
ḧ
�̈�

}
=
{

−k1h − [k2𝜇 + pk
𝛼
(𝛼)] − c1ḣ − c2�̇�

−k3h − [k4𝜇 + qk
𝛼
(𝛼)] − c3ḣ − c4�̇�

}
(8)

The coefficient 𝜇 = U2
𝛽 and coefficients k1, k2, k3, k4, c1, c2, c3, c4 are described

according to [6] and p = (mxab)∕b and q = m∕d.

The discrete-time nonlinear model used in the identification procedure is obtained

from discretization of Eq. 8 by applying the Forward Euler Method given by

ḣ(n) = ḣ(n − 1) + Tḧ(n − 1) (9)

�̇�(n) = �̇�(n − 1) + T�̈�(n − 1)

Note that the variable n is the multiple of sample period. The sampling rate of

1 kHz is defined considering the fastest system dynamics and the Nyquist Theorem.

The NARMAX structure follows the discrete-time model represented as

ḣ(n) = 𝜃1ḣ(n − 1) + 𝜃2h(n − 1) + 𝜃3𝛼(n − 1) + 𝜃4𝛼(n − 1)2 + 𝜃5𝛼(n − 1)3

+ 𝜃6𝛼(n − 1)4 + 𝜃7𝛼(n − 1)5 + 𝜃8�̇�(n − 1) + 𝜃9u(n − 1) + 𝜃10eḣ(n − 1) + eḣ(n)
�̇�(n) = 𝛾1�̇�(n − 1) + 𝛾2h(n − 1) + 𝛾3𝛼(n − 1) + 𝛾4𝛼(n − 1)2 + 𝛾5𝛼(n − 1)3

+ 𝛾6𝛼(n − 1)4 + 𝛾7𝛼(n − 1)5 + 𝛾8ḣ(n − 1) + 𝛾9u(n − 1) + 𝛾10e�̇�(n − 1) + e
�̇�
(n) (10)

All parameters used above are shown in Table 2.
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Table 2 Discrete-time model parameters

Model term Identified Model term Identified

𝜃1: 0.9986 0.9986 𝛾1: 0.9938 0.9938

𝜃2: −0.3601 −0.3601 𝛾2: 0.5099 0.5105

𝜃3: −0.0041 −0.0041 𝛾3 : −0.0737 −0.0737

𝜃4: 0.0018 0.0019 𝛾4 : 0.2006 0.2024

𝜃5: −0.3944 −0.4060 𝛾5: −44.1227 −44.1026

𝜃6: 1.2548 0.9508 𝛾6: 140.3904 135.9770

𝜃7: −2.8680 21.3053 𝛾7: −320.8924 −238.6472

𝜃8: −0.0000 −0.0000 𝛾8 : −0.0011 −0.0011

𝜃9: −0.0019 −0.1110 𝛾9 : −0.0035 −0.2021

𝜃10: −0.9986 −0.9529 𝛾10: −0.9938 −0.9515

3.2 Identification of the System with Noise

A polynomial NARMAX model is used to identify the system with noise. The identi-

fication procedure consists on the application of an Extended Least Square Estimator

(ELS) as indicated by Aguirre [11]. This procedure basically consists in identifying

a NARX model to follow with the construction of a NARMAX structure, including

the moving average.

The coefficients used for the system simulation are extracted from the relationship

between discrete-time and continuous-time model [6]. In order to prepare the method

for future real applications considering the experimental data, the noise is modeled

as a Gaussian distribution with covariance 𝜎
2
ḣ
= 0.04 × 10−5 and 𝜎

2
�̇�
= 0.12 × 10−4.

The signal to noise ratio is 99.51 dB and 37.60 dB for the outputs ḣ(n) e �̇�(n), respec-

tively.

The process is excited by the angular displacement of the control surface 𝛽, with

an aleatory signal having constant levels of 12 s each as depicted in Fig. 4. The ELS

procedure is repeated until iteration k = 10 and the identified parameters is presented

in the Table 2.

To present the model output predictions, by convenience, the same data set is used

for identification and validation. The identification data corresponding to 2∕3 of the

complete data set. The Fig. 5 shows the output predictions of the identified model.

From the identified discrete-time model parameters is possible to return to the

continuous-time model following the relationships presented in Eq. 11. The identi-

fied stiffness parameters are present in the Table 3.

k
𝛼0
=

b2 − k4𝜇
m∕d

, k
𝛼1
=

b3
m∕d

, k
𝛼2
=

b4
m∕d

, k
𝛼3
=

b5
m∕d

, k
𝛼4
=

b6
m∕d

(11)
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Fig. 4 Excitation signal for system identification

Fig. 5 a Output prediction for the linear velocity, ḣ(n), b enlarged time for linear velocity, c output

prediction for the angular velocity, �̇�(n) and d enlarged time for angular velocity
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Table 3 Parameters of the nonlinear stiffness

Parameter Value Identified

k
𝛼0

3 2.99

k
𝛼1

−30 −30.24

k
𝛼2

6600 6592.35

k
𝛼3

−21000 −20325.51

k
𝛼4

48000 35672.42

Fig. 6 A representation of

the nonlinear behavior:

moment as function of the

angular displacement

where, d = m(I
𝛼
− mx2

𝛼
b2) and k4 = (−mx

𝛼
b2𝜌Cl𝛼 − m𝜌b2Cm𝛼)∕d. The

parameters b2, b3, b4, b5 and b6 are obtained from the identified discrete-time model

parameters following b2 = 𝛾3∕(−T), b3 = 𝛾4∕(−T), b4 = 𝛾5∕(−T), b5 = 𝛾6∕(−T) and

b6 = 𝛾7∕(−T), with sample period T .

The identified parameters of the nonlinear torsional stiffness are also suitable

to represent the static nonlinearity present on the system dynamics. Although the

parameter k
𝛼4

has a very different value in comparison with the true one, the nonlin-

earity is in the range of interest, between the operational limits for the pitch angle,

around 1.5◦. The Fig. 6 is obtained with simulated of continuous-time model. The

static nonlinear behavior is well captured by the model. The nonlinearity of this sys-

tem is assumed as symmetric.

4 A Stability Analysis

Stability analysis is important to map the regions where exists stable behavior

for open loop operation. In cases where the instability occurs, the solution is the

improvement of the control design in order to stabilize the system. One of the goals
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of this paper is the stability analysis using the identified model. The root locus and

the damping factor diagram as function of the free stream velocity and the nonlinear

stiffness are presented.

A continuous state-space model may be expressed as follows

ẋ(t) = f
𝜇
[x(t)] + g[x(t)]𝜇𝛽 (12)

where the state-space variables are defined as

{
x1(t), x2(t), x3(t), x4(t)

}T =
{
h(t), 𝜃(t), ḣ(t), �̇�(t)

}T
(13)

and consequently their derivatives are

{
ẋ1(t), ẋ2(t), ẋ3(t), ẋ4(t)

}T =
{
ḣ(t), �̇�(t), ḧ(t), �̈�(t)

}T
(14)

Therefore the dynamic equation may be written as Eq. 15. Note that the term f
𝜇
(x)

depends of the nonlinearity and will compound the Jacobian matrix. The control

surface angle is null for the stability analysis.

⎧⎪⎨⎪⎩

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎫⎪⎬⎪⎭
=
⎡⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−k1 −[k2𝜇 + pkx2 (x2(t))] −c1 −c2
−k3 −[k4𝜇 + qkx2 (x2(t))] −c3 −c4

⎤⎥⎥⎥⎦

⎧⎪⎨⎪⎩

x1(t)
x2(t)
x3(t)
x4(t)

⎫⎪⎬⎪⎭
+
⎡⎢⎢⎢⎣

0
0
g3
g4

⎤⎥⎥⎥⎦
𝜇𝛽 (15)

It can be observed that the term kx2 (x2) is k
𝛼
(𝛼) and due the nonlinearity it is

necessary to calculate the Jacobian matrix for evaluating the eigenvalues. Therefore

the Jacobian matrix is given by

J =
⎡⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−k1 −[k2𝜇 + p(k
𝛼0 + k

𝛼1𝛼(t) + k
𝛼2𝛼(t)2) + k

𝛼3𝛼(t)3] −c1 −c2
−k3 −[k4𝜇 + q(k

𝛼0 + k
𝛼1𝛼(t) + k

𝛼2𝛼(t)2) + k
𝛼3𝛼(t)3] −c3 −c4

⎤⎥⎥⎥⎦∣𝛼=𝛼op
(16)

It is possible verify the eigenvalues of the Jacobian matrix depends merely on the

state values 𝛼. For this system the origin is a equilibrium point, therefore, the Fig. 7a

shows the root locus for x = {0, 0, 0, 0}T .

From Fig. 7a, it can be seen that the instability occurs when the eigenvalue results

cross the imaginary axis. This occurs for free stream velocity around 15.32 m/s, as

shown in the Fig. 7b. In the instability region starts a LCO and the natural frequency

of oscillation varies according to the angular displacement, because of the nonlin-

earity effects k
𝛼
(𝛼).
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Fig. 7 a Root locus for the free stream velocity variation considering the equilibrium point and b
damping factor as functions of the free stream velocity

4.1 Influence of the Pitch Angle

According to equations of motion it is possible to verify that the nonlinearity affects

the stability when a negative damping factor occurs, resulting in unstable behavior.

The system becomes unstable due to the nonlinearity as shown in Fig. 8. The figure

is obtained varying the system operation point (named xop). In this case, the angular

displacement sweep occurred because the torsional stiffness is a function of the 𝛼

values.

Figure 8 shows six curves from the left to the right, each one corresponding to a

free stream velocity of the range {6; 6.5; 7; 7.5; 8; 8.5} in m/s. The angular displace-

ment is varying from 0 to 0.07 rad. Note that for reduced values of the free stream

velocity, below 7 m/s, the nonlinearity does not affect the system stability. Above

Fig. 8 a Root locus for variation in nonlinear stiffness considering six free stream velocities and

b enlarged region
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Fig. 9 a Root locus for V∞ = 8m/s varying 𝛼 between 0 and 0.07 rad, b damping factor as function

of a nonlinear stiffness

this value, the system is unstable depending on the angular displacement 𝛼 of the

operation point.

The root locus considering the free stream velocity of 8 m/s with the stiffness

varying approximately from 0 to 27.07 Nm/rad is shown in Fig. 9. It is observed

in Fig. 9b the region of instability for stiffness varying from 6.11 to 8.56 Nm/rad.

Through several simulations it is possible to note that the LCO frequency increases

as the stiffness rises, considering the stability region.

5 Conclusion

The nonlinear identification applied to an aeroelastic pitch-plunge system is pro-

posed using a polynomial NARMAX model estimated from the extended least square

estimator (ELS) just to obtain unbiased estimation even with colored noise in mea-

sures. The output predictions and an estimation of the static nonlinearity is presented

in order to validate the identified model. The estimates converges quite quickly

within ten iterations.

The nonlinear identification results in a suitable nonlinear torsional stiffness. The

proposed analysis is validated to be applied with the experimental data from the

aeroelastic system. Also, the identified system can be applied to the stability analysis

and the control system design with nonlinear approach.

From the stability analysis, the mapping of the unstable regions is outlined based

on the eigenvalues of the Jacobian matrix. It concludes that the nonlinearity can lead

the system to be dynamically unstable. The aeroelastic system is stable for velocity

less than V∞ = 15.32 m/s even with the nonlinearity.

On the other hand, the system becomes unstable with the increase of the pitch

angle and the free stream velocity. It is assumed an excursion of control surface

with maximum angle of 15◦, positive or negative, for normal operational in flight,
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but larger angles are tested for the identification process. In this work, the system is

excited by the control surface from −30◦ to 30◦.

The root-locus is outlined for angular displacement between 0 and 0.07 rad cor-

responding to maximum angular displacement of 4.01◦. The system operating in the

unstable region can return to stable region by the action of the control surface leading

on eigenvalues crossing the imaginary axis and returning to the left plane.
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Dynamics of Helicopters with DVA
Under Structural Uncertainties

Diogo B. P. de Oliveira, João Flávio P. Coelho, Leonardo Sanches
and Guilhem Michon

Abstract This paper evaluates the effects and effectiveness of a dynamic vibration

absorber (DVA) designed for mitigation of unstable oscillations of helicopters when

it is on the ground, i.e.: ground resonance phenomenon. For this purpose, firstly, a

parametric analysis shows the stability charts obtained for helicopters without and

with DVA as function of the fuselage and rotor damping levels. Also, the present

paper is interested on determining the influence of designed DVA devices on the

stability robustness of the aircraft once uncertainties are considered in the blade’s

hinge stiffness. In this sense, 𝜇-analysis is used to predict the smallest stiffness per-

turbation that leads the helicopter to instability. Indeed, it is not possible to assure

the same properties of mechanical components which may alters the effectiveness of

the designed DVA. Therefore, the assessment of stability robustness is verified and

compared between both aircrafts (without and with DVA). The results showed for

both helicopters, if proper combination of fuselage and rotor damping is considered,

stability robustness is verified. Also, the inclusion of DVA device on helicopters does

not affect the aircraft stability robustness.

Keywords Helicopter ground resonance ⋅ Dynamic vibration absorber

𝜇-analysis ⋅ Stiffness uncertainty
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1 Introduction

The ground resonance is a phenomenon that can occur in helicopters with hinged

and hingeless blades and it happens when the fuselage oscillations excite one or

more rotor modes, which creates a wobble of the rotor center of gravity. This makes

the rotor effective mass couples with the vibration of the fuselage (fuselage mode),

which in turn excites the rotor modes. The continuation of this process increases the

displacements the rotor and the fuselage experience, leading to the aircraft destruc-

tion [2–4].

When it comes to analyzing the helicopter ground resonance instabilities, it is

important to study all the relevant parameters of the system and their effects on

the overall stability. Wang and Chopra show in their study that when a least stable

mode is improved due to blade dissimilarities, the other modes become less stable

[15]. Indeed, dynamic systems are susceptible to failure and aging of its components

that may appear randomly, compromising its nominal operation, which can lead to

damage of the structure. Sanches et al. [10] verified the existence of new instability

regions on the ground resonance phenomenon as blade dissimilarities were taken

into account.

Since the mechanical properties might evolve in time, it is important to address, in

these cases, a robustness analysis namely 𝜇 synthesis. The method was often applied

to robust control design of dynamical system under perturbations [5, 7]. It is pos-

sible to assure the robustness of the controlled system with respect to the pertur-

bations level of any properties [11]. For instance, with the application 𝜇-synthesis,

researches could determine the smallest stiffness deviation (from the nominal value)

that leads the aircraft to the ground resonance phenomenon [9].

Concerning the vibration isolation in helicopters, several studies were addressed

to conceive passive, semi-active and active methodologies. Dynamic vibration

absorber (DVA) composes the anti-resonant isolation system (ARIS) applied to mit-

igation the vibration induced by the rotor in helicopters [6, 8] and also to chatter

suppression in turning operations [12, 14].

Generally, the dynamic vibration absorber (DVA) parameters (mass, stiffness, and

damping) are of great relevance to mitigate the instabilities or reduce the vibration

amplitudes. These parameters might be designed properly according to the primary

system. However, since mechanical properties of the aircraft can be modified along

its operational life and between two identical elements, the DVA might develop new

instabilities regions.

The objective of this work is to assess the influence of the DVA attached to a heli-

copter on its stability. Firstly, it is verified the damping necessary on the fuselage and

on the rotor to mitigate the unstable oscillations. Later, through a robustness analy-

sis, it is determined the minimum blade’s stiffness perturbation value that destabilize

the aircraft. All these results will be compared with a helicopter without DVA.
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2 Mechanical Model

The helicopter studied in this work, shown in Fig. 1 has been simplified according to

the model used in [9, 10]. The fuselage, modeled as a rigid body with mass mf , has

one translational movement x(t) along its lateral direction. The spring attached along

the x-direction has stiffness Kx and the damping, modeled as a viscous damper, has

coefficient Cx. The helicopter at its equilibrium position has the center of mass of

the fuselage (point O) coincident with the origin of the inertial reference frame (X0,

Y0, Z0).

The rotor system comprises one rigid rotor hub and an assembly of N blades and

it revolves at a speed 𝛺. The blades have mass mb and moment of inertia Izb around

the z-axis (located at its center of mass). The blades have stiffness Kbk and damping

coefficient Cbk at point B, which is where the rotor head and the fuselage are joined

by a rigid shaft.

The radius of gyration is defined by the length b and a is related to the rotor eccen-

tricity. For each kth blade there is an in-plane lead-lag motion 𝜑k(t) and an azimuth

angle 𝜓k(t) = 𝛺 t + 2𝜋(k − 1)∕Nb with respect to the x-axis. The origin of the rota-

tional reference frame (x, y, z) is parallel to the inertial one and is located at the

geometric center of the rotor hub (coincident at point O). Aerodynamic forces on the

blades are not taken into account. Such an assumption is quite realistic since the heli-

copter is on the ground and the vibration induced in ground resonance phenomenon

has greater effects than aerodynamic forces generated by the rotor.

Fig. 1 Sketch of the mechanical model: a general view and b blade view
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The spring-mass-damping vibration system has mass ma, stiffness Ka and damp-

ing coefficient Ca. Note that it translates xa(t) with respect to the inertial frame. The

mechanical system equations of motion are obtained by applying Lagrange’s equa-

tions of the kinetic (T) and potential (V) energies and the virtual work (𝛿W) of the

external forces and moments applied to the system. Sanches et al. [10] derived the

energies expressions for the helicopter with hinged blades. The ones used in this

work are slightly different for additional terms must be considered concerning the

effects of the spring-mass-damping vibration system (SMDVS). The equations of

motion in the matrix form are expressed as:

𝐌(t)�̈�(t) +𝐆(t)�̇�(t) +𝐊(t)𝐱(t) = 𝐅𝐞𝐱𝐭(t) (1)

with the generalized coordinates 𝐮(t) = [x(t) xa(t) 𝜑1(t) 𝜑2(t) 𝜑3(t) 𝜑4(t)]. The matri-

ces𝐌(t),𝐆(t) and𝐊(t) correspond to the mass, damping and stiffness matrix, respec-

tively. 𝐅𝐞𝐱𝐭(t) is equal to zero since all blades possess the same inertial and geomet-

rical properties. The matrices have periodic terms, as shown by Eq. (2).

𝐌(t) =
⎡
⎢
⎢
⎢
⎣

1 0 −rm1 sin(𝜓1) −rm2 sin(𝜓2) −rm3 sin(𝜓3) −rm4 sin(𝜓4)
0 1 0 0 0 0

−rb1 sin(𝜓1) 0 1 0 0 0
−rb2 sin(𝜓2) 0 0 1 0 0
−rb3 sin(𝜓3) 0 0 0 1 0
−rb4 sin(𝜓4) 0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

(2a)

𝐆(t) =
⎡
⎢
⎢
⎢
⎣

rca rmdva+rcf −rca rmdva −2𝛺rm1 cos(𝜓1) −2𝛺rm2 cos(𝜓2) −2𝛺rm3 cos(𝜓3) −2𝛺rm4 cos(𝜓4)
−rca rca 0 0 0 0
0 0 rcb1 0 0 0
0 0 0 rcb2 0 0
0 0 0 0 rcb3 0
0 0 0 0 0 rcb4

⎤
⎥
⎥
⎥
⎦

(2b)

𝐊(t) =

⎡
⎢
⎢
⎢
⎢
⎣

𝜔
2
armdva+𝜔

2
x −𝜔2

armdva 𝛺
2rm1 sin(𝜓1) 𝛺2rm2 sin(𝜓2) 𝛺2rm3 sin(𝜓3) 𝛺2rm4 sin(𝜓4)

−𝜔2
a 𝜔

2
a 0 0 0 0

0 0 𝛺
2r2a1+𝜔

2
b1 0 0 0

0 0 0 𝛺
2r2a2+𝜔

2
b2 0 0

0 0 0 0 𝛺
2r2a3+𝜔

2
b3 0

0 0 0 0 0 𝛺
2r2a4+𝜔

2
b4

⎤
⎥
⎥
⎥
⎥
⎦

(2c)

𝐅𝐞𝐱𝐭(t) =
[
0 0 0 0 0 0

]T
(2d)

where for k = 1,… , 4:

rmk =
bmbk

mf +
∑Nb

i=1 mb i

rmdva =
bma

mf +
∑Nb

i=1 mb i

rbk =
bmbk

b2 mbk + Izbk
r2ak = a rbk

rcf =
Cx

mf +
∑Nb

i=1 mb i

rcbk =
Cbk

b2 mbk + Izbk

rca =
Ca

ma
𝜔
2
a =

Ka

ma
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Table 1 Mechanical properties for Helicopter Type 1 and 2

Fuselage Rotor DVA

mf = 2902.9
kg

mbk = 31.9 kg a = 0.2m b = 2.5m ma = 16.1 kg

𝜔x = 6.0𝜋
rad/s

𝜔bk = 3.0𝜋 rad/s Izbk = 259 kg m
2

𝜔a = 6.02𝜋 rad/s

Cx = 2284.9
N s/m

Cbk = 172.8 N s m/rad Ca = 22.67 N s/m

𝜔
2
x =

Kx

mf +
∑Nb

i=1 mb i

𝜔
2
bk =

Kbk

b2 mbk + Izbk

3 Helicopter Numerical Data

In this work two helicopters are to be considered: one helicopter with no DVA (Heli-

copter Type 1) and one helicopter with DVA (Helicopter Type 2). The fuselage and

rotor properties are the same for both types. The DVA attached in Helicopter Type

2 has its parameters defined through the application of a differential evolution algo-

rithm to find the optimal DVA parameters (i.e., ma 𝜔a), whose variables define the

design vector. In this process, the DVA damping coefficient Ca is calculated by con-

sidering the optimal damping ratio 𝜁opt [13], given as:

Ca = 2 𝜁a ma 𝜔a (3a)

(
𝜁a
)
opt =

√
3𝜇

8(1 + 𝜇)3
(3b)

where 𝜇 = ma∕m.

The objective functions adopted for DVA parameters optimization are the expo-

nential growth of the dynamical system and the DVA mass since high mass values

are not benefit for aeronautical applications. An analysis of the Pareto distribution

(i.e.: ma vs. 𝜔a) leads to determining the DVA parameters used in along this work,

(see Table 1).

4 Influence of Fuselage and Rotor Damping

According to the literature [2, 10, 15], the ground resonance phenomenon is charac-

terized by the dynamic coupling of the poorly damped cyclic rotor modes with that

from the fuselage. The fact of adding a DVA in the fuselage changes its modal char-
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(a) Helicopter Type 1 (b) Helicopter Type 2

Fig. 2 Peak of the real part of eigenvalues

acteristics. The fuselage consists, afterwards, into a dynamic system represented by

two lumped mass/spring/damping elements (see Fig. 1, having two resonance fre-

quencies and two modes of vibration. This fact might become helpless the use of

DVA on helicopters.

The partial purpose of this work consists to assess the influence of including the

SMDVS in the fuselage on the damping level (i.e., at fuselage and rotor) on ground

resonance instabilities. For this, Coleman’s Transformation is used [1]. It introduces

modal coordinates of an isotropic rotor (i.e., all the blades have the same properties)

in the equations of motion which were written considering the blades displacement

on the rotor rotating frame. By applying the referred transformation to Eq. (1), the

equations of motion become time independent.

The stability of such system is guaranteed if the real part of all the eigenvalues

𝜌 are negative over all revolving speeds 𝛺. Moreover, the maximum value (peak)

reached by the real part of the eigenvalue plays a big role on the ground reso-

nance phenomenon, in which it is related to the exponential growth of the helicopter

dynamical responses. Figure 2 shows the stability analysis, evidenced by the peaks,

for different combinations of Cx and Cb for the helicopter without DVA (Helicopter

Type 1) and for helicopter with DVA (Helicopter Type 2). The stability analysis is

done for the rotor speed comprised between 0 ≤ 𝛺 ≤ 10 Hz and the damping coef-

ficients between 0 ≤ Cx ≤ 10,000 N s/m and 0 ≤ Cb ≤ 5000 N m s/rad.

The unstable oscillations (colored region, i.e., positive peaks) happen if improp-

erly combination of fuselage and rotor blade damping level is considered. It can be

seen that the behavior of those regions are deeply different between both helicopters,

especially with respect to the values for Cb. The unstable oscillations for Helicopter

Type 2 (i.e., white region) is achieved with a smaller value for Cb (Cb = 1407 N

m s/rad when Cx = 0), when compared to helicopter 1 (Cb > 5000 N m s/rad when

Cx = 0). This means that the DVA is good for the overall system stability, and by

applying it to the fuselage, the helicopter can make use of smaller values for damp-

ing, which makes the rotor system more compact and less complex. Also, one can see

that the stability of the system is more sensitive to variations of Cb, since with small
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values of that damping even if the values for Cx are high, the system is still unstable.

Concerning the peaks, as shown in Fig. 2, the critical portion, i.e., the highest peaks

of real part are present in the region which combines small values for both fuselage

and rotor blade damping. Although for Helicopter Type 2 the values for peaks are

smaller, both helicopters exhibit the same behavior.

5 Stability Robustness Analysis

Dynamic systems are susceptible to parameters variations, which can be caused by

failure and aging of its components that may appear randomly, and may compro-

mise its nominal operation. In the case of the helicopter, the blade stiffness may have

variations in its natural frequency, affecting the system (helicopter + DVA) dynam-

ics. It may be catastrophic if new instability regions are created. This topic aims in

analyzing the stability robustness of the aircraft once blade stiffness perturbations

are considered from the nominal values. The analyses are done for both helicopters

(Helicopter Type 1 and 2) and later compared, in order to capture the influence of

the DVA on the aircraft stability robustness.

For this purpose, since Coleman’s Transformation is no more valid once rotor

anisotropy is taken into account, the continuous Linear Time Periodic (LTP) system

must be considered—Eq. (1). The robustness analysis of LTP systems is considered

by transforming it into a LTI system and later applying 𝜇-analysis [5]. In order to

apply those methods, one needs first to cast the LTP system into the Linear Frac-

tional Transformation (LFT) form. In order to do so, the lifting procedure is applied

to provide a LFT, which leads to uncertainty structures with highly-repeated param-

eters.

Considering a diagonal matrix 𝚫(t) comprising bounded real unknown parame-

ters which represent the uncertainties:

𝚫 = diag
[
𝛿1, 𝛿2, … , 𝛿k

]
(4)

the system must be nominally stable when 𝚫 = 𝟎. The primary purpose of the para-

metric robustness analysis is to find the smallest uncertainties 𝛿k which destabilize

the closed-loop system 𝛿(𝚫). Floquet’s method can be applied to perform this anal-

ysis, it is very CPU time-consuming, which is why the 𝜇-analysis, a much faster

technique, is used on the LFT model. A comparison between both methods is shown

in [9], in which the authors conclude that both yield the same results.

5.1 Ground Resonance Parametric Analysis

The uncertainties introduced in the dynamic system in Eq. (1) are related to blade

hinge stiffness and are presented as a function of in-plane lead-lag resonance fre-

quency squared. In this work, only uncertainties in the 1st blade are accounted for
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the robustness analysis. By assuming 𝜔b1 as the nominal natural frequency of the

blade, the modified frequency 𝜔b1 is given by:

𝜔
2
b1 = (1 + 𝛿1)𝜔b1 (5)

The first robustness analysis is to be done by choosing different combinations of Cb
and Cx that gives a specific peak (h) of the real part of the eigenvalues. One admits

therefore the same stability level of the aircraft for all set of damping coefficients

(Cb, Cx) considered. In order to do so, first the curve that gives combinations of both

damping that yield the peak h = −0.5 (i.e., the maximum real part of the eigenvalue)

has to be found. Afterwards, for each pair of (Cb, Cx), the 𝜇-analysis determines the

minimal perturbation 𝛿1 that destabilizes the Helicopter Types 1 and 2, accordingly

to Tables 2 and 3, respectively. Note that the analysis was carried out at four different

rotor speeds 𝛺 = [2, 4, 6, 8] Hz. It is important to note from Tables 2 and 3 the mini-

mal perturbation 𝛿1 that leads the helicopter unstable remains practically constant at

a given rotor speed and for different set of (Cb, Cx). Also, the result does not change

when DVA is considered. Moreover, the perturbation 𝛿1 evolves as the rotor speed

increases, which means the system is less robust in low rotor speeds.

By taking into account Eq. (5), one can note that the system is extremely robust

once the perturbations less than −1 lead to negative blade natural frequencies. This

means the helicopter can lose one of its rotor blade stiffness and still be a stable

system with those combinations of damping at these rotating speed. Also, consider-

ing both helicopters have the same stability level (h = −0.5) for all set of damping

coefficients, the fact of adding the DVA on the system does not change the aircraft

robustness. This is concluded since the same perturbations (𝛿1) are obtained for HT1

and HT2 systems. From a practical point of view, this fact means only positive con-

tritions of the DVA for the helicopter.

Table 2 Perturbations 𝛿1 for Helicopter Type 1

Cb (N m s/rad) Cx (N s/m) 𝛺 = 2 Hz 𝛺 = 4 Hz 𝛺 = 6 Hz 𝛺 = 8 Hz

𝛿1 𝛿1 𝛿1 𝛿1

1290 7688.5636 −1.0586 −1.2821 −1.6038 −2.0627
1668 6261.2820 −1.0586 −1.2827 −1.6039 −2.0627
2047 5515.3003 −1.0586 −1.2829 −1.6040 −2.0628
2426 5049.8542 −1.0586 −1.2830 −1.6040 −2.0628
2805 4741.7484 −1.0586 −1.2831 −1.6040 −2.0628
3184 4518.1112 −1.0586 −1.2832 −1.6040 −2.0628
3563 4344.1412 −1.0586 −1.2832 −1.6040 −2.0628
3942 4217.9519 −1.0586 −1.2832 −1.6041 −2.0628
4321 4119.8877 −1.0586 −1.2832 −1.6041 −2.0628
4700 4025.2589 −1.0586 −1.2833 −1.6041 −2.0628
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Table 3 Perturbations 𝛿1 for Helicopter Type 2

Cb (N m s/rad) Cx (N s/m) 𝛺 = 2 Hz 𝛺 = 4 Hz 𝛺 = 6 Hz 𝛺 = 8 Hz

𝛿1 𝛿1 𝛿1 𝛿1

1131 7031.7050 −1.0586 −1.2828 −1.6040 −2.0628
1533 5126.2450 −1.0586 −1.2835 −1.6041 −2.0628
1935 4218.1842 −1.0585 −1.2837 −1.6042 −2.0629
2337 3733.5303 −1.0585 −1.2838 −1.6042 −2.0629
2740 3386.5867 −1.0585 −1.2839 −1.6042 −2.0629
3142 3167.5168 −1.0585 −1.2839 −1.6042 −2.0629
3544 3016.2318 −1.0585 −1.2840 −1.6042 −2.0629
3946 2859.3988 −1.0585 −1.2840 −1.6042 −2.0629
348 2803.9668 −1.0585 −1.2840 −1.6042 −2.0629
4750 2651.9956 −1.0585 −1.2840 −1.6042 −2.0629

(a) Helicopter Type 1 (b) Helicopter Type 2

Fig. 3 Rotor stability according to rotor speed 𝛺 and perturbations 𝛿1

The previous analysis for both Helicopter Type 1 and Helicopter Type 2 was done

considering only the peak of the maximum real part as h = −0.5. However, it is

important to assess the different perturbations related to all peak levels (h). As seen

before, the perturbations are practically constant along the curve for a specific peak

of real part, which means that every combination of fuselage and rotor damping

that lies in that curve will give the same perturbation as result. With that in mind,

it is possible to analyze the minimum destabilizing perturbations for different h by

choosing one set of damping coefficients. Here, the peaks chosen are −0.6, −0.4,

−0.2, 0, 0.2, 0.4 and 0.6. In this case, the perturbations were evaluated in the range

(i.e., 0 ≤ 𝛺 ≤ 10 Hz) in which the helicopter is on the ground. Figure 3 shows the

minimum perturbations at different rotor speed allowed to guarantee stability for

helicopters HT1 and HT2.
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(a) Helicopter Type 1 (b) Helicopter Type 2

Fig. 4 The influence of fuselage damping on the rotor stability sensitivity due to blade stiffness

asymmetry: a) Helicopter Type 1 Cb = 4500 N s/m; b) Helicopter Type 2 Cb = 1250 N s/m

It is worth mentioning that the 𝜇-analysis method can only be applied when the

system is nominally stable. Therefore, the analysis is not performed in the range

4 ≤ 𝛺 ≤ 6 Hz since, when h > 0, the system is unstable. Also, in order to be able to

compare all the results, the analysis was not performed in that region for h < 0.

One can see from Fig. 3a that in the region 0 ≤ 𝛺 ≤ 3 Hz, the perturbations are

practically the same for all h, with some small differences. This means that the peak

of the real part has almost no influence in the robustness of the system. However, in

the range of 3 ≤ 𝛺 ≤ 4 Hz, it is possible to see that the perturbations are different

between positive and negative h values. In fact, the higher the peak (from negative

to positive h), the less robust the system is, since the perturbations are bigger. In

the region 6 ≤ 𝛺 ≤ 10 Hz the perturbations are exactly the same for all values of h,

meaning that the peak has absolutely no effect in the robustness of the system. The

same conclusions can be made for Helicopter Type 2 in Fig. 3b. Also, by comparing

the results for Helicopter Type 1 and Helicopter Type 2 in the region 3 ≤ 𝛺 ≤ 4 Hz,

it is possible to see that the perturbations for the helicopter with DVA are greater

than the ones for the helicopter without DVA, which means that Helicopter Type 2

is more robust than Helicopter Type 1 in that region.

The robustness analysis made for different values of peak of real part does not

assess the influence of fuselage and rotor blade damping in the robustness of the

system, since for each value of h a different set of Cb and Cx is considered. There-

fore, robustness analyses are carried out by assuming isolated variations at fuse-

lage damping coefficients (see Fig. 4) and at blade damping coefficients (see Fig. 5),

respectively.

In order to evaluate the influence ofCx in helicopters robustness in Fig. 4, the rotor

blade damping was considered fixed at Cb = 4500 N m s/rad for Helicopter Type 1

and Cb = 1250 N m s/rad for Helicopter Type 2 and the fuselage damping was varied

from 900N s/m ≤ Cx ≤ 9000N s/m with increments of 900 N s/m. For ease to see
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(a) Helicopter Type 1 (b) Helicopter Type 2

Fig. 5 The influence of blade damping on the rotor stability sensitivity due to blade stiffness

asymmetry: a) Helicopter Type 1 Cb = 4500 N s/m; b) Helicopter Type 2 Cb = 1250 N s/m

the results, for both cases the fuselage damping were given subscript index in which

Cx1 = 900 N s/m, Cx2 = 1800 N s/m, and so on until Cx10 = 9000 N s/m.

One can see from Fig. 4 that the perturbations are practically the same in all the

range of rotor speed, with the exception being in the region around 𝛺 = 3Hz. At this

region one may conclude that the helicopter robustness is sensitive to the fuselage

damping, specially concerning low values of Cx that yield higher perturbations val-

ues. Also, with the exception of that region, both helicopters have the same values

for perturbation, meaning that the DVA has no effect on the robustness of the system,

which corroborates with the conclusions made with the analysis of the influence of

the peak of real part.

Now the influence of rotor blade damping is evaluated in Fig. 5. For both heli-

copters the fuselage damping is fixed at Cx = 9000 N s/m and the rotor blade damp-

ing is varied from 500N m s/rad ≤ Cb ≤ 4500N m s/rad. One can see from the

results that the perturbations are exactly the same in all the range of rotor speed,

which means that the rotor blade damping has no influence on the robustness of both

systems. Also, both helicopters have the same values for perturbation, which once

again corroborates with the previous conclusions.

6 Conclusion

Electrical or mechanical devices might be attached to the fuselage of helicopters,

which may be modeled as spring-mass-damping vibration systems and can interact

with the helicopter ground oscillations, which might alter the stability characteristics

of the helicopter. The influence of the SMDVS parameters added to the fuselage of

a helicopter were under investigation in the present paper. Firstly, the influence of

fuselage and rotor blade damping, specially their combination, was evaluated. The
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results showed that in order to vanish the instabilities due to ground resonance, the

system should have the proper combination of damping. Also, it was possible to see

that the addition of the DVA is good for the overall system stability, since by applying

it to the fuselage, the helicopter can make use of smaller values for damping, which

makes the system more compact and less complex.

Lastly, a stability robustness analysis of the entire system was performed by

changing the stiffness properties of one rotor blade for the helicopters with and with-

out DVA to assess how the system handles those variations. The results showed that

for both helicopters, as the rotor speed increases, the system become more robust.

It was seen that with the proper combination of fuselage and rotor blade damping,

the system can be so robust as to lose one of its rotor blade stiffness and still remain

stable. Also, the analysis showed that in the region around the natural frequency of

the fuselage, the robustness of the system is sensitive to the fuselage damping, since

different values of it yield different values of perturbations.
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Cable Dynamic Modeling
and Applications in Three-Dimensional
Space

Sebastião C. P. Gomes , Elisane B. Zanela
and Adriana E. L. Pereira

Abstract Dynamic modeling of cables in three-dimensional space is a problem
with great difficulty and complexity. This article discusses a new dynamic modeling
formalism, including applications in the underwater environment. It is assumed that
the cable is formed by rigid links connected by elastic fictitious joints, allowing
elevation, azimuth and torsion movements. Algorithms have been developed to
automatically generate the dynamic model for any number of links selected for the
discrete approximation of the flexible structure. Three practical situations are tested:
cable out of the water with free terminal load; underwater considering dynamics
with or without ocean current; with terminal load fixed to the seabed. Constraint
forces obtained through proportional and derivative control were applied to the
terminal load to fix it to the seabed. The algorithms were determined from the
Euler-Lagrange formalism, and in all situations the simulations showed physically
consistent results.

Keywords Cable ⋅ Dynamic ⋅ Modeling ⋅ Algorithms ⋅ Automatic
generation model ⋅ Underwater applications

1 Introduction

Cable dynamic modeling is a complicated task because of its complexity, especially
in the case of movement in three dimensional space. Many applications involving
cable dynamics occur in the underwater environment: risers, mooring lines, towing
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cables, etc., can be examples of offshore oil industry applications (see Fig. 1). Most
studies found in the literature address the modeling of these structures using Finite
Element Methods [1, 2]. Sun et al. [3] introduced a finite element method to
modeling a cable towed body.

Some authors have developed their works performing a cable static analysis
[4, 5], using the method of finite differences. Discrete approach was used specially
in static analysis: Raman-Nair and Williams [6] have used a discrete model to
reproduce structural forces acting into a flexible marine riser under effects of flow
and pressure of fluid within the riser; Zhu et al. [7] proposed a discrete model to
determine the forces that an umbilical cable exerts on a ROV (Remotely Operated
Vehicle).

When the discrete formalism is used in dynamic modeling, usually lumped mass
approach is applied, considering the dynamics evolving in a single plane [8].

Finite differences are widely used in cable modeling. Matulea et al. [9] used
finite differences to determine the riser’s static equilibrium configuration. Lee et al.
[10] applied finite differences method with lumped mass to model a flexible pipe.

In short, most of the articles that deal with cables treat the problem as restricted
to a single plane using finite elements or finite differences for the dynamic model.

Fig. 1 Floating system of oil production (adapted from: http://diariodopresal.wordpress.com/
petroleo-e-gas)
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Other works focus interest in static analysis of axial forces on the cable. Gobat in
his thesis provides details about these main methods used in cable dynamics [11].

This paper introduces a new method to automatically obtain vectors and matrices
elements of a cable dynamic model. We use a discrete formalism to represent the
continuous flexibility from a chain of rigid links connected by fictitious elastic
joints. Each joint allows three elastic movements: elevation, azimuth and torsion.
We take as a basis the work of Gomes et al. [12], where a discrete formalism was
used to model a robotic manipulator with a single flexible link. In that case, the
flexibility occurred on a single plane and each joint had one degree of freedom.
Based on this work, Pereira et al. [13] developed the analytical modeling of a cable
considering three links, but with spatial flexibility, i.e. the discrete formalism was
used without the motion being restricted to a single plane. In Gomes et al. [14]
algorithms were presented to automatically generate the dynamic model, for any
number of links to be used in discrete approximation of the continuous cable
flexibility. The present article shows this theory in three possible applications,
considering also underwater currents acting as external efforts. Automatic retrieval
models are very important due to the great complexity of the equations that turn
unfeasible obtain these models manually through the application of the
Euler-Lagrange equations.

2 Dynamic Modeling

In this work it is considered a cylindrical cable with constant radius, fixed at one
extremity (fixed base) and free at the other, where there is a terminal load mc. The
basic principle of this modeling theory is to approximate the continuous flexibility
by a discrete equivalent one, consisting of rigid links connected by flexible fictitious
joints, as showed in Fig. 2. Each fictitious elastic joint allows three movements:
elevation θieð Þ, azimuth θiað Þ and torsion θiTð Þ, i=1, . . . , n. Therefore, this dynamic
system has 3n degrees of freedom when considering n links. In each fictitious joint
is positioned a reference frame, as shown in Fig. 3 for the first two systems. The
first is an inertial system (X0 Y0 Z0). It was adopted the following convention for
reference systems: all Z axes point to the center of the Earth and thus, the XY axes
form horizontal planes. The Yi axes are parallel to the projection of the link i on the
Xi−1Yi−1 plane, as showed in Figs. 3 and 4. For instance, Y1 is parallel to r in Fig. 3.
Figure 4 also shows the three angular positions coordinates of the first joint and the
three others of the second fictitious joint. As all links are rigid, torsion motions are
considered as rotations about the longitudinal axis of the links.
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Fig. 2 Continuous flexibility
and its discrete approximation

Fig. 3 Angular coordinates
of the first joint
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It is simple to find a homogeneous transformation matrix between two con-
secutive reference systems. For example, the homogeneous matrix that relates
X0Y0Z0 and X1Y1Z1 systems has the form:

H01 =

cos θ1a sin θ1a 0 l1 sin θ1e sin θ1a
− sin θ1a cos θ1a 0 l1 sin θ1e cos θ1a

0 0 1 l1 cos θ1e
0 0 0 1

2
664

3
775 ð1Þ

The products between successive homogeneous matrices generate another
homogeneous matrix that can relate any mobile reference system to the base inertial
system of the structure. Thus, the spatial position of the center of mass of any link
in the inertial frame may be determined as functions of the lengths of the links and
the angular position coordinates, as specified below k=1, . . . , nð Þ:

xk = lk
2 sin θke sin ∑

k

i=1
θia

� �
+ ∑

k− 1

j=1
lj sin θje sin ∑

j

i=1
θia

� �� �

yk = lk
2 sin θke cos ∑

k

i=1
θia

� �
+ ∑

k− 1

j=1
lj sin θje cos ∑

j

i=1
θia

� �� �

zk = lk
2 cos θke + ∑

k− 1

j=1
lj cos θje

8>>>>>>>><
>>>>>>>>:

ð2Þ

Fig. 4 The first two
reference systems and its
angular coordinates
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Arising from the same formalism, spatial coordinates of the terminal load
(written in the inertial frame) have the form:

xc = ∑
n

j=1
lj sin θje sin ∑

j

i=1
θia

� �� �

yc = ∑
n

j=1
lj sin θje cos ∑

j

i=1
θia

� �� �

zc = ∑
n

j=1
lj cos θje

8>>>>>>><
>>>>>>>:

ð3Þ

The time derivatives of the Eqs. (2) and (3) can be easily obtained and thus the
Lagrangian of the system can be obtained only as function of the angular position
and velocity coordinates (see [14] for more details). Each new link considered in the
discrete approach means three degrees of freedom more in the model. Thus, when
n links are considered, the dynamic model will have 3n degrees of freedom. The
application of the 3n Euler-Lagrange equations allows finding the dynamic model
in the form:

I θ ⃗ð Þθ ⃗̈+Cθ ⃗̇+Kθ ⃗+ f ⃗ θ ⃗, θ ⃗̇
� �

+ G⃗ θ ⃗ð Þ= τ ⃗ ð4Þ

where θ ⃗= θ1e θ2e . . . θne θ1a θ2a . . . θna θ1T θ1T . . . θnT½ �T is the angular position
vector, θie, θia and θiT are elevation, azimuth and torsion angles of the link
i i=1, . . . , nð Þ, I θ ⃗ð Þ is the inertia matrix, C is the friction coefficient matrix, K is the
elastic constant matrix, f ⃗ θ ⃗, θ ⃗̇

� �
is the Coriolis-centrifugal vector, G ⃗ θ ⃗ð Þ is the

gravitational vector and τ ⃗ is the external torques vector. All matrices are (3n × 3n)
and vectors are (3n × 1). It is important to explain that the matrices of the friction
coefficients and elastic constants have the same configuration and also, all matrices
of the dynamic models are symmetric.

3 Generic Algorithm

Equation (4) was manually developed considering 1, 2, 3 and 4 links and so it was
possible to identify growth patterns for matrices and vectors of the dynamic model,
shown below in the form of algorithms that can automatically generate the vectors
and matrices of the model, for any adopted number of links.
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3.1 Algorithms for the Elements of Inertia Matrix

To facilitate understanding, the inertia matrix I is represented through nine sub-
matrices, as indicated below, where indices e, a and t mean elevation, azimuth and
torsion, respectively.

I =
Ie Ne Te
Ia Na Ta
It Nt Tt

2
4

3
5 ð5Þ

I is symmetric and thus, Ia =NT
e ; It =TT

e ;Nt =TT
a . As there is a dynamic

decoupling of the torsion movement with respect to elevation and azimuth motions,
submatrices Te and Ta are null and Tt is diagonal. Elements of Tt are constant and
equivalent to IiT = mi ̸2ð Þr2i , where mi and ri are mass and radius of the link i,
respectively, with i=1, . . . , n. Due to the symmetry of the inertia matrix the
interest is to determine the rules for the automatic generation of Ie,Ne and Na.

The submatrix Ie can be generated from the following algorithm:

ð6Þ

As Ie is symmetric, Ie j, ið Þ= Ie i, jð Þ ⋅ Iie is the elevation rotational inertia moment
of the link i.
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The submatrix Ne can be generated from the following algorithm:

ð7Þ
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The submatrix Na can be generated from the following algorithm:

ð8Þ

Iia is the azimuth rotational inertia moment of the link i.
The algorithm for generation of Coriolis-centrifugal vector can be seen in [15].
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3.2 Gravitational Vector, Friction and Elastic Coefficients
Matrix Generation

Observing the equations of the dynamic model for cases 1, 2, 3 and 4 links, one
realizes that the generation of the first n elements of the gravitational vector obeys
the following rule:

Gi = li
mi

2
+ ∑

n

k= i+1
mk

� �
g sin θie ð9Þ

with i=1, . . . , n. The others elements for i= n+1, . . . , 3n are nulls. Torques
caused by buoyancy forces have the same structures as in Eq. (9), but with a
negative sign (gravitational and buoyancy forces acting in opposite senses). As the
geometry of the links is known, masses of fluid equivalent to the volume of each
link are also known, so that Eq. (9) can easily be adapted to generate buoyancy
torques.

As explained previously, the matrices of friction coefficients and elastic con-
stants have the same generation rule, showed at the following algorithm (for the
elastic constants matrix):

ð10Þ

kie i=1, . . . , nð Þ is the elevation elastic constant of the joint i. Algorithm (10)
generates the elevation submatrix Ke. An identical rule is used to generate the
azimuth submatrix Ka, considering, in this case, the azimuth elastic constant
kia i=1, . . . , nð Þ. The same generation rule is also used to the torsion matrix KT ,
considering kiT i=1, . . . , nð Þ. The complete elastic constant matrix K is (3n × 3n),
as well as the friction coefficient matrix C, and both are written in the form:
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K =
Ke 0 0
0 Ka 0
0 0 KT

2
4

3
5;C=

Ce 0 0
0 Ca 0
0 0 CT

2
4

3
5 ð11Þ

4 Simulation Results

Simulations were performed considering two application situations in the under-
water environment. In both situations, the cable has one end fixed to a structure at
the water surface. Its other end is free (or fixed to the seabed) and simulations are
performed with or without considering ocean current. The hydrodynamic drag is
modeled in a simple way, where the drag force is proportional to the square of the
relative velocity between the structure and the water. Table 1 shows physical
parameters used to perform the simulations (all others parameters can be seen in
[15]).

The first simulation shows the cable in free fall from an initial spatial configu-
ration in the underwater environment. Figure 5 shows a sequence of frames with the
cable spatial configuration, from zero to 22 s every 2 s (from left to right). The
cable terminal load appears in red in the animations with the simulation results. As
explained before, it was used a simple model for the hydrodynamic drag, propor-
tional to the square of the relative velocity between the fluid and the structure. This
external effort was primarily responsible for the slow cable movement in free fall,
seen in Fig. 5. Figure 6 shows results of a simulation similar to the previous one,
but considering the cable out of the water. The frames also are from zero to 22 s
every 2 s. In this case, cable’s dynamic is obviously faster. Figure 7 shows the two
cases simultaneously, each with spatial configurations on the same graph. The
three-dimensional animations of the spatial configuration of the cable (Figs. 5, 6
and 7) allow showing that the simulation results give a great sense of physical
reality. Figures 5 and 6 only show evolutions of the spatial configuration of the
cable, while Fig. 7 shows these evolutions in the same graph, making it possible to
visualize the dimensional scale in m.

Table 1 Principal physical
parameters used in
simulations

Parameters Numerical
value

Physical meaning

Lc 1200 m Cable length
n 32; 24 Number of links
ri 0.01 m Radius of each link

(constant)
me 7850 kg/m3 Cable specific mass

mc 600 kg Terminal load mass
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Figure 8 shows 36 s of simulation with frames every 2 s, considering an ocean
current acting on the cable with speed of 3.5 m/s. Drag forces was considered
proportional to the square of the relative velocities between fluid and structure. The
cable is initially at rest in its vertical position and with free terminal load. The ocean
current starts from zero initial time and then imposes a significant dynamic dis-
turbance on the cable. If the cable terminal load is a remotely operated vehicle
(ROV), the ocean current can to induce dynamic disturbances to the cable that
would be transmitted to the vehicle, thus hindering the performance of any control
strategy.

Fig. 5 Free fall simulation, underwater, from zero to 22 s, frames every 2 s

Fig. 6 Free fall simulation, out of water, from zero to 22 s, frames every 2 s

Fig. 7 Free fall simulations, out of water and underwater, from zero to 40 s, frames every 1 s
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The following simulation was performed considering the terminal load fixed to
the seabed. The cable was placed in an initial spatial configuration (first frame of
Fig. 10). The position of the terminal load at this initial configuration has been
taken as a reference to a Proportional and Derivative (PD) control, applied to
maintain the terminal load fixed in this reference (constraint forces). These forces
were applied in the CM of the terminal load and in the three dimensions, generating
torques in the last joint, which enter as external torques in Eq. (1). Figure 9 shows
the elevation angles and Fig. 10 shows the cable spatial configuration, with frames
every 2 s. It is observed that the control was effective in maintaining the terminal
load in its original initial position, which could be on the seabed. This simulation is
in a single plan, so that all azimuth angles are zero. We verified that the cable
stabilization trend in search of its final spatial configuration (catenary static equi-
librium), which is fully achieved after 180 s.

spatial cable configurations (m), (frames every 2s)
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-600
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-50
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50-60 -40 -20 0 20 40 60

Fig. 8 Cable under the
action of underwater current,
from 0 to 36 s, frames every
2 s

time (s)
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Fig. 9 Elevation angles,
terminal load fixed to the
seabed, considering 24 links
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5 Conclusions

Nature follows growth patterns in their phenomena, but we cannot always identify
them. The discrete approach proposed in the modeling formalism approximates the
real continuous flexibility when increasing the number of links. Each new added
link increases in three degrees of freedom the cable dynamics and its equations
grow considerably in size and complexity. It was possible to identify patterns of this
growth, allowing to the proposition of algorithms that automatically generate
dynamic models for any number of links considered in discrete approximation.

The simulations were chosen in order to know a priori what should be the
dynamic behavior of the cable and, in all cases the results were in agreement with
the physically expected. Torsion motion was considered in cable modeling because
in future applications, there is an interest in having a ROV as a cable terminal load.
In this case, forces applied to the ROV can generate torsion in the cable. It has been
specially developed software that performs three-dimensional animations of the
cable’s spatial configuration, for better visualization and analysis of simulation
results. Three-dimensional animations allowed us to identify a great sense of
physical reality. Increasing the number of links implies a better discrete approxi-
mation of the continuous flexibility. It was observed that over forty links the
discrete model closely matches the continuous flexibility.

In future works it is planned to build an experimental support sensed by digital
cameras to validate simulations and physical parameters identification strategies.

Fig. 10 Frames showing spatial cable configuration considering the terminal load fixed to the
seabed (from zero to 30 s, frames every 6 s, 24 links)
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Optimization of the Fundamental
Frequency of Mechanical Structures
by Using the Bidirectional Evolutionary
Structural Method

Ederval de Souza Lisboa , João Baptista Dias Moreira ,
Emanuel Moutinho Cesconeto and Walter Jesus Paucar Casas

Abstract A hierarchical structure is a structure that can be described by different
characteristic lengths, and is such that its layout in the smaller scale (microscale)
affects its behavior in the bigger scale (macroscale). Each hierarchical level is
treated as a continuous medium composed of one or more materials. The simul-
taneous design of multiphase composite structures aims at finding the optimal
distribution of materials such that one or more structural parameters are maximized
(or minimized). In this work, the Bi-directional Evolutionary Structural Opti-
mization method, BESO hereinafter, is applied to the maximization of the funda-
mental frequency of a structure subjected to a constraint on the total volume of
materials used. Numerical experiments are made in order to validate the imple-
mentation and confirm the efficacy of the method in optimizing the topology of the
structure.
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1 Introduction

Hierarchical structures are structures that can be described in varied scales with
different characteristic lengths, so that a structural element in a certain scale is
composed by periodic substructures in a smaller scale. Each hierarchical level may
be treated as a continuous medium, where the material properties on the macro scale
are evaluated through a homogenization process considering the micro structure’s
materials and layout. The design of composite materials aims at finding the dis-
tribution of the base material in the microstructure by using topology optimization
techniques in order to reach desired material properties.

The simultaneous design with multiple phases of material and composite
structures is still limited. For instance, on the design of composite structures, Huang
and Xie [1] use the BESO method to solve the problem of minimum compliance of
structures with multiple materials, while Huang and Xie [2] study the problem of
maximizing the frequency of multimaterial structures, this problem is in force in
works by Xu and Xie [3], Liu et al. [4] and Long et al. [5], among others.

Zuo et al. [6] highlight that fundamental frequency optimization is important in
engineering, given that it is desirable to modify the natural frequencies spectrum
distribution so as to avoid any resonance situation in a larger interval of excitation
frequencies. As the natural frequency is associated with the performance of the
macrostructure, microscale optimization is seldom studied.

In this context, the objective of this work is to develop an approach of simul-
taneous design, optimizing the fundamental frequency of the system through the
BESO method. The design variables describe the distribution of material in both
macro and micro levels. In this approach the physical properties of both materials
used in the macroscale optimization are composed via homogenization of the
microstructures, and these in turn are composed by isotropic materials. These
microstructures are also optimized, so as to approach the ideal physical properties
for a given structure.

2 Theoretical Background

2.1 BESO Method for Fundamental Frequency
Optimization

The modal behavior of an undamped system can be analyzed by means of (1).

K−ω2M
� �

u= 0 ð1Þ

The k-th natural frequency ωk and its corresponding mode uk are related through
Rayleigh’s quotient given by (2).
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ω2
k =

uTkKuk
uTkMuk

ð2Þ

Consider the objective of maximizing the k-th natural frequency of a structure
described by a discrete mesh using a predetermined volume of material. To every
element in the meshed domain is assigned a value of 1 or xmin indicating the
presence or absence of material, respectively. In this context, the problem may be
presented as in (3) and (4) according to Huang and Xie [2]:

Maximize: f ðxÞ=ωk ð3Þ

Subject to: V*− ∑
N

i=1
xiVi =0

xi = xmin or 1ð Þ
ð4Þ

V* is the prescribed volume fraction, meaning the ratio between the volume that the
structure should occupy and the total volume of the domain. N is the number of
elements in the domain, and Vi is the fraction of the total volume that the i-th
element occupies. The binary design variable xi indicates if the structure occupies
the i-th element, and the small value xmin (e.g. 10

−6) corresponds to a region in the
domain with no material.

2.2 Interpolation Scheme for the Material Properties

For the solid-void design, the material’s density and Young modulus are functions
of the design variable. Given that with the SIMP (Solid Isotropic Material with
Penalization) method the ratio between elementary mass and stiffness is extremely
high for small xi values (e.g. after applying power law penalization to the stiffness
and linear interpolation to the density), artificial localized modes appear in regions
with low density. Huang et al. [7] proposed an alternative interpolation scheme
where the mass/stiffness ratio is kept constant, as given by Eqs. (5) and (6):

ρ xminð Þ= xminρ1 ð5Þ

E xminð Þ= xminE1 ð6Þ

A better interpolation scheme takes the explicit form shown in Eqs. (7) and (8),
according to Huang and Xie [2]:

ρ xið Þ= xiρ1 ð7Þ

Optimization of the Fundamental Frequency … 143



E xið Þ= xmin − xPmin
1− xPmin

1− xPi
� �

+ xPi

� �
E1 ð8Þ

P is called the penalty exponent and xi is 1 if the i-th element is composed of the
corresponding material, 0 if otherwise. Further details may be find in [7].

2.3 Frequency Optimization in Hierarchical Structures

The objective function for dynamic problems in multiscale structures can be written
as shown in Eqs. (9) through (14), according to Zuo et al. [6]:

Find: x= xmac, xmic, 1, xmic, 2
� �

xmaci , xmic, 1i , xmic, 2i = xmin or 1
� � ð9Þ

Maximize: f ðxÞ=ωk ð10Þ

Subject to: K−ω2
kM

� �
uk = 0 ð11Þ

∑
M

i=1
xmaci Vmac

i =Vmac ð12Þ

∑
N

j=1
xmic, 1j Vmic, 1

j =Vmic, 1 ð13Þ

∑
N

j=1
xmic, 2j Vmic, 2

j =Vmic, 2 ð14Þ

V is the volume, and the superscript mac represents the macromodel and mic
represents the micromodel of the structure. The subscripts i and j correspond to the
i-th and j-th element of the macromodel and the micromodel, respectively.

In this problem the vector x is composed by xmac, which describes the macro-
model layout, and xmic,1 and xmic,2, which describe the micromodels corresponding
to each of the phases present. This means that xi

mac can assume a value of 0, in
which case the properties for the i-th element are given by the homogenization of
the microstructure defined by xmic,1, or a value of 1, in which case the
microstructure defined by xmic,2 is used instead.

For both macro and micromodels the design variable takes binary values cor-
responding to the presence or absence of a certain phase. As the design variables in
the two micromodels vary over the same domain, from now on they will be called
only xmic, requiring a distinction between xmic,1 or xmic,2 when necessary.
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ωk represents the k-th natural frequency associated with the structure. Equation (12)
describes the volume constraint on the macromodel, which controls the material
distribution on the macroscale. Vmac correspond to the volume fraction of the
predefined macro phase, where Vi

mac is the fraction of the total domain occupied by
the i-th element in the macro domain. Similarly, Eqs. (13) and (14) describe volume
constraints on the microscale of the first and second phases, respectively, i.e., Vj

mic,1

is the volume of the j-th element in the first micromodel and Vmic,1 is the prescribed
fraction of volume of the first phase in the micromodel; Vj

mic,2 and Vmic,2 have
analogous meanings but for the second micromodel.

2.4 Sensitivity Analysis

The element mass matrix m and the element stiffness matrix k, both of the
macromodel, and the material constitutive matrix D of the micromodel, are defined
respectively by Eqs. (15), (16) and (17), as shown by Zuo et al. [6], being necessary
components for the sensitivity analysis. The penalized relations for the stiffness and
constitutive matrix come from the SIMP model and are valid for both macro and
micro levels of the structure.

m xmaci

� �
= xmaci m1

i + 1− xmaci

� 	
m2

i ð15Þ

k xmaci

� �
= xmaci

� �Pk1i + 1− xmaci

� �Ph i
k2i ð16Þ

D xmicj


 �
= xmicj


 �P
D1

j + 1− xmicj


 �P� �
D2

j ð17Þ

The derivatives for the global mass matrix M and stiffness matrix K, and for the
material constitutive matrix D of the micromodel are obtained through Eqs. (18),
(19) and (20), respectively. According to Zuo et al. [6]:

∂M
∂xmaci

=m1
i −m2

i ð18Þ

∂K
∂xmaci

=P xmaci

� �P− 1 k1i −k2i
� � ð19Þ

∂D
∂xmicj

=P xmicj


 �P− 1
D1

j −D2
j


 �
ð20Þ
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2.5 Macroscale Sensitivity Analysis

Deriving the k-th natural frequency from Rayleigh’s quotient (2) with respect to the
i-th design variable in the macrolevel, normalizing the eigenvectors with respect to
the mass matrix, and using the definition of the derivatives given by Eqs. (18) and
(19), the sensitivity of the k-th natural frequency for the macromodel is obtained in
Eq. (21), as shown by Zuo et al. [6]:

αmaci =
∂ωk

∂xmaci
=

1
2ωk

uTk P xmaci

� �P− 1 k1i − k2i
� �

−ω2
k m1

i −m2
i

� �h i
uk ð21Þ

2.6 Microscale Sensitivity Analysis

The micromodel describes the microstructure of the phases present in the macro-
model. This microstrucuture is then homogenized to get the effective material
properties used in the macrostructure. The homogenized matrix DH is calculated
according to Eq. (22), over the domain Y of the base cell described by the variable
xmic. The procedure used to calculate DH is explained in a series of papers by
Hassani and Hinton [8–10], and a detailed computational implementation may be
found, for instance, in Andreassen and Andreasen [11].

DH =
1
Yj j
Z
Y

D I− buð ÞdY ð22Þ

D represents the constitutive matrix of the material in the microstructure, I is
identity matrix, b is strain matrix in the micromodel and u the displacement field.

The stiffness matrix ki may be calculated according to Eq. (23), assuming a 2D
domain, by imposition of a periodic boundary condition, where the displacement
fields u are chosen so that the strain b is uniform [1,0,0]T, [0,1,0]T and [0,0,1]T:

ki =
Z
Vi

BTDHBdVi ð23Þ

B represents the strain matrix and Vi the i-th element volume.
Differentiating the k-th natural frequency from Eq. (2) with respect to the j-th

variable of the micromodel, Eq. (24) is obtained:

∂ωk

∂xmicj
=

1
2ωk

uTk
∂K
∂xmicj

−ω2
k
∂M
∂xmicj

 !
uk

" #
ð24Þ
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In a finite element analysis the global stiffness matrix K is composed from the
element stiffness matrices, and the global mass matrix M is composed from the
element mass matrices. The sensitivity of the frequency with respect to the
microstructure design variable was developed by Zuo et al. [6], as given by
Eq. (25):

αmicj =
∂ωk

∂xmicj
=

1
2ωk

∑
M

i=1
uTk, i

Z
Vi

BT ∂DH

∂xmicj
BdViuk, i ð25Þ

The sensitivity of the homogenized matrix can be obtained from Eqs. (20) and
(22), obtaining Eq. (26):

∂DH

∂xmicj
=

1
Yj j
Z
Y

I−buð ÞT ∂D
∂xmicj

I−buð ÞdY

=
P xmicj


 �P− 1

Yj j
Z
Y

I− buð ÞT D1
j −D2

j


 �
I−buð ÞdY

ð26Þ

Thus, the sensitivity of the fundamental frequency with respect to the
microstructure design variables is found by substituting Eq. (25) into Eq. (26),
producing Eq. (27):

αmicj =
P xmicj


 �P− 1

2ωk Yj j ∑
M

i=1
uTk, i

Z
Vi

BT
Z
Y

I− buð ÞT D1
j −D2

j


 �
I− buð ÞdY

2
4

3
5BdVi

8<
:

9=
;uk, i

ð27Þ

To minimize oscillatory effects that occur during the optimization process, where
the same elements are repeatedly added and removed, a filtering technique is
applied. The averaged sensitivity with respect to time is given in Eq. (28), where
q is the iteration numerical index:

α̃=
1
2

αqi + αq− 1
i


 �
ð28Þ

2.7 Convergence Criteria

The evolution ratio ER is an algorithm parameter, and its importance resides in
controlling the volume variation between iterations, given in Eq. (29) for the
macromodel and in Eq. (30) for the micromodel:
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Vmac, q =Vmac, q− 1 1±ERmacð Þ ð29Þ

Vmic, q =Vmic, q− 1 1±ERmic� � ð30Þ

Vmac,q is the value of the volume in the q-th iteration, while Vmac,q−1 is defined in
the previous iteration (q − 1). Vmic,q and Vmic,q−1 are defined in the same way.

After the final volume fractions are reached the element addition/removal pro-
cess continues until the variation in the objective function for consecutive iterations
is lower than a certain threshold value. The considered variation of ωk takes into
account the last N iterations, as shown in Eq. (31):

τ=
∑N

i=1 ω
q− i+1
k −ωq−N − i+1

k

∑N
i=1 ω

q− i+1
k

≤ τ* ð31Þ

τ represents the relative variation of the objective function, τ* is the tolerance or
threshold and N is a predefined number of iterations. When this condition is sat-
isfied the system is considered to have converged and the optimization process is
stopped.

2.8 Flowchart

The flowchart in Fig. 1 shows the implementation of the BESO algorithm.

3 Results and Discussion

3.1 BESO Method for Fundamental Frequency
Optimization

A program was developed by using the methodology described in this section. It
was then tested in order to evaluate the accuracy of the implementation and to
mitigate numerical instabilities. For the finite element model four-node quadrilateral
plane strain elements were used. The results of the optimization were compared
with reference problems found in the literature.

Problem 1 Problem 1 is a two-material beam clamped at both ends with a lumped
massM = 1.4 × 10−5 kg on its center. The dimensions are 0.14 m × 0.02 m, and
the domain is discretized with 280 × 40 elements (see Fig. 2).
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Fig. 1 General scheme of the BESO method applied

Fig. 2 Problem 1, two-material beam with lumped mass and clamped at both ends
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The objective is to maximize the fundamental frequency, where each material
occupies half of the domain. Table 1 gives the properties of both materials.

The input data for the BESO method are the evolutionary rate ER = 2%, the
maximum addition ratio ARmax = 2%, τ = 0.1%, Vmac = 50%, Vmic,1 = 100%,
Vmic,2 = 100%, filtering radius rmin = 0.0015 m and penalty factor P = 3.

The results of the optimization are shown in Fig. 3, where black regions rep-
resent Material 1 and yellow regions represent Material 2. Results of the BESO
optimization implemented of this work were compared to those obtained by Huang
et al. [7]. Table 2 shows the fundamental frequencies.

Problem 2 Problem 2 considered the same beam shown in Fig. 2, but this time
taking the softer material density and stiffness close to zero to emulate voids. The
domain is discretized with 280 × 40 square elements with unitary sides, similar to
Problem 1. The beam is composed of a material whose properties are shown in
Table 3. The input data are: evolutionary rate ER = 2%, addition ratio ARmax = 2%,
τ = 0.01%, Vmac = 50%, Vmic,1 = 100%, Vmic,2 = 0%, filtering radius rmin =
0.0015 m and penalty factor P = 3.
The result obtained in this work is shown in Fig. 4, where the material is colored

black, while the simulated void is shown as white. Table 4 compares the obtained
frequencies.

Table 1 Material properties for Problem 1

Properties Material 1 Material 2

Young modulus (E) (N/cm2) 100 20
Poisson ratio (ν) 0.3 0.3
Mass density (ρ) (kg/cm3) 10−6 10−7

Fig. 3 Problem 1, results obtained in this work

Table 2 Natural frequency
for Problem 1 (rad/s)

Author ω1 ω2

Huang and Xie [2] 37.1 –

This work 38.2 115

Table 3 Material properties
for Problem 2

Properties Material

Young modulus (E) 10 N/cm2

Poisson ratio (ν) 0.3
Mass density (ρ) 1 kg/cm3
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Problem 3 Problem 3 aims to optimize the two material beam clamped at both
ends, as illustrated in Fig. 5. The domain was discretized with 80 × 40 square
elements of unitary dimensions. The objective is to maximize the fundamental
frequency where each material occupies half of the domain. Table 5 shows prop-
erties of both materials.

The input data are: evolutionary rate ER = 1%, addition ratio ARmax = 1%,
τ = 0.01%, Vmac = 50%, Vmic,1 = 100%, Vmic,2 = 100%, filtering radius rmin =
0.0015 and penalty factor P = 3.

The final structure found in this case is shown in Fig. 6, where the stiff material
is shown in black while the softer material is shown in yellow. Table 6 compares
the obtained frequencies.

Fig. 4 Problem 2, final optimized structure obtained in this work

Table 4 Natural frequency
for Problem 2 (rad/s)

Author ω1 ω2 Iterations

Huang and Xie [2] 33.7 – 55
This work 34.7 104.3 47

Fig. 5 Problem 3,
two-material beam clamped at
both ends

Table 5 Material properties
for Problem 3

Properties Material 1 Material 2

Young modulus (E) (N/cm2) 1 0.2
Poisson ratio (ν) 0.3 0.3
Mass density (ρ) (kg/cm3) 1 2
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4 Conclusions

The comparison shows that the BESO algorithm implemented in this work was
capable of optimizing the fundamental natural frequency in different structures. The
algorithm makes use of its own FEM module, thus being independent of com-
mercial FEM solvers.

The averaged sensitivity used in this work enabled to optimize the fundamental
natural frequency in agreement to most elaborated proposals of the literature, e.g.
the fundamental natural frequency obtained in this work was higher in 2.96, 2.97
and 8.21% in Problems 1, 2 and 3, when compared with values obtained by other
authors.
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Operational Modal Parameters
Identification Using the ARMAV Model
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Abstract Applied system identification is an important issue in science and
engineering. Experimental modal analysis is used to describe the dynamical
behavior of structures, in general, for a given set of input and output data. This
article deals with multidimensional modal parameters identification valid for
output-only data—operational modal analysis (OMA). This approach is interesting
when the input is not known or difficult to be measured. A linear, time-invariant and
finite dimensional mechanical system is considered, which is described mathe-
matically by an autoregressive-moving-average-vector (ARMAV) model, excited
by unknown operating forces assumed to be a white Gaussian process—a persistent
excitation. The focus of the study is, both, theoretical and practical aspects, of the
use of the ARMAV model in OMA. Specifically, it discusses the need of using an
output-vector as reference for output-only parameters identification scheme. The
model order is identified by inspection of the most significant singular values of a
block Hankel matrix derived directly from the formulation of the model. The AR
parameters matrices of the ARMAV model, contained in a companion matrix, are
determined via least-squares technique. Natural frequencies, damping factors and
modal shapes are identified by means of eigenvalues and eigenvectors of that
companion matrix. Examples using computational simulated data are presented.
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1 Introduction

Mathematical modeling is an analytical approach used to describe the dynamic
behavior of a natural phenomenon based on physical laws. System identification is
an experimental approach, where parametric models are fitted from measured data
[1]. Both approaches are important in system analysis, design and control problems.

Modal parameters can be used in analysis, modal updating via finite elements,
damage detection and control. Modal parameters identification techniques, in the
time domain, are classically based on the information contained in the impulse
response functions (IRF) or in the input-output relationship [2]. In general terms, a
modal identification test is conducted under certain laboratory conditions, where the
structure is fixed to a test bench and hammers or actuators are used to produce
controlled types of input forces, which are required to match a linear time-invariant
mathematical model, covering a certain frequency range of interest. However, in
many applications, the real operating conditions may differ significantly from those
applied during the modal tests, where the input forces are not known, or just
impossible to be measured. Parameters identification based on the knowledge of
output-only responses, without using excitation information, is known as opera-
tional modal analysis (OMA) [3]. The subject is of actual scientific and industrial
interest in mechanical and civil engineering opening a way for damage detection
and structural health analysis [1, 4–6].

OMA is present in several practical engineering applications. Lardies and Ta [5]
have used OMA to assess the structural health and damage detection of stay cables
in cable stayed bridges.

Vu et al. [6] proposed a method for the automatic identification procedure to
discriminate physical modes from spurious ones using a multivariate autoregressive
(AR) model whose parameters are estimated via a least squares (LS) method.
Zaghbani and Songmene [7] proposed a methodology based on OMA to compare
the modal parameters of machine tools, demonstrating how OMA can be indus-
trially exploited. Rainieri and Fabbrocino [8] present a literature review on auto-
mated operational modal-based damage detection for civil engineering structures.
Ramos et al. [9] performed structural identification of monuments in Portugal by
OMA to assess damage by means of vibration signature.

According to Peeters and Roeck [10], there are many methods used to perform
the OMA parameters identification. Formally, for a completely unknown input, it
can be assumed that the system is excited by a white Gaussian process known as a
persistent excitation. A multivariate linear time-invariant autoregressive-moving-
average-vector (ARMAV) model can be used to fit the data, adopting a least
squares, maximum likelihood or prediction method as optimization criterion to
calculate the model’s parameters [1, 3]. Maximum likelihood optimization proce-
dure leads to a highly non-linear minimization problem in order to calculate the
parameters of the model. The solution of such a problem has a very high compu-
tational cost, especially for the multivariable parameters case.
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The focus of the present paper is on, both, theoretical and practical aspects of the
use of the ARMAV model in OMA. Despite OMA parameters identification is a
well documented subject, some problems remains to be studied. Specifically, the
need of using a output vector as reference for an output only parameters identifi-
cation scheme. Practical aspect consists in the computational implementation of an
ARMAV model identification algorithm.

In the present technique, the OMA parameters are identified from eigen
decomposition of a companion matrix that contains the AR coefficients of the
ARMAV model obtained via least squares optimization of a block Hankel matrix
formed by correlation matrices between output measured data. The problem with
the least squares approach is the adopting an initial over parametrization of the
model order resulting in a number of spurious numerical modes that must be
separated from the true modes of the system. The correct order of the ARMAV
model is identified via inspection of the more significant singular values of the
block Hankel matrix above mentioned, using singular value decomposition (SVD).

The performance of the presented technique is demonstrated using data gener-
ated by means of computational simulation. Impulse responses (which have a type
of self-reference given by their impulsive force) and input-output data without using
excitation information are considered.

The paper is organized as follows: Next section present the multivariate
ARMAV model. The algorithm is then introduced. An application based on sim-
ulation using data from mechanical system is discussed. Finally, it is brings the
main conclusions of the work.

2 The ARMAV Model

The autoregressive-moving-average-vector (ARMAV) model is largely used in
multivariate system identification [3]. ARMAV model can represent a multivariate
time series from a linear time-invariant dynamical system by means of a multi-
variate difference equation as,

yðk+ pÞ− ∑
p

i=1
αiyðk+ p− iÞ= ∑

q

i=1
βieðk+ q− iÞ ð1Þ

where yðkÞ= y1ðkÞ . . . ymðkÞf gT are the m×1 vectors representing the measure-
ments of m outputs variables of the system at discrete time kΔt, with the superscript
“T” denoting vector transposition. The vector eðkÞ= e1ðkÞ . . . emðkÞf gT is a
non-observable stochastic m× 1 vector process of with zero mean and nonsingular
m×m covariance matrix Σ, representing the extraneous noise contained in the
measurements. The limits p and q represent, respectively, the orders of the
autoregressive (AR) and moving-average (MA) matrix parameters. The generic
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scalar elements αi’s and βi’s are, respectively, the p AR and the q MA parameter
matrices of dimension m×m.

Multivariable ARMAV model described by Eq. (1) can be converted to fol-
lowing first order difference equations as,

Yðk+1Þ=α YðkÞ+ βEðkÞ ð2Þ

where the mp×1 vectors are,

YðkÞ= yTðkÞ yTðk+1Þ ⋯ yTðk+ p− 1Þ� �T ð3Þ

EðkÞ= eTðkÞ eTðk+1Þ ⋯ eTðk+ q− 1Þ� �T ð4Þ

and the AR parameters are contained in the following mp×mp companion matrix
as,

α=

0 I 0 ⋯ 0
0 0 I . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 I
αp αp− 1 αp− 2 ⋯ α1

2
66664

3
77775 ð5Þ

and the MA parameters are contained in the mp×mq matrix as,

β=

0 0 0 ⋯ 0
0 0 0 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0
βq βq− 1 βq− 2 ⋯ β1

2
66664

3
77775 ð6Þ

Let’s define the following vectors,

YfutðkÞ= yTðkÞ yTðk+1Þ ⋯ yTðk+ p− 1Þ� �T ð7Þ

YpasðkÞ= yTðkÞ yTðk− 1Þ ⋯ yTðk− s+1Þ� �T ð8Þ

EfutðkÞ= eTðkÞ eTðk+1Þ ⋯ eTðk+ p− 1Þ� �T ð9Þ

where Yfut and Ypas are, respectively, mp×1 and ms×1 vectors and Efut is mp×1,
with the superscripts fut and pas denoting, respectively, future and past data.

Now, for a quantity of measured data of Np points, post-multiplying Eq. (2) by
Ypas Tðk− 1Þ and taking the expectation values and assuming that the process Efut

and Ypas are uncorrelated, i.e., E EfutðkÞYpasTðk− 1Þ� �
= 0, results in,
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E Yfutðk+1Þ YpasTðk− 1Þ� �
=α E YfutðkÞ YpasTðk− 1Þ� � ð10Þ

where E means the expectation operation.
Let’s define the following matrices,

Hð1Þ =E YfutðkÞ YpasTðk− 1Þ� �
=

R1 R2 ⋯ Rs

R2 R3 ⋯ Rs+1

⋮ ⋮ ⋱ ⋮
Rp Rp+1 ⋯ Rp+ s− 1

2
664

3
775 ð11Þ

and

Hð2Þ =E Yfutðk+1Þ YpasT ðk− 1Þ
h i

=

R2 R3 ⋯ Rs+1

R3 R4 ⋯ Rs+2

⋮ ⋮ ⋱ ⋮
Rp+1 Rp+2 ⋯ Rp+ s

2
664

3
775 ð12Þ

as block Hankel matrices of dimension mp×mr formed by m×m covariance
matrices defined as,

Ri =E yðkÞ yTðk− iÞ� � ð13Þ

where i means the correspondent lag of Ri, for a quantity of lags used to build the
matrices Hð1Þ and Hð2Þ equal to Nlags = p+ s.

Equation (10) can be rewritten as,

Hð2Þ =α Hð1Þ ð14Þ

Assuming matrix Hð1Þ to be nonsingular, it follows that the companion matrix α
can be calculated by solving the overdetermined system of linear equation as,

α=Hð2ÞHð1ÞTðHð1ÞHð1ÞTÞ− 1 =Hð2ÞHð1Þ+ ð15Þ

where Hð1Þ+ =Hð1ÞTðHð1ÞHð1ÞTÞ− 1 denotes the Moore-Penrose pseudo inverse of
H(1).

3 Reference-Vectors for OMA Identification Scheme

Theoretically, in classical modal analysis, the impulsive or white Gaussian forces,
used as excitation for, respectively, IRF’s or input-output modal tests, have constant
spectrum. These signals work as a type of reference in the modal parameters
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identification, for a certain frequency range of interest. However, in OMA
parameters identification, where the input forces are not known, it is important to
define some coordinates of reference to calculate the modal parameters of the
system. The output vector of dimension m×1 is defined as,

yðkÞ= yrðkÞ
ynrðkÞ

� �
ð16Þ

where yrðkÞ is the reference-output vector of dimension r × 1. The vector ynrðkÞ of
dimension ðm− rÞ×1 represents the part of non-referenced of the output vector
yðkÞ. The relation between yrðkÞ and ynrðkÞ is given by,

yrðkÞ=LyðkÞ ð17Þ

with L= Ir 0½ � of dimension r ×m.
In OMA parameters identification, the non-referenced covariance matrices

defined by Eq. (13) must be substituted by referenced-covariance matrices between
the complete output vector yðkÞ and the reference-output-vector yrðkÞ defined as,

Rr
i =E yðkÞ yTr ðk− iÞ� �

=Ri LT =E yðkÞ yTðk− iÞ� �
LT ð18Þ

For the example, in the case of only one reference as the jth variable yjðkÞ, the
referenced-covariance matrix Rr

i becomes,

R j
i =RiLT =

Rið1, 1Þ ⋯ Rið1, j− 1Þ Rið1, jÞ ⋯ Rið1,mÞ
Rið2, 1Þ ⋯ Rið2, j− 1Þ Rið2, jÞ ⋯ Rið2,mÞ

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
Riðm, 1Þ ⋯ Riðm, j− 1Þ Riðm, jÞ ⋯ Riðm,mÞ

2
664

3
775

0
⋮
0
1
⋮
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

=

Rið1, jÞ
Rið2, jÞ

⋮
Riðm, jÞ

8>><
>>:

9>>=
>>;

ð19Þ

The above equation shows how referenced covariance matrix Rr
i can be obtained

from non-reference covariance matrix Ri.

4 Modal Parameters Identification

The input-output relationship, based on Eq. (1), can be written as,

yðk+ pÞ− ∑
p

i=1
αiyðk+ p− iÞ= uðkÞ ð20Þ
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where uðkÞ denotes the m×1 input-vector related to the external forces applied to
the system.

In order to obtain a scheme to estimate the modal parameters of the mechanical
system, the z-transform is applied to both sides of Eq. (20) giving the following
equations,

zpI− zp− 1α1 − zp− 2α2 −⋯−αp
� �

YðzÞ=UðzÞ ð21Þ

zpI− zp− 1α1 − zp− 2α2 −⋯− z αp− 1 −αp
� �

HðzÞ= I ð22Þ

where Y(z) and U(z) are, respectively, the z-transform of y(k) e u(k) and H(z) is the
m×m transfer function between Y(z) and U(z) in the z-domain.

Equation (22) can be re-written in terms of a companion matrix α as,

zI 0 ⋯ 0 0
0 zI ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ zI 0
0 0 ⋯ 0 zI

2
66664

3
77775−

0 I ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 I
αp αp− 1 ⋯ α2 α1

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

I
zI
⋮

zp− 2I
zp− 1I

8>>>><
>>>>:

9>>>>=
>>>>;
HðzÞ=

0
0
⋮
0
I

8>>>><
>>>>:

9>>>>=
>>>>;
ð23Þ

The above equation can be written in a more compactly form as,

zI−α½ �Iz̃HðzÞ= B̃ðzÞ ð24Þ

where

Iz̃ =

I
zI
⋮

zp− 2I
zp− 1I

8>>>><
>>>>:

9>>>>=
>>>>;

and B̃ðzÞ=

0
0
⋮
0
I

8>>>><
>>>>:

9>>>>=
>>>>;

ð25Þ

are pm×m matrices.
The eigenvalue problem of companion matrix α can be written, from Eq. (24),

as,

zjI−α
� �

φ ̃j = 0 ð26Þ

which leads to the calculation of a quantity of mp z-poles zj’s, where mp – n of then
are computational poles and may be separated from the identification process.

The minimal order of the model n can be identified by inspection of the more
significants singular values of matrix Hð1Þ.
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In general, mechanical systems are modeled in continuous-time in nature using
for example Newton’s second law. The relation between the continuous-time poles
λl’s and the discrete-time poles zl’s is given by,

λj =
lnðzjÞ
Δt

with j=1: n ð27Þ

where Δt is the sampling time interval.
The natural frequencies ωj and modal damping ξj, for the case of underdamped

vibratory systems, are estimated from λj, respectively, according to,

ωj = λj
�� �� and ςj =

ReðλjÞ
ωj

ð28Þ

where symbol || denotes absolute value.
Finally, the mp eigenvectors ϕj of the companion matrix α, from Eq. (26), can

be used to estimate the mode-shapes ϕj of the mechanical system using the fol-
lowing relation [2],

ϕj = Izϕj ð29Þ

where ϕj is identified as,

ϕj = ðITz IzÞ− 1ITz ϕj ð30Þ

where ϕj is a pm× 1 vector and ϕj is a m× 1 mode-shape vector.

5 The ARMAV Algorithm

The ARMAV algorithm for OMA parameters identification consists in the following
steps:

(1) Calculation of the matrices Hð1Þ and Hð2Þ, as Eqs. (11) and (12), for a total of a
number of lags equal to Nlags = p+ s, using referenced-covariance-matrices Rr

i
obtained by Eq. (18) for a quantity of Np measured data,

(2) Calculation of the companion matrix α that contains the matrices parameters of
the ARMAV model by Eq. (15),

(3) Calculation of a quantity of mp eigenvalues zi’s and the associated mp eigen-
vectors ϕi of the companion matrix α, with i=1, . . . ,mp. The poles mp λi’s of
the mechanical system described in continuous time are calculated according to
Eq. (27). For underdamped systems, the natural frequencies ωj and damping
factors ξj are calculated by Eq. (28),
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(4) The mode-shape vectors and ϕj are obtained using Eq. (30),
(5) The minimum order of the system n can be obtained by means of inspection of

the number of repeated poles identified by the former step or by the number of
significant singular values of Hankel block matriz Hð1Þ.

6 Examples of Application

In order to show the capabilities of the present OMA parameters identification
technique using the ARMAV model, a SIMO numerical experiment is conducted.
The collection of impulse responses and output-only data are obtained by numerical
simulation from the five degrees of freedom mass-spring oscillator without damp-
ing, as shown in Fig. 1.

6.1 OMA Parameters Identification Using IRF’s

Data of a SIMO, 1-input and 5-outputs, test are then numerically simulated with the
unit impulse force acting in block 1. In the present test, it is adopted a number of
2000 data samples for each term hijðkÞ for a quantity of 500 lags to build the
covariance matrix R1

i and the order of AR part of the model p=4, resulting in a pair
of matrices Hð1Þ and Hð2Þ both of dimension 20× 496. The time sampling interval
Δt used is 0.025 s. Table 1 shows the exact and identified modal parameters.

The order of the system is identified to be equal to 10 by inspection of most
significant singular values of matrix Hð1Þ is shown in Fig. (2). Based on this cri-
terion, it is adopted p=2 in the identification process resulting the five modes and
modal identified parameters present in the Table 1.

Figure 3 shows the five identified mode shapes associated to five natural fre-
quencies as compared to exact modes derived from numerical simulation.

Theoretically, it is important to note that the modal parameters identification
using IRF’s data, using the present method, does not require the use of
reference-vectors in the identification scheme, as discussed in previous section. This
type of data has their own references due to the impulsive forces as integrant part of
calculation of IRF’s.

Fig. 1 Five degrees of freedom oscillator system
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6.2 OMA Parameters Identification Using Output-Only
Data

A SIMO 1-input and 5-outputs test is shown. Adopting as input u1(k), a mean zero
white Gaussian noise signal with amplitude equal to 10 N, that acts on the blocks 1,
the responses yðkÞ’s are obtained by evaluating the following sum of convolution,

yiðkÞ= ∑
Np − 1

s=0
hi1ðsÞ u1ðk− sÞ i=1, . . . , 5 ð31Þ

In the present test, it is adopted a number of 2000 data samples for each term
yiðkÞ for a quantity of 500 lags to build the covariance matrix R1

i and the order of

Table 1 Exact and identified modal parameters

Mode number Exact natural frequency (Hz) Identified natural frequency (Hz) Error (%)

1 5.2105 5.2105 0
2 10.0658 10.0658 0
3 14.2353 14.2353 0
4 17.4346 17.4346 0
5 19.4457 19.4459 0.001

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5
x 10

-3

order

sv
d(

H
)

Fig. 2 Singular values of matrix H1
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AR parameters of the model p=4, resulting in a pair of matrices Hð1Þ and Hð2Þ both
of dimension 20 × 496. The time sampling interval Δt used is 0.025 s.

The order of the system is identified to be equal to 10 by inspection of most
significant singular values of matrix Hð1Þ shown in Fig. 4. Based on this criterion,
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Fig. 3 Exact (green) and identified (blue) mode shapes
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Fig. 4 Singular values of matrix H1
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the order of AR parameters is changed to p=2 resulting in a total of five identified
modes. The exact and identified parameters present in the Table 2.

Figure 5 shows the five identified mode shapes associated to five first natural
frequencies as compared to exact modes derived from numerical simulation.

7 Conclusion

OMA is a very attractive field in mechanical and civil engineering and several
techniques has been proposed in the literature. The present OMA parameter iden-
tification, method based on ARMAV model, is very simple, has robust numerical
properties and relatively low computational cost, using only linear algebra

Table 2 Exact and identified modal parameters

Mode number Exact natural frequency (Hz) Identified natural frequency (Hz) Error (%)

1 5.2105 5.2049 0.1074
2 10.0658 10.0713 0.0546
3 14.2353 14.2413 0.0415
4 17.4346 17.4381 0.0207
5 19.4457 19.4479 0.0113
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Fig. 5 Exact (green) and identified (blue) mode shapes
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manipulations. The tests based on numerical simulated data show that the presented
method can be regarded as a way to perform the modal identification—natural
frequencies, damping factors and associated mode shapes. The need of an
output-vector as reference in the output-only parameters identification is high-
lighted. The present paper encourages a future implementation of the present
algorithm using a more precise (accurate) optimization technique for the parameters
identification using, for example, the maximum likelihood technique.
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Dynamic Behavior and Optimization
of Tow Steered Composite Plates

T. A. M. Guimarães , D. A. Pereira and D. A. Rade

Abstract In the last years, many techniques and procedures have been employed

to optimize traditional composite laminates, which can be classified as constant-

stiffness composite laminates (CSCL), since the local stiffness is independent on

the position over the laminate. On the other hand, recent advances in manufactur-

ing processes now enable to explore non conventional designs. In particular, the

development of automatic fiber placement allows the realization of variable stiff-

ness composite laminates (VSCL), in which the local stiffness varies over the lam-

inated as intended by the designer. In practice, VSCL can be achieved by making

the fibers follow curvilinear trajectories over the plies (tow steering), or varying the

matrix/fiber fraction over the laminate. Some authors have explored the benefits of

VSCL to improve the performance of composite laminates in terms of stress distri-

butions, static deformations, buckling, dynamic behavior and aeroelastic stability. In

this context, this work proposes a strategy to optimize tow steered rectangular plates

by controlling the angles that define the fiber trajectories. These latter are described

by Lagrange polynomials of different orders, and two different sets of boundary con-

ditions are considered. A structural model based on the Ritz method, combined with

the classical lamination theory to model the composite laminate are used. The plate

is considered thin, being modeled based on Kirchhoffs hypotheses. The equations of

motion are obtained from Lagrange equations. The proposed model is validated by

comparing natural frequencies and mode shapes with the counterparts obtained by

using Nastran finite element software. The model is also validated by using exper-

imental results obtained from a tow steered plate manufactured by the automatic

fiber placement. A convergence analysis is carried-out to determine the number of

functions in the Ritz basis necessary to ensure convergence of the semi-analytical

model. A differential evolution (DE) algorithm is used to maximize the first natural
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frequency by finding the optimal fiber placement, defined by controlling the inter-

polation points of Lagrange polynomials of different orders. The results show the

possibility of increasing the value of the fundamental frequency for various orders

of the interpolation polynomials. However, as this order increases, the fiber paths

become more complex, which brings about challenges to manufacturing process. For

all simulated conditions, one notices the benefits of VSCL in terms of the vibration

behavior, which leads to conclude that tow steering can indeed be used to cope with

practical design goals such as to avoid resonances in a specific range of excitation

frequency, or to increase the aeroelastic stability margin.

Keywords Variable stiffness composites ⋅ Optimization ⋅ Plate vibrations ⋅ Tow

steering

1 Introduction

Traditionally, composite laminates are produced by stacking plies in each of which

the fibers are disposed in a predefined direction. In this case, one obtains constant-

stiffness composite laminates (CSCL), as the local stiffness is independent from

the position over the plate surface. More recently, the so-called variable-stiffness

composite laminates (VSCL) are being explored due to the possibility they offer to

control the spatial stiffness distribution, which enables to improve the design under

different performance criteria.

As a result of the development of advanced manufacturing processes, such as

automated fiber placement (AFP), VSCL can be obtained with variable tow angle

plies, in which case the fibers follow curvilinear paths [1], or by varying the propor-

tion fiber/matrix over the plate [2].

Many studies reported in the literature have demonstrated that the use of VSCL

can improve design characteristics in comparison with traditional composites, with-

out weight penalties [3]. In particular, a number of works have demonstrated the

benefits in terms of static structural behavior [2, 4–6]. Other studies are devoted to

the vibrational characteristics [7, 8], and aeroelastic behavior [9, 10].

The optimization of CSCL generally consists in finding an optimal combination

of orientation angles of the plies in which the fibers are deposited following straight

trajectories, to comply with different design purposes [11–13]. In this case, the ply

orientation angles are used as design variables. On the other hand, in the case of

VSCL, besides the ply orientations, a set of parameters defining the fiber trajectories

over the plies can be used as design variables. This certainly provides broader design

spaces at the expense of a higher computational cost engendered by larger numbers

of design variables. Additionally, manufacturing constraints must be properly dealt

with [14].

This paper proposes an approach for the optimal design of tow steered compos-

ite rectangular plates, the goal of which is to maximize the fundamental frequency.

In the next section, the dynamic model is first derived by using a
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semi-analytical approach based on the combination of the Classical Lamination The-

ory, adapted to take into account parameterized fiber trajectories, with the Rayleigh-

Ritz (Assumed-Modes) method. Next, after defining the configurations of interest,

the semi-analytical model is validated by comparing natural frequencies and mode

shapes with the counterparts obtained from standard finite element modeling. The

optimization results obtained by using a Differential Evolution (DE) algorithm are

presented and discussed, showing the effectiveness of the suggested strategy to opti-

mize the dynamic behavior of tow steered composite plates.

2 Dynamic Model

The i-th ply of a rectangular tow steered plate of dimensions a × b is depicted in

Fig. 1, in which 𝜃 indicates the local orientation angle of a generic individual fiber.

Assuming that the laminate is sufficiently thin, it is modeled according to the

Classical Lamination Theory (CLT), and the transverse displacements w(x, y, t) are

assumed to be constant through the plate thickness. Moreover, each ply is assumed

to be in plane stress state. The displacement field is represented as:

u(x, y, z, t) = u0(x, y, t) − z
𝜕w0(x, y, t)

𝜕x

v(x, y, z, t) = v0(x, y, t) − z
𝜕w0(x, y, t)

𝜕y
w(x, y, z, t) = w0(x, y, t)

(1)

where (u0, v0,w0) are the displacements on the midplane.

Another assumption adopted in this study is that damping is neglected.

The strain components are expressed as:

Fig. 1 Illustration of a

typical ply of a tow-steered

laminate
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Then, the forces 𝐐 and moments 𝐁𝐦, with the assumptions of CLT, are:

{
𝐐
𝐁𝐦

}

=
[
𝐀 𝐁
𝐁T 𝐃

]{
𝜖
𝐋

𝜅

}

(5)

in which, the membrane, membrane-bending and bending stiffness are given by the

matrices A, B and D, respectively. In the case of tow steered plates, these matrices

must be computed accounting for the fact that the ply angle varies over the plate,

according to Lagrange polynomials [14]:

𝜃i(x, y) = Φi +
M−1∑

i=0

N−1∑

j=0
𝜃mn ⋅

M−1∏

m=0
m≠i

x − xi
xm − xi

⋅
N−1∏

n=0
n≠j

y − yj
yn − yj

(6)

where Φi is the reference ply angle and 𝜃mn are the control angles in the reference

points (xm, yn), as depicted in Fig. 2.

Considering symmetric laminates,B = 0 and matricesA andD can be formulated

in terms of lamination parameters (Vi and Wi) and invariants defined as [15]

(V1,V2,V3,V4)(x, y) =
1
h ∫

h∕2

−h∕2
(cos(2𝜃), sin(2𝜃), cos(4𝜃), sin(4𝜃))dz (7)

(W1,W2,W3,W4)(x, y) =
12
h3 ∫

h∕2

−h∕2
z2(cos(2𝜃), sin(2𝜃), cos(4𝜃), sin(4𝜃))dz (8)
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Fig. 2 Curvilinear fiber

orientation by Lagrange

polynomials. (Adapted from

[14])
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⎡
⎢
⎢
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I1 I4 0
I4 I1 0
0 0 I5

⎤
⎥
⎥
⎦
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⎡
⎢
⎢
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I2 0 0
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⎡
⎢
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0 0 I2∕2
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⎥
⎥
⎦

,

Γ3 =
⎡
⎢
⎢
⎣

I3 −I3 0
−I3 I3 0
0 0 −I3

⎤
⎥
⎥
⎦

, Γ4 =
⎡
⎢
⎢
⎣

0 0 I3
0 0 −I3
I3 −I3 0

⎤
⎥
⎥
⎦

,

(9)

where h is the laminate total thickness.

The expression for I1 to I5 are omitted here and can be found in [16], as function

of the lamina properties.

Hence, matrices 𝐀 and 𝐃 are finally expressed in the forms:

⎡
⎢
⎢
⎣

A11(x, y) A12(x, y) A16(x, y)
A12(x, y) A22(x, y) A26(x, y)
A16(x, y) A26(x, y) A66(x, y)

⎤
⎥
⎥
⎦

= h(Γ0 + Γ1V1(x, y) + Γ2V2(x, y)

+ Γ3V3(x, y) + Γ4V4(x, y)) (10)

⎡
⎢
⎢
⎣

D11(x, y) D12(x, y) D16(x, y)
D12(x, y) D22(x, y) D26(x, y)
D16(x, y) D26(x, y) D66(x, y)

⎤
⎥
⎥
⎦

= h3
12

(Γ0 + Γ1W1(x, y) + Γ2W2(x, y)

+ Γ3W3(x, y) + Γ4W4(x, y)) (11)

From Eqs. (11) and (12) it becomes apparent that, for the tow steered laminates,

the stiffness matrices vary according to the position (x, y), which justifies the denom-

ination “variable stiffness composite laminate”.

The strain energy of the composite plate can be expressed by:

U(x, y) = 1
2 ∫

a

0 ∫

b

0

(
𝜖
L)T 𝐀𝜖Ldxdy + 1

2 ∫

a

0 ∫

b

0
𝜅
T𝐃𝜅dxdy. (12)



174 T. A. M. Guimarães et al.

In the present study, in-plane effects are neglected in favor of transverse effects;

hence, the first term on the right-hand-side of Eq. (12) is neglected.

Based on Kirchhoff’s Theory hypotheses, the kinetic energy of the laminate is

found to be expressed as [17].

T = 1
2 ∫

a

0 ∫

b

0 ∫

h∕2

−h∕2
𝜌

(
𝜕w0
𝜕t

)2

dxdydz (13)

According to Rayleigh-Ritz method, the transverse displacement field w0(x, y, t)
is approximated by using Legendre polynomials, as follows [14]:

Ln (x) =
1
2n

K∑

k=0
(−1)k (2n − 2k)!

k!(n − k)!(n − 2k)!
xn−2k

K =

{
n
2

(i = 0, 2, 4,…)
n−1
2

(i = 1, 3, 5,…)

(14)

Therefore, w0(x, y, t) is approximated in terms of dimensionless coordinates (𝜁 =
x∕a and 𝜂 = y∕b) as follows:

w0(𝜁, 𝜂, t) = (𝜁2 − 𝜁 )c(𝜂2 − 𝜂)c
mmax∑

m0

nmax∑

n0

qmn(t)Lm(𝜁 )Ln(𝜂), (15)

or:

w0(𝜁, 𝜂, t) = 𝐍(𝜁, 𝜂)𝐪 (16)

It should be noticed that parameter c enables to define approximations for dif-

ferent boundary conditions, c = 0, 1, 2 corresponding to free, simply-supported and

clamped edges, respectively.

The virtual work of transverse distributed loads p(x, y, t) and transverse concen-

trated forces Pi(xi, yi) can be expressed as:

𝛿W =
∫

a

0 ∫

b

0
p(x, y, t)𝛿w0(x, y, t)dxdy +

∑

i
Pi𝛿(x − xi)𝛿(y − yi)𝛿w0(xi, yi, t) (17)

By applying Lagrange equations, the equations of motion are found in the form:

𝐌�̈�(t) +𝐊𝐪(t) = 𝐐(t) (18)

with the following associated eigenvalue problem:

(
𝐊 − 𝜔

2𝐌
)
�̄� = 𝟎 (19)
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3 Model Description and Validation

A plate whose properties are given in Table 1 has been chosen for validating the

semi-analytical model developed based on the formulation presented in the previ-

ous section. The procedure adopted for this consists in comparing the values of the

natural frequencies and computing the values of MAC (Modal Assurance Criterion)

between the natural mode shapes provided by the semi-analytical model and the

counterparts obtained by using the commercial finite element software NASTRAN
®

.

This validation is considered to be important since the accuracy of the solutions

obtained from Rayleigh-Ritz approximations is strongly dependent on the choice of

type and number of approximation functions kept in the expansion given by Eq. 15.

A convergence analysis led to conclude that m = 8, n = 8 are satisfactory for all the

test scenarios considered.

The test scenarios of interest include non-steered (N-ST) and steered (ST) config-

urations, and three different boundary conditions (FFFF: free edges; SSSS: simply-

supported edges; CCCC: clamped edges). For all the configurations, the plate is

assumed to be composed of 8 plies, with stacking orientations [0◦ 45◦ −45◦ 90◦]s.

For the N-ST configurations, a second-order Lagrange polynomial (Eq. 6) is used to

describe the fiber trajectories over the plies.

Tables 2 and 3 enable to compare the values of the natural frequencies of the N-

ST and ST configurations for the three boundary conditions considered. Additionally,

Fig. 3 depicts the MAC values computed for the SSSS configuration.

Table 1 Material properties and plate dimensions

Property Value Property Value

E1 129500 MPa Length, a 400 mm

E2 9370 MPa Width, b 300 mm

G12 5240 MPa Density, 𝜌0 1500 kg/m
3

𝜇12 0.38 Ply thickness, t 0.19 mm

Table 2 Values of natural frequencies for the N-ST plates

FFFF SSSS CCCC

R-Ritz

(Hz)

FE (Hz) Deviation (%) R-Ritz

(Hz)

FE (Hz) Deviation

(%)

R-Ritz

(Hz)

FE (Hz) Deviation

(%)

41.65 41.31 0.83 64.36 63.88 0.75 117.89 116.82 0.92

63.77 62.96 1.28 153.82 152.47 0.88 230.42 227.77 1.17

81.23 80.54 0.85 168.59 166.97 0.97 250.19 247.07 1.26

103.54 101.76 1.75 253.56 248.68 1.96 349.30 340.78 2.50

118.75 116.76 1.70 313.31 309.94 1.09 407.58 412.92 1.29

192.67 188.13 2.41 336.30 333.02 0.98 418.56 444.20 5.77
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Table 3 Values of natural frequencies for the ST plates

FFFF SSSS CCCC

Ritz (Hz) Nastran

(Hz)

Error

(%)

Ritz (Hz) Nastran

(Hz)

Error

(%)

Ritz (Hz) Nastran

(Hz)

Error

(%)

41.53 41.19 0.82 65.90 65.38 0.80 118.16 116.94 1.04

64.65 63.86 1.24 152.82 151.55 0.84 227.87 225.18 1.19

82.46 81.65 0.99 172.28 170.43 1.09 253.84 250.14 1.48

105.47 103.81 1.61 251.61 248.68 1.18 342.66 334.51 2.44

118.60 116.51 1.80 323.15 319.74 1.07 432.24 425.86 1.50

196.31 191.42 2.55 334.67 330.67 1.21 446.60 439.84 1.54
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Fig. 3 Graphical representation of the values of the MAC computed between semi-analytical and

FE models a N-ST configuration; b ST configuration

The results presented above enable to conclude that the natural frequencies and

mode shapes obtained from the semi-analytical model are in satisfactory agreement

with the counterparts obtained from FE modeling, which leads to consider the semi-

analytical model as validated and adequate for optimization of the dynamic behavior

of tow steered composite plates. It should be mentioned that similar validation has

been made for other orders of the polynomials used to represent the fiber trajectiories

(results not shown here).

4 Experimental Validation

The numerical analysis concerning the first and second natural frequencies and vibra-

tion modal shapes were validated by confrontation with experimental results. For

such purpose, a tow steered plate was manufactured by using an automated fiber
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Fig. 4 a Automated fiber placement and b experimental set-up

placement machine (AFP), which is settled in the Lightweight Structures Labora-

tory of Institute for Technological Research of the State of São Paulo, shown in

Fig. 4a. Each course of the AFP had from 4 up to 12 tows. In this work, each fiber

had 3.175mm width and 8 tows were used, totalizing 25.4mm width per course.

Figure 4b shows the experimental setup used for vibration testing, for which the

plate was suspended and excited horizontally with an electromagnetic mini-shaker

(PCB model K2007E1); the excitation force (a random signal with 0–200 Hz fre-

quency band) was measured with a piezoelectric force sensor (Bruel & Kjaer model

LW34448). The response measurements were performed using a mini-accelerometer

(PCB model 352C22). To perform data acquisition and processing, including exper-

imental modal analysis, the responses were measured over a mesh consisting of 7

points in the horizontal direction and 6 points in the vertical direction. The measured

frequency response functions (FRF) were used to identify the natural frequencies and

natural modes shapes using MEscope
®

software.

The material used to manufacture the plate was HexPly
®

M21 from HEXCEL
®

,

which is a continuous, high performance carbon fiber. The plate has the stacking

sequence [0◦ 0◦ 90◦]s, resulting in a laminate with the final thickness of 1.08 mm.

As depicted in Fig. 5, the ST plate was manufactured with fiber trajectories having

constant radius of 605 mm with T0 and T1 equal to 0◦ and −32◦, respectively. This

strategy was adopted to avoid manufacturing-induced defects, as discussed in [18].

The AFP equipment has an integrated software that simulates the manufactur-

ing process. Figure 6a, b show the AFP simulation for the 0◦ and 90◦ plies, respec-

tively. Table 4 presents the material properties and plate geometry used in the numer-

ical analysis. Figure 7 presents the numerical and experimental FRFs of the tow

steered plate, on which the values of the first and second natural frequencies are indi-

cated. The relative difference between experimental and numerical values are 1.42%

and 0.03% for the first and second natural frequency, respectively. Figure 8 depicts

the experimental and numerical mode shapes corresponding to the first and second
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Fig. 5 Fiber trajectories of constant radii

Fig. 6 Simulation of tow steered plies. a: 0◦; b: 90◦

Table 4 Material property and plate geometry

Property Value Property Value

E1 160 GPa Length, a 320 mm

E2 28 GPa Width, b 270 mm

G12 5.6 GPa Density, 𝜌0 1620 kg/m
3

𝜇12 0.31 Ply thickness, t 0.18 mm

natural frequencies. One can infer that the Rayleigh-Ritz method is capable of rep-

resenting quite well the natural frequencies and mode shapes of the experimentally

tested tow steered plate. However, since damping is not included in the theoretical

model, the FRF amplitudes are not well represented.
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Fig. 7 Numerical and experimental frequency response functions

Fig. 8 Numerical and experimental mode shapes

5 Optimization Procedure

The interest here is to maximize the value of the fundamental frequency of the lam-

inate by choosing appropriate fiber trajectories. Hence, an optimization problem is

formulated as follows:

Maximize ∶ 𝜔1(𝜃mn)
Design variables ∶ 𝜃mn(see Table 5);
Suject to ∶ 𝜃mn ∈ [−90◦; 90◦];

To solve the optimization problem, a Differential Evolution (DE) algorithm was

used considering suitable generations and populations, and performing five opti-

mization runs for each configuration. Table 5 indicates the four optimization setups
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Table 5 Definition of the optimization setups

Configuration Design variables Variable type Constraints

O1
[
𝜃0 𝜃1

]
Continuous [−90◦; 90◦]

O2

[
𝜃01 𝜃11
𝜃00 𝜃10

]

Continuous [−90◦; 90◦]

O3

⎡
⎢
⎢
⎢
⎣

𝜃02 𝜃12 𝜃22
𝜃01 𝜃11 𝜃21
𝜃00 𝜃10 𝜃20

⎤
⎥
⎥
⎥
⎦

Continuous [−90◦; 90◦]

O4

⎡
⎢
⎢
⎢
⎢
⎣

𝜃03 𝜃13 𝜃23 𝜃33
𝜃02 𝜃12 𝜃22 𝜃32
𝜃01 𝜃11 𝜃21 𝜃31
𝜃00 𝜃10 𝜃20 𝜃30

⎤
⎥
⎥
⎥
⎥
⎦

Continuous [−90◦; 90◦]

(a) (b)

(c) (d)

Fig. 9 Illustration of the design variables (control tow angles) for each of the optimization setups

(a O1; b O2; c O3; d O4)
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defined for the problem, which differ from each other by the number of design vari-

ables, which, on its turn, is defined by the degree of the polynomial used to represent

the fiber trajectories (see Eq. 7). In Fig. 9, the interpretation of the design variables

as control tow angles is clarified for each of the four optimization setups.

6 Optimization Results

The optimization results obtained for each boundary condition considered are shown

in Table 6. For the purpose of comparison, the N-ST plate is adopted as the base-

line configuration, for which the values of the fundamental natural frequencies are

41.65 Hz, 64.36 Hz and 117.89 Hz for the free, simply-supported and clamped con-

figurations, respectively.

Figure 10 depicts the optimal fiber trajectories obtained for the plies oriented at

[0◦ 45◦ −45◦ 90◦]s, for each boundary condition considered.

It can be seen in Fig. 10 that there is a direct relation between the path complexity

(higher order polynomials) and the attainable increase of the fundamental frequency.

In addition, this increase depends on the boundary conditions, being more significant

for the more constrained configurations. This fact can be explained by the different

distributions of the modal strain energies induced by the constraints.

As an additional evidence of the influence of fiber steering on the dynamic

behavior of the plate, Fig. 11 enables to compare the amplitudes of typical fre-

quency response functions for the optimal N-ST and ST plates, for the simply-

supported and clamped boundary conditions. In these cases the point of excitation

is (x = a/3, y = b/3) and the measurement point is (x = a/2 and y = b/2).

7 Conclusions

A procedure has been developed and evaluated for the modeling and optimization

of the dynamic behavior of tow steered composite laminates. It has been shown that

Table 6 Optimization results

FFFF SSSS CCCC

Baseline

(Hz)

Optimal

(Hz)

Incr. (%) Baseline

(Hz)

Optimal

(Hz)

Incr. (%) Baseline

(Hz)

Optimal

(Hz)

Incr. (%)

O1 41.65 45.15 8.40 64.36 78.53 22.02 117.89 153.64 30.32

O2 47.24 13.42 79.50 23.52 154.03 30.66

O3 47.49 14.02 82.26 27.81 160.06 35.77

O4 48.60 16.69 82.59 28.33 160.40 36.06
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Fig. 10 Illustration of the fiber trajectories obtained for the optimized configurations
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Fig. 11 FRF amplitudes for the baseline and optimized plates, for SSSS and CCCC configurations

a semi-analytical Ritz-type modeling combined with Classical Lamination Theory

were capable of providing a sufficiently accurate dynamic model. Due to the typical

low number of degrees-of-freedom, such a model is very convenient to alleviate the

computation cost involved in optimization.

It has been found out that, at least for the particular optimization goal adopted,

the achievable improvement of dynamic behavior depend both on the degree of the

polynomials used to represent the fiber trajectories, which is related to the number of

design variables, and on the boundary conditions. Regarding the first dependence, it

has been noticed that the use of polynomials of higher degrees tends to lead to more
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complex fiber trajectories, which certainly raises concerns about manufacturing

limitations.

Despite the existence of a number of technological challenges to be faced, it is

clear that the emergence of tow steered composites broadens the possibilities of

achieving improved dynamic performance.
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Evaluation of the Dynamic Response
of Buildings with TMDs Under
Earthquakes

Rúbia Mara Bosse and André Teófilo Beck

Abstract There is ample evidence that TMDs attenuate the vibration response
of buildings subject to low-frequency wind loads. The same is not true for
broad-banded earthquake loading. This paper investigates the effectiveness of
TMDs in attenuation of vibration in buildings submitted to earthquake ground
motion. A positional finite element model is developed, and employed to evaluate
linear and geometrically nonlinear dynamical responses of building structures with
TMDs under earthquakes. It was noted that TMDs tuned to higher frequencies work
better at minimizing displacements and oscillation frequency, in contrast to what is
popularly believed, that devices tuned to the building’s fundamental frequencies
present ideal performance. The linear regimen showed to be sufficient to estimates
the displacements of the building and the imposition of earthquake loads as
equivalent lateral forces was not representative and does not describe accurately the
behavior of the structure. The incorporation of TMDs showed to be very effective in
reducing vibrations when the structure is subjected to earthquake loads. However,
benefits are only achieved when TMDs are properly designed, and when structural
responses are correctly evaluated.

Keywords TMD ⋅ Dynamic responses ⋅ Geometrically nonlinear
Tuning frequency ⋅ Earthquakes

1 Introduction

Techniques and devices to suppress structural vibrations have been developed to
enable safe solutions to tall building design. In this subject, the passive vibration
control with absorbers as Tuned Mass Dampers (TMDs) has the advantage of being
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simple and efficient in reducing the dynamic motion of structures, without
demanding external power sources [1, 2]. The classic TMD is a vibration absorber
composed by an auxiliary mass, connected to a linear spring, placed in parallel with
a viscous damping device, commonly attached to the top of the building. Con-
ventionally, tuning the frequency of the device to the first natural frequency of the
structure is believed to lead to optimal performance.

TMDs were first studied in 1909 by Frahm [3]. Few decades later, the devices
began to be employed in buildings. Hartog [4] performed first studies on optimal
TMD design, developing analytical expressions for one degree of freedom systems
(1DOF). Later, Warburton and Ayorinde [5] further advanced the subject by con-
sidering damping in the main system. Warburton [6] also considered random loads
acting on the structure, and proposed a formulation to treat MDOF systems as an
equivalent 1DOF system. Surely, when dealing with multiple degrees-of-freedom
(MDOF) structures, and with uncertainties in loads, the absorber showed to be less
effective in mitigating vibrations and it was found that the performance of absorbers
is sensible to tuning parameters and damping coefficient, thus many strategies have
been developed to enhance the performance of TMDs [7–12].

In general, absorbers have been successfully employed to reduce vibrations
induced by wind forces; this is due to the fact that winds usually present a limited
range of excitation frequencies. In this aspect, the TMDs are designed to control the
first mode of the structure and tuned to the fundamental natural frequency of the
building, which is more susceptible to be excited by winds. However, earthquakes
can include a wide spectrum of excitation frequencies; hence there is no general
agreement about the performance of TMDs to mitigate seismic-induced oscillations.
It was found that the reduction of displacements in the main structure is dependent
on the ground motion frequency [1, 7, 13–15].

Most researches in vibration control model building structures as discrete
mass-spring-damper systems [14, 16, 17] and evaluate their dynamical responses in
linear regimen, usually by modal superposition. In such approaches, the TMD is
represented as an additional DOF attached to the main structure. Such lumped
spring-mass models can be considered limited, because they assume structural
members as non-deformable bodies, hence they cannot properly account for large
deflections. Tall buildings are very sensitive to structural vibrations, and often
present large displacements, especially under earthquake-induced base motion.

This paper presents a methodology to obtain accurate and realistic dynamical
responses of building structures equipped with TMDs, and subject to earthquake
ground motions. A positional finite element (FE) formulation is employed to
evaluate linear and geometrically nonlinear dynamical responses. Optimal TMD
design is considered, for building structures subject to El Centro earthquake
loading.
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2 Positional Finite Elements Method for Frame Structures

Geometrical nonlinear analysis is used to handle large deflections: the structure’s
equilibrium position in sought on its displaced state. In the so-called positional FE
approach, a non-dimensional space is created and the relative curvature of beam
elements is calculated for the initial and for the deformed configurations [18]. The
equilibrium position is the main unknown variable, and it is obtained from the
principle of stationary total potential energy. A total Lagrangian formulation is
employed, using an unique reference configuration, the initial position; in this
context, the mass matrix is constant and a frame element with four nodes and cubic
approximation is employed. The system of nonlinear equations is solved combining
the Newmark time integration with the Newton-Raphson procedure, following [19].

The linear analysis differs from the nonlinear because equilibrium is calculated
in the initial position, presenting a constant stiffness matrix. In this way, the linear
equilibrium equations are solved applying the Newmark time integration consid-
ering constant average acceleration, according to [20].

2.1 Frame Positional FE Model

To describe the frame element used in the article, it is necessary to map the initial
and current configurations of the finite element from the reference line. The tangent
tikð Þ and normal vectors υ1k , υ2kð Þ of the four-node elements are presented in
Eq. (1), according to Fig. 1:

tik =
dφ ξð Þ
dξ

����
ξk

Xm
il , ν1k =

− t2kffiffiffiffiffiffiffiffiffi
tiktik

p , ν2k =
− t1kffiffiffiffiffiffiffiffiffi
tiktik

p ð1Þ

where i is the coordinate direction, m represents the reference line, l the element
node (shape function), ξk are the non-dimensional coordinates of the nodes, φ are

Fig. 1 Nodal vectors and reference line of the beam finite element, cubic approximation [19]
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the shape functions. Figure 1 shows the initial angle between the normal vector and
the horizontal direction x1. Using the shape functions (Lagrange polynomials) to
approximate θ0 ξð Þ, one obtains:

θ0k = arctg
v2k
v1k

� �
, θ0 ξð Þ=φℓ ξð Þθ0ℓ. ð2Þ

It is possible to define the position of any point inside the element, by the vector
g0i ξ, ηð Þ, according to Eq. (4) and (Fig. 2).

xi ξ, ηð Þ= xmi ξð Þ+ g0i ξ, ηð Þ, ð3Þ

g01 ξ, ηð Þ= h0
2
η cos φℓ ξð Þθ0ℓ

� �
, g02 ξ, ηð Þ= h0

2
ηsen φℓ ξð Þθ0ℓ

� �
, ð4Þ

where, η are the non-dimensional variables along the height h0.
In this way, the complete mapping is obtained for both directions as:

f 01 ξ, ηð Þ=φℓ ξð ÞXℓ
1 +

h0
2
η cos φℓ ξð Þθ0ℓ

� �
,

f 02 ξ, ηð Þ=φℓ ξð ÞXℓ
2 +

h0
2
ηsen φℓ ξð Þθ0ℓ

� �
.

ð5Þ

The current configuration is the unknown parameter of the problem: it is
obtained by an iterative process. However, in the first step it is assumed that the
current configuration is equal to the initial one. The current configuration is defined
by:

f 11 ξ, ηð Þ=φℓ ξð ÞYℓ
1 +

h0
2
η cos φℓ ξð Þθℓ½ �, f 22 ξ, ηð Þ=φℓ ξð ÞYℓ

2 +
h0
2
ηsen φℓ ξð Þθℓ½ �,

ð6Þ

where, Yℓ
i are the current coordinates, φℓ current angles of the cross section.

With the mappings from the non-dimensional space to initial and current con-
figurations defined, the deformation of the element can be described by the change
of configuration function as f ⃗ (Fig. 3). The gradient of this function is obtained
from the mapping gradients.

f
!

= f
!

1◦ f
!

0

� 	− 1
, A=A1. A0
 �− 1

, A0 =
∂f 01
∂ξ

∂f 01
∂η

∂f 02
∂ξ

∂f 02
∂η

2
4

3
5, A1 =

∂f 11
∂ξ

∂f 11
∂η

∂f 12
∂ξ

∂f 12
∂η

2
4

3
5.
ð7Þ

188 R. M. Bosse and A. T. Beck



The objective Green-Lagrange strain measure E is used to calculate the geo-
metrically exact position:

E=
1
2

C− Ið Þ= 1
2
ðAt ⋅A− IÞ, ð8Þ

where I is the (2 × 2) identity tensor and C is the right Cauchy stretch.

2.2 Geometrically Nonlinear Elasto-dynamics

The Saint-Venant-Kirchhoff constitutive relation is employed to relate the Green
strain Eð Þ and the second Piola-Kirchhoff stress and the specific strain energy is
given by:

Fig. 2 Cross section point
[18]

Fig. 3 Change of
configuration [19]
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ue =
E
2

E2
11 +E2

22


 �
+G E2

12 +E2
21


 �� 
, ð9Þ

where E is the longitudinal elasticity modulus for small deformations, Eij is the
Green strain tensor, and G=E ̸ 2 1+ υð Þ½ �. By considering the Poisson ratio υ to be
zero, volumetric locking is avoided. The strain energy stored in the structure can be
written as:

Ue Y ⃗ð Þ=
Z
V0

ue Y ⃗ð Þ dV0, ð10Þ

where V0 is the initial volume of the structure.
The total energy of the system is obtained by adding the parcels due to the

potential energy of external loads, kinetic energy, potential of external distributed
forces, viscous damping and strain energy of the frame elements:

∏ðY ⃗Þ=
Z
V0

ueðY ⃗Þ dV0 −F ⃗ ⋅Y ⃗−
Z
S0

q ⋅ y ⃗
mdS0 +

1
2

Z
V0

ρ0y ⃗̇ ⋅ y ⃗̇dV0 +Q, ð11Þ

where F ⃗ is the external nodal force vector, q is the general distributed force vector,
y ⃗m is the current position, y ̇ is the velocity, dS0 the infinitesimal element’s length, Q
is the viscous damping.

The principle of stationary potential energy is applied to the total energy of the
system, to impose the equilibrium of the structure:

∂∏ Y ⃗ð Þ= F⃗
int ⋅ ∂Y ⃗− F⃗ ⋅ ∂Y ⃗−L ⋅Q ⃗ ⋅ ∂Y ⃗+M ⋅Y ⃗̈ ⋅ ∂Y ⃗+D ⋅Y ⃗̈ ⋅ ∂Y ⃗=0 ⃗, ð12Þ

where F ⃗
int

refers to the internal force vector, L is the matrix used to transform
distributed loads into equivalent nodal ones, M is the constant mass matrix, D is the
mass-proportional damping matrix. Equation (12) represents the geometrical non-
linear dynamic equilibrium equation because of the arbitrariness of vector ∂Y ⃗.

Assembled the mass and damping matrixes of the structure, and established the
initial and current configuration of the elements, a temporal integration combined
with the resolution of the non-linear equations is made. The resolution of the system
implies the iterative calculus of the internal loads vector, the hessian matrix and
update of the positions in each time step.

Vector g ⃗ is the vector of unbalanced mechanical forces, it is null if Y ⃗ is the
correct trial position, used to calculate internal forces. The dynamic equilibrium is
obtained by solving, for any time:
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g ⃗= F⃗
int − F⃗+M ⋅Y ⃗̈+D ⋅Y ⃗=0 ⃗ . ð13Þ

The resulting nonlinear system is time-integrated by the Newmark method and
linearized by the Newton-Raphson algorithm; the complete technique can be
consulted in [19]. The iterative process ends when a stopping tolerance ðTolÞ is
satisfied, representing the correct equilibrium position.

g! Y S⃗+1ð Þ�� ��
F⃗k k ≤Tol,

ΔY ⃗S+1k k
X ⃗k k ≤Tol, ð14Þ

where ΔY ⃗s+1 is the current incremental trial position and X ⃗ is the initial position.

3 Results and Discussion

3.1 Building Subject of the Study

In the results session to follow, a 20-storey building was modelled, to evaluate its
dynamical response under the El Centro Earthquake. Modal analyses were per-
formed to obtain the natural frequencies and vibration modes of the structure.
The TMD was attached to the last floor of the building and the dynamic responses
were compared for three regimens of analyses: linear with equivalent forces applied
to nodal degrees-of-freedom, linear with base motion and geometrically nonlinear
with ground motion.

The building under study has 20 stores, total 72 m of height, and is composed by
columns and beams. The structural elements have the dimensions indicated in
Fig. 4a. One sample of the El Centro accelerogram is shown in Fig. 4b.

The structure was discretized into 200 4-node frame elements; these elements
can describe translations in horizontal and vertical direction, and the angle between
the tangent and normal vectors of the nodes. A distributed vertical load of 4 KN/m
was considered representing the live loads and a solid concrete slab of 15 cm
contributes to the mass of the building. The connection between columns and
beams is rigid, and the natural damping of the building was disregarded. The
adopted material is reinforced concrete, with longitudinal elastic modulus of 40
GPa, transversal elastic modulus of 20 GPa, density of 2500 kg/m3. The time of
simulation was 32 s, the time step adopted was Δt=0.02 s.

3.2 Natural Frequencies

To determine the natural frequencies of the building, modal analysis was employed.
The firsts 10 natural frequencies of the building were: 0.55, 1.57, 2.73, 3.91, 5.13,
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6.41, 7.15, 7.86, 8.96 and 9.29 Hz. The modes of vibration were determined by the
eigenvectors of the system and are presented in Fig. 5 the firsts four natural fre-
quencies are flexural.

3.3 TMD Tuning Frequencies

It is well established in the literature that TMDs perform well when their frequency
is tuned to the first natural frequency of the building. When the first mode of
vibration is excited by wind loads, for instance, the vibration energy is transferred
from the building to the TMD.

Wind loads have a narrow spectrum of frequencies, which can be close to the
first natural frequencies of the building. Earthquake loading, however, poses a
different challenge, as excitation frequencies are broad-banded; hence, in principle,
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many vibration modes of a structure can be excited. For this reason, there is no
general agreement about optimal TMD design, or about their efficiency, in reducing
vibrations induced by seismic loading. If the TMD is tuned to the structure’s
fundamental frequency, the absorber will substantially reduce just the response of
the first mode, without affecting the vibration in higher modes [13].

In this paper, a study about the tuning of TMD frequency is developed.
The TMD is employed in the 20 story building described above, and subject to El
Centro earthquake records. Three finite element models were studied, to evaluate
appropriateness of modelling assumptions: (a) Linear analysis with equivalent
horizontal nodal loads applied along the buildings height; (b) Geometrical nonlinear
analysis (GNL); (c) linear analysis with base-imposed earthquake displacements;

The TMD was modelled as an additional frame rigid element placed at the last
storey; the element is 60 cm long and is connected to the building by two linear
frame elements, whose axial stiffness is calibrated to yield the required natural
frequency for the TMD. TMDs tuned to the first 10 natural frequencies of the
building were tested.

For the present tuning frequency study, the mass ratio was fixed at m̄=0.1; and
the absorber was modelled as a MCK system designed according to the simplified
equations shown in [7], where the modal generalized mass and stiffness properties
are used to tune the absorber to each mode of vibration of the structure. In the
neutralizers was considered viscous damping acting through Rayleigh damping
proportional to the mass matrix.

Table 1 presents parameters of the absorbers designed to reduce the response of
the firsts 10 modes of vibration of the building. In Table 1, fstruc are the natural
frequencies of the building obtained by modal analyses in Hz, ωstruc are the natural
angular frequencies of the structure in each vibration motion of interest; ωTMD is the

Fig. 5 Vibration modes FE
model
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tuning frequency calculated for the absorber [4, 7], KTMD is the spring stiffness of
the absorber and CTMD the damping coefficient of the TMD.

Figures 6, 7 and 8 present the horizontal displacements at the top of the building
for the different absorbers tuned to the ten firsts natural frequencies. In all graphs,
lines named as fTMD refers to the natural frequency of the building which TMD was
designed to.

Figure 6 shows that TMDs are efficient at suppressing structural vibrations. It
can also be observed that TMDs tuned to higher frequencies (i.e. 9.29 Hz) have
better performance.

Figures 7 and 8 compare the responses of the four models studied in this section,
for the structure without TMD, and with TMDs tuned to different frequencies. It can
be observed that, for the structure without TMD, responses of the three FE analysis
models (linear with equivalent loads, linear with base displacements and geomet-
rically nonlinear with base displacements) are equivalent, presenting the same

Table 1 TMDs designs

Mode fstruc Hzð Þ ωstuc rad ̸sð Þ ωTMD rad ̸sð Þ KTMD 107ð Þ N ̸mð Þ CTMD 107ð Þ
1 0.55 3.46 3.07 0.0095 0.21
2 1.57 9.86 8.74 0.0771 0.59
3 2.73 17.18 15.22 2.34 1.02
4 3.91 24.56 21.76 4.78 1.46
5 5.13 32.21 28.54 8.22 1.91
6 6.41 40.29 35.70 12.86 2.39
7 7.15 44.91 39.80 15.98 2.67

8 7.86 49.40 43.77 19.33 2.93
9 8.96 56.28 49.86 25.08 3.34
10 9.29 58.40 51.74 27.01 3.47
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frequency of oscillation and closely matching displacements. This shows that dis-
placements for the structure without TMD are not too large, and can be accurately
described by a linear FE analysis, and event for a simplified load model

In Figs. 7 and 8, it also becomes clear that the equivalent load model signifi-
cantly overrate structural displacements; turning this model inadequate to represent
structural responses under seismic loadings. It can be also observed that for higher
tuning frequencies, the TMD-building system becomes stiffer, displacements and
oscillation frequency are significantly reduced, and for all cases the linear and
non-linear models tend to agree.

4 Concluding Remarks

This paper pursued the objective of investigating the performance of buildings
equipped with absorbers as Tuned Mass Damper (TMD), when subject to earth-
quake loadings.

With respect to modelling assumptions, three methodologies were compared, a
linear FE model with equivalent nodal loads, a linear FE model with ground
movement representing El Centro earthquake and a Geometrically nonlinear FE
model with base movement. It was found that the equivalent load model signifi-
cantly underestimates building displacements, leading to oscillations around the
initial position. In the comparison of the linear and nonlinear FE model with
base-imposed displacements, both models presented similar results, showing that
the structure subject of this study behaves in linear regime, with small to moderate
displacements. Hence, for this particular structure, the more computationally
intensive NL solution is not required. This study will be extended in the future to
address buildings with large displacements.

Since earthquake loading excites different vibration modes of the structure, the
tuning of TMD frequency is not obvious. In this paper, it was shown that TMDs
present better efficiency when tuned to higher natural frequencies of the structure.
For the 20-storey building studied herein, the TMDs were capable of reducing
displacement amplitudes and oscillatory frequency. This is in contrast to what is
commonly believed in the literature, i.e., that tuning the TMD to the first natural
frequency is optimal. In general, results show that TMDs tuned to higher natural
frequencies of the structure reduce displacements and oscillation frequencies
guarantying more comfort to the building occupants.

The methodology proposed in this paper demonstrates the effectiveness of TMD
devices in controlling structural vibrations of structures subject to earthquake
loadings. However, benefits are only achieved when TMDs are properly tuned, and
when structural responses are correctly evaluated.
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Model Based System Testing Approach
for Efficient Testing of EPS Systems

Cassio T. Faria, Fabio Luis M. dos Santos, Theo Geluk, Steven Dom
and Herman Van der Auweraer

Abstract Model Based System Testing (MBST) can be defined as the discipline
combining physical testing and simulation models with the aim to study, identify,
validate and improve the behavior of multiphysical and mechatronic systems. One
of its benefits is related to the use of simulation models to improve or accelerate the
testing process, using well known procedures, such as optimal sensor and excitation
placement, but also more recent methodologies, such as virtual testing or
human-in-the-loop interactions. In this context, these MBST methodologies can be
used for Electrical power steering (EPS) system testing, to allow for better char-
acterization of the overall system and subsystems, and to better identify and model
nonlinearities. This paper presents a testing and simulation combined approach used
to optimally define test conditions, such as sensor placement, test boundary con-
ditions, excitation inputs and how they affect parameter identification.
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1 Introduction

The increasing challenges in product development, originating from the needs to
decrease product development costs, while increasing overall performance and
efficiency, have more and more led to the use of simulation methodologies in
combination with testing. Physical prototypes are not only expensive and
time-consuming to produce, but they are also only available late in the development
cycle, when timing is even more critical. Improving testing conditions at this stage
can lead to much more efficient test procedures, that not only spend less time and
resources, but that can also provide data which is more useful for the validation and
correlation of models, resulting in more well-performing systems, with shortened
development times. However, such a combined virtual+physical approach can be
less trivial when very complex, nonlinear multiphysical systems are taken in con-
sideration. Such is the case in the automotive industry, where the increased use of
mechatronics and controls also leads to higher complexity and higher needs to
accurately identify system parameters in order to properly model and understand
their behavior [1]. Moreover, most system components cannot be tested individu-
ally, as their behavior changes when they are integrated in the system and under the
real boundary conditions. Therefore, parameters must be identified using in situ
system level tests, which can be very challenging, complex and costly. In this case,
simulation and virtual testing can be used to improve test reliability, and lead to the
right and efficient way to instrument and carry out the test campaign.

Experimental methodologies nowadays have shifted from purely test-only rou-
tines to simulation-aided methods. As test campaigns and their objectives grow in
complexity, they make use more and more of virtual models to increase the
knowledge of system behavior. Moreover, testing is no longer solely related to
troubleshooting analysis, and the identified parameters and models can also be used
for other purposes, such as force and load estimation, in the so-called virtual
sensing applications [2]. Testing has also gone beyond the boundaries of purely
mechanical systems, and its applications have expanded to other fields, such as
electrical motor testing [3, 4], electromechanical systems [5], multiphysical anal-
yses [6] and mechatronic applications [7].

With the purpose of supporting the new paradigm that combines test and sim-
ulation, the model based system testing (MBST) framework was created [8]. The
main purpose of MBST and its underlying methodologies is to support and improve
testing and validation techniques, by using and/or combining test and simulation,
with the aim to study, identify and validate multiphysical and mechatronic systems.
MBST combines test and simulation into 3 categories: “Testing for Simulation”,
“Simulation for Testing” and “Testing with Simulation”. The first two are cases in
which both test and simulation are decoupled, and are carried out in different steps,
while the last case involves test and simulation simultaneously. Figure 1 shows the
MBST application tree and how the different domains are divided.

This work will focus on the “Simulation for Testing” branch of the MBST
application tree. This category has two already well known procedures, optimal
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sensor and excitation location, but also makes use of more recent methodologies,
such as virtual testing and measured data augmentation. To properly illustrate and
contextualize the MBST framework this paper develops the complete application
for a Electric Power Steering mechatronic system.

Electrical power steering has several advantages when compared to its concur-
rent technology in power steering, hydraulic actuation. It is more compact, has
higher efficiency and reliability, and is easier to maintain [9]. However, there can be
noise and vibration issues arising from this type of system, depending on the control
strategy used to alleviate the required torque from the driver [10, 11]. The EPS
system can also undesirably isolate the feedback to the driver, reducing the driving
feeling, which is an important sensorial feedback to the driver, giving them the right
notion of the safe vehicle handling, especially with respect to unsafe conditions,
such as vehicle side slip.

Model-based control strategies often prove to be an appropriate solution for EPS
systems but they rely heavily on high fidelity models of the steering system which
is by nature very complex, nonlinear and multiphysical. Nonlinearities such as
friction and backlash are a common characteristic of the rack-pinion gear pair and
also for the worm gear, some basic elements of the EPS system. Good models must
include these physical properties to improve their prediction capabilities and allow
for the model-based controller to properly drive the system [12].

A major portion of the mismatch between model and system behaviors arises of
the poor characterization of the nonlinear components parameters. Experience from
engineering projects within Siemens Industry Software dictates that the nonlinear
behavior of the individual components is not the same as the behavior observed
when they are interconnected and in situ. Therefore the parameters needed for the
model need to be identified in situ (i.e. installed in the vehicle) at a system testing

Fig. 1 MBST tree
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and not by a series of test bench measurements on each component. This mea-
surement campaign of an entire electromechanical system poses several challenges,
in particular to isolate and determine the influence of individual parameter on the
overall system behavior.

As a main contribution, this paper implements the MBST framework on the EPS
system in order to properly design a test campaign and to fully characterize the
nonlinear dynamic system. The modelling and testing proposed in this paper differ
from literature as the model developed and identified takes into account several
nonlinearities (hysteresis, friction, backlash), in contrast to [9, 10] which consider
linear models and [11, 12] which only account for a single instance of coulomb
friction. Moreover characterization is carried out in situ, that is, with the EPS
mounted in the vehicle, to fully capture several of the connections and boundary
condition that it will experience during operation.

2 Electric Power Steering (EPS) and Its Functional Model

Electric power steering (EPS) assistance systems provide auxiliary power to the
steering mechanism of the vehicle to aid the driver in performing a desired
maneuver, where part of the effort is frontloaded by an electric drive combined to the
steering column of the mechanism. A common schematic used to generalize this type
of device [12] is provided on Fig. 2 where the main components are shown: a
steering wheel (where drivers apply their inputs); an electric motor and drive to
provide auxiliary power; a reduction mechanism to transmit the electric motor power
into the steering column; an electronic control unit (ECU) that reads the driver’s
torque and commands the electric motor to assist the driver (reduce the torque
required to perform a maneuver); a steering column that transmits torque to the rack
and pinion; the rack and pinion that converts the rotary movement into a translation
one; the tie-rods (left and right) which carry the translation motion and loads from
the rack and pinion to the wheels; and finally the vehicle wheels that the driver
desires to rotate around their axis to create a steering motion of the complete vehicle.

Several issues might arise from the actual construction of the EPS mechanism,
such as the use of joints in the steering column to redirect the direction of the
rotational movement, the safe use and adjustment mechanism in the column, and
more. The simplest way to model an EPS system is to relate the assist torque with
the driver torque and steering rack displacement. Figure 3 shows the diagram
representing such a model, which is described by Eqs. (1) and (2).

Js θs
..
+ b θs

.
+Ksθs =Td +

Ks

Rs
xr + Tnl ð1Þ

Meqxr̈ + beqxṙ +Keqxr =
TmG
Rm

+
Ks

Rs
θs +Fd +Fnl ð2Þ
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where Js, bs and Ks are the steering column inertia, friction and stiffness, θs is the
steering column angle, Td is the driver torque, TNL is the torque induced by all
nonlinearities in the torsional system, Rs is the column pinion radius, xr is the rack
displacement, Meq, beq and Keq are the equivalent rack mass, friction and stiffness,
Ta is the assistance torque, Rm is the assistance pinion radius, G is the gear ratio, Fd

Fig. 2 Sketch of the working principle of and EPS system and component names

Fig. 3 Schematics for simple EPS model

Model Based System Testing Approach for Efficient … 203



is the disturbance from the road and Fnl is the sum of nonlinear forces acting on the
rack. The realization of the EPS mechanism will lead to a system that has a more
complex dynamic behavior than originally desired, with a series of nonlinearities,
such as dry and viscous friction, backlash, hysteresis, etc. However, these phe-
nomena are very hard to describe accurately by making use of analytical equations,
so the challenge from a modeling perspective is to idealize the system and define
fundamental dynamics for each of its components that can adequately represent the
behavior of the real system. For this purpose, functional models can be used
instead, to aid in the modelling of important and complex dynamics, while still
making it simple to describe the system [13]. Functional models allocate physical
systems to their (multiphysical) functionalities. In this sense, one can start from the
simple electro-mechanical representation of the system by a combination of masses,
springs, dampers, motors and converters (e.g. gears) of the system to reach a first
functional iteration of the model.

For this paper a multi-physical functional model is constructed using Simcenter
Amesim software, the sketch of the model is presented below by Fig. 4 together
with a general classification used for the different subsystems considered. For each
of the grouping presented a friction component is assigned (this is not the case for
the control strategy—ECU) to lump all the nonlinear effects associated with each
sub-system. This grouping of nonlinear effects into a single component is a
particular choice of the authors of this paper, to limit the number of parameters to
be identified, these components are highlighted in Fig. 4 by an orange circle.

Fig. 4 EPS model realization in AMESIM
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All nonlinear elements of the functional model includes a contact gap, Coulomb
and stiction friction physics in their equations, more info on their definition can be
found on the software technical manual [14], reference to MECFR1R0A (rotary
element), MECFR1T0B (translation element) and WORMGR1A (worm gear
element).

The model takes as input the angular input provided by the driver at the steering
wheel and calculates for a certain vehicle speed the torque perceived by the driver.
If the control strategy is turned off (zero PI gains for example), the electrical drive
reacts as a passive component with certain inertia associated to it. The driver’s
action is cascaded down to the tie-rods which push against the tire friction to create
an angular motion at the spindle. The tire friction can also be written as a function
of vehicle speed to take into account the rolling velocity in the side-slip of the tire.
From a practical testing perspective it is interesting to characterize the EPS
dynamics when the electric drive and control strategy is not activated, to define the
response of the passive mechanical system, and also considering zero vehicle speed
so the tire friction can be taken at its maximum state.

Several model parameters can be identified a priory to reduce the number of
unknowns in the system model. Geometrical and mechanical characteristics (mass
and stiffness) can be determined a priory by the execution of simple tests and
components inspection. Electrical quantities can also be directly measured at the
electric motor. The largest uncertainty must be assigned to the nonlinear parame-
ters, but a certain level of parameter freedom can also be assigned to these previ-
ously identified parameters for model fine tuning.

3 MBST Approach Applied to EPS

By applying the concepts of Model-Based System Testing (MBST), more specif-
ically the subcategory of Simulation for Testing, one can generate a lot of insight on
the testing activity by performing a series of simulations to explore the system
response and help define testing configurations and methodologies that expose
critical and key parameters of system of interest. To illustrate this concept the
methodology is applied to the electric power steering (EPS) system in order to
develop a testing procedure that allows for the composition of a high fidelity model
that could later be used for control purposes.

The basic structure of the EPS model under consideration has been already
introduced in the previous section of this paper where functional graphic modeling
software (Simcenter Amesim) was used to sketch the structure taken for this
physical system. This model can be used in a variety of ways to explore different
aspects of the tests that will be carried out and to evaluate mechanism, configu-
rations and conditions that would favor the later identification of the model
parameters. A key remark is that this model already has reasonable (or even
accurate) values for some of the linear dynamics components, such as masses,
dimensions and stiffness. The challenge on developing an accurate model for this
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particular physical system lies on the characterization of the nonlinearities and
viscous damping terms used.

The first exercise carried out here is to explore the behavior of smaller (called
here cut-outs) of the system and subject those to different boundary condition to
allow for the testing engineer to isolate the nonlinearities on a given component and
precisely characterize them. It is important to recognize that not all cut-outs of the
model presented in Fig. 4 can be executed in practice and also that imposing certain
in situ boundary condition might be unfeasible or too costly to be executed,
therefore a subset of the possibilities are explored as an intersection of three dif-
ferent factors: utility of such a cut-out, the effort to implement it and the cost to
execute it. As an example, Fig. 5 illustrates three EPS cut-outs exploring the
behavior of a section of the system under a particular boundary condition. The
cut-out from the left isolates the behavior of the column, where the configuration
blocks the movement of the shaft at its base and allows for the evaluation of friction
given that enough flexibility is present. The use of simulation of such a subset of the
original developed model can help the test engineer evaluate if this cut-out can be
useful or not for their parameter identification.

The central cut-out shown in Fig. 5 consists of the disconnection of the tie rods
from the wheel spindle which would allow the rack to move freely with no resis-
tance. In this condition one can also disconnect the electric motor and have it as a
free moving inertia in the system. Similar to the previous cut-out, in the one on the
right side of Fig. 5, the tie-rods are blocked to create a zero displacement condition
at the rack. The model realization for each cut-out can be used to evaluate and

Fig. 5 Different possible boundary condition for the EPS mechanism and its model realization
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investigate in detail if it is a good candidate to excite and isolate a particular
nonlinear behavior in each of the components.

Besides evaluating different model configurations (cut-outs) and boundary
conditions, the virtual representation of the EPS system can be used to evaluate the
usage of different inputs to the system and how they affect the response. Typical
input profiles to be evaluated are: harmonic inputs (sine waves or sine sweep), used
to evaluate cyclic behaviors; impact inputs (sharp or wide impacts), used to evaluate
linear dynamic behavior; and also ramp inputs, used to identify transition points in
the system dynamics.

Moreover, a combination of these inputs or different levels of the same input can
be used to exploit the dominance of a given parameter in the response of the system.
By developing this knowledge over several simulations, a set of unique input
profiles can be derived such that the parameters are identified more accurately. One
example is shown on Fig. 6, where the same cut-out model of the disconnected
tie-rods is excited using a harmonic angular input (sine wave of 30 degrees of
amplitude) using two different frequencies, one low (0.5 Hz) and another higher
frequency (2 Hz). A significant response difference can be noticed between the two
inputs applied to the system, where on the higher frequency sine input more inertial
forces have to be overcome in order to start the motion and to reverse its direction,
also the higher velocities make the viscous losses in the system more prominent.

Fig. 6 Steering wheel angle by steering wheel torque plot for two different excitation harmonic
inputs
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As to be expected, the initial motion of the system with a higher frequency input
will require a larger torque to move the rotational inertia, since the acceleration at
this case is higher when compared to the 0.5 Hz input excitation. This allows the
torque signal to go well beyond the noise floor level on the experimental setup and
will make for a much more accurate identification of the system inertia. A similar
logic can be applied to the viscous components since the system with a 2 Hz
angular sinusoidal input will experience higher velocities and more viscous losses
associated with it.

Another important use for the model, in order to enhance the testing of such a
multi-physical system, is to evaluate how candidate sensor positions can help (or
not) to detect the effect of a certain parameter on the measured system response at
that location. In this situation, it is not feasible to carry out an exhaustive search of
all the sensor locations and use observability criteria to determine if that mea-
surement (or a set of measurements) can be used to identify all the parameters of
interest of the system, since many of these locations and quantities cannot be
instrumented due to effort, feasibility and cost related issues. Therefore, the use of
experience in combination with the exploratory capabilities of the model can
directly support the decision making process of the instrumentation to be installed
in the EPS system.

4 Experimental Setup and Testing Results

To validate the proposed MBST approach applied to an EPS, an experimental
campaign was devised starting from the principles previously described in this
paper and will be detailed in this section. In order to maximize the correlation
between the experimental setup and an in-vehicle mechanism in operation, the
measurements were taken from an EPS installed in a vehicle (to guarantee the
correct boundary conditions). Moreover, the mechanism of choice was from a
world-wide commercially available vehicle of a large automotive company, which
will not be named here for confidentiality issues. No previous data or knowledge on
the system had been provided prior to the beginning of the MBST campaign and all
the parameters of the system model (Fig. 4) were unknown.

A first inspection of the EPS under test shows that all the main components
previously described in this paper are present and indeed the generic model can be
used to represent the system. At this stage the same model parameters can be
retrieved by direct inspection of the device, such as the dimensions of the gears,
leverage arm of the tie-rod to tire, motor resistance and inductance, conversion
mechanisms ratio and the mass of components (wheel, rack, etc.). Some first
estimates can also be calculated for the stiffness of the steering column and the
tie-rod considering the geometry of the components and the constitutive material.
No prior knowledge or estimates have been assigned to any friction parameter
(needed for the adequate description of the highlighted nonlinear elements of the
functional model described by Fig. 4) or even to the viscous losses present in the
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system, but they have been chosen to be within reasonable ranges (to allow for
motion of the entire system).

By setting the functional model of the system within the Simcenter Amesim
environment, simulations were carried with ten candidate position of sensor loca-
tions, chosen based on the accessibility of the location and cost/time to instrument.
The unknown model parameters were swept across a reasonable range of possible
values and the responses of the sensors were evaluated whether they could capture a
response change or not. From those candidate positions, three were selected as the
minimal set of sensors needed to fully capture the system behavior. The driver
steering angle was selected as the input to the system (to also be used in the
simulations) and a sensor was also placed in that location.

Figure 7 is a schematic representation of the sensor positions selected for the
MBST campaign, where a potentiometer is used to capture the angular input from the
driver, a full-bridge of strain-gauges (062AK_350 frommicro measurements) is used
to measure the driver input torque and also to measure the force transmitted by the
tie-rod to the wheel. A wire-draw displacement sensor (WDS-250-MPM-C-P_HG
from micro-epsilon) records the displacement of the rack/tie-rod. A second force
measurement of the force in the tie-rod is also done to verify the system symmetry.

Data was collected by a SCADAS mobile hardware using VB8 family modules
and the acquisition and post-processing using LMS Test.Lab software (Signature

Fig. 7 Schematic
representation of the test setup
and instrumentation used
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Acquisition module). Exponential filtering was used on the collected data to
eliminate high frequency noise content of the data and since the same procedure is
applied to all data phase delays should be even across the different data signals.

The models are used to evaluate possible test scenario of the EPS system con-
sidering different cut-outs and boundary conditions as explained in the previous
section of this paper. In total, a combination of six different scenarios were
investigated, five where the e-motor was a passive element in the system (blocked
steering column, free tie-rods, blocked spindle, full system without tire friction—
suspended vehicle—and full system with tires on the ground) and one scenario
where the motor was actuated with a constant supply (free tie-rod). Based on the
simulation results, three of these scenarios were chosen: (1) blocked steering col-
umn; (2) free tie-rods and; (3) full system with tires on the ground. These would,
according to simulation results, enable the identification of all the unknown model
parameters and were a good compromise between quality of the results and time/
cost of the campaign.

The following step is to study how different inputs could be selected for each of
the three test scenarios. For scenario (1), two sinusoidal inputs were selected, one
fast (0.8 Hz) and one slow (0.2 Hz). Meanwhile, for (2) and (3), besides the two
harmonic inputs, a slow ramp was also selected to allow for a clear definition of the
transition points between different friction regimes in different components. At this
stage, the simulations carried out provided full support to the test engineer to define
the best practices for the EPS system and could then initiate the test procedure with
high confidence.

The MBST procedure allowed for the execution of a fast and conscious
instrumentation and testing of the EPS system given the insight provided by the
simulation. The subsequent parameter identification procedure was carried out first
at a model cut-out representing the test scenario (1), followed by (2) and (3) re-
spectively. The parameters identified in the previous scenario were cascaded to the
subsequent identification step and they were taken as constant to allow the algo-
rithm to focus on the fitting based only on a subset of the model parameters. The
identification procedure referred to, consists of an optimization routine, where the
parameters to be identified are modified until a cost function (that is the sum of the
differences between experimental and simulation responses) is minimized. A tool
box on design exploration and optimization is available within Simcenter Amesim,
and a Nonlinear Programing by Quadratic Lagrangian (NLPQL) was used to
identify the desired parameters [14].

One of the results of the identification procedure is shown by Fig. 8, where the
simulated result for a control test on scenario (2) is compared against the simulated
result. As observed, the correlation between test and simulation obtained was quite
good, nevertheless it is possible to see that some backlash on the experimental rack
displacement (RD) measured is not captured by the model (flat top of the peak of
experimental sinusoidal format).
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5 Discussion and Conclusions

This article presented the use of model based system testing applied to an electric
power steering system. For that purpose, the concept of MBST was introduced,
paying particular attention to the simulation for testing branch, where simulation
and virtual models are used to aid the testing procedure. Then, it was shown how it
is possible to efficiently test an EPS system by using a base model, to simulate
different scenarios and selected the most suitable ones to be executed. The proce-
dure proposed here makes use of a generic functional EPS model (Fig. 4) with
reasonable parameters to carry out prior-to-test evaluations, in order to define
optimal sensor position (in terms of feasibility, effort, observability, and cost) and
also define in situ testing of sub-system denominated cut-outs. Moreover, the model
was used to determine the system input profiles that could be used to identify
different parameters.

Fig. 8 Disconnected tie-rods
results for the experimentally
measured and simulated
results after parameter
identification is carried out
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Subsequently, a test campaign was carried out to validate the proposed
methodology. By collecting simple geometrical and material properties, several
model parameters were identified (inertia, stiffness, etc.), while the test dynamic
data (using the optimum sensor location, the designed inputs and the different
relevant test scenarios) was used to identify the nonlinear and viscous parameters,
by means of a NLPQL optimization algorithm. The results showed good correlation
between model and test, especially taking into account the complexity of the
system.

In conclusion, it was observed that the combination of simulation and test (the
MBST framework) can be very beneficial to aid in testing and parameter identifi-
cation of complex systems. By using a model of the EPS system, it was possible to
speed-up the testing procedure, reduce the number of used sensors and improve
accuracy of the results.
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Experimental Assessments of the Added
Mass of Flexible Cylinders in Water:
The Role of Modal Shape
Representation

Rafael Salles and Celso Pupo Pesce

Abstract A flexible vertical cylinder model, fixed at both ends, is tested experi-
mentally immersed in water and then in air. Galerkin’s decomposition is applied to
obtain a Reduced Order Model (ROM) from a continuum one. Two closed-form
trial modal shapes are chosen for the modal decomposition process. Then, modal
added mass is assessed using classical Fourier and Hilbert transform (HT) signal
analyses, comparing the model eigenvalues with the frequency evaluated from the
experimental signals. The choice of modal shape is shown to alter significantly
added mass experimental assessment. Similarity to classic results with rigid
cylinders is achieved by taking a sufficiently proper modal representation. More-
over, the first mode added mass coefficient attains the same value of that previously
determined for a cantilevered flexible circular cylinder, by Pesce and Fujarra in
(Pesce and Fujarra, Int J Offshore Polar Eng 10:26–33, 2000) [1].

Keywords Modal decomposition ⋅ Added mass ⋅ Flow induced vibration
Flexible cylinder ⋅ Hilbert transform

1 Introduction

Oil and gas exploitation has been a major world economic activity, over the years.
In the offshore activities scenario, risers—long tubular structures connecting the
floating unity to the sea bed—play important roles in drilling, prospection and
transport of those commodities. Flexible vertical risers are commonly used in off-
shore operations and they are subjected to hydrodynamic loads due to current—
what causes VIV (Vortex Induced Vibrations), as well as parametric and internal
resonance caused by movements imposed at the top by the floating unit vessel; see
Fig. 1a. The dynamics of such structures is usually assessed through nonlinear
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analytical and numerical models, which are commonly validated with laboratorial
experiments, carried out on small scale physical models.

On this road, by using an optical tracking system (Qualisys
®

), composed by
underwater and aerial cameras, experimental tests conducted with a flexible vertical
cylinder in water were carried out; Pesce [3]. Through a Galerkin’s modal
decomposition scheme, assuming a simple sinusoidal modal shape representation,
parametric resonances excited by the periodic variation of tension were addressed;
see Franzini et al. [4]. Such a simple choice regarding modal shapes was also
followed in Fu et al. [5] and in Franzini et al. [6, 7], analyzing the behavior of a long
flexible cylinder subjected to hydrodynamic loads. Thorsen et al. [8] proposed a
semi-empirical numerical VIV model, verifying their calibrated coefficients by
comparing the numerical results with the experimental data obtained in Fu et al. [5].
However, neither Franzini et al. [4], Fu et al. [5] or Thorsen et al. [8] assessed the
modal added mass parameter, restricting themselves to adopting the potential flow
asymptotic limit, bCa =1, for all modes. As a matter of fact, a first assessment on the
influence of drag and added mass coefficients on the response of a parametrically
excited vertical flexible cylinder was made by Franzini et al. [9], through a para-
metric study with a nonlinear reduced order model. Nonetheless, fundamental
studies on modal added mass of flexible cylinders are not commonly found in the
technical literature. A single experimental assessment is reported in Pesce and
Fujarra [1], concerning the first vibration mode of a cantilevered flexible cylinder,
where Ca, 1 = 1.17 is obtained. This is not the case for rigid cylinders. Early in the
‘70s, Sarpkaya [10] provided an extensive experimental study on rigid cylinders
subjected to oscillatory flows, aiming at a better evaluation of hydrodynamics
coefficients, as drag and inertia parameters, for a large range of Reynolds (Re) and
Keulegan-Carpenter (KC) numbers. Sarpkaya [10] showed experimentally that, for
low KC values, the inertia coefficient tends to the expected asymptotic value

Fig. 1 Vertical riser schematic representation and vertical flexible cylinder scaled model. Left:
Vertical riser schematic installation in a semi-submersible drilling platform. Right: Experimental
model of flexible vertical cylinder in a towing tank. Extracted from Salles [2]

216 R. Salles and C. P. Pesce



Cm =1+Ca ≈ 2, in which bCa ≈ 1 is the classic potential flow added mass coefficient
of a rigid cylinder; see Fig. 2.

Recently, Salles [2] assessed the modal added mass coefficient of a vertical
flexible cylinder using the same experimental data base used in Franzini et al. [4].
Salles used sinusoidal modes and obtained values of added mass coefficients larger
than Ca =1.

The present study aims at identifying the role modal shape representation could
play on the assessment of the corresponding added mass coefficient. Taking sinu-
soidal or ‘quasi-Bessel’ modes in Galerkin’s projection, modal added mass coef-
ficients are evaluated and compared. The results are interpreted on the light of
Sarpkaya [10] rigid cylinders experimental results, contributing to the discussion on
the ad hoc assumption, Ca =1, usually taken by many authors when dealing with
vibrations of flexible cylinders in water.

1.1 Sarpkaya’s (1977) Experiments on Added Mass
of a Rigid Cylinder Under Oscillatory Flow

One of the main points of riser dynamics modeling is the correct evaluation of
hydrodynamic forces. In particular, inertial and viscous forces. The well-known
concepts of ‘added mass’ and ‘damping’ play then roles of paramount importance.

The classic work by Sarpkaya [10], with a rigid cylinder under oscillatory flow,
brings quite comprehensive results about the inertia coefficient, Cm =1+Ca—

where Ca =ms ̸md, being ma the added mass and md the displaced mass, both per
unit length—, related to two important parameters: the Keulegan–Carpenter number
KC=K =UT ̸D≈ 2πA ̸D and the Reynolds number, Re=UD ̸ν or the

Fig. 2 Inertia coefficients, Cm =Ca +1, for a rigid circular cylinder as function of
Keulegan-Carpenter number, K. Extracted from Sarpkaya [10]
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β-parameter, β=Re ̸K. For the non specialized reader, one of the seminal results
from Sarpkaya’s extensive experimental study is summarized in Fig. 2, where the
small amplitude asymptotic limit for the inertia coefficient is recovered as Cm → 2+ .
For flexible circular cylinders, however, no extensive and comprehensive parallel
study may be found in the technical literature, at least to the authors’ knowledge.

1.2 The Vertical Flexible Cylinder Experimental Set Up

In the core of an extensive research project on nonlinear dynamics of risers, a small
scale model was designed and built as a flexible cylinder, under proper similarity
laws. The Froude scale was used as the leading similarity law, as offshore structures
are subjected to loads arising from the floating unit vessel motions, mainly caused
by the action of free surface waves.

Pereira et al. [11] presented a study of how the similitude parameters were
chosen, leading to the construction of a small-scale model made from a silicon tube
filled with stainless steel micro-spheres; see Fig. 1b. In the small scaling method-
ology, within a large set of dimensionless parameters, geometric rigidity (ten-
sioning), axial stiffness, bending stiffness, immersed weight and added mass play
dominant roles. See also Pereira [12] and Salles [2].

An optical tracking system composed by aerial and submerged cameras was
used to measure cartesian coordinates of reflective targets placed all along the
model length. This measurement technique is noninvasive, cleaner and easier to be
implemented, compared to traditional ones that use strain gages and/or
accelerometers; see, e.g., Pesce and Fujarra [1]; Morooka and Tsukada [13]. The
small model elastica may then be reconstructed at any instant of time from the
tracked targets. A load cell was installed at the top of the model to register tension.
The bottom and top extremities are fixed in the supporting structure.

The experimental set up was designed for a comprehensive series of tests, car-
ried out at IPT towing tank; see Fig. 3a. Such tests involved three kinds of exci-
tation loadings Pesce [3]: (i) sinusoidal vertical displacement imposed at the top;
(ii) relative constant current profile, by the towing carriage; (iii) combining (i) and
(ii). For an extensive report on the main experimental results, see Franzini et al. [4],
Franzini et al. [6, 7], Pereira et al. [14]. All those experiments were preceded by
decaying tests in water, in order to assess natural frequencies, damping and, focus
of the present analysis, added mass coefficients.

For such an assessment, another experimental campaign was performed outside
the towing tank. The experimental tests in air, see Fig. 3b, were carried out for
structural characterization, disregarding the effects of added mass and drag included
in the experimental campaign in water. By comparing decaying tests in air and in
water, added mass and hydrodynamic damping can be assessed, as shown below,
essentially following a methodology used in Pesce and Fujarra [1].

The experiments in air were done with the same small scale riser model used in
water. A vertical configuration in air was established, making sure that a first modal
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rigidity estimation—using a vertical bi-supported heavy ideal string together with
trigonometric Eigenfunctions, see Salles [2]—is dynamically equivalent to the
value measured in water, where buoyance forces take place. Table 1 presents the
physical properties of the aforementioned experimental models, as built.

1.3 Modal Decomposition: Galerkin’s Method

Considering an Euler-Beam model as in, Eq. (1), it is possible to use standard
Galerkin’s decomposition techniques in order to represent the structure dynamics as
a sum of a finite mode numbers. The called modes, or Eigenfunctions—ψ k, are
smooth functions that do not violate any kinematic system constraint. Notice that
hydrodynamic drag forces are essentially nonlinear, though.

Fig. 3 Vertical flexible cylinder scaled model: experimental campaigns in water and in air. Left:
Experimental set up of the flexible vertical cylinder in water. Extracted from Salles [2]. Right:
Experimental set up of the flexible cylinder in air. Extracted from Salles [2]

Table 1 Model physical
properties for both free-decay
experimental tests in air and
water, as built

Properties Value
Air Water

Unstretched length, L0 (m) 2.613 2.552
Stretched length, L (m) 2.665 2.602
Immersed length, Li (m) – 2.257
Diameter, D (mm) 22.2
Linear mass, ms (kg/m) 1.14 1.19
Linear weight, γ (N/m) 11.13 –

Immersed linear weight, γi (N/m) – 7.87
Static tension at the top, Tt (N) 47.56 40
Axial stiffness, EA (N) 1200

Bending stiffness, EI (Nm2) 0.056

Experimental Assessments of the Added Mass … 219



ms
∂
2u
∂t2

+EI
∂
4u
∂z4

+ cs
∂u
∂t

=
∂

∂z
Tðz, tÞ ∂u

∂z

� �
−ma

∂
2u
∂t2

−
1
2
ρwDCD

∂u
∂t

���� ���� ∂u
∂t

ð1Þ

For the ideal vertical heavy string, the kinematic system constraints are simply
written uð0Þ= uðLÞ= 0, since bending effects are non existent. In such idealized
case, where transversal rigidity is due only to tension, Bessel functions of first and
second kinds of zeroth order are shown to form the eigenfunctions set; see Pesce
et al. [15]. Usually, for long beams, geometrical rigidity dominates bending effects,
which are relevant just in the neighborhood of the constraints or for higher vibration
modes.

A wise integral averaging technique applied by Mazzilli et al. [16] takes
extensibility and bending effects into account through the definition of an additional
equivalent tension. Such a technique gives rise to analytical representations for the
eigenmodes which are called by the authors ‘quasi-Bessel’ modes. Those eigen-
modes are used in the present paper. They resemble a closed form WKB solution
given in Pesce et al. [15] where extensibility and bending stiffness were disregarded
for a catenary shape.

Sinusoidal functions can be used as the simplest ‘trial functions’ instead, what is
also done in the present paper, as a first approximation. See also Franzini et al. [4],
Franzini et al. [9] or Salles [2] for additional considerations.

Equation (1) is rewritten as Eq. (2), in which an alternative form for the added
mass coefficient, a=ma ̸ms, is introduced. The non-linear model presented in
Eqs. (1)–(2) considers the effect of flexural rigidity (EI), structural damping (as-
sumed to be viscous linear, cs), the variation of geometric stiffness due to the
traction along the model spanwise Tðz, tÞ= TðLÞ− γðL− zÞð Þ, added inertia mað Þ
and drag force (considered to be quadratic in the relative velocity with respect to the
flow, as in Morison’s formula, being CD the drag coefficient).
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The next step is to obtain a Reduced-Order Model (ROM) from Eq. (2), using
Galerkin’s method, through a classic separation of variable procedure,

uðz, tÞ≈AkðtÞψ kðzÞ ð3Þ

where summation is implied. Proceeding with Galerkin’s projection, the dynamic
equations can be written:
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in which
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Assuming orthogonality conditions to hold,1 non-damped and damped natural
frequencies would then be given by,
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1.4 Modal Basis Representation

As aforementioned, the main criterion to define a function as an approximation for
an eigenfunction is to respect all kinematic constraints. For the flexible cylinder, the
system constraints are simply uð0Þ= uðLÞ= 0, which could be written as
ψ kð0Þ=ψ kðLÞ=0 for every k∈ℕ⋆. Mainly, the present work aims to assess how
the choice of the projection basis would affect the assessment of the added mass
coefficient.

The first basis considered is the exact solution of the classical tensioned string
problem, in the absence of a gravitational force field. Known as the Pythagorean
harmonics of a string, the eigenfunctions are trigonometric as defined in Eq. (7).
Hereinafter, the trigonometric modes will form a basis called sinusoidal in the
following figures and tables.

ψ kðzÞ= sin kπ
z
L

� 	
ð7Þ

1Quasi-Bessel, or Bessel-like, modes are non-orthogonal to each other. An orthogonalization
procedure would then be needed.
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The second basis is formed by quasi-Bessel modes presented in Mazzilli et al.
[16], determined from a Timoshenko’s beam with non-linearities. After an integral
averaging process, extensibility and flexural stiffness effects are transformed into an
equivalent traction, thus reducing the order of the partial differential equation in
space, from fourth to second. Such a procedure arrives at an equivalent vertical heavy
string problem, which has Bessel’s functions as eigenfunctions. By means of an
asymptotic approximation, Mazzilli et al. reached a closed-form solution, Eq. (8),

ψ k z, ξkð Þ= 1ffiffiffi
4

p
1+ αz

sin β
ffiffiffiffiffiffiffiffiffiffiffiffi
1+ αz

p
− 1

� 	h i
ð8Þ

in which:

α=
γ

Nbk

Nbk =Nbtð0Þ +
kπ
L

� �2

EI 1+
3
16

ξ2k

� �
Nbð0Þ =

EA L− L0ð Þ
L0

β=
kπffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ αL
p

− 1
.

It should be noted that Eq. (8) has the same mathematical structure of a WKB
closed form solution obtained by Pesce et al. [15] in the case of a catenary-like
heavy string.

Henceforward, the quasi-Bessel modes will be also called Bessel-like modes. In
the present work, linear Bessel-like modes, i.e., ξk =0, were used for the analysis, as
the vibration amplitudes, ξk, are very small and would not affect the modal repre-
sentation. Figure 4 shows thefirst threemodes for the Sinusoidal andBessel-like basis
normalized to have its maximum equal to 1. The solid lines represent the Bessel-like
modes and the dashed lines the sinusoidal ones. The Bessel-like modes are more
representative of the flexible vertical heavy string. In fact, their maxima occur inside
the half lower part, as it would be expected from the analytical solution of the ideal
bi-articulated vertical heavy string, the classic Bessel eigenfunctions.

Hereafter, only the first mode will be addressed, so that an orthogonalization
procedure for the Bessel-like modes may be abandoned in the Galerkin’s projection.

2 Analysis

The modal decomposition is performed using both trigonometric and quasi-Bessel
fundamental modes. The first (fundamental) mode amplitude series for both
decompositions are presented in Figs. 5, 6, 7 and 8. Notice that time scales are quite
different, as decaying in air is much slower than in water.
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It is interesting to give the reader some details on the methodology behind the
modal analysis adopted. Figure 5 shows the full free-decay amplitude time series
upon which the Hilbert Transform (HT) was used in order to determine the signal
envelope amplitude. The HT envelope amplitude is then applied to determine the
linear viscous equivalent structural damping and to study the instant damped
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1

First mode
Second mode
Third mode

Fig. 4 Graphical representation of the first three sinusoidal (dashed lines) and orthogonalized
quasi-Bessel model (solid lines)

Fig. 5 Fundamental modal amplitude from sinusoidal decomposition: free-decay in air
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frequency. Figure 5 also shows that there is a time interval chosen for the analysis,
marked in red color.

Besides the HT procedure, a standard Fourier (FFT) analysis was carried out, in
order to directly assess the damped natural frequency, assuming its invariance with
respect to the vibration amplitude.

Fig. 6 Fundamental modal amplitude from sinusoidal decomposition: free-decay in water

Fig. 7 Fundamental modal amplitude from Bessel-like decomposition: free-decay in air
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2.1 Modal Structural Damping

From the HT envelopes in air, a simple exponential fitting is used to assess the
linear structural damping coefficient, as presented in Table 2.

On the other hand, besides structural damping, the free decay in water is char-
acterized by a nonlinear hydrodynamic dissipation, usually modeled quadratically
by Morison’s drag formula, see Eq. (2). It would then be much more complicated to
isolate both dissipation mechanisms. For the sake of simplicity, an equivalent linear
damping coefficient for the free-decay in water is considered, as shown in Table 2,
after an exponential fitting on the signal amplitude envelope is done.

2.2 Instant Frequency

The phase signal obtained from the Hilbert transform is used to determine the
instant damped frequency of the free-decay experimental tests via numerical time
differentiation. Figures 9 and 10 present the instant frequency determined for each

0 1 2 3 4 5 6 7 8 9 10
-0.2

-0.1

0

0.1

0.2
Not Analyzed
Analyzed
HT Envelope Amplitude

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15
Not Analyzed
Analyzed
HT Envelope Amplitude

Fig. 8 Fundamental modal amplitude from Bessel-like decomposition: free-decay in water

Table 2 Linear viscous
damping for the first modal
temporal free-decay series

ζ1ð%Þ
Sinusoidal Bessel-like

Air 0.49 0.49

Water 4.17 4.00
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free-decay test for both decompositions, sinusoidal and Bessel-like. The instant
frequency is plotted as a function of the HT envelope normalized with respect to the
diameter, in order to address its dependence on the vibration amplitude.

Figures 9 and 10 also provide a linear fitting for the instant damped frequency
calculated within the analysed vibration amplitude range. As it can be seen, the
instant damped frequencies do not vary significantly with the vibration amplitude,
being almost constant, either in air or water, irrespective the projection basis
chosen.

Regarding both modal decompositions—Sinusoidal and Bessel-like—for the
first mode amplitude, Table 3 shows the fundamental natural damped frequency
measured using a standard Fourier analysis (FFT) and the results obtained with the
HT instant frequency linear fittings presented in Figs. 9 and 10. Deviations between
FFT and HT frequencies are also given, showing that both techniques meet results
closely.

2.3 Added Mass Assessment

For the first mode, using modal mass and modal rigidity terms given in Eq. (4) and
presented in Table 4, non damped frequencies, f n̂, 1 as function of the first mode
added mass coefficient, a1, were calculated from Eqs. (5)–(6) and are given in
Table 5 for both conditions in water and in air. The damped natural frequencies,

Fig. 9 Flexible vertical cylinder first mode instant damped frequency from free-decay tests—
sinusoidal basis. Above: in water (left), in air (right); below: in air and water with respective fitting
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fd, 1, experimentally obtained from the FFT analysis, already presented in Table 3,
are reproduced in Table 5 for reference sake.

Assume that the calculated natural damped frequency, f n̂, 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ζ21

q
(using the

modal damping coefficient presented in Table 2 and the natural frequencies in
Table 5), is a good estimate for the measured damped frequency, fd, 1. Then, by
taking the ratio between the damped frequency, fd, 1, of both free-decay tests in air
and in water, and recalling that the added mass in air is practically null, see Eq. (9),

f ad, 1
f wn, 1

≈
f
â
n, 1

f
ŵ
n, 1

ffiffiffiffiffiffiffiffiffiffiffiffi
1+ a1

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ζa1
� �2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ζw1
� �2q ≈ 1, ð9Þ

it is possible to assess the modal added mass coefficient in water, as given in
Eq. (10),

Fig. 10 Flexible vertical cylinder first mode instant damped frequency from free-decay tests—
Bessel-like basis. Above: in water (left), in air (right); below: in air and water with respective
fitting

Table 3 First model natural damped frequencies, fd, 1 ðHzÞ, measured with FFT and HT for both
modal representations

Sinusoidal Bessel-like
FFT HT (FFT-HT)/FFT

(%)
FFT HT (FFT-HT)/FFT

(%)

Air 1.014 1.0213 –0.72 1.014 1.0213 –0.72
Water 0.8211 0.8207 0.05 0.8211 0.8207 0.05

Experimental Assessments of the Added Mass … 227



a1 =
f
ŵ
n, 1

f
â
n, 1

f ad, 1
f wd, 1

 !2

− 1. ð10Þ

Defining a modal reduced mass parameter as the quotient between the modal
structural mass and the modal displaced water mass,

a1 =
Ma, 1

Ms, 1
=

Ma, 1

Md.1

Md, 1

Ms.1
=

Ca, 1

m⋆
1

ð11aÞ

where

m⋆
1 =

Ms, 1

Md.1
=

4ms
R L
0 ψ2

1ðzÞ dz
πρwD2

R Li
0 ψ2

1ðzÞ dz
, ð11bÞ

the added mass coefficient related to the modal displaced mass, Ca, 1, can be
evaluated from the modal added mass coefficient related to the modal structural
mass, a1, in the form

Ca, 1 =m⋆
1 a1. ð12Þ

Using the modal integrals given in Table 6, two modal reduced mass parameters
related to the model immersed length may be defined, as follows:

1. m⋆
I, 1: model structure (as built) with length L and immersed length Li;

2. m⋆
II, 1: model structure hypothetically completely immersed, L= Li.

The hypothetical case in which the structure would be completely immersed in
the water, m⋆

II, 1, is proposed in order to enforce some sort of similarity with the rigid
circular cylinder studied in Sarpkaya [10]. The fact the model is or not completely

Table 4 Modal mass and
modal rigidity. First mode
only. Sinusoidal and
Bessel-like projections

Sinusoidal Bessel-like
M1 ðkgÞ η1 ðN ̸mÞ M1 ðkgÞ η1 ðN ̸mÞ

Air 1.5698 57.6515 1.2142 54.7226
Water 1.5482 56.8190 1.3083 52.8053

Table 5 Damped natural
frequencies from decay tests,
using standard Fourier
analysis (FFT), and non
damped ones, having mass
coefficient as parameter

fd, 1 ðHzÞa f n̂, 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1+ a1

p ðHzÞb
Sinusoidal Bessel-like

Air 1.0140 0.9645 1.0685
Water 0.8211 0.9610 1.0112
aMeasured (FFT)
bCalculated
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immersed alters the modal reduced mass, inasmuch as the quantity of modal dis-
placed mass also changes.

Table 7 shows the values of the modal reduced mass for both cases defined
before and both modal shapes considered. Along with the modal reduced mass, the
modal added mass related to the displaced mass is also calculated. The Bessel-like
modal shape is physically closer to the actual modal shape and, as Table 7 shows,
choosing the modal representation affects the modal added mass coefficient
substantially.

Although the modal added mass result obtained using the Bessel-like mode is
around 17% larger than the ‘potential-flow’ one, bCa, 1 ≈ 1, the same asymptotic
behavior as in the rigid cylinder case studied by Sarpkaya [10] is observed, i.e.,
Ca → 1+ for low KC, in the present experiment of order 1; see Fig. 2. Notice the
logarithm scale used. It should be also noted that, by using essentially the same
methodology, with a proper eigenmode for a cantilevered flexible circular cylinder,
Pesce and Fujarra [1] had experimentally obtained the first modal added mass
coefficient Ca, 1 = 1.17, in a remarkable agreement with the present assessment.

Figures 11 and 12 present the modal added mass parameters, a1 and Ca, 1, as
function of the HT envelope amplitude obtained using the instant damped fre-
quency linear fittings determined in Figs. 9 and 10. The values found using the HT
methodology at zero amplitude meet the outcomes presented in Table 7 with a
standard Fourier analysis. Notice that the quadratic form for a1, as per Eq. (10),
increases the differences found in the damped natural frequencies, if HT or FFT
analysis are used (compare Figs. 9 and 10 and Table 3).

Finally, Fig. 12 shows the first mode added mass coefficient, determined with
respect to the modal displaced mass, m⋆

I, 1, which is based on the as built immersed
length. On the other hand, Fig. 13 uses the hypothetical case in which the structure

Table 6 Free-decay in water: the first mode integral mass term

Based on
Total length (L)R L
0 ψ2

1ðzÞ dz ðmÞ
Immersed length Lið ÞR Li
0 ψ2

1ðzÞ dz ðmÞ
Sinusoidal 1.3010 1.1285
Bessel-like 1.0994 1.0883

Table 7 First mode added-mass coefficients—a1 and Ca, 1—and corresponding mass-ratios.
a1 =ma, 1 ̸ms, 1 determined from Eq. (10), with damped natural frequencies obtained from Fourier
analysis

Li < L Li = L

a1 m⋆
I CI

a, 1 m⋆
II CII

a, 1

Sinusoidal 0.514 3.455 1.176 2.997 1.541
Bessel-like 0.387 3.028 1.172 2.997 1.160
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Fig. 11 First mode added mass coefficient, a1, defined with respect to the structural mass, as
function of the HT envelope amplitude for sinusoidal and Bessel-like modal projections
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Fig. 12 Added mass coefficient, Ca, 1, defined with respect to the as built displaced mass, for the
first mode, as function of the HT envelope amplitude for sinusoidal and Bessel-like modal
projections
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is considered completely immersed in the water. Comparing Figs. 12 and 13, it can
be readily noticed that the way the modal reduced mass is defined does not affect
significantly the results. However, the way the decomposition basis is taken, has
indeed a significant effect. Moreover, if the Bessel-like projection is taken, the
simple and standard Fourier analysis procedure leads to results which are in
remarkable agreement with that reported by Pesce and Fujarra [1] for a cantilevered
flexible cylinder, Ca, 1 = 1.17. As a matter of fact, such a value is less than 20%
larger than Ca, 1 = 1, the small amplitude added mass value that should be expected
from a presumed rigid cylinder potential flow similarity.

3 Conclusions

A modal added mass coefficient assessment using two free-decay experimental tests
for the same model, in immersed and non-immersed conditions, was successfully
carried out using standard (Fourier) and non-standard (Hilbert Transform) analysis
methodologies. Applying usual Galerkin’s projection schemes, the first mode added
mass coefficient was assessed, by using two distinct trial functions basis: the
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Fig. 13 Added mass coefficient, Ca, 1, defined with respect to an hypothetical full-length
displaced mass, for the first mode, as function of the HT envelope amplitude for sinusoidal and
Bessel-like modal projections
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simplest one—sinusoidal; and a Bessel-like eigenfunction set, coming from an
accurate asymptotic modelling regarding the vertical tensioned beam dynamic
problem. The choice of a sufficiently representative modal shape has shown to be
essential, altering significantly the experimental assessment of the first mode added
mass coefficient, for a vertical flexible cylinder configuration. Along with the choice
of a representation basis, the modal added mass, due to its quadratic dependence,
presents a significant numerical sensitivity for small deviations in the frequency
values obtained using FFT or HT methodologies.

The present experimental assessment for the first mode added mass of a vertical
flexible circular cylinder fixed at both extremities showed a remarkable agreement
with that reported by Pesce and Fujarra [1] for a cantilevered one, Ca, 1 = 1.17. This
value is just 17% larger than the potential flow added mass coefficient, bCa =1,
commonly assumed in riser engineering, in an ad hoc manner. It should be also
noticed that the well-known experimental chart by Sarpkaya [10], for rigid cylin-
ders in oscillatory flow, shows—in log scale—an asymptotic limit for the inertia
coefficient, Cm =1+Ca, slightly larger than 2.

The next step for the modal added mass coefficient assessment would be
expanding the analysis for higher modes, looking for a wider scenario involving the
evaluation of added mass parameters for Reduced Order Models. The Hilbert
Transform methodology is also an asset of the present work, being possible to use it
in other experimental tests to determine the dependency of the system natural
frequency on the vibration amplitude. A subsidiary and practical result, emerged
during the HT methodology application, is the possibility of an a posteriori
assessment of the optical tracking system measurement, being it in air or water, as
shown in the Appendix.
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Appendix 1—The HT Methodology as a Tool to Assess
Optical Tracking Accuracy

During the experimental set up in air and water, the calibration of the optical
tracking system revealed a measurement accuracy about a decimal of millimetre
ð0.1mmÞ. On the other hand, by using the HT procedure to evaluate the instant
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damped frequency as function of vibration amplitude, resolution is clearly obtained,
revealing a figure better than 0.005 × 22.2mm≈ 0.1mm, as shows Fig. 14, for the
decay test in air.

Fig. 14 Instant damped frequency from free-decay in air showing a clear bound for the optical
tracking system accuracy
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Appendix 2—Nomenclature

Latin Symbols

a: added mass coefficient,
a=ma ̸ms

A: modal amplitude Ca: added mass
coefficient, Ca =ma ̸mdbCa: ‘potential flow’ added mass

coefficient, bCa ≈ 1

CD: drag force coefficient Ch: modal drag force
coefficient

Cm: inertial coefficient,
Cm =1+Ca

Cs: modal linear viscous
damping coefficient

cs: linear viscous
damping coefficient

D: diameter EA: axial stiffness EI: bending stiffness
fd : damped natural frequency
(measured)

f n̂: natural frequency
(calculated)

k: mode number

K, KC: Keulegan-Carpenter
number

L: stretched length L0: unstretched length

Li: immersed length Lt : total length M: modal mass
ma: added mass per unit length md : displaced mass per unit

length
ms: structural mass per
unit length

Ma: modal added mass Md: modal displaced mass Ms: modal structural
mass

m⋆: reduced mass parameter m⋆
1 : first mode reduced mass Nb: equivalent normal

traction
Nbð0Þ: traction at the cylinder
bottom

Re: Reynolds number t: time

Tðz, tÞ: tension uðz, tÞ: displacement vector U: mean velocity
x: cartesian coordinate y: cartesian coordinate z: cartesian coordinate

Greek Symbols

α: quasi-Bessel mode parameter β: Sarpkaya’s β-
parameter

β: quasi-Bessel mode wave
number

γ: linear weight γi: immersed linear
weight

η: modal rigidity

ζ: linear viscous damping
coefficient

ν: kinematic viscosity ξ: dimensionless modal
amplitude

ρw: water specific mass ψ : modal shape ω: angular frequency
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Dynamic Modeling and Simulation
of a Parallel Planar Manipulator
with Linear Electric Actuators Using
Power Flow Approach

A. N. Albuquerque , M. Speranza Neto and M. A. Meggiolaro

Abstract This work presents the analytical form determination of the dynamic
model of a parallel planar mechanism with three degrees of freedom through the
characterization of the power flow between its components. From the geometrical
relations associated to the displacement of their degrees of freedom, the kinematic
relations associated to their speeds are determined. Considering the power flow
between the degrees of freedom, and also between these and the actuating elements
(linear electric actuators) the equilibrium relations of the forces and torques are
obtained. Accounting for inertial effects of system components, the stiffness and
damping effects, the equations of motion or the state equations are analytically
determined. Besides, the relation between the inverse kinematics and the direct
dynamics is presented. The proposed methodology is generalized and applicable in
any type of mechanism (open or closed, planar or spatial). Thus, this methodology
(power flow) is more efficient to achieve the dynamic analytical (closed) models of
parallel mechanisms. Simulations are performed to validate this approach, using the
real data (geometry, inertia, damping, actuators forces, etc.) from a planar mech-
anism designed and built especially for the purpose to compare the simulated and
experimental results. The analytical equations lead to a more efficient simulation
process and real-time control of these systems.
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1 Introduction

Despite of having a smaller workspace, higher inertia and a harder dynamic anal-
ysis, parallel systems have great advantages when compared to serial manipulators,
as better stability and accuracy, ability to handle relatively large loads, high
velocities and accelerations and low power operation [1]. The improvement in the
modeling of parallel mechanisms contributes to solve problems in fields such as
vehicle dynamics and robotics. In some robot tasks such as when both feet of an
anthropomorphic robot find a restriction (such as the floor, for example), the
kinematic chain closes and thus, to estimate the robot’s hip movement in order to
balance it, multi-branch mechanisms or parallel mechanisms modeling techniques
are used [2].

Zhao and Gao [3] used the Bond Graphs Technique to model the kinematics and
dynamics of a Stewart platform. A comparison with experimental tests proved the
feasibility and efficiency of the model, whose method can be used to model other
types of parallel mechanisms. In his work, [4] represented the Stewart platform
dynamics using a novel spatial visualization form of the bond graphs. By using the
power flow diagram, with the noted causal relationships, creating system equations
becomes a relatively straightforward task [5]. Thus, this methodology (bond graphs
or power flow) is more efficient to achieve the dynamic analytical (closed) models
of parallel mechanisms.

The proposed methodology in this work is generalized and applicable in any
type of mechanism (open or closed, planar or spatial). For a better comprehension
of the methodology, a planar case will be discussed in this work. The inverse
kinematic model of the closed chain mechanism, which has easy solution when
compared to the direct model, can be developed by any known methodology,
without the need for a systematic approach. It begins by determining the inverse
geometric model and its derivation to obtain the kinematic relations, and therefore
the inverse Jacobian matrix. With the inverse kinematic model, the inverse kine-
matics bond graph is built and, from the cause and effect relations, the direct
dynamic model of the mechanism is found.

2 Inverse Kinematics of the Planar Platform

Figure 1 shows the 3-RPR parallel manipulator considered in this study. Three
limbs connects to the mobile platform and the fixed base by rotational joints in
points Bi and Ai, i = 1, 2 and 3. To describe its geometry, a referential frame A(X,
Y) fixed to the platform base is added and other frame, B(x, y), is coupled to the
mobile platform. Another reference frame, C(xi, yi), is fixed to each rotational joint,
thus having its origin at the point Ai (i = 1, 2 and 3). The yi axis of this system
points from Ai to Bi. For convenience, the origin of the frame B is located at the
center of the mobile platform. The position of the mobile platform can be described
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by the vector p= [pX, pY]
T = [X, Y]T and by the rotation matrix ARB. Hence, the

velocities state of the mobile platform is defined as a three dimensional vector with
the absolute linear velocity and the angular velocity of the mobile platform (Eq. 1).

x ̇= v=
vp
ωp

� �
=

X ̇
Y ̇
θ

2
4

3
5=

vX
vY
ωz

" #
ð1Þ

For this manipulator, the input vector is given by vA = [v1, v2, v3]
T and the

output vector can be described by the centroid velocity P and the angular velocity
of the mobile platform, v = [vx, vy, ωz]

T. Using the vector loop technique and then,
applying the differential with respect to time, the relationship between the variables
which describe the angular and linear velocity of the mobile platform and the
velocities of the links of the planar platform is found. With this relation, the inverse
Jacobian of the manipulator is obtained, as shown in Eq. 2 [6].

q̇=
v1
v2
v3

" #
= J− 1x ̇=

cos θ1 sin θ1 b1Xsin θ1 − b1Ycos θ1
cos θ2 sin θ2 b2Xsin θ2 − b2Ycos θ2
cos θ3 sin θ3 b3Xsin θ3 − b3Ycos θ3

2
4

3
5 X ̇

Y ̇
θ

2
4

3
5 ð2Þ

in which θi are given by Eq. 3 (with i = 1, 2 and 3). Rewriting Eq. 2 in function of
tan(θi), differentiating both sides, and manipulating the terms in order to put in

b3

p

a1

d1, v1

y

B1

B2

ϴ1, ω1

ϴZ, ωP = [ωZ]

O

a3

a2

s1

s2
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A2

A3

ϴ2, ω2

ϴ3, ω3

P

d2, v2

b1

b2

B3

d3, v3

X

Y

s3

x

vx

vy

vP = [vX vY]T

Fig. 1 Planar platform with three degrees of freedom
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evidence the absolute linear velocities and angular velocity of the platform, we
obtain the inverse Jacobian that relates these velocities to the angular velocity of
each of the members (Eq. 4).

θi = tan− 1 biY − aiY
biX − aiX

� �
= tan− 1 Y + bixsin θ+ biycos θ− aiY

X + bixcos θ− biysin θ− aiX

� �
ð3Þ
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In Eq. 4, jθi are given by Eq. 5, with i = 1, 2, 3, cθ = cos(θ) and sθ = sin(θ). In
order to obtain the relation between the linear and angular velocities and acceler-
ations of the moving platform and the linear accelerations of the actuators of the
mechanism, the differential of the inverse Jacobian has to be calculated, as shown in
Eq. 6. The matrix of the derivatives of the inverse Jacobian is given by Eq. 7.

jθi = bix c θ− biy s θ
� �

biX − aiXð Þ+ bix s θ+ biy c θ
� �

biY − aiYð Þ ð5Þ
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In Eq. 7, biX
.
and biY

.
are given by Eqs. 8 and 9, respectively, for i = 1, 2 and 3.

The same method is applied with the relation between the velocities and acceler-
ations of the moving platform and the angular accelerations of the actuators
(Eq. 10). The matrix of the derivatives of Jθ

−1 was calculated by the same
methodology used for the derivatives of J−1 (Eq. 7).
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In a graph that correctly describes the kinematics (1 and 0 junctions, trans-
formers and gyrators), the dynamics (capacitors, inertias and resistors) can be
imposed without the risk of creating models where the main constraints of
mechanical systems are violated: geometric or kinematic ties [7].

In this model, speed conditions are imposed by ideal velocity sources, that is, a
source of velocity for vX, vY and ωZ. Besides these velocities, the other 1 junctions
(of common velocities) indicate the linear (v1, v2 and v3) and angular velocities (ω1,
ω2 and ω3) of the actuators. Thus, the inverse kinematics of the planar platform via
multibond graphs is represented as shown in Fig. 2, whereby the modulated
transformer type represents the matrices J−1 (Eq. 2) and Jθ

−1 (Eq. 4).

3 Dynamic Model of the Parallel Mechanism Using Power
Flow Approach

According to [8], when possible, both completely match the power variables on the
inputs and outputs of the subsystems (same type and direction of power flow) and a
consistent cause and effect relation (which variables enter and which come out of
the models to be coupled), the resulting model is fully equivalent to that which
would be obtained analytically using other methodologies, allowing its simulation
from the simple connection of the modules. Considering this, the diagram (Fig. 3)
that illustrates the relationships of cause and effect of the planar platform with three
degrees of freedom is mounted.

1 MTFMTF

SfFig. 2 Multibond graphs
representation of the planar
platform inverse kinematics

Planar dynamics of the rigid body

Actuator
1

Actuator
2

Actuator
3

FX FY MZ

F1 F3F2

Control and actuation system

V1 V2
V3i1 i2 i3

vX vY ωZ

Fig. 3 Cause and effect
relations of the planar
platform
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With the kinematic relationships of this parallel mechanism comes the relation of
consequence of the power conservation on the actuators coupling with the rigid
body (Eqs. 11 and 12). Considering the inertia effects of the moving platform, with
mass mP and mass moment of inertia JPzz, the multibond graphs structure of the
direct dynamics model of the planar platform with three degrees of freedom is
shown in Fig. 4. Using the concepts, elements and the graphical representation of
the Bond Graph Technique, was further added the inertial effects of the bodies that
compound the actuators, introducing the terms mAi and JAi, which correspond to the
mass and moments of inertia of the actuators, with i = 1, 2 and 3. This is made by
applying the correct direction of power flow (indicated by the half arrow) and the
correct direction in which the effort signal is directed (indicated by the causal
stroke). It was also included in this model the equivalent viscous friction in the
rotation joints.
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2
4

3
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From the model in the Fig. 4, the constitutive equations of the inertia elements
(I) with integral (or natural) causality are written in their differential form. Thus,
making explicit the efforts, inserting this equation into the junction structures
equations and replacing the constitutive equations of the inertial elements with
differential (forced) causality, the resistors elements (R) and the modulated trans-
formers (MTF), the Eq. 13 is obtained.

MPv ̇= J−Tfe − J−TMA vA
.
− J−T

θ JA ωA
.

− J−T
θ BAωA ð13Þ

Substituting the equations from the derivatives of the Jacobian matrices (Eqs. 6
and 10) and Eq. 4 into Eq. 13 and solving the algebraic loops associated to the

Fig. 4 Multibond graphs representation of the planar platform dynamics
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storage elements with differential causality, the state-space equations are obtained
(Eq. 14), with M1 and M2 given by Eqs. 15 and 16, respectively.

v ̇= M− 1
1 M2

� �
v+ M− 1

1 J−T� �
fe ð14Þ

M1 =MP + J−TMAJ− 1 + J−T
θ JAJ− 1

θ ð15Þ

M2 = − J−TMA J− 1
.

− J−T
θ JA J− 1

θ

.

− J−T
θ BAJ− 1

θ ð16Þ

3.1 Dynamic Model of the Actuation System

The property of modularity, one of the major advantages of the technique, enables
the development of complex systems models from simple subsystems, since these
are created predicting the manner in which they will engage each other [6]. Figure 5
presents the electric actuator scheme used in this modeling. An electric motor
provides power to the actuation system through a torque Tm and an angular velocity
ωm. This power is then transmitted to a leadscrew by a gear set. In bond graphs
modeling, motors can, in general, be considered, as effort sources.

In the dynamic model of the actuation system were considered the inertia of the
motor (Jm), of the gear train (JC), of the actuator rod (mA) and also the viscous
friction coefficients bm, bC and bA associated with these elements. Figure 6 presents
the bond graph structure of the actuation system, where ne is the transmission ratio
between the gears A and C. The leadscrew D has the same velocity of C, ωC.
Through the leadscrew nut, which is coupled to the actuator rod, this movement
becomes linear with velocity d.̇ This relation is given by nP = 0.5 ⋅ π−1 ⋅ p ⋅ Ne,
where p is the leadscrew pitch and Ne refers to type of thread. In the electrical
circuit model, R, L and Ke are the resistance, the inductance and the electromagnet
constant of the motor, respectively.

The elimination of the electric dynamics, which has time constants of smaller
orders of magnitude than the mechanical dynamics, is made by considering the
values of Li approximately equal to zero (for i = 1, 2 and 3). The actuator system

Fig. 5 Electric actuator
scheme
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model parameters were obtained by a set of experiments using a small scale electric
motor dynamometer.

3.2 Coupled Dynamic Model

Figure 7 shows the coupled dynamic model represented using multibond graphs.
The actuator models are coupled to the planar platform model through the 1
junctions that represents the actuator output speed, vi, with i = 1, 2 and 3. Using the
Bond Graph Technique formulation, the state-space equation, where v is the state
vector and se is the input vector (Eq. 19) is obtained, with M3 and M4 given by
Eqs. 17 and 18, respectively.

M3 =MP + J−TMAaJ− 1 + J−T
θ JAJ− 1

θ ð17Þ

M4 = − J−TBAvJ− 1 − J−TMAa J− 1
.

− J−T
θ JA J− 1

θ

.

− J−T
θ BAJ− 1

θ ð18Þ

v ̇= M− 1
3 M4

� �
v+ M− 1

3 J−T� �
se ð19Þ

Fig. 6 Bond graphs for the electric linear actuator

Fig. 7 Complete multibond graph representation for the 3-RPR parallel mechanism
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4 Results

For the purpose of providing real data (geometry, inertia, damping, etc.), a planar
mechanism was designed and built (Fig. 8a). The actuator system model parameters
were obtained by a set of experiments using a small scale electric motor
dynamometer (Fig. 8b).

4.1 Inverse Kinematic Model Validation

Simulations were made to validate the inverse geometric model (vector loop
equation) and the inverse kinematic model (using the matrices J−1 and Jθ

−1).
Table 1 presents the geometric parameters of the mechanism.

Using the derivatives of the Jacobian matrices from Eqs. 2 and 4, the time
response of the limbs was obtained for the input functions shown in Eq. 20. Fig-
ure 9b and 9d show the linear and angular accelerations of the actuators and Fig. 9a
and 9c show the linear and angular velocities of the actuators, respectively, by
integrating (with the corresponding initial conditions) the accelerations of the
actuators.

X ̈=5.00 sinðπtÞ mm ̸s2
Y ̈= − 5.00 sinðπtÞ mm ̸s2
θ ̈=0.0873 rad ̸s2

8<
: ð20Þ

4.2 Direct Dynamic Model Validation

In the simulation of the direct dynamic model were considered the mass and the
mass moment of inertia of the moving platform, mP and JPzz, the mass and the mass

Fig. 8 Built planar mechanism (a) and the small scale dynamometer (b)
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moment of inertia of the actuators, mA1, mA2, mA3 and JA1, JA2, JA3, and the viscous
friction coefficients from the actuators joints, bA1, bA2 and bA3. Table 2 presents the
parameters used in this simulation. Two pulses with amplitudes 5 and –5 N, widths
of 0.1 s and interval of 0.1 s between them were given by the actuator 1.
Figures 10a show the linear accelerations of the moving platform and Fig. 10b
show the linear velocities of the moving platform. These velocities and

Table 1 Geometric parameters

Identification Symbol Value

A1 joint coordinates in reference frame A (mm) a1 [−389.14 −224.67]
A2 joint coordinates in reference frame A (mm) a2 [389.14 −224.67]
A3 joint coordinates in reference frame A (mm) a3 [0.00 449.34]
B1 joint coordinates in reference frame B (mm) b1 [−125.00 −72.17]
B2 joint coordinates in reference frame B (mm) b2 [125.00 −72.17]
B3 joint coordinates in reference frame B (mm) b3 [0.00 144.34]
Linear actuator fixed length (mm) Lmin 255.00
Stroke of the linear actuator (mm) S 100.00
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accelerations occur on the expected directions and with amplitudes compatible with
the type of system studied. Further analysis, comparing the results with real data,
will be performed on the coupled system model.

4.3 Coupled Dynamic Model Validation

In the simulation of the coupled dynamic model, several parameters were consid-
ered besides the ones already discussed: the total transmission ratio of the actuators
gear train and leadscrew, nep, the equivalent mass moment of inertia of the actu-
ators, JmC, and the equivalent viscous friction coefficients from motor and gear train
of the actuators, bmC. Table 3 presents the parameters used in this simulation.

Figure 12 shows the time response of the actuators for different values of
proportional gain for a given input ([X = 0.0 mm, Y = 20.0 mm, θ = 0.00 rad])
using the control strategy shown in Fig. 11, where G−1 represents the inverse
geometric model an J−1 represents the inverse Jacobian model of the mechanism.

Table 2 Planar mechanism simulation parameters

Identification Symbol Value

Mass of the platform (kg) mP 0.578
Mass moment of inertia of the platform (kg m2) JPzz 4.50 × 10−3

Mass of the actuator rod (kg) mA1, mA2, mA3 0.175
Mass moment of inertia of the actuator (kg m2) JA1, JA2, JA3 7.28 × 10−3

Viscous friction coefficient of the joints (N s m−1) bA1, bA2, bA3 0.006

0 0.5 1 1.5 2 2.5-5

-4

-3

-2

-1

0

1

2

3

4

5
Acceleration of the moving platform

Time (s)

Ac
ce

le
ra

tio
n 

(m
/s

  )
 

aX
aY

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Velocity of the moving platform

Time (s)

V
el

oc
ity

 (m
/s

)

vX
vY

2

(a) (b)

Fig. 10 Linear accelerations and velocities of the moving platform
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The reference values for the steady state are [d1 = 10.5 mm, d2 = 10.5 mm,
d3 = −20.0 mm]. The system showed sensitivity to gain with time constants
compatible with the physical characteristics of the mechanism. The actuators dis-
placement tends to the values estimated by the inverse geometry model, which is
compatible with the one measured by the built platform when it is on the proper
configurations (same as the simulation inputs).

actuator dynamic
model

1−G
xdes qdes

+
-

εq
0

∫
vA

qA

mechanism
dynamic model

[ ]pK
proportional

controller

fe

coupled dynamic model

se v

1−J

Fig. 11 Position control strategy

Table 3 Actuating system parameters

Identification Symbol Value

Total transmission ratio of the actuator i (–) nepi 0.1156
Friction coefficient of the motor and gear train i (N m s rad−1) bmCi 0.003
Mass moment of inertia of the motor and gear train i (kg m2) JmCi 5.62 × 10−5
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Fig. 12 Time response for Y(t) = 20 mm. a kp = 0.5; b kp = 1.0
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5 Conclusions and Future Work

In this work a procedure for the determination of the analytical form of dynamic
models of a 3-RPR parallel manipulator with linear electric actuation through the
characterization of the power flow between its components was presented. From
the geometrical relations associated to the displacement of their degrees of freedom,
the kinematic relations associated to their velocities were determined. Considering
the power flow between the degrees of freedom and between these and the actuating
elements, the equilibrium relations of the forces and torques were obtained. Also,
inertial effects of system components, stiffness and damping effects were taken into
account and the equations of motion for the direct dynamics of a parallel manip-
ulator were analytically determined. This approach adopted the same fundamentals,
concepts and elements of the Bond Graph Technique.

Simulations were performed to validate this approach, using the real data
(geometry, inertia, damping, actuators forces, etc.) from a small scale electric motor
dynamometer and a planar mechanism designed and built especially for the purpose
to compare the simulated and experimental results. The ongoing work focuses in
implement these models in the built platform in order to verify these responses on
real environment.
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Numerical and Experimental Analysis
of a Parallel 2-DOF Manipulator

William S. Cardozo and Hans I. Weber

Abstract A parallel two degrees of freedom manipulator designed for a variable
orientation of a body in space is analyzed. The manipulator consists of one uni-
versal joint with one axis fixed to the base and the other axis fixed to a moving
platform. A similar device is used in spacecraft to orient the rocket nozzle. In this
work, two parallel linear hydraulic actuators move the platform. A novel propor-
tional digital hydraulic valve is used to control the actuators. Each fork of the
universal joint has an angular position sensor mounted to measure the relative
motion of the cross and an inertial measurement unit (IMU) is fixed to the moving
platform. Load cells and pressure transducers are mounted on the actuators to
measure force and chambers pressure. Numerical simulations are presented using a
desired trajectory as input for a proportional controller (P-controller). An experi-
mental apparatus is used to validate the numerical results.

Keywords Kinematics ⋅ Electrohydraulic servosystem ⋅ Servoactuator
Universal joint

1 Introduction

In this work, a platform is designed with two linear hydraulic actuators mounted
around a universal joint, thus forming a parallel manipulator with two degrees of
freedom (2-DOF). Figure 1 shows the concept of this device with a load over the
moving platform. The hydraulic actuators are connected to the base through smaller
universal joints and to the moving platform through ball joints.
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The thrust vector control (TVC) scheme is similar to this platform and orients the
rocket nozzle in spacecraft. The TVC produces torque around the center of mass of
the spacecraft in order to steer and keep it on the desired flight path [1].

Lazic and Ristanovic [2] proposed a test bench for a TVC system based on a
fixed base robotic system. They presented an analysis of the kinematics and a
control strategy for a gimbaled 2-DOF parallel platform with two electrohydraulic
actuators (EHAs).

Wekerle et al. [3] presented the requirements of an actuation system for TVC
systems. The working envelope of several TVC actuators from the literature is
analyzed. A simplified and linearized model of a spacecraft as a rigid body is
presented considering wind disturbances. During the development of this work, the
actuator requirements presented in [3] were used as a reference. In [1] Wekerle et al.
presented a 2-dof mockup of a rocket motor nozzle with two EHAs. The actuators
performance is identified in a mass-spring test bench. The TVC mockup presented
in [1] uses two commercial servovalves; however, in this work low-cost valves
were manufactured. The custom-built valves reduce the cost and the complexity of
the system, because the commercial servo valves need a super clean fluid and a
sophisticated peripheral control system. Indeed, the EHA system presented in [1] is
closer to the most widespread control system in the industry. Here, a low-cost
hydraulic system is proposed, but it needs a lot of development to achieve the
robustness of the TVC presented in [1].

Ghosh et al. [4] developed a 2-dof parallel hydraulic actuated system for a
heave-and-pitch motion simulator. Two low-cost commercial solenoid proportional
valves control the hydraulic actuators. These types of valves have a dead-band and
non-linear behavior [5]. The authors have considered different types of controllers,
and the self-tuning fuzzy proportional–integral–derivative (PID) with bias control

Fig. 1 Kinematic scheme
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showed the best performance. The PID controller had the worst response [4]. The
commercial proportional valves used in [4] have a dead-band of 15% (usually, 5–
20% is common [6]). In this work, the dead-band of the proposed valve is less than
0.5%, hence a better performance of a linear controller is expected.

On the way to construct this platform, Cardozo and Weber [7] have introduced a
2-DOF mechanism similar to the platform of this work. In addition, Cardozo and
Weber [8] presented a 2-DOF mechanism the same platform presented in Fig. 1,
but with a homokinetic joint instead of a gimbal. Numerical simulations have
shown the efficacy of the homokinetic platform and using an experimental appa-
ratus the numerical results are validated.

In this work, the same proportional digital hydraulic valve (PDHV) used in [8]
controls the oil flow in the hydraulic actuators chambers. The proposed PDHV has
much lower price and less contamination sensitivity, when compared with a
commercial sliding spool servovalve. However, the PDHV is low-bandwidth
modulating. Numerical and experimental trials validate the proposed system. The
test bench has an angular position sensor on each fork of the universal joint to
measure the relative motion of the cross. An inertial measurement unit
(IMU) measures the embarked angular velocity of the moving platform and the
linear acceleration of a point. Moreover, load cells and pressure transducers
mounted on the actuators measure the force and the chambers pressure.

2 Hydraulic Control System

In this work, the platform is actuated by two independent EHA systems. Each EHA
system has a four-way valve-controlled single-rod linear actuator, hence this is one
of the most basic kind of hydraulic controlled system. However, even though this is
a simple system, the cost is very high if a servo-valve is necessary. Aiming a
low-cost system alternative, a novel control valve is proposed specially developed
for this manipulator, called PDHV. This valve is a proportional four-way valve with
an underlapped symmetric closed-center rotary spool. And an open-loop stepper
motor drives the valve spool through an elastic-coupling. Each actuator of the
platform is controlled by one PDHV, as shown in Fig. 2. By changing the valve
rotor angle θV, the pressure drops and the flow rate through the valve change, which
changes the pressure in the pipelines and in the actuator chambers, thereby gen-
erating the force that moves the piston.

In Fig. 2, pS and QS are the supply pressure and flow rate, respectively. The
arrows in the pipelines indicate the positive sense of the flow rates Q1, Q2, Q3 and
Q4. p1, p2, p3 and p4 are the pressures in the valve connections. pA and pB are the
pressures in chambers A and B, respectively; Ae and Ac are the areas of the
embolus and the crow, respectively; Fa is the force acting on the rod; and lȧ is the
piston speed. For a simpler kinematic analysis of the platform, la is the distance
between the centers of the mounting joints of the actuators.
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Using the kinematic model and the measured angular platform position, the
actual actuators position la is calculated. The controller compares the actual posi-
tions with the desired ones and changes the valve rotor angle θV proportionally to
the error.

3 Modeling

In the study of the platform kinematics three reference frames are defined, F fixed to
the base, R attached to the main crosshead and S attached to the moving platform.
The rotation between the frames are summarized by the following indication,

F
Fixed
Base
x, y, zð Þ

⟶
β yð Þ

R
Main

Crosshead
x′, y, z′ð Þ

⟶
α x′ð Þ

S
Moving
Platform
x′, y′′, z′′ð Þ

where β is the angle of rotation around y-axis and α is around x′-axis. Both angles
are measured directly using angular transducers.

The vector of angular momentum of the moving platform and the load using
S frame about its center of gravity is introduced by,

Fig. 2 Hydraulic scheme
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SHP = SIP S
FωS, SHL = SIL S

FωS ð1; 2Þ

where S
FωS is the angular velocity vector of the platform in body coordinates. The

linear momentum vectors of the platform and the load are given by Eqs. (3) and (4)
using S frame,

SGP =mP
SvP, SGL =mL

SvL. ð3; 4Þ

Equation (5) shows the angular momentum of the system composed by the
moving platform and the embarked load, about the center of the main crosshead,
which is a fixed point, using S frame [8].

SHO = SHP + S
OrP̃

SGP + SHL + S
OrL̃

SGL ð5Þ

where S
OrP̃ and S

OrL̃ are the tilde matrices of the position vector of the platform and
load CM using S frame. Using Euler’s Law, Eq. (6) gives the torque SMO acting on
the moving platform [9].

SMO = SḢO + S
FωS̃

SHO ð6Þ

The torque acting on the moving platform is generated by the force vector of the
actuators, by the gravity force and by the universal joint constrains, as shown in
Eq. (7).

SMO = STF mP
F
OrP̃ +mL

F
OrL̃

� �Fg+ F
OrC̃31

FFa1 + F
OrC̃32

FFa2
� �

+ SMJ ð7Þ

where STF is the rotation matrix that leads from F to S frame, mP and mL are the
platform and the load masses, Fg is the gravity vector, FOrC̃31 and

F
OrC̃32 are the tilde

matrices of the position vector of the points C31 and C32, and SMJ is the torque due
to the universal joint constraint.

Looking at the crosshead of the main universal joint, it consists of two
orthogonal revolute joints: one in the y-axis and one in the x′-axis. Hence, all the
torque transmitted by the joint is orthogonal to the y-axis and to the x′-axis. Thus,
the torque constraint of main universal joint is on the z′-axis
RMJ = 0 0 MJ½ �T

� �
. Thereby, the torque due to the universal joint constraint

using the S frame is given by,

SMJ = STRRMJ = STR 0 0 MJ½ �T ð8Þ

where STR is the rotation matrix that leads from R to S frame.
Using Eqs. (6) and (7), the angular accelerations are calculated as
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β̇=
τ2 − τ3 tan α− c4α̇β

c3
, α̈=

τ1 − c2β2

c1
ð9; 10Þ

where the vector components τ1 τ2 τ3½ � and the constants are introduced as:

τ1 τ2 τ3½ �T = STF mP
F
OrP̃ +mL

F
OrL̃

� �Fg+ F
OrC̃31

FFa1 + F
OrC̃32

FFa2
� �

, ð11Þ

c1 = I1P +mpl2p + I1L +mLl2L, ð12Þ

c2 = c1 − I3P − I3Lð Þ sin α cos α, ð13Þ

c3 = c1 cos α+ I3P + I3Lð Þ tan α sin α, ð14Þ

c4 = − 2c1 − I3P − I3Lð Þ sin α+ I3P + I3Lð Þ tan α cos α. ð15Þ

Neglecting the actuators inertia, the forces of the HA1 and HA2 are given by

FFa1 =
F
OrC31
F
OrC31
�� �� Fa1, FFa2 =

F
OrC32
F
OrC32
�� �� Fa2, ð16; 17Þ

where
F
OrC31
F
OrC31j j and

F
OrC32
F
OrC32j j are unit vectors in the HA1 and HA2 directions, respectively.

Fa1 and Fa2 are the forces magnitudes of the HA1 and HA2, respectively, and are
calculated using Eq. (18) [6].

Fa1 = pA1Ae − pB1Ac −Ff −mlä1 ð18Þ

where the index “1” denotes actuator 1, m is the assembly mass which moves with
the piston, and Ff is the friction force. Changing the index from 1 to 2 on Eq. (18)
the force on the second actuator is obtained.

In the present work, the friction force is obtained experimentally at constant
actuator speed, without a load, the fitted function is depicted in [8]. For this kind of
numerical simulation, the friction force is well represented as a function of the
actuator speed using a Stribeck curve. The good result is due to the fact that in the
analyzed conditions slip velocity on the actuator is significant and a relative small
amount of static/kinetic friction appears in the transition [10]. A more precise
model, like LuGre model, shows the time dependence of the friction and could be
used in a more general condition or for real time friction compensation [11].

The pressure drop through a PDHV is calculated using a variable-area orifice
model [6],

Qij = αDijAij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ρ
pi − pj
�� ��

s
sign pi − pj

� �
. ð19Þ
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Qij is the flow rate between connections i and j, where these indexes vary from 1
to 4 accordingly to the valve connection depicted in Fig. 2. αDij is the discharge
coefficient. Aij is the orifice area, which is a function of the valve rotor angle θV.
In this work, the pipeline pressure loss due to friction is negligible, and it is not
considered. But it is considered that the pump is capable of maintaining constant
supply pressure during the experiments. This hypothesis was validated.

The continuity equation applied on the hydraulic scheme, considering an
incompressible flow, gives the oil flow in the actuators chambers:

Qa =Q14 −Q43, Qb =Q12 −Q23. ð20; 21Þ

Equations (22) and (23) show the relationships between the flow rate in the
chambers and the speed of the actuators:

Qa =Aelȧ, Qb =Aclȧ. ð22; 23Þ

During the experiment that identifies the friction force on the actuator, a discrete
number of valve opening positions are demanded. These data are also used to
identify the valve discharge coefficients.

Figure 3 gives the flow rate characteristic versus the rotary spool shift for several
pressures drops.

The non-zero flow for a null spool shift is characteristic of an underlapped valve.
In addition, the single rod actuator used in this work gives a positive velocity in a
null spool shift condition. The numerical and experimental trials identify that when
the spool is deflected form the central position of −0.08°, the actuators have null
velocity in the absence of external forces. Hence, the null valve position θV = 0ð Þ is
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deflected −0.08° from the actual central position. This procedure helps the con-
trollability of the single rod cylinder.

About the bandwidth, until frequency of 11.5 Hz, the valve shift is limited by its
maximum stroke of 14.4°. Between 11.5 and 15.4 Hz, the limitation is caused by
the inversion time (6.5 ms), maximum angular velocity (21.0 rad/s) and accelera-
tion (1,613 rad/s2) of the open-loop stepper control. Between 15.4 and 76.9 Hz, the
limitation is caused by the inversion time and the maximum angular acceleration.
After 76.9 Hz, the valve spool does not move, because the minimum inversion time
is not reached.

4 Controller

The platform controller is a decentralized proportional controller; hence the position
control of each actuator is independent. Figure 4 depicts the control loop.

The control loop receives a desired angular position for the platform. Using the
kinematic model, the desired actuator positions are calculated and compared with
the actual positions. The errors are multiplied by a gain and sent to the PDHV
controller. The PDHV controller has an open loop to control a stepper motor
attached to the valve spool. Accordingly to the spool position, the oil flow to the
actuators changes, thus its position changes and the orientation of the platform
changes. The proportional gain is chosen trying several values in the simulations,
Fig. 5 shows the step response of HA1 for several gains on the gimbaled platform.

Fig. 4 2-DOF platform controller
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Using Fig. 5, the kP = 1× 105 is chosen because there are no oscillations and no
overshoots. Due to the symmetry of the actuating system, the HA2 has a similar
response, thus the same gain is used. The data acquisition system (DAQ) consist in
two customized microcontrolled circuits with an acquisition frequency of 50 Hz.
One, receives the sensors data, sends these data to a computer with a MATLAB
running script. The other one receives the desired valves positions from MATLAB
script and sends it to the valves controllers. The valve controllers are a variable
frequency open loop microcontrolled circuit specially built for the PDHV with
25 kHz control frequency.
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5 Simulation and Experiments

The experimental data are compared with the numerical simulation and the desired
position. The simulations and the experimental parameters can be found in [8].
Figure 6 shows α and β the experimental (Act) data compared with the numerical
simulation (Sim) and the desired position (Des).

The deviation between α simulated and the experimental result is 2.2° in max-
imum and 1.2° in average. The β deviation is 1.8° in maximum and 0.9º in average.
The average error between simulated and the experimental actuators length result is
2 mm, and this error reaches 4 mm for actuator one and 5 mm for actuator two in
the maximum. The top view of the table center trace can be seen in Fig. 7 with the
platform limits (Boundaries).

The deviations between simulated and the experimental results are mainly due to
model simplifications and platform assembly problems, like backlash and joint
friction. The main model simplifications are no friction losses in the pipelines, no
actuators inertia and an actuators friction dependent of speed only. The difference
between actual, or the simulated and the desired position is due the extremely
simple control algorithm. This proportional control with bigger gain leads to sta-
bility problems, mainly chattering.

6 Conclusions

In this work, two configurations of a 2-DOF electrohydraulic actuated platform
were developed for a low-cost TVC system. The most widespread TVC solution for
liquid-propellant rockets is investigated using a gimbaled platform.
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The kinematic and the dynamic modeling were presented. The models of the
electrohydraulic system and the controller were also shown. These models were
used to perform numerical simulations. The comparison between the numerical and
the experimental results reveal that the presented model provides a good insight into
the behavior of the system.

This work proposed a novel hydraulic control valve built specially for the
control of the platform. It provided a feasible electrohydraulic control system. The
operation of the novel control valve was validated to control the actuators position
of the platform. Finally, it is concluded that, in spite of the low bandwidth, the
proposed hydraulic control system is able to control a low-cost TVC system. This
approach is interesting for upper stage TVCs in vacuum, where high precision and
not velocity is the challenge.
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Parameter Optimization and Active
Control of Electromechanical Suspension
Systems

Willian Minnemann Kuhnert, Marcos Silveira and
Paulo José Paupitz Gonçalves

Abstract This paper has as object of study a simplified model for the the automobile

suspension system, which can become a regenerative system by coupling a RLC elec-

tric circuit to the mechanical system. The main objectives of this paper are to study

and optimize a simplified electromechanical suspension model that, when in pas-

sive mode, harvests energy, while maintaining the handling stability and passenger

comfort, and when in active mode, uses energy to improve comfort for passengers

and handling stability with least effort. A multi-objective optimization procedure

was carried out and Pareto frontier was obtained for the objective functions when

considering the passive mode. When considering active control, changes were pro-

posed to the optimal control in order to reduce control effort for feedforward strategy,

while for feedback strategies, the stability gain range was obtained by Routh-Hurwitz

criterion. The proposed control sets have particular advantages regarding isolation,

energy harvested and control effort.

Keywords Optimization ⋅ Electromechanical suspension ⋅ Control

⋅ Energy harvesting ⋅ Regenerative suspension

1 Introduction

The study of regenerative systems to use wasted energy has become an important

subject in the development of new mechanical systems. This is the case of automo-

bile suspension systems which have two main important objectives: handling sta-

bility and comfort. These are usually competing objectives, where improving one

degrades the other. In a typical vehicular damping system, viscous dampers dissi-
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pate energy as heat, i.e., energy is lost to the environment. The implementation of an

energy recovery system allows part of this energy to be reused. These devices have

advantages compared to conventional viscous damper, such as ease of application of

an active control and parameter setting, broader band of vibration attenuation, and

the possibility of system energy recovery [1, 16, 19].

The electromechanical system may also be used in a semi-active suspension, with

the control being realized by the electrical components of the device, facilitating its

implementation with good to fair improvement, while systems with active control

without look-ahead capabilities have proven to be little better or even worse when

compared to them [2, 16].

Experimental electromechanical and electromagnetic suspension systems have

already been built, such as systems using rotary motors and linear to angular motion

conversion, and showed good relationship of recovered energy and weight [1, 19]. In

some systems the type of configuration considerably reduces the total weight com-

pared to other systems already developed. Final weight was only about 20% higher

than a hydraulic suspension system, which can be considered a relatively low weight.

This shows that the development of this type of suspension system has advanced sig-

nificantly towards the feasibility of its application.

In Ref. [20], the authors developed a damper which can harvest energy and

demonstrated the balance between the amount of energy recovered from the sys-

tem and passenger comfort. Available energy in the system varies between 100 and

400 W in midsize cars running in good and medium condition roads, and depends on

vehicle speed, road roughness and tire stiffness. Therefore, the compromise between

recovered energy, passenger comfort and stability of the vehicle depends on the type

of road on which the vehicle travels, and a control algorithm must be developed to

optimize the dynamic behavior in every situation [6].

Nagode [13] designed prototypes of electromechanical suspension-based energy

harvesting systems and tested them for railroad applications in order to convert vibra-

tion energy into useful electrical energy for the vehicle, and Kjellqvist [9] evaluated

an electromechanical actuator for railroad applications experimentally, claiming that

it can have the capability to improve the dynamics of a rail vehicle and showing that

a bandwidth of 30 Hz is sufficient, although it can be improved.

On Ref. [8] an active electromechanical wheel suspension system was designed

and evaluated, allowed to work on fully active mode. The authors claim that the

preferred compromise between passenger comfort, handling stability and energy

dissipation can be controlled by adapting the dimensioning method concerning the

actuator and the control parameters during the development process. The proposed

suspension could improve significantly body isolation, however for the control law

adopted, the transmissibility close to the wheel-hop frequencies worsened.

The conventional elements used in suspension systems are usually springs and

dampers. In some cases, the spring and damper elements are developed in a way that

results in nonlinear behavior. In other situations, the springs and dampers can be

modeled as linear elements, but the kinematics of the suspension system results in

geometric nonlinear behavior. In [14], the authors explored the dynamical behavior

of an electromagnetic suspension system with nonlinear stiffness. It was observed
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that the electrical parameters are highly responsible for the behavior of the result-

ing mechanical damping effect, and indicates that the capacitance can be used as a

control parameter.

The aim of this paper is to expand the results on [10], which studied a simpli-

fied suspension model which takes into account a secondary complete RLC electri-

cal circuit that converts mechanical into electrical energy, thus acting as a damper.

The vertical dynamics is analyzed, with a view to transfer functions of displacement

transmissibility and charge. As charge produced by the passive isolator and isola-

tion provided are competing objectives, a multi-objective optimization procedure

with genetic algorithm is used in order to optimize the passive system in Sect. 3.

Feedforward and feedback control strategies are employed to reduce vibration and a

view to control effort is given. Feedforward strategy could be used as another possi-

ble solution to the lack of look-ahead capability described by [2] in active systems.

Modifications to the optimal feedforward control strategy are suggested in order to

decrease control effort in Sect. 4.1, and a feedback controller is proposed in Sect. 4.2.

In short, the paper studies the passive and active electromechanical suspension sys-

tems and proposes: a multi-objective optimization procedure for the passive system,

two modified feedforward optimum control in order to decrease control effort, and a

displacement feedback controller.

2 Problem Formulation

The simplified electromechanical suspension model considered in this paper is

depicted in Fig. 1 which represents a mass supported by mechanical components

(spring and damper) and coupled electrical circuit including a resistor, an induc-

tor and a capacitor. The system is subjected to harmonic base excitation x0, which

induces system displacement x and electrical charge q. Thus the system has two

generalized coordinates. The equations of motion of this system can be achieved by

Lagrangian approach for the mechanical and electrical subsystems, as described in

the literature [4, 14, 15]. The set of two differential equations describing the dynam-

ics of this system can be written as:

mẍ + cẋ + kx − Bq̇ = cẋ0 + kx0 (1)

Lq̈ + Rq̇ +
q

C0
+ Bẋ = Bẋ0 + e (2)

where the mechanical system parameters m, k, and c are, respectively, the mass,

stiffness and damping coefficients. The electrical system parameters L, R and C0
are, respectively, the inductance, resistance and capacitance coefficients, and e is the

external electric voltage (when present). The term B, which couples the two equa-

tions, is defined as the Transducer Constant (equal to the product of the length of

the exposed coil and the magnetic flux). This term has SI unit Volt× second/meter
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Fig. 1 Electromechanical

suspension system subjected

to base excitation

or Newton/Ampère. The dependent variables are the displacement of the mass (x)

and the charge (q), while x0 is the base displacement.

Frequency Response Analysis
Considering harmonic motion of the system described by set of Eqs. 1 and 2 in the

form of complex exponential, such that x(t) = Xe
j𝜔t

, x0(t) = X0e
j𝜔t

, q(t) = Qe
j𝜔t

and

e(t) = Ee
j𝜔t

, the equations of motion are written in the frequency domain as:

(
−𝜔2m + j𝜔c + k

)
X − j𝜔BQ = (k + j𝜔c)X0 (3)

(
−𝜔2L + j𝜔R + 1

C0

)
Q + j𝜔BX = j𝜔BX0 + E (4)

A procedure to obtain the transmissibility frequency response |X∕X0| consists of

eliminating the charge amplitude Q. The motion of electromechanical system is bet-

ter described in terms of the dynamic stiffness (or impedance), since it allows the

modeling and analysis of numerical models that can be easily measured by experi-

mental tests. Defining the impedance terms Zm, Ze and base impedance Zs as:

Zm = −𝜔2m + j𝜔c + k, Ze = −𝜔2L + j𝜔R + 1
C0

, Zs = j𝜔c + k, (5)

it is possible to write the displacement (X) in terms of the impedance as:

X =
(
ZeZm − 𝜔

2B2)−1 ((ZeZm − 𝜔

2B2)X0 + j𝜔BE
)

(6)

For the case of the electrical charge Q, it is also possible to obtain the transfer func-

tion relating the base motion with the electrical charge by eliminating the displace-

ment variable X such that:

Q =
(
ZeZm − 𝜔

2B2)−1 (j𝜔B
(
Zm − Zs

)
X0 + ZmE

)
(7)

The transfer functions (X∕X0 and Q∕X0) for base excitation are shown in Fig. 2. The

displacement transfer function (X∕X0) indicates the gain the sprung mass has when

it is harmonically excited in its base under each excitation frequency. The charge

transfer function (Q∕X0) indicates how much energy is obtained in the electrical

subsystem when the mass is excited as aforementioned. Neglecting the parameters
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Fig. 2 Displacement and

charge transfer functions as

functions of the excitation

frequency (a small amount of

damping was considered to

plot this figure)

related to the energy dissipation by making c = R = 0 which physically means no

mechanical damping nor electrical resistance, it is possible to obtain Eq. 8 defining

the system poles:

𝜔

2
1,2 =

𝜔

2
m + 𝜔

2
e + 𝛼𝜏

2 ±
√(

𝜔

2
m − 𝜔

2
e
)2 + 𝛼𝜏

2
(
𝛼𝜏

2 + 2
(
𝜔

2
m + 𝜔

2
e
))

2
(8)

These roots are shown in Fig. 2 marked as 𝜔1 and 𝜔2. The normalization terms are

𝜔m =
√

k∕m, 𝜔e =
√
1∕LC0, which are the natural frequencies of the uncoupled

mechanical and electrical systems, 𝜏 = B∕m and 𝛼 = m∕L. The system also presents

anti-resonance frequency (or zero) defined by 𝜔0 = 𝜔m𝜔e∕
√

𝜔

2
m + 𝛼𝜏

2.

3 Parameters Optimization for Passive Vibration Control

In this section the system is optimized by using Genetic Algorithm based on the

NSGA II algorithm [5] for multi-objective optimization, using the implementation

in C-language of this algorithm. However, other approaches could be used as the one

described in [12] or an analytical approach to analyze the power flow as in [18]. The

objectives are to minimize the area under the curve of function ||X∕X0
|| in frequency

domain and to maximize the area under the curve ||Q∕X0
|| in frequency domain. The

optimization is done by adjusting coefficients c and R, according to the following

constrained problem:
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minimize
c,R

J1, J2

subjected to 1 ≤ c ≤ 2000
1 ≤ R ≤ 200

where the objective functions J1 and J2 are defined as:

J1 =
1
n

n∑

i=1

||||

X(𝜔i)
X0(𝜔i)

||||
and J2 =

1
1
n

∑n
i=1

|||
Q(𝜔i)
X0(𝜔i)

|||

(9)

For the optimization, the adopted parameters were: m = 250 (kg), k = 40, 000 (N/m),

L = 0.76 (H), C0 = 0.0014 (F) and B = 500 (N/A) as used in Ref. [14].

The adopted population size for the optimization was 100, running for 80 gener-

ations, with probability for crossover of 90% and mutation probability of 50%.

The results of the optimization are summarized in a Pareto frontier, shown in

Fig. 3a. As expected, the Pareto frontier shows an inverse relationship between the

improvement of isolation and improvement of charge flowing in the electrical cir-

cuit. Figure 3b shows the effect of varying the mass on the Pareto frontier. It can be

seen that changing the mass value shifts the Pareto frontier and does not change its

shape significantly. Using the parameters obtained by the optimization procedure in

the Pareto Frontier, defined by the points (1), (2) and (3) in Fig. 3a, it was possible to

obtain the transfer functions (||X∕X0
|| and ||Q∕X0

||) illustrated in Fig. 4. The point (1)

corresponds to a situation where the objective function J1 is a minimum, while objec-

tive function J2 is a maximum, thus the area under curve ||Q∕X0
|| is minimum (least

charge produced) and the area under curve ||X∕X0
|| is also minimum (best isolation).

The point (3) corresponds to a situation where objective function J2 is a minimum,

thus maximum area under ||Q∕X0
|| curve, while objective function J1 is a maximum,

thus maximum area under ||X∕X0
|| curve. Point (2) corresponds to a trade-off rela-

tionship between the obtained response and the generated charge. Figure 4 reinforces

aforementioned conclusions. The red lines correspond to the point (3) condition in

Fig. 3 and it is unquestionable the best condition from the Pareto frontier to generate

charge and the worst to obtain isolation. The dashed green lines correspond to point

(2) and they show a situation in which there is better isolation than the previous con-

dition, but generates lesser charge. The blue lines correspond to point (1) and it is

unquestionable the best condition from the Pareto frontier for isolation and the worst

for charge generation.

4 Active Control Optimization

In this section the strategies of feedforward and feedback control are investigated.

Since active control requires energy, it is important to reduce the control effort nec-

essary to act on the system in order to have efficient energy usage.
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(a) (b)

Fig. 3 Pareto frontier obtained for values of viscous damping c and electrical resistance R (a) and

influence of values of the system mass m (b)

(a) (b)

Fig. 4 Frequency response for the three values extracted from Fig. 3. Displacement transmissibility

(a) and charge transmissibility (b). (1) c = 3.92 (N s/m) and R = 177.48 (Ω), (2) c = 1.03 (N s/m)

and R = 38.99 (Ω), (3) c = 1.00 (N s/m) and R = 1.00 (Ω)

4.1 Feedforward Control Strategy

Feedforward is considered here as a solution to reduce the vibration of the system.

Feedforward control was extensively studied in many applications and its principles

are discussed in the book by [7] and also in references such as [3, 17].

The diagrams shown in Fig. 5 illustrate the idea of feedforward control, which

makes use of a sensor to measure the disturbance to a control input. In this case, it

converts the signal to an electrical voltage.

In simple terms, the idea of feedforward control is to provide a secondary input

(control input) that cancels out (or minimizes) the effect of the disturbance. The

control input is linear related to the disturbance input.

Consider the block diagram shown in Fig. 5b, where the block Hff describes the

feedforward control filter, and the blocks Hd and Hc describe the transfer functions
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(a) (b)

Fig. 5 The feedforward strategy for active control. Schematic idea of feedforward control (a) and

block diagram (b)

relating the contributions of the disturbance X0 to the response X and the contribu-

tions of the applied voltage E to the response X, respectively.

If the interest is to control the displacement of the mass, it is necessary to consider

the expression relating X, X0 and E, which is Eq. 6.

The transfer function Hd is obtained by making E = 0 and Hc is obtained by mak-

ing X0 = 0 in Eq. 6. The total response X can be written as:

X = HdX0 + HcE = (Hd + HcHff )X0 (10)

In this case, it is possible to find optimal feedforward control by making X = 0, which

gives the following:

Eopt = j
(

Ze

𝜔B
(j𝜔c + k) − 𝜔B

)
X0 (11)

If this value of voltage (Eq. 11) is applied to the Eq. 6, the displacement amplitude

is canceled (X = 0). This occurs because the impedance match between the mechan-

ical and electrical inputs.

However, the control effort in terms of the total disturbance X0, shown in Fig. 6a, is

very high at low frequencies, which can make the controller implementation imprac-

ticable. If the transfer function of the optimal control Eopt in Eq. 11 is expanded, there

is a term defined by jk∕𝜔C0B which has a frequency dependence in the denomina-

tor. This term is responsible for large values of control voltage in the low frequency

range of Fig. 6. There are some possibilities of reducing the control effort in the low

frequency region. To do this, it is necessary to change the term jk∕𝜔C0B.

Two possible changes in the controller were investigated and the magnitude of the

control voltage is shown in Fig. 6b. The first proposed solution is to remove the term

jk∕𝜔C0B from the feedforward controller, which produces a control voltage E1. In

the second case E2, the term is changed to jk∕𝜔aC0B, where 𝜔a =
√

k∕C0
(
B2 + kL

)

which was set to match the control effort for 𝜔0 between control E2 and Eopt (see

Fig. 6b). By changing the feedforward optimal controller, there is a reduction in the

performance of the controller. The performances are shown in the results of Fig. 7a

(and in the detail for the first resonance frequency Fig. 7b). The performance with-
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(a) (b)

Fig. 6 Optimal feedforward control. Control effort (a) and the control effort for feedforward control

(b)

(a) (b)

Fig. 7 Comparison of the transmissibility for the system without control and with modified feed-

forward control (a) and the detail of the first resonance (b)

out control is the third situation shown in Fig. 4, while the performances E1 and E2
are both from the aforementioned adapted optimal controllers. By observing Fig. 7,

control E1 is the best choice applied for the system at higher excitation frequencies,

while control E2 is the best choice applied for the system at low frequencies.

4.2 Feedback Control Strategy

Feedback control is now considered as a solution to control the vibration of the sys-

tem. The case investigated is the displacement feedback, such that E = gdX, where

gd is the displacement gain and s = j𝜔. Figure 8 shows the system with feedback con-

trol, which consists of a sensor positioned in a point of interest (mass which vibrates

due to the base excitation) that feeds back the electrical circuit in order to input a

voltage to control the system vibration. For the case with displacement feedback,
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Fig. 8 Scheme of the system with feedback control
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Fig. 9 Frequency responses for displacement feedback control and zoomed first and second reso-

nance regions. Transmissibility (a) and control effort (b)

the denominator of the new transfer function becomes Eq. 12,

(mL)s4 + (mR + cL)s3+
(

B2 + cR + kL + m
C0

)
s2+

(
kR + c

C0
− gdB

)
s +

(
k

C0

)
= 0 (12)

According to [11], the Routh-Hurwitz stability criterion provides stability for the

solution of Eq. 13 in gain gd, for each feedback condition:

a3a2a1 − a2
3a0 − a4a2

1 = 0 (13)

where a4, a3, a2, a1 and a0 are the terms multiplying, respectively, s4, s3, s2, s1 and

s0 in Eq. 12. Using the system parameters described in the previous sections, the
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conditions for stability states that ga > −1098 and gb < 49.4. Figure 9 show for both

transmissibility and control effort (frequency responses) that as the absolute value

of the gain is the highest as possible, the isolation is better. There is minimal or no

difference between a system without active control and the system with active control

for stable gains ga < gd < gb in regions far from the resonance regions.

5 Conclusions

Characterization of the frequency response of a linear electromechanical model was

carried out, pointing out the equations of its poles and zeros. Optimization of the

passive system was performed by using Genetic Algorithm and a Pareto frontier

was obtained in order to group pairs of values of mechanical damping coefficient c
and electrical resistance R which lead to better isolation, better energy harvesting or

intermediate situations, for the proposed system. The influence of the sprung mass

on the Pareto frontier was also investigated and it was concluded it does not change

the shape of the frontier, although as the mass increases, the values of both objective

functions decrease, i.e., increasing the sprung mass can improve both comfort and

energy harvested. Active control with feedforward strategy was proposed. Since the

optimal control given by Eq. 11 has a high control effort in low frequencies, two

modifications were also proposed leading to the modified control laws E1 and E2
from that E1 is the best for higher frequencies and E2 is best for lower frequencies,

considering both isolation (or resonance limitation) and control effort. E2 is also a

viable choice when maintaining the zero in transmissility frequency since it requires

the same power as the system with optimal control, while E1 has a significant effort

and cannot maintain this zero. Finally, active control with displacement feedback

was proposed, with its stability gain range obtained by Routh-Hurwitz criterion. It

presented better isolation when compared to the passive system near the resonance

regions.
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A Neural Network Observer for Injection
Rate Estimation in Common Rail
Injectors with Nozzle Wear

Oliver Hofmann, Manuel Kiener and Daniel Rixen

Abstract The objective of this study is to present a neural observer that estimates

changing injection behavior due to wear and aging effects within the nozzle of a com-

mon rail diesel injector. Using a dynamic identification system in combination with

a modified learning rule, the neural observer is applicable to a wide range of problem

sets. A multilayer perceptron (MLP) network with three layers and few neurons in the

hidden layer ensures fast computing and high efficiency; network learning is based

on quasi-Newton optimization and an additional line search algorithm. Modeling the

bottom part of the injector introduces a simulation model, which is validated with

experimental data from a solenoid common rail diesel injector. Estimation results

conform well with the altered plant and therefore demonstrate the significant benefit

of using the proposed neural network observer concept.

Keywords Neural network observer ⋅ Diesel injector ⋅ Injection rate estimation

Nozzle wear ⋅ Injector aging

1 Introduction

The injection process significantly influences the performance of internal combus-

tion engines. Aging effects such as coking or wear, which develop in the injector noz-

zle over its lifetime, deteriorate the injection behavior and result in increasing soot

and nitrogen oxide (NOx) emissions. These effects cause large uncertainties in injec-

tion rate estimation and require novel modeling, identification and control strategies.

Krogerus et al. [7] presented a survey of analysis, modeling, and diagnostics of diesel

fuel injection systems, which showed that fault effects such as nozzle wear influence
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the injection behavior over an engine’s lifetime. Furthermore, the negative impact of

injection faults on the combustion behavior, such as reduced combustion efficiency

and higher emissions, was demonstrated [2, 6].

The estimation of the injection behavior in direct injection engines was subject of

various studies. In [8], an injection rate observer for a solenoid injector was presented

that was based on a sliding-mode approach. Another estimator, which used the sig-

nal of an in-line pressure sensor in a piezoelectric injector was shown in [13]. Since

nozzle wear and aging effects in the injectors were not considered in the mentioned

studies, previous work by the authors dealt with model-based estimation methods

and state observers that consider these effects [4, 5], with the drawback that detailed

pre-knowledge about the aging effects was required. Artificial neural networks and

map-based methods are often used for the modeling and control of the injection

behavior and its impacts on the combustion performance. Concepts that combine

state observers and neural networks to identify nonlinearities can be found in various

publications. Abdollahi et al. [1] and Talebi et al. [14] derived a stable neural network

observer for coping with unknown system faults. Using multilayer perceptron (MLP)

networks, the observer scheme can be applied to nonlinear MIMO systems by assum-

ing observability. The learning rule for the network’s weight adaption is based on a

stable back-propagation training algorithm using Lyapunov’s direct method. Hintz

[3] introduced another state observer concept employing radial basis function (RBF)

networks. Learning rules based on the failure models of Narendra and Annaswamy

[9] made an identification of static and dynamic nonlinearities possible. Stringent

requirements imposed on the system structure, such as the occurrence of isolated

nonlinearities, limit the approach’s applicability.

In this paper, a neural network observer scheme is proposed, which robustly esti-

mates the injection rate of a common rail diesel injector. The observer’s layout uses

a neural network approximation to take additive fault into account. In contrast to

state observers without adaptive models, the proposed neural network observer can

cope with large uncertainties in the estimated states. It therefore ensures a robust

estimation behavior considering wear and aging effects within the injector nozzle.

The design of the neural network observer is discussed in Sect. 2. System identifi-

cation provides information to the observer about the existing network output error.

We determine a multilayer perceptron (MLP) feed-forward neural network structure

with three layers of neurons. The network is trained using a modified quasi-Newton

optimization approach to minimize a predefined cost function. A line search algo-

rithm helps to optimize the observer performance by adapting the learning step size.

Section 3 deals with the application of the proposed observer to a common rail diesel

injector. The model focuses on the nozzle area, as aging effects are expected to be

most evident there. We derive a nonlinear state-space model using measurement sig-

nals of the rail pressure and needle lift as model inputs and the pressure within the

lower feed line as model output. Simulation results of the state-space model proposed

in this study are compared to available measurement data in Sect. 4. Furthermore,

we analyze the performance of the injection rate estimation, comparing the results

to simulation data with modified nozzles.
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2 Neural Observer Design

We consider the general nonlinear plant model, which is assumed to be observable

ẋ = f (x,u) +𝜱(x,u)
y = Cx

(1)

where u is the input, y is the output, and x is the state vector of the system. We

suppose the model f (x,u) with additive fault 𝜱(x,u) that we want to approximate

using a neural network model. The nonlinear neural network observer is given by

̇x̂ = f (x̂,u) + 𝝓(x̂,u)
ŷ = Cx̂

(2)

where x̂ is the observed state. The neural network approximation 𝝓(x̂,u) aims to

identify the additive fault occurring within the plant. Consequently, the output error

between plant and observer is defined as

e = y − ŷ (3)

The introduced observer system is depicted in Fig. 1. Additive fault influences

the original plant model Eq. (1), which is denoted as 𝜱(x,u). The neural observer

estimates the derived state vector ̇x̂ by summing up the results of the nonlinear vec-

tor valued function f (x̂,u) and the neural network output 𝝓(x̂,u). The three-layer

MLP feed-forward neural network is illustrated next to the observer structure. Weight

adjustments within the neural observer are based on the network output error 𝝐. The

transfer function E(u, x̂, x̃, e) describes the transition of the system error e to the

network error 𝝐 and is examined below.

Fig. 1 Neural observer design with three-layer MLP feed-forward network
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The observer’s objective is to minimize the network output error defined as

𝝐 = 𝜱(x,u) − 𝝓(x̂,u) (4)

The neural network thereby relies on the information of this specific error to apply

a learning algorithm. Further information needs to be supplied because the fault on

the plant 𝜱(x,u) is an unknown quantity. We introduce a separate dynamic system

to identify the system fault:

̇x̃ = f (x̃,u) − CT (y − Cx̃) (5)

where x̃ denotes the state vector of the novel identification system. We obtain approx-

imated information about the fault behavior within the plant, which we use for further

investigation. Subsequently, comparing the network output to the identified fault pro-

vides the required error. After applying mathematical transformations, the network

output error is given by

𝝐 = L
[
ė + Cf (x̂,u) − Cf (x̃,u)

]
(6)

where L describes an observer design matrix, to assign 𝝐 to the neural network out-

put 𝝓 by applying a gain value. To deal with faults in the physical plant, we model

the identified error using a neural network approximation. The considered neural

network is a multilayer perceptron (MLP) feed-forward network with three layers of

neurons, which we define as

𝝓(z) = W𝝈(Vz) + b

z =
[
x u 1

]T (7)

The configurable weights V and W, as well as the bias of the output layer b, are given

by

V =
[
v1T … vqT

]T ∈ ℝq×n

W =
[
w1 … wq

]
∈ ℝm×q

b ∈ ℝm×1

(8)

where n is the number of network inputs, m is the number of network outputs, and

q is the number of hidden layer neurons. Note that the bias of the hidden layer is

included in the weight matrix V. The weight matrices consist of parameters that the

learning algorithm determines, and we use a tangent hyperbolic as transfer function

𝜎i =
2

1 + exp
(
−2viTz

) − 1 (9)
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The training of the network weights and biases aims to minimize the network out-

put’s remaining approximation error 𝝐. In order to measure the goodness of the fit

between identified fault data and network output, we use a real time recurrent learn-

ing algorithm [15] for the observer application. Unlike during conventional back-

propagation, the network parameters are not updated while sweeping through the

training data set from t0 to tend, but use the information of all time steps instead.

Therefore, the cost function J characterizes the total sum-squared error of all time

samples in the network output [10]

J = J(t0) + J(t1) +⋯ + J(tend) =
tend∑

t=0

1
2
𝝐
T
𝝐 (10)

The objective of the network training is to minimize the cost function without con-

straints,min
p

J(p), which results in the following optimality conditions of the problem

∇J(p∗) = 𝟎
∇2J(p∗) ≥ 𝟎

(11)

where ∙∗ denotes the parameter set with optimal conditions and all network param-

eters to be optimized are arranged within the parameter set

p =
[
v1T … vqT w1

T … wq
T bT

]T
(12)

The cost function gradient, ∇J(p), of the given optimization problem is derived by

applying the chain rule and results in

∇J(p) =
tend∑

t=0

𝜕J
𝜕p

=
tend∑

t=0

(
𝜕J
𝜕𝝐

⋅
𝜕𝝐

𝜕𝝓
⋅
𝜕𝝓

𝜕p

)
=

tend∑

t=0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝝐
Tw1(𝜎1+1)2
exp(2v1z) z

⋮

− 𝝐
Twq(𝜎q+1)2
exp(2vqz) z
−𝝐1𝝈
⋮

−𝝐m𝝈
−𝝐

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)

To solve the optimization problem, we iteratively update the parameters using a line

search approach with search direction 𝛥pk and step size 𝛼

k

pk+1 = pk + 𝛼

k
𝛥pk (14)

The search direction is obtained by approximating the cost function using a quadratic

model from the second-order Taylor series [11]
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J(p + 𝛥p) ≈ J(p) + 𝛥pT∇J(p) + 1
2
𝛥pT∇2J(p)𝛥p (15)

which results in the so-called “Newton search direction”, 𝛥pk, assuming that the

Hessian ∇2J(pk) is positive definite

𝛥pk = −
[
∇2J(pk)

]−1 ∇J(pk) (16)

As direct calculation of the Hessian is numerically expensive, an approximation of

the Hessian, Hk ≈ ∇2J(pk), is often used. The very common BFGS updating method

proposed by Broyden, Fletcher, Goldfarb, and Shanno is given by [11]

Hk+1 = Hk − Hkdk(dk)THk

(dk)THkdk
+ vvT

dTv
(17)

where

v = pk+1 − pk

d = ∇J(pk+1) − ∇J(pk)

The step size is obtained using the Amijio backstepping algorithm. Starting with

an initial value 𝛼

k = 𝛼

k
0, the step size is reduced to satisfy the inexact line search

condition for sufficient decrease with the constant value 𝜌 ∈ (0, 1)

J(pk + 𝛼

k
𝛥pk) < J(pk) + 𝜌𝛼

k∇J(pk)𝛥pk (18)

The complete algorithm used for the neural network training is summarized in

Algorithm 1. We initialize the network weights as well as the Hessian approximation

at k = 0 using the scaled identities 𝛽I and 𝛾I, respectively. Furthermore, the conver-

gence tolerance is set to 𝜇 > 0, which is used as the optimization abort criterion. In

each iteration, a search direction 𝛥pk and a step size 𝛼

k
are computed according to

the Newton direction with Hessian approximation, Eq. (16), and the backstepping

method to satisfy the Amijio condition, Eq. (18). The parameter set, pk+1, is updated

using line search according to Eq. (14) and the Hessian, Hk+1
, of the next iteration is

approximated using the BFGS algorithm, Eq. (17). When reaching the convergence

tolerance, 𝜇, the optimal network weights are derived from the optimal parameter

set, p∗.

3 Application: Injection Rate Observer

Aging effects within the nozzles of common rail diesel injectors result in deteriorat-

ing injection behavior. We use the neural network observer to estimate the injection

rate of a diesel injector, taking the changed dynamics due to nozzle wear into con-
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Algorithm 1: Neural network learning for fault identification.

Input : p0 // Initial network weights

// V0 = 𝛽I,W0 = 𝛽I, and b0 = 𝛽I
H0 = 𝛾I // Initial Hessian approximation

𝜇 > 0 // Convergence tolerance

k = 0
while ||∇Jk|| > 𝜇 do

compute search direction 𝛥pk // Newton direction with Hessian

// approximation, Eq. (16)

compute step size 𝛼

k
// Backstepping to satisfy Amijio

// condition, Eq. (18)

update parameter set pk+1 // Line search update, Eq. (14)

compute Hk+1
// BFGS update, Eq. (17)

k = k + 1
end
Output: p∗ = pk // Optimal solution of the

// weights V∗
,W∗

, and b∗

sideration. The injector of interest is a solenoid CRIN3.18 injector manufactured by

Bosch, which is depicted is Fig. 2. Modeling the bottom part of the injector is suf-

ficient, since this study investigates the effects of nozzle wear. Measurement data at

different operating conditions is available for the marked signals rail pressure, pR,

lower feed line pressure, pL, needle lift xN , and the injection rate, QH , which is also

used to analyze the observer’s performance.

Fig. 2 Bottom part of the considered common rail diesel injector CRIN3.18 with available mea-

surement signals and detailed nozzle section
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A simplified model describing the injection dynamics is used for observer design.

We model the one-dimensional flow of incompressible diesel fluid in the lower feed

line using the physical principles of mass conservation, Newton’s second law, and

energy conservations. To obtain an analytical solution of these equations, several

simplifications are applied. Neglecting the convective terms as well as gravity effects

and applying the Galerkin method [12] with steady friction in the pipe leads to the

following equation

̇QL =
AL

𝜌LLL

(
pR − pL

)
− 𝜉

2ALLL
QL|QL| (19)

The storage capability of the lower feed line is considered using a compressible

model of the cavity

ṗL =
KL

VL

(
QL − QH

)
(20)

The volumetric flow rate at the needle seat QS and the injected flow rate through the

nozzle orifices are obtained using Bernoulli’s equations. The sac volume is consid-

ered by applying the continuity equation to the cavity

QS = sgn(pL − pS)𝛼SAS

√
2 ||pL − pS||

𝜌C
(21)

ṗS =
KC

VS

(
QS − QH

)
(22)

QH = sgn(pS − pC)𝛼HAH

√
2 ||pS − pC||

𝜌C
(23)

where pC is the pressure in the combustion chamber, which is assumed as constant.

We obtain a normalized state-space representation of the equations using the rail

pressure and the area at the needle seat as system inputs, and line pressure, line flow

rate, and sac pressure as states.

u =
[
pR − pC

p0

AS

A0

]T

x =
[
pL − pC

p0

QL
Q0

pS − pC
p0

]T (24)

Equations (19)–(23) can then be rewritten for AS > 0 as

ẋ = f (x,u) =
⎡
⎢
⎢
⎣

a1x2 − a2
√
x3

a3
(
u1 − x1

)
− a4x2|x2|

a5u2
√
x1 − x3 − a6

√
x3

⎤
⎥
⎥
⎦

y = Cx

(25)
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The measurement of the line pressure is used to identify nozzle wear, which results

in y = x1.

Analyzing the observer’s performance, we designed a simulated experiment,

which was based on the state-space model of the injector and the neural network

observer
̇x̂ = f (x̂,u) + 𝝓(x̂,u)
ŷ = Cx̂

(26)

where we modeled the system plant by adding a fault model, representing nozzle

wear, as follows

𝜱(x,u) =
⎡
⎢
⎢
⎣

−vHa2
√
x3

0
vSa5u2

√
x1 − x3 − vHa6

√
x3

⎤
⎥
⎥
⎦

(27)

The fault model describes parameter variation within the needle seat and the nozzle

orifices with vS, vH ∈ (−1
2
,

1
2
) and results in additional nonlinear system dynamics to

be identified.

4 Results

The validation results of the simplified state-space model are presented in Fig. 3. We

used measured signals of the rail pressure and the needle lift as input signals for

the model and compared the resulting feed line pressure and the mass injection rate

to experimental data. The figure shows the results at an energizing time of 1.9 ms

and set rail pressures of 60, 100, and 140 MPa. It can be seen that the simulation

results, despite the simplification of the model, agree well with the measured data
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Fig. 3 Validation of the simplified state-space injector model with experimental data at energizing

time 1.9 ms and set rail pressures of 60, 100, and 140 MPa
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Fig. 4 Identification of the nonlinearity due to nozzle wear at energizing time 1.9 ms and set rail

pressure 100 MPa. Artificial nozzle wear of vH = 0.3 is identified using the injection rate observer

algorithm after 30 training epochs

during the event of an injection (QH > 0) at the different working conditions. The

accuracy deteriorates after the end of injection, which is irrelevant for the observer

application since the nozzle is separated from the rail supply and aging effects cannot

be identified. In summary, it can be said that the state-space model is capable of

predicting significant signals during the injection process and that it has therefore

proved to be suitable to estimate the injection rate.

Applying the observer algorithm for injection rate estimation, we used a neural

network with q = 5 hidden layer neurons. The observer design vector was experi-

mentally determined as L =
[
1 0 12

]T
. We used a scaled identity instead of random

numbers to initialize the network weights in order to improve comparability. Further-

more, network training was stopped after 30 training epochs for the same reason. As

an example, Fig. 4 shows a state approximation result at energizing time 1.9 ms and

set rail pressure 100 MPa using the network observer. The fault model, Eq. (27), was

added to the initial plant model with the aging coefficients of vS = 0 and vH = 0.3. In

Fig. 4a, the estimation of state x3, which is relevant for estimating the injection rate,

is compared to the output of the model without observer. It can be seen that the neural

network observer improves the prediction compared to the initial model. Figure 4b

shows the states, 𝜙1 to 𝜙3, of the identified fault model. The observer tracks the arti-

ficial plant fault quite well by using the considered design vector L. Note that the

identification of faults with more complex dynamical behavior is challenging, since

a constant gain L = const was used in this study to distribute the measured error to

all states.



A Neural Network Observer for Injection Rate Estimation . . . 287

−0.4 −0.2 0 0.2 0.4
0

0.5

1

·10−2

aging nozzlev [-]

M
S

E
of

 s
ta

te
x
3

[-
]

0 1 2 3 4
0

0.5

1

time [ms]

st
at

ex
3

[-
]

plant observermodel observer

vH =0 .5

vH = −0.5

(b) Mean squared error with
nozzle aging vH ∈ (− 1

2 , 1
2 )

(a) State estimation of state
x3 with vH = ±0.5

Fig. 5 Performance of the network observer with simulated aging parameter in the nozzle vH ∈
(−1

2
,

1
2
)

We analyzed the performance of the network observer by using the mean squared

error (MSE) of the state x3, which is defined as

MSE = 1
N

N∑

i=0

[
x3(ti) − x̂3(ti)

]2
(28)

The observer was tested by varying the nozzle parameter within the range of vH ∈
(−1

2
,

1
2
). The mean squared error was evaluated for each configuration, which is

depicted in Fig. 5. Compared to the initial model, the estimation error improves

at each analyzed fault condition, using the neural network observer. Additionally,

the resulting state of interest is shown for the extreme nozzle aging parameters,

vH = ±0.5. It can be seen that the observer predicts the shape of the faulty state

in both cases, but slightly better for vH = 0.5 as the observer is unable to estimate

the modified end of injection for vH = −0.5. In terms of nozzle wear, which can be

described as a linear parameter change of the nozzle orifice discharge coefficient, the

neural network observer exhibited very good overall performance.

5 Conclusion

In this paper, a neural network state observer scheme was proposed for applica-

tion to a common rail diesel injector exhibiting aging phenomena. The observer

design included a three-layer MLP feed-forward network for fast, flexible adoptions

of the observer’s characteristics. Applying a Newton optimization procedure com-
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bined with a backstepping method yields good learning process efficiency. Separate

fault identification guarantees correct network output error for the weight adoption

process. As the presented concept combines system identification with a classical

observer scheme, a dynamical model of the fault in the plant could be obtained.

Simulation results confirm the applicability of the proposed observer to the injec-

tor model under wear and aging effects. Due to the reliable performance and the

additional advantage of an identified fault model, the neural network observer is

beneficial in terms of its use for control methods in future investigations.
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Lagrange’s, Maggi’s and Kane’s
Equations Applied to the Dynamic
Modelling of Serial Manipulator

Fernando Malvezzi, Renato M. M. Orsino
and Tarcisio Antonio Hess Coelho

Abstract Robot Manipulators have been employed in many types of industries,
such as pharmaceutical, chemical, automotive, aerospace, etc. A manipulator is a
mechanism used to move an object along a given trajectory. Topologically, the
mechanism can be constituted by parallel or serial chains. The serial kinematic
chain is constituted by links connected sequentially by joints. The aim of this work
is to obtain a qualitative comparison among three approaches typically applied to
the modelling of multibody mechanical systems. The chosen system is a 5-DOF
serial robot manipulator and the three approaches are based on the use of
Lagrange’s, Maggi’s and Kane’s equations. The purpose of the modelling is to
obtain the equations of motion for this serial robotic manipulator. Some numerical
simulations are performed to illustrate how the obtained models can be used to
predict the dynamic behavior of the chosen system.
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1 Introduction

The equations of motion for multibody systems can be obtained from different
methodologies such as Newton-Euler equations, Lagrange equations, Kane’s
Method and Maggi’s equations.

The main advantage of Newton-Euler Method [1] is that the equations of motion
will always have the same fundamental form independently of the geometry, inertia or
constraints of motion of a rigid body. On the other hand, the constraint forces or
torques must be determined, which may lead to difficulties when the system is
composed bymany bodies. Regarding to Lagrangian formalism [2, 3], it allows obtain
constraint-free ordinary differential equations, which is an important advantage when
compared to Newton-Euler Method. Many commercial softwares for Multibody
Dynamic Systems, such as ADAMS, DADS and DYMAC, apply Lagrangian for-
mulation [4]. Another method used in commercial softwares for Multibody Dynamic
Systems, such as SD-EXACT, NBOD2 and SD/FAST [4], is Kane’s.

Developed at the time of the first applications of computational tools to the study
of multibody systems, at the 1960s, Kane’s method [5] is claimed by some authors
not to be original as a theoretical formalism [6–8], once it is based on the devel-
opments of Appell and Maggi dating from the early twentieth century. Kane’s
method, however, can be considered as a specialization of previously developed
methodologies for optimized computational analysis of multibody systems. As well
as in Lagrangian formalism, Kane’s approach allows obtain constraint-free ordinary
differential equations. Maggi’s equations inspired not only Kane’s developments but
also are associated to several methodologies based on the use of orthogonal com-
plement projections [9–11]. Such an approach allows the use of redundant variables
in a given formulation without having to deal with the inconvenience of introducing
undetermined multipliers. In its original form, Maggi’s equations are an extension of
the Lagrangian formalism, in which the application of a projection operator
(orthogonal complement matrix) eliminates the terms containing the multipliers.

This work deals with a qualitative comparison of three approaches typically
applied to the modeling of multibody mechanical systems. The chosen system is a
serial robot manipulator and the three approaches are based on the use of
Lagrange’s, Maggi’s and Kane’s equations. The aim of modeling is to obtain the
equations of motion for this serial robot manipulator. Moreover, the numerical
simulations are performed with these models in order to analyze some typical
motions performed by the system. Finally, a qualitative assessment of each
approach is performed considering four features associated with these approaches.
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2 Dynamic Modeling

The serial robot manipulator shown in Fig. 1a has 5-DOF. Table 1 and Fig. 1b
shows the robot movements and the generalized coordinates chosen in the Kane’s,
Lagrange’s and Maggi’s approaches. In order to simplify the dynamic modelling of
this multibody mechanical system, the following hypotheses are adopted:

• All limbs of the robot are considered rigid bodies.
• The frictional torque at all joints is negligible.
• The following axes are ones of symmetry: x1, z1; x2, y2, z2; x3, y3, z3. Con-

sequently, the product of inertia of the bodies 1, 2 and 3 are nulls.
• The moments of inertia of body 4 (end-effector) are negligible. The mass of the

object moved by the robot was added to the mass of end-effector.
• The G4 point of the frame G4x4y4z4 represents the centroid of the end-effector.

2.1 Formulation Based on Kane’s Method

The equations of motion of this serial manipulator robotic exposed in Fig. 1 can be
obtained by the Kane’s equations [5]:

Fig. 1 a Serial manipulator model; b generalized coordinates

Table 1 Modies movements
of the manipulator robot

Body
number

Robot
component

Generalized
coordinates

1 Limb 1 γ1
2 Limb 2 α2
3 Limb 3 α3
4 End-effector β4 and γ4
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Fr +F*
r =0 ðr=1, 2, 3Þ ð1Þ

where Fr is the generalized active forces associated to r-th coordinate and F*
r is the

generalized inertia forces associated to r-th coordinate. The generalized active
forces Fr are obtained by the following equation:

Fr = ∑Fk ⋅
∂vGk

∂ur
+ ∑Mk ⋅

∂ωk

∂ur
ð2Þ

where Fk and Mk are the forces and moments actuating on body k, respectively;
vGk and ωk are the velocity of the centre of mass and the angular velocity of body k,
respectively; ∂vGk ̸∂ur and ∂ωk ̸∂ur are the partial velocities and partial angular
velocities of body k, respectively. The variables ur are called “generalized speeds”,
and correspond either the to time derivatives of generalized coordinates or to any
other set of variables that could replace them in the description of the motion of the
system. The generalized inertia forces F*

r are calculated by Eq. (3). Notice that Fr*
are obtained by dot-multiplying the inertia terms of Newton-Euler equations [6] by
the partial velocities and partial angular velocities.

F*
r = − ∑ mkaGk ⋅

∂vGk

∂ur
+ Jkωk̇ + ωk × Jkωkð Þ ⋅ ∂ωk

∂ur

� �
ð3Þ

where aGk is the acceleration of the centre of mass of body k. By applying Eqs. (1–
3), we obtain the equations of motion for the serial mechanism exposed in Fig. 1:

F = M qð Þ u̇ + V q, uð Þ ð4Þ

In Eqs. (4–7), q is the set of generalized coordinates; mk is the mass of body
k (k = 1, 2, 3, 4); Jxk , Jyk , Jzkare the central inertia moments of body k (k = 1, 2, 3);
ℓ2, ℓ3 are the length of bodies 2 and 3, respectively; T1, T2 and T3 are the actuators
torque applied to the bodies 1, 2 and 3, respectively.

F=
T1
T2
T3

2
4

3
5 M=

M11 M12 M13

M21 M22 M23

M31 M32 M33

2
4

3
5 u ̇=

γ1̈
α2̈
α3̈

2
4

3
5 V=

V1

V2

V3

2
4

3
5 ð5Þ
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M11 = Jz1 +m2
ℓ22
4 c

2
α2
+ Jy2s

2
α2
+ Jz2c

2
α2
+m3½ℓ2

2c
2
α2
+ ℓ23

4 c
2
ðα2 + α3Þ +ℓ2ℓ3cðα2 + α3Þcα2 �

+ Jy3s
2
ðα2 + α3Þ + Jz3c

2
ðα2 + α3Þ +m4½ℓ2

2c
2
α2
+ 22ℓ3cðα2 + α3Þcα2 +ℓ2

3c
2
ðα2 + α3Þ�

M12 =M13 =M21 =M31 = 0

M22 =m2
ℓ22
4 + Jx2 +m3ðℓ2

2 +
ℓ2
3
4 +ℓ2ℓ3cα3Þ+ Jx3 +m4ðℓ2

2 +ℓ2
3 + 2ℓ2ℓ3cα3Þ

M23 =M32 =m3ðℓ
2
3
4 + ℓ2ℓ3

2 cα3Þ+ Jx3 +m4ðℓ2
3 +ℓ2ℓ3cα3Þ

M33 =m3
ℓ23
4 + Jx3 +m4ℓ

2
3

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

V1 = −m2
ℓ2
2
2 sα2cα2γ1̇α2̇ + 2ðJy2 − Jz2Þsα2cα2γ1̇α2̇ + 2Jy3sðα2 + α3Þcðα2 + α3Þðα2̇ + α3̇Þγ1̇

− 2Jz3sðα2 + α3Þcðα2 + α3Þðα ̇2 + α ̇3Þγ1̇ +m3½− 2ℓ2
2sα2cα2α2̇ −

ℓ2
3
2 sðα2 + α3Þcðα2 + α3Þðα2̇ + α ̇3Þ

− ℓ2ℓ3sðα2 + α3Þðα2̇ + α ̇3Þcα2 −ℓ2ℓ3cðα2 + α3Þðα2̇ + α3̇Þsα2 α̇2�γ1̇ +m4½− 2ℓ2
2sα2cα2α2̇

− 2ℓ2
3sðα2 + α3Þcðα2 + α3Þðα ̇2 + α ̇3Þ− 2ℓ2ℓ3sðα2 + α3Þðα ̇2 + α ̇3Þcα2 − 2ℓ2ℓ3cðα2 + α3Þsα2α2̇�γ1̇

V2 = −m3½ℓ2ℓ3sα3ðα̇2 + α̇3
2 Þα̇3�−m4½ℓ2ℓ3sα3ð2α ̇2 + α ̇3Þα ̇3�− f−m2

ℓ2
2
4 sα2cα2γ

2̇
1

+ ðJy2 − Jz2Þsα2cα2γ2̇1 −m3½ℓ2
2sα2cα2 +

ℓ2
3
4 sðα2 + α3Þcðα2 + α3Þ +ℓ2ℓ3sð2α2 + α3Þ�γ ̇21

+ ðJy3 − Jz3Þsðα2 + α3Þcðα2 + α3Þγ
2̇
1 −m4½−ℓ2

2sα2cα2 −ℓ2ℓ3sð2α2 + α3Þ −ℓ2
3sðα2 + α3Þcðα2 + α3Þ�γ2̇1g

+ m2g ℓ2
2 cα2 +m3g½ℓ2cα2 +

ℓ3
2 cðα2 + α3Þ�+m4g½ℓ2cα2 +ℓ3cðα2 + α3Þ�

V3 = −ℓ2ℓ3sα3 α̇2α3̇
m3
2 +m4

� �
− f−m3½ℓ

2
3
4 sðα2 + α3Þcðα2 + α3Þγ

2̇
1 +

ℓ2ℓ3
2 sðα2 + α3Þcα2γ

2̇
1

+ ℓ2ℓ3sα3ðα ̇2 + α ̇3Þα ̇2�+ ðJy3 − Jz3Þsðα2 + α3Þcðα2 + α3Þγ
2̇
1g−m4½−ℓ2ℓ3sðα2 + α3Þcα2

− ℓ2
3sðα2 + α3Þcðα2 + α3Þ�γ2̇1 −ℓ2ℓ3sα3ðα2̇ + α ̇3Þα2̇�+m3g ℓ3

2 cðα2 + α3Þ +m4gℓ3cðα2 + α3Þ

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

2.2 Formulation Based on the Lagrangian Formalism

The Lagrange equations [2] for the serial mechanism exposed in Fig. 1 are given
by:

d
dt

∂L
∂γ1̇

� �
−

∂L
∂γ1

=Qγ1

d
dt

∂L
∂α̇2

� �
−

∂L
∂α2

=Qα2
d
dt

∂L
∂α̇3

� �
−

∂L
∂α3

=Qα3 ð8Þ

where L is called Lagrangian, which is equal to the kinetic energy of system minus
the potential energy. By developing Eq. (8), we obtain the equations of motion for
the serial mechanism shown in Fig. 1:

Q=M qð Þq̈+V q,q̇ð Þ ð9Þ
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where

Q=
T1
T2
T3

2
4

3
5 M=

M11 M12 M13

M21 M22 M23

M31 M32 M33

2
4

3
5 q̈=

γ1̈
α̈2
α̈3

2
4

3
5 V=

V1

V2

V3

2
4

3
5 ð10Þ

where T1, T2 and T3 are the actuators torque applied to the bodies 1, 2 and 3,
respectively. The elements of the matrices M and V in Eq. (10) were shown in
Eqs. (6) and (7).

2.3 Formulation Based on Maggi’s Equations

After deriving the Lagrangian equations of motion for the mechanism, it can be
noticed that most of the difficulties in this procedure arise from the complexity of
the expressions of the energy functions involved. The hypothesis concerning the
negligible moments of inertia of body 4 is rather fortunate, otherwise the algebraic
complexity of the terms in these equations would be even greater. These difficulties
could be overcome if the positions, orientations, velocities and angular velocities of
the rigid-bodies could be described in terms of simpler expressions. The most
straightforward alternative for doing so is to define redundant generalized coordi-
nates and quasi-velocities so that the energy functions become as simple as pos-
sible. Such an approach has proven to be successful for the mathematical modeling
of parallel mechanisms [12, 13]. In case of redundancy in the definition of gen-
eralized coordinates, the application of the Lagrangian formalism would require the
use of undetermined multipliers. Maggi’s equations, however, provide an alterna-
tive formalism in which one can still take advantage of a modeling based on
redundant variables, without needing to use Lagrangian multipliers.

Let (qi) denote a generic set of redundant generalized coordinates adopted for the
description of the motion of a given multibody system. In order to this set of
variables be able to represent configurations and states compatible with the con-
straints of the system, it must be required for them to satisfy some constraint
equations. These equations might be written in one of the following forms:

hk t, qið Þ=0 ð11Þ

nk t, qi, qi̇ð Þ=0 ð12Þ

Holonomic constraints can be represented by expressions in both forms (11) and
(12). Constraints which can only be represented by an expression in the form of
(12) but not by any expression in the form of (11) are nonholonomic. Maggi’s
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equations are applicable both to holonomic and nonholonomic systems whose
constraints can at least be expressed in the form of (12). Both the second time
derivative of (11) and the first time derivative of (12) can be expressed as an affine
equation in terms of q ̈r:

∑
r
Akr t, qi, qi̇ð Þqr̈ + bk t, qi, qi̇ð Þ=0 ð13Þ

In a given time instant t*, consider that the state (t*; q*i ; q
*̇
i ) is known, so that the

variations of the coordinates and of its time derivatives can be assumed to be zero.
In order for an infinitesimal variation of q ̈r not to violate any constraint of the
system, the following condition must be satisfied:

∑
r
Akr t, q*i , q ̇

*
i

� �
δq ̈r =0 ð14Þ

Therefore, in a time interval defined in a neighborhood of t*, any virtual dis-
placement must satisfy the condition [14]:

∑
r
Akrδqr =0 ð15Þ

Let A = [Akr] denote the matrix constituted by the coefficients Akr. A general
solution for (15) involves finding a matrix C = [Crs] which is an orthogonal
complement of A, i.e. a maximal rank matrix satisfying the condition AC = 0 [14].
Thus, the variations δqr associated to the generalized coordinates qr can be
expressed as a linear combination of as much arbitrary variations (denoted by δθs)
as the number ν of degrees of freedom of the system, i.e.:

δqr = ∑
s
Crsδθs ð16Þ

Therefore, applying this result to the extended Hamilton’s Principle, it can be
stated that the Maggi’s equations for this system are given by the following
expression:

∑
r
Crs

d
dt

∂L
∂q ̇r

� �
−

∂L
∂qr

−Qqr

� �
= ∑

r
CrsΦqr =0 s=1, . . . , ν ð17Þ
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Analysing the foregoing derivations, it is convenient to define an extra angular
generalized coordinate χ3 = α2 + α3, and (xj; yj; zj) representing the Cartesian
coordinates of the centres of mass Gj of the limbs j = 2 and j = 3, and of the
end-effector j = 4:

xj = − ejℓ2sγ1cα2 − fjℓ3sγ1c α2 + α3ð Þ
yj = ejℓ2cγ1cα2 + fjℓ3cγ1c α2 + α3ð Þ
zj = ejℓ2sα2 + fjℓ3s α2 +α3ð Þ

ð18Þ

With e2 = ½, f2 = 0, e3 = 1, f3 = ½, e4 = 1 and f4 = 1. In this case, taking
δq= δγ1, δα2, δα3, δχ3, δxj, δyj, δzj

� �
and δθ= δγ1, δα2, δα3ð Þ it can be stated that

δq=Cδθ, with:

C=

1 0 0
0 1 0
0 0 1
0 1 1

− cγ1 ejℓ2cα2 + fjℓ3cχ3
� �

− sγ1 ejℓ2sα2 + fjℓ3sχ3
� �

− fjℓ3sγ1sχ3
− sγ1 ejℓ2cα2 + fjℓ3cχ3

� �
− cγ1 ejℓ2sα2 + fjℓ3sχ3

� �
− fjℓ3cγ1sχ3

0 ejℓ2cα2 + fjℓ2cχ3 fjℓ3cχ3

2
666666664

3
777777775

ð19Þ

Also:

L=
1
2
Jz1γ ̇

2
1 +

1
2
m2 x ̇22 + y ̇22 + z ̇22

� �
+

1
2
Jx2α ̇

2
2 +

1
2
Jy2 sα2γ1̇ð Þ2

+
1
2
Jz2 cα2γ1̇ð Þ2 + 1

2
m3 x ̇23 + y ̇23 + ż23

� �
+

1
2
Jx3χ ̇

2
3 +

1
2
Jy3 sχ3γ1̇

� �2

+
1
2
Jz3 cχ3γ1̇

� �2 + 1
2
m4 x ̇24 + y ̇24 + z ̇24

� �
+m2gz2 +m3gz3 +m4gz4

ð20Þ

Thus:

Φγ1 = Jy2 + Jz2
� �

sα2ð Þ2 + Jy3 + Jz3
� �

sχ3
� �2 + Jz1

h i
γ1̈

+ Jy2 + Jz2
� �

s2α2ð Þγ1̇α̇2 + Jy3 + Jz3
� �

s2χ3
� �

γ1̇χ 3̇ − T1
Φα2 = Jx2 α̈2 − Jy2 + Jz2

� �
sα2cα2γ

2̇
1 −T

Φα3 = −T3
Φχ3 = Jx3χ 3̈ − Jy3 + Jz3

� �
γ2̇1sχ3cχ3

Φχj =mjxj̈
Φyj =mjyj̈
Φzj =mj z̈j − g

� �

8>>>>>>>>>>><
>>>>>>>>>>>:

ð21Þ
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The system of Maggi’s equations for the manipulator can be readily obtained by
Eq. (17), using the expressions of Crs from (19) and the expressions for Φqr from
(21).

3 Numerical Simulations

The equations of motion obtained by Kane’s, Lagrange’s and Maggi’s approaches
are the same. In this section, some numerical simulations are performed to illustrate
how the obtained models can be used to predict the dynamic behavior of the
manipulator. Table 2 shows the robot parameters employed in the simulations.

In order to perform numerical simulations, the expressions of the redundant
variables χ3, xj, yj and zj (j = 2; 3; 4) and their time derivatives in terms of γ1, α2
and α3 can be either replaced in Maggi’s equations, leading to a system of ordinary
differential equations (ODEs) with as much equations as the number of degrees of
freedom of the manipulator (3, in this case), or can simply be taken along with the
already obtained Maggi’s equations, leading to an extended system of equations
which are typically referred as differential-algebraic equations (DAEs). The former
option, in this case, for the particular matrix C in Eq. (20), would lead to a system
of equations identical to the foregoing Lagrangian equations of motion. Therefore,
in the numerical simulations performed, the latter option is chosen. Two inverse
simulations and one forward simulation are performed. In the inverse ones, Maggi’s
equations are used to calculate the time histories of the torques provided by the
actuators in order to perform a given prescribed motion. In the forward one, slight
variations of the static values of the torques (the values that ensure the equilibrium
of the system in the reference configuration in which the values of γ1, α2 and α3 and
their time derivatives are zero) are considered, and the output obtained are the time

Table 2 Robot parameters employed in the simulations

Robot parameters Symbol Value

Moment of inertia of the body 1 with respect to the z1 axis (kg m2) Jz1 3
Mass of body 2 (kg) m2 3
Length of body 2 (m) ℓ2 1
Moment of inertia of the body 2 with respect to the x2 axis (kg m2) Jx2 0.36

Moment of inertia of the body 2 with respect to the y2 axis (kg m2) Jy2 0.07

Moment of inertia of the body 2 with respect to the z2 axis (kg m2) Jz2 0.36

Mass of body 3 (kg) m3 3
Length of body 3 (m) ℓ3 1
Moment of inertia of the body 3 with respect to the x3 axis (kg m2) Jx3 0.36

Moment of inertia of the body 3 with respect to the y3 axis (kg m2) Jy3 0.07

Moment of inertia of the body 3 with respect to the z3 axis (kg m2) Jz3 0.36

Mass of body 4 (kg) m4 1
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histories of the associated motion, provided by the integration of the corresponding
equations of motion.

Both in the inverse and forward simulations, the interpolating curves use to
define the time histories of the inputs respect two properties: their second time
derivatives are sinusoidal and the extremum points are also inflection points (i.e.
first and second time derivatives are simultaneously zero). In the case of the inverse
simulations, two similar scenarios: in the second, the rates are 2.5 times faster than
in the first. This allows making an assessment of the influence of the inertial effects
in the motion of this mechanism (once they must be much more influent in this
second scenario). The results of these numerical simulations are shown in Figs. 2, 3
and 4.

The results seem to be consistent with the existing cylindrical symmetry of the
mechanism (the motions with respect to the vertical plane passing through the

Fig. 2 First inverse simulation: slow prescribed motion
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centres of mass of 2, 3 and 4 are not influenced by the torque T1) and reveal, as
expected for a serial mechanism, a significant influence of the inertial effects in the
torque imposed (being greater the closer the actuator is to the base of the
mechanism).

Fig. 3 a Second inverse simulation: faster prescribed motion: γ1 versus t; T1 versus t. b. Second
inverse simulation: faster prescribed motion: α2 versus t; T2 versus t; α3 versus t; T3 versus t
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4 Qualitative Assessment of Models

In order to conclude the discussion on the suitability of each analytical mechanics
approach to model the chosen system, a qualitative assessment is performed based
on the results presented in the previous sections. This assessment consists of
comparing the following four characteristics associated with these approaches:

1. Derivation: the effort to obtain dynamic equations of the model in a form that is
suitable to numerical simulations.

2. Interpretability: the ability to understand the meaning of each term of dynamic
equations.

3. Modularity: how simple is the procedure of adding components in a model.
4. Constraint forces elimination: how simple is the procedure of obtaining equa-

tions of motion without terms related to constraint forces.

Fig. 4 Forward simulation

Table 3 Qualitative assessment of the models: Kane’s, Lagrange’s and Maggi’s approach

Model Derivation Interpretability Modularity Constraint forces elimination

Kane 2 5 2 5
Lagrange 4 3 2 5
Maggi 5 2 5 5
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For each of these characteristics, Kane’s, Lagrange’s and Maggi’s approach
were ranked in order to guide the selection of an appropriate method to model other
kinds of mechanical systems similar to the serial mechanism analyzed in this work.
The three approaches receive a grade from 1 to 5, being awarded with an index
equal to 5 the method that stands out in a given characteristic in relation to others
(Table 3).

In terms of derivation, Maggi’s approach stand out due to the possibility of
obtaining the generalized forces from the partial derivatives of scalar energy
functions which, differently from the conventional Lagrangian formulation, do not
need to be expressed in terms of a minimal set of variables and thus, can be further
simplified by an adequate choice of redundant variables.

Kane’s equations, on the other hand, require the vector expressions of acceler-
ations and angular accelerations to be obtained, representing the most complex
derivation procedure.

Concerning interpretability, however, Kane’s equations are the most physically
insightful, once the interpretation of each term within the equations of motion
follows automatically from their derivation. Such a natural interpretability is not
immediate in Lagrangian formulation and is even more difficult when Maggi’s
equations are used, due to the use of redundant variables and of a projection
operator (matrix C).

In terms of modularity, the fact that Maggi’s equations allow the use of
redundant variables makes it easier to include extra components in a model, once
the dynamic description of them does not require the use of the same minimal set of
variables adopted for the system itself, which characterizes Maggi’s approach as an
effective modular one. Finally, none of the methods applied presents any further
complexity in terms of constraint force elimination.

5 Conclusions

In this work, a 5-DOF serial manipulator robot was modeled using Kane’s,
Lagrange’s Equations, and Maggi’s equations. The equations of motion obtained by
the three methods are the same. There was a certain difficulty related to the dynamic
modelling due to the relative movements between the bodies of the chosen system.

Once we apply the Kane’s approach it seems easy to work out a computational
procedure, which allows to model a system methodically. However, to apply the
Kane’s approach it is necessary to calculate the acceleration of the centre of mass of
each body, which is a disadvantage when compared to the Lagrangian formulation,
in which only the velocities of centres of mass and angular velocity expressions of
each body are required.

Maggi’s formalism also requires the computation of partial derivatives of the
Lagrangian of the system. However, it is possible to take advantage of the use of
redundant coordinates to simplify the energy terms as much as possible, which can
make the modeling procedure much simpler when compared to the conventional
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Lagrangian formalism. Finally, the simulations results are consistent and reveal a
significant influence of the inertial effects in the torque imposed as expected for a
serial mechanism.

Acknowledgements Renato Maia Matarazzo Orsino acknowledges grant #2016/09730-0, São
Paulo Research Foundation (FAPESP).
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Modelling of the Manipulator of a Mini
Hydraulic Excavator

Éverton Lins de Oliveira and Décio Crisol Donha

Abstract Small hydraulic excavators are versatile machines used in a wide range
of operations such as digging, removal of debris, transportation of cargo and
earthmoving. Operating a hydraulic excavator in certain environments is a difficult
and dangerous task, especially in hazardous environments subject to natural dis-
turbances or inadequate health conditions for human work. Because of these con-
ditions, the automation of excavators or its components has been the subject of
many studies in recent years. In this paper, to enable the development of a control
system for the manipulator of a mini excavator, a complete mathematical model of
the manipulator dynamics is developed. The work includes the validation of the
model of the manipulator by means of simulation of a computational model and by
comparison with the results obtained by a commercial software of dynamic anal-
ysis. Results are discussed and evaluated and suggestions for future work are
enclosed.

Keywords Hydraulic excavator ⋅ Hydraulic manipulator ⋅ Excavator model
Manipulator model ⋅ Dynamic model ⋅ Computational model

1 Introduction

Hydraulic excavators are versatile machines used in various types of operations,
such as digging, removing debris, cargo, ground, and earthworks in general.
Operating a hydraulic excavator in certain environments is a difficult task, espe-
cially when it comes to dangerous environments subject to natural disturbances or
inadequate health conditions for human work. In recent years, the automation of an
excavator has been the subject of many studies, seeking for high efficiency and
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improved safety [1]. To develop a suitable control system for the manipulator of a
hydraulic excavator, within the control strategy in mind, it is necessary to develop
at first a complete mathematical model that accounts for mechanical and hydraulic
dynamic of the manipulator. Many papers in the literature focus on the modeling of
manipulator’s mechanical dynamics [2–5], however, few of them are dedicated to
the manipulator’s complete modeling [6, 7]. In this works, to enable the control and
automation of the manipulator, a complete mathematical model is developed con-
sidering the manipulator’s mechanical and hydraulic parts. The manipulator is then
divided into two subsystems, a mechanical and a hydraulic one. The mechanical
subsystem is modeled by Kane’s method and Newton’s second law. The hydraulic
subsystem is modeled through the application of fundamental principles of fluids
mechanics. In the sequence, these models are coupled, simulated and analyzed.
After the validation of the coupled model presented here, it is possible to synthesize
and test a control system.

2 Manipulator Modeling

Here will be presented the modeling of the manipulator’s mechanical and hydraulic
subsystems and its coupling.

2.1 Mechanical Subsystem Modeling

In this section, the mechanical subsystem dynamic model will be derived. To this
end, the following simplifying assumptions are adopted:

• The manipulator’s links are assumed as perfect rigid bodies;
• Only the main bodies are considered relevant in links dynamics;
• The friction in the revolute joints is negligible.

Forward Kinematics. To describe the kinematics of the bodies, it is used an
inertial frame called I and a system of rectangular coordinates (O0, x0, y0, z0), fixed
in the center of the joint of the manipulator base, and also a local frame 1 solidary to
the base, with origin coincident with the origin of the inertial frame and coordinates
(O1, x1, y1, z1). This frame describes the position of the base relative to the frame
I using the angular displacement θ1, which is defined positive when moving in the
counterclockwise sense, according to the right-hand rule. To describe the boom
position relative to base frame and to describe the bucket position relative to stick
frame, the local frames 2, 3 and 4 are required, which are solidary to boom, stick
and the bucket, respectively. The coordinate systems (O2, x2, y2, z2),
(O3, x3, y3, z3) and (O4, x4, y4, z4) with the angular displacements θ2, θ3 and θ4 are
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relate to the frames 2, 3 and 4, respectively. The set of angular displacements
(θ1, . . . , θ4) are the generalized coordinates. For convenience, a number is
assigned to the center of the joints and links of the manipulator. The base joint
center is the point 0, the boom joint center is the point 1, the stick joint center is the
point 2, the bucket joint center is the point 3 and the tip of bucket teeth is the point
4. The base, boom, stick and bucket are the links 1, 2, 3 and 4 respectively. Figure 1
shows all frames, links, generalized coordinates and points defined above.

Next, will be formalized the description of the orientation and the position of any
link and point of the manipulator, relative to the frame I. Starting with the
description of the orientation, considering initially a frame j and a frame j− 1, with
j=1, . . . , m frames, where origin Oj coincide with origin Oj− 1. The rotation of j to
j− 1 is given by the matrix j− 1Rj, now as direction cosines matrix [8]. This matrix
has the property of being orthogonal, so, j− 1R− 1

j = j− 1RT
j =

jRj− 1.
Let j− 1ωj− 1 j be the angular velocity vector of j relative and expressed in j− 1.

To write de absolute angular velocity vector of j in I, it is necessary to consider the
absolute angular velocity vector Iωj− 1 of j− 1, more the rotation of j− 1ωj− 1 j from
j− 1 to I, as shown below:

Iωj = Iωj− 1 + IRj− 1
j− 1ωj− 1 j = Iωj− 1 + Iωj− 1 j ð1Þ

Now, considering that j= i, with i=1, . . . , N links, thus, Eq. (1) can be
rewritten as:

Iωi = Iωi− 1 + IRi− 1
i− 1ωi− 1 i = Iωi− 1 + Iωi− 1 i ð2Þ

Associating Iωi with the angular velocity vector of link i of the manipulator, it is
possible to get the angular acceleration vectors of that link by making: Iαi = Iω̇i.

Fig. 1 Frames, generalized coordinates and points. a xz plane; b xy plane
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With respect to the position, considering any point CGi belonging to the
manipulator, so, its position vector on the origin of frame I can write as the absolute
position vector of the point Oi, predecessor of CGi, more the rotation of vector
irOi CGi, between the points Oi and CGi, from j= i to I:

IrCGi = IrOi +
IRi

irOi CGi = IrOi +
IrOi CGi ð3Þ

Taking IrCGi as the position vector of the center of mass of link i, it is possible to
get the velocity and acceleration vectors of that center of mass by making:
IvCGi = IrĊGi and IaCGi = IvĊGi, respectively.

To simplify the kinematic expressions, the absolute vectors will be written in
local frame. To do so, the rotation ηi =

IRT
i
Iηi, with

Iηi being an arbitrary absolute
vector, will be performed. From here on, the notation without superscript on the left
will be used to indicate an absolute vector written in local frame’s base
(ωi, αi, vCGi, aCGi), i.e., in frame j= i, with the exception of inertia tensor Ii of the
link i, which in fact is expressed in the local frame.

Links Dynamics. By the Kane’s method the links dynamics model is derived based
on the dynamic equilibrium between the generalized inertial forces, F*

k , and gen-
eralized active forces, Fk, according to Eq. (4) adapted from Baruh [8]:

∑
N

i=1
miaTCGi

∂vCGi
∂qk̇

+ ḢT
i
∂ωi

∂qk̇

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F*
k

= ∑
N

i=1
FT
i
∂vCGi
∂qk̇

+MT
i
∂ωi

∂qk̇

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fk

ð4Þ

where mi is the mass of link i, with i=1, . . . , N links, qk is the generalized
coordinate, thus, qk = θk , with k=1, . . . , n generalized coordinates, and Ḣi is the
vector of angular momentum variation of link i, that is given by:

Ḣi = Iiαi +ωi ∧ Iiωið Þ ð5Þ

The active forces vector Fi and the sum of generalized active moments vectors
MT

i ∂ωi ̸∂q ̇kð Þ are given, respectively, by:

Fi =GCGi = IRT
i
IGCGi ð6Þ

∑
N

i=1
MT

i
∂ωi

∂qk̇
= τk ð7Þ

where IGCGi = 0 mig 0½ �T is the weight force vector of link i, with g as the
gravity acceleration in vertical direction, and τk is the motor torque.

Hydraulic Force. The motor torque τk can be related to the hydraulic force Fhk by
the principle of the virtual works [5], resulting in: τk =Fhi ∂lCiHi ̸∂qkð Þ, where lCiHi is
the length between the points Ci and Hi, with i=1, . . . , N cylinders and i= k.

308 É. L. de Oliveira and D. C. Donha



To determine the cylinders lengths as functions of the generalized coordinates, the
cylinders inverse kinematics analysis is performed [5], taking the Fig. 2 as reference.

Based on Fig. 2a one obtains for cylinder 1:

αBA = θ1 + δBA1 ð8Þ

lC1 H1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 C1 + l20 H1 − 2 l0 C1 l0 H1cosαBA

q
ð9Þ

From Fig. 2b, c one obtains for cylinders 2 and 3, respectively:

αBO =
π

2
+ θ2 − δBO1 − δBO2ð Þ ð10Þ

lC2 H2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 H2 + l21 C2 − 2 l1 H2 l1 C2cosαBO

q
ð11Þ

αST = π − θ3 − δST1 + δST2ð Þ ð12Þ

lC3 H3 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 C3 + l22 H3 − 2l2 C3l2 H3cosαST

q
ð13Þ

Fig. 2 Hydraulic cylinders’ inverse kinematics. a Inverse kinematic of cylinder 1; b inverse
kinematic of cylinders 2 and 3; c inverse kinematic of cylinder 4
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For the cylinder 4 in Fig. 2c follows the relationships:

γBU = π − θ4 − δBU1 + δBU2ð Þ ð14Þ

lB1 B2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l23 B2 + l23 B1 − 2l3 B2l3 B1cosγBU

q
ð15Þ

αBU = acos
l2B2 H4 − l2B1 B2 − l2B1 H4

2lB1 B2lB1 H4

� �
− asin

l3 B2sinγBU
lB1 B2

� �
− δBU3 ð16Þ

lC4 H4 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2C4 B1 + l2B1 H4 − 2lC4 B1lB1 H4cosαBU

q
ð17Þ

The analysis of the kinematics of the fourth cylinder is more intricate because of
the presence of the six bars mechanism, formed by the cylinder 4 with the two-bar
linkage, stick and bucket. With the lengths of the cylinders in function of the
generalized coordinates, it is possible to determine the hydraulic forces.

Matrix Form of Links Dynamics. The links dynamics, obtained by Kane’s
method, can be written in the following form [3]:

JT qð ÞF=M qð Þ q ̈+C q,q ̇ð Þ q̇+G qð Þ ð18Þ

where q∈ℜn is the generalized coordinates vector with q̇∈ℜn and q̈∈ℜn as its
first and second time derivative, respectively, M qð Þ∈ℜn× n is the inertia matrix,
C q,q̇ð Þ∈ℜn× n is the Coriolis and centripetal efforts matrix, G qð Þ∈ℜn is the
gravitational torque vector, F∈ℜn is the force vector resulting from cylinders
dynamics, and JT qð Þ is the Jacobian matrix, which is given by: J qð Þ= Ji, k½ �, where
Ji, k = ∂lCiHi ̸∂qk.

Inclusion of Cylinders Mechanical Parts. Applying Newton’s second law to
describe the dynamics of cylinders mechanical parts, and realizing the conversion
from force to torque that was presented, thus, ones obtains Eq. (19).

JTF qð Þ= JTAapl − JTMcyc̈ − JTGc qð Þ− JTFf q,q̇ð Þ ð19Þ

where Aa ∈ℜn× n is the diagonal matrix of cylinders bore transversal section area,
pl ∈ℜn is the load pressure vector, Mc ∈ℜn× n is the diagonal matrix of cylinders
mass, yc̈ ∈ℜn is the cylinders linear acceleration vector, Gc qð Þ∈ℜn is the cylin-
ders gravitational force vector, where the calculations details can be seen in Santos
[9], and Ff q, q̇ð Þ∈ℜn is the cylinders friction vector, which is given, in scalar
form, by [10]:

Ff =Fc 1+ Kst − 1ð Þexp − cv yċj jð Þ½ �sign y ̇cð Þ+Bvyċ ð20Þ
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with Fc being the Coulomb friction, Kst is the static friction coefficient, cv is the
velocity transition coefficient, associated with Stribeck friction, and Bv is the vis-
cous friction coefficient. If there are discontinuity problems, the term sign y ̇cð Þ can
be approximated by a sigmoid, or a boundary layer can add in Eq. (20).

The cylinders linear velocity and acceleration vectors, yċ and yc̈, can be written
as a function of generalized velocity and acceleration vectors, q̇ and q̈, with the
kinematic relations that transform the linear motion into the rotational one [9], i.e.,

yċ = JTq̇ and y ̈c = JTq̈+ JṪq̇. Replacing these relations in Eq. (19) one obtains:

JTF= JTAapl − JTMcJT
� �

q̈− JTMcJ
Ṫ

� 	
q̇− JTGc − JTFf ð21Þ

Putting Eq. (21) in (18) results in the coupled model of mechanical subsystem:

JTFh =Mm q̈+Cmq̇+Gm +Dm ð22Þ

where Mm =M+ JTMcJT , Cm =C+ JTMcJ
Ṫ , Gm =G+ JTGc, Dm = JTFf and

Fh =Aapl.

2.2 Hydraulic Subsystem Modeling

The modeling presented here is based on the study of the hydraulic servo system
shown in Fig. 3. This system consists of a double action differential cylinder
controlled by a 4/3-way proportional directional control valve. For the hydraulic
subsystem modeling, the following simplifying assumptions are adopted:

Fig. 3 Hydraulic servo system (Source Adapted from Valdiero [12], p. 19)
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• The supply unit provides constant pressure and flow to the system;
• The valve dynamics is fast enough so that the ratio between the applied tension

to the valve and spool displacement is given by a constant;
• The valve internal leakage is not significant;
• The valve dead zone is considered negligible;
• The flow regime through the valve orifices is assumed as turbulent;
• The dynamics of tabulations are insignificant, therefore, can be modeled as

inefficient volumes;
• The leakage between cylinders and environment is not considered;
• The leakage between cylinders chambers is not considered;
• The fluid bulk modulus is admitted as constant, even though it depends on the

effective pressure, temperature and the amount of air mixed with the fluid [11].

Load Flow Equation. In Fig. 2, the flow rates Qa and Qb through valve ports a and
b, respectively, are given by the flow rate equation through orifices [13], as shown
in the sequence:

Qa = uvKaga pa, uvð Þ, with ga pa, uvð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ps − pa

p
if uv ≥ 0ffiffiffiffiffiffiffiffiffiffiffiffiffi

pa − pt
p

if uv <0



ð23Þ

Qb = −uvKbgb pb, uvð Þ, with gb pb, uvð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pb − pt

p
if uv ≥ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ps − pb
p

if uv <0

(
ð24Þ

where uv is the voltage applied to the valve, Ka and Kb are the flow rate coefficients
of ports a and b, respectively, pa and pb are, correspondingly, the effective pressures
in chambers a and b, and the terms ps and pt are the supply and tank effective
pressures, respectively.

In steady state, it is assumed that Qa = −α− 1
c Qb, where αc =Ab ̸Aa is the

actuator cross section area ratio between chambers a and b. Therefore, with
Eqs. (23), (24) and the definitions of load flow rate, Ql≜Qa = −α− 1

c Qb, and load
pressure, pl≜pa − αcpb, for an asymmetric cylinder [11], and after some algebraic
manipulation, one obtains:

Ql = uvKlgl pl, uvð Þ, with gl pl, uvð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ps − pl − αcpt

p
if uv ≥ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αcps + pl − pt
p

if uv <0



ð25Þ

where Kl = σvKað Þ ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2v + α3c

p
is the load flow rate coefficient, with σv =Kb ̸Ka as

the valve flow rate coefficients ratio.

Load Pressure Dynamic. Applying the continuity equation in the cylinder
chambers results in [11]:
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pȧ =
βe
Va

Qa −Aa yċð Þ ð26Þ

pḃ =
βe
Vb

Qb +Ab yċð Þ ð27Þ

where βe is the effective fluid bulk modulus, Va =Aa lã + yc
� �

+Vtub is the volume of
chamber a, Vb =Ab lb̃ − yc

� �
+Vtub is the volume of chamber b, lã, b = la, b t0ð Þ is the

chambers initial lengths, and Vtub is the fluid volume in the tabulations.
Substituting Eqs. (26) and (27) in the load pressure first time derivative, that is

given by: pl̇ = pȧ − αc pḃ, and after some algebraic manipulation, one obtains:

p ̇l =
βe
Va

rV + α2c
rV

� �
Ql −Aayċð Þ ð28Þ

where rV =Vb ̸Va is the chambers volume ratio.

Matrix Form of Hydraulic Subsystem Dynamics. Based in Santos [9], and
considering i=1, . . . , N actuators, the hydraulic subsystem dynamics can be
written as follows:

pl̇ =El q,pl,uvð Þuv −Fl qð ÞJT qð Þq̇ ð29Þ

where pl ∈ℜn is the load pressure vector, and terms El ∈ℜn× n and Fl ∈ℜn× n are
diagonal matrices of non-linear functions, which are given, respectively, by:

El q,pl,uvð Þ= diag
βe

Aai lãi + yci
� �

+Vtubi

rVi + α2ci
rVi

� �
Kligli pli, uvið Þ

" #
ð30Þ

Fl qð Þ= diag
βe

Aai lãi + yci
� �

+Vtubi

rVi + α2ci
rVi

� �
Aai

" #
ð31Þ

with Kli = σviKaið Þ ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2vi + α3ci

p
. In Eqs. (30) and (31) the linear displacement yci is

given by: yci = lCiHi − lC̃iHi, where lC̃iHi = lCiHi t0ð Þ is the initial length of the cylinder
i. Substituting the relations Fhi = pliAai and pli =Fhi ̸Aai in Eq. (29), one obtains:

Ḟh =AaEl q,Fh,uvð Þuv −AaFl qð ÞJT qð Þq̇ ð32Þ

The Eq. (32) expresses the hydraulic subsystem dynamics as a function of the
hydraulic force.
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2.3 Manipulator’s Coupled Model

Gathering the equations of mechanical and hydraulic subsystems, one obtains the
manipulator’s coupled model as can be seen bellow:

q̈=M− 1
m qð Þ JT qð ÞFh −Cm q,q̇ð Þ q̇−Gm qð Þ−Dm q,q̇ð Þ� � ð33Þ

Ḟh =AaEl q,Fh, uvð Þuv −AaFl qð ÞJT qð Þq̇ ð34Þ

Without loss of generality, it can be said that Eqs. (33) and (34) represent a
mechanical subsystem that is actuated by a hydraulic force, Fh, generated by a
hydraulic subsystem. This hydraulic force arises from the pressure difference
between cylinder’s chambers, when a tension, uv, is applied to the valve [9].
Analyzing the Eqs. (33) and (34) is verified that the coupled model captures the
main equivalent effects of the coupling, such as the conversion of hydraulic to
mechanical power, and the variation of the cylinders chambers volumes due to the
moving parts displacement and due to the hydraulic fluid compressibility [7].

3 Simulation

In this section, the results of the manipulator’s model simulation are presented. In
Table 1 are gathered the parameters of mechanical and hydraulic subsystems used
in the simulation. These parameters are from the project of a mini excavator
prototype.

Other hydraulic subsystem parameters used in the simulations are:
βe =1.30 GPa, Fpr =100 N,Kst =1.25 and cv =100 s ̸m.

The manipulator model is simulated with a step type input, referring to a time
variable tension applied to the valves. The step command used is applied simul-
taneously in all valves, and it is given by:

uv Vð Þ= 0 if 0> t≤ 2 sð Þ
−0.50 if 2 > t≤ 5 sð Þ



ð35Þ

To verify the manipulator model, it is performed a comparison of the results
obtained with the mathematical model, developed here, and those provided by a
commercial software of dynamic systems analysis. The comparison model was
created by the authors with the standard blocks of Simscape Multibody™ and
Simscape Fluids™ in MATLAB/Simulink©. In Fig. 4 is shown a block diagram of
the comparison model created with Simscape™.

The mathematical model was simulated through the numerical integration of its
differential equations in MATLAB/Simulink©. The integration was performed with
the ODE4 (solver based in the 4th order Runge-Kutta method) with a fixed step of
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1× 10− 3 s. In Fig. 5 are show the comparison of the angular displacements,
angular velocities and hydraulic forces (vertical axis on the left), and the relative
error between the models’ states (vertical axis on the right).

In the angular displacements’ comparison, no significant difference is noticed as
can been seen in the relative errors graphs, where the maximum relative error
between angular displacements is less than 1%. However, in the comparisons of the
angular velocities and hydraulic forces, it is noticed that the Simscape™ model
presents a slightly more damped behavior than the mathematical model in the
oscillatory part. This is mainly due to the hypothesis that the fluid bulk modulus is
constant and that there is no valve leakage, since in Simscape™ the simplifying
hypotheses mentioned are not considered [14]. But even with these differences,
both models still present similar results, with a maximum relative error in the
oscillatory part less than 30% between the angular velocities, and less than 35%
between the hydraulics forces. In the stationary part the relative error for those
states is almost zero.

Fig. 4 Block diagram of comparison model created with Simscape™
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4 Conclusions

In this work, a mathematical model of the manipulator of a mini hydraulic exca-
vator was developed. The manipulator is divided into two subsystems, one
mechanical and the other hydraulic. The mechanical subsystem is modeled with
Kane’s method and Newton’s second law, and the modeling of the hydraulic
subsystem is performed with the application of fundamental principles of fluid
mechanics. Subsequently, the models of the subsystems were coupled to get the
manipulator’s model. To conclude, a comparison was performed with the results
obtained with the mathematical model and those provided by a commercial soft-
ware of dynamic systems analysis. In this comparison, the mathematical model

Fig. 5 States comparison and relative error
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showed good results, even with the simplifications performed during modeling. For
future works, the control of the manipulator will be performed with the developed
model.
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Hardware-in-the-Loop Optimization
of an Interaction Controller
for Improved Coupled Dynamics
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and Glauco A. P. Caurin

Abstract This paper presents the implementation of an optimization method to find,

without knowledge of the environment characteristics, the best interaction controller

parameters to revamp the coupled dynamics. The objective is to improve various

industrial robot applications that involves mechanical contact. An enhanced contact

is accomplished by lowering the following metrics: rise time, total variation and

steady state error. Hence, the impedance controller was the interaction control tech-

nique chosen to be optimized. Contact is established between a Kuka KR16 robot

TCP and an aluminum platform, where the force data was acquired by a 6-axis force-

torque sensor located in the robot’s end-effector. Using a hardware-in-the-loop opti-

mization approach, the force feedback is processed by a NSGA-II algorithm. Each

individual of the GA represents a specific impedance controller and as the genera-

tions passes, these values get more suitable for lowering the metrics. Results show

convergence in 5 generations.
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1 Introduction

Mechanical contact is a weighting factor when it comes to a wide variety of robotic

applications. Performing delicate surgeries [12], manufacturing in shared environ-

ments with humans [9] and stabilizing bionic orthesis [3] are some examples of con-

tact involved in processes developed by robots. To achieve a suitable contact behav-

ior, an estimation of the forces and torques acting on robot’s TCP is required, which

is implemented with an interaction controller.

One of the most successful interaction controller is the impedance control [8, 11].

It provides stability on free motion if the controller itself is stable. However, although

this property is guaranteed, excess of oscillations may happen during contact. This

effect, characterized by intermittent interaction, is due to the transition from uncon-

strained to constrained motion and is called chatter or bounce [18]. The desired sce-

nario, where the bounce effect is minimized, is established using a coupled dynamic

in which the rise time and overshoot are the smallest. These two metrics are directly

related to the amount of bouncing, and are intrinsically related to the impedance

controller and to the environment characteristics.

A possibility to enhance the performance during interaction is to estimate the

environment parameters. An usual model for interaction in the literature is shown

at Fig. 1a. The robot-controller is modeled as a linear second order system, and the

environment as a linear first order. The resulting dynamics is also modeled, so during

interaction, the force measured at the sensor is obtained for the coupled system. Dif-

ferent methods for estimation are possible: Erickson et al. [7] compared four different

methods, either on-line and off-line; Countinho and Cortesao [4, 5] implemented a

multiple observers method and another method which does not need the position val-

ues of robot’s TCP. Multiple applications rely on environment parameters estimation

for improved performance [13, 16]. Robot and environment, however, contain uncer-

tainties. Lahr et al. [14] experimented a stiff contact task and it proved to be different

from the second order model proposed, in a controlled situation. The manipulator is

also often a source of not modeled dynamics, which could be neglected depending

on the application [15], but for many situations it should be considered.

Fig. 1 Modeling for interaction situation along 1 DoF: a before contact; b during contact
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We propose a method which does not need to estimate the environment’s param-

eters, neither needs to take into account the nonlinearities. With a hardware-in-the-

loop optimization, where the metrics are obtained from real experiments within the

optimization loop, it is possible to optimize the impedance controller parameters

without considering non-modeled dynamics on robot-tool-environment. This is pos-

sible due the use of a genetic algorithm for a simplified one degree of freedom contact

task. We demonstrate that stiff contact interaction contains errors, not predicted by

[17], and it is solved by a constrained optimization statement and validated through

experimental results with an industrial robot.

1.1 Impedance Control

It is possible to approach the problem along one degree of freedom (DoF), in order

to simplify the modeling, where the robot may adopt three parameters to emulate:

mass (M), spring (K), and damper (B). If the robot is required to follow a desired

position x0(t), with derivatives ẋ0(t) and ẍ0(t), is must be compared to the actual

position, x(t), and errors between these represent movement from unconstrained to

constrained motion. Figure 1a shows the robot modeled as a second order system,

and the environment as a first order with Kenv and Benv parameters.

When contact is achieved (Fig. 1b), the coupled system robot/environment now

displays a displacement between desired and actual position, denoted by 𝛿x(t), which

is 𝛿x(t) = x(t) − L, where L is the distance between robot’s position and the environ-

ment at time t = 0. The model contains a desired contact force, Fd, and the actual

interaction force, Fint. Applying Laplace transform with initial conditions null, we

have Eq. (1).

M[ẍ(t) − ẍ0(t)] + B[ẋ(t) − ẋ0(t)] + K[x(t) − x0(t)] = Fd(t) − Fint(t) ⇒

⇒ (Ms2 + Bs + K)ΔX(s) = ΔF(s) (1)

Proposed by Hogan [11], the impedance controller has gained ground in research

and development processes. Its wide applicability is given by the fact that it imple-

ments a controller relating the mechanical quantities flow and effort: velocities and

forces, respectively. Although Hogan makes the case that an impedance does not have

to be linear, it is a common implementation a controller which is a second order and

linear time invariant [2], and implemented in this work for a one degree of freedom.

Its implementation on discrete systems, as industrial robots, may be found at [14].
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1.2 Related Work

Optimization methods for impedance controllers have already been subjects of

study in related works. Particle Swarm Optimization algorithm was used for tun-

ing impedance controller parameters [19], although in a simulated model of a planar

3 DOF manipulator. Yet, the transition between unconstrained to constrained motion

isn’t modeled, letting the nonlinearities of the contact overlooked. Li [17] tunes the

controller parameters considering a multi-objective optimization in which the objec-

tive functions are: overshoot, settling time, and steady-state error. Using only force

data feedback, the technique embodies a Pareto optimality along one DoF through

genetic algorithm. However, it still in constrained movement only and do not compre-

hends experimental results. Our proposal embraces the nonlinearity of the changes

between unconstrained and constrained motion, applying in a industrial robot with

a commercial force torque sensor.

2 Experiments

2.1 Multi-objective Optimization

Many classical optimization methods use gradients, which requires knowledge of

the objective function in question. Often this is not known or has nonlinearities that

makes it a computationally expensive method. Some modern approaches deal with

the use of values of this function without knowing its derivatives [22], such as genetic

algorithms (GA). Using the concept of population, which is composed of several

individuals, the GA seeks to generate compositions of the objective function values

for each individual within the space of possible solutions. This allows to attenuate

the local minima problem, given the variability in the results obtained. This work

uses NSGA-II algorithm [6], which is capable of deal with multi-objective problems

and multiple variables. The input vector for the metrics evaluation is the force vector

in the Z axis, denoted by Fz.

NSGA-II being multi-objective means that the optimization can be conducted

based on more than one desirable criterion to obtain the best population through

evolution. It is an important feature in the case of this work, since a good contact has

low rise time and low overshoot+settling time. These metrics, however, are trade-

offs between themselves: will be found higher overshoot and settling time if the rise

time is reduced. This motivates the search for the best values through these metrics.

As settling time and overshoot are quantities that have different numerical values,

the use of weights for balancing both during optimization would be necessary. The

process may be facilitated by using a quantity which relates both, called total vari-

ation (TV). This is obtained by the sum of all the differences between consecutive

peaks and valleys of the objective function, Fz, per Eq. (2) [1]. Being i related to the
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vector index which the evaluation algorithm is analyzing, N is the size of the force

vector recorded.

TV(f ) = sup
0≤t1≤⋯≤tN

N−1∑

i=1

||Fz(ti) − Fz(ti+1)|| (2)

For the rise time rule, which is the metric that measures the time taken for the

system to reach its final value for the first time, using the rule from 0 to 100%, as

stated by Eq. (4) [20]. The final value, ̄Fzend , is obtained by the mean of the 50 final

values of the force vector (to decrease the influence of signal noise), Fz, with N
number of points, as described by Eq. (3).

̄Fzend =
∑N

i=N−50 Fzi

50
(3)

Tr = tr, where ̄Fzend − Fz(tr) < 0 for the first time (4)

Also, since the impedance controller does not consider an integrative portion by

itself and the contact is with stiff environment [21], meaning there is a steady state

error associated. This metric was also inserted as another objective, denoted by Ess
and described by Eq. (5), obtained by the subtraction of the reference force value,

Fdz , and the final force vector value, ̄Fzend .

Ess =
|||Fdz − ̄Fzend

||| (5)

So the problem is characterized by three variables (X = [M,B,K]T ) with three

goals defined as f1(X) = TV , f2(X) = Tr and f3(X) = Ess, and the optimization prob-

lem is presented in Eq. (6). The constraints are defined as each variable boundary as

10 kg ≤ M ≤ 60 kg, 100 N s/m ≤ B ≤ 1000 N s/m e 100 N/m ≤ K ≤ 4000 N/m and,

from empirical experimentation, constraint for the damping value, 𝜁 = B∕(2
√
MK).

min
X

(f1(X), f2(X), f3(X))

X = [M,B,K]T

s.t. 10 kg ≤ M ≤ 20 kg

100 N s/m ≤ B ≤ 1000 N s/m

1000 N/m ≤ K ≤ 4000 N/m

0.5 ≤ 𝜁 ≤ 0.95

(6)
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2.2 Experimental Implementation

To achieve the desired behavior for the study, a contact is carried out between a tool

mounted at the extremity of a Kuka KR16 Robot and an aluminum profile structure.

The robot movement is constrained in the robot Z world’s coordinate frame (only

one DoF), which is perpendicular to the environment’s surface. Then the NSGA-II

algorithm is used to find the improved solution during the generations’ evolution:

each individual had about 20 s for its task, leading to 1,766 force points acquired.

A total of 20 generations were used for this study, where each one had 20 individ-

uals, resulting in a total of 400 experimental repetitions. The implementation was

only possible due the use of the Robot Sensor Interface 2.3 library, implementing an

impedance controller with a force-torque sensor from ATI Industrial Automation,

model Delta SI-660-60.

The environment is part of a workbench used for general experimental purposes,

being a fast-assembly aluminum square profile, which had four other profiles fixed

perpendicularly to it. Since the algorithm is supposed to enhance the impedance

controller without knowing environment’s properties, it is not necessary to calculate

the equivalent stiffness of the workbench. The tool is a spindle holder with flat tip

and nonlinear structure, due to the spindle hole (Fig. 2).

A block diagram of the implementation is illustrated at Fig. 3. The arrows portray

the information flow as inputs or outputs, and the blocks are the representation of

each device in the loop. The group Robot and coupled dynamics represents the real

system composed by robot, sensor, tool, and environment, which returns the values

of forces Fz to the computer algorithms. The computer, in its turn, represented by

the group Algorithms and threads, receives the force input data (Fz), calculates the

objective metrics ([Tr, TV , Ess]T ) via Data info algorithm, and sends these data

to NSGA-II algorithm’s input. Therefore, the GA will produce new gains for the

Impedance controller ([M, B, K]T ), which operates at a constant 12 ms control loop

time and is responsible to keep the robot working properly viaControl actions during

the whole experiment.

All codes run in C# within an i7 processor Windows 10 based PC. Communica-

tion is established using UDP/IP protocol network via XML data packages exchange

between PC and robot controller. These packages contain information about robot

position, force-torque values, and communication status. The thread Impedance
Controller is responsible to guarantee that the real time communication will not be

lost, and it also calculates the impedance controller’s control action, the one needed

to move the robot and deal with the mechanical interaction.

At the moment the interaction controller is started, after all systems have been

initialized, the robot’s TCP is placed 5 mm distant from the environment. Since it will

take some time to the tool establish contact, during this period the forces are basically

zero, and this elapsed time is taken into account for the rise time metric. This way,

one may notice that the values of Tr are higher in the order of a few seconds instead of
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Fig. 2 Experimental setup. Left—Kuka Robot KR16 with a 6 axis force/torque sensor attached to

the wrist and the corresponding tool in contact with the aluminum frame; top right—initial position;

bottom right—final position

Fig. 3 Information flow diagram. Left—running algorithms and real time threads for communi-

cation and GA functioning; right—real and environment setup with force acquisition

milliseconds, which is usual for this metric. The reference trajectory desired is null,

x0(t) = 0. This simplifies the contact task, where the desired force is Fd(t) = 60 N for

all individuals. The whole experiment took around 2.5 h to complete all individuals

from all generations.
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3 Results

Results show that the objective functions were properly diminished. This decrease is

manifested in the series of graphics shown in Fig. 4 in which each color represents

an individual. It can be noted that the rise time suffers a draw back through the gen-

erations and the amplitudes of oscillation, which is described by the total variation,

are tightened. Also, the steady state error is decreased, since the last values, after

20 s, are closer to 60 N. It is possible to note the amount of time elapsed before the

contact, which decreased from the 1st generation (starting almost at 10 s) to the 20th

generation (less than 8 s).

Figure 5 shows the relationship between the impedance controller damping, 𝜁 , and

the rise time of the coupled system dynamics. The colors represent the controller’s

gainB. Once Fig. 5a, b, and c represent the 1st, 2nd, and 3rd generations, it is possible

to notice that the values higher than 400 N s/m disappear after the 4th generation

(Fig. 5d). The values of B do not cross the border of 400 N s/m until the end of

the experiment, represented by (Fig. 5f). Classical control theory states that, for a

second order system, which was modeled by a second order plus a first order, smaller

(a) 1st generation (b) 2nd generation

(c) 3rd generation

Fig. 4 Interaction forces vector for each individual versus time
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(d) 4th (e) 10th (f) 20th

(a) 1st (b) 2nd (c) 3rd

Fig. 5 Plot of Tr × 𝜁 for the indicated generations, where: red stands for 100 N s/m ≤ B <

400 N s/m; green, 400 N s/m ≤ B < 700 N s/m; and blue, 700 N s/m ≤ B < 1000 N s/m

damping values (𝜁 ) would lead to smaller rise times. However, looking at Fig. 5,

as the damping decreases, rise time increases, what suggests that the real resulting

system is not a second order, but higher. Also, the friction is not taken into account

at any step in this work’s model, although it is a major factor for contact modeling

[10].

Another interesting observation that may be discussed is about the analysis of

all individuals together generated over the 20 generations of the optimization, where

each blue dot is one impedance controller, displayed at Fig. 6. This approach is inter-

esting because, while the data is resulting from an optimization process, each con-

troller results in a respective time metric, for this set of environment+tool+robot.

Two tendencies are possible to note about the controller and the metrics Tr and

TV . Plotting the latter values versus the stiffness (Fig. 6b), K, one may notice that

lower the oscillations (small TV) are obtained via higher values of stiffness. In the

other hand, looking for small values of Tr (Fig. 6a), they require smaller values of

the stiffness. The steady state error (Fig. 6c) does not have a clear behavior due to

stiff contact with admittance control in industrial robots [21], but it tends to increase

with the very high values of stiffness (K > 3000 N/m).

From these two curves, two trends can be observed: Tr leads to a linear fitting

curve, which is denoted by the red dotted line (7); and TV is better described by an

exponential fitting (8).

Tr(K) = 0.00264K + 0.7903 (7)
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(a) Tr (b) TV

(c) Ess

Fig. 6 All individuals recorded over the optimization: metrics versus stiffness

TV(K) = 1376 ∗ exp(−0.003006K) + 64.71 ∗ exp(−6.424 ∗ 10−5K) (8)

The last analysis consists of the means and standard deviations for each controller

parameter. Figure 7 shows the tendency for each gain over the generations, where

B and K show a convergence around 204.7 N s/m and 1640.8 N/m respectively,

between the 5th and 20th generations, respectively. M, however, does not display

a clear convergence since has smaller limits compared to the other metrics, also,

small changes in M leads to high terms due to multiplication with acceleration.

4 Conclusion

A hardware-in-the-loop optimization was implemented for better coupled dynamics

between robot and environment. Results display that it is possible to implement this

technique without worrying about non-modeled dynamics of nonlinearities, since

the GA is capable of deal with them. Our method does not consider environment

characteristics, which makes an easier implementation. Also, although the fact that
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(a) M (b) B

(c) K

Fig. 7 Controller mean value and standard deviation for parameters versus generations

the whole experiment took around 2.5 h to finish, 5th generation took approximately

40 min to complete, this means that the tendency for B and K were reached quickly.

An important consideration is about the B parameter: all individuals converge for

the region below 400 N s/m, what means a softer controller for the limits chosen for

these experiments. Only 4 generations were needed to higher values of B disappear.

Moreover, higher values of 𝜁 should lead to slower dynamics, instead, it is reaching

a faster behavior. This indicates that the coupled system is not a second order, as the

supposed earlier.

Next steps of this work are to run the experiment for different environments,

checking the robustness of the method. Also, the fitted curves are useful to enhance

a theoretical model over a contact situation for this system setup, therefore some

studies may be disposed on this intention.
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SDRE Trajectory Tracking Control
for a Hovercraft Autonomous Vehicle

Ana Paula Pagotti , Elvira Rafikova and Marat Rafikov

Abstract A hovercraft is an amphibious vehicle lifted by a propeller that causes
the effect of an air cushion between the vehicle and the surface. This way, a
hovercraft becomes a fast and versatile vehicle to be used in different kinds of tasks
such as rescues, environmental monitoring and coast guard patrolling. This paper
presents the control problem formulation in order to track a reference trajectory of a
hovercraft dynamical model. For this purpose the SDRE (State Dependent Riccati
Equation) control method is applied to the model of this dynamical system. The
nonlinear control problem is formulated in order to minimize the cost functional.
Numerical simulations are performed using Matlab

®

, so that, the equations of the
system and the reference are integrated to generate data about the position, orien-
tation and velocities of the hovercraft. The results confirm that the control method
succeeded in controlling the hovercraft in all proposed cases.

Keywords Hovercraft autonomous vehicle ⋅ State-dependent Riccati equation
Nonlinear control

1 Introduction

A hovercraft is an amphibious vehicle which floats on a cushion of pressurized air
supplied by one or more fans and contained inside a cavity on a flexible structure
known as skirt [1]. Kuznetsov in [2] says that these fans create a pressure distri-
bution in the opposite direction of the gravitational force, thus minimizing the

A. P. Pagotti (✉) ⋅ E. Rafikova ⋅ M. Rafikov
Universidade Federal do ABC, Av. dos Estados, 5001, Santo André, SP, Brazil
e-mail: ana.pagotti@ufabc.edu.br

E. Rafikova
e-mail: elvira.rafikova@ufabc.edu.br

M. Rafikov
e-mail: marat.rafikov@ufabc.edu.br

© Springer International Publishing AG, part of Springer Nature 2019
A. de T. Fleury et al. (eds.), Proceedings of DINAME 2017, Lecture Notes
in Mechanical Engineering, https://doi.org/10.1007/978-3-319-91217-2_23

335

http://orcid.org/0000-0002-5328-3214
http://orcid.org/0000-0002-9802-5446
http://orcid.org/0000-0002-3259-7871
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91217-2_23&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91217-2_23&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91217-2_23&amp;domain=pdf


vehicle contact with the ground or water. This causes a ground effect related to the
navigation surface. The ground effect creates a thin air layer that lubricates the base
of the vehicle, avoiding the contact with the surface of navigation and consequently
reducing the drag forces. It provides the vehicle not only excellent performance on
rough surfaces but also the high speed that other conventional marine vehicles
cannot achieve [3].

Nonetheless, to plan some missions using Hovercrafts it is necessary to control
the trajectory of the vehicle. To do this some controllers of high performance must
be applied as pointed in [4]. Finally Hovercrafts present some non-holonomic
constraints of movement that don’t allow the application of simple feedback control
laws [5].

In mobile robotics the vehicle trajectory tracking control can be separated in two
different problems: the stabilization of the final position and the trajectory tracking
of a reference [6]. The first problem is related to the Brockett’s sufficiency condition
because of the non-holonomic constraints of movement, that is: any continuous
control law couldn’t ensure the asymptotic convergence of the vehicle to its resting
configuration. And the second problem refers to the determination of a position or a
reference trajectory where the robot should be stabilized by the minimization of the
error between this reference and the actual trajectory of the system. To solve that
problem, a suitable mechanism of control is a state feedback control presented by
Rafikova et al. in [7]. A way to control this sort of systems is using a sub-optimal
method of control, known as SDRE—(State Dependent Riccati Equation), the main
advantage of wich is that it’s not necessary to linearize the system.

Then, the objective of the present paper is to formulate the tracking control
trajectory problem of a Hovercraft, which has non-holonomic constraints, applying
the SDRE control method. In the section Methodology it is shown how the
dynamical system is treated to allow the use of the control method, writing it in an
error space-state system.

Numerical simulations were performed using Matlab
®

, so that the equations of
the error space-state form, dynamical model of the vehicle and the reference were
integrated to generate data about the position, orientation and velocities of the
Hovercraft. In this section it will also be presented the graphs about these simu-
lations that provide visualization of the behavior of the dynamical system during a
determined interval of time, including the trajectory tracking of the vehicle.

2 Methodology

In this section it is formulated the control problem studying the mathematical
dynamic model of the vehicle and the reference chosen. After that, it is applied the
SDRE method of control at the error space-state system.
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2.1 Modelling of the Dynamical System

The chosen hovercraft model can be found in [8], it considers the dynamics of a
sub-actuated hovercraft, which possesses 3 degrees of freedom and only two
actuators, two propellers, in this case. The body shape is considered circular and
symmetric with respect to x and y direction, as shown in Fig. 1. The damping terms
are neglected. This hovercraft dynamic model is obtained through the study of a
ship dynamic model developed in [9, 10]. The equations are of the following form:

x ̇= u cos φð Þ− v sin φð Þ
y ̇= u sin φð Þ+ v cos φð Þ
φ ̇= r
u̇= vr+ τu
v ̇= − ur− βv
r ̇= τr

ð1Þ

where x, y and φ refer to the position and orientation of the hovercraft regarding an
Earth-fixed referential and u, v, and r refer to the linear velocities of surge, sway
and angular velocity of the vehicle. The derivatives of u, v, and r correspond to the
linear surge acceleration of the vehicle, the linear lateral or sway acceleration of
the vehicle and angular acceleration of the vehicle, respectively. The term τu is
the linear acceleration in surge direction and τr is the rotational acceleration. The
quotient between damping coefficient and mass is represented by β.

As shown in Fig. 1 the propellers are positioned symmetrically to the axis that
passes through the vehicle center of mass and are actuated by two motors actuated
independently.

Fig. 1 Schematic representation of the vehicle
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2.2 SDRE Control Method

The State Dependent Riccati Equation control method is a suboptimal control of a
nonlinear system (2) through the minimization of the functional (3) as shown in
[11, 12].

x ̇= fðxÞ+BðxÞu
x= x0

ð2Þ

J[u�= 1
2

Z∞

t0

xTQðxÞx+uTRðxÞu� �
.dt ð3Þ

Placing a system (2) in a state dependent form though a non unique
parameterization:

x ̇=AðxÞx+BðxÞu ð4Þ

It is possible to obtain a controller in a form:

u= −R− 1ðxÞBTðxÞPðxÞx ð5Þ

Solving a state dependent algebraic Riccati equation:

PðxÞAðxÞ+ATðxÞPðxÞ−PðxÞBðxÞR− 1ðxÞBTðxÞPðxÞ+QðxÞ=0 ð6Þ

2.3 Control Problem Formulation

Consider the vehicle system (1) and a reference system of the form:

x ̇r = ur cos φrð Þ− vr sin φrð Þ
yṙ = ur sin φrð Þ+ vr cos φrð Þ
φṙ = rr
uṙ = vrrr + τur
vṙ = −urrr − βvr
r ̇r = τrr

ð7Þ

An error is defined as the difference between the (1) and (7):
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e1
e2
e3
e4
e5
e6

2
6666664

3
7777775
=

x− xr
y− yr
φ−φr
u− ur
v− vr
r− rr

2
6666664

3
7777775

ð8Þ

Substituting and deriving (8) the system yields:

ė1 =
− 1+ cos e3ð Þ

e3

� �
urcos φrð Þ− vrsin φð Þr
� �

−
sin e3ð Þ
e3

� �
ursin φrð Þ+ vrcos φrð Þð Þ

� �
e3 +

+ cos e3ð Þcos φrð Þ− sin e3ð Þsin φrð Þ½ �e4 − sin e3ð Þcos φrð Þ− cos e3ð Þsin φrð Þ½ �e5
ė2 =

− 1+ cos e3ð Þ
e3

� �
ursin φrð Þ+ vrcos φrð Þð Þ+ sin e3ð Þ

e3

� �
urcos φrð Þ− vrsin φð Þð Þ

� �
e3 +

+ sin e3ð Þcos φrð Þ− cos e3ð Þsin φrð Þ½ �e4 + cos e3ð Þcos φrð Þ− sin e3ð Þsin φð Þr
� 	

e5
ė3 = e6
ė4 = e6 + rrð Þe5 + vre6 + μ1
ė5 = − e6 + rrð Þe4 − βe5 − ure6
ė6 = μ2

ð9Þ

Then, the system in the error model could be written in the matrix form:

e1̇
e2̇
e3̇
e4̇
e5̇
e6̇

2
6666664

3
7777775
=AðeÞ

e1
e2
e3
e4
e5
e6

2
6666664

3
7777775
+BðeÞ

0
0
0
μ1
0
μ2

2
6666664

3
7777775

ð10Þ

where the matrices A(e) and B(e) are:

AðeÞ=

0 0 a1 a3 − a4 0
0 0 a2 a4 a3 0
0 0 0 0 0 1
0 0 0 0 a5 vr
0 0 0 − a5 − β − ur
0 0 0 0 0 0

2
6666664

3
7777775
BðeÞ=

0 0
0 0
0 0
1 0
0 0
0 1

2
6666664

3
7777775

ð11Þ
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and the coefficients of the matrix A(e) are:

a1 =
− 1+ cos e3ð Þ

e3

� �
ur cos φrð Þ− vr sin φð Þð Þ− sin e3ð Þ

e3

� �
ur sin φrð Þ+ vr cos φrð Þð Þ

� �

a2 =
− 1+ cos e3ð Þ

e3

� �
ur sin φrð Þ+ vr cos φrð Þð Þ+ sin e3ð Þ

e3

� �
ur cos φrð Þ− vr sin φð Þð Þ

� �

a3 = cosðe3 +φrÞ
a4 = sinðe3 +φrÞ
a5 = ðe6 + rrÞ

ð12Þ

Then the state dependent algebraic Riccati equation (13) should be solved each
time step which is possible by numeric non-iterative approaches by using the stable
eigenvectors of the Hamiltonian matrix.

PðeÞAðeÞ+ATðeÞPðeÞ−PðeÞBðeÞR− 1ðeÞBTðeÞPðeÞ+QðeÞ=0 ð13Þ

to obtain the control vector:

u= −R− 1ðeÞBTðeÞPðeÞe ð14Þ

3 Numerical Simulations

After the control problem formulation, the system (11) was solved numerically. For
this purpose the numeric integration using the fourth order Runge-Kutta integrator
(ode45) in Matlab

®

is used. Function lqr is used to solve the control problem. This
command tests the controllability of the system and performs the numeric solution
of the algebraic Riccati equation according to [13]. Computation cost of this
solution is low and adequate to real-time systems. The initial conditions of the
problem were presented in the figures subtitle, the parameter β = 1.2 was adopted
as it is proposed in [4] for all calculations. The system was simulated applying the
initial condition of surge direction τur = 0.1 to the straight line trajectory. To the
circular trajectory it was set to τur = 0.28.

The matrices Q(e) and R(e) to solve the lqr were chosen as

QðeÞ=

5 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 5 0 0
0 0 0 0 5 0
0 0 0 0 0 5

2
6666664

3
7777775
RðeÞ= 10 0

0 10

� �
ð15Þ
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The choice of (15) is empiric and these values are selected to ensure stability and
to minimize the overshoot of the system. The physical parameters of the Hovercraft
are presented in the Table 1 and were obtained in [14].

3.1 Linear Trajectory

Here, the purpose is that the hovercraft tracks the trajectory of a virtual reference
that was set as a straight line with the orientation of 45°. The initial conditions to
the Hovercraft are [x, y, φ, u, v, r] = [5, −5, 1, 0, 0, 0] and for the reference are
[xr, yr, φr, ur, vr, rr] = [0, 0, π/4, 0.5, 0, 0]. The simulations of tracking a linear
trajectory in Fig. 2a shows the errors related to the position and orientation of the
hovercraft converging to zero in less than 10 s, which means that after this time it is
expected that the hovercraft will be following the same trajectory that the reference
with the same orientation. In Fig. 2b the error related to the velocities of the
hovercraft is presented and converges to zero after 12 s.

Table 1 Physical parameters of the hovercraft

Parameter Dimension

Mass 5.5 kg
J (rotational inertia) 0.047 kg m2

l (moment arm) 0.123 m
dv 5.5 kg/s
dw 0.41 kg/s
Depth 25.4 cm
Width 35.6 cm
Height 18.1 cm

Fig. 2 a Simulation of the error for position and orientation. b Simulation of the error for
velocities
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In the Fig. 3a both hovercraft and reference trajectories are presented on the
plane. It is possible to see that the hovercraft follows the desired trajectory of a
straight line with the inclination of 45°. In the Fig. 3b it is presented a zoomed
detail of the convergence of the hovercraft to the trajectory. From Fig. 3b it is clear
that the hovercraft trajectory starts at different set of initial conditions than a ref-
erence and converges successfully towards it.

The control inputs are shown in Fig. 4. The black line represents the control
input related to the linear acceleration applied to the system and the red line rep-
resents the time evolution of the control input related to the angular acceleration of
the system. As it can be seen, after 10 s the control inputs stabilize becoming
constant and converging to the reference values as the trajectory converges to the
reference set previously.

Fig. 3 a Trajectories of the vehicle and the reference. b The detail of initial convergence

Fig. 4 Control inputs of the hovercraft
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3.2 Circular Trajectory

Simulations were performed to achieve tracking of a circular reference trajectory
using this algorithm, adjusting only a few parameters. The parameters were adjusted
as follows:

φ ̇r = rr = const
φr = rr ⋅ t+ c
ur = const
vr =0
r ̇r = τr =0

ð16Þ

Fig. 5 a Error states for position and orientation of the system, performing circular reference.
b Error states for velocities performing circular reference

Fig. 6 Trajectory tracking of the hovercraft
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It means that to track a circle trajectory the surge velocity (ur) is constant, the
sway velocity (vr) is null, and the angular velocity ðφṙÞ is also constant. Then, it’s
possible to determine the angle of orientation of the reference at each time of the
simulation using the second equation of (16). Initial conditions for the hovercraft
trajectory were set as [x, y, φ, u, v, r] = [2, 1, 0, 0, 0, 0] and for the reference
trajectory as [xr, yr, φr, ur, vr, rr] = [0, 0, 0.001, 1, 0, 0.5].

Figure 5a presents the error states related to position and orientation of the
vehicle with respect to time. The system starts to converge to zero in less than 15 s
and completely after 23 s. Thus hovercraft tracks the circular trajectory successfully
after this time.

Figure 5b present the error systems related to the velocities of the system in
forward (u), lateral (v) and rotational (r) directions of the system. As it is seen from
this figure, the velocity error converges to zero after 25 s.

Figure 6 shows the trajectory by the hovercraft in blue and the reference tra-
jectory in red. From this figure it is clear that the hovercraft controlled trajectory
converges into a reference with success.

The applied control inputs on the hovercraft for the circular path are shown in
Fig. 7. The black line represents the control input related to the linear acceleration
applied to the system and the red line represents the time evolution of the control
input related to the angular acceleration of the system. As it is seen, after 23 s they
stabilize becoming constant and converging to the reference values.

Fig. 7 Control inputs of the hovercraft
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4 Conclusions

In this work the reference trajectory tracking control problem is formulated in
which a dynamical system representing a hovercraft vehicle is tracked by the
control effort toward a desired trajectory in a general form. The control method
Stated Dependent Riccati Equation is applied to the solution of this problem and
numerical simulations are presented regarding two basic trajectory regimes: a linear
desired trajectory and a circular trajectory. By switching the reference velocities and
some initial conditions and parameters it is possible to obtain different set of desired
trajectories and track the main vehicle system towards them. The SDRE methods
deals with the solution of the algebraic state-dependent Riccati equation by
numerical methods based on the Hamiltonian matrix eigenvectors, which permits a
step-by-step solution of the control problem and is suitable to real-time applica-
tions. The numerical simulations validate the successful trajectory tracking and the
effectiveness of the control method.
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Method for Controlling Stick-Slip
Vibrations in Slender Drilling Systems

Guilherme Sampaio and Hans I. Weber

Abstract Systems actuated trough a flexible shaft poses a big challenge to control

strategies as the actuator is not connected directly to the end effector, causing prop-

agation effects as well as an energy accumulation and dissipation in the shaft. This

paper focuses on the top driven drilling system used in the oil and gas industry. In

these systems, all kind of vibrations are found: longitudinal deformations (bit bounc-

ing), flexional (rubbing), and torsional (stick-slip). This paper is about the torsional

deformation of the highly flexible string modeled as a 20 DOF Lumped parame-

ters system. A method for reducing stick-slip vibrations is presented and its results

analyzed. The investigation includes the development of a reduced scale test rig ade-

quate for torsional vibrations under damping. Results from the mathematical model

and experimental tests are then compared.

Keywords Stick-slip ⋅ Torsional vibrations ⋅ Friction ⋅ Control ⋅ Drilling

1 Introduction

Top driven drilling used in the oil and gas industry is one of the most investigated

application of systems driven by a highly flexible shaft. These systems pose a big

challenge to control strategies, as the actuator is not linked directly to the end effector,

causing propagation effects as well as an energy accumulation and dissipation in

the shaft. These drilling systems are composed by a top drive linked to the drill bit

through hundreds of meters of steel pipes. Drilling is one of the most expensive parts

of oil prospecting and involves many risks of accidents, even though the methods in

use are still very much based on trial and error experiences. Linear control theories
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Fig. 1 Test setup

for example, PID have little success on real drilling applications because there are

lots of uncertainties present, friction with the well, friction between rock and bit, etc.

This paper will present a numerical and experimental study of a control technique

that aims to reduce torsional vibrations maintaining a constant speed at the bit in

a simple model of an oil drilling rig. A 2 m long test setup Fig. 1 composed by a

DC motor, an elongated flexible shaft and a driven inertia that simulates the bit of a

drilling structure, was constructed to test in the lab the controller in the presence of

uncertainties and sensor noises.

The torsional system was modeled as a 20 degrees of freedom (DOF) flexible

shaft. The contact of the pin that simulates the contact between bit and rock in the

real system, is modeled as sum of a Coulomb static friction coefficient, a dynamic

coefficient and a viscous friction, dependent of the angular speed.

The problem of modelling the torsional dynamics of a flexible shaft can be

approached in different ways, the most common in literature are a simple torsional

spring or spring-damper [1], lumped parameters or a finite element discretization of

the shaft.

Khulief et al. [2] analyze self-excited stick-slip oscillations in drillstrings using

a proposed dynamic model where the equation of motion of the rotating drillstring

is derived using Lagrangian approach in conjunction with the finite element method

and analyses torsional-bending and axial-bending nonlinear couplings.

Navarro-Lopez and Cortes [3] developed a lumped parameter model to investigate

the influence of sliding motion on self-excited stick-slip oscillations and bit sticking

phenomena. Hopf bifurcations were used to investigate the range of rotary speeds

where the undesired torsional vibrations of the drillstring happen.

Rudat and Dashevskiy [4] present in the article, an innovative model based stick-

slip control system using a lumped parameters model with parameters identified from

real world applications trough Newton Gauss method and extended Kalman filter.

The key idea of this paper is to run simulations on an embedded system down hole

and transmit the updated model parameters in a lower bitrate trough mud pulses, an

established technology. It shows that lumped masses model can reproduce nonlinear

dynamics of drilling and shows, with experiments done in field tests, the effective-

ness of the proposed approach.

Bayliss et al. [5] analyze a basic pole placement controller design for a Single

Input Single Output (SISO) linear model of a drilling system, but recursively eval-

uated based on an online Recursive Least Squares (RLS) identification of the open-

loop plant parameters. It presents a discussion on system architecture implications,
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and the simulation results with and without adaptive stick/slip mitigation method.

The presented method in this paper relies on accurate measurements of the speed on

Bit.

Ritto et al. [6] analyze the dynamics of a horizontal drill-string modeling uncer-

tainty on the frictional force and how uncertainties on the frictional forces propagate

through the system. A stochastic field with exponential correlation function is used

to model the frictional coefficient.

Kreuzer and Steidl [7] present in the paper a method for controlling these vibra-

tions by exactly decomposing the drill string dynamics into two traveling waves trav-

eling in the direction of the top drive and in the direction of the drill bit. Authors state

that by using two angular sensors placed 5 m away from each other it is possible to

characterize traveling torsional waves in the drillstring and therefore use the top drive

to eliminate them.

Kapitaniak et al. [8] experimentally investigates drillstring vibrations using a ver-

tical reduced scale drilling rig. In the test setup presented by authors, one can investi-

gate torsional, compression and helical bucking vibrations. The proposed experiment

uses a 10 mm diameter steel drillstring and rotational speeds up to 54 RPM. The arti-

cle describes methods used to obtain the mechanical properties of the setup as well

as the use of finite element models to represent it.

2 Mathematical Model

A model with a 20 DOF Lumped parameters flexible shaft Fig. 2, was chosen to

be used for the simulations in this paper. This model was chosen for its simplicity

yet being capable of including the inertia of the shaft and dissipation from inter-

nal friction. This model also uses a complete DC motor model with electrical and

mechanical parts.

The DC motor is modeled by the equations of the mechanical Eq. (1) and electrical

parts Eq. (2) as well as the torque constant kt that is the relation between Tm and i.
All the parameters used for the motor were the ones obtained by [9].

Jm
d2𝜃
dt2

= Tm − bm
d𝜃
dt

(1)

Ldi
dt

= −Ri + V − e (2)

Fig. 2 Lumped parameters

flexible shaft



350 G. Sampaio and H. I. Weber

In the lumped parameters model, each element or DOF is an elementary inertia-

damper-spring system modeled as:

I d
2
𝜃

dt2
= −k𝜃 − bd𝜃

dt
(3)

Writing the differential equations in Eq. (3) for each sub system and assembling

them in a matrix form it becomes:

M̄�̈� + B̄�̇� + K̄𝜃 = 𝜏 (4)

where 𝜃 is the state vector representing the angular displacements of the lumped

masses, 𝜏 is the external torques vector, the mass matrix (M̄), the damping matrix

(B̄), and the spring matrix (K̄) are:

M̄ =

⎡
⎢
⎢
⎢
⎢
⎣

J1
J2

⋱
J19

Jm

⎤
⎥
⎥
⎥
⎥
⎦

B̄ =

⎡
⎢
⎢
⎢
⎢
⎣

b1 −b1
−b1 (b1 + b2) −b2

−b2 ⋱
(b18 − bm) −bm

−bm bm

⎤
⎥
⎥
⎥
⎥
⎦

(5)

K̄ =

⎡
⎢
⎢
⎢
⎢
⎣

k1 −k1
−k1 (k1 + k2) −k2

−k2 ⋱
(k18 − k19) −k19

−k19 k19

⎤
⎥
⎥
⎥
⎥
⎦

(6)

This way, the mechanical lumped parameters of the drill string can be written

substituting Eqs. (5) and (6) in Eq. (4). The model parameters were obtained exper-

imentally, Table 1 shows the numerical values.

Table 1 Model parameters used on simulations

Properties Value Unit

String length (L) 1.7 m

String diameter (mm) 3 mm

Total inertia of J1 0.01555819 kg m
2

String stiffness (K) 0.2548 N m/rad

Moment of inertia of motor

(Jm)
0.37 × 10−3 kg m

2

Armature inductance (LDC) 1.10 × 10−3 H

Armature resistance (RDC) 0.33 Ω
Torque constant (Kt) 0.12 N m/A

Speed constant (Ke) 6.02 × 10−2 V/(rad/s)
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2.1 Torque on Bit Formulation

The contact between bit and rock is modeled, according to Armstrong-Hlouvry et al.

[10] by the sum of a Coulomb static friction coefficient, a dynamic coefficient and a

viscous friction, dependent of the angular speed. This contact appears in the model

on the inertia J1.

Tr = (TC + (Tbrk − TC) ⋅ exp(−cv|𝜔|))sign(𝜔) + f𝜔 if |𝜔| ≥ 𝜔th (7)

and:

Tr = 𝜔
(f𝜔th + (TC + (Tbrk − TC) ⋅ exp(−cv𝜔th)))

𝜔th
if |𝜔| < 𝜔th (8)

where: Tr is the friction torque, TC is the Coulomb friction torque, Tbrk is the static

friction torque, cv is the dynamic friction coefficients, 𝜔 is the angular speed, f is the

viscous friction coefficient and 𝜔th is the velocity of threshold that is in the order of

10−4 included to avoid numerical problems (Fig. 3).

Table 2 shows the numerical values of friction used in this paper.

Fig. 3 Friction torque

versus rotational speed
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Table 2 Friction parameters

Parameter Value Unit

Breakaway friction coefficient

(𝜇brk)
0.5 −

Coulomb friction coefficient

(𝜇c)
0.47 −

Normal force on bit (Nf ) 26 N
Viscous friction coefficient (b) 0.001

N m

rad/s

3 Controlling the System with a Torque Source

By analyzing the structure of the friction law Eq. (8) and the results of the simula-

tions, an investigation was started to analyze if adding a torque source to J1 (a kind

of downhole motor), it could be possible to modify the stick slip phenomenon. Using

this supposition an analysis was made to verify if it is possible to mitigate the stick

slip by controlling the torque on J1 with the use of a DC motor.

A recent study from Shor et al. [11], showed that the propagation effects on tor-

sional vibrations are important for the implementation of torsional vibrations miti-

gation techniques, which led to suppose that the phase of the proposed control for an

imposed torque on J1 should be important for the results. Therefore, the lumped

masses system described in Sect. 2 was simulated with two torque sources, both

DC motors referred as “Motor” and “J1 Motor” in Fig. 4. The simulations started

at t = 0 s with angular displacement and speed of the drill string being zero. At

t = 0 the top drive motor is started at 2 rad/s, and around t = 9 s the energy accumu-

lated in the drill string is enough to overcome the static friction force and the stick

slip phenomenon begins. At t = 15 s a second DC motor attached to J1 is energized

applying a torque of aprox. −0.29 N m to J1. This method only observes the output

(angular speed at J1) to start the motor in J1, then this control is an open loop scheme,

only applying a constant torque on J1. The torque applied on J1 therefore is: 0 N m

for t < 15 s and t > 30 s, and −0.29N m between t = 15 s and t = 30 s. Results are

shown in Figs. 5 and 6.

As described by Shor et al. [11], the delay effects from the propagation of torsional

vibrations along the drill string must be considered for the control structure of the

Fig. 4 Mechanical model with motor on J1
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Fig. 5 Angular speed on top drive (green) and J1 (blue)

Fig. 6 Torque on top drive (green) and J1 (blue)

problem. To prove that the developed mathematical model is capable of representing

these effects, the system described in Figs. 5 and 6, was also simulated for a torque

on J1 being applied from t = 14 s to t = 30 s.

Results in Figs. 7 and 8 show that if the torque on J1 is applied at a wrong moment

it will have no effect on the stick-slip, only adding a small disturbance on the angular

speed when it is applied. Simulations show that this approach to mitigate the stick slip

only works if the torque on J1 is applied when the angular speed of J1 is decreasing,

i.e. 𝜃1 < 0.

In order to test this supposition, the same system was simulated again with the

beginning of application of torque in J1 at T = 13.25 s.

Simulation results in Figs. 9 and 10 show that the closer to the top drive speed is

to the speed on J1 when the torque on J1 is applied, the better results are obtained.

This is valid considering that the torque on J1 is applied when the angular speed of

J1 is decreasing, i.e. 𝜃1 < 0.
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Fig. 7 Angular speed on top drive (green) and J1 (blue)

Fig. 8 Torque on top drive (green) and J1 (blue)

Fig. 9 Angular speed on top drive (green) and J1 (blue)
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Fig. 10 Torque on top drive (green) and J1(blue)

Fig. 11 Angular speed on top drive (green) and J1 (blue)

One should note that despite this strategy is effective and shows good results, it

depends on a precise measure of the speed on the bit (J1) which limits its applica-

tion for real life oil drilling problems with the existing technologies of bottom hole

measurement available.

If, on the other hand, a positive torque is applied when the system is accelerating

i.e. when the angular speed of J1 is increasing, i.e. 𝜃1 > 0, the results stay the same,

the stick-slip is eliminated, but in this case another phenomenon is observed. When

the motor in J1 is turned off, the system has a torsional perturbation, but it does not

come back to a stick-slip behavior. Figure 11 shows the angular speed of the top drive

and J1, and Fig. 12 shows the torque of both motors. As in the previous case, it is

worth to note that the torque applied by the motor in J1 is much smaller than the one

from the top drive.
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Fig. 12 Torque on top drive (green) and J1 (blue)

4 Experimental Tests

In order to perform the experimental tests, a test bench was made Fig. 13. This appa-

ratus is proposed to study only the rotational and torsional dynamics of the system,

for that reason the motor and the inertia are mounted on bearings so that the setup

can be used in an horizontal position, making it easy to operate. The drill string is

1.7 m long and is made of a 3 mm diameter steel rod. The DC motor is mounted

on two ball bearings, so the torque applied by the motor is obtained through a force

measured by a load cell positioned at a known distance from the motor. This force,

the normal force of the brake on the inertia, and the rotational speed of the motor and

of the inertia, are measured and these data are acquired by a National Instruments

cDAQ system. A complete description of this experimental setup is shown in [9].

Table 3 shows the numerical values measured on the experimental setup used in

this work.

Fig. 13 Experimental setup
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Table 3 Mechanical parameters of drillstring

Properties Value Unit

String length (L) 1.7 m

String density (𝜌) 7850 kg/m
3

String diameter (mm) 3 mm

Young modulus (E) 210 GPa

Poisson ratio (v) 0.3 −
Inertia of J1 0.01555 kg m

2

Fig. 14 Experimental results for torque applied on J1 in green and speed at J1 in orange

Figure 14 shows the results obtained with the apparatus shown in Fig. 13. In blue,

on the left axis is the angular speed in RPM of J1, in orange on the right axis is the

amplitude of the torque in N m applied by the DC motor attached to J1. Results

shown are very similar to the ones obtained with the numerical model Fig. 5. The

torsional vibration on the experimental test rig is not completely eliminated due to

noise of the sensors and to non-modeled imperfections of the apparatus. But this

approach shows that it can eliminate the stick-slip during the period the DC motor

is being used.

5 Conclusions

It was shown that it is possible to mitigate the stick-slip phenomenon in the presented

test setup and in the model, by applying a small torque on the bit, orders of magnitude

lower than the one applied by the main motor, i.e. top drive.

Despite the construction challenges, the results presented in this paper show that

the presence of a torque source on the bit of the drilling column (a kind of bottom

hole motor, or mud motor) has a very important role on the torsional vibrations of

the column. The presence of the bottom motor is almost not studied by the dynamics

and vibrations community.
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Control of Multiple Mobile Robots
in Dynamic Formations

Guilherme Rinaldo , Elvira Rafikova and Marat Rafikov

Abstract This work deals with the control of multiple mobile robots in trajectory,
while maintaining a formation, through the use of State-Dependent Riccati Equa-
tion control method. Three robots with differential drive are used in a scheme in
which one is considered the leader and the other two are considered followers. By
changing formation parameters, this work seeks to achieve two different formations,
V-shaped and Echelon formation, very common in the military field. Simulations
are performed using LabVIEW, demonstrating the successful application of the
control method in mobile robot tracking problems while maintaining formations.

Keywords Multiple robot control ⋅ Leader-follower problem ⋅ SDRE control
Nonlinear control

1 Introduction

The control of multiple mobile robots in formation is a theme that became the target
of several recent studies [1–3], due to its large number of applications, both civilian
and military. The idea is to control a robot so that it converges to a defined path
while maintaining a formation with other robots.

Among the various approaches for the control of multiple robots in formations,
the most common ones are behavior-based methods and leader-follower.
Behavior-based control is the assignment of complex behaviors for each robot, such
as speed synchronization, the ability to avoid collisions and centralization of the
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formation [3]. The leader-follower method used in this work, one or more robots are
designated as leaders, while the others, which are called followers, receive infor-
mation about the leader’s position and converge to its trajectory while maintaining a
desired distance and orientation relative to it [4–9]. To adjust its position in respect
to the leader, the follower robot calculates track points based on the position and
velocity information obtained from the leader. This method is known for simpli-
fying the inclusion of new robots to the group, thus making the system easily
scalable [8]. In [9] was proposed a reminiscent of the leader-follower approach that
allowed a robot to follow a chaotic trajectory using the State Dependent Riccati
Equation (SDRE) control method to achieve synchronization.

One approach to the control of multiple robots in formations is the tracking
method, which requires a group of interconnected robots to reach a target or a
reference path simultaneously. This approach has been widely studied [10] and can
be used to solve a large set of problems, such as navigation while maintaining
formation problems, rendezvous problems and dynamic trajectories tracking
problems, like the one presented in this work [9–13]. Similar complex problems of
cooperative tracking with dynamic references, using different control methods,
were addressed in [14–16].

The present work deals with the control of a team of three mobile robots to solve
a leader-follower dynamic trajectory tracking problem. The novelty of this work
lies on the use of the SDRE control method to design a controller capable of making
the robots navigate synchronized with one another in order to achieve and maintain
two different formations. Computational simulations are shown to validate the
results and the efficiency of the SDRE method, which requires low computational
cost, in mobile robots tracking problems.

2 Methodology

2.1 Robotic Model

This study uses mobile robots with differential drive and rear support. The model
has two identical wheels, positioned in the same axis, restricted to move only
around it and independently controlled by motors. The rolling of the wheels is
considered pure, so that there are no drift during movement. Such features have a
restrictive nature, preventing the movement of the system in some directions at an
initial moment, characterizing it as nonholonomic.

The system analysis is carried in a kinematic level. It is assumed that the center
of mass is located in the geometric center of the robot, hence eliminating possible
unbalances and consequent Coriolis and centripetal acceleration effects (Fig. 1).

The robot’s position in the X and Y axes can be described by the projection of
the robot’s linear velocities on these axes. The angular velocity of the robot
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corresponds to the variation of the rotation angle θ over time, where θ is the angle
between the global reference axis X and the local reference axis Xr of the robot.

dx
dt = x ̇= v cos θð Þ
dy
dt = y ̇= v sin θð Þ
dθ
dt = θ ̇=ω

ð1Þ

Thus, the robot’s kinematic model can be described as:

xi̇ = vi cos θið Þ
yi̇ = vi sinðθiÞ
θi̇ =ωi

ð2Þ

where i = 1, 2, 3, …, n and i = 1 represents the leader robot, x ̇ and y ̇ describe the
robot’s velocity on the Cartesian coordinate system and θ ̇ indicates its rotation in
respect to the X axis, or in other words, the orientation of the robots on the plane.

2.2 The Problem of Tracking of Multiple Mobile Robots

The problem of tracking of multiple mobile robots consists on the stabilization of a
system with two or more identical robots in a reference trajectory. The reference
trajectory, to which all robots converge, is described as being a robot itself, called
reference robot, whose kinematic model is identic to Eq. (2).

Fig. 1 Model of a differential
drive robot
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xṙ = vr ⋅ cos θrð Þ
yṙ = vr ⋅ sinðθrÞ
θṙ =ωr

ð3Þ

The error vector e(t) is now introduced as:

ei tð Þ=
xi − xri − dxi
yi − yri − dyi
θi − θri − dθi

2
4

3
5 ð4Þ

with i = 1, 2, 3, …, n.
The coordinates xi, yi and θi represents the position of a given robot, xri, yri and

θri represents the position of the reference robot and dxi, dyi and dθi are formation
parameters, which determine the layout of the robots’ formation. If these constants
are null, the controlled robot shall converge to the reference trajectory, if not, the
robot will converge to a distance on the X and Y axes and rotate by an angle θ, in
respect to the leader robot. These distances and orientations therefore defines the
layout of the formation.

Considering Eqs. (2) and (4), for any pair leader-follower, the deviation system
can be described as:

e1̇i = vr ⋅ cosðθrÞ ⋅ cosðe3iÞ− vr ⋅ sinðθrÞ ⋅ sinðe3iÞ+ u1i ⋅ cos θrð Þ ⋅ cosðe3iÞ
− u1i ⋅ sinðθrÞ ⋅ sinðe3iÞ− vrcosðθrÞ

e2̇i = vr ⋅ sin θrð Þ ⋅ cosðe3iÞ− vr ⋅ sin e3ið Þ ⋅ cosðθrÞ+ u1i ⋅ sin θrð Þ ⋅ cosðe3iÞ
+ u1i ⋅ cos θrð Þ ⋅ sinðe3iÞ− vr ⋅ sinðθrÞ

e3̇i = u2i

ð5Þ

where i = 2, …, n. The control efforts u1i and u2i are components of the suboptimal
controller ui [12].

The system can be rewritten in matrix form as:

ei̇ =Ai e3ið Þei +Bi e3ið Þui ð6Þ

in which:

Ai e3ið Þ=
0 0 V1 cos θrið Þ cos e3ið Þ− 1ð Þ−V1 sin θrið Þ sin e3ið Þ

e3i

0 0 V1 sin θrið Þ cos e3ið Þ− 1ð Þ−V1 cos θrið Þ sin e3ið Þ
e3i

0 0 0

2
64

3
75 ð7Þ

Bi e3ið Þ=
cos e3ið Þ cos θrið Þ− sin θrið Þsin e3ið Þ 0
sin θrið Þ sin e3ið Þ+ cos e3ið Þ cos θrið Þ 0

0 1

2
4

3
5 ð8Þ
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ui =
u1i
u2i

� �
ð9Þ

2.3 The Problem of Tracking of Multiple Mobile Robots

Let the dynamic nonlinear system be described as:

x ̇= f xð Þ+B xð Þu ð10Þ

with f(0) = 0.
Using Optimal Control Theory, the goal is to find the optimal control u that

minimizes our cost functional J[u]:

J u½ �= ∫
∞

0
Q xð Þ+uTRu
� �

dt ð11Þ

For Q(x) continuous and positive-definite.
According to [17], the solution of this problem can be found through solving the

Hamilton-Jacobi-Bellman equation associated to this system. Since the solution of
the HJB equation is usually hard to find, one can approximate it using a State
Dependent Riccati Equation of the form:

P xð ÞA xð Þ+A xð ÞTP xð Þ−P xð ÞB xð ÞR xð Þ− 1B xð ÞTP xð Þ+Q xð Þ=0 ð12Þ

Equation (12) results in a suboptimal controller, however, it makes it much
easier problem to be solved, compared to the resolution through the HJB equation.
The control law is given by:

u= −R− 1BTP xð Þ ⋅ x ð13Þ

where P(x) is the solution to the Riccati equation.
The system can now be written as:

x ̇= f xð Þ+B xð Þu, f 0ð Þ=0 ð14Þ

where f ðxÞ=AðxÞx.
This is known as State-Dependent Coefficients form. The matrices A(x) and

B(x) are system state functions and thus coefficients in the Riccati equation. For any
solution obtained this way, the SDRE method comes down to the resolution of a
LQR at each sampling instant [17]. In this work, the computational time needed to
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compute each instant is 0.1 s. To ensure the existence of the SDRE controller,
A(x) must be a controllable parameterization of the nonlinear system for a given
region if [A(x), B(x)] is controllable for every x of that region [17, 18].

3 Results and Numerical Simulations

The concept of mobile robots formation can be considered as physical distances in
respect to the leader or adjacent agents that each robot must respect. One may then
introduce parameters in the x and y coordinates of each robot in order to ensure that
these distances, and therefore, the formation are maintained. In this work, formation
parameters called dx and dy have been introduced. These parameters act on each
follower robot ensuring a predetermined distance from the leader in each axis
(Fig. 2).

Simulations were carried using the software LabVIEW, which provides a good
set of tools for working with real-time simulations and an easy integration with
hardware for practical tests. The Follower 1, Leader and Follower 2 were posi-
tioned, initially, on the points (0,5; 2,5), (2,5; 2,5) and (4,5; 2,5) on the XY plane.
The main function of the program is to define the initial conditions of the robots,
obtain the appropriate information of the leader and apply the proposed control on
the followers, alongside with the desired positioning restrictions. Equation (12) was
solved for each instant of time using the LQR function, which is an implementation
of a non-iterative method. Therefore the whole system is suited for real-time

Fig. 2 Formation parameters

364 G. Rinaldo et al.



applications. The control efforts are limited to ±2 m/s and ±0.6 rad/s to avoid
saturation of the robot’s actuators.

For the application of the control method the weighted matrices Q and R of the
Riccati equation are design parameters for the controller and thus can be chosen
arbitrarily. These matrices have a direct effect on the time and smoothness of
system’s convergence. In the present work, for simplicity, these matrices were
chosen as:

Q=
10 0 0
0 10 0
0 0 10

2
4

3
5 ð15Þ

R=
1 0
0 1

� �
ð16Þ

Figures 3, 4, 5 and 6 refer to simulations of the robots navigating in V-shaped
formation with desired linear velocity of 0.2 m/s, and desired null angular velocity.

Without angular velocity the V-shaped formation moves forward, as seen in
Fig. 3. The followers respect the distance of 2 m on the X axis and 2 m in the Y
axis as defined by dx and dy parameters. Figure 4a shows the control efforts of the
leader, where U1 is the control effort on the linear velocity of the robot and U2 is
the control on the angular speed. Both reflect the achievement of the desired
velocities of 0.2 m/s and 0 rad/s initially set.

Figures 5a and 6a show the fast stabilization on the control efforts of the fol-
lowers, converging to 0.2 m/s and 0 rad/s in approximately 1 s. Figures 4b, 5b and
6b show the stabilization of the errors of each robot. It is observed that the errors of
the leader converge to zero almost immediately and the errors of the followers take
about 10 s to converge to zero.

Fig. 3 Robots in V-shaped
formation
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Fig. 4 a Control efforts of the leader robot; b errors of the leader robot

Fig. 5 a Control efforts of follower 1; b errors of follower 1

Fig. 6 a Control efforts of follower 2; b errors of follower 2
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Figures 7, 8, 9 and 10 refer to simulations of the robots navigating in Echelon
formation. Initially the robots had a linear velocity of 0.2 m/s and null angular
velocity. After 15 s, an angular velocity of 0.1 rad/s was introduced in order to
make the robot formation turn left.

Figure 7a shows the robots achieving Echelon formation and Fig. 7b depicts the
formation turning left due to the positive angular velocity. Figures 8a shows that
the control efforts of the leader stabilize immediately to 0.2 m/s and Fig. 8b shows
that the errors of leader also converge to zero immediately.

Figures 9a and 10a show that the control efforts of the followers take a bit longer
than the leader to stabilize, about 6 s for Follower 1 and 3 s for Follower 2 Both of
them converge to 0.2 m/s and 0 rad/s. After 15 s the angular velocity is increased
and the control effort U2 of both robots converge to 0.1 rad/s. Figures 9b and 10b
show that the errors of the follower robots converge to zero after approximately
16 s for Follower 1 and 8 s for Follower 2.

Fig. 7 Robots in Echelon formation

Fig. 8 a Control efforts of the leader robot; b errors of the leader robot
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4 Conclusions

The SDRE control method was highly effective for the control of multiple mobile
robots in formation, as it takes into account the non-linearities of non-holonomic
dynamic system that is the robot with differential drive. The computational cost of
the control application is low because can be approximated by the Linear Quadratic
Regulator instead of the Hamilton-Jacobi-Bellman equation. The proposed forma-
tions were achieved and maintained in all the simulated trajectories. The stabi-
lization of errors and control efforts proved to be fast, less than 20 s, for both cases.
In more sophisticated robotic platforms, this stabilization time can be decreased.
Real time engineering applications are viable because of the small computational
time needed to solve the controller at each sampling instant and the feasible control
efforts. Future works on this subject could include practical experiments to ratify
the efficiency of the SDRE control method.

Acknowledgements The first author would like to thank CAPES for the support on this work.

Fig. 9 a Control efforts of follower 1; b errors of follower 1

Fig. 10 a Control efforts of follower 2; b errors of follower 2
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An Application of the Lurie Problem
in Hopfield Neural Networks

Rafael Fernandes Pinheiro and Diego Colón

Abstract The goal of this work is to present applications of recent results in the

Lurie problem, also known as the absolute stability problem, to Hopfield neural net-

works, aiming its stability analysis. We show how to obtain the mathematical model

of a neural network, in terms of differential equations, and present simulations for

some examples. We give special attention to networks with multiple inputs and out-

puts, and point future directions of research to be followed.

Keywords Lurie problem ⋅ Hopfield neural network ⋅ Absolute stability

1 Introduction

Since the middle of the last century, Lurie problem was an important topic of

research in automatic control, specially in aircraft control systems. The Lurie prob-

lem appeared in 1947, because of an aircraft control problem, and currently it is

considered solved for the case of a single control, e.g. Popov criterion. However,

for multiple controls the Lurie problem is not solved completely. Today, it reached

complex areas that are targets of several studies, such as the human brain. The Lurie

problem [12], named in honor of the mathematician A. I. Lurie, has made its history

with significant collaboration of researchers in mathematics and engineering, and in

subareas as theory of stability and control, as well as laying the foundation for a new

and important area, which is Robust Control.

Many names have worked in this problem, and certainly left significant contri-

butions. Initially, between the 50s and 60s, we can mention Aizerman [1], with the

well known Aizerman conjecture, and Krasovskii [8], Popov [17], and Kalman [6].
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The Lurie problem took a bigger leap from 1980, when it began to appear works

that linked the problem to other areas and with other approaches such as neural net-

works by Forti et al. [3] and Kaskurewicz and Bhaya [7]; convex approach Gapski

and Geromel [4]; and chaos and chaos synchronization by Liao and Yu [11].

The Hopfield network was first proposed in 1984 by Hopfield [5], and it is a

nonlinear network with significant interest to engineering and physics, besides neu-

roscience (more specifically, neurodynamics). There is an important relationship

between the Lurie problem and Hopfield neural networks, which will become clear

in the following [10]. The Hopfield network has been applied in several areas like

biology [13] and to solve optimization problems [3, 7].

This article is divided as follows: In Sect. 2 we will proceed with a re-presentation

of the Lurie problem and Hopfield neural network, seeking to bring in a simpler

approach, however broad, its main concepts. In Sect. 3, we present the Hopfield Neu-

ral Network and its mathematical model. In Sect. 4, it is shown how the Lurie prob-

lem can be applied to the Hopfield network, focusing on the stability analysis.

2 The Lurie Problem and Absolute Stability

In 1944, Lurie was imbued to solve a problem of stability of the automatic control

system of an aircraft [12]. Based on this system and the analysis of the stability of the

null solution of the system (that is the equilibrium point), Lurie did not managed to

find necessary and sufficient conditions to global asymptotic stability of the system.

The basic structure of a linear time-invariant control system is generally based

on the feedback, as presented in Fig. 1, where Ga(s) is the transfer function that

represents the system to be controlled and Gc(s) is the controller. A system’s transfer

function is a mathematical model which is an operational method to express the

ordinary differential equation that relates the output variable to the input variable

[14].

Regarding the aircraft control problem, the closed-loop control system in Fig. 1

can be compared to the pilot verifying if the real route of the aircraft 𝜎 matches the

desired route r and actuating in the control surfaces and the propeller in order to

achieve this goal. The role of the controller Gc(s) would be the pilot role.

A much more realistic model of the aircraft control would be the one presented in

Fig. 2. In fact, it has been found that the mathematical model of the control surfaces

may have nonlinearities, such as saturation. As u represents the deflection of the

Fig. 1 Aircraft control

system
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Fig. 2 Aircraft control system with rudder control

Fig. 3 Block diagram of the

type Lurie system

rudder, the rudder control is intended to keep the deflection uc determined by the

controller Gc(s) until it is fixed the deviation 𝜖 direction of the aircraft.

What Lurie did was to separate the linear part and the nonlinear part of the sys-

tem (calculations can be checked in [18]). In Fig. 3 it is shown a general form of

this separation, where the linear dynamics is represented by the system L, and the

function f (𝜎) in the feedback, represents a nonlinearity.

In general, the nonlinearity f (𝜎) is a continuous function restricted to the first and

third quadrants of the plane, that belongs to one of the following families:

F(0,k] ∶= {f |f (0) = F[0,k] ∶= {f |f (0) = 0, 0 ≤ f (𝜎) ≤ k𝜎, 𝜎 ≠ 0},
F(0,k) ∶= {f |f (0) = F[0,k) ∶= {f |f (0) = 0, 0 ≤ f (𝜎) < k𝜎, 𝜎 ≠ 0},

F[k1,k2] ∶= {f |f (0) = 0, k1𝜎 ≤ f (𝜎) ≤ k2𝜎, 𝜎 ≠ 0},
F∞ ∶= {f |f (0) = 0, f (𝜎) > 0, 𝜎 ≠ 0}.

In Fig. 4, we have some graphical representations of this kind of nonlinearity.

Considering r(t) = 0, the diagram in the Fig. 3 is expressed by the following system

of differential equations, which was known in the literature as a Lurie system [11]:

{
ẋ = Ax + bf (𝜎)
𝜎 = cTx (1)

where x ∈ Rn
is the state vector, and b, c ∈ Rn

, A ∈ Rn× n
are fixed matrices and

𝜎f (𝜎) > 0.
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Fig. 4 Functions types f : (a) F[0, k], F[0, k); (b) F[k1 ,k2]; (c) F∞

We can now state the Lurie problem in the following question [11]: What are the
necessary and sufficient conditions for the equilibrium point of the system (1)

be globally asymptotically stable? In a more formal way, we can use the following

definition:

Definition 1 If the zero solution of the system (1) is globally asymptotically stable

for f (𝜎) ∈ F∞, then we say that the zero solution of the system (1) is absolutely stable

for F∞.

Thus, considering the system (1) and the Definition 1, we have the formulation

for Lurie Problem with a single control and may also be formulated for F(0,k], F(0,k),

F[k1,k2] and F∞.

Finally, the Lurie problem can be extended to the case of multiple controls

(inputs), i.e. with m nonlinear controls [11]:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ẋ = Ax +
m∑

j=1
bjfj(𝜎j)

𝜎j = cTj x =
n∑

i=1
cijxi, j = 1,… ,m,

(2)

whereA ∈ Rn× n
, x = (x1,… , xn)T , bj = (b1j,… , bnj)T , cj = (c1j,… , cnj)T , fj ∈ F∞ ∶=

{f ∶ f (0) = 0, f (𝜎)𝜎 > 0, 𝜎 ≠ 0, f (𝜎) ∈ C[(−∞,+∞),R1]}, Re𝜆(A) ≤ 0.
Notice that the functions fj can be not exactly known, but belongs to an uncertain

family, which explains why Lurie can be considered one of the founders of robust

control. In fact, this is one of the difficulties of the Lurie problem, the other being

the fact that the variables are not separated. To work around this problem, we can

make a coordinate transformation in (2) that will be presented in the following.

Without loss of generality, we assume that the set of line vectors ci = (ci1,… , cin)
(i = 1, 2,… ,m), are linearly independent, and with the purpose of separating the

variables, by a transformation [9] the system (2) can be transformed in the following:

ẏ = ̃Ay +
n∑

j=n−m+1

̃bj ̃f j(yj), (3)



An Application of the Lurie Problem in Hopfield Neural Networks 375

or:

ẏi =
n∑

j=1
ãijyj +

n∑

j=n−m+1

̃bij̃fj(yj). (4)

3 Hopfield Neural Network and Its Relationship
with Lurie Problem

The Hopfield neural network (HNN) is a neural network model which was proposed

by Hopfield in 1984 [5], which is part of an area known as neurodynamics. This is the

area that study Artificial Neural Networks (ANN) as nonlinear dynamical systems

with an emphasis on stability problems. With the publication of Hopfield’s article,

research on ANN got a jump and the Hopfield network started to be a model of an

associative memory, with the main purpose to restore a pattern stored in response to

the presentation of an incomplete or distorted version of this pattern. The HNN was

applied in various areas, as presented in Braga et al. [2], such as: implementation of

an identification systems of military target used in aircrafts B-52, user authentication

system, oil exploration, prediction in the financial market, recognition of faces and

autonomous navigation control vehicles (ALVINN vehicles). Currently, it is being

used in optimization problems in association with absolute stability.

HNN can be represented by the following system of nonlinear differential equa-

tions

Ci
dui
dt

= −
ui
Ri

+
n∑

j=1
TijVj + Ii, i = 1, 2,… , n, (5)

where u ∈ Rn
, R ∈ Rn

, T ∈ Rn× n
, I ∈ Rn

, and Vj = g(ui), and g ∶ R → [0, 1] is con-

tinuously differentiable and monotonically increasing, or g′i(ui) > 0.

The continuous model of HNN can be thought as an electric circuit (for more

details [15]). The functions g are called activation functions and usually are sig-

moidal functions.

Observe that these functions g are compatible with the nonlinear functions of the

Lurie problem, which means that, based in [10], a HNN can be considered a special

case of Lurie type system with multiple controls. This fact allows for analysis using

the theory of Lurie systems, that is, the theory of absolute stability. Thus, considering

the Eq. (5) after some changes of variables, it can take the following form:

dxi
dt

= −dixi +
n∑

j=1
bijfj(xj). (6)

In relation to the function f , we have f ∈ F∞. Comparing the equations in (6) with

the equations in (4)
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ẏi =
n∑

j=1
ãijyj +

n∑

j=n−m+1

̃bij̃fj(yj).

We observe that the Hopfield neural network is a special case of a type Lurie system

with multiple control, where ãij = 0, i ≠ j, ãii = −di < 0, and m = n.

Therefore, with this relationship between HNN and type Lurie systems the theory

and methodology of Lurie type systems can promote the study of absolute stability

of neural networks. So, it makes sense to ask what are the necessary and sufficient

conditions for a equilibrium point of (6) to be globally asymptotically stable, that is,

to be absolutely stable.

4 An Application of the Lurie Problem to Hopfield
Neural Network

We use two theorems due to Liao [9], which are results which provide sufficients con-

ditions for absolute stability of the Lurie problem with multiple controls described by

the Eq. (4). Then the same can be applied to the Eq. (6). The proof of these theorem

can be found in [9, 16].

For the first theorem, consider the following relationship:

𝛼ij =
⎧
⎪
⎨
⎪
⎩

ãij, i = 1,… , n, j = 1,… , n − m,

̃bij, i = 1,… , n, j = n − m + 1,… , n.

Consider also the Kronecker delta:

𝛿ij =
⎧
⎪
⎨
⎪
⎩

1, i = j,

0, i ≠ j.

Theorem 1 The zero solution of the (4) or (6) is absolutely stable if the conditions
of any of the following set are satisfied:

(1) ãii < 0 for i = 1,… , n, and the square matrix of order n, where ((−1)𝛿ij |ãij|) is
Hurwitz.

(2) There is a constant kl > 0 for l = n − m + 1,… , n such that

⎧
⎪
⎨
⎪
⎩

kl ̃bll ≤ ãll, kl|̃bil| < |ãil|, for l = n − m + 1,… , n, i = 1,… , n, i ≠ l,
or

kl ̃bll < ãll, kl|̃bil| ≤ |ãil|, for l = n − m + 1,… , n, i = 1,… , n, i ≠ l,
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or

(1’) ãii < 0 for i = 1,… , n, and the square matrix of order n, where ((−1)𝛿ij |𝛼ij|) is
Hurwitz.

(2’) There is a constant kl > 0 for l = n − m + 1,… , n such that

⎧
⎪
⎨
⎪
⎩

klãll ≤ ̃bll, kl|ãil| < |̃bil|, for l = n − m + 1,… , n, i = 1,… , n, i ≠ l,
or

klãll < ̃bll, kl|ãil| ≤ |̃bil|, for l = n − m + 1,… , n, i = 1,… , n, i ≠ l,

Example 1 Let us consider the neural network with two neurons:

{
u̇1 = −u1 − 2g1(u1) + 1.5g2(u2) + I1
u̇2 = −u2 + 1.5g1(u1) − 2g2(u2) + I2

where gi(ui) = tanh(ui),Ri = Ci = 1, Ii = 0, i = 1, 2,Tii = −2,T12 = T21 = 1.5.

We have:

[
ã11 ã12
ã21 ã22

]

=
[
−1 0
0 −1

]

, 𝛼ij =
[
̃b11 ̃b12
̃b21 ̃b22

]

=
[
−2 1.5
1.5 −2

]

.

We will apply the theorem to see if this equilibrium point is absolutely stable.

Applying the theorem’s second set of conditions, we have:

The condition 1’ of the theorem is satisfied, because ãii < 0 and the matrix

((−1)𝛿ij |𝛼ij|) has eigenvalues equal to −3.5 and −0.5 so it is Hurwitz.

In relation to condition 2’, we have:

for l = 1, i = 2,

kã11 ≤ ̃b11 → k1(−1) ≤ (−2), k1|ã21| < |̃b21| → k1|0| < |1.5|;

for l = 2, i = 1,

kã22 ≤ ̃b22 → k2(−1) ≤ (−2), k2|ã12| < |̃b12| → k2|0| < |1.5|.

Taking k1 = k2 = 2 the condition 2’ is satisfied, and the equilibrium point is abso-

lutely stable. This also means that the equilibrium point is unique.◦

In the following, we present a simulation for Example 1 using Matlab/Simulink.

In Fig. 5, we have the time response of the states u1 and u2 with initial conditions

(u01, u
0
2) = (5,−5) and (u11, u

1
2) = (−2, 3) respectively. The Figure shows that the solu-

tions converge for zero solution. Figure 6 shows the phase portrait for other initial

states.

The next theorem is related to multiple inputs Lurie type problems.
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Fig. 5 Temporal response

Fig. 6 Phase portrait

Theorem 2 Suppose that

1. ̃A = (ãij)n× n is a Hurwitz matrix,
2. There is a constant rj ≥ 0 (j = 1,… , n − m), rj > 0 (j = n − m + 1,… , n) Such

that

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

rjãjj +
n∑

i=1,i≠j
ri|ãij| ≤ 0, j = 1,… , n − m,

rjãjj +
n∑

i=1,i≠j
ri|ãij| < 0, j = n − m + 1,… , n,

rj ̃bjj +
n∑

i=1,i≠j
ri|̃bij| ≤ 0, j = n − m + 1,… , n,

or
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

rjãjj +
n∑

i=1,i≠j
ri|ãij| ≤ 0, j = 1,… , n − m,

rjãjj +
n∑

i=1,i≠j
ri|ãij| ≤ 0, j = n − m + 1,… , n,

rj ̃bjj +
n∑

i=1,i≠j
ri|̃bij| < 0, j = n − m + 1,… , n.



An Application of the Lurie Problem in Hopfield Neural Networks 379

Then, the zero solution of the (4) or (6) is absolutely stable.

The following in an example with three neurons in which is used theorem two.

Example 2 Now, let us consider the neural network with three neurons:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

u̇1 = −u1 −3g1(u1) − 2g2(u2) − 2g3(u3) + I1

u̇2 = −u2 +3g1(u1) − 3g2(u2) + g3(u3) + I2

u̇3 = −u3 +g1(u1) + 2g2(u2) − 2g3(u3) + I3,

where gi(ui) = tanh(ui), Ii = 0, i = 1, 2, 3.

We have:

⎡
⎢
⎢
⎣

ã11 ã12 ã13
ã21 ã22 ã23
ã31 ã32 ã33

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

−1 0 0
0 −1 0
0 0 −1

⎤
⎥
⎥
⎦

, and

⎡
⎢
⎢
⎣

̃b11 ̃b12 ̃b13
̃b21 ̃b22 ̃b23
̃b31 ̃b32 ̃b33

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

−3 −2 −2
3 −3 1
1 2 −2

⎤
⎥
⎥
⎦

,

In this example, we take m = n = 3, then we easily find that condition 1 is satis-

fied. In the condition 2 we use the inequalities:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

rjãjj +
n∑

i=1,i≠j
ri|ãij| < 0, j = n − m + 1,… , n,

rj ̃bjj +
n∑

i=1,i≠j
ri|̃bij| ≤ 0, j = n − m + 1,… , n.

In the first inequality, we have:

⎧
⎪
⎨
⎪
⎩

r1ã11 + r2|ã21| + r3|ã31| < 0
r2ã22 + r1|ã12| + r3|ã32| < 0
r3ã33 + r1|ã13| + r2|ã23| < 0.

Replacing the values, we found that r1, r2 and r3 must be greater than zero.

In the second inequality, we have:

⎧
⎪
⎨
⎪
⎩

r1 ̃b11 + r2|̃b21| + r3|̃b31| ≤ 0
r2 ̃b22 + r1|̃b12| + r3|̃b32| ≤ 0
r3 ̃b33 + r1|̃b13| + r2|̃b23| ≤ 0.

→

⎧
⎪
⎨
⎪
⎩

−3r1 + 3r2 + r3 ≤ 0
−3r2 − 2r1 + 2r3 ≤ 0
−2r3 − 2r1 + r2 ≤ 0.

It’s easy to check that r1 = 5, r2 = 1 and r3 = 1 satisfy the inequality. Therefore, we

conclude that the system of Example 2 is absolutely stable.

We have in Figs. 7 and 8 the simulations that validate Theorem 2. Thus, in the

Example 2, similarly to the 1, we find that the systems in question have only one
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Fig. 7 Temporal response

Fig. 8 Phase portrait of the

Example 2

equilibrium point, which is the origin, being asymptotically stable. This, therefore,

leads to absolute stability.

We could also use Theorem 2 to establish a stability criterion for neural networks.

For example, let’s determine for which 𝛼 and 𝛽 values the system below is absolutely

stable:

⎧
⎪
⎨
⎪
⎩

u̇1 = −u1 − 3g1(u1) + 𝛼g2(u2) − 2g3(u3)
u̇2 = −u2 + 3g1(u1) − 3g2(u2) + 𝛽g3(u3)
u̇3 = −u3 + g1(u1) + 2g2(u2) − 2g3(u3).

We can set the values of r1, r2 and r3 as obtained in Example 2, i.e., r1 = 5, r2 = 1
and r3 = 1, so:

−15 + |𝛼| + 1 ≤ 0 → |𝛼| ≤ 14 → −14 ≤ 𝛼 ≤ 14,

−3r2 − 2r1 + 2r3 ≤ 0 → |𝛽| ≤ 6.5 → −6.5 ≤ 𝛽 ≤ 6.5.
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5 Conclusion

We conducted a presentation of the Lurie problem in a simple and detailed lan-

guage in relation to that normally found in the literature. An important fact is that

the Lurie problem is considered solved for a single control, but it remains open to

multiple controls.

It was verified that the Hopfield network is a particular case of a Lurie system with

multiple control, where it became clear that it is feasible to use the Lurie problem

theory in Hopfield neural networks.

Possible directions of research include the exploration of the fact that the Lurie

Problem is a particular type of robust control problems, so one can also work on

controller designs in order to obtain robustness stability and performance for the

networks. Also interesting is the situation where there is no absolute stability for

Lurie type system. In such situations, we will have questions to answer such as: are

there periodic solutions, are there limits cycles, can the system present chaos? what

are the conditions for such situations?
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Nonlinear Dynamics



Rotations of the Parametric Pendulum
Excited by a Reciprocating Motion
with a View on Energy Harvesting

Franco E. Dotti , Florencia Reguera and Sebastián P. Machado

Abstract In this article the nonlinear dynamics of a parametric pendulum con-
sidering a reciprocating excitation is addressed. The interest in the study of this kind
of forcing lies in its wide use in machines and industrial equipment including a
crank-rod mechanism. The work aims at the further development of pendulum
devices for energy harvesting. In this context, the study is focused on pendulum
rotations, which are highly energetic. Although reciprocating excitation is similar to
the classic sinusoidal excitation, a different and more complex rotational behavior is
observed and more rotating attractors are found as new rotation zones arise in the
space of forcing parameters. It is shown that the existence of these additional
rotating attractors, which depend on crank-rod ratio and the amount of damping,
increases the possibilities of energy extraction.
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1 Introduction

Energy harvesting from the parametric pendulum is a topic of growing interest for
scientists and engineers [1–4], due to the high kinetic energy available in its
rotational motion. The basic idea of the devices consists of a pendulum with a
vertical motion induced by an ambient energy source. If stable rotations of the
pendulum can be reached, a generator attached to the axis of rotation could extract
electrical energy. Being the parametric pendulum a problem of escape from a
potential well [5], rotations are required because they represent the most energetic
motion [6]. Although conceptually simple, this technology is still at a laboratory
stage mostly due to the complex nonlinear dynamics of the system. Two sources of
ambient vibrations are mainly considered as external excitation: vibrating machines
and the motion of the sea waves. In both cases, rotations are possible only in some
forcing scenarios. But while sea waves present a stochastic behavior, machine
vibrations are generally of harmonic nature, with a consequent high degree of
predictability. This is an important feature in the design of suitable pendulum
harvesters because the physical dimensions of the system can be defined in terms of
the forcing parameters. The goal of the design always is to improve the ability of
reaching rotational motion.

In this work, reciprocating motion is regarded as external excitation. This motion
is interesting because it can be found in a wide range of industrial machines,
including engines and pumps, where a crank-rod system is used. Reciprocating
motion is similar to sinusoidal, which is the classical excitation in literature, but
slightly more complex [7]. The study of differences and similarities among these
two excitations is interesting since many experimental devices aimed to the study of
the classic parametric pendulum employ a crank-rod mechanism due to its sim-
plicity [2, 8, 9].

The article is organized as follows. After this introduction, the governing
equation of the system under study is presented. The central part of the paper is
devoted to the exploration of rotatory dynamics of the pendular system, including
an overview of rotating responses, a parametric study and an integrity analysis of
the basins of rotations. Finally, the main conclusions of the study are summarized
and discussed.

2 The Parametric Pendulum Under Reciprocating
Excitation

The governing differential equation of the parametrically excited pendulum of
Fig. 1 can be set up by using Lagrange’s equation for single-DOF non conservative
systems, and its derivation can be easily followed in any classic book of nonlinear
dynamics [5, 10]. It is a second-order ordinary differential equation given by
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ml2
d2θ
dτ2

+ c
dθ
dτ

+ml
d2y
dτ2

+ g
� �

sin θ=0 ð1Þ

where m is the mass of the pendulum bob, l the distance between the center of
gravity and the pendulum axis, c the viscous damping coefficient, τ the time, g the
acceleration of gravity, y the vertical displacement of the pendulum system, and θ is
the angle positively measured anticlockwise from the hanging position. A recipro-
cating motion provided by a crank-rod system [7] constitutes the imposed motion
y to the pendulum device. This is shown in Fig. 1. The connecting joint between
rod and crank rotates at a constant frequency Ω, following a circumferential tra-
jectory. Thus, the displacement of that joint projected horizontally or vertically is

Fig. 1 The parametric
pendulum excited by a
reciprocating motion in
vertical direction
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sinusoidal in time. However, the angle between the rod and the vertical direction is
continuously changing during the cycle of motion. Therefore the linear motion of
the upper end of the rod is more complex than a simple sine function. Such
excitation gives to the pendulum system the following displacement

y= r 1− cosΩτð Þ+ L 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− λ2 sin2 Ωτ

p� �
ð2Þ

where r is the crank radius, L is the length of the rod and the crank-rod ratio is
λ = r/L.

Now, introducing (2) into (1), a non-dimensional equation is obtained as

θ ̈+ βθ ̇+ R cosωt+ λ3R
Λ3

Λ3
1

+ λR
Λ2

Λ1
+ 1

� �
sin θ=0 ð3Þ

where the following definitions have been made

ω0 =
ffiffig
l

p
, t=ω0τ, β= c

ml2ω0
, ω= Ω

ω0
, R= rω2

l ,

Λ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− λ2 sin2 ωt

p
, Λ2 = cos2 ωt− sin2 ωt, Λ3 = cos2 ωt ⋅ sin2 ωt

ð4Þ

The superimposed dot in (3) means derivation with respect to dimensionless
time t. The magnitudes R, ω and β are non-dimensional parameters associated to the
forcing amplitude, forcing frequency and damping, respectively. Depending on λ,
R, ω and β, and initial conditions θ0 and θ0̇, different steady states of the system can
be obtained [11]. These responses include: rest position, oscillations, rotations and
chaos.

3 Exploring Rotating Attractors

3.1 Overview

The dynamics of rotating attractors is explored, for different configurations of the
parametric pendulum under reciprocating excitation. Equation (3) is solved
numerically by employing a dimensionless simulation time of ts = 2500, with the
purpose of ensure steady state responses. Control spaces, bifurcation diagrams and
basins of attraction are constructed, based on extensive numerical simulations,
considering different settings of the control parameters λ, R, ω and β. To avoid
transients, the first td = 2300 are discarded in the construction of all the diagrams.

Steady state rotations are classified in four categories [12]: pure rotations,
oscillating rotations, straddling rotations and large amplitude rotations. Pure rota-
tions have a very significant attribute: the angular velocity always keeps the same
sign (θ ̇>0 or θ ̇<0). This ensures no change in the direction of rotation, implying
no oscillatory motion of any kind. Pure rotations exist in conjugate pairs: clockwise
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and anticlockwise [13]. A pure rotation is highly energetic, being the desired
motion for energy harvesting purposes. In this article, pure rotations are regarded as
synonymous of rotations, while the other categories are considered merely as
oscillations.

For a given set (R, ω), the coexistence of periodic and chaotic solutions is
possible, evidencing the nonlinear nature of the system. This coexistence depends
on initial conditions. As an example, the control space R-ω of Fig. 2 shows all the
possible steady states. This map is constructed as follows: for each fixed pair (R, ω),
several simulations are performed employing different initial conditions, which
produces different dynamical patterns; the topology of all these patterns is com-
puted to give the color classification of the corresponding point (R, ω) in the control
space. It can be seen that, for low excitation amplitudes, the rest position is the
commonest solution. As R increases, oscillations, rotations and tumbling chaos
appear. Rotations are the dominant type of stable solutions in the main resonance
zone (ω = 2), but for most of the scenarios they coexist with other responses.
Besides, there is a wide range of the control space where rotations are not possible,
irrespective of the initial conditions.

3.2 Influence of the Crank/Rod Ratio λ

In Fig. 3, control spaces R-ω are presented for different values of λ, with fixed
damping of β = 0.1.

Figure 3a corresponds to the classic parametric pendulum (sinusoidal forcing),
which can be recovered from (3) by setting λ = 0. For low λ (say λ ≾ 0.3, Fig. 3b, c),
the bifurcational behavior is topologically similar to the classic system. For higher λ
(Fig. 3d), an additional rotation zone appears due to the significance of λ-terms in
(3). These additional rotating attractors are studied by means of the bifurcation

Fig. 2 Control space R-ω showing the physical responses of a system with λ = 0.126 and
β = 0.1. Rotn=1 means “pure rotations of period 1” while Rotn=2+ means “pure rotations of period
2 or higher”
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diagrams of Fig. 4. Figure 4a, b are constructed by fixing ω in the control space of
Fig. 3d and plotting Poincaré points of the steady state response (a sampling time 2
π/ω is employed). In Fig. 4a, the main resonance (ω = 2) is studied. Up to R ≈ 1.31,
the system is topologically similar to the classic parametric pendulum (see [11] for
an equivalent bifurcation diagram with λ = 0): two period-1 symmetric rotations
appear at a saddle-node bifurcation (R ≈ 0.42), then undergo a period-doubling
cascade (R ≈ 1.07) and vanish at a crisis scenario (R ≈ 1.31). Then, after a narrow
strip of tumbling chaos, a period-6 oscillation (actually a large amplitude rotation)
appears as the only stable solution for a relatively broad range of R, until it also
vanishes in a crisis. At R ≈ 1.58 tumbling chaos take place. The additional rotating
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Fig. 3 Control space R-ω for the purely rotating attractors (clockwise and anticlockwise) with
β = 0.1 and: a λ = 0 (classic parametric pendulum); b λ = 0.126; c λ = 0.185; d λ = 0.356. ( ):
period-1 rotations; ( ): period-2 or higher rotations; ( ): coexisting period-1 and period-2 or higher
rotations
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attractors appear at R ≈ 2.31, maintaining as solutions of the physical system up to
R = 3.5 and above. Two minor period-3 rotating attractors are born at R ≈ 2.89, but
they soon vanish in a crisis at R ≈ 2.9, after a rapid period-doubling cascade.
Rotations and tumbling chaos coexists with the inverted pendulum solution from
R ≈ 3.35 on. Bifurcation diagram of Fig. 4b shows the three pairs of rotating
attractors which can be obtained for sufficiently high values of λ and β = 0.1.
Attractors appearing at R ≈ 0.36 and R ≈ 2.44 exist in the classic parametric pen-
dulum, while attractors at R ≈ 1.88 are exclusive of the reciprocating excitation.
Figure 4c is associated to the control space of Fig. 3b, i.e. a low-λ scenario. As
expected, additional rotation zones cannot be found in such situation, with a
bifurcational behavior similar to the classic parametric pendulum.

(a) (b)

(c) (d)

Fig. 4 Bifurcation diagram of the non-dimensional angular velocity for β = 0.1 and: a ω = 2,
λ = 0.356; b ω = 1.45, λ = 0.356; c ω = 1.82, λ = 0.126; d R = 2.7, ω = 2. ( ): clockwise
rotations, ( ): anticlockwise rotations, ( ): rest, ( ): oscillations, ( ): tumbling chaos

Rotations of the Parametric Pendulum Excited by … 391



Figure 3c shows a bifurcation diagram of λ, obtained by fixing R, ω and β in
such a way to ensure the existence of the additional rotational attractors for a high
value of λ (say λ = 0.356 as in Fig. 3d). As expected from Fig. 3a–c, there are not
stable rotating solutions for low λ, but as λ is increased rotations appear at a
saddle-node bifurcation (λ ≈ 0.303). Now, considering λ = 0.4 as an upper prac-
tical limit of mechanical systems, results of Fig. 4d seem to indicate that an almost
extreme value of λ is needed to ensure the existence of those additional rotating
attractors. This is correct for β = 0.1, but not for lower amounts of damping, as
shown in the next subsection.

3.3 Influence of the Damping Parameter β

The previous study was conducted assuming a fixed damping of β = 0.1. Besides
speeding numerical integration, this choice allows us to compare our results with
those in many other works of literature [6, 11–14]. But it has been demonstrated [6]
that damping must be of β < 0.1 to ensure a viable energy extraction. Thus, a
scenario with lower damping must be studied.

For λ = 0, it is known that a change in damping moves the control space R-ω
downwards or upwards, by decreasing or increasing β respectively [8, 12–15] In
fact, it has been pointed [8] that an increase of the excitation amplitude (R in our
system) is equivalent to a decrease of β and vice versa. A more complex damping
behavior was found for reciprocating excitation. This is evidenced in Fig. 5.
Control space of Fig. 5a can be compared with that of Fig. 3b, since for both cases
λ = 0.126 but with different β. From this comparison it is clear that with a
decrement of β, an additional rotation zone appears, just as happened when the
parameter λ was increased (Fig. 3a–d). The bifurcation diagram of Fig. 5b shows
that as β decreases with fixed R, ω and λ, a pair of rotational attractors arise at a
saddle node bifurcation (β ≈ 0.118). This saddle node is the same of Fig. 4b but
projected on the β-θ ̇ plane instead of the λ-θ ̇ plane. An imaginary motion picture of
the bifurcation diagram in Fig. 5b as λ decreases should show the saddle node
moving left, until the rotating attractors completely vanish when λ = 0, leaving
behind only tumbling chaos. In conclusion, with an adequate (not necessarily
extremely high) value of the crank-rod ratio λ, the additional rotating attractors exist
for a range of β where energy extraction is feasible [6].

Finally, Fig. 5b suggests that the rotational response at low β deserves some
attention. For β = 0.01, most of the rotations has period-1 (some period-4 motions
are observed). However, steady states can be preceded by long periods of transient
tumbling chaos [16]. In such cases, a very large simulation is required to avoid the
transient. Figure 6 shows an example where a non-dimensional time of td = 10,000
must be discarded to obtain a steady period-1 rotation. This phenomenon explains
the “blurred” rotating attractor of Fig. 5b and also the intermittencies of Figs. 3d
and 5a.
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3.4 Robustness and Probability of Rotations

After establishing the parameter settings where rotations are possible, the dynamics
of the basins of attraction must be studied. This is necessary to know how difficult it
is to achieve a steady state rotation, and how predictable could be this motion.

(a) (b)

Fig. 5 a Control space R-ω for the purely rotating attractors (clockwise and anticlockwise) with
λ = 0.126, β = 0.027. ( ): period-1 rotations; ( ): period-2 or higher rotations; ( ): coexisting
period-1 and period-2 or higher rotations. b Bifurcation diagram of the non-dimensional angular
velocity for R = 2.7, ω = 2, λ = 0.356. ( ): clockwise rotations, ( ): anticlockwise rotations, ( ):
rest, ( ): oscillations, ( ): tumbling chaos

(a) (b)

Fig. 6 Phase portraits and Poincaré sampling for R = 2.7, ω = 2, λ = 0.356 and β = 0.01. Initial
conditions θ = 2 and θ = –1.88. Simulation time ts = 45,000. a Discarded time td = 7500,
transient tumbling chaos is present. b Discarded time td = 10,000, transient tumbling chaos is
avoided and period-1 rotation is obtained. ( ): pendulum response, ( ): Poincaré points
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The dynamics of the basins of rotation is followed, as R increases. Figure 7
shows basins of attraction associated to the bifurcation diagram of Fig. 4a. The
birth of rotations at a saddle node bifurcation (R ≈ 0.425) is observed and, as
R increases, the basin of rotations grows (Fig. 7a, b). After the homoclinic tangency
[5], the basin boundary initiates its fractalization: fractal fingers sweep across the
basin of oscillations, leading to the erosion of the entire basin (Fig. 7c–e). At
R = 1.3 (Fig. 7f) the basin of rotations is almost fully eroded; there is a high final
state sensitivity: small variations of the initial conditions modifies the attractor
ultimately chosen [5]; rotating chaos is present [8, 13], but it is about to be replaced
by tumbling chaos. At R ≈ 1.32 there is a crisis and then, for a broad range of R,
tumbling chaos is the only stable attractor. At R ≈ 2.22 a new basin of rotations
appears inside the chaotic basin (Fig. 7g). This basin evolves until it fractalizes
from R ≈ 2.75 on. At R = 3, both the basin of rotations and tumbling chaos are

(a) (c)(b)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Basin sequence for ω = 2, λ = 0.356, β = 0.1 and: a R = 0.45, born of period-1 rotations;
b R = 0.6, basin of rotations grows; c R = 0.65, fractal erosion starts; d R = 0.75 and e R = 1,
progress of erosion; f R = 1.3, basins of oscillations and rotations almost vanish; g R = 2.22, born
of period-3 rotations; h R = 2.7, basin of rotations grows; i R = 3, new erosion. ( ): clockwise
rotations, ( ): anticlockwise rotations, ( ): oscillations, ( ): tumbling chaos
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eroded. Rotations are of period-1 and they evidence long chaotic transients, as
discussed in the previous subsection.

A visual inspection of Fig. 7 allows qualitative observations on the interaction
among attractors. But with a view on energy harvesting, a quantitative evaluation of
the robustness is required. For this purpose, the integrity factor (IF) is considered,
which is defined in 2D as the normalized radius of the largest circle entirely
belonging to a basin [17]. As rotations are studied regardless of its period, the IF
can be thought as a measure of sensitivity of rotations to initial conditions: with a
high IF (IF → 1), a small variation of the initial conditions also produces a steady
rotation; meanwhile, with a low IF (IF → 0), the opposite happens. Besides, since
initial conditions usually cannot be accurately determined in practice, it is important
to know what happens given an unknown initial state. Thus PRot is defined as the
probability of occurrence of rotations, for random initial conditions into a given
range. Being IF and PRot two normalized magnitudes, they can be compared
directly.

Results of the robustness/probabilistic analysis are presented in Fig. 8. Up to
fractalization (R ≈ 0.65, see Fig. 7c), PRot and IF give increasing values since
rotations are confined into their basin. The peak of robustness is at R ≈ 0.6
(IF = 0.129). As erosion evolves, the IF decays as the final state sensitivity
increases, but PRot keeps growing since more initial conditions give rotations
(Fig. 7d, e). At R = 1.2 the basin of oscillations is almost fully eroded and there is
not possible in practice to predict the direction of rotations. PRot reaches a maxi-
mum: PRot = 0.66. Right before the crisis (R ≈ 1.32), rotations vanish and PRot fall
dramatically. At the crisis, a few initial conditions produce rotations: IF = 0 and
PRot ≈ 0. Similar behavior is observed for the rotational attractors at R ≈ 2.22,
which are exclusive of reciprocating excitation. The peak probability is PRot = 0.71
(R = 3.5), as 71% of the initial conditions produce rotations.

It is interesting to note that for some settings of the parameters it could be
PRot = 1. This means that all initial states produce rotations. Actually, Fig. 9 has a
“red zone” where all the responses are rotational with period-1. Due to the erosion
of the basin, final state sensitivity is high; but the choice is reduced to clockwise or
anticlockwise rotations, thus only direction of motion is unpredictable.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.001
0.01
0.1
1

R

P
R

ot
, I
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Fig. 8 Integrity and probabilistic analysis of rotations as R is increased, for ω = 2, λ = 0.356 and
β = 0.1. ( ): probability of rotations, PRot; ( ): integrity factor, IF
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4 Conclusions

The dynamics of the parametric pendulum with a reciprocating excitation was
addressed with a view on energy harvesting. A rich dynamic behavior is elucidated,
with substantial differences with respect to the classic sinusoidal forcing. Crank/rod
ratio and viscous damping are crucial for rotational dynamics of the system: with a
sufficiently high crank/rod ratio and/or a sufficiently low damping, new rotating
attractors appear which are impossible with a sinusoidal excitation. These attractors
exist for ranges of damping where energy extraction is feasible, more that more
excitation scenarios allow rotational motion, increasing the possibilities for energy
extraction.

The structural stability of the attractors and probabilities of obtaining rotations
with unknown initial conditions were studied. It is shown that both robustness and
probability of rotations grow until fractal erosion of the phase portrait starts. After
this, robustness decays due to fractal erosion, but probability keeps growing since
more initial conditions produce rotations. This means that rotations are easy to
obtain but direction of rotation is difficult to predict due to a high final state
sensitivity. The first is good for energy harvesting purposes, while the second
should not lead to great difficulties in practical applications: rotations are desired,
regardless of their direction.

A main conclusion of this work is that rotations are reachable and predictable
with an adequate configuration of forcing and damping parameters. These param-
eters are closely related to the design of a suitable pendulum harvester. As exci-
tation source is commonly known, damping depends only on the pendulum system
and must be measured. Of course, a low friction is desired in energy harvesting
applications.
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Analysis of Control Strategies
for Autonomous Motorcycles
Stabilization and Trajectories Tracking

Marília Maurell Assad , Marco Antônio Meggiolaro
and Mauro Speranza Neto

Abstract Autonomous vehicles—defined as vehicles with carrying capacity of
persons or property without the use of a human driver—are an interesting and
recent problem, with increasing studies in the last 20 years. Regarding this type of
vehicles, a less explored option is the motorcycle: apart from the difficulties
inherent in making a vehicle move independently, autonomous motorcycles have to
be able to remain stable at any speed and trajectory. This work’s main object of
study is a small-scale electric motorcycle; represented by a linear model through a
multibody approach: its four rigid bodies—wheels, chassis, handlebar and fork—
have separately a characteristic behavior and together they influence the dynamics
of each other. This approach results in lower order models, easier to simulate and to
apply classical or modern control strategies. The two-wheeled vehicle is considered
an inverted pendulum with a mobile base and other simplifications are proposed, as
constant displacement speed or small steering and yaw angles. Since this vehicle is
naturally unstable, to ensure a follow-up course without overturning it is necessary
to apply an adjusted control signal; once the autonomous system studied will not
have the presence of a mechanical counterbalance, there remains only the steering
as a control strategy. Thus, this work analyzes the dynamic characteristics of the
zero track vehicles and verifies the validity of different stability and path tracking
control strategies of a motorcycle using as input only the steering of the handlebar.
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1 Introduction

Motorcycles are an interesting study subject due to its unique dynamics: inherently
unstable, they can achieve stability without a rider at certain speeds or settings,
thanks to its geometry and gyroscopic effect. With respect to the mathematical
modeling of this system, the most complete approach to describe its dynamic
behavior is the multibody, where the motorcycle is interpreted as a combination of
rigid bodies—including the wheels, bumpers, chassis, handlebar and fork driver.
Each body has a separate characteristic behavior, but when combined they influence
the dynamics of one another.

An alternative step to obtain a simplified multibody model is to consider only the
main components of the vehicle, such as the driver, motorcycle’s main body,
wheels and front fork. This approach results in lower order models which are,
therefore, easier to simulate and implement control strategies [1, 3, 7]. Other
simplifications include considering the two-wheeled vehicle as an inverted pen-
dulum mobile base, constant displacement speed or small steering and yaw angle
[5]. This simpler multibody approach to the motorcycle model was also chosen in
this paper, since it easily allows to apply classical and modern control strategies
[6, 8].

Regarding autonomous vehicles, a topic increasingly in vogue in recent years, it
is important to comprehend the human driving behavior in order to successfully
mimic it. The control exercised by motorcyclists is complex and divided into two
main categories: the steering torque, applied at the motorcycle handlebar, and the
driver’s body roll movement, which cause a double reverse pendulum effect on the
vehicle dynamics.

The effects of each controller is clear in a curve trajectory: in motorcycle
competitions, the driver tilts its body in the same direction of the curve, which
results in a torque that changes the rear wheel rotational axis, causing an arched
trajectory. Examples of this application are an actuated inverted pendulum [3] and a
rotating mass [8] reproducing the torque given by the driver.

The driving system also plays an important role in the motorcycle dynamics: to
successfully perform a curve with only the steering torque, it is necessary to initially
move the motorcycle’s handlebar in the opposite direction of the desired movement
and then steer it in the right path, a phenomenon known as counter-steering [2].
Guiding the vehicle in the opposite direction causes a centrifugal force that tilts the
motorcycle in the desired direction, enabling a curved path.

Interestingly, the steering control has the same operating principle of the body
roll, without requiring a mass to cause the motorcycle inclination. Given that this
work’s object of study is a small-scale electric motorcycle, only the first category of
control was applied, i.e., the stabilization and path tracking control are obtained
solely by the steering torque, disregarding the driver’s body roll torque.
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2 Motorcycle Dynamics

The motorcycle model, based on [5], is derived from the Whipple bicycle model:
the vehicle is composed of two structures, or frames, joined by a revolution joint on
the handlebars, with each frame supporting a free rotating axisymmetric wheel. The
driver’s body is not considered in this paper; the front frame has uniformly dis-
tributed mass and wheels provide purely rotational movement, i.e., the sideslip and
deformation of tires is not accounted in the model.

Roll, steer and yaw freedoms are allowed; longitudinal velocity is considered
constant. To reduce the complexity of the model, the four rigid bodies have been
simplified to two sets: the front frame includes the handlebar, fork and front wheel
assembly; the rear frame is the main and rear wheel frame. The main system
parameters are shown in Fig. 1; it is important to highlight the origin of the
coordinate system—at the contact point between the rear wheel and the floor—and
its direction, with the z axis positive in favor of gravity.

In order to validate the proposed model and test the suggested control strategies,
an electric motorcycle was modeled using SolidWorks. The Duratrax450 is a 1/5
small-scale motorcycle, actuated by a brushless motor, which controls the vehicle
speed, and steered by a servomotor, as seen in Fig. 2. The motorcycle had its four
main systems measured and weighted and the computational model, portrayed in
Fig. 2, gave its moments of inertia; the result is in Table 1.

With this data, is possible to combine all four bodies into two main frames: the
front frame, consisting of the front wheel and the steering body, and the rear frame,
including the rear wheel and main body. Meijaard et al. [5] details this variables’
manipulation, which makes explicit some important relations, such as the gyro-
scopic effect, i.e., torque about one axis due to angular acceleration about the other.

Fig. 1 Schematic of motorcycle’s main parameters, based on [5]

Analysis of Control Strategies for Autonomous Motorcycles … 403



The motorcycle model is then completely defined by 19 design parameters,
including the vehicle’s velocity; Table 2 provides additional variables, dependent
on main variables shown in Table 1, whose development is explicit in [5].

Given that the motorcycle is considered to be freely rolling forward on the xy
plane, with constant speed, and approximately parallel to the global x axis—i.e.,
small roll, yaw and steer angles, as well as small displacement on the y axis—the
governing linear equations of motion are the ones referring to two lateral degrees of
freedom: the rightward lean of the rear frame (ϕ) and rightward steer of handlebars
(δ). The forces acting on the system are: gravity in each center of mass, the ground
reactions to the front wheel and the torque applied to the steering system, Tδ,
considered positive when moving the handlebars to the right, and applied nega-
tively on the rear frame. The lean and steer equations are described in detail in [5];
the dynamical system may also be written in state-space representation; the
numerical result to Table 1 data is in Eq. 1.

ϕ ̈
δ̈
ϕ
δ̇

2
664

3
775=

− 0.93v − 3.5v 91.0 − 30.0v2 − 2.7
8.1v − 6.4v − 26.0 12.0v2 + 100.0
1 0 0 0
0 1 0 0

2
664

3
775

ϕ
δ ̇
ϕ
δ

2
664

3
775+

− 177.0
1.5 × 103

0
0

2
664

3
775Tδ

ð1Þ

It is known that, for certain speed ranges, the motorcycle is able to remain stable
without the aid of a driver; thus it is interesting to analyze the vehicle stability with
zero input torque. The four poles of this system can be divided in three categories:
the smaller real value is associated with capsize mode, in which the motorcycle falls
sideways, with the roll and steering angles slowly increasing; imaginary eigen-
values are associated with the weave mode, in which the rear frame oscillates
around the steering body; the last eigenvalue, real and with larger module, is known
as the wobble mode, in which the steering shaft oscillates and aligns quickly with
the motorcycle body in the direction of its movement, in a tractrix-like movement.
The weave and wobble modes are significant at high speeds (up to 10 m/s), since
these oscillatory effects can lead to serious instability.

Fig. 2 Test apparatus and computational model by SolidWorks
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Given the maximum speed of the electric motorcycle is of 15 m/s, the numerical
result to the eigenvalues variation with speed increase is in Fig. 3. The analysis of
eigenvalues position in an uncontrolled configuration shows that the Duratrax450 is
not self-stabilizing, since its weave mode never reach the stable region; this phe-
nomenon is due to, mainly, its geometric design, with a steering body much lighter
than the rear frame.

Table 1 Duratrax450’s individual bodies’ experimental data

Parameter Symbol Value

Rear wheel

Center of mass (m) xrw yrw zrwð Þ 0 0 − 0.061Þð
Mass (kg) mrw 0.69
Moments of inertia (kg m2) Jrwxx Jrwyy Jrwzz

� �
5.04 9.16 5.04½ � 10− 4

Main body

Center of mass (m) xm ym zmð Þ 0.14 0 − 0.11ð Þ
Mass (kg) mm 1.19
Moments of inertia (kg m2) Jmxx 0 Jmxz

0 Jmyy 0
Jmxz 0 Jmzz

2
4

3
5 20.02 0 − 4.01

0 41.92 0
− 4.01 0 29.61

2
4

3
5 10− 4

Steering body

Center of mass (m) xs ys zsð Þ 0.27 0 − 0.13ð Þ
Mass (kg) ms 0.13
Moments of inertia (kg m2) Jsxx 0 Jsxz

0 Jsyy 0
Jsxz 0 Jszz

2
4

3
5 4.17 0 1.94

0 4.58 0
1.94 0 1.89

2
4

3
5 10− 4

Front wheel

Center of mass (m) xfw yfw zfwð Þ 0.31 0 − 0.065ð Þ
Mass (kg) mf 0.12

Moments of inertia (kg m2) Jfwxx Jfwyy Jfwzz

� �
1.63 3.19 1.63½ � 10− 4

Rear frame

Center of mass (m) xrf yrf zrfð Þ 0.09 0 − 0.087ð Þ
Mass (kg) mrf 1.88

Moments of inertia (kg m2) Jrfxx 0 Jrfxz
0 − 0
Jrfxz 0 Jrfzz

2
4

3
5 3.41 0 2.19

0 − 0
2.19 0 12.23

2
4

3
5 10− 3

Front frame

Center of mass (m) xff yff zffð Þ 0.29 0 − 0.10ð Þ
Mass (kg) mff 0.25

Moments of inertia (kg m2) Jffxx 0 Jffxz
0 − 0
Jffxz 0 Jffzz

2
4

3
5 8.27 0 0.28

0 − 0
0.28 0 4.09

2
4

3
5 10− 4
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3 Stabilization Control Strategies

The first step to control an autonomous motorcycle is to balance it so it will not fall
down. In this work, two strategies to keep the motorcycle straight are analyzed: an
ideal state feedback control and a state feedback control with an observer, since not
all state variables are measurable.

3.1 State Feedback

Considering all state variables ideally measurable, the state space model output of
the motorcycle systems becomes the identity matrix, and the input control is

Table 2 Duratrax450’s multibody experimental data

Total mass (kg) mt 2.13 Wheel base (m) w 0.31
Caster angle (rad) ε 0.49 Trail (m) t 0.028
Gravity (m/s2) g 9.81
Global moment of inertia (kg m2)
Jxx 2.11× 10− 2 Jxz 2.41× 10− 2 Jzz 4.83× 10− 2

Front frame moment of inertia (kg m2)
Jεx 5.11× 10− 4 Jεz 6.64× 10− 4 Jεε 5.27× 10− 4

Global center of mass (m)
xt 0.11 zt −0.089 f 0.079
Gyroscopic coefficients
Sf 3.80× 10− 3 St 2.46× 10− 2 Su 1.99× 10− 2

Fig. 3 Poles variation with
speed increase
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proportional to all state variables through a gain vector. To verify if the state
feedback can be made in this new system, the controllability matrix must have full
rank; this system, for any speed range, is completely controllable.

Since the capsize and wobble eigenvalues are already stable—negative real
poles—the main objective of the state feedback is to change the complex part of the
weave eigenvalues. Table 3 brings the gain vector for three speeds and Figs. 4 and
5 illustrate the simulation results, considering an initial roll speed of 0.5 rad/s; is
worth mentioning that the maximum torque provided by the servomotor is
0.32 N m.

3.2 State Feedback with Observer

Experimentally, not all state variables are available for feedback: only the steer
angle (δ), given by the servomotor, and the roll angular speed (ϕ ̇), measured by a
gyrometer, are directly measurable. Therefore, Eq. 2 brings the observed state,
where l is the observer gain vector, and the input control is a state feedback of the
observed state. To verify if the full order state observer can be made in this new
system, the observability matrix must have full rank; again, for any speed range, the
system is completely observable.

X ̃̇=AX ̃+ lC X− X̃
� �

−BðKX ̃Þ ð2Þ

Since the observer and state feedback gain are independent, it is possible to
choose two different sets of desirable eigenvalues; the poles of the observer are
chosen so that its response is faster than the system’s. For a fair comparison of the
performance of the control strategies, the feedback poles will follow the previous
method’s design, meaning the feedback gain will be the same in Table 3. Table 4
brings the observer gain vector for three speeds and Figs. 6 and 7 illustrate the
simulation results, considering an initial roll speed of 0.5 rad/s only to the measured
state space.

4 Trajectory Control Strategy

The second step to control an autonomous motorcycle is to make it follow a desired
trajectory. Since the previous model only considered the roll and steer angles and
speeds, it needs to be adjusted to include the yaw angle (ψ) and lateral speed (y ̇).
The yaw angular speed and rear wheel lateral velocity are, respectively, in Eq. 3;
considering small displacements and angles. The new state space model adds these
two equations to Eq. 1; the desired motorcycle’s trajectory is to make a lane change
of one meter, with zero initial conditions.
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ψ ̇= cos εð Þ ̸wð Þ tδ ̇+ vδð Þ
y ̇= vψ

ð3Þ

4.1 State Feedback

Considering all new state variables ideally measurable and the path desired, the
input control becomes the desired trajectory minus a proportional gain to the state
variables. Unlike the previous strategies, the desired eigenvalues are the same to
every speed simulated, [−1 −5 −10 −15 −20 −25], in order to guarantee an equal
time response at different speeds, making the controller performance independent of
the longitudinal velocity.

Table 5 brings the gain vector for three speeds and Fig. 8, a comparison between
the path traveled in each velocity; Figs. 9 and 10 illustrate the simulation results.
The countersteering phenomenon appears on simulation, in which the motorcycle is

Fig. 4 Simulation at 5, 10 and 15 m/s with state feedback

Fig. 5 Torque input at different speeds with state feedback
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initially moves to the opposite side to which you want to move. The adjustment of
controller’s gains has respected the system torque limit, which translates to a higher
stabilization time than expected.

4.2 Linear Quadratic Regulator

At last, the linear quadratic regulator control strategy is applied to the path tracking
problem. The steering torque is still proportional to state variables, but the control
gains aim to minimize a cost function. The parameters of matrices Q and R are
designed to penalize deviations on the state variables and control signal; since all
variables are considered independent, they became diagonal weights with higher
gains to the roll angle, steer angle and lateral displacement. The values were
adjusted after simulations in order to guarantee a maximum path error of 10%.
Equation 4 brings the matrices used in all speeds simulated, where it resulted in
different closed loop poles.

Fig. 6 Simulation at 5, 10 and 15 m/s with state feedback and observer

Fig. 7 Torque input at different speeds with state feedback and observer
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Qϕ ̇ =1 Qδ̇ =1 Qϕ =5 Qδ =5 Qψ =1 Qy =10 R= 0.5½ � ð4Þ

Finally, Table 6 brings the closed loop poles and control gain vector; the
resulting paths are explicit on Fig. 11. Figures 12 and 13 bring with more details
the behavior of other state variables: the roll and steer speeds are higher than the
previous simulation, with maximum amplitude of 2 rad/s; roll, steer and yaw angles
are all under 0.3 rad, maintaining the small angle hypothesis; the torque control,

Fig. 8 Comparison between trajectory control with different speeds and state feedback control

Fig. 9 Simulation at 5, 10 and 15 m/s with state feedback control

Fig. 10 Torque input at different speeds with state feedback
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however, reaches its limit in an infinitesimal time, which could be problematic on
an experimental setting. Nevertheless, the system has a faster stabilization, with
minimum overshoot.

Table 6 Linear quadratic regulator to three different speeds

Speed
(m/s)

Closed loop eigenvalues State feedback gain

5 − 3.2 − 1.7±2.4i
− 2000 − 22.0±15.0i

� �
− 2.07 1.19 − 15.03 26.71 − 17.11 − 4.47½ �

10 − 3.2 − 1.7±2.4i
− 2000 − 42.0±33.0i

� �
− 1.84 1.23 − 12.31 51.48 − 32.85 − 4.47½ �

15 − 3.2 − 1.7±2.4i
− 2000 − 62.0±50.0i

� �
− 1.75 1.24 − 11.51 77.44 − 48.67 − 4.47½ �

Fig. 11 Comparison between trajectory control at 5, 10 and 15 m/s with LQR control

Fig. 12 Simulation at 5, 10 and 15 m/s with LQR control
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5 Conclusions

In this work the linearized model of a small-scale electric motorcycle was devel-
oped through a multibody approach, considering its main four rigid bodies—
wheels, chassis, handlebar and fork. Simplifications were brought into the system to
facilitate its analysis: the two-wheeled vehicle is considered an inverted pendulum
with a mobile base, with constant longitudinal velocity and small steering, roll and
yaw angles.

Four control strategies are proposed to act on the system natural instability and
replace a human driver. Since the small scale motorcycle considered in this work
does not have the presence of a mechanical counterbalance, there remains only the
steering system as control input.

Numerical simulations with the complete system were carried out to prove the
modern control strategies’ validity: a state space feedback controller was capable to
successfully keep the motorcycle upright; since only two of the state variables are
measurable by the instrumentation system, another space feedback was proposed,
also successful, with an state observer to estimate the missing variables values and
optimize the control algorithm.

At last, a state feedback and linear quadratic regulator were proposed to make
the motorcycle follow a desired trajectory, i.e., a lane change path. The state space
model was adjusted to include two new variables regarding the lateral dynamics of
the system and simulations confirmed the validity of these strategies.

As future works, the authors intend to investigate other control strategies as well
as to improve the dynamic motorcycle model, so as to make lateral displacement,
yaw and roll motions of the bicycle closer to reality.
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Modelling and Simulation of the Rolling
Dynamics of a Tractor-Trailer Truck
Vehicle

Ricardo Sampaio and Flavio Celso Trigo

Abstract In this work, a 6 degree-of-freedom analytical model that describes the
rolling dynamics of an articulated heavy-duty vehicle composed by a tractor and a
trailer was developed and numerically simulated. The behaviour of a typical
medium-duty truck-trailer set was evaluated in two common traffic manoeuvres,
namely, performing a constant steering wheel angle curve and a change of direc-
tion, both at constant velocity (36 km/h). In the latter case, in order to simulate a
sudden change, steering amplitude ranging from zero to 30° was imposed to the
front wheels through a step function during 2 s. Results of the first trial revealed that
the tractor roll angle presents a peak of 2.6° and achieves a steady value of 0.8°
respectively at 4 and 20 s after the beginning of the manoeuvre. Roll angle
amplitudes of the trailer, spanning from −0.015 to 0.023° (a negative value means
the vehicle is leaning inwards at the curve), revealed an oscillatory characteristic,
before reaching a stable value of 0.0025° in about 15 s. In the second trial, roll
angles of both tractor and trailer reach maximum values higher than those of the
previous test (respectively 11.5 and −0.5°); in addition, the oscillatory movement of
the trailer was enhanced, since positive and negative roll angles alternated five
times until both units return to a steady (zero roll angle) condition after about 20 s
from the beginning of the manoeuvre. Those results are compatible with the
expected behaviour of actual vehicles, thus suggesting that the proposed model can
be tailored to include other truck-trailer configurations and manoeuvres.
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1 Introduction

Truck vehicles play an important role in current freight transportation networks.
Particularly in Brazil, according to data from 2008 [1], road vehicles are used to
carry 58% of the total amount of freights. An usual manner to enhance the load
capacity of those vehicles is to employ a tractor unit to haul one or several trailer
and/or semi-trailer units. The difference between a trailer and a semi-trailer is
related to the kind of coupling between the hauled units to the towing vehicle and
among themselves. When the coupling allows transferring part of the load from the
hauled unit to the tractor or to another hauled unit (normally, through the coupling
of a fifth wheel on the tractor and a device called kingpin on the hauled unit, see
Fig. 1a, b), the towed unit is called a semi-trailer; otherwise, it is a trailer. A con-
sequence of the previous definition is that trailers have at least two axles. A typical
3-axle trailer is shown in Fig. 1c. However, regardless of the kind of coupling,
those vehicles are known as articulated trucks.

Due to their weight and dimensions, articulated trucks are prone to present
dynamical instability even at normal operating conditions, i.e., forward travel at
constant speed. Those instabilities may be caused by small perturbations on track
(holes, bumps, sudden friction changes, uneven surfaces) or natural causes, such as
wind gusts, that may lead to the potentially dangerous situations of jack-knifing,
trailer swing, truck/trailer rollover, and flutter [6]. One of the possible outcomes of
the above-cited situations is the rolling of the trailer/semi-trailer, tractor or of both.
In the literature, there are two main sets of models that attempt to describe and

(a) (b)

(c) (d)

Fig. 1 a Fifth wheel and tractor truck [2, 3]; b kingpin and semi-trailer [2, 4]; c trailer unit with
coupling device [5]; d box truck [3]
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predict the dynamical behaviour of articulated trucks, mostly for the purpose of
supporting the design of passive or active control systems capable of avoiding
unstable conditions: The ones whose equations of motion are obtained directly from
the application of the theorems of mechanics [7–9] and those that rely on multibody
dynamics simulation software, in which the whole model is numerically built and
evaluated as, for instance, the works by [10, 11].

To this end, a common feature of purely theoretical models is the use of sim-
plifying hypotheses such as jack-knifing does not imply in rolling [9], or identical
roll angles of tractor and trailer [7, 8]. On the other hand, multibody numerical
models such as that from [10, 11], despite considering several degrees of freedom
and handling both holonomic and non-holonomic constraints, may represent a
challenge for the control designer, given the universe of possible parameter
combinations.

Considering the above rationale, the present work aims at the development of a
6-degree-of-freedom analytical model to describe the rolling dynamics of an
articulated tractor-trailer vehicle, and evaluating its performance through numerical
simulations in two standard traffic manoeuvres, namely, constant radius curve and
sudden change in direction manoeuvre, both at constant velocity. The proposed
approach poses a contribution since, unlike [7–9], the rolling of each unit is con-
sidered as a separate degree-of-freedom, thus allowing one to evaluate the
dynamical interaction between trailer and tractor under normal or perturbed oper-
ational conditions.

2 Materials and Methods

This section aims at presenting the theoretical background and the hypotheses used
in the development of the analytical model of the vehicles. Firstly, only the tractor
was considered, in order to qualitatively check the adequacy of the adopted
hypotheses, especially those concerning tyre models. As the results were satisfac-
tory, with physical responses consistent with the proposed manoeuvres, the model
was extended to the entire vehicle, taking into account the trailer unit. All simu-
lations were performed with the assistance of Matlab (R2012a version) and
Mathematica (version 9.0).

2.1 Tractor Vehicle Model

The model to be developed is based on Chen and Tomizuka’s [7] box truck
(Fig. 1d), which is adapted to haul a trailer unit. Equations of motion are obtained
through the Lagrangean formalism [12], and they include tractor roll and yaw.
A schematic representation of the vehicle, as well as the reference frames and their
coordinate systems used in the development of the model, are shown in Fig. 2.
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The system of coordinates Σt is rigidly attached to the unsprung element of the
vehicle in such a way that the unit vector t ⃗1 is on the rolling axis, and that the
direction of t ⃗3 intercepts the vehicle center of mass. On the other hand, system of
coordinates Σs is fixed to centre of mass (sprung mass), with axes initially parallel
with those of system Σt. Finally, Σn is the inertial reference frame.

The three systems of coordinates are related by transformation Eqs. (1) and (2),
in which the functions sine and cosine are respectively represented by s xð Þ and c xð Þ.

n ⃗f g=
c φð Þ − s φð Þ 0
s φð Þ c φð Þ 0
0 0 1

0
@

1
A t ⃗
� � ð1Þ

t ⃗
� �

=
1 0 0
0 1 − θ
0 θ 1

0
@

1
A s ⃗f g ð2Þ

In Eq. (1), φ stands for the yaw angle of the unsprung element in relation to the
inertial reference frame, whereas θ is the rolling angle of the sprung mass as
observed from the reference frame attached to the unsprung element. The
hypothesis of small angular displacements ðsin θð Þ≈ θ, cos θð Þ≈ 1Þ was employed
in Eq. (2). This way, it is possible to write expressions for the kinetic energy and
potential function for the vehicle centre of mass (CM) in relation to the inertial
reference frame. To begin with, one expresses the position of the CM in relation to
the inertial reference frame:

pC⃗M ̸n = pC⃗M ̸t + pt⃗ ̸n
pC⃗M ̸n = zt ⃗3 + hs ⃗3 + xnı +⃗ ynȷ ⃗

ð3Þ

In Eq. (3), xn and yn are the displacements of the origin of the unsprung element
coordinate system in relation to the inertial reference frame, z is its height, and h is

Fig. 2 Box truck (tractor vehicle) and reference frames
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the height of the CM to the rolling axis. Differentiating Eq. (3) with respect to time,
one obtains the velocity of the CM according to Eq. (4),

vC⃗G ̸nf g=
hφ ̇θ+ xṅc φð Þ+ y ̇ns φð Þð Þs ⃗1
− hθ− xṅs φð Þ+ y ̇nc φð Þð Þs ⃗2
xṅθs φð Þ− y ̇nθc φð Þð Þs ⃗3

8<
:

9=
;, ð4Þ

in which the derivative of the unit vectors of the Σs base was calculated using the
rotation vector of the sprung mass,

Ωs ̸n = θ ̇s1⃗ +φ ̇θ s⃗2 +φ ̇s3⃗ ð5Þ

The kinetic energy of the tractor unit can be obtained using

Tc = 1
2mc vC⃗M ̸n ⋅ vC⃗M ̸nð Þ+ 1

2 Ω
!

s ̸nI Ωt�!
s ̸n ⇒

Tc = 1
2mc hφ ̇θ+ xṅc φð Þ+ y ̇ns φð Þð Þ2 + − hθ− xṅs φð Þ+ y ̇nc φð Þð Þ2

h
+ x ̇nθs φð Þ− y ̇nθc φð Þð Þ2

i
+ 1

2 ðIxθ
2̇ + Iy φ ̇θð Þ2 + Izφ2̇Þ,

ð6Þ

where mcðkgÞ is the mass and I kgm2ð Þ is the central inertia tensor. The potential
energy function, on the other hand, is given by

Vc =mcgh c θð Þ− 1ð Þ, ð7Þ

in which the hypothesis that the sprung mass swings about the vehicle rolling axis
was considered. From Eqs. (6) and (7), one writes the Lagrangean

Lc =Tc −Vc ð8Þ

and, through the Euler-Lagrange equations,

d
dt

∂L
∂q ̇i

� �
−

∂L
∂qi

=Qqi , i=1, . . . , 4, ð9Þ

the equations of motion can be written for the generalised coordinates
q= q1, q2, q3, q4½ �T = xn, yn, θ,φ½ �T and for the generalised non-conservative forces

Q= Qq1 ,Qq2 ,Qq3 ,Qq4

� �T = Qx,Qy,Qθ,Qφ

� �T associated to those coordinates. In
this model, the generalised non-conservative forces are those acting on the tyres, as
depicted in Fig. 3, in which Flj and Faj, j=1, . . . , 4, respectively stand for the
longitudinal and lateral forces. The forces acting at the suspension elements
(orthogonal to the tyre forces, not shown in the figure) are represented by Fsj.
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For the computation of the non-conservative generalised forces, one first describes
Flj,Faj,Fsj in coordinates of the Σn, as follows:

Fxj =Fljc φð Þ−Fajs φð Þ ð10Þ

Fyj =Fljs φð Þ+Fajc φð Þ ð11Þ

Since the scope of this work is the analysis of the lateral dynamics of the vehicle,
all the man oeuvres are performed at constant velocity, i.e., Flj =0, j=1, 2, 3, 4
[13]. Lateral forces, on the other hand, follow the model by [14], whose main
assumption is that, at low speeds, their magnitude is proportional to the slip angle;
moreover, the proportionality constant is the so called cornering stiffness (CS).
Using δ to represent the steering angle at the font tyres, the slip angles for tyres
j=1, . . . , 4 of Fig. 3 are given by:

α1 = δ− arctg
yṫ + l1φ ̇
xṫ − b

2φ ̇

 !
ð12Þ

α2 = δ− arctg
yṫ + l1φ ̇
xṫ + b

2φ ̇

 !
ð13Þ

α3 = − arctg
yṫ − l2φ ̇
xṫ − b

2φ ̇

 !
ð14Þ

α4 = − arctg
yṫ − l2φ ̇
xṫ + b

2φ ̇

 !
ð15Þ

Another hypothesis that holds for low speeds is arctg xð Þ≃ x; therefore, lateral
forces are obtained by directly multiplying the slip angles and the CS, the latter
admitted the same for all tyres. Suspension is modelled as a spring-viscous linear
damping system. Thus,

CM

Fig. 3 Lateral and
longitudinal forces at the tyres
of the tractor truck
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Fs = kϵ+ dcϵ ̇, ð16Þ

with k representing spring stiffness and dc denoting viscous damping coefficient,
whereas ϵ stands for the displacement of the suspension, measured from the
equilibrium position. Their values, for each tyre, are given by

ϵ1 = ϵ3 = −
b
2
θ ð17Þ

ϵ2 = ϵ4 = −
b
2
θ ð18Þ

Given those hypotheses and constraints, the generalised forces, considered
applied at points whose position is defined by vector pj⃗ at each tyre j, j=1, . . . , 4,
are obtained according to

Qqi = ∑
4

j=1
Faj

∂ðpj⃗ ⋅ ıÞ⃗
∂qi

+ ∑
4

j=1
Flj

∂ðpj⃗ ⋅ ȷÞ⃗
∂qi

+ ∑
4

j=1
Fsj

∂ðpj⃗ ⋅ kÞ⃗
∂qi

, i=1, . . . , 4. ð19Þ

2.2 Tractor and Trailer Vehicle Model

In this section, an analytical model for the complete vehicle is developed. Its
schematic representation is in Fig. 4, which includes reference frames ΣU and Σr

respectively fixed at the trailer rolling axis (unsprung element) and at the trailer
sprung mass. Trailer attitude is described by the yaw angle η, measured relatively to
Σt, and by the roll angle, λ, of the trailer sprung mass, in relation to ΣU . Rotation
matrices among coordinate systems attached to reference frames ΣU ,Σr, and Σt are
given by

Fig. 4 Tractor and trailer vehicles and reference frames
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U ⃗

n o
=

c ηð Þ s ηð Þ 0
− s ηð Þ c ηð Þ 0
0 0 1

0
@

1
A t ⃗
� �

r ⃗f g=
1 0 0
0 1 λ
0 − λ 1

0
@

1
A U ⃗

n o
ð20Þ

In order to compute the kinetic energy of the trailer, one differentiates the
position vector of its centre of mass with respect to time to obtain the velocity
vector:

d
dt

pC⃗G2ð Þ= d
dt

pC⃗G1 − l2s1⃗ − hs ⃗3 − dv+ l3ð Þr1⃗ + hrr ⃗3ð Þ ð21Þ

vC⃗G2f g= hφ ̇θ+ x ̇c φð Þ+ y ̇s φð Þð Þc ηð Þ+ − hθ ̇− x ̇s φð Þ+ y ̇c φð Þð Þs ηð Þ+ x ̇s φð Þ− y ̇c φð Þð Þ½
− s ηð Þθ2	 


− l2φ ̇s ηð Þ− l2φ ̇θ2s ηð Þ− hφ ̇θc ηð Þ+ hθ ̇s ηð Þ+ hrη ̇λ
�
r ⃗1

+ hφ ̇θ+ x ̇c φð Þ+ y ̇s φð Þð Þ − s φð Þð Þ+ − hθ ̇− x ̇s φð Þ+ y ̇c φð Þð Þ c ηð Þ+ θλð Þ½
+ x ̇s φð Þ− y ̇c φð Þð Þ − θ2c ηð Þ+ + θλ

	 

− l2φ ̇ c ηð Þ+ θλð Þ+ l2φ̇θ − θc ηð Þ+ λð Þ

+ hs ηð Þ+ hθ ̇ c ηð Þ+ θλð Þ− dv+ l3ð Þη̇− hrλ ̇�r2⃗
+ hφ ̇θ+ x ̇c φð Þ+ y ̇s φð Þð Þ λs ηð Þð Þ+ − hθ ̇− x ̇s φð Þ+ y ̇c φð Þð Þ − λc ηð Þ+ θð Þ½
+ x ̇s φð Þ− y ̇c φð Þð Þ θ2λc ηð Þ+ θ

	 

− l2φ ̇ − λc ηð Þ+ θð Þ+ l2φ ̇θ θλc ηð Þ+1ð Þ

− hλs ηð Þ+ hθ ̇ − λc ηð Þ+ θð Þ+ dv+ l3ð Þη̇λ�r ⃗3

ð22Þ

Furthermore, considering that mrðkgÞ and Irðkgm2Þ are the mass and the central
inertia tensor of the trailer unit, its kinetic energy is written as

Tr =0.5mrvC⃗G2 ⋅ vC⃗G2 + 0.5Ω
!

s ̸nIr Ωt�!
s ̸n ð23Þ

Under the same assumption of Sect. 2.1, i.e., the sprung mass swings about the
rolling axis, the potential energy of the trailer is

Vr =mrghr c λð Þ− 1ð Þ ð24Þ

The last step to be taken before building the equations of motion for the whole
vehicle concerns the determination of the non-conservative forces at the trailer
tyres, as shown in Fig. 5, and the forces at the trailer suspension.

Following the model proposed by [14] for the computation of forces at the tyres
according to Eqs. (10) and (11), briefly described in the previous section, the slip
angles at low speeds can be approximated by
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αj = arctg
vj⃗ ⋅U ⃗2

vj⃗ ⋅U ⃗1

 !
, j= 5, 6, 7, 8f g, ð25Þ

in which vj⃗ is the velocity of the trailer’s j-th tyre, in coordinates of the ΣU frame,
obtained as follows:

vj⃗ = vU⃗ + η̇U ⃗3 ∧ p ⃗j − pU⃗
	 


vU⃗ = vv⃗ + η̇∧U ⃗3 − dv+ l3ð ÞU ⃗1

� �
v!v = xṅc φð Þ+ y ̇ns φð Þð Þt ⃗1 + − xṅs φð Þ+ y ̇nc φð Þð Þt ⃗2 +φ ̇t ⃗3 ∧ − l2t ⃗1

	 

.

8><
>: ð26Þ

Trailer suspension forces are calculated according to the linear spring-viscous
damping model of Eq. (16), described in Sect. 2.1, as functions of the
displacements

ϵ5 = ϵ7 = −
br
2
; ϵ6 = ϵ8 =

br
2
λ. ð27Þ

Finally, the Lagrangean for the combined tractor-trailer vehicle can be written as

L=Tc + Tr − Vc +Vrð Þ, ð28Þ

and the equations of motion follow from Eq. (9) for the vector of generalised
coordinates q= q1, q2, q3, q4, q5, q6½ �T = xn, yn, θ,φ, η, λ½ �T , that includes the degrees
of freedom from both units, and from Eq. (18), for the non-conservative generalised
forces, with the summations j=1, . . . , 8, and i=1, . . . , 6. Both the algebraic
derivation of the equations of motion and their simulation were performed with the
aid of the software Mathematica.

Fig. 5 Lateral forces at the
trailer tyres
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3 Results and Discussion

Firstly, the dynamic behaviour of the tractor unit without the trailer was evaluated
in a simulated curve at a constant velocity of 36 km/h. In order to perform the
manoeuvre, a constant steering angle of 4° is imposed at the front wheels through a
step function. Simulation parameters of a medium-weight commercial vehicle,
given in Table 1, were obtained from [7].

Results for this simulation are depicted in Figs. 6 and 7, from which it is possible
to assert that the response of the dynamical model is coherent with the expected
behaviour of a real vehicle in a similar manoeuvre. The initial gradient of the yaw
rate (Fig. 6) is justified, since the vehicle is suddenly forced to detour from a
straight line path until achieving a steady value (dφ ̸dt≃ 15 °/s), which corresponds
to the constant steering input. The roll angle and roll rate (Fig. 7) are also com-
patible with the input condition: from the beginning of the manoeuvre, the vehicle
leans outwards at the curve, as evidenced by the values of the roll angle θ, whereas,
at the same time, roll rate dθ ̸dt presents oscillations that vanish once the steady
condition is reached, at θ≃ 0.9◦, after about 20 s.

Then, the dynamical response of the complete vehicle was obtained for two
manoeuvres that frequently occur in normal traffic conditions, namely, performing a
curve with the same characteristics as the one previously described, and a sudden
change of direction from a straight line path, both at constant velocity (36 km/h). In

Table 1 Tractor vehicle parameters

Param. mc kgð Þ h mð Þ z mð Þ l1 mð Þ l2 mð Þ dc N s ̸mð Þ
Value 8400 0.5 1.2 2.5 1.5 9080

Param. b mð Þ k N ̸mð Þ Ix kgm2ð Þ Iy kgm2ð Þ Iz kgm2ð Þ CS N ̸radð Þ
Value 2.0 5 × 105 12,447 65,735 65,735 14,330

Fig. 6 Tractor yaw rate
versus time for the constant
steering wheel angle
manoeuvre
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the latter case, a 30° amplitude steering angle was imposed at the front wheels of
the tractor through a step function. Parameters for this simulation can be found in
Table 2, in which trailer values are identified by the “r” subscript.

Temporal evolutions of the tractor and trailer roll amplitudes for the constant
steering wheel angle manoeuvre are depicted in Figs. 8 and 9. It is possible to

Fig. 7 Tractor roll angle and
roll rate versus time for the
constant steering wheel angle
manoeuvre

Table 2 Trailer vehicle parameters

Param. m*
r kgð Þ hr mð Þ zr mð Þ l3 = l4 mð Þ CSr N ̸radð Þ

Value 4200 0.5 1.2 2.5 1.5

Param. br mð Þ kr N ̸mð Þ Ix kgm2ð Þ Iy kgm2ð Þ Iz kgm2ð Þ
Value 2.0 5 × 105 6624 32,868 32,868

Values with an asterisk were adapted from [7] for the specific purpose of this work

Fig. 8 Tractor roll angle
versus time for the constant
steering wheel angle
manoeuvre
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realize that the trailer, constrained to the tractor unit, imposes an inertial resistance
to the rolling tendency of the latter when the convoy achieves a steady condition.
This assertion is corroborated by comparing results from Figs. 7 and 8. In Fig. 7,
the steady roll angle for the tractor is θ≃ 0.9◦ whereas, for the convoy, θ≃ 0.8◦.
However, during the transient that follows the imposition of the step function, the
tractor roll amplitude reaches a peak value of about 2.6◦ (Fig. 8), against about 1.2◦

(Fig. 7) when the same vehicle was simulated without the trailer. The roll angle of
the trailer initially accompanies the movement of the tractor and, due to the action
of the suspension, oscillates during the transient phase until stabilizing after about
20 s, with the unit leaning outwards, as expected.

Results of the simulated sudden change of direction from a straight line path are
depicted in Figs. 10 and 11. Although the step steering amplitude of 30° was
imposed during 2 s, starting at the abscissa t = 3 s in Fig. 10, the whole convoy

Fig. 9 Trailer roll angle
versus time for the constant
steering wheel angle
manoeuvre

Fig. 10 Tractor roll angle
versus time for the change of
direction manoeuvre
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took about 20 s to fully stabilize at the new heading. The tractor leaning outwards
and the trailer oscillating behaviour (Fig. 11) were compatible with the character-
istics of the manoeuvre. It must be noted, though, that the peak of roll amplitudes of
both vehicles, when compared to those obtained in the constant steering wheel
angle condition, were considerably higher, namely, about 4 and 10 times, respec-
tively for the tractor and trailer.

Likewise, it is possible to infer that the combined inertial effects of both units
imposes a limiting condition on the safe operation of the convoy, since roll angle
amplitude for the tractor unit alone (Fig. 7) was about 1/2 times that of the same
vehicle constrained to the trailer, as shown in Fig. 8. In practice, the maximum
constant velocity at which the manoeuvres are performed must be smaller for the
convoy, which is, again, a result that supports the behaviour of similar vehicles
under actual driving conditions.

4 Conclusions

In this work, a six-degree of freedom model of the rolling dynamics of a convoy
vehicle was analytically obtained through the Lagrangean formalism. In order to
cope with the complexity of the six nonlinear second-order coupled differential
equation, the model was linearized for small rolling angles, thus helping its
numerical integration. Still, simulated constant radius curve and sudden change of
direction manoeuvres, both at constant velocity, exhibited results compatible to
those observed in actual vehicles under similar operating conditions, thus stating the
efficacy of the proposed model. Altogether, the transient response of the convoy
evidenced the influence of the trailer on the behaviour of the tractor unit, since the
peaks of roll amplitudes of the latter, especially in the change direction manoeuvre,
were considerably higher, thus suggesting its susceptibility to experience unstable
behaviour during that phase.

Fig. 11 Trailer roll angle
versus time for the change of
direction manoeuvre
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It should be pointed out that, due to the coherent results presented despite its
simplicity, the model here developed might be used in parallel with some com-
mercial multibody dynamics software in order to perform a cross-check on the
outcomes of simulated conditions on convoy vehicles, since even recent publica-
tions rely solely on results provided by the above mentioned proprietary packages.
Moreover, it is the intention of the authors to include combined effects of rolling
and longitudinal dynamics (jackknife) in the analytical model and to analyse the
overall stability, a key issue, for instance, in the development of active control
systems.
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Use of Integrated Control to Enhance
the Safety of Vehicles in Run-Off-Road
Scenarios

Abel Castro , Rafael B. Chaves, Georg Rill and Hans I. Weber

Abstract In this work, an integrated vehicle control system (IC) is tested in run-

off-road scenarios. The integrated approach was employed in order to coordinate

vehicle control systems, i.e. the Anti-Lock Brake System (ABS), Four-wheel Steer-

ing (4WS) and the Electronic Stability Program (ESP). To perform a run-off-road

maneuver, a fuzzy virtual test driver was designed. By receiving the lateral position

of an obstacle and the vehicle’s relative yaw angle, the virtual test driver is capa-

ble of following a reference trajectory. Furthermore, to test the performance of the

standalone controllers, i.e. ABS, ESP and 4WS, individual maneuvers are performed

using a multibody vehicle model. The vehicle without any coordination between the

control systems is used as reference. For the simulation results, it is concluded that

the IC improves the vehicle stability and maneuverability in comparison with the

non-integrated approach.

Keywords Integrated control ⋅ Multibody vehicle model ⋅ Fuzzy control

Run-off-road scenarios

1 Introduction

In spite of the decreasing number of single vehicle accidents (SVA) during the last

decade, it still represents a high percentage of road fatalities as shown on the left

side of Fig. 1. Due to this fact, there is a constant concern of the society about the

mobility and traffic safety. Therefore, the development of control systems that can

reduce the number of road fatalities is of high priority for the automotive industry and

engineers. Moreover, since the introduction of the Anti-lock Braking System (ABS)

in 1978 by Bosch, the number of electronic systems to assist drivers and improve the

vehicle safety is increasing. For instance, the Electronic Stability Program (ESP) is
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Fig. 1 Left: Road fatalities in Europe. Right: Safety systems using by top 50 selling cars

capable of reducing in 49% SVA [4]. Consequently, many companies are fitting its

best selling cars with safety technologies [10] as depicted on the right side of Fig. 1.

In instability scenarios, the vehicle does not follow the driver’s commands. In

these cases, the active safety systems should actuate in order to return the vehicle

to a maneuverability condition [1, 2]. This task is done by exploiting the tire lim-

its. Nevertheless, if these controllers try to use the tire potential at the same time,

this may lead to a conflict that could become a worse scenario for the passengers.

Therefore, it is important to design a system to integrate these active safety devices

in order to improve the vehicle’s stability. In a previous study [3], it was shown that

the integration of the Active Front Steering (AFS) and the ESP can improve the vehi-

cle lateral stability in critical scenarios. In this work, an integration control strategy

(IC) was designed in order to coordinate the Four-Wheel Steering System (4WS),

the ABS and the ESP. Finally, to prove the benefits of the IC system against the

non-integrated approach, simulations using a fully nonlinear and three-dimensional

vehicle model in run-off-road scenarios were performed.

2 Road Vehicle and Tire Modeling

2.1 Fully Non-linear Road Vehicle Model

In order to describe the complete vehicle dynamics, the multibody approach is

employed. Using this method, it is possible to model the vehicle by subsystems

as presented in [7, 8]. In this work, nine rigid bodies are used, i.e. 4 knuckles, 4

wheel-tires and 1 chassis, see Fig. 2. The equations of motion are obtained using

the Jourdain’s Principle, also called the method of virtual power. Finally, the vehicle

dynamics is characterized by a set of nonlinear first order differential equations.

K(y) ẏ = z , M(y) ż = q(y, z, s, u) , ṡ = f (y, z, s, u), (1)
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Fig. 2 Rigid bodies and coordinate axis systems of a multibody vehicle model

where y is a vector that collects the generalized coordinates of the vehicle and K is

the kinematic matrix used to define an appropriate vector of generalized velocities

z. The mass matrix of the multibody vehicle model is denoted by M. The vector of

generalized forces q is a function that depends of the input u and additional states s.
Furthermore, the vector s collects the internal states of the dynamic force elements

and tire deflections respectively.

2.2 Simple Handling Model

For control design, the desired response of the vehicle to the driver inputs is required.

Generally, the simple handling vehicle model is used as reference, see Fig. 3. This

model captures some important features of the vehicle, e.g. yaw rate �̇� and the

sideslip angle 𝛽, that are relevant to analyze its stability.

Figure 3 shows the degrees of freedom (DOF), i.e. the lateral and yaw motions,

and assumptions of the simple handling model. These DOF are described by:

m
(
v𝜔 + |v| ̇𝛽

)
= Fyf + Fyr and 𝛩�̇� = a1Fyf − a2Fyr (2)

Furthermore, the tire lateral forces are described as function of the cornering stiffness

csi and the lateral slips syi (i = f , r) as follows:

Fyi = csisyi syf = −𝛽 −
a1
|v|

𝜔 + v
|v|

𝛿f syr = −𝛽 +
a2
|v|

𝜔 + v
|v|

𝛿r (3)

Finally, rearranging and simplifying (2) and (3), the equations of motion are:
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• tires operates in the lin-
ear region.

• only planar motion.
• no driving or braking is
applied i.e, v̇ = 0.

• δf represents the mean
of the front steering an-
gles.

• δr represents the mean
of the rear steering an-
gles.

• δf , δr and β are as-
sumed to be small.

Fig. 3 Simple handling vehicle model and list of assumptions

[
̇

𝛽

�̇�

]
=
⎡
⎢
⎢
⎢
⎣

−
csf + csr
m|v|

a2csr − a1csf
m|v||v| − v

|v|
a2csr − a1csf

𝛩

−
a21csf + a22csr

𝛩|v|

⎤
⎥
⎥
⎥
⎦

[
𝛽

𝜔

]
+
⎡
⎢
⎢
⎢
⎣

v
|v|

csf
m|v|

v
|v|

csr
m|v|

v
|v|

a1csf
𝛩

− v
|v|

a2csr
𝛩

⎤
⎥
⎥
⎥
⎦

[
𝛿f
𝛿r

]

(4)

where the time derivative of the yaw angular velocity 𝜔 and the sideslip angle 𝛽 are

the output states of the model. The cornering stiffness at the front and rear axle are

represented by csf and csr respectively. The inertia properties of this model are rep-

resented by its mass m, the moment of inertia around the z-axis 𝛩 and the distances

a1 and a2 from its center of gravity (COG) to the front and rear axle respectively.

Finally, the vehicle velocity v, the steering angles 𝛿f and 𝛿r are inputs of the simple

handling vehicle model.

2.3 TMeasy Tire Model

The tire model easy-to-use or TMeasy [9], is a semi-empirical tire model that uses a

small number of parameters to characterize the tire-road contact forces and torques.

In addition, TMeasy has a good balance between accuracy and computational pro-

cessing time. In normal driving maneuvers, e.g. acceleration and deceleration in a

curve, the longitudinal slip sx and lateral slip sy occur at the same time. Therefore,

the combination of tire slips and thus, the longitudinal and lateral forces should be

handled by the tire model. In order to consider the contribution of the longitudinal

and lateral slip on the combined slip, TMeasy performs a slip normalization process:
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s =

√(
sx
ŝx

)2

+
( sy
ŝy

)2

=
√

(
sNx
)2 +

(
sNy
)2

, (5)

where sNx and sNy are the normalized slips. Furthermore, the normalizing factors ŝx
and ŝy take into account the longitudinal and lateral force characteristics and are

defined as follows:

ŝi =
sMi

sMx + sMy
+

FM
i ∕dF

0
i

FM
x ∕dF0

x + FM
y ∕dF0

y
where i = x, y (6)

Similar to the curve of longitudinal and lateral forces, the combined force F = F(s)
can be defined by their characteristic parameters dF0

, sM , FM
, sS and FS

, and are

defined via:

dF0 =
√

(dF0
x ŝx cos𝜙)2 + (dF0

y ŝy sin𝜙)2

sM =
√(

sMx
ŝx
cos𝜙

)2
+
( sMy

ŝy
sin𝜙

)2
FM =

√
(
FM
x cos𝜙

)2 +
(
FM
y sin𝜙

)2

sS =
√(

sSx
ŝx
cos𝜙

)2
+
( sSy

ŝy
sin𝜙

)2
FS =

√
(
FS
x cos𝜙

)2 +
(
FS
y sin𝜙

)2
.

(7)

The angular function𝜙 is used to guarantee a smooth transition from the longitudinal

and lateral force to the combined one. Finally, the longitudinal and lateral result

forces are derived from the combined force as follows:

Fx = F cos(𝜙) and Fy = F sin(𝜙), where: cos(𝜙) =
sNx
s

and sin(𝜙) =
sNy
s
. (8)

Figure 4 shows, on the left side the tire friction limits and on the right side the mutual

influence of longitudinal and lateral forces (computed by TMeasy) for a standard

commercial tire.

3 Control Design

The ABS, ESP and 4WS control design is explained in this section. For all the sim-

ulations performed, a fullsize car was used. Characteristic parameters of this vehicle

are defined in Table 1. The road and off-road scenarios are characterized by coeffi-

cients of friction of µ = 1.0 and µ = 0.4 respectively. In addition, the road surface

is located 5 cm above the off-road surface and an obstacle is placed at a distance

of 150 m in front of the vehicle. Avoiding this obstacle will force the vehicle to go

off-road. Finally, the driver model was designed using fuzzy logic and simple rules
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Fig. 4 Left: Tire friction limits. Right: Longitudinal and lateral forces

Table 1 Overall characteristic parameters of a fullsize car

Parameter Value Units

Mass 2127.8 kg

Inertia at COG

⎡
⎢
⎢
⎢
⎣

585.9 0.0 2.4
0.0 3086.4 0.0
2.4 0.0 3358.3

⎤
⎥
⎥
⎥
⎦

kg m
2

Height of COG 0.55 m

Distance from COG to

front/rear axle

1.50/1.40 m

Track width front/rear 1.53/1.52 m

Suspension front/rear Double wishbone −
Tires front/rear P265/40 R18 −

were employed in order to follow a path defined by the road center line. The lateral

error and the current orientation of the vehicle are the inputs of the virtual driver.

3.1 Anti-lock Braking System—ABS

The main feature of an ABS model is the capacity to control the slip, avoiding the

wheels from locking up, in a region in which the longitudinal tire force is close to

the maximum. Therefore, the vehicle’s maneuverability and handling stability are

retained even during full braking maneuvers [6].

The longitudinal force at each wheel depends of the coefficient of friction µ and

wheel load Fz. In this work, µ is assumed to be unknown, for this reason the longi-

tudinal tire slip sx was taken as control variable and it is defined as follows:
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sx = −
(vx −𝛺rD)
|𝛺|rD + vN

, (9)

where vx is the vehicle velocity,𝛺 is the wheel angular velocity, rD is the tire dynamic

radius and vN is a fictitious velocity, introduced to avoid numerical problems.

The proposed ABS model is based on fuzzy logic due to the highly nonlinear

wheel dynamics. This model use three rules, i.e. (1) if sx is low then increase the

braking pressure, (2) if sx is medium then hold the braking pressure and (3) if sx is

high then decrease the braking pressure. In addition, the fuzzy membership functions

are triangular and symmetric where the medium member function is centered at sx =
0.15. This value is because, in standard passenger tires, the maximum longitudinal

tire force is obtained at longitudinal slip sx between 0.1 and 0.2.

In order to prove the effectiveness of the ABS model, two scenarios were sim-

ulated. In the first one, a straight line braking maneuver was performed. Using the

vehicle with the ABS-off configuration, all wheels have been locked instantly as we

can see in the left upper plot (dashed lines) of Fig. 5. On the other hand, with the

ABS-on configuration, the wheels are still rolling and in consequence, they have

small slip values, i.e. 0.1−0.2 (same plot, solid lines). In addition, the vehicle is

reaching decelerations up to v̇∕g = 1.0, see left bottom plot (solid line) of Fig. 5,

which is the limit imposed by the coefficient of friction (µ = 1.0). The last scenario

was performed in order to observe the gain in stability using the ABS model. In this

simulation, the vehicle is driving in a straight trajectory and at t = 3.6 s a steering

wheel angle of 30◦ is applied and then, at t = 4.0 s, the brakes are triggered. With

the ABS-off, the wheels have been locked again. Therefore, the vehicle follows a

straight trajectory because the front wheels are not capable to generate neither lat-

eral nor longitudinal forces. In the case of the vehicle with the ABS-on configuration,

it follows the driver’s intentions because the front wheels are not locked completely

and therefore they can generate lateral forces, see the right multiframe shot of Fig. 5.

3.2 Electronic Stability Program—ESP

The main objective of this system is to assist the driver in critical driving situations,

e.g. to avoid an unexpected obstacle on the road [6]. Before the ESP can respond to

a critical driving situation, it is necessary to analyze the current state of the vehi-

cle. This analysis takes into account in what direction is the driver steering and the

direction in which the vehicle is moving. In order to determine these information,

ESP uses the difference between the actual yaw rate 𝜔 and the one obtained from

the linear vehicle model 𝜔d (Eq. 4), see Fig. 6. This difference give to the ESP the

necessary data to trigger the ABS in order to apply the required brake torque to the

selected wheel and then, a compensatory yaw moment T is generated.

In Fig. 7, two simulations are compared. It is possible to distinguish that the torque

frequency applied by ESP to the outer front wheel is high when the vehicle is on

off-road t = 5.75 → 8 s. This happens because there is a µ-split condition when the
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Fig. 5 Braking in a straight line and in a turn (— ABS-on, - - - ABS-off)

Fig. 6 ESP control process

vehicle goes off-road and comes back to the road again and this requires a compen-

sation torque (longitudinal force due to the braking torque × track width of the axle

relative to the selected wheel) to maintain the vehicle’s stability. In this period, the

yaw angular velocity (left upper plot), lateral acceleration (right upper plot) and the

overall yaw moment (left bottom plot) are maintained in a safe range for the ESP.

Finally, ESP assisted the driver to maintain the desired path as indicated by the mul-

tiframe shot at the very left of Fig. 7.

3.3 Four-Wheel Steering System—4WS

The 4WS was introduced by Nissan in its Skyline model in the late of 1985.

The main advantages of this system are: improving the maneuverability at low

speeds and the lateral stability at high speeds. In [5], it is concluded that a simple
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Fig. 7 Trajectory and main states of the vehicle: — ESP-on, - - - ESP-off

Fig. 8 Proposed

feed-forward control law

feed-forward control can improve the vehicle lateral stability. This controller mon-

itors the front steering angle and depending of this value a rear wheel angle is

imposed. In this work, a value of 200◦ (𝛿f ≈ 11.5◦) for the steering hand wheel angle

was chosen, see Fig. 8.

Figure 9 shows a simulation of the vehicle with 4WS-on and 4WS-off configura-

tion. From t ≈ 5−7 s, there is a slight improvement on the vehicle stability with the

4WS-on. A large enhancement can be noticed between t ≈ 7−9.5 s. In this interval,

the yaw angular velocity, lateral acceleration and the overall yaw moment are main-
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Fig. 9 Trajectory and main states of the vehicle: — 4WS-on, - - - 4WS-off

tained in a safe range due to the 4WS. However, the 4WS system also produces unde-

sirable oscillations on the rear wheels. This behavior is because the virtual driver

model is trying to maintain the desired trajectory.

4 Integrated Control

In order to prove the benefits of the integrated vehicle control, two simulation were

performed. In the first one, a vehicle with the ESP-on and 4WS-on configuration,

i.e. without any integration between them is used, this system will be defined as

ESP+4WS. For the second simulation, a rule to avoid the conflict between ESP and

4WS was defined. This rule consists in limiting the use of the braking torque when

the rear wheels are steered by a certain angle. In other words, the ESP is applied

only when the rear steer angles are bellow a boundary limit. The short name of this

integrated control system is IC and it is defined as follows:

IC = 4WS-on + ESP-

{
𝐨𝐧, if |𝛿r| ≤ 𝛿U

𝐨𝐟𝐟 , otherwise
(10)
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Fig. 10 Multiframe shot and the ESP and 4WS actions of the vehicle with the IC configuration

and with the ESP+4WS configuration

where 𝛿r is the rear steering angle and 𝛿U = 1◦ is the upper bound value.

For a better analysis, the action of each standalone controller, i.e. the ESP and

the 4WS, of the IC and ESP+4WS system and the multiframe shot of the vehicle’s

trajectory are shown in Fig. 10. For the ESP+4WS system (right plots), we can dis-

tinguish a conflict between the ESP and 4WS. The reason is because both systems

contribute at the same time to the vehicle yaw reaction. In addition, this conflict can

be noticed in Fig. 7, where the yaw angular velocity and overall yaw moment are

controlled by the ESP without having to steer the rear wheels. This kind of interac-

tions between control systems inside the vehicle can lead to an instability condition.

Therefore, in order to avoid this conflict, the rule in Eq. 10 was introduced to limit

the functionality of these subsystems. This new strategy is called IC as mentioned

above. In the left upper and left bottom plots of Fig. 10, it is noticed that the IC sys-

tem avoids the conflict between 4WS and ESP in the periods of t ≈ 5.2 → 7.2 s and

t ≈ 8.5 → 9.5 s. Furthermore, the lateral deviation of the vehicle using the IC is less

than the vehicle equipped with the ESP+4WS system as depicted in the multiframe

shot at the very left of Fig. 10.

In Fig. 11, a full comparison between a vehicle equipped with IC and only with

ESP is shown. As we can see, in the multiframe shot at the very left of Fig. 11, the lat-

eral deviation of the vehicle with the integrated systems IC is smaller than the vehicle

with the ESP-on configuration. This difference is because the 4WS system steers the
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Fig. 11 Trajectory and main states: — IC and - - - ESP-on

rear wheels when the vehicle is in off-road condition, i.e. during t ≈ 5.2 → 7.2 s. The

use of rear wheels improves the vehicle lateral stability because it decreases the yaw

reaction produced by the front wheels. Therefore, in this period, it is not necessary

the use of the ESP in order to produce a compensatory torque and thus, maintain

the yaw stability. In the period of t ≈ 8.5 → 9.5 s, an oscillation on the vehicle is

produced by the driver model, because it tries to maintain the vehicle close to the

center path. In this two periods, the use of a brake torque triggered by the ESP is

limited to cases in which the 4WS is not capable to maintain the vehicle’s stability.

This is easily distinguished because the longitudinal forces at the outer front wheel

of the vehicle with the IC system are generated during this periods, i.e. when brak-

ing torques are applied. In addition, the vehicle with the IC system use less braking

torque actions than with the ESP only, right bottom plot of Fig. 11.

5 Conclusions

The design of individual controllers was done using different methods. The ABS

model, based on fuzzy logic, was tested in two scenarios: braking in a straight tra-

jectory and in a curve. The simulations show a good performance of this system,

e.g. avoiding wheels from locking up and therefore retaining the vehicle steerability
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during heavy braking scenarios. The ESP and 4WS models also improve the vehicle

stability during the critical driving scenario performed in this work.

Finally, it can be deduced that the direct use of the ESP and 4WS, i.e. the

ESP+4WS system, creates conflicts between these systems in the simulated sce-

nario. A simple rule that limits the application of the ESP was defined. From the

simulations performed, we can conclude that the proposed integrated control sys-

tem IC can avoid the conflicts between the ESP and 4WS. Using this strategy, an

improvement of the vehicle lateral response and stability was achieved.
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Yaw Stability Analysis of Articulated
Vehicles Using Phase Trajectory Method

André de Souza Mendes, Marko Ackermann, Fabrizio Leonardi
and Agenor de Toledo Fleury

Abstract This paper addresses the yaw stability analysis of articulated vehicles

using the phase trajectory method. The goal of this work is to ascertain the dynamic

conditions that the articulated vehicle can assume without the occurrence of insta-

bility events such as jackknife and rollover. The study focuses on the vehicle con-

figuration composed by one tractor unit and a driven unit such as, for instance, a

tractor semi-trailer combination. The system consists of a nonlinear tire model and a

nonlinear articulated bicycle model with four degrees of freedom. The analysis pre-

sented in this paper illustrates the convergence regions of equilibrium points obtained

through numerical integration of the equations of motion of the model for different

initial conditions in the phase plane. In addition, the changes in the obtained regions

are presented as a function of the tractor speed and the position of the articulation

point between the two units.

Keywords Vehicle dynamics ⋅ Articulated vehicles ⋅ Stability analysis ⋅ Phase

trajectory method ⋅ Jackknife

1 Introduction

In heavy weight truck operations, driver and fuel are significant sources of spending.

So, in economic terms, the owners seek to transport the maximum amount of cargo

with the lowest possible vehicle weight [1]. However, the increase of load capacity
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implies, in most cases, in the increase of vehicle dimensions which are limited by

legislation and structural characteristics of the roads. Very long vehicles are not able

to perform tight turns because the rearmost axle tends to move towards the lateral

limits of the road not following the path imposed by the front axle. This phenomenon

is called offtracking. By splitting long vehicles into several units with shorter wheel-

base distances and connecting them through articulations, a higher level of maneu-

verability can be achieved and tight curves can be made. However, with this vehicle

configuration, instability events such as jackknife may occur.

To better understand the yaw instability events associated with articulated vehi-

cles, this paper aims to verify in which dynamic conditions the system, without any

input (steering angle, breaking and acceleration), returns to travel in a straight line

without the occurrence of any instability phenomenon. Based on this information it

is possible to obtain a region in the phase plane that gathers the set of dynamic con-

ditions that satisfy this requirement. Furthermore, the influence of some parameters

on the shape of this region should be checked, such as the speed of the tractor and

the position of the articulation point.

2 Stability Analysis of Articulated Vehicles

Relatively recent studies present yaw stability analysis of articulated vehicles using

linear models [2–4]. The applicability of such models is studied by [5]. The authors

verify different linear models of articulated vehicles to be used in stability and

dynamic simulation analysis. Dynamic results from single lane changes are com-

pared to those from a nonlinear experimentally validated model developed in the

software TruckSim. Good agreement was obtained between the linear and nonlinear

models for maneuvers with low overall lateral acceleration (0.3 g). When the lateral

acceleration exceeds 0.3 g the linear models begin to present significant errors, show-

ing their limitations in reproducing reality. Furthermore, the nonlinear relationship

between the lateral force and the slip angle, also known as tire characteristic curve,

has a great influence on the dynamic behavior of vehicles [6]. This relationship inter-

feres directly in the stability boundaries of vehicles and its shape depends primarily

on the friction coefficient, the vertical load and the longitudinal force of the tire [7].

In an effort to take into consideration the nonlinear behavior of the characteristic

curve, many authors use a third order polynomial model [8–10]. An alternative for

purely numerical simulation is the semi-empirical model known as Magic Formula
[7] which is also widely used [11–13].

The stability analysis of nonlinear systems, if not linearized, can be performed

using the Lyapunov direct method and the phase trajectories method. The first con-

sists in determining stability based on a fictitious energy function called Lyapunov

function. Applications of this method in vehicle systems can be found in [14, 15].

The second method is based on the analysis of the behavior of the orbits of the model

states from different initial conditions. Ding et al. [12] use the phase trajectories

method to determine the stability regions of a nonlinear model of a tractor-semitrailer
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combination. Moreover, the authors analyze the variation of the stability region by

changing vehicle parameters such as speed and friction coefficient value. However,

the model used, although not linear, assumes that the longitudinal speed of the tractor

and that of the trailer are equal and constant, which can lead to anomalous results for

conditions distant from the equilibrium points. Sun and He [16] use the phase plane

to check the stability of nonlinear articulated vehicle model in single lane change

maneuvers with open loop sinusoidal steering input. The trajectories of the state

variables are compared to the dynamic behavior of a 21 DOF CarSim model. Thus,

the authors determine the maximum steering value allowed in this maneuver without

the occurrence of instability events.

It is possible to notice that there is a trend in the use of nonlinear models of

articulated vehicles in stability analysis because, in certain scenarios, linear models

are not able to reproduce the vehicle behavior with the necessary accuracy. Moreover,

the importance of using an appropriate method for identifying the equilibrium points

and regions of stability is evident. A more comprehensive discussion on the present

topic can be found in [17].

3 Articulated Vehicle Model

The mathematical model of the tractor-semitrailer combination for yaw stability

analysis must be able to represent the dynamic behavior, at least qualitatively, of

an actual vehicle for the entire phase plane domain. However, for high values of fric-

tion coefficient and high lateral acceleration yaw instability may not occur, resulting

instead in rollover event [12]. This type of instability occurs when the lateral accel-

eration exceeds a certain value, known as rollover threshold. The typical value of

this lateral acceleration limit is between 0.2 and 0.5 g for articulated trucks [18]. In

contrast, if the friction coefficient is low it is possible to reach the nonlinear region

of the tire characteristic curve even under low lateral acceleration. Therefore, for

maneuvers at high speed and low friction coefficient the risk of jackknife exists and

involves the nonlinear characteristics of the tires. Thus, the tire model used in this

paper is the magic formula tire model [19] for pure lateral slip, because it is able to

adequately represent the tire lateral force for the entire range of slip angles.

The physical model of the vehicle combination is shown in Fig. 1. The points T
and S locate the center of gravity (CG) of the tractor and semitrailer, respectively. F,

R and M locate the axles of the vehicle and A is the articulation point. The distances

a, b and c separate the points F, T, R and A of the tractor and the distances d and

e separates the points A, S and M of the semitrailer. The velocity vectors 𝐯 and slip

angles 𝛼 receive the subscripts regarding the points to which they are associated.

The modeling of the tractor-semitrailer combination is done considering two rigid

bodies moving on a horizontal plane and joined by a single articulation point. Thus,

the model has four degrees of freedom and do not take into consideration the roll

dynamics. In this case, the rollover threshold is used to determine the occurance of

rollover event. The generalized coordinates can be given by x, y, 𝜓 and 𝜙. x and y
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Fig. 1 Single track bicycle model

are the coordinates of the center of gravity of the tractor. 𝜓 is the yaw angle of the

tractor and 𝜙 is the relative yaw angle of the semitrailer. The equations of motion

were developed using the Lagrangian approach.

The nonlinear system state equation can be written as

𝐌 (𝐱) �̇� = 𝐟 (𝐱,𝐮) , (1)

where the state vector is

𝐱 =
[
x1 x2 x3 x4 x5 x6 x7 x8

]T =
[
x y 𝜓 𝜙 vT 𝛼T �̇�

̇

𝜙

]T
(2)

and the input vector is

𝐮 =
[
𝛿 Fx,F Fx,R Fx,M

]T
. (3)

where 𝛿 is the steering angle and Fx,F, Fx,R and Fx,M are the longitudinal forces at

each axle.

The matrix 𝐌 is

𝐌 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 M55 M56 M57 M58
0 0 0 0 M65 M66 M67 M68
0 0 0 0 M75 M76 M77 M78
0 0 0 0 M85 M86 M87 M88

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)
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where the elements are given as

M55 =
(
mT + mS

)
cos

(
𝜓 + 𝛼T

)
(5)

M56 = −
(
mT + mS

)
vT sin

(
𝜓 + 𝛼T

)
(6)

M57 = mS [(b + c) sin𝜓 + d sin (𝜓 − 𝜙)] (7)

M58 = −mSd sin (𝜓 − 𝜙) (8)

M65 =
(
mT + mS

)
sin

(
𝜓 + 𝛼T

)
(9)

M66 =
(
mT + mS

)
vT cos

(
𝜓 + 𝛼T

)
(10)

M67 = −mS [(b + c) cos𝜓 + d cos (𝜓 − 𝜙)] (11)

M68 = mSd cos (𝜓 − 𝜙) (12)

M75 = −mS
[
(b + c) sin 𝛼T + d sin

(
𝛼T + 𝜙

)]
(13)

M76 = −mS
[
(b + c) vT cos 𝛼T + dvT cos

(
𝛼T + 𝜙

)]
(14)

M77 = mS[(b + c)2 + 2 (b + c) d cos𝜙 + d2] + IT + IS (15)

M78 = −mS[(b + c) d cos𝜙 + d2] + IS (16)

M85 = mSd sin
(
𝛼T + 𝜙

)
(17)

M86 = mSdvT cos
(
𝛼T + 𝜙

)
(18)

M87 = −mS[d2 + (b + c) d cos𝜙] + IS (19)

M88 =
(
mSd2 + IS

)
. (20)

The vector function 𝐟 is given as

𝐟 =
[
vT cos

(
𝜓 + 𝛼T

)
vT sin

(
𝜓 + 𝛼T

)
�̇�

̇

𝜙 f5 f6 f7 f8
]T

, (21)

where

f5 = Fx,F cos (𝜓 + 𝛿) + Fx,R cos𝜓 + Fx,M cos (𝜓 − 𝜙) − Fy,F sin (𝜓 + 𝛿) −…
…− Fy,R sin𝜓 − Fy,M sin (𝜓 − 𝜙) − mS (b + c) �̇�2 cos𝜓 −…

…− mSd
(
�̇� − ̇

𝜙

)2 cos (𝜓 − 𝜙) +
(
mT + mS

)
vT sin

(
𝜓 + 𝛼T

)
�̇� (22)

f6 = Fx,F sin (𝜓 + 𝛿) + Fx,R sin𝜓 + Fx,M sin (𝜓 − 𝜙) + Fy,F cos (𝜓 + 𝛿) +…
…+ Fy,R cos𝜓 + Fy,M cos (𝜓 − 𝜙) − mS (b + c) �̇�2 sin𝜓 −…

…− mSd
(
�̇� − ̇

𝜙

)2 sin (𝜓 − 𝜙) −
(
mT + mS

)
vT cos

(
𝜓 + 𝛼T

)
�̇� (23)
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Fig. 2 Characteristic curve

of the nonlinear magic
formula tire model with the

parameter values from

Table 2, vertical load of

Fz = 4 kN and road-tire

friction coefficient of

𝜇 = 0.3. For comparison, the

associated linear tire model

curve is also plotted

f7 = Fx,Fa sin 𝛿 + Fx,M (b + c) sin𝜙 + Fy,Fa cos 𝛿 − Fy,Rb −…

… − Fy,M [(b + c) cos𝜙 + (d + e)] − mS (b + c) d
(
�̇� − ̇

𝜙

)2 sin𝜙 +…
… + mS (b + c) d�̇�2 sin𝜙 + mS

[
(b + c) vT cos 𝛼T + dvT cos

(
𝛼T + 𝜙

)]
�̇� (24)

f8 = Fy,M (d + e) − mS (b + c) d�̇�2 sin𝜙 − mSdvT cos
(
𝛼T + 𝜙

)
�̇� . (25)

where Fy,F, Fy,R and Fy,M are the lateral forces of each axle given by the magic for-
mula tire model [19]. The resulting lateral force (See Fig. 2) is the sum of the contri-

butions of all tires on that axle and the load at each axle is evenly distributed among

all tires. For more details about the tire and vehicle models, see [17].

4 Simulation Model

The mathematical models described above are implemented in a open source simula-

tion package called OpenVD: Open Vehicle Dynamics [20]. The vehicle parameters

of the simulation model are listed in Tables 1 and 2. Thereby, the mass over each

axle is given by mF = 6,000.0 kg, mR = 10,000.0 kg and mM = 17,000.0 kg, which

correspond to the weight limits of Brazilian legislation for the number of tires used

in each axle. The negative value of c indicates that the articulation point lies within

the wheelbase of the tractor.

To illustrate the performance of the simulation model two cases are presented

below where two different and arbitrary initial conditions are given to the system with

no input. Hence, 𝛿 = 0 rad, Fx,F = 0N, Fx,R = 0N and Fx,M = 0N. The integration

parameters can be found in Table 3 for both cases.

In Figs. 3 and 4 the vehicle is plotted at different stages of the maneuver. The

tractor is represented by the smallest rectangle and the semitrailer by the larger one.

The trajectories of each axles are also shown.

In Fig. 3 the vehicle moves sideways and rotates. The relative yaw angle oscil-

lates with decreasing amplitude and converge to zero. Finally, the vehicle travels in

a straight line but in a different direction from the initial one. Figure 5a shows the CG
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Table 1 Articulated vehicle model—vehicle parameters

Item Description Value Unit

mT Mass of the tractor 7,677.0 kg

mS Mass of the semitrailer 25,323.0 kg

IT Moment of inertia of

the tractor

4.61 × 104 kg m
2

IS Moment of inertia of

the semitrailer

4.52 × 105 kg m
2

a Distance between

points F and T
1.128 m

b Distance between

points T and R
2.422 m

c Distance between

points R and A
−0.31 m

d Distance between

points A and S
4.901 m

e Distance between

points S and M
2.399 m

nF Tires at the front axle 2 −
nR Tires at the rear axle 4 −
nM Tires at the semitrailer

axle

8 −

𝜇 Friction coefficient 0.3 −

Table 2 Articulated vehicle model—magic formula tire parameters

Item Description Value Unit

𝚊0 Shape factor 1.003 −
𝚊1 Load dependency of

friction coefficient

2.014 1/kN

𝚊2 Friction coefficient

level

710.501 −

𝚊3 Maximum cornering

stiffness

5.226 × 103 N/deg

𝚊4 Load at maximum

cornering stiffness

78.877 kN

𝚊5 Camber sensitivity of

cornering stiffness

0.011 1/deg

𝚊6 Load dependency of E −0.005 1/kN

𝚊7 E level 0.670 −
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Table 3 Articulated vehicle model—integration parameters

Item Description Value (Case 1) Value (Case 2) Unit

t Simulation time 12 15 s

x0 Initial

longitudinal

position

0.0 0.0 m

y0 Initial transversal

yaw angle

0.0 0.0 m

𝜓0 Initial yaw angle 0.0 0.0 rad

𝜙0 Initial relative

yaw angle

0.0 0.0 rad

vT,0 Initial speed 20.0 20.0 m/s

𝛼T,0 Initial vehicle

side slip angle

0.3 0.0 rad

�̇�0 Initial yaw rate 0.25 0.4 rad/s

̇

𝜙0 Initial relative

yaw rate

0.25 0.4 rad/s

Fig. 3 Successive frames of the articulated vehicle maneuver. Case 1. Without jackknifing (The

first 8 s of the maneuver)

−20 0 20 40 60 80 100
−10

0

10

20

30

Fig. 4 Successive frames of the articulated vehicle maneuver. Case 2. With jackknifing (The first

6 s of the maneuver)
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Fig. 5 Acceleration for both cases

acceleration signal for the first case maneuver. This behavior is considered favorable

because there is no jackknife event and the maximum lateral acceleration does not

exceed the stipulated rollover threshold (0.35 g).

Figure 4 shows the maneuver in which the lateral force of the tires are not able

to prevent the excessive yaw rate of the tractor causing the jackknife. Again, Fig. 5b

shows the CG acceleration signal for this maneuver. It is important to note that, in

spite of the occurrence of jackknifing, the maximum lateral acceleration is main-

tained below the rollover threshold during the entire maneuver.

5 Results and Discussion

As discussed so far, the steady-state condition of the system with no input consists

in the movement of the vehicle in a straight line with a specific final speed. However,

not every final condition of the model is achieved without the occurance of instabil-

ity events. If 𝛼T converges, for instance, to +𝜋 rad or −𝜋 rad the vehicle travels in a

straight line but it is evident that the tractor is moving backwards. Therefore, it is pos-

sible to trace the convergence region in a phase plane where all the initial conditions

converge to the movement of the vehicle in a straight line without the occurrence of

jackknife or rollover. Additionally, in the maneuver of interest the value of 𝜙 should

not assume values greater than 90◦ due to the constructive characteristics of the vehi-

cle. Besides that, the initial relative yaw rate ̇

𝜙0 gets the same value assigned to the

initial condition �̇�0 throughout the phase plane sweep. This feature ensures an initial

relative rotation between the two units.

The two most representative yaw-related states, 𝛼T and �̇� , form the phase plane

used in this section. All other states and relevant quantities are monitored for assess-

ing the initial conditions. The phase plan was discretized vertically from point

�̇� = −1.395 rad/s to the point �̇� = 1.395 rad/s in steps of Δ�̇� = 0.015 rad/s and in

the horizontal direction from the point 𝛼T = −1.560 rad to the point 𝛼T = 1.560 rad
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in steps of Δ𝛼T = 0.015 rad. So, the phase plane grid has 39,083 points. The system

is integrated for each initial condition with the vehicle data presented in Tables 1 and

2. The integration time is 20 s with resolution of 0.1 s. The configuration of the states

to which the system converges is checked and the initial condition is marked appro-

priately. The maximum value of the relative yaw angle and the maximum values of

the lateral acceleration of the two units are also checked. The lateral acceleration

threshold is 0.35 g. If the system converges to the pair (𝛼T,f = 0, �̇�f = 0) and the

other criteria are also satisfied the initial condition is part of the region of interest.

Otherwise it is assigned to one of the adjacent region.

5.1 Varying the CG Velocity

In this section we investigate the variation of the convergence region according to

the initial speed of the center of gravity of the tractor vT,0. The phase plane sweep

is performed for each value of the initial speed. The analyzed speed range goes

from vT,0 = 10m/s to vT,0 = 30m/s in steps of ΔvT,0 = 2m/s, totaling eleven ini-

tial speeds. Figure 6 shows the change in the convergence region as a function of the

variation of the initial speed of the tractor in the phase plane.

The total area of the convergence region decreases with the increase of the ini-

tial speed of the tractor. For positive values of 𝛼T (transversal component of the

velocity vector 𝐯T pointing to the left of the vehicle) the convergence region is, for

all speeds, larger when the yaw rate is positive (vehicle turning counter-clockwise)

than when the yaw rate is negative (vehicle turning clockwise). This implies that for

𝛼T > 0 a small negative initial yaw rate puts the system out of the convergence region.

However, the first quadrant region which is larger for smaller initial speeds, has its

area significantly reduced as the initial speed increases. Meanwhile, in the fourth

Fig. 6 Convergence region

with varying CG velocity. 𝛼T
and �̇� are the side slip angle

and yaw rate of the tractor,

respectively. Initial

conditions inside the

convergence region generate

maneuvers without the

occurance of rollover and

jackknife
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Fig. 7 Convergence region

with varying articulation

point. 𝛼T and �̇� are the side

slip angle and yaw rate of the

tractor, respectively. Initial

conditions inside the

convergence region generate

maneuvers without the

occurance of rollover and

jackknife

quadrant the displacement of the convergence region border is smaller. A similar

analysis can be made for negative values 𝛼T due to the anti-symmetry of the conver-

gence region.

5.2 Varying the Articulation Point

This section shows the variation of the convergence region caused by different log-

itudinal positions of the articulation point. The values of the quantity that indicates

the position of the articulation point in relation to the rear axle of the tractor range

from c = −0.5m to c = +0.5m in steps of Δc = 0.1m, totaling eleven values. It

is important to note that negative values of c indicate that the articulation point lies

between the wheelbase of the tractor and positive values indicate that the articulation

lies behind the rear axle of the tractor (Fig. 7).

The region with the largest area in the phase plane has the articulation point at

c = −0.5m and as the value of c increases the total area decreases until the smallest

area at c = +0.5m. Two different phenomenon can be observed with respect to the

changes experienced by the region of convergence. The first is the narrowing of the

region toward the state �̇� , i.e. for a given state value of 𝛼T the set of values of �̇�

contained in the convergence region decreases as the value of c increases. The second

phenomenon is the rotation of the convergence region. The region, which for c =
−0.5m is approximately horizontal, rotates counter-clockwise and become diagonal

when c = +0.5m. A consequence of these rotation is the increase of the range of �̇�

which can contain convergent initial conditions, despite the significant reduction of

the total area of the region.

Moreover, as the quantity c increases you can check the fragmentation of the

region into several smaller regions, although a larger central region of convergence
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is maintained. This effect may be due to the phase trajectory method which makes

use of the discretization of the phase plane. However, it is also reasonable to assume

that the system shows this kind of characteristic.

6 Conclusion

The phase trajectory method allowed the estimation of a convergence region in the

phase plane for an articulated vehicle composed by a tractor and a semitrailer. The

integration of the system with a initial condition belonging to the interest conver-

gent region produces a maneuver in which the vehicle ends up traveling in a straight

line without the occurance of instability events such as jackknife and rollover. Fur-

thermore, the variation of this convergence region is analysed as a function of the

tractor speed and the position of the articulation point. In all cases it is possible to

observe convergent initial conditions predominantly in the first and third quadrant of

the phase plane. As the speed increases and the articulation point moves backwards

the convergence region becomes smaller. Particularly, the variation of c produces the

narrowing and rotation of the these region.
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The Influence of Inertial Forces
on Manual Wheelchair Propulsion

Alberto Amancio Jr., Fabrizio Leonardi, Agenor de Toleto Fleury
and Marko Ackermann

Abstract Both experimental and computational studies have contributed to the
understanding of the loads during wheelchair propulsion and the factors leading to
the incidence of musculoskeletal disorders. However, few studies have addressed
the influence of inertial forces on wheelchair propulsion, which are potentially large
as upper limb segments undergo large accelerations along the different phases of the
propulsion cycle. This study determines and investigates the influence of inertial
forces during manual wheelchair propulsion for a subject at two different loco-
motion velocities. The isolated influence of inertial as well as gravitational forces is
determined using a planar model of the upper extremity and an inverse-dynamics
approach. The results show that the inertial forces are preponderant even at lower
speeds. These findings evidence that quasi-static models are inappropriate to
investigate wheelchair propulsion and show the importance of accurate estimation
of anthropometric parameters such as segment masses and moments of inertia,
which directly affect inertial force estimations in inverse dynamics-based studies of
wheelchair propulsion. The results can also help guide investigations on efficient
propulsion techniques, as they show that the radial component of the pushrim forces
are, to a large extent, determined by inertial effects rather than by an inefficient
propulsion technique.
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1 Introduction

According to the World Health Organization (WHO), approximately 1% of the
world’s population needs wheelchairs. Unfortunately, wheelchair locomotion is an
inefficient means of locomotion because of the biomechanics of manual wheelchair
propulsion [1]. Furthermore, due to the large and repetitive loads on the upper
limbs, the incidence of upper extremity pain and injury in long-term users is high
[2]. According to [3], the most affected area is the shoulder.

Both experimental and computational studies have contributed to the under-
standing of the loads during propulsion and the factors leading to the incidence of
musculoskeletal disorders [1–5]. Many studies have focused on the reduction of the
required demand on the upper limbs through modifications in the wheelchair
configuration and in the propulsion technique [3]. Few studies, however, have
addressed the influence of inertial forces on wheelchair propulsion, which are
potentially large as upper limb segments undergo large accelerations along the
different phases of the propulsion cycle [5]. With the increasing accuracy of
musculoskeletal models and the growing computational power, computational
simulations permit the virtual testing in various scenarios [4, 5].

This study investigates the influence of inertial forces during manual wheelchair
propulsion for a subject at two different locomotion velocities (approximately 1.3
and 2.0 m/s). The influence of inertial, gravitational and muscle forces is deter-
mined using a planar model of the upper extremity, an inverse-dynamics approach
and static optimization. The propulsion patterns are measured in a motion analysis
laboratory. The upper limb and wheelchair kinematics are computed from videos
acquired by means of a camera and the hand forces by an instrumented pushrim [6].

2 Methods

2.1 Mechanical Model

We employed a planar multibody model of the upper limb composed of two rigid
bodies representing forearm and arm (Fig. 1). The shoulder and the elbow are
modeled as ideal hinge joints driven by total active joint moments, τs and τe,
respectively, due to the muscles crossing these articulations. The masses, moments
of inertia, center of mass locations and segment lengths are estimated using
anthropometric data from a scaled OpenSim model [7, 8] for a 1.69 m, 69.5 kg
person, which corresponds to the stature and weight of the subject. The adopted
generalized coordinates q are the angle between the upper arm and the vertical β,
the angle between the forearm and the upper arm α, and the horizontal displacement
of the wheelchair and shoulder joint, x, as q = [x β α]T. In the propulsion phase, as
in Fig. 1, the hands P are in contact with the pushrims and the contact forces Fx and
Fy arise, which are measured by the instrumented wheel.
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The equations of motion of the wheelchair-user system depicted in Fig. 1 were
derived using the Newton-Euler Formalism [9] incorporating the hand-rim contact
forces into the equations of motion as

Mq ̈+ k q ̇, qð Þ= kgðqÞ+GðqÞ Fx

Fy

� �
+HðqÞ τs

τe

� �
, ð1Þ

where M is the mass matrix, k is the vector of generalized Coriolis and centrifugal
forces, kg is the vector of generalized forces due to gravity, G transforms the
horizontal Fx and vertical Fy components of the handrim force (Fig. 1) in gener-
alized forces and H transforms the shoulder moment τs and the elbow moment τe in
generalized forces.

2.2 Inverse Dynamics

The joint moments, τs and τe, are computed using inverse dynamics from the
measured hand contact forces (Fx and Fy) and upper limb kinematics (q, q ̇ and q ̈) as

τs
τe

� �
=HðqÞ− 1 M q ̈+ kðq ̇, qÞ− kgðqÞ−GðqÞ Fx

Fy

� �� �
. ð2Þ

2.3 Musculoskeletal System Model

In this study, we used the open biomechanics simulation package OpenSim, which
provides a platform for the development and simulation of musculoskeletal models
[8]. We adopted the upper extremity model by Holzbaur et al. [7]. This model has

x

β

α

x

β

α
P

P

Fig. 1 Upper limb model
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21 Hill-type muscle models, four of them biarticular, acting across the shoulder and
elbow joints. In this analysis, the tendon was considered stiff and the force-length
and force-velocity relationships were adopted from [10]. The force in muscle i is

Fti = ai fli fvi cosðθiÞFisoi = ai ki Fisoi, ð3Þ

where ai is the muscle activation, fli is the force-length relationship, fvi is the
force-velocity relationship, θi is the muscle fibers pennation angle, Fisoi is the
maximal isometric force of muscle i, and ki is a modulation factor incorporating
the force-length and force-velocity relationships.

2.4 Model Integration

It was necessary to integrate the OpenSim musculoskeletal model to the mechanical
model of the upper extremity implemented in Matlab. Figure 2 shows all the steps
necessary to estimate muscle forces along the propulsion cycle using the OpenSim
and Matlab models. From the upper limb kinematics data obtained experimentally,
the generalized coordinates and their time derivatives ðt, qðtÞ, q ̇ðtÞ and q ̈ðtÞÞ are
computed. The joint angles α(t) and β(t) are used as input to the OpenSim program
for the computation of the modulation factor of each muscle ki(t), as well as
the muscle moment arm of each muscle with respect to the shoulder ds,i(t) and
elbow de,i (t) along the whole propulsion cycle. OpenSim also provides the maximal
isometric muscle force for each muscle Fisoi. The collected contact forces on the
handrim, Fx and Fy, allow for the computation of the joint moments by inverse
dynamics, Eq. (2). Finally, all the information is integrated for the estimation of
muscle activations using the static optimization technique [11].

From the moment arms, modulation factors and maximal isometric forces, it is
possible to write the shoulder and elbow moments as function of muscle activations
as

experimental
data

MUSCULOSKELETAL 
MODEL             

(OpenSim) STATIC 
OPTIMIZATION

(Matlab)

DATA 
PROCESSING

(Matlab)

INVERSE  
DYNAMICS 

(Matlab)

Fig. 2 Block diagram showing steps to estimate muscle forces
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τs
τe

� �
=

dO, 1k1Fiso1 ⋯ dO, 21k21Fiso21
dC, 1k1Fiso1 ⋯ dC, 21k21Fiso21

� � a1
⋮
a21

2
4

3
5=D

a1
⋮
a21

2
4

3
5. ð4Þ

3 Estimation of Muscle Forces

Equation (4) represents a system of 2 equations for 21 unknown muscle activations,
which results in the so-called muscle redundancy problem. Assuming the user
propels the wheelchair so as to minimize a given performance criterion, the problem
of determining the muscle forces or muscle activations can be formulated as an
optimization problem, an approach widely used in the literature and known as static
optimization [11]. According to this approach, the muscle forces/activations are
determined by solving the optimization problem in each considered instant of time.

In this study, we adopted the sum of the squared muscle activations as the cost
function J, which is commonly used in the literature (e.g. [12]), as

J = ∑
21

i=1
a2i ð5Þ

The optimization problem is subject to physiological lower and upper constraints
on the muscle activations, which ensure muscles are not pushing and do not exceed
their maximal force application capacity.

4 Determining the Contributions of Inertial, Gravitational
and Muscle Forces

In order to estimate the contribution of inertial, gravitational and muscle forces to
the handrim forces, we partition the equations of motion, Eq. (1), into three parts
[5] as

Mq ̈+ kðq, q ̇Þ=GðqÞ Fx, i

Fy, i

� �
, ð6Þ

0= kgðqÞ+GðqÞ Fx, g

Fy, g

� �
, ð7Þ

0=GðqÞ Fx, a

Fy, a

� �
+HðqÞD

a1
⋮
a21

2
4

3
5. ð8Þ

The Influence of Inertial Forces on Manual Wheelchair Propulsion 463



Note that the sum of these three equations, Eqs. (6)–(8), results in the equations
of motion, Eq. (1), if

FX

FY

� �
=

Fx, i

Fy, i

� �
+

Fx, g

Fy, g

� �
+

Fx, a

Fy, a

� �
, ð9Þ

where Fx,i/Fy,i, Fx,g/Fy,g and Fx,a/Fy,a are the handrim forces due to the inertial,
gravitational and muscle forces, respectively.

From the perspective of the upper limb joint moments, a similar approach allows
for the determination of the individual contributions of the inertial, gravitational and
handrim contact forces to the joint moments. Here again the equations of motion

τs
τe

� �
=HðqÞ− 1 Mq ̈+ kðq ̇, qÞ− kgðqÞ−GðqÞ Fx

Fy

� �� �
ð10Þ

are partitioned into three parts. The contribution of the inertial forces to the shoulder
and elbow moments is

τsi
τei

� �
=HðqÞ− 1 Mq ̈+ kðq ̇, qÞð Þ. ð11Þ

The contribution of the gravitational forces to the upper limb joint moments is

τsg
τeg

� �
=HðqÞ− 1 − kgðqÞ

� �
. ð12Þ

Finally, the contribution of the handrim contact forces to the upper limb joint
moments is

τsc
τec

� �
=HðqÞ− 1 −GðqÞ Fx

Fy

� �� �
ð13Þ

The individual contributions sum up to the total joint moments as

τs
τe

� �
=

τsi
τei

� �
+

τsg
τeg

� �
+

τsc
τec

� �
. ð14Þ

5 Experiments

The experimental protocol was approved by a Brazilian Research Ethics Committee
(CAAE: 48153015.0.0000.5508). One 26-year old, male, healthy subject was
selected and interviewed about the existence of any previous history of muscu-
loskeletal disorder, injury or pain. In the absence of any of the mentioned conditions
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and after an explanation of the experimental procedure, the subject gave his
informed consent. The subject’s weight, stature and other anthropometric mea-
surements were collected. The experiments consisted of two conditions: (1) com-
fortable, self-selected locomotion velocity on a level surface along a straight
distance of about 7.5 m; and (2) fast, self-selected locomotion on a level surface
along a straight distance of approximately 9.5 m. Each test was repeated three
times. The subject started from rest and achieved the steady-state condition at about
the midpoint of the trajectory. The subject was instructed to keep his trunk motion
to a minimum during the trials.

The experiments were performed in the Biomechanics and Motor Control Lab
(BMCLab) of the Federal University of ABC, led by Prof. Dr. Marcos Duarte. The
subject propelled a manual wheelchair (Kueschall, Compact 2009 SB 400 mm).
The left wheel was replaced by the force measurement system SmartWheel [6]. The
handrim force data was measured at 240 Hz. Reflective, 25 mm markers were
placed on anatomic locations [13] and on the wheelchair’s wheel (see Fig. 3).
Sagittal plane kinematics was collected with a digital camera (BASLER, scA630) at
120 frames/s.

6 Data Processing

The recorded videos were processed to obtain the 2D, sagittal plane marker tra-
jectories using the software SkillSpector (www.video4coach.com). In order to
reduce skin motion artifacts affecting the deltoid marker, the horizontal shoulder
joint position x was assumed equal to the horizontal position of the acromion

Fig. 3 Reflective markers on
the subject and wheelchair
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marker. The vertical position of the shoulder joint, in turn, was considered fixed and
located 5 cm below the average vertical position of the acromion along the loco-
motion cycle.

All the data was filtered using a low-pass, fourth-order, zero-lag Butterworth
filter with a cut-off frequency of 6 Hz [14, 15]. The sinchronization of the kine-
matics and handrim force data was performed by comparing the wheel angular
position profile provided by the SmartWheel system and the one computed through
the wheel markers.

The joint angles β and α (Fig. 1) were computed from the trajectories of the
marker positions. The shoulder angle β was obtained from the trajectories of the
shoulder joint and the lateral epicondyle marker. The elbow flexion angle α was
obtained from the trajectories of the lateral epicondyle and metacarpophalangeal
markers. Finally, the first and second time derivatives of the coordinates x, β and α
were obtained through finite differences.

7 Results

Figure 4 shows the upper limb kinematics and the handrim contact force along a
complete propulsion cycle in a trial performed at an average speed of 1.3 m/s. The
blue and red segments represent the arm and the forearm, respectively. The contact
force is represented by the black arrows.

arm

forearm

forces

0,2 m

20 N

scale:

Fig. 4 Graphical representation of upper limb kinematics and handrim contact force along a
complete propulsion cycle at an average speed of 1.3 m/s
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Figure 5 shows the individual contributions of the inertial (blue), gravitational
(red), and contact (green) forces to the total shoulder moment (black) for both
locomotion speeds, 1.3 m/s (on the left) and 2.0 m/s (on the right). The reported
results represent the average over the three trials for each locomotion speed.

Figure 6 shows the individual contributions of the inertial (blue), gravitational
(red) and contact (green) forces to the total elbow moment (black) for both
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Fig. 5 Individual contributions of the inertial (blue), gravitational (red) and contact (green) forces
to the total shoulder moment (black), for the average speeds of 1.3 m/s (left) and 2.0 m/s (right)
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Fig. 6 Individual contributions of the inertial (blue), gravitational (red) and contact (green) forces
to the total elbow moment (black), for the average speeds of 1.3 m/s (left) and 2.0 m/s (right)
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locomotion speeds, 1.3 m/s (on the left) and 2.0 m/s (on the right). The reported
results represent the average over the three trials for each locomotion speed. Note
that the contact force contribution is not zero in the recovery phase in which the
hand is not in contact with the handrim. This occurs because of measuring errors in
the SmartWheel system, which provide non-zero contact values at the recovery
phase as shown in Fig. 4.

8 Discussion and Conclusion

The results show that the inertial forces determine, to a great extent, the profile of
the total joint moments, specially of the shoulder, even at the lower locomotion
speed. While the gravitational contribution remains almost the same in the two
locomotion speeds because it depends exclusively on the upper limb configuration,
the inertial forces contribution increases considerably at the larger locomotion
speed as accelerations of the upper limb segments increase. It is interesting to
observe that the contribution of the handrim contact force to the total shoulder
moment is small compared to the contribution of the inertial forces, indicating that a
large part of the muscular activity at the shoulder is employed to accelerate the joint
segments rather than effectively applying propulsion forces on the handrim.

These findings evidence that quasi-static models (e.g. [16]) are inappropriate to
investigate wheelchair propulsion, even at relatively low locomotion speeds.
Moreover, these results show the importance of accurate estimations of anthropo-
metric parameters such as segment masses and moments of inertia, as well as
measurements of segment accelerations which directly affect inertial force estima-
tions in inverse-dynamics-based studies of wheelchair propulsion.

The results can also help guide investigations on efficient propulsion techniques,
as they show that the radial component of the handrim forces, Fig. 4, is, to a great
extent, determined by inertial and gravitational effects rather than by an inefficient
propulsion technique [5]. This corroborates experimental results by Bregman et al.
[17], according to which instructing wheelchair users to direct propulsion forces
tangentially to the handrim led to increased metabolic cost during wheelchair
propulsion, i.e. resulted in a less efficient locomotion.
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Numerical Simulation of Track
Settlement Using a Multibody Dynamic
Software—A Holistic Approach

Alejandro de Miguel , Albert Lau and Ilmar Santos

Abstract A novel and numerical methodology to analyse the train/track dynamic

interaction and its influence on the overall track settlement mechanism is presented.

This will be achieved by creating an iterative loop that makes possible to assess the

condition of the track based on the vehicle forces. The main contribution of this

work rests on performing a track degradation analysis considering a regular stretch

of railway track. In the first phase, a train/track interaction analysis is developed

and assessed by evaluating the contact forces between the wheel and the rail. In a

second phase, the forces at each particular support, beneath the rail, are extracted

and transformed, by applying a degradation law at the ballast layer, into vertical

displacements that in turn are applied as longitudinal level irregularities in the rail.

The process is completed by including the updated geometry that enables the further

calculations, in a loop mode, considering as many cycles as required.

Keywords Train/track interaction ⋅ Multibody simulation ⋅ Railway turnouts

1 Introduction

The high performance requirements, together with the increasing demand of the rail-

way transport system is quite evident in many developed countries around the world.

As a result, a sustainable development for both passenger and freight traffic, is cur-

rently taking place.

It is a priority for the different actors involved in the railway field to accomplish a

significant reduction in maintenance costs caused by track quality deterioration and
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permanent settlements in ballasted track. To achieve such a goal it is fundamental

to develop accurate numerical track degradation tools that combined with empirical

data, provide an efficient mechanism that allows one to simulate track degradation

and plan the proper maintenance works, minimizing the overall maintenance cost of

railway tracks.

According to Suiker [1], deterioration of the track is a phenomenon that takes

place in two different phases: the short-term and the long-term. Other authors gave

important insights by analyzing the permanent settlement of the track when simulat-

ing track deterioration, as it is described in Refs. [2–5].

Nguyen et al. [6], in their numerical work, pointed out that the permanent defor-

mation of the track is strongly influenced by the train load and the number of train

passages.

Currently, train-track numerical simulation is divided into two main methodolo-

gies that provide a good approach that helps to understand the complex behaviour

between two systems that interact together. These models, properly calibrated, have

the advantage of reducing reliance on experimental campaigns that, in some cases,

may be expensive and time-consuming. The first one is the multibody simulation

software (MBS) and the second one is the finite element method (FEM). Both of

them present pros and cons. For instance, MBS software provide efficient solutions,

from the point of view of computational time, by oversimplifying the track mod-

elling. On the other side, FEM codes are able to simulate the interaction between

the train and the track by modelling both systems accurately but spending too much

computational effort.

This study presents a novel technique that combines, in an efficient way, the capa-

bilities of MBS and FEM methods so the computational advantages and the accu-

rate representation of the track system are kept. This combination makes possible

to consider the forces from the train acting on the track and its impact on the track

settlement phenomenon. Likewise, the settlements impact on the forces by the train,

which in turn will increase the settlement even further.

The mentioned capabilities are taken into account in order to implement a loop

process that enables one to consider the track irregularities at different analysis steps.

2 Description of the MBS Model Based
on the Euler-Bernoulli Beam Theory

2.1 Dynamic Interaction Through Numerical Approaches

Computer software has developed continuously during last decades, so the capabil-

ities of the programs that enable us to evaluate the dynamic interaction between the

train and the track, have growth exponentially. It is expected that numerical tools will

gain a lot of importance in the upcoming decades because they reduce significantly

reliance on arduous experimental campaigns.
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In some works as [7–9], the authors did integrate MBS and FEM methodologies

with the goal of overcoming the disadvantages coming from both of them. However,

the computational effort remaining when integrating MBS and FEM platforms is

still high and this is one of the main reasons that motivates this work.

In the present article a new approach to simulate track degradation, is used. In

it, an Euler-Bernoulli beam track (EBT) model is used as the starting point of this

research.

2.2 EBT Model

The EBT model described in [10], is a methodology that is implemented in the com-

mercial software GENSYS [11].

A fixed track model is used to simulate the dynamic interaction between the mov-

ing masses, representing the train and the track. A continuous multi-span Euler-

Bernoulli beam, is elastically constrained at the supports, which aims at simulating

the effect of the sleepers. The sleepers are modelled as lump masses with a regular

spacing of 60 m. Between the sleepers and the rail a set of spring-damper systems

is placed with the purpose of including the effect of the railpads. In the same way,

underneath the sleepers a set of spring-damper system is implemented in order to

account for the behaviour of the ballast layer.

The dynamic behaviour of the Euler-Bernoulli beam can be characterized by

using the Lagrange equation that relates the kinetic energy and the potential energy

of the system. By using modal superposition, the vertical deflection of the beam

Y(t) is expressed below, given by a linear combination of its first h undamped mode

shapes.

Y(t) =
h∑

i=1
𝜙iWi(t) (1)

where 𝜙i denotes the i undamped mode-shape vector and Wi(t) is the modal coef-

ficient of vertical deflection. By substituting Eq. (1) into the energetic expression

given by Lagrange equation, one gets a set of i ordinary differential equations, for

i varying from 1 to h (the number of undamped modes considered in the analysis).

Each equation describes a single degree of freedom model, in the considered modal

subspace, since the damping coefficient in this case is assumed to be proportional

(Rayleigh viscous damping). The set of ordinary differential equations Eq. (2) can

be solved either analytically or by using some of the available numerical integration

techniques.

Ẅh + 2𝜉h𝜔hẆh + 𝜔2
hWh =

q
mh

(2)
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Fig. 1 Track layouts. a Physical track system; b EBT model; c FEM model

where mh, 𝜉h and 𝜔h refer to the modal mass, damping ratio and modal frequency of

the hth mode respectively. Parameter q refers to the external load vector acting on

the system.

2.3 Static and Dynamic Validations of the Track Model

At this point, it is necessary to validate the EBT model. It is decided to validate the

model statically and dynamically, against a more sophisticated FEM model described

in [12], that in turn, was also validated against experimental results. A similar valida-

tion technique can be found in [6] in which 2-D and 3-D finite element track models

were benchmarked.

To achieve the aforementioned goal, a regular stretch of track is created in both

the MBS software, where the EBT beam has been implemented, and in the two-

dimensional FEM (used in this work as a benchmark). The track components consid-

ered in this comparison were the rail, railpads, sleeper and ballast layer, see Fig. 1a.

The EBT model, Fig. 1b, consists of an Euler-Bernoulli beam that can be discretized

into smaller beam elements. This beam aims at simulating the rail and it is elastically

supported on the railpads, which are modelled by a set of spring-damper systems that

rest on the sleepers. A set of masses placed every 60 m is used to simulate the sleep-

ers effect. Finally, the ballast layer is modelled in a similar way as the railpads by

connecting the sleepers to the ground that is considered to have an infinite stiffness.

An equivalent FEM model is created in the commercial software ANSYS [13].

Similar models were previously used and validated in [12, 14], so they were proved

to characterize the track statically and also dynamically. The equivalent FEM model,

Fig. 1c, is based on a two-dimensional approach in which rails are modelled using

discrete beam elements (BEAM3). The railpads beneath, are modelled using a

spring-damper system (COMBIN14). Sleepers and ballast layer are modelled by

means of plane stress elements (PLANE182). The type of element and the mechan-
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Table 1 Particular elements used to model the track components

Track

components

Elements EBT

model

Elements FEM

model

Nomenclature

EBT

Nomenclature

FEM

Rail Beam Beam Beam_3 BEAM3

Railpad Spring-damper Spring-damper Plin_36 COMBIN14

Sleeper Mass 2-D plane stress M_rigid_6f PLANE182

Ballast Spring-damper 2-D plane stress Plin_36 PLANE182

Table 2 Main parameters used in the simulations

Parameter Value

Model length (m) 30

Beam discretization (m) 0.01

Sleeper spacing (m) 0.60

Rail bending stiffness (N m
2
) 6.11 × 106

Rail mass (kg/m) 60

Railpad stiffness (N/m) 200 × 106

Railpad damping (N s/m) 30 × 103

Sleeper mass (kg) 157.4

Ballast stiffness (N/m) 160 × 106

Ballast damping (N s/m) 500 × 103

Ballast thickness (m) 0.40

ical characteristics used for both models are depicted in Table 1 and Table 2, respec-

tively. Assumed values taken from [6, 15].

Validation of the EBT model was a fundamental issue to check the suitability of

the program. It is worth noting that the MBS code has been previously used to ana-

lyze interaction forces between the train and the track, particularly at track locations

were complex geometries make the analysis of train/track interaction an even harder

task. This is the case of railway turnouts. Prediction of contact forces between train

wheels and rail is not a trivial task and GENSYS has been successfully benchmarked

against other software packages in [16].

Simulations of train/track dynamic interaction have been traditionally carried out

in GENSYS considering a moving track system that consists of a set of springs and

dampers. The moving track system moves together with the wheelset of the train

model. This simplification is valid and provides a rough approach of the locations

where the maximum peaks of the wheel/rail contact forces take place in a railway

turnout, as addressed in Ref. [17]. This feature together with the demonstrated com-

putational effort efficiency, makes the software appropriate for track optimization

analyses. However, the current modelling approach used in GENSYS presents two

small difficulties. On one hand, the magnitude of contact forces is not accurately

obtained because of the simplifications assumed in the track modelling. On the other
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hand, the simplifications of the track modelling does not allow one to analyze the

effect of the train/track interaction on the layers beneath the rail, thus it is not pos-

sible for the program to provide information regarding displacements, velocities,

accelerations and the force transmitted to the rest of the track elements.

The latter information is fundamental when a degradation analysis has to be per-

formed; it is together with the implementation of a degradation law the strongest

point of this work. In light of the above, it is very important to perform two types of

validation, static test and dynamic test. Through the first one, the static displacement

is obtained when a vertical point load is applied on the top of the rail, so the proper

configuration of the spring set underneath the rails can be verified, see Fig. 2a. The

purpose of the second test is to characterize the track system from a dynamic point

of view, so the proper configuration of the mass-damper-spring and beam elements

of the EBT model is able to provide the main resonant frequencies and mode shapes

of the track, as referred in [18]. This test was performed by applying a harmonic load

in the middle point between two sleepers. The relationship between the amplitude

of displacements and the applied force, at the same point, provides the receptance

curve of the track, see Fig. 2b.

2.4 Validation of the Train/Track Interaction

Once the static and dynamic validations of the model have been completed, it is

necessary to validate the track model when it is coupled with the vehicle model. This

validation will verify that a proper train/track interaction is obtained when the vehicle

is moving over the track. For this purpose, a simplified model of a train wheelset is

created for both FEM and EBT models. The wheelset moves over a regular stretch

of track with a 30 m length, as described before. To simplify the analysis, only the

rail and the flexibility provided by the railpads will be considered in this assessment.
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Table 3 Main parameters used in the wheelset/track simulation

Parameter Value

Model length (m) 30

Beam discretization (m) 0.01

Railpad spacing (m) 0.60

EB bending stiffness (N m
2
) 6.11 × 106

Rail mass (kg/m) 60

Railpad stiffness (N/m) 200 × 106

Railpad damping (N s/m) 30 × 103

Wheelset speed (km/h) 80

Wheelset mass (kg) 1800

Wheel/rail contact stiffness (N/m) 600 × 106

Wheel/rail damping coefficient (N s/m) 600 × 103

Contact stiffness (N/m) 1.43 × 109

The dynamic interaction response obtained in this analysis may be used to prove

that the EBT model is able to capture some of the main resonant frequencies of the

train/interaction phenomenon.

Mechanical characteristics used to perform the dynamic interaction between the

wheelset and the track are listed in Table 3. Assumed values taken from [6, 15].

Through the analysis of the dynamic interaction forces in frequency domain, the

main resonant frequencies can be detected in the EBT model. Analyzing Fig. 3a,

three main peaks are obtained at 36, 67 and 74 Hz. The first and the last one corre-

spond to the sleeper passing frequency and its second harmonic. The sleeper passing

frequency is obtained by dividing the speed of the wheelset by the distance between

sleepers. So in this case, the sleeper passing frequency is 37.03 Hz (the second har-

monic lies around 74 Hz). The second peak corresponds to a transient behaviour of

the wheelset/track interaction, which has a large influence in the initial phase of the

contact force. This frequency corresponds to a transient interval in which the vehicle

comes into the track model and both systems bounce up and down together. A modal

analysis which is carried out in ANSYS provides a frequency, for the aforementioned

bouncing vibration mode of 66.60 Hz.

Note that for the case in which the interaction forces, coming from the moving

track, are analyzed none of these peaks are captured (dashed line) in Fig. 3a. This

implies a substantial improvement of the response given by the former models used

in MBS software to analyze dynamic interaction between the vehicle and the track.

It should be noted that the computational efficiency of the MBS approaches is also

kept in the EBT model, which makes this methodology suitable to perform tedious

degradation simulations.
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3 Description of the Implemented Degradation Process

3.1 Empirical Laws of Track Degradation

According to Ref. [19], the contribution of the ballast layer settlement may represent

up to 70% of overall settlement of the track, see Fig. 3b. For this reason, the ballast

layer is one of the track components with the highest influence on the overall track

degradation process, which is why in many cases, research works focus on predicting

track settlement evolution by only considering deformations at the ballast layer.

In this respect, Selig and Waters [19] came up with different degradation laws

based on experimental campaigns. They suggested the following law, given in Eq. (3),

to describe permanent ballast settlement:

𝜀N = 𝜀1N𝛽
(3)

where 𝜀1 refers to the permanent deformation obtained during the first loading cycle,

𝛽 is a constant and N is the number of cycles. According the experimental data

obtained by Selig and Waters [19], 𝜀1 and 𝛽 take the values of 0.35% and 0.21,

respectively.

It has been concluded that the growth rate of permanent track deformation is

significantly reduced as the number of loading cycles is increased [20]. The author

verified that the first loading cycle causes a very high deformation and afterwards,

the deformation of the ballast layer follows a logarithmic function like the one given

in Eq. (4).

𝜀N = 𝜀1N(1 + C log(N)) (4)
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models; b contribution of different layers to the total track settlement. Adapted from [19]
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Fig. 4 Stress/force status at the ballast layer given by a deviatoric stress; b reaction magnitude in

the sleeper

where 𝜀N refers to the permanent deformation of the ballast layer after N loading

cycles, C is a constant that, according to the authors, is equal to 0.20 and 𝜀1 refers to

the permanent deformation given by the first loading cycle in Eq. (5):

𝜀1 = 0.082(100np − 38.2)(𝜎1 − 𝜎2)2 (5)

where (𝜎1 − 𝜎2) is the deviatoric stress magnitude (difference between the major and

minor principal stresses) acting in the ballast layer, see Fig. 4a. Parameter np refers to

the porosity of the ballast layer that, in turn, depends on the initial tamping level and

on the characteristics of the ballast layer. The latter parameter usually varies between

0.40 and 0.50 according to Ref. [20].

In order to implement this law into a numerical code, it requires the previous

assessment of stress levels at the ballast layer, [21]. This unique characteristic makes

the degradation law perfect for numerical codes that enable the evaluation of stresses

in different materials, such the FEM packages. For this particular case in the EBT

model, the law does not match directly into the main capabilities of the program.

For that purpose, it would be necessary for the deformation of the ballast layer to be

directly connected to the magnitude of a force rather than stresses.

Another degradation law, provided by [2, 22], suggested a similar expression as

the one defined in Eq. (4) in order to define, for this particular case, the total ballast

settlement. This expression fits perfectly into the capabilities of the EBT model,

because unlike Eq. (4), this one takes into account the reaction force on the sleepers,

F = fkr + fcr + fkb + fcb, to define the degradation of the ballast layer, see Fig. 4b.

This is advantageous, as the reaction force on the sleepers is obtained directly from

the proposed EBT model. Such degradation law is expressed in Eq. (6).

uN = u1(1 + Clog(N)) (6)
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where uN is the permanent settlement of the ballast layer after N loading cycles. C is

a constant that, according to the authors, is equal to 0.43. The settlement during the

first loading cycle, u1, depends on the reaction magnitude in the sleeper F and also

on parameters s and a, Eq. (7).

u1 = sFa
(7)

where the parameter s takes a constant value of 0.00095 mm/kN [18], and variable

vary 0.001–0.0004 mm/kN, depending on the conditions of the track foundation [2].

For variable a, both authors assume a value of 1.60.

3.2 Loop Process to Simulate Track Degradation in the EBT
Model

Prediction of railway track settlement is done in this work by implementing an iter-

ative process. To achieve such a goal, two different packages are integrated into a

single tool that is able to predict track degradation by implementing the ballast set-

tlements during each iteration. The first package is the EBT vehicle track model,

created in the commercially available multi-body simulation tool, GENSYS. Capa-

bilities of this model were already demonstrated in the previous sections. The second

package is written in a program developed in the OCTAVE code [23], which contains

the algorithm that calculates the track settlement, according to Eqs. (6) and (7).

In the first phase, the vehicle/track interaction using the EBT model is simulated

in GENSYS. The passage of the train generates dynamic forces in all the spring-

damper sets located underneath the rail. Afterwards, the dynamic forces of the ele-

ments (spring and dampers) that converge into the sleeper are stored.

At each time step the sum of all the previous forces is done and the maximum

negative force (pointing downwards) is taken and stored again for each sleeper. As a

result of this, an array with the forces that have a significant influence in the ballast

settlement is generated. The size of the array is equal to the number of sleepers in

the EBT model.

In a second phase, the forces will be taken to calculate the ballast settlement dur-

ing the first loading cycle, Eq. (7). and the permanent settlement (in the vertical direc-

tion) of the ballast layer after N cycles, Eq. (6).

Permanent deformation caused by a single train passage is too low, for this reason

the degradation analysis will be carried out considering a set of ΔN rather than just

one at each iteration. This is an efficient way to avoid calculating the settlement for

each load cycle individually.

The values of ballast settlement obtained in OCTAVE are introduced back in the

EBT model, as longitudinal level track irregularities in the rail. Location of track

irregularities will be right above the sleepers and in the mid-span between two sleep-

ers, so discretization of the irregularities along the track is done every 30 m. A spline-
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cubic interpolation is used to smooth the track irregularity profiles and also to obtain

the magnitude of the irregularities at the mid-span locations.

Once the geometry of the track has been updated, a new dynamic interaction

between the train and the track is performed in the EBT model, so the loop process

can be extended as much as it is desired.

4 Results

With the purpose of testing the described methodology in which a degradation law

is implemented into the EBT model, a simplified train/track interaction example is

assessed. Both track and wheelset models used to perform such analysis are similar

than those described in the previous sections. The speed of the wheelset is for this

particular case 80 km/h.

It is possible to evaluate the increase in contact forces when an initial irregularity

is considered. This initial irregularity will create an uneven distribution of contact

forces locally surrounding the track defect, compared to other track sections. The dif-

ferent force magnitudes at the sleepers around the irregularity will generate different

settlement rates at each sleeper (generally with a higher magnitude of the settlement)

and degradation rates will be more accelerated in the vicinities of the irregularity,

which in turn causes increased differential settlements around the initial irregularity.

Two different scenarios are considered in this assessment. The first one, in which a

perfect track geometry without irregularities is considered, and the second one where

an initial defect is introduced in the EBT model. In the second scenario, the degrada-

tion analysis is carried out by simulating one iteration corresponding to 50,000 train

passages. Contact forces between the wheel and the rail are depicted in Fig. 5a.

Figure 5b shows the evolution of the track irregularities that have been obtained

when performing the track degradation analysis. The figure also shows track irregu-

larities when two iterations are considered and an initial track defect has been imple-

mented before starting the first simulation. It can be seen how track irregularities

grow especially in the vicinity of the initial defect considered in the first simulation,

when the vertical force at each individual sleeper is extracted and used to predict the

track settlement under each individual sleeper after 50,000 passages. Afterwards, the

updated geometry of track irregularity after 50,000 passages is inserted back into the

model to predict the subsequent vertical wheel force after another 50,000 passages.

This time, the vertical wheel force has higher amplitudes than it did when only the

initial irregularity was considered. The vertical force at each individual sleeper is

then used to predict the final geometry of the track across the model after a total

of 100,000 passages, and the corresponding settlement is shown in Fig. 5b (dashed

line).
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Fig. 5 Degradation analysis results: a vertical wheel/rail contact forces; b track irregularities

5 Conclusions and Future Aspects

A computational procedure to predict track degradation is described in this work.

The goal was to implement an evaluative ballast settlement algorithm in a commer-

cial MBS code, so that the program is able to provide a long-term simulation of the

dynamic interaction between the train and the track. The evolution of the track irreg-

ularities is thereby obtained by considering a certain number of loading cycles. The

advantage of this procedure is the low computational time compared to other similar

methodologies that are either implemented in FEM codes or by linking MBS and

FEM software as cross-disciplinary tools that are able to predict track degradation

iteratively.

This procedure applied for a regular track section can be extended to other critical

regions, such as railway turnouts, and transition zones where degradation process are

very important and accelerated. At these locations, numerical calculations of inter-

action forces are a non-trivial task, mainly due to the complexity of the track geom-

etry. MBS software and particularly the EBT model have proven to provide accurate

results of train/track interactions with low computational effort. The advantages of

implementing a settlement algorithm model have also been shown within this work,

as it enables one to evaluate track degradation phenomenon in a simple and efficient

manner. Furthermore, the settlement algorithm allows one to include a broad variety

of settlement laws and not only the one described in [2, 22]. In this respect, further

studies are needed to adapt and make the different degradation laws compatible with

the capabilities of the EBT model.

A systematic measurement program would be also needed to provide both a com-

plete calibration of the mechanical properties considered in the EBT degradation

methodology and a validation of the numerical results against real onsite data.
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Flexural Wave Band Gaps in a 1D
Phononic Crystal Beam

Edson Jansen Pedrosa de Miranda Jr.
and José Maria Campos dos Santos

Abstract The forced response of flexural waves propagating in a 1D phononic
crystal (PC) beam and its band structure are investigated theoretically and experi-
mentally. PC beam unit cell is composed by steel and polyethylene. The study is
performed by using six methods, finite element (FE), spectral element (SE), wave
finite element (WFE), wave spectral element (WSE), conventional plane wave
expansion (CPWE) and improved plane wave expansion (IPWE). Simulated
examples of a 1D PC beam considering unit cells of different sizes are analyzed.
Forced response results are presented in the form of displacement, transmittance
and receptance, and the elastic band structure is investigated using its real and
imaginary (attenuation) parts. Numerical and analytical results of all approaches are
in a good agreement, except by WFE and FE numerical results in high frequencies.
The effect of the amounts of polyethylene on the attenuation constant is studied.
Depending on the application, choosing polyethylene quantity correctly is not
simple, because it is related to the unit cell size and in which frequency the band
gap is opened up. An experiment with a 1D PC beam is proposed and numerical
and analytical results can localize the band gap position and width close to the
experimental results. A small Bragg-type band gap with low attenuation is observed
between 405 and 720 Hz. The 1D PC beam with unit cells of steel and polyethylene
presents potential application for vibration control.
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1 Introduction

Artificial periodic composites known as phononic crystals (PCs), consisting of a
periodic array of scatterers embedded in a host medium, have been quite studied
[12]. PCs have received renewed attention since they exhibit band gaps in fre-
quency ranges that include only mechanical (elastic or acoustic) evanescent waves.
The physical origin of phononic and photonic band gaps can be understood at
micro-scale using the classical wave theory to describe the Bragg and Mie reso-
nances based on the scattering of mechanical and electromagnetic waves propa-
gating within the crystal [11]. PCs have many applications, such as vibration
isolation technology [3, 8–10], acoustic barriers/filters [16], noise suppression
devices [15] and surface acoustic devices [1].

Most of the studies concerning PCs focused on investigation of bulk mechanical
waves [12] and its results have shown that band gaps may appear because of the
contrast between physical properties, for instance elastic modulus and density of
inserts and matrix. Other important properties that influence band gaps are insert
geometry, filling fraction and PC lattice. Band gaps may also be affected by PC
physical nature, which can be: solid/solid, fluid/fluid and mixed solid/fluid PCs.
Only few studies have focused on 1D PCs [5, 14, 17] and all of them considered
solid/solid PCs.

The main purpose of this study is to investigate the Bragg-type band gap for-
mation, band structure, also known as dispersion relation, forced response, and
attenuation constant of a 1D PC beam using the finite element (FE), spectral ele-
ment (SE), wave finite element (WFE), wave spectral element (WSE), conventional
plane wave expansion method (CPWE) and improved plane wave expansion
(IPWE) methods.

2 Model and Method

Figure 1 sketches a PC beam with a periodic array of unit cells containing two
different materials, i.e. steel (blue) and polyethylene (white), where a is the lattice
parameter. Each unit cell is composed by 2/3 of steel and 1/3 of polyethylene. It is
important to mention that Euler-Bernoulli (EB) beam theory is used. Mathematical
formulation of the different methods employed in this study are not provided since
the page number limitation, however, references are suggested.

EB beam mathematical formulation using SE and FE methods can be found in
Lee [6]. Each unit cell is discretized in three spectral elements using SE method, i.e.
each part of unit cell, Fig. 1b, corresponds to one spectral element. However, for FE
method, each part of unit cell is discretized, Fig. 1b, in two finite elements. Thus,
the global dynamic stiffness matrix can be obtained by the assembly of dynamic
stiffness matrices of EB beam elements modeled by SE and FE methods.
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Mathematical formulation of WFE method can be found in Mencik [7]. The
main difference between WSE and WFE method is the dynamic stiffness matrix
used, i.e. the dynamic stiffness matrix can be derived from SE and FE methods,
respectively. Modeling just one unit cell of the PC beam is one great advantage of
WSE and WFE methods in relation to SE and FE methods.

CPWE, also known as ωðkÞ method, is a semi-analytical method used to predict
the band structure. CPWE method presents slow convergence, mainly for systems
with large property mismatching. To solve this convergence problem, it is used the
IPWE method. Cao et al. [4] proposed the IPWE method for PCs and showed that
this method provides much more accurate results than CPWE.

3 Results and Discussion

3.1 Numerical Verification

PC EB beam parameters and material properties are summarized in Table 1, where
subscripts A and B refer to steel and polyethylene, respectively.

Note that the hysteretic damping, ηA, ηB, also known as loss factors, are included
as a complex Young’s modulus, EA =EA 1+ iηAð Þ, EB =EB 1+ iηBð Þ. PC beam

(a) (b)

Fig. 1 a Schematic representation of a PC beam with N unit cells of steel (blue) and polyethylene
(white). b PC beam unit cell

Table 1 Beam geometric parameters and material properties

Geometry/Property Value

Unit cell length a=2aA + aBð Þ, aA, aB = 1
3 a 0.0424 m

Beam length (WSE, WFE, FE and SE methods) (L) 0.424 m
Beam length (CPWE and IPWE methods) (L) ∞
Number of unit cells (WSE, WFE, FE and SE methods) (N) 10

Circular cross section area S= πr2, r =9.45mmð Þ 2.8055 × 10−4 m2

Young’s modulus ðEA, EBÞ 21 × 1010 Pa, 0.72 × 109 Pa
Mass density ðρA, ρBÞ 7800, 935 kg/m3

Loss factor ðηA, ηBÞ 0.0013, 0.01

Second moment of area ðI = πr4 ̸4Þ 6.2635 × 10−9 m4
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forced response is analyzed regarding a free-free boundary condition and an
excitation force as a cosine-shaped pulse on beam left side. Figure 2 shows the PC
beam displacement of left (first node) and right (last node) sides.

As can be seen in Fig. 2, there are some regions where resonances do not appear.
However, it is difficult to localize exactly the band gaps. To overcome this issue, it
is plotted in Fig. 3a, b the frequency response function (FRF) and the transmittance
in Fig. 4, defined as the division between last and first node displacements.
For FRF, it is chosen the receptance, i.e. the division between displacement of the
first or the last nodes, and the force, which gives H11 or H21, respectively, also
known as point receptance and transfer receptance.

From Figs. 3, 4, it can be seen a band gap created between 2780 and 5798 Hz.
This band gap is known as a Bragg-type band gap, because the mechanism involved
is the Bragg scattering. Thus, frequency location is governed by Bragg’s law,

Fig. 2 PC beam displacement of the left (b) side, first node, and right, (a) side, last node,
calculated by WSE, WFE, FE and SE methods

Fig. 3 Point receptance (a) and transfer receptance, (b) of the PC beam calculated by WSE, WFE,
FE and SE methods showing the band gap
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a= nðλ ̸2Þ, n=1, 2, 3, . . .ð Þ, where λ is the wave wavelength in host material.
Bragg’s law implies that it is difficult to achieve a low frequency Bragg-type band
gap in PCs with small size.

In Fig. 5a, it is compared the transmittance for different lattice parameters cal-
culated by WSE method until 10240 Hz. It is considered a=0.212, 0.106,
0.0707, 0.053, which results in N =2, 4, 6, 8, for the fixed beam length in Table 1.
WSE is chosen since it is an analytical method. For the first case, a=0.212, N =2,
it can be observed four wide Bragg-type band gaps, that is to say 122.5–456.9 Hz,
626.3–2884 Hz, 3174–4439 Hz and 4439–7961 Hz. For the other cases,
a=0.106, 0.0707, 0.053, N =4, 6, 8, it can just be seen completely the first
Bragg-type band gap between 456.9 Hz–1204 Hz, 1008 Hz–2325 Hz and

Fig. 4 Transmittance of the
PC beam calculated by WSE,
WFE, FE and SE methods
showing the band gap

Fig. 5 Transmittance of the PC beam calculated by WSE method for a=0.212, 0.106,
0.0707, 0.053, N =2, 4, 6, 8 (a) and transmittance calculated by WSE, WFE, FE and SE
methods for a=0.212, N =2 (b)
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1782 Hz–3849, respectively. Thus, increasing unit cell length for a fixed beam
length the Bragg-type band gaps will appear in low frequencies, as expected.

In Fig. 5b it is shown the transmittance for a=0.212, N =2, calculated by WSE,
WFE, FE and SE methods. It can be seen that WFE and FE methods do not match
with WSE and SE methods in high frequencies, because the unit cell discretization
(two finite elements for each part of the unit cell) is not enough in higher
frequencies.

Figure 6 illustrates the elastic band structure considering the data in Table 1.
Figure 6a shows real part of the reduced Bloch wave vector, ka ̸π, also known as
reduced wavenumber, using WSE, WFE and IPWE methods. Figure 6b shows
imaginary part of the reduced Bloch wave vector using WSE and WFE methods.
For IPWE and CPWE calculations, it is considered 101 plane waves in the Fourier
series expansion. In Fig. 6, it is only shown the first irreducible Brillouin zone
(FIBZ) [2], i.e. ½0, π ̸a�.

Figure 7 shows the comparison between IPWE and CPWE methods inside the
first Brillouin zone, i.e. ½− π ̸a, π ̸a�. In Fig. 7, only the first 10 branches are
illustrated. The matching between IPWE and CPWE does not occur only for the
high bands even considering a high number of planes waves.

In order to demonstrate the agreement between WSE and IPWE methods for
other values of a, we plot in Fig. 8a the elastic band structure real part for
a=0.212, 0.106, 0.0707, 0.053, 0.0424, N =2, 4, 6, 8, 10. Note that the curves
related to each lattice parameter are not identified by a specific color, but it can be
seen the matching. In Fig. 8b, this comparison is done and its behavior is the same
discussed in Fig. 5a. WSE method is used to calculate imaginary part of the Bloch
wave vector. From Fig. 8b, it can be observed that the attenuation performance of

Fig. 6 Elastic band structure of the PC beam considering the data in Table 1. Reduced Bloch
wave vector real part (a) calculated by WSE, WFE and IPWE methods and its imaginary part
calculated by WSE and WFE methods (b)

492 E. J. P. de Miranda Jr. and J. M. C. dos Santos



the Bragg-type band gaps is better for a=0.212, 0.106, because there are more
Bragg-type band gaps in low frequencies. The attenuation constant, defined by
μ=ℑfkga is an important information which can be analyzed from the imaginary
part of Bloch wave vector. The attenuation constant gives some insight about
attenuation of the unit cell, but it can not be confused with beam attenuation.

Fig. 7 Real part of the reduced Bloch wave vector calculated by IPWE and CPWE methods

Fig. 8 Elastic band structure of the PC beam considering a = 0.212, 0.106, 0.0707, 0.053,
0.0424, i.e. N =2, 4, 6, 8, 10. Real part of the reduced Bloch wave vector (a) calculated by WSE
and IPWE methods and the imaginary part of reduced Bloch wave vector calculated by WSE
method (b)
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Figure 9a–e shows the influence of polyethylene quantity (5–95%) on the unit
cell attenuation for a=0.212, 0.106, 0.0707, 0.053, 0.0424, N =2, 4, 6, 8, 10,
respectively. It is important to mention that until Fig. 8, it is only considered 1/3
(≈33,33%) of polyethylene, as described in Table 1. The polyethylene quantity
influence on the unit cell attenuation performance is complicated and varies with

Fig. 9 Attenuation constant surface x-y view of the PC beam unit cell considering
a=0.212, 0.106, 0.0707, 0.053, 0.0424, (a–e), respectively, calculated by WSE method
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unit cell length. No attenuation is observed for a=0.0424 until 2500 Hz—Fig. 9e,
a=0.053, until 1612 Hz—Fig. 9d, a=0.0707, until 874 Hz—Fig. 9c, a=0.106,
until 406 Hz—Fig. 9b, and a=0.212, until 98 Hz—Fig. 9a, independently of the
polyethylene quantity. Thus, depending on the application, choosing polyethylene
quantity correctly it is not easy, since it is related to the unit cell length and in which
frequency the band gap is opened up.

In Fig. 9b–e, there are some regions which present higher attenuation, i.e.
between 40%–80%, 50%–60%, 60%–80% and 5%–30% of polyethylene, for
a=0.106, 0.0707, 0.053, 0.0424, respectively. In Fig. 9a, it is difficult to identify
where is the best attenuation region, because there are many band gaps. However,
below 20% of polyethylene is the worst attenuation region.

3.2 Experimental Verification

A PC beam is used to perform an experimental test. The PC beam is similar to the
model proposed in Fig. 1 with free-free boundary condition, however, the
aB =0.041m and aA =0.0325m, with a=2aA + aB =0.106 m. The properties are
the same described in Table 1, with N =4. The measurement instruments used in
the experimental setup are summarized in Table 2. Figure 10 shows the experi-
mental setup with details of the impact hammer and accelerometers positions. By
using an impact force excitation applied to the right and left ends of the PC beam,
acceleration measurements are taken on PC beam right end.

However, it is chosen to plot the displacement, that is u= − ac ̸ω2, where u is
the displacement, ac is the acceleration measured and ω is the angular frequency.
Inertance point and transfer FRFs are measured with 5 averages, with the frequency
discretization of 0.625 Hz.

Figure 11a–d illustrates the displacement of the last beam node (right side), the
transmittance, and the FRFs H11 and H21, respectively. Numerical results present
good agreement. However, FE and WFE methods do not match in higher fre-
quencies the analytical methods, as discussed before. Furthermore, there is some
mismatching related to the experimental FRFs.

Numerical and analytical results of band gap widths do not match the experi-
mental results, since the numerical model considered may not capture all aspects of

Table 2 Measurement instruments

Instrument Manufacture and model Sensitivity Measure range

Impulse hammer PCB 86E80 22.5 mV/N 222.0 N (peak)
Accelerometer KISTLER 8614A500M1 3.46 mV/g (±5%) 0–12.5 kHz

Data acquisition LMS SCR05 – –
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PC beam, such as the material used to glue the polymer and metal, material
properties may not be exactly the same of Table 1, for instance. In addition, it is
used the EB beam theory, possibly considering higher theories, such as Timosh-
enko beam theory [13], the results may be improved in higher frequencies.

Figure 12 shows the elastic band structure of the PC beam. Band gap widths
observed in Fig. 11 can be confirmed in Fig. 12. Furthermore, it may be observed
in Fig. 12 a small band gap between 405 and 720 Hz with low attenuation.

Fig. 10 Experimental setup of the PC beam
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Fig. 11 PC beam displacement of the right (a) side, transmittance (b), point receptance (c) and
transfer receptance (d) calculated by WSE, WFE, FE, SE methods and measured experimentally

Fig. 12 Elastic band structure of the PC beam. Real part of the reduced Bloch wave vector
(a) calculated by WSE, WFE and IPWE methods and imaginary part of reduced Bloch wave
vector calculated by WSE and WFE methods (b)
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4 Conclusions

Forced response and elastic band structure of a 1D PC beam are obtained. Forced
response is obtained by WFE, WSE, FE and SE methods and a good matching is
observed, instead of in high frequencies, where WFE and FE do not match the
spectral analytical methods. Real part of elastic band structure is calculated by
WFE, WSE and IPWE methods and it is shown a good agreement between them.
CPWE presents some disadvantages compared to the IPWE for the higher bands.
The influence of unit cell length is also studied and for larger unit cells, Bragg-type
band gaps are opened up in low frequencies. The polyethylene quantity into the unit
cell is an important variable and its influence on the attenuation constant depends on
the unit cell length. In some ranges of frequency no attenuation is observed inde-
pendently of polyethylene quantity and there are regions that present higher
attenuation. Numerical and analytical results present good agreement with experi-
mental results and they can localize the band gap position and width close to the
experimental. A small Bragg-type band gap with low attenuation is observed
between 405 and 720 Hz. The 1D PC beam with unit cells of steel and polyethylene
presents potential application for vibration management.
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Investigating Interface Modes
on Periodic Acoustic Waveguides
and Elastic Rods Using Spectral
Elements

Matheus Inguaggiato Nora Rosa, José Roberto de França Arruda
and Massimo Ruzzene

Abstract Due to their particular wave propagation characteristics, phononic crys-

tals (PC’s) and acoustic metamaterials have numerous potential applications in pas-

sive vibration and noise control. In this context, some geometric phase concepts

originally developed in electronics have inspired research in phononics. As a result

of the non-trivial topology of the band structure, these concepts allow exploring par-

ticular behaviors such as edge and interface modes. For acoustic systems, it has been

recently shown that interface modes appear at the boundary separating two PC’s hav-

ing different Zak phases. In this paper, one-dimensional spectral elements are used

to investigate interface modes in one-dimensional acoustic (tube) and elastic (rod)

systems. The band structure and the forced response are computed using the spectral

element method. It is shown that the interface mode appears within the second band

gap when a geometrical parameter of one of the connected PC’s is varied so that this

bandgap closes and reopens, characterizing a change in the Zak phase. The forced

response at the interface mode frequency shows that the sound (acoustic) or vibra-

tion (elastic) is spatially concentrated (localisation phenomenon) at the interface.

Different PC combinations and different excitation locations are investigated. This

behavior may have useful engineering applications, such as in sound and vibration

energy harvesting.

Keywords Phononic crystals ⋅ Interface modes ⋅ Acoustic waveguides ⋅ Elastic

rods ⋅ Spectral elements

M. I. N. Rosa (✉)

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta,

GA 30332-0405, USA

e-mail: mrosa8@gatech.edu

J. R. de França Arruda

Faculty of Mechanical Engineering, University of Campinas, Rua Mendeleyev,

200. Cidade Universitria Zeferino Vaz. Campinas, Campinas, SP 13083-860, Brazil

e-mail: arruda@fem.unicamp.br

M. Ruzzene

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta,

GA 30332-0150, USA

e-mail: ruzzene@gatech.edu

© Springer International Publishing AG, part of Springer Nature 2019

A. de T. Fleury et al. (eds.), Proceedings of DINAME 2017, Lecture Notes

in Mechanical Engineering, https://doi.org/10.1007/978-3-319-91217-2_35

501

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91217-2_35&domain=pdf


502 M. I. N. Rosa et al.

1 Introduction

The study of phononic crystals and acoustic metamaterials for wave control appli-

cations is an emerging topic in engineering and physics. A phononic crystal (PC) is

a structure with geometric and/or material periodicity, while an acoustic metamate-

rial is usually characterized by the presence of substructures that work as resonators

tuned to a narrow frequency band. In both cases their wave propagation characteris-

tics can be derived from the analysis of a single unit cell. This may be done through

the dispersion diagram, which can be computed by different methods and essen-

tially relates the angular frequency to the wavenumber. Wave control can therefore be

achieved by manipulating the pass and stop bands on these diagrams, i.e. frequency

ranges in which the waves are propagating or evanescent, respectively. This allows

a number of applications, such as vibration isolation, vibroacoustic barriers, wave

tunneling, and cloaking. A comprehensive review on the subject is presented in [1].

Many applications of photonic and phononic crystals, as well as mechanical meta-

materials, were inspired by concepts that were originally developed in electronic

band theory. In particular, the geometric-phase concept has been explored in order

to produce topological behavior that emerges from the non-trivial topology of some

material band structures. One example is the creation of one-dimensional elastic edge

waves, which are envisioned for the design of loss-free, one-way acoustic waveg-

uides. In this case, non-trivial band gaps are caused by breaking the time-reversal

symmetry, in analogy to the quantum anomalous Hall effect counterpart in elec-

trocnics [2]. The time-reversal symmetry breaking has been achieved on solid lat-

tice structures by inducing Coriolis forces via rotation [3] or by gyroscopic intertial

effects [4, 5].

Another recent development of non-trivial topological behavior is the formation

of interface modes on periodic acoustic systems. In [6], the authors have shown that

its possible to realize the band structure inversion on acoustic PC’s, which also has

an analogy in electronic systems [7]. In this case, the geometric phase involved is

called Zak phase, which is a special type of Berry phase for one-dimensional (1D)

periodic systems [8]. The Zak phase of a particular band is related to the symme-

try properties of the band-edge states, and the topological characteristics of a band

gap are determined by the summation of the Zak phases of all the bands below the

gap. Broadly speaking, interface modes are formed on the boundary separating two

phononic crystals having different bandgap topological characteristics.

In this paper the interface modes present on these periodic acoustic systems are

explored. It is shown that the band inversion concept can be observed in the disper-

sion diagrams of these PC’s by varying one of the system parameters, resulting in the

gap closing and reopening process. Therefore, it is not strictly necessary to compute

the Zak phase in order to design simple periodic systems with interface modes. It

is also shown that the same concepts can be applied to periodic elastic rods, where

interface modes can also be created.

To this end, the Spectral Element Method (SEM) [9] is used to compute the dis-

persion relations and the forced response of elastic rods and acoustic tube PC’s. The
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dynamic stiffness matrices produced by SEM are exact within the scope of the the-

ory used to obtain the equations of motion, and thus the method is a suitable tool

for fast and accurate computations of the forced response and dispersion relations of

structures with simple geometry and kinematic behavior, such as rods and beams. A

one-dimensional spectral element for cylindrical ducts can be derived in analogy to

the 1D spectral element for elementary rods, assuming the presence of plane waves

only, as their dynamics are both governed by the same 1D wave-equation.

2 Interface Modes on Periodic Acoustic Systems

To demonstrate the presence of interface modes on acoustic systems, simple one-

dimensional PC’s are used here. Figure 1a shows the geometry of the unit cell that

is used for both acoustic and elastic rod systems. Each unit cell is composed of a

narrower cylinder (Tube B) of length db and radius rb located between two wider

cylinders (Tube A) of length
1
2
da and radius ra. For acoustic systems, these tubes are

hollow cylindrical rigid ducts and are filled with air (mass density 𝜌A=1.3 kgm
−3

and

speed of sound cA = 343 ms
−1

). For the rod systems the cylinders are solid linear

elastic isotropic materials (see next section). For both acoustic and elastic rod sys-

tems a loss factor 𝜂 = 0.002 is used on the wavenumber primarily to avoid numerical

instabilities (through a complex wavenumber k = k(1 + i𝜂
2
)).

For the examples in this section, the tube radii are set to ra = 2.4 cm and rb =
1.5 cm, and the total length of the unit cell is fixed at L = 8.5 cm. Figure 1b shows

the band structure, calculated via SEM, for an acoustic PC with da = 2.25 cm and

db = 6.25 cm. In all dispersion diagrams shown in this article the real part of the

wavenumber is plotted on the positive axis while the imaginary part is plotted on the

negative axis.

The band inversion for this PC can be observed on the second band gap of the band

structure as the system parameter 𝛥d = da−db
2

is varied. The topological transition

point for this system occurs when da = db and therefore 𝛥d = 0. Figure 2 shows the

gap closing and reopening process, indicating that the band inversion occurs when

𝛥d shifts from negative to positive values. It should be noted that the band struc-

ture for two PC’s with the same absolute value for 𝛥d is exactly the same, the only

difference being the symmetry properties of the band-edge states. In other words,

the topological characteristics of the band gap for two PC’s having the same |𝛥d|
with opposite signs are different, and their Zak phases, if computed, would also be

different.

With the topological transition point for the system defined, interface modes can

be observed by calculating the forced response of different PC couplings. In this

work, four specific PC’s are used to investigate these interface modes: PC1 (da = 2.25
cm, db = 6.25 cm and 𝛥d = −2 cm), PC2 (da = 6.25 cm, db = 2.25 cm and 𝛥d = 2
cm), PC3 (da = 3.75 cm, db = 4.75 cm and 𝛥d = −0.5 cm) and PC4 (da = 4.75 cm,

db = 3.75 cm and 𝛥d = 0.5 cm). Each acoustic system analysed consists of ten unit

cells of one PC on the left side and ten unit cells of another PC on the right side,
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Fig. 1 1D phononic crystal system. a Phononic crystal’s geometry, b band structure for PC with

da = 6.25 cm and db = 2.25 cm
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with the interface separating them at the center of the acoustic system. All forced

responses are computed via SEM, with free-free boundary conditions.

The interface mode appears when the coupled PC’s have different band gap topo-

logical characteristics. Figure 3a shows the forced response at the interface for a PC1-

PC2 coupling excited directly at the interface, where the presence of the interface

mode is observed at frequency fi = 4035 Hz. For this frequency, the spacial distri-

bution of the pressure field is concentrated at the interface, which can be observed on
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Fig. 3 PC1-PC2 excited at interface. a FRF at the interface, b spatial distribution of pressure at

fi = 4035 Hz
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Fig. 4 PC1-PC1 excited at interface. a FRF at the interface, b spatial distribution of pressure at

fi = 4035 Hz

Fig. 3b. If a PC1-PC1 coupling is used instead (same band gap topological character-

istics), the interface mode is not present, which is shown on Fig. 4. In such case, the

spatial distribution of the pressure field for frequency fi is concentrated at the inter-

face but only because the frequency is inside the band gap, and therefore the waves

are evanescent. The amplitudes of the pressure field, however, are much lower when

compared with the PC1-PC2 coupling.

If the same PC1-PC2 coupling is excited at the left end instead of directly at the

interface, the interface mode is still present, which is shown on Fig. 5. However, the

magnitude of the interface peak is much smaller because the frequency fi lies inside a

band gap and, therefore, the waves will undergo significant attenuation before reach-

ing the interface.

For a higher interface peak when the structure is excited away from the interface,

a PC3-PC4 coupling can be used instead. In this case, the band gap is smaller and,
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Fig. 5 PC1-PC2 excited at left end. a FRF at the interface, b spatial distribution of pressure at

fi = 4035 Hz
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Fig. 6 PC3-PC4 excited at left end. a FRF at the interface, b spatial distribution of pressure at

fi = 4035 Hz

therefore, the waves will suffer less attenuation before reaching the interface. The

forced response for this coupling when excited at the left end is shown on Fig. 6,

which clearly presents a higher interface peak when compared to the PC1-PC2 cou-

pling. However, for the same reasons, this coupling has a lower peak when excited

directly at the interface, which is shown on Fig. 7.

3 Interface Modes on Periodic Elastic Rods

The same concepts shown for acoustic systems can be extended to similar systems

of elastic rods, where interface modes can also be created. To that end, PC’s with the

same geometry described in the previous section (shown on Fig. 1a) are used, but

the tubes are now replaced by elastic rods.
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Fig. 7 PC3-PC4 excited at interface. a FRF at the interface, b spatial distribution of pressure at

fi = 4035 Hz

The speed of sound in solids is in general much greater than the speed of sound in

the air. Therefore, if the same frequency for the interface mode is sought (fi = 4035
Hz), the dimensions of the unit cells need to be much larger. To demonstrate that, two

materials are used: steel (Es = 210 Gpa, 𝜌s = 7800 kgm
−3

and cs =
√

Es

𝜌s
= 5188.7

ms
−1

) and polyacetal (Ep = 3.3 Gpa, 𝜌p = 1418 kgm
−3

and cp =
√

Ep

𝜌p
= 1525.5

ms
−1

).

The speed of sound in steel is 15.13 times greater than the speed of sound in

the air. Therefore, all the PC’s dimensions are multiplied by this factor in order to

maintain the bandgaps and the interface modes at the same frequencies as in the

acoustic systems. The same is done for polyacetal, but by a factor of 4.45. The tube

radii are multiplied by this factor only to keep the same geometric proportions, as

they don’t influence the frequency of the interface mode when the ratio
ra
rb

is kept

constant.

By doing that, the PC dimensions for steel become L = 1.29 m, ra = 36.31 cm,

rb = 22.69 cm while for polyacetal they are set to L = 37.8 cm, ra = 10.67 cm and

rb = 6.67 cm. The band gap closing and reopening process of the second band gap

for both materials is very similar to what occurs for acoustic systems, and is shown

on Fig. 8.

As was the case for acoustic systems, interface modes will appear on systems

of elastic rods when the PC’s coupled have different band gap topological charac-

teristics. Four different PC’s are used in this section: PC5 (steel, da = 94.55 cm,

db = 34.04 cm and 𝛥d = −30.25 cm), PC6 (steel, da = 34.04 cm, db = 94.55 cm and

𝛥d = 30.25 cm), PC7 (polyacetal, da = 27.8 cm, db = 10.01 cm and 𝛥d = −8.9 cm)

and PC8 (polyacetal, da = 10.01 cm, db = 27.8 cm and 𝛥d = 8.89 cm). All forced

responses are again computed via SEM, with free-free or forced-free boundary
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Fig. 8 Band inversion for elastic rods. a PC’s made of steel, b PC’s made of polyacetal, 𝛥d dimen-

sions in cm

0 1 2 3 4 5

−260

−240

−220

−200

−180

−160

−140

−120

dB
 [r

ef
. m

/N
]

Frequency [kHz]

(a)

0 5 10 15 20 25

−280

−270

−260

−250

−240

−230

−220

−210

−200

−190

dB
 [r

ef
. m

/N
]

x coordinate [m]

(b)

Fig. 9 PC5-PC6 excited at interface. a FRF at the interface, b spatial distribution of displacement

amplitude at fi = 4035 Hz

conditions when the applied force is at the interface or at the left end, respectively.

Figures 9 and 10 show the forced responses for the PC5-PC6 and PC7-PC8 couplings,

respectively. As expected, the interface modes for both materials occur at the same

frequency as in the acoustic systems (fi = 4035 Hz) (Fig. 11).

These interface modes can also be visualized in a surface containing the spatial

distribution of displacement amplitudes for a wide frequency range (100 Hz–6 kHz).

This is shown for both PC5-PC6 and PC7-PC8 couplings on Fig. 10, highlighting

that interface modes may be seen as structural resonance peaks that are not only

concentrated in frequency but also in space.



Investigating Interface Modes on Periodic Acoustic Waveguides . . . 509

0 1 2 3 4 5
−220

−200

−180

−160

−140

−120

−100

−80

dB
 [r

ef
. m

/N
]

Frequency [kHz]

(a)

0 1 2 3 4 5 6 7

−240

−220

−200

−180

−160

−140

dB
 [r

ef
. m

/N
]

x coordinate [m]

(b)

Fig. 10 PC7-PC8 excited at interface. a FRF at the interface, b spatial distribution of displacement

amplitudes at fi = 4035 Hz

Fig. 11 Surfaces of spatial distribution of displacement amplitudes a PC5-PC6 coupling, b PC7-

PC8 coupling

4 Conclusions

Interface modes that appear in the interface of two phononic crystals are charac-

terized by a large local dynamic response and fast spatial attenuation. This feature

may be useful in applications such as energy harvesting. The topic involves geo-

metrical phase concepts that are new to the structural dynamics community. Using

finite elements, Xiao et al. [6] showed that interface modes can be generated in peri-

odic acoustic waveguides. In this paper, one-dimensional spectral elements were

used to investigate the interface modes present on acoustic systems and to show

they can also be created on elastic structures such as periodic systems of elastic

rods. However, as expected, for elastic rods larger dimensions are required for gen-

erating interface modes at lower frequencies. This motivates our current research

efforts in analyzing more complex geometries and material distributions aiming at
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producing bandgaps at lower frequencies with smaller dimensions and, therefore,

obtaining interface modes at lower frequencies. Due to its low computational cost,

the spectral element method was shown to be a suitable tool for a preliminary analy-

sis and optimization of the geometry and materials of the periodic cells, after which

a more detailed dynamic analysis (e.g. via the finite element method) and an exper-

imental analysis may be performed.
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Measurement of the Speed of Leak Noise
Propagation in Buried Water Pipes:
Challenges and Difficulties
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Fábio Kroll de Lima , Pedro Christian Ayala Castillo
and Amarildo Tabone Paschoalini

Abstract To accurately determine the position of a leak in a buried plastic water
pipe using acoustic correlation, a good estimate of the speed of noise propagation
(wave speed) is required. The factors that affect this wave speed, and attenuation of
the wave as it propagates along the pipe, include the pipe flexibility and the soil
properties. These effects are discussed in this paper, and are illustrated by way of
simulations for two different pipe sizes and two different soil types. It is shown that
the soil type in Brazil can have a profound effect on the wave speed and hence the
accuracy of leak location. Some practical problems in estimating the wave speed
from in-situ measurements are also outlined. Although this is relatively simple to
measure in principle, in practice it is extremely difficult to do, for a variety of
reasons. Some of these are discussed and the reason why this measurement is
particularly problematic with plastic water distribution pipes is illustrated.
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1 Introduction

Leakage occurs in buried water distribution systems through defective joints, or
split pipes because of ground movement. It is estimated that 40–50% of drinking
water is wasted through leakage in developing countries, and less than 10% is
wasted in countries where the utilities are well-maintained, such as Japan [1, 2]. It is
costly to locate and repair these leaks.

To determine if a leak is present in a specific part of the network, pressure
measurements together with flow measurements are used [3]. To determine a more
precise location of a leak, noise correlators are often used [4]. The cross-correlation
function between two leak noise signals (acceleration, pressure or velocity)
acquired at two different positions (generally hydrants) on the pipe is calculated.
The peak in the correlation function is used to determine the difference in propa-
gation times between the leak and the sensors. By combining this with knowledge
of the speed at which the leak noise propagates, the location of the leak can be
determined. Although correlators work well for metallic pipes, their performance on
plastic pipes is more limited [5, 6]. The two main factors that affect correlator
performance in this case, are the relatively high rates of attenuation experienced by
waves propagating along the pipes and the variability in the speed at which they
propagate along the pipe. The wave-speed is heavily influenced by the pipe
properties and the surrounding soil [7–11]. The accuracy with which the leak can be
located is therefore directly linked to the accuracy with which the wave speed is
known. For maximum accuracy, the wave speed should be measured in-situ on the
section of pipe in which there is a leak, at the same time as the correlation mea-
surement is made. In nearly all cases, however, the wave speed is estimated from a
historical database determined from calculations made using assumed material
properties and pipe geometry.

This paper shows why a good estimate of the speed of leak noise propagation is
of paramount importance in obtaining an accurate estimate of the location of a leak.
The factors affecting the speed of the wave responsible for leak noise propagation,
as well as the attenuation of this wave are discussed. A simple expression to predict
the wave speed, which is dependent upon both fluid loading and soil loading factors
is presented. This shows why the wave speed is found to be very different from
location to location, and motivates the need for measurement of the wave speed
in-situ [12]. However, there are many practical problems, which make an accurate
estimate of wave speed measurements difficult. Some of these issues are also
outlined in this paper.
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2 An Overview of Leak Detection Using Acoustic
Correlation

Figure 1 shows a typical situation in which leak noise is used to detect and locate its
position. Acoustic or vibration sensors are attached to convenient access points
either side of the suspected leak position. The actuators shown in the figure are not
normally used in the field for leak detection, but can be used to measure the speed
of the wave responsible for leak noise propagation.

In Fig. 1 the leak position d2 from the right-hand sensor is given by, [13],

d2 =
d− cT0

2
ð1Þ

where c is the speed of propagation of the leak noise, d= d1 + d2 is the total
distance between the sensors, and T0 = ðd1 − d2Þ ̸c is the difference in arrival times
of the leak noise at the sensor positions (time delay).

The wave that carries the leak noise in plastic pipes is predominantly a
fluid-wave that is strongly coupled to the radial motion of the pipe-wall [7]. The
most widely used technique to determine the time delay between sensor signals uses
the cross-correlation function (CCF), R12 τð Þ, between the two measured signals
x1ðtÞ and x2ðtÞ, as shown in Fig. 1. The presence of a leak appears as a distinct peak
in the CCF between the measured signals, which is given by, [13],

Fig. 1 Schematic of leak detection in a buried plastic water pipe using acoustic/vibration signals
with a leak in between the two sensors. The actuators are used for the wave-speed measurement
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R12 τð Þ=F − 1 S12 ωð Þf g= 1
2π

Z+∞

−∞

S12 ωð Þejωτdω ð2Þ

where F − 1fg is the inverse Fourier transform, S12 ωð Þ is the cross-spectral density
function (CSD) between the measured signals, ω is circular frequency, and
j =

ffiffiffiffiffiffiffiffi
− 1

p
. This peak in the correlation function gives the time delay estimate

between the measured signals x1ðtÞ and x2ðtÞ. Sometimes, it is preferable to express
the cross-correlation function in a normalized form, which has a scale of −1 to +1.
This is called the cross-correlation coefficient (CCC) and is given by
ρðτÞ=Rx1x2ðτÞ ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx1x1ð0ÞRx2x2ð0Þ

p
, where Rx1x1 0ð Þ and Rx2x2 0ð Þ are respectively the

autocorrelation functions at positions 1 and 2, when τ=0.

3 Effect of the Wave-Speed Estimate on Leak Location

It can be seen from Eq. (1) that accurate estimates of c and T0 are required for an
accurate estimate of the leak location. Much research into leak detection has con-
centrated on the estimation of the time delay, see Gao et al. [14] and the references
therein, for example. The greatest error, however, is likely to be in the estimate of
the wave-speed as this varies dramatically depending on the geometry and material
properties of the pipe and the surrounding soil. In most cases the wave-speed is
estimated from tables, which are compiled from simple calculations or from a
historical database. An error in the wave-speed estimate used in Eq. (1), produces a
corresponding error in the estimate of the distance d2. The error can be determined
from [12],

Δd2
d

=
1
2
−

d2
d

� �
Δc
c

ð3Þ

where Δc and Δd2 are the differences between the measured and actual wave speed,
and the estimated and actual distance respectively. Equation (3) shows that as the
position of the leak becomes closer to one of the measurement points then the error
in the wave-speed measurement has an increasing effect. As an example, consider
an extreme case of a length of pipe between the measurement positions of 100 m
and a 10% error in the wave-speed estimate, with the leak being at one of the
measurement positions. The resulting error in the location in this case is 5% of the
length of the pipe, i.e. 5 m. Finding a way to reduce this error by more accurate
wave-speed estimation is desirable, and some of the issues in doing this are dis-
cussed in this paper.
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4 Effect of Fluid-Structure-Soil Interaction
on the Wave-Speed

For a buried plastic water pipe, the surrounding soil and the material properties of
the pipe can have a profound effect on the speed of leak noise propagation. This has
been investigated in several papers as mentioned previously, and the key points are
summarised here. It will be seen that it is desirable to measure the wave speed
in-situ, whenever possible rather than rely on estimates as they are not likely to be
very accurate. For a plastic pipe of mean radius a and pipe-wall thickness h, with
complex Young’s modulus E* =E 1+ jηð Þ, where η is the loss factor, and density ρ,
containing water with bulk modulus Bw, which is buried in soil with bulk modulus
Bs and shear modulus G, the speed of noise propagation is governed by the speed of
a coupled fluid-structural wave in the pipe, which is given by [9].

c=
ω

Re kf g ð4Þ

where k is a wavenumber given approximately by k= kf 1+Kwater ̸ Kpipe +Ksoil
� �� �1

2

in which Kwater = 2Bw ̸a is the dynamic stiffness (pressure/displacement) of the
water in the pipe, Kpipe =E*h ̸a2 − ρhω2 is the dynamic stiffness of the pipe-wall
and Ksoil =Kc +Ks is the dynamic stiffness of the surrounding soil, where Kc and Ks

are the dynamic stiffnesses of the compressional and shear waves in the soil, and are
given by

Kc = Bs −
2G
3

� �
k2d
krd

1− 2
k21
k2r

� �
H0 krda
� �

H′

0 krda
� � − 2Gkrd 1− 2

k2

k2r

� �
H′′

1 krda
� �

H′

0 krda
� � and

Ks = − 4Gkrr
k2

k2r

H′

1 krra
� �

H1 krra
� �

where the soil radial wavenumbers krd and krr are given by krd =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d − k2

p
and

krr =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r − k2

p
respectively, and kd and kr are the compressional and shear

wavenumbers in the soil respectively; H0 ∙ð Þ and H1 ∙ð Þ are Hankel functions of zero
order and second kind, and ′ denotes a spatial derivative. Note that in this for-
mulation, the axial stress at the interface between the pipe and the soil is considered
to be negligible, as this has been found to have only a small effect on the wave
speed and wave attenuation [11].

Two different pipe sizes are considered. One is found in the UK [9], and one is
found in Brazil. As well as this, two soil types are considered for each pipe (soil
type A is representative of much of the soil found in the UK, and soil type B is
representative of the soil found in São Paulo). The properties of the pipes and the
soils are given in Tables 1 and 2. The wave speeds for the two pipes and for the two
soil types are shown in Fig. 2a and the attenuation in dB/m, which is given by
20 Im kf g ̸ln 10ð Þ, is shown in Fig. 2b for the frequency range 100 Hz–1 kHz. This
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frequency range is chosen as this is the range in which measured leak noise is
generally found. The following observations can be made.

• The flexibility of the pipe significantly reduces the wave-speed in the pre-
dominantly fluid wave (for a rigid pipe the fluid wave propagates at 1500 m/s).
The stiffness of the soil counteracts this to some extent, increasing the wave
speed.

• The attenuation of the wave increases with frequency. Some of the attenuation is
due to damping in the pipe-wall, but the greatest part of the attenuation at high
frequencies is due to the radiation of leak noise into the soil.

Table 1 Pipe properties

Properties UK Brazil

Young’s modulus, E (N/m2) 2 × 109 2 × 109

Density ρ (kg/m3) 900 900

Loss factor 0.06 0.06
Pipe radius (mm) 84.5 35.8
Pipe-wall thickness (mm) 11 3.4

Table 2 Soil and water properties

Properties Soil type A Soil type B Water

Bulk modulus Bs,w (N/m2) 5.3 × 107 4.5 × 109 2.25 × 109

Shear modulus, G (N/m2) 2.0 × 107 1.8 × 108

Density ρ (kg/m3) 2000 2000

(a) (b)

Fig. 2 Noise propagation characteristics a wave-speed, b wave attenuation. Dashed thin line, UK
pipe, soil type A; solid thin line, UK pipe, soil type B; thick dashed line, Brazil pipe, soil type A;
thick solid line, Brazil pipe, soil type B
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Because of the attenuation, a wave cannot travel for long distances along a
buried plastic pipe, and the measured vibration on the pipe tends to be at low
frequency [10]. Although the wave-speed is function of frequency, it can be seen
that it does not change dramatically, and a low frequency approximation to the
wavenumber can be used to determine an approximate value. Unfortunately, an
approximation cannot be used to predict the wave attenuation.

The approximation for the real part of the wavenumber is given by

Re kf g= kf 1+
2Bw
Eh ̸a

1+ 2G
Eh ̸a

 !1
2

ð5Þ

where 2Bw ̸ Eh ̸að Þ and 2G ̸ Eh ̸að Þ are the fluid loading and soil loading terms
respectively. It is clear that an increase in the fluid loading term increases the
wavenumber, and hence decreases the wave-speed, and an increase in the soil
loading term (due to the shear stiffness of the soil), decreases the wavenumber and
hence increases the wave-speed. These effects are illustrated in Fig. 3, which shows
the wave-speed normalised by the wave-speed in water (1500 m/s) as a function of
the soil loading term, for the UK pipe and the Brazilian pipe whose parameters are
given in Table 1. It can be seen that both the fluid and the soil loading terms can
have a profound effect on the wave-speed. As mentioned previously, accurate
knowledge of the wave-speed is needed for an accurate estimate of the leak loca-
tion. This motivates the need to measure the wave-speed in-situ.

2G
Eh a

Soil loading Factor

N
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Soil type A Soil type B

UK Pipe

Brazil Pipe

Fig. 3 Non-dimensional
wave speed (wave-speed
divided by 1500 m/s—
wave-speed in water in a rigid
pipe) as a function of the soil
loading factor for the Brazil
pipe (h/a = 0.095), solid blue
line and for the UK pipe (h/a
= 0.132), dashed red line
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5 Measurement of Wave-Speed

Tomeasure thewave-speed in a buried pipe, awave has to be generated in the pipe and
two signals measured at access points which are of a known distance apart. The
excitation can be done with shakers as in [12] in a configuration as shown in Fig. 1 or
by creating a leak at a known position. Typical processed signals are shown for
measurements made on a buried plastic pipe rig in the UK using accelerometers.
Figure 4a shows the modulus of the CSD normalised by its maximum value, and
Fig. 4b shows the phase. Also, shown in Fig. 4b is a straight line corresponding to
ϕ= −ωT0. The coherence is shown in Fig. 4c,where it can be seen that the bandwidth
over which there is potentially time delay information is about 20–120 Hz corre-
sponding to the frequency range at which the coherence is not close to zero. Finally,
Fig. 4d shows the cross-correlation coefficient in which the time delay is indicated.
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Fig. 4 Processed leak signals from the test-rig shown in Fig. 2. aModulus of CSD normalised by
the maximum value, b phase, c coherence, d cross-correlation coefficient
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Referring to Fig. 1, d1 = 30 m, d2 = 20 m, and the measured time delay was
about 25 ms, which results in a wave speed of about 400 m/s. Of particular note in
Fig. 4b is the deviation of the measured phase from the phase that would be
measured purely due to a time delay. This deviation can be due to several reasons,
including noise, structural dynamics of the pipe system [15], and wave reflections
from discontinuities in the pipe system [16]. The effect of a resonance due to
structural dynamics is to significantly reduce the bandwidth over with the time
delay is estimated by correlation. The effect of reflections is to cause a confusing
picture in the cross-correlation function. The effect of bandwidth and the centre
frequency of this bandwidth on the ability to determine an accurate estimate of time
delay in the presence of reflections is further discussed here.

For simplicity, the attenuation in the pipe is neglected (which is equivalent to
using the PHAT estimator [14]), so that the cross-correlation function is given by

R12 τð Þ= Δω

π

sin Δω τ− T0ð Þ ̸2ð Þ
Δω τ−T0ð Þ ̸2

cos ωc τ− T0ð Þð Þ ð6Þ

where Δω is the bandwidth over which there is leak noise and ωcentre is the centre
frequency of the band. This can be written in non-dimensional form as

R̂12 τ ̂ð Þ= R12 τð Þ
Δω ̸π

=
sin τ ̂ð Þ
τ ̂

cos ατ ̂ð Þ ð7Þ

where τ ̂=Δω τ−T0ð Þ ̸2 and α=2ωcentre ̸Δω. Equation (7) is plotted in Fig. 5 for
α=4.
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The envelope sin τ ̂ð Þ ̸τ ̂ is also plotted. It can be seen that the normalized
cross-correlation function has a peak at τ ̂=0, which corresponds to τ=T0. It can
also be seen that the normalized cross-correlation function oscillates within the
envelope. The non-dimensional time of the first crossing point in this function can
be determined by setting cos ατ ̂ð Þ=0, which occurs when ατ ̂= π ̸2. Hence the
non-dimensional time between the zero crossing points either side of τ ̂=0 is given
by π ̸α. The first zero crossings in the envelope, which governs the shape of the
cross-correlation function occur when sin τ ̂ð Þ=0, which is when τ ̂= π so the
non-dimensional time between the first zero crossings in the envelope is 2π. For
two time delays to be detected in the cross-correlation function (which correspond
to the arrival of two waves, one being the original wave and the second being a
reflected wave) requires that the non-dimensional difference in the arrival times ΔT ̂
should be such that ΔT ̂> π ̸α. Preferably, it should occur after the first zero
crossings of the envelopes so that ΔT ̂>2π. In dimensional terms this is when
ΔT >1 ̸ 2fcentreð Þ, where fcentre is the centre frequency of the band in Hz, or
preferably when ΔT >2 ̸Δf , where Δf is the bandwidth in Hz.

The discrimination of two time delays is illustrated in Fig. 6 for α=4. Figure 6a,
shows the cross-correlation for a signal where the difference between the two time
delays is ΔT ̂=8. In this case the criteria given above is fulfilled and hence there are
two clear peaks corresponding to ΔT ̂=0 and ΔT ̂=8. Figure 6b shows a
cross-correlation function where the non-dimensional difference between the two
time delays is only 0.3. It can be seen that only one peak is apparent and the time
delay corresponding to this peak is 0.15. This does not correspond to either time
delay. In fact, as the signals corresponding to the two time delays have the same
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amplitude then the peak occurs at the mean of the two time delays as discussed in
[12]. However, this is unlikely to occur in practice and so a signal that contains a
wave reflection in which ΔT <2 ̸Δf can cause a considerable error in the estimate
of time delay and hence the estimate of a wave speed.

6 Conclusions

This paper has discussed the importance of obtaining a good estimate of the speed
of leak noise propagation in buried water pipes so as to determine an accurate
estimate of the location of a leak. The factors affecting the speed of the wave
responsible for leak noise propagation, as well as the attenuation of this wave, as it
propagates have been described. A simple expression to predict the wave speed,
which is dependent upon both fluid loading and soil loading factors, has been
derived (No simple expression is possible for wave attenuation). It has been shown
that while the flexibility of the pipe slows down the wave compared to a rigid-wall
pipe, the shear stiffness of the soil plays an important role in counteracting this
effect, increasing the wave speed. This has been found to be particularly relevant for
the type of soil found in Brazil.

Concerning the estimation of wave speed by measurement, some dynamic
effects that can cause inaccuracies in the estimate have been highlighted. Among
them are resonance effects that can severely limit the bandwidth over which the
time delay is estimated using correlation, and the effect of wave reflections in the
pipe. The relationship between the bandwidth and the centre frequency of the
bandwidth on the ability to differentiate between a direct wave and a reflected wave
has been discussed. It has been found that if more than one wave is dominant in the
pipe, then a wide bandwidth is necessary in order to obtain an accurate time delay
estimate, and hence an accurate estimate of the leak location.
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Passive Control of Noise Propagation
in Tube Systems Using Bragg Scattering

Vinícius Dias de Lima, José Maria Campos dos Santos
and José Roberto F. Arruda

Abstract Noise control in acoustic tube systems is a classical problem. The use

of periodic geometries and resonators is also classic in acoustic filter design. The

phononic approach to the problem is much more recent. Looking at this classic prob-

lem with a novel approach may lead to innovative solutions. This work investigates

the band gaps created in acoustic pipe systems using axisymmetric finite element

models, wave finite element models and experiments. Periodic geometry variations

are investigated. The Floquet-Bloch theorem is used on a transfer matrix of the peri-

odic cell rearranged from a dynamic stiffness matrix to obtain the dispersion dia-

grams that reveal the band gaps caused by Bragg scattering. Numerical predictions

of the forced response obtained with the full finite element axisymmetric model of a

duct system with five cells are compared with a wave finite element model and with

experimental results.

Keywords Periodic system ⋅ Bragg scattering ⋅ Passive noise control ⋅ Ducts

1 Introduction

The study of periodic structures began with Mead’s work in the 70s [5–7]. In the

80s the growing of computational power available allowed the widespread use of

numerical methods and the solution of engineering problems without analytical solu-

tion. Early this century a new method, called Wave Finite Element (WFE) method

was proposed to predict the behavior of a structure by applying the periodicity
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condition of Floquet-Bloch’s theorem [8]. This method consists in modeling a peri-

odic cell using conventional Finite Element Method (FEM) and then using propaga-

tion models to predict the forced response of a periodic structure.

Acoustic ducts have applications in a large variety of engineering problems. The

most ordinary examples are exhaust systems of combustion engines and ventila-

tion systems [10]. The noise propagation in such systems can be controlled via

the use of acoustic filters. For this purpose, the design of periodic geometries and

Helmholtz resonators is a classical way to reduce noise at a specified frequency

bands. Boström [1] studied the wave propagation in ducts with a periodic variation of

cross-sectional area. Bradley [2] investigated acoustic wave propagation in periodic

waveguides. More recently, Munday et al. [9] addressed the problem of band gaps

in periodic waveguides, and Wang and Mak [11] investigated ducts with a periodic

array of Helmholtz resonators.

This work investigates band gaps generated by an acoustic tube system, consisting

of a five cells constructed with pipes and expansion cavities. A numerical solution

by the finite element model is developed using axisymmetric triangular elements.

The numerical predictions and experimental results are compared for validating the

finite element model.

2 Acoustic Finite Element Formulation

The non-dissipative wave equation can be written in terms of acoustic pressure as [4]:

∇2p = 1
c2

𝜕
2p
𝜕𝑡2

(1)

where c is the velocity of sound, p is acoustic pressure and t is time. The acoustic

pressure field in tube systems excited by plane waves can be modeled as axisym-

metric. This characteristic allows solving a three-dimensional problem using a two-

dimensional model. The problem is formulated using cylindrical coordinates (radial

distance r, height z, azimuth 𝜃) with no dependency of 𝜃, and Eq. (1) can be rewritten

as

1
r
𝜕

𝜕r

(
r
𝜕p
𝜕r

)
+

𝜕
2p
𝜕z2

= 1
c2

𝜕
2p
𝜕t2

(2)

To solve Eq. (2) in a specified volume, boundary conditions must be applied at its

surface boundaries. Applying p = 0 on a surface implies a free surface of fluid. For

a rigid boundary, the boundary condition is

𝜕p
𝜕n

= −𝜌ün (3)
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where 𝜌 is the mass density of the fluid, n is the outward unit surface normal vector

and ün is the boundary acceleration in direction of n.

This boundary value problem is usually solved by finite element analysis, using

Galerkin’s Method to obtain an approximated solution [3]. After discretization, the

system of equations to be solved is

𝐌𝐚p̈ +𝐊𝐚p = f (4)

where 𝐊𝐚 is the acoustic stiffness matrix, 𝐌𝐚 is the acoustic mass matrix, f is the

acoustic excitation vector and p is the acoustic pressure nodal vector. For an axisym-

metric element model, the acoustic element mass matrix, the acoustic element stiff-

ness matrix and the acoustic load vector are given, respectively, by [3]

𝐊(𝐞)
𝐚 = 2𝜋r̄∫A

(
sTr sr + sTz sz + sT

𝜽

s
𝜽

)
dA (5)

𝐌(𝐞)
𝐚 = 2𝜋r̄

c2 ∫A
sTsdA (6)

f (e) = −𝜌sTünA (7)

where r is the radial distance of element centroid,A is the element revolution area, s is

the shape function and 𝐬𝐫 , 𝐬𝐳 and 𝐬
𝜃

are its derivatives with respect to each cylindrical

coordinate.

The dynamic stiffness matrix can be obtained as

𝐃 = 𝐊𝐚 − 𝜔
2𝐌𝐚 (8)

which can be partitioned in terms of internal, left-sided and right-sided degrees of

freedom by

⎡⎢⎢⎣
𝐃𝐢𝐢 𝐃𝐢𝐥 𝐃𝐢𝐫
𝐃𝐥𝐢 𝐃𝐥𝐥 𝐃𝐥𝐫
𝐃𝐫𝐢 𝐃𝐫𝐥 𝐃𝐫𝐫

⎤⎥⎥⎦
⎧⎪⎨⎪⎩
pi
pl
pr

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩
𝟎i
f l
f r

⎫⎪⎬⎪⎭
(9)

From Eq. (9), the internal pressures can be obtained as

pi = 𝐃−𝟏
𝐢𝐢

(
𝐃𝐢𝐥 pl + 𝐃𝐢𝐫pr

)
(10)

Substituting Eq. (10) into Eq. (9), the condensed acoustic stiffness matrix is obtained

as [
𝐃𝐥𝐥 𝐃𝐥𝐫
𝐃𝐫𝐥 𝐃𝐫𝐫

]{
pl
pr

}
=
{
fl
fr

}
(11)
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where 𝐃𝐥𝐥 = 𝐃𝐥𝐥 − 𝐃𝐥𝐢𝐃−𝟏
𝐢𝐢 𝐃𝐢𝐥, 𝐃𝐫𝐥 = 𝐃𝐫𝐥 − 𝐃𝐫𝐢𝐃−𝟏

𝐢𝐢 𝐃𝐢𝐥, 𝐃𝐥𝐫 = 𝐃𝐥𝐫 − 𝐃𝐥𝐢𝐃−𝟏
𝐢𝐢 𝐃𝐢𝐫 and

𝐃𝐫𝐫 = 𝐃𝐫𝐫 − 𝐃𝐫𝐢𝐃−𝟏
𝐢𝐢 𝐃𝐢𝐫 .

The periodicity condition allows predicting the behavior under harmonic distur-

bance of a periodic system modeling a unit-cell only. In this method the dynamic

stiffness matrix of a unit-cell modeled by WFE is used to apply the periodicity con-

dition in a harmonic disturbance propagating through the system. Using Floquet-

Bloch’s theorem [8], the periodicity condition results in an eigenvalue problem.

Equation (11) can be rearranged using the Transfer Matrix formulation, resulting

in {
pr
−fr

}
⏟⏟⏟

qr

=

{
−𝐃−𝟏

𝐥𝐫 𝐃𝐥𝐥 −𝐃−𝟏
𝐥𝐫

𝐃𝐫𝐥 − 𝐃𝐫𝐫𝐃−𝟏
𝐥𝐫 𝐃𝐥𝐥 −𝐃−𝟏

𝐫𝐫 𝐃𝐥𝐫

}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐓

{
pl
fl

}
⏟⏟⏟

ql

(12)

where T is the transfer matrix that relates the left state vector ql with the right state

vector qr of the unit-cell.

Considering now two consecutive unit-cells, m and m+1, the continuity condition

of medium states that pr(𝑚) = pl(𝑚+1) and fr(𝑚) = −fl(𝑚+1), resulting in

ql(𝑚+1) = 𝐓ql(𝑚) (13)

For wave propagation in an infinite periodic system, Floquet-Blochs theorem pro-

duces an eigenvalue problem given by

𝐓ql = e𝜇ql (14)

where e𝜇 is the eigenvalue, ql is the eigenvector, 𝜇 = −ikL is the attenuation constant,

L is the unit-cell length, k is the wavenumber and i is the imaginary unit. This solution

provides the behavior in terms of wave propagation.

3 Simulated Model and Experimental Setup

3.1 Simulation Description

The system that was later experimentally verified is numerically modeled with a

script implemented in Matlab
Ⓡ

. The unit-cell is discretized with 618 triangular ele-

ments, and the whole system with five cells was simulated. Dispersion relations and

Frequency Response Functions (FRFs) were obtained for each cell. The pipes and

cavity walls are assumed rigid. The fluid inside the tube system is air at ambient tem-

perature and atmospheric pressure, with 1.21 kg∕m3
and 20

◦
C. With these physical

proprieties, FRFs and dispersion relations of the system were obtained.
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3.2 Experimental Setup Description

A tube system was built with five unit cells made of polyvinyl chloride (PVC), which

were constructed with two pipes connected to an expansion chamber. Each pipe

has 150 mm length and 37.5 mm internal diameter. The expansion chambers have

165 mm length and 145 mm internal diameter. Table 1 summarizes the geometric

properties. A scheme of the experimental setup is shown in Figs. 1 and 2 illustrates

the unit-cell and its dimensions.

The system is excited with a volume acceleration at one end. This excitation was

applied using a PVC piston with circular cross section of 37 mm diameter, coupled

to an electrodynamic shaker. Mounted on the piston, a piezoelectric accelerometer

measures the piston acceleration, linearly proportional to the air volume accelera-

tion. The gap between the tube wall and the piston is sealed by a rubber membrane.

At the other system termination, a microphone supported on a bar measures the pres-

sure at the system end. Each cavity is simply supported with polypropylene foam.

The FRF of pressure caused by volume acceleration was measured with ten averages,

a frequency band of 1125 Hz and frequency discretization of 0.625 Hz. The specifi-

cations of measurement instruments are summarized in Table 2. Figure 3 shows the

experimental setup with all measurement instruments.

Table 1 Tube system

geometric parameters
Geometric parameter Value

Pipe length (m) 0.150

Cavity length (m) 0.165

Total length (m) 2.325

Pipe diameter (mm) 37.5

Cavity diameter (mm) 145

Number of unit-cells 5

Fig. 1 Schematics of the experimental setup
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Fig. 2 Unit-cell dimensions

Table 2 Measurement instrument list

Instrument Manufacturer and model Sensitivity Measure range

Accelerometer Kistler 8614A500M1 3.41 mV/g ± 500 g

Microphone G.R.A.S 26CA 46.6 mv/Pa ± 0.2 dB

Shaker TMS K2004E – 0–11 kHz

Data Acquisition LDS Dactron Photon II – –

Fig. 3 Experimental setup: a system overview; b piston with accelerometer; c microphone on exit

termination



Passive Control of Noise Propagation in Tube Systems Using Bragg Scattering 529

4 Results and Conclusions

Figure 5 shows the dispersion diagram for the acoustic periodic cell. Two band gaps

are evident, one in the 100–500 Hz range and one in the 500–900 Hz range. These

are typical Bragg scattering band gaps, where the band gap is caused by interference

of reflected waves. The FRF in Fig. 4 shows that at the band gaps the response is

strongly attenuated. A good agreement is found between the FE and the WFE solu-

tions and a good qualitative agreement is observed between numerical predictions

and experiment.

The methodology exposed in this work may be used to design and optimize peri-

odic duct geometries to attenuate duct noise in practical applications. The dispersion

analysis of a single periodic cell is sufficient to predict the existence and frequency

range of the band gaps. A similar analysis may be conducted with a different strat-

egy consisting of introducing periodic Helmholtz resonators. This may be shown to

create band gaps at lower frequencies, but band gaps caused by this local resonance

effect are much narrower.

The WFE method may be used to compute the forced response of a finite periodic

structure with a lower computational cost compared with a full finite element solu-

tion. The experimental results show that numerical methods may be used to predict

band gaps that are reasonably robust with respect to small variations of the periodic

cell, unavoidable when building the acoustic duct system.
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Dynamic Models for Transmission Lines
and Hoses

Petter Krus

Abstract In this paper simplified models for hydraulic transmission lines and hoses,

for both time and frequency domain simulation, are presented. Flexible hoses have,

in addition to a higher capacitance, also an considerable damping effect, that can

reduce noise and vibrations, and in this paper, efficient approximate models for flex-

ible hoses are presented. In hydraulic transmission lines with laminar flow the losses

can be divided into two parts. One term that is distributed friction, and one term

that is frequency dependent. It is shown that in general, the effect from the hose wall

dominate the frequency response characteristics over the frequency dependent fric-

tion. A very simple frequency dependent model of the damping term of the hose can

then be combined with an equally simple model of the distributed friction to repre-

sent a simple but accurate model of a flexible hose for system simulation in the time

domain.

Keywords Transmission line ⋅ Flexible hose ⋅ Dynamics ⋅ Simulation model

1 Introduction

Hydraulic transmission lines are omnipresent elements in hydraulic systems. In many

cases, when hydraulic systems are analysed and simulated, it is justified to regard

pipelines as just lumped restrictors and capacitances. In many cases, however, wave

propagation effects in lines may become significant.

The behaviour of fluid lines, with wave propagation, was of interest already for

pipes for water distribution where water hammer effects was early identified as a

problem. In Stecki et al. [11, 12] an overview of the historic development of models

is described, and the different models compared.

Wave propagation is also important in order to predict fluid transients in long

lines. One important area is to predict pressure amplitudes in system with periodic
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excitations, such as from hydraulic pumps and with appropriate models, efficient

attenuators can be designed [10].

Noise in hydraulic systems is one of the major problems with hydraulic systems.

For prediction of pump pulsations in hydraulic systems, modelling in the frequency

domain is preferable. In this way attenuators can be designed to suppress e.g. fre-

quencies generated by the pump. Here, a transmission line element is modelled with

a four-pole equation. This is also described in [14].

In this way complex pipe systems can be analysed at low cost. With appropri-

ate models, pressure amplitudes in system with periodic excitations, such as from

hydraulic pumps, can be predicted, and be used to design efficient attenuators [10].

Their impact on hydraulic control systems can also be of importance [14].

2 Basic Equations for a Transmission Line

A general transmission line can be described by the four-pole equation. See e.g.

Viersma [14]. Here capitals are used to indicate Laplace transformed variables

(Fig. 1).

(
−Q2
P2

)
=
(
AL BL
CL DL

)
×
(
Q1
P1

)
(1)

There are two important parameters. These are the time delay, T , due to the limited

signal propagation speed, and there is the characteristic impedance Zc. Here a nega-

tive sign has to be put on Q2 since the definition of flow is always positive entering

the line. This convention makes the equations symmetric. According to Viersma [14]

frequency dependent friction can be handled by introducing the frequency dependent

friction factor N. The elements in the matrix can be written as:

AL = DL = cosh Ts
√
N (2)

BL = − 1
Zc
√
N

sinh Ts
√
N (3)

CL = −Zc
√
N sinh Ts

√
N (4)

The time delay T can be calculated from the oil properties 𝛽 and oil density 𝜌 and

the length l.

Fig. 1 Transmission line
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T = l
√
𝜌∕𝛽 (5)

The characteristic impedance can be calculated from the oil properties and the cross

section area A.

Zc =
1
A
√
𝜌𝛽 (6)

Using (1) and multiplying by 2 the following expressions are obtained.

1
Zc
√
N

(
eTs

√
N − e−Ts

√
N
)
P1 = 2Q2 +

(
eTs

√
N + e−Ts

√
N
)
Q1 (7)

(
eTs

√
N + e−Ts

√
N
)
P1 == 2P2 + Zc

√
N
(
eTs

√
N − e−Ts

√
N
)
Q1

Adding (7) and (8) and dividing with 2 yields

P1eTs
√
N = P2 + Zc

√
N
(
Q2 + Q1eTs

√
N
)

(8)

Rearranging yields

P1eTs
√
N − Zc

√
NQ1eTs

√
N = P2 + Zc

√
NQ2 (9)

Introducing the wave variables C1 and C2 such that

P1 = C1 + ZcQ1 (10)

P2 = C2 + ZcQ2 (11)

One often used line model is the one proposed by Trikha [13]. This model uses the

method of characteristics and is reasonably accurate. The line is divided in sections

with the length ha where h is the time step used in the simulation and a is the speed

of sound in the line. Pressures and flows are computed for each part of the line.

Obviously, this can be time consuming if the line is long.

The model used here have similarities to a model proposed by Karam and Leonard

[6]. In this model only the pressures and flows at the ends of the line are computed

which greatly reduces the computational effort. A model based on this approach with

improved accuracy was also described by Krus and Palmberg [8]. In Krus et al. [9]

it was described how this approach can be improved and how it can be mated to the

method with characteristics to obtain a very robust, accurate and economical model.

This model gives good results both in the time and frequency domain when com-

pared to more elaborate models. If, for some reason internal state variables are

wanted, they can be obtained by representing a line with several line elements.
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Fig. 2 Block diagram of a transmission line in the frequency domain

The introduction of wave variables is a very effective way to connect different

components in simulation of systems. Essentially there are two kinds of components,

those who calculate characteristics, such as lines and capacitances, and components

that calculate flow and pressure from these characteristics. For a more detailed dis-

cussion on this subject see Krus et al. [7].

At each such component, the following system of equations is solved (in the time

domain).

q = q(p)
p = c + Zcq (12)

Solving (9) and (11) for C1 and C2 yields

C1 = e−Ts
√
N
(
P2 + Zc

√
NQ2

)
+ Zc

(√
N − 1

)
Q1 (13)

C2 = e−Ts
√
N
(
P1 + Zc

√
NQ1

)
+ Zc

(√
N − 1

)
Q2 (14)

In Fig. 2 the corresponding block diagram is shown.

2.1 Distributed Resistance

For the case of a uniformly distributed resistance the expression for N is (see e.g.

Viersma [14]):

N(s) = 𝛼

s
+ 1 (15)

where

𝛼 = R
ZcT

(16)
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Fig. 3 The frequency spectra of the pressure at the outlet of a transmission line with a blocked

outlet in linear and log-log scale

Here, R is the total resistance of the line. See e.g. Viersma [14] for laminar flow.

R = 8𝜋𝜂l
A2 (17)

The factor N for the distributed friction is hereafter referred to as NR, in order to

distinguish it from the general case with also frequency dependent friction. The fre-

quency response of a transmission line with a blocked outlet can now be evaluated

using the expression for NR for distributed friction. The example in Fig. 3 is shown

in dimensionless form. The only quantity that has to be specified is the ratio R∕Zc. In

this example, it is set to 0.3. In this way the effect on the reduction of the resonances

can be seen. Except for the first peak, corresponding to the DC-level, all the others

are having almost exactly the same level.

2.2 Frequency Dependent Resistance

One aspect of hydraulic transmission lines that is complicated, is the frequency

dependent friction. The exact solution involves expressions with Bessel functions

that are relatively costly to evaluate using standard packages. However, very effi-

cient approximations that are valid for the whole frequency range of interest have

been developed here. This means that this kind of models can be used also for design

optimization. According to Hams [1] and Viersma [14] frequency dependent friction

can be handled by calculating N as:

N(s∕𝛼) = −
J0

(
i
√

8 s
𝛼

)

J2
(
i
√

8 s
𝛼

) (18)
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Fig. 4 The absolute values and phase of the factor NR(i𝛺), dashed line, and for distributed friction

and frequency dependent friction N(i𝛺), solid line. For high frequencies the frequency dependent

friction has a much higher damping. They are similar except in the midrange where the frequency

dependent friction has a higher value

Fig. 5 Block diagram of transmission line with filters introduced for the effects of distributed

frequency dependent friction

It can here be convenient to introduce the variable S = s∕𝛼. To plot the function

the Laplace variable s is substituted by i𝜔, and consequently the non-dimensional

frequency 𝛺 is then introduced as (Fig. 4):

𝛺 = 𝜔

𝛼
(19)

In order to be able to deal with the frequency-dependent friction one approach is

to introduce the transfer function Gf (s)

Gf (s) = e−Ts
(√

N(s∕𝛼)−1
)

(20)

If a pressure pulse is propagating in the line, the Gf (s) represents a filter that

is acting on the pressure signal. The block diagram of the transmission line then

becomes like in Fig. 5.

Using a frequency domain description of N, the filter Gf (s) can be evaluated. In

order to get a general plot of Gf (i𝜔). the non-dimensional frequency 𝛺 is used:

Rewriting (20) we obtain if s is substituted for i𝛺𝛼
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Fig. 6 The transfer function

of distributed resistance

GofR(i𝛺), dashed line, and

frequency dependent friction

Gof (i𝛺), solid line. For high

frequencies the frequency

dependent friction has a

much higher damping

Gf (i𝛺𝛼) = e−Ti𝛺𝛼

(√
N(i𝛺)−1

)
(21)

Introducing the new function Gof (i𝛺) and rearranging (21) we obtain

Gof (i𝛺) = Gf (i𝛺𝛼)
1
𝛼T = e−i𝛺

(√
N(i𝛺)−1

)
(22)

This is a function that is independent of the properties of the line, since it is only

a function of the dimensionless frequency 𝛺. This function was introduced for the

first time in Krus et al. [9].

The plots of this function for N expressed by (15) and (18) is shown in Fig. 6.

Clearly there is a dramatic difference, especially compared to the results from just

looking at the N functions by themselves, as in Fig. 4.

Another important observation is thatGf (S) is an irrational function of S. Not only

is it irrational because it involves the square root ofN. AlsoN(S) for the exact solution

of frequency dependent friction for laminar flow, is a function of irrational Bessel

functions. Finally, Gf (S𝛼) is an irrational function of Gof (S) since the exponent in

(22) is a linear function 𝛼 which is a rational number. This means that it is not possible

to find an exact model for time domain simulations.

The expression with the Bessel functions can sometimes be inefficient for compu-

tations. Even though they are implemented in standard packages with many software,

computations, e.g. simulations in the frequency domain can be much more efficient

if good approximations can be found. One approximate expression was developed

by Trikha [13]. It is:

NA1(i𝛺) = 1 + 1
i𝛺

+ 0.1515
1 + 0.3030i𝛺

+ 0.1620
1 + 0.04i𝛺

+ 0.020
1 + 0.001i𝛺

(23)

Another approximate expression that is introduced here, is:

NA3 = 1 + 1
i𝛺

+
1∕2

1 + (kNi𝛺)𝜉
(24)
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Fig. 7 The transfer function

of frequency dependent

friction Gof (i𝛺) using the

exact expression, solid line,

and with the two

approximate expressions.

The Trikha approximation is

the dotted line one with

visible deviation

where for this case kN = 0.37 and 𝜉 = 0.54. This gives a relative error in the Gof (i𝛺)
function less than 3% for the whole frequency range.

A comparison of the resulting dimensionless transfer functions is shown in Fig. 7.

In the figure the approximation based on Eq. (24) cannot be distinguished from

the exact solution.

The frequency response of a transmission line with a blocked outlet can now be

evaluated using the expression for N. Also in these examples the quotient R∕Zc is set

to 0.3.

It can be seen in Fig. 8 that the resonance peaks get progressively more damped

at higher frequencies.

The transfer function cannot be inverse transformed exactly into the time domain.

It is, however, possible to calculate the time response exactly through convolution

of a given input signal with the impulse response that is obtained through inverse

Fourier transformation into the time domain. The result is show for a unit input

step and an open end, corresponding to the same case as in Fig. 9. In Johnston [5]

an approximate model for simulation of frequency dependent friction in the time

domain is presented. It is a further development from the model presented in Krus

et al. [9].

Fig. 8 The frequency spectra of the pressure at the inlet with an open inlet (left) and at the outlet

for a transmission line with a blocked outlet (right) in log-log scales
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Fig. 9 Step response of a hydraulic transmission line. Inverse transformation from the frequency

domain and convolution with a unit input step, at time t = 1 × T

3 Flexible Hoses

Hoses differs from steel pipes in that they have more compliance and also more

damping especially at high frequencies. Furthermore, there is also a wave travelling

through the wall at a different speed see [4]. Here a model that only look at the

dominant effects of compliance and damping which was investigated in Johansson

and Nyström [3]. Consider the case where there is some impedanceG′
w(s) at each line

increment. Figure 10 shows an increment of a line with wall dynamics. The prime “′”
indicates that the entity is per line increment. This model is not completely general

since no axial propagation in the wall can occur. It is, however, capable of dealing

with the capacitance and energy loss in the wall in a very consistent way, and these

are the most important effects to deal with in hydraulic systems with hoses.

G′
w(s) is defined as

G′
w(s) = P′∕Q′

w (25)

where Q′
w is the flow communicated through the wall. To establish a model the orig-

inal Telegrapher’s equation developed by Heaviside, [2], where an equivalent model

for electrical lines is used.

(
AL BL
CL DL

)
×
(
Q1
P1

)
=
(
−Q2
P2

)
(26)
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Fig. 10 Increment of a

transmission line with wall

dynamics

wC′

C′

wR′

AL = cosh 𝛾l (27)

BL = − 1
Zc0

sinh 𝛾l (28)

CL = −Zc0 sinh 𝛾l (29)

DL = cosh 𝛾l (30)

Here

𝛾 =
√

(sL′ + R′)(sC′ + G′
w(s)) (31)

and

Zc0 =
√

sL′ + R′

sC′ + G′
w(s)

(32)

where L′ = L∕l, R′ = R∕l, C′ = C∕l, G′
w(s) = Gw(s)∕l. This yelds

𝛾 = 1
l
√
(sL + R)(sC + Gw(s)) (33)

and

Zc0 =
√

sL + R
sC + Gw(s)

(34)

An alternative representation is:

AL = = cosh Ts
√
N1 (35)

BL = − 1
Zc
√
N2

sinh Ts
√
N1 (36)

CL = −Zc
√
N2 sinh Ts

√
N1 (37)

DL = = cosh Ts
√
N1 (38)

This representation has the advantage that the lossless transmission line is

obtained by setting N1 = N2 = 1. Compared to Eq. (4) N has been replaced by N1



Dynamic Models for Transmission Lines and Hoses 541

and N2 in order to handle also the wall dynamics. Equation (33) can be written as:

𝛾 = s
l

√(
1 + R

Ls

)(
1 + Gw(s)

Cs

)
√
LC

(39)

Equation (34) can be written as:

Zc0 =
√

L
C

√√√√√ 1 + R
Ls

1 + Gw(s)
Cs

(40)

Identification with Eqs. (35) to (38) yields

T = 1∕
√
LC (41)

Zc =
√
L∕C (42)

N1 =
(
1 + R

Ls

)(
1 +

Gw(s)
Cs

)
(43)

N2 =
1 + R

Ls

1 + Gw(s)
Cs

(44)

Introducing

NR = 1 + R
Ls

(45)

Nw =
(
1 +

Gw(s)
Cs

)
(46)

This yelds

N1 = NRNw (47)

and

N2 = NR∕Nw (48)

The elements of the four pole equation then becomes:
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Fig. 11 Block diagram of hose with visco-elastic walls

AL = coshTs
√
NRNw (49)

BL = − 1

Zc
√

NR
Nw

sinh Ts
√
NRNw (50)

CL = −Zc

√
NR

Nw
sinh Ts

√
NRNw (51)

DL = coshTs
√
NRNw (52)

A first order approximation of the wall behaviour would be to model the capaci-

tance and the energy loss in the wall. This can be done by introducing a wall resis-

tance Rw and a wall capacitance Cw. This is shown in Fig. 10.

For this case

Gw(s) =
Cws

𝜏ws + 1
(53)

where

𝜏w = RwCw (54)

and

𝜅 = C∕(C + Cw) (55)

The block diagram of the line can also be represented by Fig. 11. Here Te is a time

delay that is not necessarily the same as T since an arbitrary amount of the delay can

be placed in Gf (s).
A comparison of the resulting dimensionless transfer functions is shown in Fig. 7.

In the examples the following data is used: 𝜏w = 0.03T , 𝜅 = 0.5, and 𝛼 = 0.2∕T , This

means that the quotient R∕Zc = 0.2. In Johansson and Nyström [3], the time constant

for a typical high-pressure hydraulic hose was reported to be in around 0.05–0.1 ms

(Fig. 12).

It can be seen that here the resonance peaks get progressively more damped with

the frequency (Fig. 13).
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Fig. 12 The frequency spectra of the pressure at the inlet (left) and outlet (right) of a transmission

line with a blocked outlet in log-log scales

Fig. 13 Step response of hydraulic hose. Inverse transformation from the frequency domain. Unit

flow step at time t = 1 × T

4 Approximate Models for the Time Domain

In a transmission line with ideally elastic lossless walls, the capacitance of the walls

can simply be added to the fluid capacitance. This gives a longer, total delay time

which is referred to her as Tt. This is defined as:

Tt = 1∕
√
L(C + Cw) = T∕

√
𝜅 (56)

The block diagram can be defined using this delay time instead of T . Nw must then

be redefined as:
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Nw = 𝜅

(
1 +

Gw(s)
Cs

)
(57)

Equations (53) in (57) yields

Nw =
𝜅𝜏ws + 1
𝜅(𝜏ws + 1)

(58)

At the same time the total effective characteristic impedance Zct is introduced as:

Zct =
√
L∕(C + Cw) = Zc

√
𝜅 (59)

The part of the Gf (s) filter that is dependent of the wall can be written as:

Gfw(s)e−Te = e−sT
√
NRNw = e

−s
(
T
√

𝜅𝜏ws+1
𝜅(𝜏ws+1)

)
= e

−s
(
T
√

𝜅𝜏ws+1
𝜅(𝜏ws+1) −Te

)
e−Te (60)

Here Te is an effective time delay in the transmission line. In a transmission line

with elastic walls two delay times can be defined. The delay time T correspond to the

wave propagation time in a line with stiff walls. Equation (60) can now be written

as:

Gfw(s) = e
−s

(
Tt

√
s𝜅𝜏w+1
s𝜏w+1 −Te

)
(61)

Inverting and Taylor expansion around s = 0 yields

Gw(s)−1 =
1
2
[T2

e − 2TtTe − (1 − 𝜅)Tt𝜏w]s2 + [Tt − Te]s + 1 + O(s3) (62)

Chose Te so that

T2
e − 2TtTe − (1 − 𝜅)Tt𝜏w = 0 (63)

The only meaningful root for this is:

Te = Tt −
√
(1 − 𝜅)𝜏wTt (64)

This yields

Gfw(s)−1 =
[√

(1 − 𝜅)𝜏wTt
]
s + 1 + O(s3) (65)

An approximate expression for Gfw(s) is therefore

Gfwa(s) =
1

𝜏wes + 1
(66)
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where 𝜏we =
√
(1 − 𝜅)𝜏wTt. This approximation can, however, only be used if. Tt >

(1 − 𝜅)𝜏w. In other cases a lumped parameter model is better. The filter H1(s) can be

written as

H1(s) = Zct

⎛⎜⎜⎜⎝

√√√√√ (1 + R
Ls
)(RwCws + 1)

RwCw

C+Cw
+ 1

− 1
⎞⎟⎟⎟⎠

(67)

Equations (54) and (55) in (67) yields the H2 filter as:

H2(s) = Zct
⎛⎜⎜⎝

√
(1 + 𝛼𝜏w + 𝛼

s
+ 𝜏ws)

𝜏w𝜅s + 1
− 1

⎞⎟⎟⎠
(68)

Approximate expressions for both H1(s) and H2(s) these filters can be found. Even

though the effect in reality is very small from these, and may be of even of lower

influence than other effects that have been omitted, they are shown here for com-

pleteness.

H1(s) = Zct

𝜏w

𝛼
(1 − 𝜅) s2 + 𝜏ws + 1(
𝜏w𝜅

2
s + 1

)(
2
𝛼
s + 1

) (69)

H2(s) = Zct
𝜔21
𝜔22

(
s

𝜔21
+ 1

) (
𝜏wk1s + 1

)
(

s
𝜔21

+ 1
)(

𝜏wk1
√
𝜅s + 1

) (70)

4.1 Example

Using the approximate expressions for H1(s), H2(s) and Gf (s) from Ref. [7] and

Gfwa(s) from Eq. (66) the approximate time domain model can be built. The result

is shown in Fig. 14. This should be compared to Fig. 13. The spike in the begin-

ning of the step is missing, although this can be included with Eqs. (69) and (70).

However, to excite this a very sharp input signal is needed, and it has to the authors

knowledge never been observed. Furthermore, there could be other effects that are

not considered here, that can have a greater effect. Therefore, it can be omitted for all

practical purposes, since the model capture the effect of increased damping at high

frequencies that is known.

The main modifications compared to the original transfer functions is that high

frequency range is different. There is, however, a great deal of uncertainty concern-

ing the real behaviour of vessels in the high frequency range. Furthermore, excitation

is usually limited in frequency range and for system simulation it is usually adequate

with to have a good representation of the lower frequency range. The main contribu-
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Fig. 14 Pressure response

of a transmission line with

visco-elastic walls
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tion of the visco-elastic walls for such systems is the damping effect (in addition to

the added capacitance), and that can be handled very well with just the Gfw(s) filter.

5 Discussion

The model for hose dynamics is based on analytical models of assumed mechanisms

and effects in a hose. In particular the effects of damping from visco-elastic walls

in hoses, can also be modelled. This can have a great effect for damping, especially

at high frequencies. Another effect, is the increased compliance which also can be

easily implemented as a compliance in series with the oil compliance.

The general approach used to derive models, that is, to make models first in fre-

quency domain and then use them to produce approximate models that can be inverse

transformed analytically into the time domain is likely to be valid in any case. The

same approach was earlier used to derive the model for a transmission line with dis-

tributed resistance. Since the damping of the walls in a hose is so dominant, it is

usually sufficient to combine it with the simple model of distributed friction.

6 Conclusions

A simplified frequency dependent friction model was introduced in this paper. This

is an analytical function that can be used instead of the expression with Bessel func-

tions that represents the exact solution in the frequency domain. This can substan-

tially speed up simulation in the frequency domain, which can be important for sys-

tem optimization. Practical models for simulation of flexible hoses has also been

derived, both for simulation in the frequency domain and also as an approximate

model for simulation in the time domain. This model display higher damping of
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high frequencies that a pure pipe does, which is consistent with experience of real

hoses.
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Assessment of Uncertainties
and Parameter Estimation
in a Offshore Gas Pipeline

Elói Rotava , Flavio Celso Trigo and Jorge Luis Baliño

Abstract Natural gas has a great importance in actual economy, and its transport is

done usually through pipeline networks. The operation of a gas pipeline uses numer-

ical models for calculation of intermediate properties, prediction of future behavior

and estimation of the integrated flow capacity. These models are based on physical

assumptions, closure laws and field measurements of boundary conditions such as

pressure, flow, temperature and composition of the natural gas. This paper presents

a development proposed for state and parameter estimation based on the implemen-

tation of an extended Kalman filter, in order to determine appropriate values for

the flow parameters and use of complementary measurements in the boundary con-

ditions. These results are compared to the ones obtained by using the Equal Error

Fraction Method. It was found reduced pressure and flow systematic errors when the

Kalman filter was used to estimate parameters.

Keywords Uncertainties ⋅ Estimation ⋅ Kalman filter ⋅ Gas pipeline ⋅ Offshore

technology

1 Introduction

To help gas pipeline operation, numerical tools are used to calculate the local flow

conditions [1], with a wide variety of commercial software available for this task.

These codes can also periodically calculate the flow variables based on the field

measurements available for the export and import of the involved actors in a config-

uration called Pipeline Management System, or PMS.

PMS are based on measurements available for use in predetermined boundary

conditions of a flow model, and in adjustable parameters such as pipe roughness
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and thermal exchange coefficient, in order to minimize errors in dependent vari-

ables. Some of the adjustment parameters appears in algebraic relations [2]. These

approaches cause difficulties when adjusting simultaneous parameters or when mix-

ing pressure and flow rate measured at the same point in a real time problem.

As redundant measurements are available in the field, it is interesting to develop

techniques that allow the use of these measurements not directly used on flow model.

This can be done by modifying one or multiple variables for matching a steady state

condition based in multiple data acquired in a real pipeline, with manual or automatic

operator [2].

Estimation theory allows the use of these redundant measurements to estimate

the flow condition in the pipeline. Such a task can be performed by a Kalman filter,

a recursive estimator that considers the existence of uncertainties of both model and

measurements.

This work describes the implementation of a Kalman filter to provide estimates

of flow parameters for a simple pipeline comprising a single fluid inlet and outlet.

The results are compared with those provided by a traditional technique, called the

Equal Error Fraction Method (EEF method), applied in the pipeline operation, with a

specific flow model. This is expected to work also for data reconciliation in a network

pipeline that does not achieve steady condition.

2 Flow Model

The first requirement for the implementation of a Kalman filter is building a pro-

cess model. In this work, the pipeline flow is considered as single-phase, one-

dimensional, transient, thermal, compositional in a offshore pipeline with a single

inlet and outlet.

2.1 Conservation Laws

For the considered flow the model is based on three conservation equations, described

below.

Continuity equation. The mass conservation equation can be written as:

𝜕𝜌

𝜕t
+ 𝜕

𝜕s
(𝜌 v) = 0 (1)

where 𝜌 and v are respectively the gas density and gas speed, t is the time and s is

the axial position along the pipeline.

Momentum equation. The linear momentum conservation equation can be written

as:

𝜕

𝜕t
(𝜌 v) + 𝜕

𝜕s
(
𝜌 v2

)
= −𝜕P

𝜕s
+ 𝜌 gs −

1
2
f 𝜌

v |v|
D

(2)
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where D is the pipeline diameter, f is the Darcy friction factor, gs is the gravity

component in the flow direction and P is the gas pressure.

Energy equation. Although the intrinsic thermal effects are negligible, control

equipment in the pipeline can cause significant temperature variation, thus justifying

the inclusion of energy conservation in the model:

𝜕

𝜕t

[
𝜌

(
ĥ + 1

2
v2 + g y

)]
+ 𝜕

𝜕s

[
𝜌 v

(
ĥ + 1

2
v2 + g y

)]
=

4 q′′

D
(3)

where g is the gravity acceleration, ĥ is the specific enthalpy, q′′ is the heat flux

(positive when added to the fluid) and y is the vertical position. For the purposes of

numerical solution this non-linear equation, in terms of temperature and pressure, is

linearized around the operational point.

Species conservation equations. Since monitoring of composition is necessary,

species conservation equations are also considered:

𝜕

𝜕t
(
𝜌Xi

)
+ 𝜕

𝜕s
(
𝜌 v Xi

)
= 0 (4)

where Xi is the molar fraction of species i. For N species there are N − 1 equations,

being Eq. (1) the sum over all the species. Due to its low influence on the flow, the

compositional field can be solved separately from the previous equations, without

major convergence problems.

2.2 Constitutive Equations

For conservation equations solution is necessary to calculate intermediate properties

of the fluid, like the compressibility and friction factor.

State equation. As an equation for the calculation of fluid properties, the Peng and

Robinson [3] correlation, which is widely used in applications involving natural gas,

is adopted.

Friction factor. The pressure drop is quite simple considering only a single phase;

the friction factor equation proposed by Swanee and Jain [4] was used for its explicit

form.

2.3 Numerical Scheme

The equations are modified for more convenient variables and discretized with the

Finite Volume Method (FVM) [5] with proprieties depending on the past flow field

evaluated at time t and the actual time step t + 𝛥t. First the flow field is calculated and



554 E. Rotava et al.

then the species field are calculated. The properties of the flow are updated on the

actual time step with the new calculated conditions and the iterative process follows

to convergence on a full implicit numerical scheme with relaxation when necessary.

The discretized version of the continuous system is represented by:

[A] ⋅ {B} = {C} (5)

where [A] is the matrix corresponding to the discretized system. The vector {B}
contains the flow variables evaluated at time t + 𝛥t, while the vector {C} contains

elements evaluated at time t.
The assembled matrix [A] is sparse and almost tri-diagonal, which reduces the

effort required for inversion. Each row of the matrix corresponds to a conserva-

tion equation or boundary condition equation. First, the conservation equations are

assembled for each discretization point, and then the boundary equations are assem-

bled for the nodes. This is the motivation for the division of the elements of the

flow network into pipelines where the flow occurs, and in nodes where the boundary

conditions happen.

3 State Estimation

The approach proposed in this work applies a Kalman filter to a nonlinear flow prob-

lem, for the fusion of variables, detection of systematic errors in the measurements

and estimation of flow parameters. In order to validate the proposed approach, a

comparison with the results provided by the EEF method will be performed. This

method adjusts flow rate and pressure at the same point based on errors assumed for

each of the measurements.

3.1 Algebraic Method

The use of state estimation for natural gas flows goes back to Van der Hoeven [6],

where the proposed method predicted that the differences between measurement and

calculation would be managed by an error to be defined. This is the EEF method, that

uses associated standard deviations on pressure values 𝜎
P
i and flow rate values 𝜎

Q
i :

Pmodeled
i − Pmeasured

i

𝜎
P
i

=
Qmodeled

i − Qmeasured
i

𝜎
Q
i

(6)

It can be noted that the adjustment of one flow variable, such as pressure, depends

on the error in another, the flow rate, based in predefined deviations 𝜎i. This leads

to the necessity of systematic adjustments, which can significantly change the cal-

culated inventory for the pipeline.



Assessment of Uncertainties and Parameter Estimation in a Offshore Gas Pipeline 555

For estimation of other parameters, such as thermal exchange or pipe roughness,

additional variables are compared and small modifications are proposed for better

stability [7]. This can be done by using a PID controller with the measured pressure

on inlet as set point, the calculated pressure as input value and the output as the

modified roughness of pipeline. This approach works also on a real time PMS.

3.2 Extended Kalman Filter

The Kalman filter is an optimal stochastic recursive estimator that minimizes the

covariance of the estimation error in a least-squares sense. Uncertainties in the deter-

ministic models of the plant and of the measurement are taken into account by the

addition of white zero-mean Gaussian noise. In the case of non-linear applications,

the so called Extended Kalman Filter provides the necessary framework to tackle

the problem. In this version, the non-linear model is linearized around the newest

estimate of the state. However, due to the linearization, the extended version is a

sub-optimal estimator. This drawback is mitigated by the tracking ability of the esti-

mator, that can detect sudden changes in the dynamics of the system.

A thorough discussion on Kalman filtering theory is out of the scope of this work

(see, for instance, [8] and references thereon). This way, here we merely state the

basic assumptions and present the resulting equations of the discrete-time extended

Kalman filter, borrowed directly from [8]. Consider a typical non-linear continuous-

time system model given by

ẋ(t) = f (x(t), t) + 𝜔(t) (7)

in which f (x(t), t) is the non-linear system model and 𝜔(t) ∼ N(0,Γ(t)) is a white

zero-mean Gaussian noise whose covariance matrix is Γ(t). The typical discrete-time

measurement (or observation) model is described by

zk = hk(xk) + 𝜈k (8)

where zk denotes the measurement vector and 𝜈k ∼ N(0,Rk), k = 1, 2,… represents

a white zero-mean Gaussian noise whose covariance matrix is Rk. Assuming a set

of initial conditions x̂k=0,Pk=0, with Pk representing the estimation error covari-

ance matrix and non-correlated system and measurement errors (a commonly used

hypothesis), the model is, then, linearized according to

F(x̂(t), t) =
𝜕f (x(t), t)
𝜕x(t)

|x(t)=x̂(t) (9)

Hk(x̂(−)) =
𝜕hk(xk)
𝜕xk

|xk=x̂k(−) (10)



556 E. Rotava et al.

Thus, the discrete model is fully developed. The filter than starts the estimation

process by the propagation stage,

x̂k(−) = 𝛷k−1x̂k−1(+) (11)

Pk(−) = 𝛷k−1Pk−1(+)𝛷T
k−1 + Γk−1 (12)

where𝛷k−1 is the state transition matrix. The (−) and (+) signs represent respectively

immediately before and after new measured data is available.

Upon the arrival of a new set of measurements, the state x, the error covariance

matrix P, and the Kalman gain K are updated as stated by

x̂k(+) = x̂k(−) + Kk
[
zk − hk(x̂k(−))

]
(13)

Pk(+) =
[
I − KkHk(x̂k(−))

]
Pk(−) (14)

Kk = Pk(−)HT
k (x̂k(−))

[
Hk(x̂k(−))Pk(−)HT

k (x̂k(−)) + Rk
]−1

(15)

4 Application Case

The pipeline under study is a real one with 175 km long and 16 in. diameter, in oper-

ation for more than 25 years with two phase fluid flow and frequent pigging oper-

ations. This pipeline has an production unit that injects fluid gas at pipeline inlet

and a gas treatment plant receiving the pipeline fluid at outlet. The production unit

is offshore and the water depth is 180 m. The volumetric gas flow rate practiced in

this pipeline is 1.2 × 106 Sm
3
/d, with a condensate flow rate of 400 m

3
/d, but this

value varies according to the configuration of producing wells, operating difficulties,

planned maintenance in the gas treatment unit or in the production plant and other

factors.

The gas treatment unit is onshore, and has a simple dew point adjusting device.

Both units involved operate with flow rate control where the pressure is the con-

sequence of this operated flow rate. For ease of prediction of future behavior, the

numerical model counts with boundary conditions of the flow rate type, instead of

the usual flow rate and pressure approach. These conditions do not allow to reach a

steady state condition but, because we are dealing with a transient calculation in the

current work, this difficulty is overcome by the use of state estimation.

The geometry and flow parameters used with pipe length S, the vertical position

variation 𝛥y, the diameter D, the pipeline roughness 𝜖, the thermal exchange coeffi-

cient U and the ambient temperature Tamb are shown in Table 1.

The field measurements available for this pipeline are the pressures, flows rates

and temperatures at the pipeline inlet and outlet, while the gas composition is mea-

sured periodically for recalibration of the flow rate measurement on production unit.

For the purposes of this work, the measurement apparatus at the export of the pro-
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Table 1 Pipeline geometry and flow parameters

Pipe S (m) 𝛥y (m) D (in.) 𝜖 (mm) U( J
Km2 ) Tamb (◦C)

1 200 0 16 0.183 50 18

2 200 −200 16 0.183 50 18

3 175,000 200 16 0.183 50 18

4 200 0 16 0.183 50 18

P1, Q1

εInlet Outlet

P2, Q21

2 3

4

Fig. 1 Pipeline schematic

duction plant is considered the gold-standard; thus, major errors will be credited to

the equipment at the import of the processing unit.

In Fig. 1 a schematic drawing of the pipeline in study is shown. It consists of a

gas pipeline without large variations in diameter; P1 and Q1 are the pressure and

flow rate measurements at the inlet, while P2 and Q2 are the pressure and flow rate

measured at the pipeline outlet.

With the observations described above, the model for the pipeline study and its

inlet and outlet conditions was generated, according to Fig. 1. Due to the low influ-

ence and simplification of the problem, temperature will not be treated in this case.

To evaluate the influence of the pressure drop on the flow in the Kalman filter, state

vectors are proposed, including mechanism for change in pressure drop due to fric-

tion effects and offset for outlet flow rate.

The observation vector zk to be used in the Kalman filter is given below, and

includes the measured variables that define the flow in the pipeline:

zk =
[
P1 Q1 P2 Q2

]T
(16)

The non-linear observation model is linearized from the discretized continuous

model in order to obtain the partial derivatives of Eq. (10).

A random walk model is used to describe the evolution of the discrete-time system

(plant model). Thus, matrix F of Eq. (9) is the identity matrix. The state vector is

xk =
[
𝛥Q2 𝜖

∗]T
(17)

where 𝛥Q2 is the flow difference between measured values and those calculated by

the evolution model at the pipeline outlet, and 𝜖
∗

is the modified roughness. The
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first variable is justified since, in order to eliminate data reconciliation problems,

an adjustment in output flow can accomplish the task. However, this fit still needs

more discussion. The adjustment of this pressure drop through the pipeline equiva-

lent roughness, the second state variable, is also possible.

In relation to the error model, matrix Rk is assumed diagonal and constant. Its

elements are the squares of standard-deviations of the added noise, respectively 5%
and 1% of the maximum values of the flow rate and pressure. Matrix Γk, whose com-

ponents are the squared standard-deviations of the added noise, 1% of the maximum

values assumed by the state variables 𝛥Q2 and 𝜖
∗
, is also considered diagonal and

constant.

5 Results and Discussion

In this section, results will be presented for the state estimation of the two cases pro-

posed, namely, flow rate and pressure adjustment at the output port through the EEF

method plus PID, and estimation of pressure drop at the outlet and modified rough-

ness using the extended Kalman filter, as detailed in Sect. 3. Since these are results

obtained from experimental values of a real pipeline, the comparison parameters are

based on measured and calculated values of flow rate and pressure for the pipeline

inlet and outlet.

5.1 EEF Method and PID

Results of the simulation of the study case using the EEF method are presented in

Fig. 2, in which it is possible to check and compare the inlet and outlet pressures and

flows. A similar trend can be observed between the estimated state, in segmented

lines, and the field measurements, in continuous lines.

The spikes in the curves of measured data can be credited to the periodic pigging

operations. When the pig arrives, a large amount of condensate is displaced, thus

causing a sudden pressure drop at the duct outlet. This effect was not considered

in the flow model due to the complexity involved, and may be the subject of future

research.

Figure 3 shows the results for the estimated measurement offset and modified

roughness values. Although the solution using the EEF method is stable, during the

period of the test, approximately three months, the modified roughness presented a

high-amplitude oscillating behavior. The technique allows adjustments, depending

on the weighting parameter 𝜎i of Eq. (6). In the case studied, the error was allocated

at the output of the pipeline.
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Fig. 2 Output pressure results for EEF method

Fig. 3 Estimated parameters by EEF method and PID

According to [7], the method is efficient when the model is used to predict pres-

sure rise or pressure drop depending on unit at outlet position. However, in order to

monitor composition in the flow or for inventory calculation, there are drawbacks,

since it presents systematic errors in the profile of estimated pressures, with con-

sequences on the calculated inventory and on the transit time of molecules in the

pipeline. This is an evidence of the difficulty in applying such approach.
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Fig. 4 Pressure and flow rate results for Kalman filter

5.2 Kalman Filtering

This study case was simulated for a period of three months and compared to real field

data. In Fig. 4 we can check and compare the behavior of the inlet and outlet pressures

and flow rates during the test period. It may be observed that the curves representing

estimated state variables, in segmented lines, and the field measurements, in contin-

uous lines, are closer than those of the previous case. Again, the pigging operation is

responsible for the spikes in the curves that correspond to measured data. In compar-

ison with the algebraic techniques, there was a noticeable change in the difference

between calculated and measured pressures, with the Kalman estimates exhibiting

good overlap in the inlet pressure and large differences in the output pressure only

when the pigging operation takes place.

The time-evolution of the two estimated parameters, the difference in the flow

rate 𝛥Q2 and the modified roughness 𝜖
∗
, are depicted in Fig. 5. The estimated value

for the change in the outflow of the pipeline, −0.05 × 106 Sm
3
/d, is compatible with

the results of the previous case and with actual operational conditions. The addi-

tional estimated parameter, equivalent roughness, showed an initial stabilization, and

a change of threshold afterwards. This behavior can be related to unaccounted factors

that influence the pressure drop in the flow. Nevertheless, from our field experience,

after an initial value adjustment, a relative stabilization was expected, and it effec-

tively occurred from the 55th day.

In Kalman filtering theory, convergence is not guaranteed once estimates presents

only small deviations from a certain value during some time; if the statistics of the

residuals, zk − hk(x̂k)(−) in Eq. (13), are not consistent with the hypotheses used to

develop the filter, divergence effectively occurs. The histogram of the residuals is

shown in Fig. 6 as a continuous line, alongside with a Gaussian fit to the simulated
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Fig. 5 Estimated parameters by Kalman filter

Fig. 6 Residual errors histogram

data, in segmented line. As it is possible to observe in this figure, the simulated data

may be regarded as Gaussian; moreover, the mean value is zero, and the standard

deviation is 0.64. Since consistency between hypotheses and results was achieved,

there is evidence to suggest that the estimates converged.

It is yet important to point out that, during the simulation period, communication

failures occurred between the estimator and the field readings. Even under those cir-

cunstances, the Kalman filter was able to provide correct estimates of the pressure

and flow rate at the pipeline inlet and outlet. Hence, the approach may also be con-

sidered robust.
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6 Conclusions

The results obtained from state estimation techniques show an improvement when

compared to an algebraic approach such as the EEF method, available in the liter-

ature, without the necessity for systematic errors for adjustments. In addition, the

estimated parameters 𝛥Q2 and 𝜖
∗

show a suitable trend, with low variations once

convergence is achieved.

On the other hand, the computational cost to calculate the state is increased sig-

nificantly with the application of extended Kalman filter, by the necessity of deter-

mining the local derivatives in the model, which are performed numerically [9], and

this effect must be taken into account when using Kalman filtering. This effect can

be minimized by using parallel computing for the calculation of partial derivatives.

Pigging operations cause increased differences between estimated and measured

conditions that may influence the state estimation. For this reason the development

of the technique will be applied to gas networks in periods without pigging until the

proposed model is altered in order to detect such behavior.

Based on the results found for a single pipeline, a similar approach is being devel-

oped for more complex gas pipelines, which currently operate with two gas treatment

units and eight exporters, also from Brazilian Santos Basin, with more than 400 km

in length. There is a belief that the proposed approach may lead to the identification

of unexpected conditions on production units involved.

Future work may include structuring mechanisms for construction of noise matri-

ces for the plant and for the measurement models. Another possible development is

the migration to a multiphase flow model, in order to include pigging operations.

Finally, a discussion of the most appropriate approximations for measurement offset

is still necessary.
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