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Abstract The theory of evolution states that the diversity of species can be explained
by descent with modification. Therefore, all living beings are related through a com-
mon ancestor. This evolutionary process must have left traces in our molecular com-
position. In this work, we present a randomization procedure in order to determine if
a group of five species of the primate family, namely, macaque, guereza, orangutan,
chimpanzee, and human, has retained these traces in its molecules. First, we present
the randomization methodology through two toy examples, which allow to under-
stand its logic. We then carry out a DNA data analysis to assess if the group of
primates contains phylogenetic information which links them in a joint evolution-
ary history. This is carried out by monitoring a Bayesian measure, called marginal
likelihood, which we estimate by using nested sampling. We found that it would be
unusual to get the relationship observed in the data among these primate species if
they had not shared a common ancestor. The results are in total agreement with the
theory of evolution.

Keywords Phylogenetic signal · Randomization · Marginal likelihood · Nested
sampling

1 Introduction

The theory of evolution states that the diversity of species can be explained by
descendants with modification. Darwin [3] was able to provide evidence in favor of
his theory, despite the limitations at that time. Nowadays, technology is a powerful
tool which allows to generate a huge quantity of evidence in favor of this theory. The
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support comes from different areas, for instance, Molecular Biology, Paleontology,
Biogeography, Biochemistry, and Phylogenetics. The present article is located in the
latter which is the study of the evolutionary relationship among groups of organisms
based typically on molecular sequencing data.

As in any other field, in phylogenetics data analysis is performed mainly under
two statistical approaches: Frequentist and Bayesian. The latter has gained ground
in phylogenetics due to its flexibility to deal with large dataset with the complex
evolutionary models. Studying a particular Bayesian measure, the probability that
the data have been generated from a tree-like evolutionary model, we asses whether
the patterns of evolution in the molecular sequencing data (DNA) could reasonably
arise due to chance. In other words, if the theory of evolution was right, the sequence
alignments should contain information which connects the species from where the
DNA was taken. If it is so, we asses if these patterns can be due to chance acting
alone.

To evaluate if these patterns emerged from the molecular data is due to chance,
we use a method known as randomization. This method allows to detect if the data
contain nonrandom information that links the species in a common evolutionary his-
tory. It performs by comparing a statistic obtained from the data to the distribution
of the same statistic obtained from a set of functional data, generated randomly from
the original one, which consequently does not contain any phylogenetic signal. If the
data support evolution, their information should be significant enough to be differ-
entiated for that one obtained just by chance. This technique was already proposed
by [1] in a nonparametric framework.

This article aims to show in a practical way how the evolution theory is supported
for a logical method as it is randomization by studying a Bayesian quantity: the
marginal likelihood. First, two toy examples are presented as means to understand
the method and then an application on a real dataset which contains part of the
primate family is given in order to detect phylogenetic signal. The description of the
statistical methods and phylogenetic models are omitted but the respective references
are given.

2 Randomization

Randomization is a method used to assess the effect of certain factor or treatment on
a variable of interest. This is carried out by studying the properties of the distribution
of a statistic calculated from randomized datasets. Each of these functional datasets
is generated by randomly assigning the observations to the factor/treatment, i.e., the
experimental units are relabeled. The new data will not show any effect of the factor
on the variable. The factor is obviated and any difference between its levels is caused
by chance. This is analogous to shuffling playing cards to eliminate any kind of
intervention.

The method compares the statistic of the original data with the distribution of
the same statistic of the randomized data. Such statistic, for example, can be mean,
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median, mode, or variance. This method does not need to make any assumption
about the population, it just works with the data to make inferences. Assumptions
such as normality or equal variances. The following example helps to understand the
method.

2.1 Toy Examples

Consider that we have the marks of a test for 10 students differenced by the method
of study (A or B) to which the students were randomly allocated. The marks are
presented in percentage and are shown in Table1. The objective is to determinewhich
of the methods of study is more effective. Both examples are developed at the same
context but they will differ in the dataset. They could have been treated analytically,
but to illustrate randomization in a general way we have used simulations. They just
have didactic purposes and clear patterns have been arbitrarily assigned.

2.1.1 Example 1

Clearly, method A presents higher marks than method B (see Table1, Example 1).
This can be also noticed comparing their means (see Table2). Apparently, method
A is better than B. But can this be due to chance acting alone? Randomization can
give us an idea.

We generate a new dataset where eachmark is assigned randomly to eithermethod
A or B. The number of marks per method is set to 5, as in the original dataset. Then,

Table 1 Data for the toy examples

Example 1 Example 2

Method A Method B Method A Method B

92.5 55.2 18.49 94.35

99.8 32.0 70.24 12.92

75.8 49.6 57.33 83.34

82.4 68.3 16.81 46.80

93.2 69.3 94.38 55.00

Table 2 Means for each method according to the example. “Difference” depicts the subtraction
between the means of Method A and B

Method A Method B Difference

Example 1 88.74 54.88 33.86

Example 2 51.45 58.48 −7.03



214 P. Maturana Russel

−20 0 20 40

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Example 1

Mean difference

Fr
eq

ue
nc

y

Original
Data

−40 −20 0 20 40

0
50

0
10

00
15

00

Example 2

Mean difference
Fr

eq
ue

nc
y

Original
Data

Fig. 1 Distribution of the mean of the randomized datasets for the toy examples. In Example 1, the
observed difference is unlikely to have happened under chance acting alone. On the other hand, in
Example 2, this difference could have been just due to chance and nothing to do with which method
was used

the difference between the means is calculated and registered. This procedure is
repeated 10,000 times. The mean differences are plotted in Fig. 1.

We can see that the mean difference is around zero. This is expected because
the difference in means is just due to chance. The effect of the method has been
obliterated. The observed difference, that was calculated from the original data, is
33.86 and located in the right extreme of the distribution. In case that chance is acting
alone, it would be unusual to get an observed difference as big as that observed in the
data. Assuming a well-designed experiment, we conclude that method A effectively
yields better results than B on average.

2.1.2 Example 2

Now consider the data given in Table1 for Example 2. In this case, both methods
yield apparently similar results. The difference between their means is just 7.03 (see
Table2, Example 2). But again, can this be due to chance acting alone? To give an
answer we repeat the procedure in Example 1. The results are shown in Fig. 1.

The distribution of the differences between the means of method A and B for the
randomized datasets has its center around zero and is relatively symmetric. Similar
characteristics were found in Example 1 because the potential effect of the method
of study has been wiped out in both examples. The observed difference −7.03 is
near its center. When the chance is acting alone, this difference is highly probable,
unlike Example 1, where the difference in means was unusual under chance acting
alone. Thus, assuming a well-designed experiment, we could claim that the methods
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of study yield similar results, on average, and the observed difference is just due to
chance acting alone.

In these cases, we compared the effect of the method of study on the mark mean,
but we could have studied any other characteristic, for instance, standard deviation,
median, or a specific probability. In strict rigor, the comparison should be carried
out by using an appropriate statistical test, for instance, a t-test. In the next case, we
will study the probability of the data given the model in order to detect phylogenetic
signal in a molecular dataset of five primates.

3 Phylogenetic Analysis

Now, we apply the same concept in order to analyze if a molecular dataset of a
group of primates has information about their common evolutionary history. This is
a subset of a dataset which has been previously analyzed in the literature [7]. This
subset contains five kinds of primates: macaque, guereza, orangutan, chimpanzee,
and human. The alignment corresponds to mitochondrial DNA which has length
of 15,727 sites. To wit, the DNA is composed by four nucleobases: adenine (A),
cytosine (C), guanine (G), and thymine (T). An extract of the data is shown in Fig. 2.
The relationship among these species is uncontroversial and can be visualized as the
tree shown in Fig. 3. Human and chimpanzee share a more recent common ancestor.
This makes them more closely related. Orangutan is also part of this clade, but
with a farer ancestor. Macaque and guereza form another clade. All the species are
connected through their most recent common ancestor, which is located in the root
of the tree (left vertex of the tree) (Fig. 3).

In order to eliminate any kind of correlation in the dataset, we permute each
site generating a new dataset. In other words, each site is reordered randomly.
For instance, site 2 = (C,T,C,T,T) displayed in Fig. 2, can be permuted as
(T,C,T,T,C). The theory of evolution [3] states that all organisms are related
through common ancestors. So, if the data were generated by a tree, they should
contain this information, unlike in case the data are randomized.

In the previous examples, the mean difference was studied, but now we will study
the probability of the data given the model, which will be referred to from now as
marginal likelihood. Phylogenetic deals with very small probability values, so it is

Fig. 2 Extract of the mitochondrial DNA for five species of primates. Each column represents a
site
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Fig. 3 Evolutionary relationship amongfivemembers of the primate family. From the top:macaque,
guereza, orangutan, chimpanzee, and human. These species are related via common ancestry

convenient to work with log values. The evolutionary relationship among the species
is modeled by the tree, which is displayed in Fig. 3. This tree represents the factor
to be tested in this analysis, similar to the method of study that was tested in the
previous example. We describe the evolutionary process along the tree assuming a
GTR+Γ4 model, which is the most general time reversible model. A good readable
material about these models is given in [9]. The prior distributions on the parameters
involved in the model are defined in Appendix 1.

The calculation of themarginal likelihood is a challenging problem in phylogenet-
ics, even in simple models. Therefore, it requires a numerical approximation. Here,
we estimate it via Nesting Sampling [8], algorithm introduced to phylogenetics by
[4]. Details of the estimation process are given in Appendix 2.

We generate 1000 randomized datasets and calculate, for each one, their log-
marginal likelihoods. Also, we estimate this quantity for the original dataset. The
results are shown in Fig. 4 and the descriptive statistics in Table3.

The estimates for the randomized data fluctuate between −53484 and −51675
with a mean of −51737. On the other hand, the observed log-marginal likelihood
estimate is −49658 (with a standard deviation of 0.73). This is located at the right
side of the distribution of the log-marginal likelihoods for the randomized datasets,
approximately, 26 standard deviations away from the mean.
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Fig. 4 Log-marginal likelihood of the observed data compared to the distribution of this quantity
obtained from randomized datasets. The observed log-marginal likelihood is much higher than that
one would expect under chance acting alone. The information contained in the molecular data of
this primate family is more highly probable of being obtained due to common ancestry than just
due to chance

Table 3 Descriptive statistics for the estimated log-marginal likelihoods from the randomized
datasets

Minimum Mean Std. Dev. Maximum

Randomized data −53484 −51737 80.03 −51675

Following the reasoning of Example 1, we conclude that it would be unusual that
an observed log-marginal likelihood would be as large as the one observed in the
data when chance is acting alone. The probability that the original data has been
generated by the tree structure is much higher than the randomized datasets have.
This means that the patterns in the DNA are more likely to be explained by the
tree-like structure than just to occur due to chance. In other words, the data contain
phylogenetic information that cannot be explainedonly by chance. Themitochondrial
DNAhas retained the common evolutionary history of these species, and our analysis
has shown that it would have been highly unlikely to obtain this disposition of the
bases in the data as a result of pure chance. This is evidence which supports the
tree structure behind the evolutionary history of these 5 species of primates that is
consistent with the theory of evolution.

4 Conclusion

A brief introduction to randomization method has been given. Two toy examples
have been studied to explain its logic. Example 1 represented a case in which the
treatment had an effect on the studied characteristic, while Example 2 presented a
case when chance was acting alone. Both examples aimed to set up the logic which
is used in the analysis of a primate family dataset.
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We analyzed a real dataset of five species of primates under a Bayesian statistical
approach and used randomization to detect if this contained nonrandom informa-
tion. The data were permuted to eliminate any kind of phylogenetic signal, and then
the probability that these randomized data came from the tree model was calculated
(marginal likelihood). This procedure was repeated several times, generating a distri-
bution for the estimates. The probability for the original dataset wasmuch higher than
the maximum value of the same value of the randomized data. We would not expect
such a probability if there was no tree signal. Therefore, we concluded that chance
was not acting alone and these species have a tree-like relationship. The presence of
a hierarchical structure provides evidence for descent from common ancestry.

The results given here are consistent with the theory of evolution and are added
to the huge amount of evidence which supports it. For instance, 28 morphologi-
cal datasets were analyzed and are in favor of the tree-like models [1]; in addition
sequence data for 5 proteins from 11 species contains similar phylogenetic infor-
mation [5]. In this line, we have shown that Bayesian inference provides the means
to detect this phylogenetic signal through the marginal likelihood. In practice, it
is unusual to find data that completely lack hierarchical structure [2] and the data
analyzed here were not the exceptions.

All the analysis and plots have been produced in R-project [6].

Appendix 1

We analyze the dataset assuming aGTR + Γ4 model and consider the following prior
distributions on the parameters involved in the analysis:

• Branch lengths: ti |μ ∼ Exp(1/μ), for i = 1, . . . , 8, with μ ∼ Inverse-Gamma
(3,0.2).

• Relative rates: qi |φ ∼ Exp(φ), for i = 1, . . . , 5, with φ ∼ Exp(1).
• Base frequencies: π ∼ Dirichlet(1,1,1,1).
• Gamma shape parameter: λ ∼ Gamma(0.5,1).

For more information about the parameters involved in the phylogenetic analysis,
see [9].

Appendix 2

Nested sampling [8] is a Bayesian algorithm to estimate mainly the marginal like-
lihood. It requires a tunning parameter called active points. The precision of the
estimate depends on the number of active points. The higher it is, the more accurate
the estimate and the higher the computational cost are.
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To estimate the observed marginal likelihood, we use 100 active points. This
yields a standard deviation of 0.73 of the log-marginal likelihood estimate. For the
1000 randomized datasets, we use five active points in order to get a quick picture
of their log-marginal likelihood distribution.
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