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Abstract The range of possible readings among and within the statistical inference,
in addition to the relevance of these in the applied context, justify the extensive
literature analyzing and comparing the main methodologies. However, the fact that
each approach is built upon their own structures, varying even the spaces in which
they are evaluated, limit the conclusions to the specified scenarios. As a solution
for that, in the context of hypotheses tests, we work with the decision theory, which
provides a unique language to incorporate the logic of each existent philosophy. For
such, after discussing the main points of the frequentist and Bayesian inference, the
main approaches are presented, particularly regarding to precise hypotheses, and then
unify by the decision-theoretic viewpoint. Additionally, by through this perspective
we analyze, interpret and compare the loss functions of some precise approaches, in
the context of significance tests.

Keywords Significance tests · Decision theory · FBST · Loss function · Bayes
Fisher

1 Introduction

The main goal of Statistical Inference is to answer about random phenomena based
on the available information. For such, it is possible toworkwith different paradigms,
including likelihood-based, fuzzy, among others,with the Frequentist approach being
by far the most used. For this school, the probability of an event is given by the limit
of the relative frequencies, being such frequencies represented by an entity called
parameter, defined according to infinite and hypothetical repetitions of the associated
experiment. Particularly relevant, the parameter is responsible for specifying the
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behavior of the referenced random variable. Nevertheless, dealing with such limit as
a fixed quantity, despite unknown, imposes some difficult to analysis. For instance,
the need for an infinite sequence of repetitions of the experiment, carried out under
the same conditions, or the violation of the Likelihood Principle.

To circumvent such limitations, we have the option of extending the analysis
to the Bayesian understanding. In this, by looking at the parameter, the entity of
interest, as a latent random entity, we obtain a harmonious reading with the way
that uncertainty is commonly used. And the laws of probability being the structure
according to which a coherent individual must express his uncertainty. Besides, the
axioms of coherence [1], presupposed for such approach, are: simple, interpretable,
and intuitive.

However, in practice, there are applications working with different readings, par-
ticularlywith regard to theHypothesis Tests, and evenmore to the PreciseHypothesis
case. As a solution, we will address the Hypothesis Tests in a single language: deci-
sion theory, representing the main logics and objectives through the respective loss
functions. Additionally, by through this perspective, we analyze, interpret and com-
pare the loss functions of some precise approaches, in the context of significance
tests.

2 Decision Theory

Aiming to structure a methodology that helps us choose the best action taking into
account our objectives, circumstances and knowledge, we have the decision theory.
In this, the action to be taken admits values in the decision spaceD , and is influenced
by the results of an entity involving uncertainty, called Ω . So, given the preferences
of the decision agent, given by the loss function L(·) in relation to the possible
consequences (D × Ω), we get the optimal choice.

For this, we look for the decision so that the associated loss is minimal. However,
since the choice must be made without knowledge of the state of nature, we assign
probability to the set Ω , which is therefore seen as a random variable. Thus, we
estimate its behavior through the understanding that the decision agent has on the
parametric space, represented by the probability distribution π(θ), called priori.

Considering also the casewhere the decision agent has access to a sample x , where
the respective random variable X has its sigma-algebra of subsets of the sample space
(χ ) indexed by Ω , the decision agent starts to contemplate the knowledge of such
evidences. And the action is specified according to a decision rule δ,

δπ : χ → D
x �→ δπ(x).

(1)

Thus, by means of the priori expected loss, or risk against the priori,

Rπ (δ) = Eπ [L(δ(X),Θ)] = ∫
Ω

∫
χ
L(δ(x), θ) f (x |θ) π(θ) dx dθ. (2)
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Therefore, we seek for the strategy that minimizes the risk in relation to π(θ), so
that δ∗

π = arg minδ∈D Rπ (δ). And, if the order of integration in (2) is alterable, the
δ∗
π is equivalent to finding the rule that minimizes the expected loss a posteriori, or
risk against the posteriori π , that is,

rπ(·|x)(δ) = Eπ(·|x)[L(δ(X),Θ)] =
∫

Ω

L(δ(x), θ)π(θ |x) dθ. (3)

3 Hypothesis Testing

Hypothesis tests have the purpose of indicating the most plausible scenario among
a collection of conjectures. However, it is usual to work with only two premises, so
that they configure a partition of the parametric space Ω . Typically named as null
and alternative, we have, respectively: H0 : Θ ∈ Ω0 and H1 : Θ ∈ Ω1.

In theoretical terms, the procedures are specified by a function ϕ, defined in class
{ϕ : χ → {0, 1}}, so we decide by H0 if ϕ = 0, e H1 otherwise. Having further
that the value of ϕ is determined by means of a Rejection Region, such a subset
of the sample space is mathematically given by: ϕ−1({1}) = {x ∈ χ : ϕ(x) = 1}.
Regarding the specification of the hypotheses, there are two types of errors that can
occur. The error of type I is given by α(ϕ) = P[ϕ(X) = 1|Θ ∈ Ω0], which occurs
when we incorrectly label the alternative hypothesis as true. On the other hand,
the type II error is defined by β(ϕ) = P[ϕ(X) = 0|Θ ∈ Ω1], in relation to the null
hypothesis.

Additionally, in the frequentist context, it is usual to still work with the Power
Function, or Power of Test. Such quantity associates the probability of rejecting
the null hypothesis at each value of Θ . Then, we define the size of the test, given
by the supreme power function, considering only the values of Θ ∈ Ω0, i.e., α =
supΘ∈Ω0

Pϕ[ϕ = 1|θ ]. Finally, we call the value α0 the significance level, if this is
the upper limitation for the other test sizes. Whereas, in the Bayesian context, we
work directly with the posteriori probabilities of the hypotheses. Now we describe
the main approaches.

3.1 Fisher and p-Value

The most widespread reading in relation to hypothesis testing, refers to the philos-
ophy of Sir Karl Popper, disseminated in the statistics area by Sir Ronald Fisher.
According to this, a hypothesis can never be proven by an empirical study. However,
a counterexample is sufficient for its negation. In hypothesis testing, such a premise
implies that we consider inductive reasoning, so regardless of the amount of evidence
in favor of the premise in question, it should not be accepted [2]. Although it is not
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necessary to indicate whether we are dealing with the null or alternative hypothesis,
it is usual to specify H0, so this is the one that we attach the greatest importance.

For the context discussed, the descriptive level of observed significance (or p-
value), introduced by Pearson, is presented as an appropriate tool. This is because
the p-value searches from the unobserved samples for evidence at odds with the
null hypothesis, considering for such, that the related experiment is fixed. Thus, by
ordering the sample space given by H0, we examine the probability of obtaining
samples as extreme as that observed. However, this metric has a number of unde-
sirable characteristics, such as its magnitude being dependent of sample size, or the
difficulty of interpretation, since the conditional definition P(x |Ω0) is summarily
intuited as a conditional probability P(Ω0|x). In any case, the principle of seeking
evidence against H0, instead of evaluating both hypotheses, is diffused to the point
of having a specific class of tests, called significance tests.

3.2 Neyman–Pearson and Likelihood Ratio

The perspective advocated by Jerzy Neyman and Egon Pearson (N–P) complements
the frequentist scenario regarding hypothesis testing. For this reading, we shall ini-
tially consider that the test consists of simple hypotheses, that is, H0 : Θ = θ0 and
H1 : Θ = θ1. Thus, there is a critical region given in function of the ratio of probabili-
ties evaluated in the respective subspacesΩ , that is,λ(X) = f (X |θ0)/ f (X |θ1). How-
ever, given the impossibility of simultaneously controlling the two errors involved,
the analysis is limited to the family consisting of the significance level tests α0.
Formally, for k ≥ 0,

ϕ∗(x) =
{
1 se λ(x) < k
0 se λ(x) > k.

(4)

In case one of the assumptions is compound, say H1, we restrict the domain to
the Uniformly Most Powerful (UMP) tests. In general, terms, to extend the analysis
with some guaranteed properties, it will always be necessary to continue applying
restrictions in the domain of tests. Additionally, there are some undesirable charac-
teristics, like the imbalance between errors I and II when the sample size increases,
sometimes reaching the inversion of the initially specified match. DeGroot reread
the question from a broader perspective, working with the minimization of the linear
combination of errors. And later, Pericchi and Pereira [3] generalized the idea, by
weighing the likelihoods, obtaining a globally optimal test, plus a balance between
the specified errors and the sample size.
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3.3 Bayes and Conditional Measures

In contrast to the frequentist theory, which bases its conclusions on samples and
unobserved events,Bayesian Inference presents conclusions derived directly from the
parametric space. Thus, we can indicate a premise with greater chance of occurrence
through the posteriors ratio (denominated Bayes Factor) and the loss function used,
that is,

P(Θ ∈ Ω0|x)
P(Θ ∈ Ω1|x) = P(X |Θ ∈ Ω0)

P(X |Θ ∈ Ω1)

P(Θ ∈ Ω0)

P(Θ ∈ Ω1)
≥ k(L(d,Θ)). (5)

This reasoning is interesting, since it contemplates not only the acceptability of
an isolated hypothesis, but also the circumstances of the said complement, without
priorities.

4 Precise Hypotheses

Hypothesis tests have an important special case: when the conjecture of interest has
Lebesgue measure zero, also known as precise hypothesis. The best-known example
is the case where the parametric space is defined in the real line: H0 : Θ = θ0 versus
H1 : Θ �= θ0, circumstance which we will give emphasis.

The absence of probability in Ω , does not result in mathematical restrictions in
the frequentist approach. However, in the context of significance tests, the constraint
of the subspaceΩ0 assigns particular importance to the structure of Popper, given the
limitation of the hypothesis in relation to the parametric space as a whole. Whereas
in the Bayesian context, if the priori distribution on Ω is continuous, the posterior
probability of the subsetΩ0 will be zero, invalidating the usual approaches, justifying,
therefore, the development of other criteria. Followingwe introduce themain criteria.

4.1 Jeffreys

The Jeffreys Test, the most widespread approach, circumvented the problem of the
posterior probability of Ω0 by imposing the specification of a priori with positive
probability for H0. Thus, we started to have πθ0(θ, ζ ) defined according to a com-
bination of probabilities: (1 − ζ )π(θ) to Ω1 and ζ to Ω0. Such rebalancing is not a
problem if it is, in fact, the analyst’s opinion. However, as usually it is only a practi-
cal palliative for a mathematical limitation, we violate the principle of coherence, in
addition to requiring a greater amount of evidence against H0 to enables its rejection.
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4.2 FBST

In order to develop a Bayesian significance test that holds the coherence assump-
tions, Pereira and Stern [4] introduced the Full Bayesian Significance Test (FBST).
Although this test is feasible for applications in different spaces, its contribution is
more expressive in the context of the precise hypotheses, as it is developed based on
the principle of least surprise, aiming for evidence in favor of the null hypothesis.

For such, it sorts the parametric space according to the posteriori probability, and
seeks the θ∗ that belongs to the region of H0 and its density is maximum. Then,
we form the tangent set to the null hypothesis, configured by all points with density
lower than the obtained θ∗. Formally,

Definition 1 For the tangent set T (x) = {θ : π(θ |x) > supΩ0
π(θ |x)} the FBST

evidence measure in favor of H0 is: EV (Ω0, x) = 1 − ∫
T (x) π(θ |x)d θ.

For high values of EV (Ω0, x), or e-value as it is also known, θ0 will be among
the most likely points a posteriori, and will favor the null hypothesis. Addition-
ally, this approach presents advantages as: intuitive logic, geometric interpretation,
consistency, and invariance under one-to-one parameter transformations.

5 Loss Function

In order to approach the tests of significance according to a single language, we
work with decision theory. For this, we consider the space of decisions D , given by
{d0, d1}, where di denotes the action of accepting the hypothesis Hi : Θ ∈ Ωi , with
i ∈ {0, 1}, and losses L0 and L1, respectively. In addition, assuming that there is a
differentiated posture in relation to the null hypothesis, the decision is presented in
relation to the H0, this is, d1 is read as rejection of H0. Besides, that conservative
behavior is incorporated into the analysis through the loss function. Thus, for a
sample x , we will have

ϕπ(x) =

⎧
⎪⎨

⎪⎩

d0 if
π(Θ ∈ Ω0|x)

1 − π(Θ ∈ Ω0|x) >
L0

L1

d1 if
π(Θ ∈ Ω0|x)

1 − π(Θ ∈ Ω0|x) <
L0

L1
,

(6)

and the conclusion will be given according to the already known Factor of Bayes.
Note that assigning randomness to the set Ω does not invalidate the generalization
of the analyzes, since the interest is in replicating the philosophy of each approach
and not the system itself. Considering this perspective, follows the description of the
FBST, and the Popper‘s perspective (essence of the p-value).
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Table 1 Loss function of the FBST test

Accept H0 Reject H0

θ /∈ T (x) b a

θ ∈ T (x) b + c [I{θ ∈ T (x)}] 0

Table 2 Risk for some cases of evidence

EV (Ω0, x) rπ(·|x)(d0) rπ(·|x)(d1)
0 b + c 0

0.5 b + 0.5 c 0.5 a

1 b a

5.1 FBST and Madruga et al.

By making use only of the information contained in the posterior density, the FBST
has been classified as full Bayesian since its genesis. However, only in the work of
Madruga et al. [5] this measure was analyzed according to the decision theory, being
obtained by minimizing the loss function given from positive a, b and c (Table 1).

Note that, in this case, unlike classical theory, we consider a broader class, wherein
the observed sample is also incorporated into the loss function. Thus, assuming
that the tangent space of the FBST is defined from the sample, we have, from the
minimization of L(d, θ, x), that the acceptance of the hypothesis H0 will occur if,
and only if, EV (Ω0, x) > b+c

a+c .
In practical terms, the loss function is structured in order to evaluate the tangent

set, that is, we describe our expectations regarding the information brought by the
sample. However, once it is a measure of significance, the penalty associated with
rejection of the null hypothesis when θ ∈ T (x) is smaller. For a better understanding,
follows some examples (Table 2).

Usually, by specifying the loss function according to the real values of the para-
metric space, without worrying about our knowledge or the results of the sample,
we are working with the penalty related to the phenomenon, rather than the study
itself. Because such scenario is a simplification, we fail to incorporate our prefer-
ences regarding the reflexes of the study, such as psychological, financial, and even
social issues. Whereas, when dealing with losses according to what we are actually
going to obtain, and not with a utopian scenario of absolute knowledge, we have a
more realistic reading, as well as a full analysis of the situation.

5.2 Popper and Rice

Aiming at a loss function that reflected Popperian philosophy, Rice [6] reread the
decision space so that d0 represents the decision “Nothing to declare”, while for d1
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Table 3 Effects for different values of γ

γ Penalty for reporting Penalty for not reporting Inverse of variability

0.01 10 0.10 99

0.1 3.16 0.32 9.00

0.3 1.83 0.55 2.33

0.5 1.41 0.71 1.00

0.7 1.20 0.84 0.43

0.99 1.01 0.994 0.01

we provide results indicating the rejection of H0. Thus, by choosing to make such a
statement, the conclusions are presented by means of an estimate θ̂ , and the said loss
is evaluated by the usual quadratic loss. On the other hand, by omitting the results, the
loss occurs in terms of no longer known unfoldments and how informative theymight
be. This loss is represented proportionally to the distance between θ and θ0. Thus,
both losses are maintained on the same scale, allowing the decision agent to specify
his/her opinion to the relation between them, by means of a factor γ , hence nothing
to declare implies that γ 1/2 (θ0 − θ)2, and the rejection of H0 implies γ −1/2 (d − θ)2.
Therefore, according to Bayes rule, we will report results (ϕR

π (x) = d1) if,

R(Ω0, x) = E
2
π(·|x)[Θ−θ0]
Varπ(·|x)[Θ] ≥ 1−γ

γ
. (7)

In practical terms, we reject H0 when the estimate is “far” from the tested value.
Otherwise, we do not have conclusions. The hesitation related to the statements
is represented by the value γ , so that the smaller this quantity, the more skeptical
the analysis, and the penalty for reporting results will always be higher than the
alternative. Noting also that the product of the weights is fixed, they follow the
effects for different values γ (Table 3).

Thus, considering the correspondence between the units of imprecision of the
estimate d and the loss inherent in the lack of results, the agent should look for the
point of balance between such entities. It should also be noted that the conclusion
is taken on the basis of the inverse of a measure of variability, similar to the square
of the coefficient of variation, but with a focus on the a posteriori parametric space.
Thus, when such a measure of variability is significant, we have indicatives about
the lack of accuracy and, consequently, the results are not reported.

In the reading made by Rice, we identify several important gains in relation
to Fisher’s test: lack of assumptions about repeatability and stopping rules of the
experiment, mandatory incorporation of the alternative hypothesis, coherence
between rejection of the hypothesis and its subsets and even informational results
for large samples.
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Table 4 Example 1: R(Ω0, x) × EV (Ω0, x), n = 10

# Successes Rice: ϕR
π (x) = d1 FBST: ϕE

π (x) = d0

0 7.989 0.020

1 1.664 0.123

2 0.173 0.450

3 0.065 1.000

4 0.728 0.471

5 2.080 0.156

6 4.294 0.036

7 7.865 0.006

8 14.040 0.001

9 26.624 0.000

10 64.716 0.000

6 FBST × Rice

Although both FBST and Rice methodologies share the same principle as Onus
Probandi, where the defendant is to be presumed innocent, the Rice test has as its
central concern whether or not to reject the hypothesis, while the Madruga et al.
measures its consistency.

Despite the differences between the two approaches, when Ω ⊂ R the tests are
essentially equivalent in the frequentist sense of having a one-to-one relationship
between test statistics, for such, follows an illustration.

Example 1 Consider a random sample i.i.d. of Bernoulli’s, conditioned in the param-
eter θ , and the interest in testing the hypotheses H0 : θ = 0.3× H0 : θ �= 0.3, assum-
ing a priori Beta(1, 1). Thus, knowing that all the information of the 2n possible
results can be examined by means of the number of successes obtained, we have the
following values for the statistics of Rice and FBST for a sample size 10 (Table 4).

Considering the same analysis for a sample size 1000, we can see in the Fig. 1
the coherence between both results, by means of a negative association, as expected,
since we are comparing opposite decisions. Note that we choose to report the results,
regardless of the sample size, in the case of γ less than 0.015.

In the inferential context, where the goal is to learn about the parameter, not
reporting results seems inappropriate. However, cautious behavior is nothing more
than a characteristic of an philosophy, that is, a perspective that is perfectly valid
for certain scenarios, such as when the contradiction of the tested hypothesis is not
absolute, the sample presents itself as a too limited tool, or the analyst can simply
prefer a more cautious stance.
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Fig. 1 Example 1:
R(Ω0, x) × EV (Ω0, x),
n = 1000
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7 Conclusion

In this paper, we discuss the main approaches to hypothesis testing, particularly with
regard to significance tests, and reading according to the statistical decision theory.
From the point of view of coherence, we concluded that, between the approaches
evaluated, we have two satisfactory options from the point of view of coherence:
FBST and Rice. Finally, by comparing both readings, we obtain harmonious results
with the respective proposals. Besides, they are consistent with each other. For future
works, the proposal is to extend the Rice test to parametric spaces larger than one
and analyze practical applications of the discussed approaches.
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