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Abstract. Animals navigate to specific destinations for survival and reproduc‐
tion. Notable examples include birds, fishes, and insects that are driven by their
inherited motivation and acquired memory to migrate thousands of kilometers.
The navigational abilities of these animals depend on their small and imprecise
sensory organs and brains. Thus, understanding the mechanisms underlying
animal navigation may lead to the development of novel tools and algorithms that
can be used for more effective human-computer interactions in self-driving cars,
autonomous robots and/or human navigation. How are such navigational abilities
implemented in the animal brain? Neurons (i.e., nerve cells) that respond to
external signals related to the animal’s direction and/or travel distance have been
found in insects, and neurons that encode the animal’s place, direction, or speed
have been identified in rats and mice. Although the research findings accumulated
to date are not sufficient for a complete understanding of the neural mechanisms
underlying navigation in the animal brain, they do provide key insights. In this
review, we discuss the importance of neurobiological studies of navigation for
engineering and computer science researchers and briefly summarize the current
knowledge of the neural bases of navigation in model animals, including insects,
rodents, and worms. In addition, we describe how modern engineering and
computer technologies, such as virtual reality and machine learning, can help
advance navigation research in animals.
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1 Neurobiological Research of Animal Navigation: Why It Matters

Most, if not all, animals navigate to their destinations over various distances to forage
for food, escape from their enemies, and/or find mating partners by using their inherited
motivation and acquired memory. To accomplish this, animals utilize multiple types of
information and a variety of strategies. When they navigate short distances, the spatial
position of their goal can be accurately located if they are able to precisely recognize it
using binocular vision or binaural hearing. However, when animals navigate using
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olfaction, the precise localization of the goal becomes more difficult, even for short
distances, because odor does not produce a well-shaped gradient in space but rather
diffuses nonuniformly as plumes. The difficulties in olfactory navigation can be easily
understood if you close your eyes and try to reach for an odor source. Nevertheless,
certain animals efficiently reach odor sources by using specialized strategies, such as
zig-zag turns [1]. For long-range navigation, some animals, such as birds, fishes, and
insects, can navigate to distant destinations, even if they are hundreds or thousands of
kilometers away. Although the navigation goals cannot be directly recognized in these
cases, these animals utilize global information, such as sun positioning and/or the
geomagnetic field, when they navigate [2, 3]. It should be noted that, because global
cues change according to time and season, animals need to correctly recognize their
current temporal situation and compensate for errors in the relationship between the
global information and their own positions.

These amazing navigational abilities of animals are comparable to the engineering
requirements of very precise modern technologies. To obtain a precision of 10 meters
in localization in global positioning systems (GPS), latitude and longitude need to be
measured with an accuracy that is exact up to the 4th digit after the decimal point.
However, neurobiological investigations of animal navigation have revealed that
neurons in sensory organs and the central nervous system code positional information
not necessarily accurately but even in a variable and stochastic manner, unlike electronic
devices. This suggests that the principles of circuit operation and/or the information
processing algorithms underlying animal navigation must differ from those of current
technology. Thus, an understanding of the neurobiological mechanisms underlying
animal navigation will contribute to the technological development of compact, efficient,
and inexpensive mobile systems that can be used to monitor and assist in the navigation
of autonomous objects, such as robots, and people. Alternatively, a neurobiological
understanding of animal navigation might be useful for improving human social engi‐
neering and ergonomics problems, such as architectural design difficulties and the safe
and efficient guidance of people toward or away from public facilities while preventing
them getting lost, because the behaviors of navigation in humans and animals have many
similarities.

2 Information Used for Navigation

Animals adopt multiple navigational strategies. In particular, they are thought to inte‐
grate the sensory information available in the external environment and the internal
information that is computed and stored within the animal’s nervous system. Examples
of these information types are summarized in Table 1, and further details are described
in Sects. 3.1 and 3.2.
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Table 1. Examples of information used for navigation

1. External Sensory Information
1.1 Global Position Information
Cues: geomagnetic fields, polarized skylights, gradients in brightness and/or color caused by
the sun or moon, visualization of the sun, moon, and/or stars
Effective situation: The goal is not directly recognizable
Animal strategy: Compassing: direction is determined from subtle gradients in sensory cues
1.2 Local Information
Cues: visual, auditory, and olfactory information on the features of the goal
Effective situation: The goal is directly recognizable.
Animal strategy: Beaconing: the direction and distance to the goal are estimated using
information from bilateral sensory organs (in visual or auditory navigation); Zig-zag turns:
locating the goal by performing repeating right and left turns and subsequent looping behavior
(in olfactory navigation)
1.3 Temporal Information
Cues: intermittently perceived stimuli
Effective situation: The goal is new and unknown
Animal strategy: Biased random walk: the direction is random and remains unchanged when
the relevant stimulus is perceived
2. Internally Computed Information
2.1 Current Direction
Information: the direction of the animal
Example of use: Birds adjust their direction of travel according to the strength of the wind [4]
Time span: brief
Neural activity: head direction cells in rodents [5, 6] and insects [7, 8]
2.2 Integrated Path
Information: integration of the direction and distance from the starting point
Example of use: Desert ants return to the nest in a straight line after wandering hundreds of
meters looking for food [9]
Time span: during a single navigational episode
Neural activity: possible path integration in insects [10]
2.3 Memory
Information: memories of previous experiences associated with the goal
Example of use: Animals use remembered cues to reach to destination they have previously
reached
Time span: long-term
Neural activity: place cells in rodents [11]

3 Exploring the Neural Bases of Navigation in Model Animals

Neurobiological studies of navigation, particularly those investigating how the external
and internal information is represented and integrated in the form of neural activity, have
been extensively performed using representative model animal species, such as insects
(e.g., ants, bees, and locusts), rodents (mostly rats and mice), and worms. Some insect
species are elegant examples of how various kinds of environmental information are
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transformed into the neural activity underlying the species’ amazing navigational capa‐
bilities [12]. Another advantage of studying insects is their relatively simple and compact
brains. Although tens of thousands of neurons form elaborate networks in the brains of
insects, their brains allow for easier experimental manipulations compared to the brains
of higher animal species. Rodents are small mammals with brains that share many simi‐
larities to the human brain, and they can be trained to perform a variety of cognitive
tasks that are relevant to human behavior. Studies conducted in highly controllable
laboratory environments have revealed subsets of neurons that specifically respond to
different aspects of navigation, such as location, direction, and geometric border [11].
Finally, the nematode Caenorhabditis elegans, which is a tiny worm, has been studied
in a number of laboratories because it has only 302 neurons that make up networks with
connections that have been fully elucidated [13]. This neural simplicity, together with
additional favorable characteristics, such as the ease of performing genetic manipula‐
tions and monitoring behavior-associated neural activity, have resulted in these worms
being extensively studied to investigate how neural circuits constructed via genetic
blueprints generate animal behavior. Thus, in the next section, we will discuss the current
understanding of the neural mechanisms of navigation, which have been revealed
through the achievement of studies of insects, rodents, and worms.

3.1 Insects

Many insect species exhibit inherited navigational behaviors, such as orientation and
migration. For example, the monarch butterfly Danaus plexippus and the desert locust
Schistocerca gregaria have well-known migrational habits; they travel back and forth
every year between distant areas that are often over 1,000 km apart [2]. Like many
migratory birds, these insects move to a suitable area for breeding. In the next season,
the newly born population also successfully travels back to the place that their parental
generation left, even though they have not previously experienced the place. These
observations indicate that their migrational behavior was genetically programmed
during evolution. In addition, many insects exhibit learning-dependent navigation.
Especially in species that have their own nests, including many social insects, they
explore around the nest searching for food and memorize the locations of food so that
they can visit the same places again [14]. More surprisingly, honey bees share infor‐
mation on food location with colony members using a waggle dance [14]. Despite their
sophisticated navigational behavior, the structures of the insect brain are relatively
simple compared to those in vertebrates, such as rodents. Thus, elucidating the brain
mechanisms underlying navigation in insects may be useful for revealing the essential
components of the sophisticated navigation of animals.

Neural Mechanisms for Detecting External Information

Types of Information. Even though the spatial resolution of the compound eye of an
insect is much lower (normally below 1/20) than that of humans, many insects navigate
mainly based on visual information. Referring a polarized skylight (Fig. 1Aa) is a well-
known method by which insects deduce orientation [15]. The position of the sun, moon,
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and/or stars is another type of global information that helps navigating insects know
their heading direction [12]. In addition, especially in some social insects, local visual
information, such as landmarks or panoramic views, is used for memorizing a familiar
place, such as a nest or frequently visited feeding place [16]. Among the types of visually
guided information used for navigation in insects described above, polarization vision
is the most intensively studied and perhaps only example. We will now briefly review
the latest findings on the neural mechanisms underlying insect polarization vision.

Fig. 1. Possible neural mechanisms underlying insect navigation. A. Honeybees use skylight
polarization (a) to deduce their heading direction and optic flow generated by self-motion (b) to
estimate their traveling distance. B. Morphology of the bee brain. a. A brain in a head capsule.
b. A section of the area of the bee brain outlined by the white square in a (photo courtesy of Dr.
R. Okada). The neuropil of the regions crucial for navigation (La, Me, Lo, and CB) is shown. The
No, PB, and LAL regions are located posterior to CB. Scale bar = 200 μm. C. Neural pathways
for directional and distance information processing. The solid and dashed arrows indicate direct
(monosynaptic) and indirect (polysynaptic) connections, respectively. Directional and distance
information converge in CC, which then sends the information to the thoracic ganglia that control
the legs and wings via LAL. CE, compound eye; DRA, dorsal rim area; OL, optic lobe; La, lamina;
Me, medulla; Lo, lobula; CC, central complex; CB, central body; PB, protocerebral bridge; No,
noduli; LAL, lateral protocerebral lobe.

Processing the Information Related to a Polarized Skylight. Polarization vision in
insects is mediated by a specialized region in the compound eye called the dorsal rim
area (DRA, Fig. 1C). The ommatidia, which are the optical units of the compound eye,
in this area are extremely polarization-sensitive because of their structural and physio‐
logical properties [17]. Information on the electric field vector (e-vector) of the light
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waves of the polarized skylight that is detected in the DRA is then delivered to the central
complex (CC, Fig. 1C), which is one of the integrative centers in the insect brain. Many
types of CC neurons that respond to polarized light stimuli have been identified in
various insect families, including Orthoptera (locusts and crickets) and Hymenoptera
(bees and ants) [12, 18]. In locusts, e-vector information on polarized light is topo‐
graphically represented in the protocerebral bridge (PB, Fig. 1C), which is part of the
CC, thus suggesting that this area is the highest center of polarization vision in
insects [19].

The CC Acts as an Internal Compass. To utilize the polarized skylight as a global cue
for navigation, time compensation is necessary because the polarization pattern in the
sky changes with respect to solar elevation. Although the mechanisms underlying this
compensation are still unclear, a group of neurons that sends time-compensated polar‐
ized light information to the CC by integrating the polarized light and chromatic gradient
information has been found in locusts [20]. These findings suggest that the CC is not
only the highest brain center of polarization vision but also a potential internal compass
that monitors the insect’s orientation during navigation. Consistently, some CC neurons
in Drosophila fruit files and cockroaches show responses that are similar to those of the
head-direction cells in mammals (see below) [7, 8].

Neural Mechanisms Underlying Self-motion Monitoring
Behaviorally, ants and bees estimate their travel distances by step counts and optic flow,
which is image flow caused by self-motion (Fig. 1Ab), respectively [21, 22]. Many types
of neurons respond to optic flow stimuli in the optic lobe (OL, Fig. 1B and C), which is
the primary visual center in the insect brain, and additional information processing
pathways have not been described for a long time. Recently, a group of neurons in the
noduli (No, Fig. 1C), which is one of the input sites to the CC, was found to encode the
direction and speed of optic flow stimuli, indicating that they might convey moving
distance information to the CC [10]. Because the CC is considered an internal compass
as mentioned above, the CC likely integrates information on direction and distance and
then computes path integration. To date, however, little is known about how the CC
controls navigational behavior. The lateral accessory lobe (LAL), which is the main
output region from the CC, might send steering commands to the thoracic ganglia, which
is the motor center for the legs and wings (Fig. 1C). We need more information to
investigate how the CC stores navigational memories and controls behavior.

3.2 Rodents

Spatial Cell Types and the Information They Encode. Navigation-related neural
activity in rodents is usually recorded in freely moving animals that are performing
random foraging or goal-directed navigational tasks in a recording enclosure or maze
placed in a laboratory room (Fig. 2A). Decades of studies have discovered several
distinct cell types in the hippocampal-entorhinal network that are relevant to navigation
(Fig. 2B; [11]). Namely, place cells in the hippocampus are activated (or “fire”) specif‐
ically when an animal is in a particular location in the environment [23]. Grid cells are
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found in the medial entorhinal cortex (MEC), which provides the main cortical input to
the hippocampus, and these cells exhibit grid-like, periodic, and hexagonal firing
patterns across the environment [24]. Head direction (HD) cells in the presubiculum and
MEC fire when an animal faces a particular direction [5, 6]. Border cells in the MEC
and boundary cells in the subiculum fire along geometric borders of the local environ‐
ment, such as walls [25, 26]. Speed cells in the MEC are a very recent addition to these
cell types, and these cells change their firing rates linearly with an animal’s running
speed [27].

Fig. 2. A. A schematic representation of the electrophysiological recording setup in a rodent
moving freely in a recording enclosure. B. The firing fields of place cells, grid cells, border cells
(also known as boundary cells in the subiculum), and head direction cells (top) and a schematic
of the hippocampal-entorhinal region of the rodent brain in which each cell type is found (bottom).
The blue squares indicate the recording enclosure, such as the one shown in A, which is seen from
the top, and the fields shown in red indicate the subareas in which each cell type fires. Head
direction cells fire when the animal’s heads is oriented in a particular direction. The broken lines
in the bottom panel indicate that the cell type found there exhibits slightly different response
properties than the typical cell types found in the other areas do. CA1 and CA3, hippocampal CA1
and CA3 areas; DG, dentate gyrus; S, subiculum; PrS, presubiculum; PaS, parasubiculum; MEC,
medial entorhinal cortex.

Neural Circuits of Spatial Representation. The location-specific firing of place cells
is shaped by visual and other types of sensory information from environmental cues in
addition to self-motion cues, such as motor and vestibular information. When external
cues are rotated, many place cells rotate their firing fields accordingly [28]. Moreover,
once formed, place cells maintain their firing fields when the lights are off, and they can
be formed even in an environment in darkness [29]. The activity of place cells is also
influenced by many factors, such as context (e.g., the shape and pattern of the environ‐
ment), events and objects in the environment, and the internal states of the animal, such
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as motivation and working memory. A current view hypothesizes that angular and linear
self-motion integration (i.e., path integration) plays an important role in determining
place cell firing and that errors accumulated from the integration are corrected by the
association of the place fields with external cues. How then is the place-specific activity
generated? Place cells greatly change their firing in different environments, while grid
cells and HD cells maintain their coherent ensemble activity, thus suggesting that these
cell types provide an intrinsic metric of space as part of the path-integration system.
Since the discovery of grid cells, the place fields of the hippocampal neurons have been
assumed to be created by the linear summation of inputs from upstream grid cells with
different spatial scales. However, experimental evidence to date does not support this
simplistic view [30, 31], which implies that place cells are created through multiple
mechanisms, at least one of which is likely to be grid cell-independent. Moreover, in
young infant rats, HD cells are already present at 14 days of life, which is generally
before the rats exhibit significant spatial exploration and their eyes are open, whereas
place cells begin to develop later, around 16 days after birth, and grid cells appear only
around 20 days of age [32, 33]. These findings suggest that the directional system that
develops first in life might provide inputs that shape other spatial cells.

A Possible Role of Place Cells in Navigation. Place cells in the hippocampus exhibit
specific activity when the animal passes through particular locations, thus implying that
they represent real-time information regarding the current position of the animal when
the animal is moving. However, this raises a question about the mechanism by which
these place cells contribute to the animal’s navigation towards their goal. One possible
answer may exist in the phenomenon called “awake replay”, in which temporally-
compressed reactivations of sequences of place cells that reflect past trajectories occur
when the animal is awake but not moving [34]. A recent study has demonstrated that
place cell sequence events like those in awake replay not only encode spatial trajectories
from the animal’s current location to remembered goals but also predict immediate
future behavioral paths [35], thus suggesting a role of place cells in trajectory-finding
in goal-directed navigation.

3.3 Worms

A species of nematode, Caenorhabditis elegans (hereafter simply called worms), which
is ~1 mm in length and only possesses ~1,000 cells, has been used worldwide to study
the mechanisms of simple brain function as well as other biological phenomena. Some
of these studies have resulted in three Nobel prizes (2002 and 2006 for Physiology or
Medicine and 2008 for Chemistry). These simple worms are widely used as the main
subject of neurobiology for the following reasons. (1) Their nervous system, which
consists of only 302 neurons, exhibits simple forms of brain functions, such as sensory
perception and learning and memory [36]. (2) The molecular mechanisms regulating
the activities of neurons and the neurotransmission of neural activities, which are medi‐
ated by small chemical compounds, such as glutamate, GABA, dopamine, and serotonin,
depend on gene products that are functionally very similar to those of higher animals.
(3) Because worms crawl relatively slowly (~0.1 mm/s) on the surface of an agar layer,
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their behavior can be easily monitored with high precision and less noise. (4) The rela‐
tionships between behavior and genes, which are the blueprints of all life activities, can
be easily analyzed by a large repertoire of sophisticated genetic techniques. (5) Because
their bodies are transparent and exogenous genes can be easily introduced, optical
monitoring (“imaging”) and manipulations of neural activities are feasible by using
genetically engineered gene products, such as calcium indicators and light-driven ion
channels and pumps [37, 38].

In addition, a comprehensive platform for performing quantitative analyses of the
behavior and neurophysiology in the worm’s olfactory navigation has been developed
by one of the author’s groups [39]. This platform allows for accurate estimates of the
dynamic odor concentration changes that each worm experience during olfactory navi‐
gation and reproduces the odor concentration changes on a robotic microscope system
that automatically tracks and monitors the neuronal activity of freely behaving worms
(Fig. 3A). Because high-quality time-series data can be obtained on sensory stimuli and
the behavior and neural activity in between, it has become possible to accurately describe
the neural activity as a mathematical model (see next paragraph). Moreover, the high-
quality data has recently been shown to be useful for machine learning analyses of
feature extraction (see Sect. 4).

Tanimoto et al. [39] used the robotic microscope system to reveal the following
unexpected computational abilities of worm sensory neurons. (1) Increases and
decreases in odor concentrations are sensed by different sensory neurons. (2) Concen‐
tration increases in an unpreferred odor are transformed into neural activity that reflects
the time-differential of the odor concentration, which causes the immediate behavioral
response of randomly changing the migratory direction (Fig. 3B). (3) In contrast,
concentration decreases in the unpreferred odor are transformed into neural activity that
reflects the time-integral of the odor concentration changes, which causes a delayed
behavioral response to switching the behavioral state from random searching to straight
migration in that direction. Interestingly, the temporal integration of sensory information
that causes delayed behavioral changes is one of the critical features of decision-making
in monkeys and in humans [59]. Thus, our results indicate that worms can make deci‐
sions based on similar neural mechanisms as those in humans. We have identified the
genes responsible for the decision-making in worms (Fig. 3C) [39], whose counterparts
in humans might also be responsible for our decision-making.
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Fig. 3. A robotic microscope system used to reveal the neural basis of decision making in worms.
A. A schematic drawing of the setup of the robotic microscope system. B. The time-differential
and time-integral activities of the sensory neurons involved in decision-making during navigation
in an odor gradient. C. The molecular mechanisms of the neural responses. Modified from [39].
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4 Engineering and Computational Methods Used in Animal
Navigation Research

Novel engineering and computational approaches have been adopted in neurobiological
research of animal navigation to fulfill the requirement of highly accurate manipulations
and measurements of sensory input, behavioral output, and neural activity. Here, we
introduce two example technologies: navigation tasks using virtual reality (VR) and
machine learning analyses of navigation behavior.

4.1 Navigation Tasks Using VR

VR refers to a computer-simulated and immersive environment that can present a variety
of sensory stimuli in an interactive manner and thereby provide animal and human
subjects with simulated experiences of navigation while their brain activities are
recorded with various methods, such as functional magnetic resonance imaging (fMRI)
and electrophysiology. Virtual navigation tasks have been used successfully to record
place cell and grid cell activity in humans [40, 41], which demonstrates the usefulness
of VR in bridging the gap between findings obtained from animals and those in humans.

In recent years, VR has been increasingly used in navigation research in insects and
rodents since its first successful applications in these animals [42, 43]. A recent behav‐
ioral study has demonstrated that goal-directed navigation in VR in mice requires
activity of the hippocampus [44], which is also required in real-world situations. VR
enables measurements of navigation-related neural activity in these animals with high-
resolution electrophysiological and optical recording techniques, such as whole-cell
patch-clamp recording or two-photon calcium imaging, which require extremely stable
fixation of the subject’s head under an electrode or microscope [45]. Another advantage
of the use of VR for navigation tasks is the experimental flexibility and controllability
of stimulus presentations, which was exemplified in a study in which visual information
and the subject’s movement were put into conflict during the recording of hippocampal
place cells in mice [46]. These advantages of VR make it an attractive behavioral para‐
digm for use in animal navigation research, and it will help explore yet undiscovered
cellular and circuit mechanisms and neural representation schemes underlying naviga‐
tion in the future.

4.2 Discovering Features of Navigation Behavior Using Machine Learning

Behavior is the final output of massive amounts of neural activity in the brain. However,
descriptions of this behavior have been seriously limited compared to those of neural
activities. Currently, the dynamic activities of thousands of neurons can be simultane‐
ously measured by using the optical monitoring methods described above. Thus, neural
activity can be expressed as the time-series vector data of thousands of dimensions. In
contrast, behavior can still only be described with simple measures, such as speed,
direction, and the probability of reaching the goal. Even worse, most video records of
animal behavior are simply stored in laboratories without detailed analyses. Such a large
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asymmetry in the richness of neural and behavioral data is being recognized as one of
the recent major problems in neuroscience [47–49].

The poor descriptions of behavior are due to the difficulties in the analysis of meas‐
ured behavioral data. Recent developments in GPS and small cameras allow us to easily
record the positions and postures of animals with high precision for an extended period
of time. Most, if not all, of the behavioral features of recorded animals, such as velocity,
acceleration, heading direction, body rotation, posture, and so on, must be dynamically
affected by the environmental information. Then, on which of the behavioral changes
should we focus in analyses? Should the behavioral changes be analyzed in a temporal
window of milliseconds, seconds, or minutes? Also, should we consider temporal delays
between sensory stimuli and behavioral responses? If so, how long should the delay be?
Moreover, which sensory stimuli we should pay attention to? These questions show
there are too many factors to consider and it has been extremely difficult to figure out
the relationships between sensory input and behavioral output. The same is also true in
finding relationships between neural activities and behavior.

One way to solve this problem is to use machine learning. The first step in analyzing
raw animal behavior data is to classify the behaviors into several distinct behavioral
states. It is easy to imagine that animal behavior can be classified into several states,
such as sleeping, feeding, chasing prey, fighting, etc. However, these classifications have
traditionally been performed manually by researchers watching the videos for a long
time, in which an ambiguous boundaries have frequently become problematic. Machine
learning techniques have recently been successfully used for behavioral classification
based on combinations of characteristic patterns of basic behavioral features, such as
velocity, acceleration, heading direction, etc. [50–52]. Moreover, behavioral patterns
triggered by artificial activation of limited numbers of neurons have been classified by
unsupervised learning to estimate functional connectivity in the brain in an unbiased
way [53, 54].

However, machine learning techniques have not been used to understand dynamic
brain function that links sensory information and behavioral responses because it has
been difficult to accurately measure the sensory information that animals receive during
behavior. Even if can be measured, no methods have been established to determine
which feature of sensory information affects the behavior.

Yamazaki et al. [55] have revealed experience-dependent changes in the olfactory
navigation of worms by analyzing the relationships between changes in odor concen‐
trations and behavior. That group previously developed a method for measuring odor
concentrations at specific spatiotemporal points in the small arena used for monitoring
worm olfactory navigation, and these results led to the construction of a dynamic model
of odor gradient involving evaporation and diffusion in the arena [39]. The model
allowed for estimations of the changes in the odor concentrations that each worm expe‐
rienced during navigation with an accuracy of nM/s. The analyses indicated that odor
learning resulted in the worms ignoring small changes in odor concentrations for efficient
olfactory navigation. Interestingly, changes in neural activity that were consistent with
the behavioral changes were revealed by the robotic microscope system [55].
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5 Future Prospects

Understanding how the brain works is one of the big challenges in modern science, as
demonstrated by the national brain science projects being conducted in the US, EU, and
several countries in Asia [56, 57]. Navigation is one of the prototypical brain functions
that is used for understanding the dynamic nature of information processing in the brain
because sensory inputs and behavioral outputs can be quantitatively measured and the
goal of the behavior is rather straightforward. As we described above, the use of model
animals has resulted in significant contributions to neurobiological studies of navigation.
However, the findings that have been accumulated from these animals to date are still
limited and insufficient to allow for an understanding of dynamic information processing
in navigation. To conclude this paper, we suggest the following key issues to be exam‐
ined in future research.

(1) The characteristic of sensory information that plays the dominant role in navigation
needs to be elucidated at a finer resolution. In the real world, navigation is a multi‐
sensory process that involves vision, audition, olfaction, and self-motion, and the
relative importance of each modality may change in a short time span. For example,
in olfactory navigation, animals continuously and simultaneously sense various
odorants, each of which changes its concentration in different time scales. The
situation is much more complex for visual and auditory stimuli because of the rich‐
ness of information they contain. Thus, a method needs to be developed to detect
the changes in sensory information that are significantly correlated with those in
behavior by considering the highly dynamic nature of some environmental stimuli.

(2) Determining which aspect of behavior is changed by the sensory input is important.
As described above, deciding which behavioral feature to focus on in the analysis
is difficult. One possible way to solve the problem is to extract the important behav‐
ioral features with machine learning and then try to find causal relationships
between the sensory inputs and behavioral outputs. However, sensory information
and behavioral responses are often in a closed-loop relationship in such a way that
changes in sensory information cause behavioral changes, which subsequently
elicit further updates of the sensory information that the animal receives. In order
to reveal the causal relationships between them, it is important to establish a
working hypothesis from the observed sensory behaviors and test it in an open-loop
configuration. VR setups with compensated feedback may also be useful toward
this direction of research.

(3) Similar problems exist in large-scale neural activity data (i.e., hundreds or thou‐
sands of time-series neural activity data). Researchers often have trouble inter‐
preting large high-dimensional datasets without specific hypotheses. However, if
making a hypothesis of the relationship between sensory information and behavior
becomes easier with the aid of analytical tools, such as machine learning, the iden‐
tification of neural activities that represent higher-order information, such as
abstract sensory information, motor planning, Bayesian-like inferences, and deci‐
sion-making will become much easier [58, 59].
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(4) Close collaborations between neurobiologists and data scientists are necessary.
Navigation research is by nature a multidisciplinary science. In order to discover
previously unknown principles by using biologically relevant data analyses,
researchers in these two fields need to communicate intensively by speaking a
common language. Although it is difficult and not necessary for a researcher to be
an expert in both branches of science, a mutual understanding between these two
fields is key for fruitful collaborations.

The rapid advance of state-of-the-art technologies, as reviewed partly in this article,
will help us tackle these problems and unquestionably lead to a better understanding of
the neural mechanisms underlying navigation in the future.
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