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Abstract. Computer-based support for learning of elderly people is now
considered as an important issue in the super-aged society. Extra cares
are needed for elderly people’s learning compared to younger people,
since they might have difficulty in using computers, reduced cognitive
ability and other physical problems which make them less motivated. Key
components of a better learning support system are sensing the contexts
surrounding elderly people and providing appropriate feedbacks to them.
In this paper, we review some existing techniques of the contextual bandit
framework in the machine learning literature, which could be potentially
useful for online decision making scenarios given contexts. We also discuss
issues and challenges to apply the framework.
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1 Introduction

Many countries now face the super-aged society due to the developments of
health cares, medicines, and so on. Elderly people have more opportunities to
work or to play important roles in the communities. Infrastructures for life-long
learning of people will be essential components to support and promote such
activities in the super-aged society. In particular, for elderly people, extra cares
are needed. For example, they might have difficulty using computers, reduced
cognitive ability, and reduced memory capacity, which prevent them to keep
their motivation for learning. Therefore, the system needs to be more aware of
the context surrounding them and should take actions adaptively to support and
motivate their learning.

Although there already exist various systems for support learning, the sys-
tems are designed mainly for younger or middle-aged people, say, in the class-
rooms or in the offices. On the other hand, elderly people could learn in more
diverse contexts, e.g., in different physical and mental conditions. So, the systems
need more adaptivity to the contexts and more options and choices to support
elderly people. Adapting elderly people’s situations is a non-trivial task and it
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would be hard to specify the behaviors of the system manually for each con-
text. For this non-trivial task, machine learning techniques are useful in general.
They can learn to optimize the system from the data and feedbacks, under an
appropriate design of learning framework.

In this paper, we survey some of recent machine learning techniques to seek
candidates to support learning by elderly people in the super-aged society. To
aware and adapt contexts, the system need to learn better behaviors in an online
fashion rather than offline, where the term online means that the system mod-
ifies behaviors during the course of interactions with users. Among such online
machine learning techniques, those of the contextual bandit techniques could
fit the demand of the adaptivity. We will explain the mathematical formula-
tion of the contextual bandit problems and some standard algorithms as well as
evaluation methods for online bandit techniques and applications such as online
news recommendation tasks. Then, we will discuss several issues to apply the
contextual bandit framework to support elderly people’s learning. In particu-
lar, we highlight differences between typical applications of the contextual ban-
dit framework and learning supports for elderly people. Finally, we will discuss
future research directions.

2 Related Work

To the best of our knowledge, we are not aware of existing researches on
computer-based support for learning of elderly people. However, in the ubiq-
uitous or mobile learning research areas, there are a lot of related results con-
cerning contexts surrounding users. Among them, Ogata and Yano proposed
context-aware systems for learning Japanese polite expressions [16], where the
contexts include gender, work, age, places, social status of the user, the conversa-
tional partner, and relationship between them. Syvänen et al. proposed a mobile
learning system which adaptively changes the user interface based on the context
of users such as devices like PCs, PDAs and so on [22]. Researchers pay atten-
tion how contexts affect computer-based learning. Economides [10] defines var-
ious features or contexts that characterize learning in pervasive and ubiquitous
learning environments. Hood et al. examined how contexts affect self-regulated
learning behaviors in a MOOC environment [12]. As for elderly people’s learning,
Pachman and Ke investigated designs of multimedia training which help elderly
people to learn better with additional representational supports [17]. In the lit-
erature of recommendation systems, Adomavicius surveyed various approaches
in context-aware recommendations systems [1].

3 Contextual Bandit: Formulations and Results

In this section, we will review contextual bandit techniques in the machine learn-
ing and related literature. For a detailed survey, see, e.g., the work of Bubeck
and Cesa-Bianchi [6].
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3.1 Formulations

The typical contextual bandit framework is described as a game between
the player and the environment. The player has a fixed set of actions A =
{1, . . . , K}1. The protocol of the game is given as follows for each t = 1, . . . , T .

1. The environment gives the player a context x t ∈ X ⊂ R
n, which is a feature

vector containing the contextual information of the trial.
2. The player chooses an action a t ∈ A.
3. The environment assigns a reward ra ∈ [0, 1] for each action a in A2. Equiv-

alently, the environment assigns a vector r ∈ [0, 1]K . Note that the reward
vector is not revealed to the player.

4. The player gets a reward rat
. Here, the player only knows the reward of the

chosen action and does not know the rewards of other actions.

Assumption on the environment. In the typical contextual bandit setting, the
environment is assumed to be stochastic. More precisely, we assume that a
fixed and possibly unknown distribution D over X × [0, 1]K and each context
(x t, rt) is drawn independently and randomly according to the distribution D
(i.i.d. assumption).

Goal: Let Π ⊆ {π : X → A} is a fixed set of functions corresponding to
candidates of the player’s strategies. The goal of the player is to minimize the
regret:

regret = max
π∗∈Π

E

[
T∑

t=1

rt,π∗(x t)

]
− E

[∑
t=1

rt,at

]
,

where the expectation is taken w.r.t. the distribution D and the randomness of
the player.

3.2 Context-Free Bandits

In the special cases where no context is given, the problem is called the multi-
armed bandit problem and studied extensively. In this simpler setting, at each
trial t, the reward rt,a of each action a ∈ A = {1, . . . , K} is drawn randomly.
More precisely, r is drawn according to the distribution D over A. Let μa =
Er∼D[ra] for each a ∈ A. Then the regret is given as maxa∗∈A μa∗T −∑T

t=1 μat
.

Let a∗ be the best action, i.e., μa∗ = maxa∈A μa. Then the goal is now to pick
up actions as whose expected reward is close to μa∗ as many as possible.

The main issue in the (context-free) bandit problem is how to manage the
trade-off between exploration and exploitation in limited trials. Here, if we
explore various actions many time, we will get more accurate information on
rewards of actions, but we might lose the opportunity to exploit actions which
turned out to be good. On the other hand, if we exploit actions which seems to
1 In general, the set of actions might vary in time (see, e.g., [14]).
2 For simplicity, the reward is normalized in [0, 1].
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be good in a small amount of trials, we might miss chances to find much better
actions.

Let us begin with a simple strategy by exploring first and then exploiting.
A basic tool in the probability theory is the Hoeffding bound (see, e.g., [9]).
Suppose that we pick up an action a for m times and μ̂a is the empirical mean
of the m rewards. Then, by the Hoeffding bound, we have Pr{|μ̂a − μa| ≤ ε} ≤
2e−2ε2m. Let Δ = mina∈A(μa∗ −μa). So, if we pick up each action for 4/Δ2 times,
it can be easily shown that (together with the union bound), with probability at
least 1−0.04K, the action with the highest empirical mean reward is indeed the
best action. More generally, we could consider the following strategy: (i) pick up
each action for εT/K times, and (ii) choose the action with the best empirical
mean reward for the rest of (1 − ε)T trials. This strategy is called the ε-greedy
strategy [21]. It is known that, by setting ε = (2K ln T )/ΔT , the regret of the
ε-greedy strategy is O((K/Δ) ln T ), which is close to optimal. A disadvantage of
this strategy is that it needs to know the parameter Δ, which is not known in
advance. Yet, the ε-greedy strategy is simple and thus easy to implement and it
often shows competitive performances in practice.

Algorithm 1. UCB (bandit algorithm without context information)[4]
1. Choose each action a ∈ A once and let ma = 1 for each a ∈ A.
2. For each trial t = 1, . . . , T :

(a) Choose the action

at = arg max
a∈A

μ̂a +

√
ln t

2ma
,

where μ̂a is the mean reward of action a.
(b) Update ma = ma + 1 and the empirical mean reward μ̂at of at.

The UCB (upper confidence bound) [4] is another widely known strategy.
The UCB strategy maintains a confidence interval for the reward of each action.
More specifically, given ma observations of rewards of the action a ∈ A, by
using the Hoeffding inequality, it holds that with probability 1 − O(1/t), the
expectation μa of the reward of a is at most

μ̂a +
√

ln t

2ma
,

which is called the upper confidence bound of μa. The idea of the UCB strategy
is to pick up the action a with the maximum upper confidence bound at each
trial. Note that, if the sample of the action a ∈ A is small, the upper bound
tends to be large and thus a is likely to be chosen. If sufficiently many instances
are chosen for a, then the upper confidence bound shrinks and the confidence for
the bound gets higher. Auer showed that the UCB strategy achieves the regret
bound O((1/Δ) ln T ), which is almost optimal. There are variants of the UCB
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strategy such as KL-UCB [7] which achieve optimal regret bounds for various
probability models on rewards.

The third approach to the context-free bandit problem is based on the
Bayesian statistics. That is, by assuming a prior probability distribution over
rewards of actions in A, choices of arms are based on the posterior probability
of rewards. A representative algorithm is the Thompson sampling [2,13].

3.3 Contextual Bandit

Now we return to the contextual bandit problem. We review a variant of the
UCB for the contextual cases, called the LinUCB [14].

We will assume the following model concerning the context and the reward.
Given a context x t,a for each action a ∈ A, the expectation of the reward ra is
given as

E[ra | x t,a] = θ∗�
a x t,a,

where θ∗
a is an unknown but fixed vector and the expectation is taken w.r.t. the

conditional distribution induced from D given x t,a.
The LinUCB strategy is based on the similar idea of the UCB. Given contexts

x 1,a, . . . ,x t,a ∈ R
n and rewards r1,a, . . . , rt,a ∈ R, the Ridge regression estimates

θ∗
a as

θ̂a = arg min
t∑

i=1

‖ri,a − x�
t,aθa‖22 + ‖θ‖22 = A−1

t,abt,a,

where At,a =
∑t

τ=1 x
�
t,ax t,a + In, bt,a =

∑t
τ=1 rt,ax t,a and In is the n-

dimensional identity matrix. It can be easily verified that E[θ̂a] = θ∗
a and if

rt,as are independent given x t,as for a ∈ A, the variance of θ̂a�xa is x�
a A−1

t,axa.
Therefore, for an appropriate choice of α ∈ R+,

θ̂�
a x t,a + α

√
x�

t,aA−1
t,ax t,a

is an upper bound of θ∗�x t,a with high probability. Like the UCB strategy, the
LinUCB strategy chooses an action with the maximum upper confidence bound.
The details of the algorithm is shown in Algorithm 2. The time complexity of the
LinUCB strategy per trial is O(Kn2). Apparently, computing the inversion of
the matrix At,a takes O(n3) time. This can be reduced by updating the inverse
of the matrix using the Woodbury formula (see, e.g., [18]). The regret bound
of the LinUCB strategy itself is not known. However, a modified version of the
LinUCB strategy has regret bound O(

√
nT (ln TK)3) [3,8].

Li et al. also considered a more involved model where the expected rewards
are not only linear in contexts and latent vectors associated with particular
actions, but also depend linearly in additional contexts and shared a latent
vector [14].
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Algorithm 2. LinUCB (Li et al. [14])
Input: α ∈ R+

1. For t = 1, . . . , T :
(a) Receive the feature x t,a of each arm a ∈ At.
(b) For each at ∈ At:

i. If at is new, let Aa = In, where In is the identity matrix in R
n×n and

ba = 0 ∈ R
n.

ii. Let θ̂a = A−1
a ba.

(c) Choose the arm

at = arg max
a∈At

θ̂�x t,a + α
√

x�
t,aA−1

a x t,a.

(d) Receive reward rt ∈ R+.
(e) Update

Aat = Aat + x t,ax
�
t,a and bat = bat + rtx t,at .

3.4 Evaluation Methods for Contextual Bandit Algorithms

It is a non-trivial task to evaluate online algorithms using real data sets. When we
apply an online algorithm to a real environment (say, a recommendation system),
we will obtain a sequence of real feedbacks only for the applied algorithm and
thus the obtained data is not suitable for testing other online algorithms. In
particular, in the contextual bandit setting, algorithms cannot observe feedbacks
for actions not taken by them.

A typical approach to evaluating online algorithms is to construct a simulator
reflecting real environments. However, this approach is non-trivial as well since
it needs knowledge about the real environments, which are unknown in practice.

Li et al. [14,15] developed a simple but effective method for obtaining test
data sets for any online contextual bandit methods. The method is to obtain a
sequence of events by running the online algorithm which always chooses random
actions. The details are shown in Algorithm3.

Algorithm 3. Uniform logging strategy [14,15]
1. Let S be the empty sequence of events.
2. For each round t = 1, 2, . . . , L, repeat:

(a) Observe a context xa for each action a ∈ A.
(b) Choose an action at ∈ A uniformly randomly.
(c) Observe reward rt,at .
(d) Add the event (x t, at, rt,at) into the sequence S.

3. Output S.
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Then we explain how to use the sequence of events S obtained by the random
online strategy to evaluate an online strategy. Given an online strategy π, the
evaluation strategy just runs π over S under the following manner: For any
� = 1, . . . , L = |S|, and for the �-th event (x �, a�, r�,a�

) in S, (i) if the strategy π
takes the action a� given x �, then evaluation strategy picks up (x �, a�, r�,a�

) and
adds it into the history of chosen events. A precise description of the evaluation
strategy is given in Algorithm4.

Algorithm 4. Evaluation strategy [14, 15]
Input: Sequence S of events obtained by the uniform logging strategy (Algorithm 3)
and an online strategy π.

1. Let h0 be the empty sequence of the events and T = 0.
2. For each round t = 1, 2, . . . , L(= |S) repeat:

(a) Get the t-th event (x t, at, rt) from the sequence S.
(b) If π(ht−1, x t) = at

i. Update ht = (ht−1, (xt, at, rt)).
ii. Let T = T + 1.

(c) Else, let ht = ht−1.
3. Output hT .

A notable advantage of the evaluation strategy (Algorithm4) is that it pro-
vides an offline evaluation method of online strategies. More precisely, under the
probabilistic setting of the environment, the evaluation is unbiased, in the sense
that the evaluation is obtained as if we run the online strategy in the online
environment. The formal statement is as follows:

Theorem 1 (Li et al. [14,15]). For any distribution D over the set of X
contexts and the set [0, 1]K of rewards of all actions, any randomized online
strategy π, and any T ≥ 1, the following statement holds.

1. For any history of events hT = ((x1, a1, r1,a1), . . . , (xT , aT , rT,aT
)), the prob-

ability that ht is obtained by the evaluation strategy is exactly equal to proba-
bility that hT is generated by the distribution D and the strategy π, i.e.,

PrD,evaluation(S,π)[hT ] = Pr
D,π

[hT ].

2. The expected length of the sequence of events S obtained by the uniform logging
strategy is KT .

Note that, in fact, the first statement of Theorem 1 holds for any logging
strategy which chooses actions randomly and independently according to some
distribution over actions, not restricted to the uniform distribution. The uni-
form assumption affects the second statement of the theorem. For non-uniform
extensions of logging strategies, see, e.g., [20].
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3.5 Experimental Results

Li et al. applied the LinUCB and the evaluation strategy to the recommendation
of news [14]. The data set is obtained from about 40 million events from the
Yahoo! Front Page. The action set consists of 20 news articles. The contexts
of users are initially represented as more than 1, 000 features including gender,
age, location, and user history of Yahoo! The features of each news (action)
consists of about 100 components including categories of the news. Then, by
some dimensionality reduction techniques, each context for each news is concisely
represented as a 6-dimensional binary vector. The reward is defined as the click
through rate (CTR), which is the ratio of clicks against the total recommended
news. The events are obtained by the uniform logging strategy. LinUCB strategy
obtained higher CTR than the random strategy, ε-greedy strategy, the UCB.

Other applications of the contextual bandit framework include whole page pre-
sentations of search results (including not only search results, but size, layout, and
etc.) [23], personalized health feedback [19], task assignments in crowdsourcing [11]
and the mobile context-aware recommender systems [5].

4 Discussion

There are several issues to formulate the problem of supporting elderly people’s
learning as an instance of the contextual bandit.

1. What is exactly the task? (How do we formulate the problem in
a mathematical sense?): An informal goal would be to motivate and sup-
port learning of people by giving actions according to the contexts. This goal
can be mathematically reduced to maximizing the sum of rewards under the
assumption that reward function is appropriately defined. The design of the
reward function directly affects how the system should behave. The CTR is
not necessarily a good objective for learning. The reward should promote or
encourage learning of elderly people and reflect the amount of accomplish-
ments. For example, an indicator of accomplishment of some learning task
would be reasonable.

2. How to define/sense the context: These issues are also quite impor-
tant. A good definition of contexts might need knowledge of experts in the
user-machine interface, psychology, education, health cares. Also, sensing the
contexts is another critical issue. For example, to measure the internal state
of a user, eye-tracking devices or some other sophisticated devices might be
necessary.

3. How to make actions given a context? This issue depends the learning
task and contexts. For example, actions could be recommendations of some
educational materials, reminders, etc.

4. What kind of feedbacks of users expected? This is a crucial factor as
well. Like computational advertisements, clicks from users to some contents
could be positive/negative feedbacks. Again, an indicator of success/failure of
some learning task is a choice. In some cases, combinations of users’ actions
might be viewed as feedbacks.
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5 Conclusions

In this paper, we briefly review the mathematical framework of the contextual
bandit problem and its applications. We also discussed how to apply the con-
textual bandit framework to support elderly people’s learning. In fact, it is a
non-trivial challenge to define contexts and the objective to optimize (rewards)
for the problem. An elderly people friendly learning support system might be
useful for people with some handicaps with appropriate modifications.
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