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Abstract. At many every day places, the ability to be reliably able to
determine how many individuals are within an automated access control
area, is of great importance. Especially in high-security areas such as
banks and at country borders, access systems like mantraps or drop-arm
turnstiles serve this purpose. These automated systems are designed to
ensure that only one person can pass through a particular transit area
at a time. State of the art systems use camera systems mounted in the
ceiling to detect people sneaking in behind authorized individuals to
pass through the transit space (tailgating attacks). Our novel method is
inspired by recently achieved results in capacitive in-door-localization.
Instead of estimating the position of humans, the pervasive capacitance
of feet in the transit space is measured to detect tailgating attacks. We
explore suitable sensing techniques and sensor-grid layout to be used for
that application. In contrast to existing work, we use machine learning
techniques for classification of the sensor’s feature vector. The perfor-
mance is evaluated on hardware-level, by defining its physical effective-
ness. Tests with simulated attacks show its performance in comparison
with competitive camera-image methods. Our method provides verifica-
tion of tailgating attacks with an equal-error-rate of 3.5%, which outper-
forms other methods. We conclude with an evaluation of the amount of
data needed for classification and highlight the usefulness of this method
when combined with other imaging techniques.
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1 Introduction

Systems for safe separation of individuals have are of high importance at the
entrances of security zones of all kind. They are used at access points of critical
infrastructure, public transportation, event locations as well as in business and
military areas with high security levels. Autonomous access control gates are
being used more and more at accessing areas with a high security level. People
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with permission pass through this designated transit space to access a secured
area. The main advantage of these systems is foremost robustness against social
engineering - meaning that an authorized person takes an unauthorized person
into the secured area (tailgating).

So called mantrap portals (see Fig. 1a) provide a closed area with two doors,
one as an entrance and another for leaving this area. Permitted subjects enter
and close the portal, so that software can verify that only one subject is present in
the transit space. To authorize them, biometric information, PINs, or passwords
are used. After a successful verification, the system unlocks the final door to give
access to the secured area.

Lower security-level areas and/or where enforcing of one-way traffic is needed
however prefer to use turnstiles or access gates. Turnstiles allow only one person
at a time to pass the secured area by using a mechanical ratchet mechanism.
Disadvantages of this type of separation are its inconvenience for handicapped
people and unauthorized tailgating. Optical turnstiles try to overcome these
problems by using infrared beams to count individuals. But still, their mechanic
functionality is easy to overcome, unaesthetic and inconvenient to some people.
Therefore optical drop-arm turnstiles (see Fig. 1b) are increasingly used. They
allow to pass individuals and handicapped people with less delay than all other
methods [1]. Larger cabinets allow people to carry trolleys, bags and luggage.
But even these systems are easy to overcome by tailgating or piggybacking as
our review of the latest achievements shows (see Sect. 2).

This work provides a new technical viewpoint for the separation of individu-
als in access gates. We will show that capacitive in-door localization is a useful
technique to be used in this application. Our technical approach investigates the
appliance of capacitive sensing to be used in mantrap portals, turnstiles and
drop-down turnstiles. We took into account that people purposefully attempt to
overcome the system. Usability in this use-case is of high importance, as phys-
ical barriers are safety-relevant. Therefore, we will also evaluate how quick our
technique allows users to pass through. We incorporate the use of capacitive sen-
sors mounted on a grid in the floor. In the data classification, we evaluated two
machine learning techniques to be used in this application. Furthermore, limita-
tions regarding the distance and environmental effects are examined. Our related
work, (see Sect. 2) gives an overview about previously developed systems for ver-
ification of a single person access verification and capacitive in-door localization.
We will show their results obtained and outline their limitations. In Sect. 3 we
will explain what hardware we use in our prototype and how people interact
with it. We also introduce our sensing approach and explain the arrangement
of the sensors. This includes our data-classification method. In our experiments,
in Sect. 4.2 we give detailed information about the data acquisition process, the
experiments and the examined use-case. Our results in the same Sect. 4.2 show
the performance of our proposed method. We conclude with a comparison with
other approaches.
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Fig. 1. (a) Mantrap portal (b) Drop-down turnstile

2 Related Work

In the field of secure entrance systems, a variety of different sensing technologies
and computer-vision algorithms already exist. Most systems that allow only
one person to pass at a time, are based on infrared beams [2], scales [3] or
photo sensors [3]. Weight based systems must allow a certain range of weight or
require an identity claim to pass the system, therefore they are not flexible to
weight variations. Infrared beams are most commonly used at optical drop-arm
turnstiles where they get mounted at waist level. They have the disadvantage
that they are easily overcome by jumping or walking closely together. As a result
of this, recent computer-vision systems have been developed that are based on
different sensor data such as: thermal imaging, infrared RGB-D and color image
sequences. These methods use a top-view perspective and pattern recognition to
distinguish between one and more than one subject in an observed area.

A thermal imaging approach [4] showed disadvantages especially in test cases,
where the attacker carried equipment (like a mirror or helmet) to hide them-
selves. In an evaluation using a test group that was trying to trick the system,
Equal Error Rates (EER’s) of 20.2% (all analyzed scenarios) and 7.9% (sce-
narios without equipment) were achieved. Another drawback of this system is
the temperature dependence which leads to a malfunction at high ambient tem-
perature. In a method using RGB-D images [5], a combination of change, blob
detection and machine-learning is used to create a model of a single subject. It
showed limitations in terms of the body height inside the chamber to the height
of the installed cameras. A method using an image sequence of 21 frames was
presented in a latter method [6]. It uses optical flow to make use of the effect
of micro movements within the images over time. The classification results of
this system show an overall error rate of 5.17%, evaluated in different attack
scenarios. It has the disadvantage that people need to stand still for a certain
time, which makes this solution not suitable for an application with high people
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flow rates. Drawbacks of all these image based methods are: the time needed for
verification and the camera position which allows subjects to hide on the floor or
between the legs of a permitted person. The method shown here is intended to
detect such manipulation attempts by using recent research results in the field
of floor-based indoor-localization.

Precise localization within a closed building or apartment is of vital impor-
tance. It offers a wide range of new opportunities regarding smart home applica-
tions and efficient energy control. Floor-based indoor localization systems have
the advantage of unobtrusive detection or sensing of the surrounding. They are
mostly applying pressure-based measurement principles or capacitive sensing
technologies. Feng et al. [7] offered a proof-of-concept study applying fiber optics
for localization. Their grid displacements of optical fibers are distributed on the
floor. Due to the pressure applied to the fibers through step motions, the signal
throughput changes and thus allows the system to localize a person within the
measuring area. However, the disadvantage of such a system is its maintenance.
Exposed to external forces, the sensors can be easily damaged. To overcome
the limitations of a pressure based system, various floor-based capacitive sens-
ing have been announced with promising results in recent years. SenseFloor [8]
introduced by Steinhage et al. worked with modular capacitive measurement
units to detect the presence and location of a person walking within the sensing
environment. This system is unobtrusively sensing the presence of individuals.
Another floor-based indoor positioning system using grid layout, instead of mod-
ular setups called Capfloor [9] was introduced by Braun et al. in the year 2011.
The advantage of this system is its easy maintenance, since a malfunctioning
sensor can easily be replaced instead of replacing a whole floor module. The
resulting system is more efficient in terms of power consumption while main-
taining the precise localization ability [10]. Overall, active capacitive measuring
systems are more efficient for remote sensing and therefore more robust against
pressure.

Floor-based systems encouraged us to develop a system based on active
capacitive sensing embedded in the floor to solve the problem of recognizing
tailgating issues. However, most research work on capacitive indoor localization
systems offer only low resolution due to the large size of measuring electrode
used, which is inadequate for our targeted application. TileTrack as introduced
by Valtonen et al. in [11] can locate a standing human with at least 15 cm accu-
racy by using 9 separately controllable 60 cm× 60 cm tiles placed in a 3× 3 m
square area. However, TileTrack as well as Capfloor are not able to locate people
standing close to each other, which is needed in our use-case. A far better res-
olutions as ordinary capacitive indoor localization systems is therefore needed.
To overcome this limitation we built a system using better resolution cells. The
classification method used in their methods is furthermore hardly transferable
to our method. As single values getting analyzed in Capfloor and TileTrack, this
method seems costly with higher resolution.
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3 Capacitive Sensing Grid

As discussed in the previous chapters, imaging methods have shown good results
on detecting tailgating using top-view mounted cameras, but lack efficiency in
several other attack scenarios (e.g. hiding on the floor). Furthermore, they are not
applicable to locations with high flow-rates, where fast verification is required.
We incorporate a novel approach using a grid of capacitive sensors for detecting
and classifying capacitive resistance on the floor to recognize tailgating and
provide easier access for handicapped people. Capacitive sensing has different
properties that influence their applicability. Especially the sensibility to humidity
and distance are challenging. In the following sections, we show how we face this
limitation. It contains 1. a short review about sensing theory (see Sect. 3.1) 2.
our sensor-grid hardware (see Sect. 3.2) and 3. our method for classification of
the collected data (see Sect. 3.3).

3.1 Capacitive Sensing Theory

Capacitive sensors are proximity sensors that detect nearby conductive objects
by creating an electric field [12]. The technology is based on the capacitive cou-
pling that takes the capacitance produced by the human body to an electrode
as an input. This way, it is possible to detect and measure anything that is con-
ductive or has a dielectric difference from air. The measured capacitance is a
function of the distance (d) of the object to the electrode, the area of capacitive
plates (A), and dielectric the constant (εr) of the material between object and
electrode; Therefore:

C =
A

d
· ε0 · εr (1)

Capacitive sensing is divided into three categories based on their modes of
operation (shunt mode, loading mode, transmit mode). We use loading mode sen-
sors [13], because they have a large range and are easy and cheap to implement.
Loading mode sensors deliver a constant current to the attached measurement
electrode. The time needed to charge the electrode up to 80% and discharge
the electrode down to 20% is measured. If an object approaches the electrode,
the capacitance becomes larger and the time needed to charge/discharge the
electrode rises.

3.2 Our Sensor-Grid Hardware

We propose the use of loading mode sensors because they provide a continuous
signal for analysis compared to others. The sensor consists of a microchip provid-
ing UART (Universal Asynchronous Receiver Transmitter) for communication.
A MSP430 micro-controller is used to process the sensor values to binary format.
A sensor requires between 1 to 2 mA at 5 V, therefore a 5 V USB connector is
sufficient as a power supply. All sensors are connected in a chain to the UART
data-bus which is read at baud rate of 115,200 per second. As the form of the
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Fig. 2. Our capacitive sensor with UART interface.

electrode has a high impact on the distance and sensitivity, we have conducted
several tests in order to find the right shape (see Sect. 4.1) (Fig. 2).

We assumed having a square area of 800× 800 mm as the area to be analyzed.
We propose using sensors mounted in the floor of the transit area, located in a
grid used for the alignment. The sensors are mounted in the middle of each cell
at a distance of 100 mm between each sensor. In Fig. 3 our hardware is shown
as a wooden prototype. The grid is placed inverted on the wooden board, so
that the sensors are facing the ground. External plywood pieces with specific
dimensions are attached to support the whole structure. It stops the breakage
of sensors and problems with the wire cabling. As the sensors are not visible to
the subjects, they will have no direct impact on their general functionality. The
front plate consists of a medium-density-fiberboard with a thickness of 12 mm.

Fig. 3. Sensing grid prototype with cable-shape electrodes.

The sensing distance of the capacitive sensors depends on following factors:
(1) sensor diameter, (2) sensor design (with/without GND electrode), (3) mate-
rial of the medium to be detected and (4) the size of the developed body. On one
hand, a bigger electrode increases the range of the sensor and reduces the effect of
noise in the signal. On the other hand, a higher sensor-range causes indifferences
between sensors. Reading sensors at the same time, which are arranged close
by, results in wrong capacitance values. The range of sensors used is therefore
limited by the density of the sensors on the grid. In our hardware we increased
the range of the sensors by reading them in order like a chessboard. Only diag-
onal neighbored sensors are read at the same time. Consequently the maximal
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distance between two sensors is reduced to around 140 mm. For choosing elec-
trodes, we evaluated the use of a cable ring and a solid copper plate. Our results
are shown in Sect. 4.1.

3.3 Data Analysis

Each sensor receives an edge like signal from the timer that indicates its indi-
vidual capacitance by counting the number of edges in a defined time window.
The timer turns the electrode consecutively to charging and discharging mode
(see Fig. 4).

Fig. 4. Left: Sensor measuring process and sensor layout Right: Detail of visualization
of measured capacitance.

The counted edges in a period of 0.5 s get transmitted to the UART bus.
Every sensor has its specific ID. All even IDs start measuring the electrode while
all uneven ones wait and vice versa. This ensures that sensors that are conducting
a measurement do not influence adjacent sensors. The classification software
receives a data package, containing single numerical values of each sensor, in
intervals of 0.5 s. Even, when there are no objects close to the sensing area, the
measured values show some differences in delta and amplitude. These are caused
by environmental noise and differences in the electronic parts used (e.g. slightly
different size of electrode). In order to eliminate the environmental effects, we
calculate a baseline value for each sensor. We use the following equation to
update the baseline constantly over time:

bn = a · bn−1 + (1 − a) · xn, (2)

where xn is the current sensor value and bn is the currently updated baseline
value for this sensor. How much the current sensor value influences the baseline
will be determined by the factor a.

After subtracting the measured value from the baseline to get the actual
signal strength, we normalize the value to a range between 0 and 1. We use
a min-max algorithm where min and max are the minimal and maximal mea-
sured values over a period of time, ranging from time index {i = 1..N} using the
following equation:

xn =
xn − bn

max({xi − bi, i = 1..N}) − min({xi − bi, i = 1..})
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We propose the use of machine learning for classification of the measured
values. We chose SVM with a linear kernel and AdaBoost using REAL boosting
as classification methodology. The feature vector, used for training, contains the
values of the normalized sensor output. In Sect. 4.2 we describe our experiments
about the influences of the size of the feature vector on classification accuracy. In
these experiments we accumulated the sensor output over time (t) of all sensor
to the feature vector receiving fv = t0, t1..... We separated our data into two
classes, one subject and more than one subject. In order to detect malfunction of
the sensors or transmission, we visualized the sensor output as shown in Fig. 3.

Based on the different locations where mantrap portals and drop-arm turn-
stiles are being used, we defined two test scenarios. In case of mantrap portals,
subjects can be asked to stand on an exact position which is marked on the
ground. When using drop-arm turnstiles, people usually expect that there is no
such position guideline. We therefore acquired data for both scenarios:

1. The access allowed subject is positioned at a marked position
2. The access allowed subject is encouraged to stand freely at a random position

We used a test group of 15 subjects with varying feet-size (between 38 to 48)
and body-weight. All recordings are made over a period of 6 s (1× 49 values per
0.5 s), resulting in 12× 49 values per recording. One subject acts as an authorized
person while the 2nd person acts as the attacker.

We evaluated two attack scenarios:

1. The attacker positions himselves randomly on different challenging positions
(on the edge, close to the each other ...)

2. The attacker positions himselves randomly as in scenario 1 and lifts one feet
from the ground

The evaluation is performed by training separate classifiers for the two attack
scenarios, using Adaboost [14] and SVM classifier. We used the collected feature-
vectors of an attack-scenario (two subjects at the same time) and of the different
single subjects (see Table 1 #1 or #2) for training. We used data collected in 3 s
(6× 49 unsigned integer values) as one-dimensional feature-vector for training
and tests.

4 Experiments and Results

We performed tests in order to ensure that our considerations about the chosen
hardware are correct. Therefore, we performed laboratory tests about the mea-
suring distance of the capacitive sensors using different electrodes. To ensure
that different soles of shoes do not influence the measurement we performed
empirical tests which are described in Sect. 4.1.
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Table 1. Quantities of acquired test-data.

# 1st subject at pos. 2nd subject at pos. Data-sets

0 Marked None 1080

1 Random None 1800

2 Marked Random 1080

3 Random Random 1800

4 Marked Rand.+ foot lifted 1764

5 Random Rand.+ foot lifted 1764

4.1 Sensor Range and Robustness

We evaluated our hardware accordingly to Valtonen et al. [11] with two different
electrodes and with ten persons of different sizes.

We considered the electrodes types: loop and copper plate to be used as
electrode. Connecting wires are made as small closed loops to act as an electrode,
with one end of the wire connected to the sensor. On the other hand, copper
plates in the size of 50× 70 mm are getting used in comparison. We performed
test in range and sensibility using a wet bottle of water as conductive object.
We measured the sensor value for different distances and subtracted it by the
baseline value. The noise showed for both electrode types, values between 0
and 20 measured over a time period of 2 min. Our results (see Table 2) show
that the sensing range for the copper plate is higher than for the loop. The
measurable distance is of around 100 mm which leads us to the assumption to
chose a horizontal and vertical distance of 100 mm between the sensors as best
layout compromise.

Table 2. Measured capacitance of electrodes at different distances and SNR of copper
plate.

Object Distance Cable loop (SNR) Copper plate (SNR)

Bare foot 20 mm 7744 (54.83) 1300 (45.26)

Bare foot 40 mm 10420 (58.02) 4900 (48.01)

Bare foot 60 mm 11940 (62.16) 7500 (49.98)

Bare foot 80 mm 12425 (68.22) 8560 (51.65)

Bare foot 100 mm 12680 (75.35) 8810 (54.23)

Bare foot 150 mm 12770 (89.12) 9030 (59.01)

None - 13100 9225

In addition, we measured the Signal-To-Noise Ratio (SNR) of the system
when the test subject was standing at different distances from the receiver with
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and without shoes. The SNR depends upon the distance of the feet from the
electrode, its type and size. We calculated the SNR using fallowing formula:

SNR = 20 · log
Signal Range(SR)
NoiseRange(NR)

(3)

SR = max ({xi, i = 1..N}) − min ({xi, i = 1..N}) (4)

NR = max ({yi, i = 1..N}) − min ({yi, i = 1..N}) (5)

where yi is the sensor value for a sensor without any feet on it and xi with
feet, over an amount of 200 sensor values (N).

In order to verify that there is no impact of different shoes on the measured
values, different kinds of them, like sports shoes, sneakers and woodland shoes
are considered. The size of the shoes varied from euro size 38 to 48. The test
procedure was done by recording the conductive sensor value of different kinds
of shoes individually. We compared those values with the values of the same
subjects in bare foot (see Table 3).

Table 3. Capacitance of different shoes with copper plate electrode.

Type Material Sole height Sensor value

Sport shoe Plastic 21 mm 1993

Sneaker Plastic 23 mm 2043

Woodland Leather 34 mm 1845

Boots Plastic 38 mm 1859

Bare foot - 0 mm 2096

We noticed that the SNR decreased somewhat linearly with the distance
between the feet and the electrode increases. Comparing the wire electrode with
the copper plate, results the copper plate in better SNR then the loop electrode,
which stands in contrast to the results of Valtonen et al. [11].

4.2 Results

The performance of our method depends on individual user properties, which are:
feet position, behavior, feet size and their individual capacitance. We have chosen
a quantitative evaluation with a test-group in order to prove our test-setup with
realistic data. The evaluation process is carried out by classifying the data into
four individual folds and taking 75% (3/4) of the data as training and 25% (1/4)
of the data into the test. We calculated the false acceptance rate (FAR), false
reject rate (FRR) and EER for all scenarios. We regard the verification case as
a closed set, because it only differentiates between ‘one subject’ and ‘more then
one subject’.
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Table 4. EER of examined scenarios.

ID 1st pos. 2nd position AdaBoost SVM

1 Marked All feet on ground 0% 3.4%

2 Random All feet on ground 0% 5.2%

3 Marked One foot lifted 5.4% 9.1%

4 Random One foot lifted 7.1% 10.3%

Our results show that, the first attack scenario gets always recognized
correctly, independently from the position of the access allowed subject (see
Table 4). Only in the second scenarios, where the attacker lifts one foot, the
performance decreased considerably. Classifying the data with linear multi-class
SVM, resulted in significantly higher error rates in all attack scenarios.

Fig. 5. EER in respect to time (one foot lifted).

The time needed for data collection is an important factor of usability. There-
fore, we performed tests with a varying measuring period. The length of the
feature vector decreased respectively. We started using a feature vector of size
1× 49 (1/2 s) and ended using the complete data-set of 1× 294 as feature vector.
As demonstrated in Fig. 5 a change of the error rate of 2.5% is shown within 0.5
(6.7% EER) and 6 s (4.2% EER).

We compared our method with results of other camera-based methods,
namely: (1) Optical Flow [6] (2) Thermal Imaging [4] and (3) RGB-D [5]. As in
their work, evaluation was carried out on attack scenarios, where the attacker
used additional objects in order to hide himself, only scenarios without any
objects were used for comparison. The ROC curve (see Fig. 6) shows the here
presented method, without positioning guideline for the access allowed subject,
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Fig. 6. Results in comparison with camera-image methods.

at random feet position, in comparison with the other approaches. We can con-
clude that the here presented methods shows a better performance in compari-
son, nevertheless, might a combination of one of the camera-based methods with
our approach be useful in some cases.

5 Conclusion

We presented a novel approach for identifying attacks in an autonomous access
control system by using a grid of capacitive sensors. We explored suitable sensing
techniques and its corresponding sensor hardware by combining well-performing
aspects of known methods in the field of in-door localization. We identified attack
scenarios, in which attackers tried to pass through our system and explored
machine-learning classification strategies to identify them. Our evaluation proved
the layout and performance of the proposed sensor-grid, even under different
environmental conditions. The performance of our method was defined in empir-
ical testing, where we achieved good results in test-cases with feet of all subjects
on the ground, even when only data of 0.5 s was classified. We assume that a
combination of our method with an image based approach focusing on move-
ments like [6] will provide even higher security. Our method is vulnerable in
cases where people are standing on one foot only but it might be complicated
for an attacker to lift one foot while standing still.
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