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Abstract. This paper proposes a method to plan a placement of multiple sensors
distributed in a certain area to enable an efficient measurement in terms of the
confidence of the interpolation of measured data using kriging. We considered a
system where we have some sensors that can move and are distributed in a certain
area and a static scaler filed of interest such as a map of temperature in a certain
city. We propose a method to plan the placement for the next time step using the
value measured until that time by calculating the gradient of kriging variance. For
the sake of evaluation of this method, we conducted a simulation of two-step
measurement where a scaler filed is created and some sensor nodes are virtually
placed. Here, the interpolation with the data from sensor node placement with the
proposed method showed better accuracy than that from randomly placed sensors.
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1 Introduction

Smartphones have become very common these days and the percentage of the smart
phone holders in Japan has risen from 14.6% to 56.8% in 5 years [1]. Due to the
advancement in semiconductor and other related technologies, smartphones today are
equipped with more various types of sensors and it can be interpreted that there are an
increasing number of sensors connected to the Internet in cities. Consequently, mobile
sensing, which is a technique to make use of them, has drawn much attention.

Mobile sensing is useful to conduct a measurement of a data in a wide area in a low
cost. For example, when one tries to create a heat map of the temperature in one city, in
case of mobile sensing, the cost required is less than conventional fixed sensors because
s/he doesn’t have to implement all the sensors but has to collect sensor data from smart-
phone holders.

In this paper, the focus has been set to a sensing system, or broader class of meas-
urement using mobile sensors, which of course includes smartphones. For example, if
garbage collecting trucks are equipped with sensors, that would provide with virtually
exhaustive coverage of the city [2]. Automobiles can move faster than a human being
and so it is expected that they can ensure broader coverage per sensor.

Although the data acquired from a sensing system can be useful as mentioned above in
an example of mobile sensing, such data have to be processed in order for the user to utilize
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because the raw data acquired is merely a collect of measured values in discrete points. For
example, if a temperature measurement is conducted, it is not such discrete data, but a heat
map of temperature that is of use. In other words, a sensing system requires spatial inter-
polation, or spatially completing the estimated values at unvisited points.

In spatial interpolation, the accuracy has dependency on the placement of sensors. As
is intuitively understood, measuring values at two points close would give lower accuracy
of spatial interpolation than at two points apart. Therefore, we propose a placement opti-
mization strategy of sensors in a sensor system. In our proposal, we use a technique called
kriging for spatial interpolation and kriging variance for the placement strategy.

The rest of the paper is organized as follows. Section 2 describes the background to
this paper; Sect. 3 introduces the problem settings of this study; Sect. 4 gives details of
the proposed method; Sect. 5 shows the simulation that we did; Sect. 6 shows the proto-
typing and the direction of future research; and Sect. 7 is the conclusions.

2 Related Works

Sensing system or especially mobile sensing has attracted a lot of attention and it is an
active area of study and development. As mentioned above, previous research has
demonstrated some actual implementation of such system and the method of spatial
interpolation, but optimal sensors placement strategies are limited.

The sensor system is implemented for a broad area. In [2], garbage collecting trucks
in Fujisawa City, Japan are equipped with sensors such as a GPS sensor, thermometer,
barometer and so on. Unlike private vehicles, those trucks go around the city in such a
route that covers the entire road. Through actual implementation, they checked that most
area of the city can be sensed at least once every garbage-collecting day. In [3], they
used pictures taken by a camera installed on automobiles to detect damage on the road.
In [4], the acoustic noise level of entire Setagaya City, which is about 60 kmz, has been
sensed in 6 h by 40 people. In [5], the participants walked around city with a mobile
radiation detector.

For this kind of measurement, interpolation is important. The authors of [6] used a
technique named consensus filter. In consensus filter, for each point that sensor nodes did
not visit, the value is estimated by waited sum of the values at neighboring visited points.
This method is useful for relatively densely sensed situation but not for sparsely measured
case. There are also studies that introduces methods using other background data. In [7],
they spatially interpolated the temperature data taking into account other geographical
knowledge such as the altitude. In [8], they only used 12 sensors to measure AQI, or air
quality index, in the entire LA. Combined with contextual data of geography of each points
from OpenStreetMap and used the measured data for learning, their estimation was better
than conventional IDW, or inversed distance weight, in cross validation.

There are several works of active sensing with sensing robots such as [9]. They
proposed a route optimization for a sensing robot. Here, mutual information of the
measurement and interpolation is used to determine the trajectory of a sensing robot. In
this work, the focus is set on the case of only one sensing node.
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As we have listed above, there are a wide variety of application of sensing system
and also a number of interpolation methods but few works have covered the strategy of
placing sensors, especially multiple sensors. In this paper, we propose a method to
interpolate measured data from multiple sensor nodes and plan the placement of them
in the next step to achieve the most optimal placement in terms of the accuracy of the
interpolation.

3 Problem Settings

In this paper, we propose a method to plan an optimal sensor placement method to a
situation as follows:

One would like to map a value of interest in a certain area, such as temperature in
Tokyo. For that purpose, multiple movable sensors are deployed in the area. Each sensor
conducts the measurement at the same time and send the data to a server. Then each of
them moves to the next sensing position, instructed by the server, and measure the value
there again.

Here we assumed the scaler field of the true value of the vale of interest do not change
between the time of the first measurement and the second. This is because even though
the scaler field does change in the time length, in one step of the move the time is short
and the change is negligible in the real scenario. In the real use, the measurement will
be conducted sequentially beyond the second time but in this paper, two steps of meas-
urement are discussed for simplicity.

4 Method

4.1 Kriging

Kriging is a geostatical method to interpolate data using spatial autocorrelation. For a
system where sensor nodesi (i = 1, ..., N) are deployed in r, the field and measurement

z(ri) is conducted, semivariance, or the spatial autocorrelation of z is defined as

1 n
yh) = - Zi:l [2(r, + B) = z(r))]. (€))

For actual data, since the measured value at an arbitrary point is not always available,
semivariance cannot be calculated for all . It is why variogram, or a plot of y(h) versus
h, only for known points. By fitting variogram with certain function, we can get the
estimated semivariance for arbitrary h. There are several common functions used to fit
variogram, such as spherical model, exponential model and so on. In this paper, we used
the exponential model in this case, which is represented as follows:

3h

y(h)=p1—(1—%>e r|+n @)
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where r is called range and p is called sill and 7 is called nugget; those three parameters
are determined by the fitting.

After getting the estimation of semivariance, we now use this to conduct the inter-
polation. In kriging, the value is interpolated through weighted sum

=Y Azr) 3)

where the weights A, are bound to the normalization

N

_ A =1 4
In order to minimize the estimation error, which is a sum of the gap squared between
the estimated value and the weights at each visited point, are determined using semi-
variance, in such a way as minimizing

3 A=) +d=5(r-r). V. 5)

4.2 Kriging Variance Gradient

Then the kriging variance, or the variance of the estimated value, is expressed as:

87 (ry) = le j1‘7’("1' —r,) + . (6)

From the method above we can obtain the kriging variance at all points including
unvisited ones as well as estimated value there. In order for each sensor nodes to move
towards the direction so that the next measurement would be the most optimal with
regard to minimizing the error for the whole area, we also calculated the gradient G(r)
of the kriging variance:

G(r) = V[62(r)]. (7

4.3 Placement Determination

It is most optimal to move the sensor nodes towards the direction where the kriging
variance is the highest. We used the gradient to find such a direction. Therefore, we
determined the placement of the sensor i for the next time step  + Af using the gradient
vector G(r) at time ¢ as follows:

G(r)

r(t+ At =r, () + Ar 1Go] (8)

where in each step each sensor node moves for the distance Ar-.
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5 Simulation

In order to test the validation of the above method, a simulation was conducted and the
mean squared error of estimated values at all points in the area was compared with the
random determination.

5.1 Setting of the Simulation

In the simulation, we made a certain scaler field, which is the true value in this simulation,
in the area of interest and interpolated the measured values at five sensor nodes. The
simulation was conducted in the following settings.

The area of interest has been formed as 40 X 40 square, filled with 0.5 X 0.5 meshes.
The five sensors were deployed in the sensing area, or the grey area in Fig. 1, so that it
is not located on the edge of the 40 X 40 square, where gradient of kriging variance is
not well-defined.

40 .
margin

40

Fig. 1. The field of simulation is 40 X 40 including the margin.

The scaler field we prepared was a sum of three different Gaussian with different
means y’s and covariance matrices X’s as:

o) = Zj:l — exp [—%(r - ”i)TZi_l(r_ ”i)].

1 ©)
27|%,|2
which is shown in Fig. 2.
In the simulation, first we deployed five sensors at random in the sensing area and
made a measurement (step 1). We then kriged the measured values to obtain the map of
the value in the entire field and also the kriging variance map (Fig. 3).

5.2 Method

Now we have the kriging variance field and so we used that to determine the placement
of the sensor nodes for Step 2. We set two different scenarios.
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Fig. 2. We made 2-D scaler field by summing three different Gaussians.
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Fig. 3. In Step 1, we deployed five sensors randomly. In Step 2, we simulated two different
scenarios: in Scenario 1, the sensors were moved using kriging variance gradient; in Scenario 2,
they were moved to random directions. In Step 2, both data from 5 initial points and 5 new points
were used in the kriging.

Scenario 1. 1t is most optimal to move the sensor nodes towards the direction where
the kriging variance gradient is the highest in all the directions. Therefore, we determined
the placement of the sensor i for the next time step as follows:

Ft+ AD = 1,(8) + Art )

NVl (10)

where Ar is the step of the movement.

Practically, in this simulation the kriging was done for discrete grid points. Therefore
variance calculated only for discretely distributed points and the gradient is not actually
calculated through differentiation but computed using second-order accurate central
differences with certain sampling distances. Since the resulting gradient has a depend-

we compared the results for different d,

sample*

ency on sampling distance d,,,,,;,»
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Scenario 2. For comparison, we also simulated the case where the nodes are moved to
a random direction. For this the position of the same sensor node at the next time step
is expressed as:

rt+ AN =r(n) + Ar< Z?;g > 11

Here, 6 is a random value between 0 and 2= (Fig. 4).

sensor node

Fig. 4. Each sensor node moves by Ar in the direction 6.

5.3 Evaluation

For the evaluation of these methods, we calculated the sum of error squared at each grid
point of the entire area of interest, namely,

Error = 3" [2(r) = 2(r))]" (12)

where z(rj) and 2(rj) are the true value and the interpolated value at the grid point j,
respectively and the summation is done through all the grid points.
In order to examine the effect of Ar, we executed the simulation for different Ar.

Also, as mentioned above, scenario 2 was performed for different d,,,.-

In other words, for each initial random sensor deployment (step 2), (1) scenario 1 was
performed for different Ar’s and (2) scenario 2 was performed for different Ar’s and

different d,p, .s.

We calculated the error for each scenario with different parameters for 1000 different
initial placement of sensors in Step 1. For each error in Scenario 1 was compared with the
error in the corresponding simulation in Scenario 2 with regard to Ar and we counted the

number of cases where error in scenario 1 is greater than that in scenario 2 out of 1000

simulations for each Ar and d,

sample*
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Fig. 5. Anexample of the simulation results. The left figure of the top row is the true value. The
second row show is the kriged result (left) and kriging variance with the positions of sensor nodes
(yellow dots) and the gradient (arrows). The third row shows the results of Step 2 in Scenario 1
and the forth that in Scenario 2. (Color figure online)
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5.4 Results

Figure 5 shows the true value and the result of kriging at each step. Figures on the left
column are the true value or interpolation result of different steps, the true value on the
top figure, Step 1 on the second, Step 2 in Scenario 1 on the third, Step 2 in Scenario 2
at the bottom. On the right column are the kriging variance.

Figure 6 shows the result of the comparison of the error in Scenarios 1 and 2. The x

axis indicates Ar and y axis d,,,.- The color bar shows the ratio of the cases where
Scenario 1 gives less error than 2, over 1000 simulations. The resulting figure indicates

that for certain Ar and d,,,., Scenario 1 gives more accurate kriging results than
Scenario 2 in more than 50% of the cases. Given 100 trials have been done, if the ratio
from the result is greater than 51.6%, the actual ratio will be more than half, with 95%
confidence. Therefore, the fact that there are cases that the ratio is over 51.6% shows
that this proposed method gave significantly better results than random decision.

The ratio is higher especially when Ar is smaller and d is greater.

sample

Ratio of the cases where Scenario 1 gives better accuracy
. 0.8

0.7

- 0.6

- 0.5

- 0.4

sampling distance dsample

0.3

0.2

Fig. 6. The ratio of the cases where Scenario 1 gives better accuracy than Scenario 2.

6 Prototype

We also utilized the proposed method to actual measured data from the previous work
[10]. Here, some portable devices were prepared and used to make measurement around
Shibuya City, Tokyo. They are equipped with multiple sensors including thermometer,
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hygrometer and air quality sensors such as O3, CO, NO,, PM2.5. The devices were made
compactly so that human beings can hold while walking. Participants of the experiments
were asked to walk around the city carrying one of those. 12 people took part in the
experiment and those series of data were collected.

Among those data, the atmospheric temperature was picked and kriged. The results
of the kriging and the variance are shown in Fig. 6. Here, with the proposed method, as
shown by arrows, the next suggested movement of sensors was successfully calculated
(Fig. 7).
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Fig. 7. The result of kriging of the atmospheric temperature data in Shibuya City, Tokyo in
11:00-11:10am on Nov. 14, 2016. The figure on the top is the interpolated map of the temperature
and the one below is the kriging variance with gradient shown by arrows. The yellow line in the
figure below is the trajectory of each sensor node. (Color figure online)

7 Conclusion

In this paper, we proposed a method of sensor placement in a multiple distributed sensor
system in order to achieve better accuracy of interpolation using kriging. Then we
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demonstrated the method in a simulation and compared with moves with randomly
determined direction for validation. As a result, the proposed method was proven to give
better accuracy of interpolation in a certain situation, that is, small move step and rela-
tively long sampling distance. We also used actual data from a prototype of a multiple
distributed sensor system to execute the proposed method to plan the next step of move-
ment.

As future work, we have three tasks. First one is to extend this method to multiple
steps. In this paper we merely focused on two-step measurement. For real usage, it is
vital to plan the best trajectory beyond the next move, where it is important not to move
different sensors to the same place. This could be realized by introducing a two-body
repulsive power among sensors. Second, we have to think about the time dependency
of the scaler field of interest. In the simulation above we set a fixed scaler field with
regard to time but in the actual world, most values that are measured is not time-invariant.
For the last but not least, the method should be carried out for actual sensor placement
and movement. By using the prototype mentioned above, it can be achieved.
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