
Why Is Evolution Important in Cancer
and What Mathematics Should Be Used
to Treat Cancer? Focus on Drug
Resistance

Luís Almeida, Rebecca H. Chisholm, Jean Clairambault, Tommaso Lorenzi,
Alexander Lorz, Camille Pouchol, and Emmanuel Trélat

1 Introduction to Mathematical Modelling in Cancer

Mathematical models of cancer growth and therapy have already known numerous
developments and publications in the past 20 years or so. They belong to two general
classes: agent-based models, ruled by stochastic rules of growth (for division, death,
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motion, interactions with the environment) in which the individual agents are cancer
cells, and continuous models that rely on ordinary or partial differential equations,
sometimes delay differential equations, whose solutions are densities of cancer
cell populations. The benefits and limitations of these two respective classes of
models, with examples, are discussed, e.g., in [6]. As regards anticancer treatments,
the continuous version allows to take advantage of mathematical optimisation and
optimal control algorithms that have been designed in this framework, originally
in engineering settings. A short review of models designed with this therapeutic
control vision is presented, for instance, in [2]. It is sometimes possible to obtain
a continuous model starting from an agent-based one by averaging methods;
alternatively, one can also develop in parallel the two types of models applied to
the same biological problem and compare the predicted behaviour of the modelled
cell populations, as e.g., in [5], or in a general setting, in [3].

The goal of such models of cancer growth may be to merely understand the
biological phenomenon of cancer growth, by designing accurate models that are all
the more relevant to describe a biological reality as they are identified and validated
on biological measurements in vitro in culture dishes, in vivo on laboratory animals,
or from observations (e.g., radiological images) on humans, to be confronted to
theoretical growth curves depending on a priori unknown parameters (the physicist’s
viewpoint). But it may also be of a different nature, to represent the effects of
treatments on tumours, with the aim to optimise them. In the latter case, these effects
may be described either by their molecular effects on known drug targets (keeping in
mind that precision targeting is often alluring, since drugs may have unpredictable
effects on non recognised targets) or by their functional effects on the possible fates
of cell populations, namely proliferation, extinction, differentiation or senescence.
The respective advantages of these two points of view are also discussed, with
examples, in [6]. Whatever the chosen point of view, molecular or functional, the
goal of these models is here clearly established as understanding and improving the
efficacy of anticancer treatments (the physician’s viewpoint).

2 Drug Resistance in Cancer

2.1 The Two Main Pitfalls of Cancer Therapeutics

Unwanted toxic side effects on healthy cell populations and emergence of resistance
to treatments in cancer cell populations are the two main pitfalls of cancer
therapeutics in the clinic. Toxicity is always a concern for the clinician, as it limits
the tolerable doses of drugs delivered to the patient, who otherwise might see
his tumours eradicated, but at the expense of deadly insults to essential organs or
functions (haematopoiesis, digestion, skin covering, liver function, heart function).
It has lately been proposed that instead of delivering for short periods of time the
maximum tolerated dose (MTD), it might be as efficient to deliver small drug doses
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(the so-called metronomic strategy), thus minimising toxicity, with as good results
on the cancer cell population. To what extent is the immune system involved in the
efficacy of this new way of designing delivery schedules is not completely clear
and might depend on the anticancer drug in use [36, 37], however metronomic
therapies certainly challenge the MTD strategy in both limitation of toxicity and
improvement of efficacy. Note that an initial interpretation of the success of
metronomic therapies was more mechanic, postulating that too high amounts of
drugs destroy the blood vessels that bring the drugs to the tumour [1, 24]. It is
not exclusive of the immunogenic explanation [36, 37], which proposes that giving
small drug doses may reveal hidden (internalised) cancer antigens by shattering
a small number of cancer cells, enough to trigger an efficient immune response
towards the whole cancer cell population. Both explanations still remain to be
more biologically documented—especially with respect to the immune response—
mathematically modelled and tried in clinical settings; however, they address the
question of toxicity in an apparently paradoxical way (“more is not necessarily
better”) that is a challenge for modellers.

Drug resistance, the other major pitfall of cancer therapeutics, is a treatment
efficacy limitation of another nature; it may be defined as adaptation of the target
cancer cell populations to the hostile environment created by the drug. Resistance
to treatments in cancer cell populations, insofar as it is not constitutive of organisms
therapies apply to, but secondary, i.e., induced by treatments as a stress response.
In many cases (in fact, in most cases), treatments that show remarkable initial
efficacy by drastically shrinking tumours see their response decrease with time, until
they become totally inefficient as tumours regrow. Furthermore, the newly growing
cancer cell populations, that have become resistant to the drug in use, are out of
reach for this therapy, and often for others that have not been employed (multi-
drug resistance). At the molecular scale, different mechanisms have been identified,
such as overexpression of drug efflux pumps (ABC transporters [14], such as the
P-glycoprotein, also known as MDR1, or ABCB1), of intracellular drug processing
enzymes or of DNA repair enzymes, and it has been proposed to combine cytotoxic
drugs with inhibitors of these mechanisms, unfortunately eventually to no avail.
As mentioned above, the molecular point of view in pharmacological treatments in
principle offers a satisfying framework to perform cancer treatment optimisation,
but so-called targeted therapies (i.e., that target intracellular molecular pathways),
with a few exceptions, result in disappointing outcomes (see, e.g., [11, 12]).

2.2 From the Single Cancer Cell to Cancer Cell Populations

Indeed, these treatments share the same flaw, which is that they focus on a given
molecular target (or on several molecular targets), considering cancer as the disease
of the same single cell extended to large quantities, instead of taking into account
the population of cancer cells in its diversity, which might offer a key explanation of
their failure [13]. Such population diversity (or heterogeneity) is not necessarily of
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genetic nature but linked to epigenetic changes in the chromatin, thus reversible
[31], at least on the initiation of drug resistance (mutations can come later to
irreversibly establish resistance in a subclone of the cell population), and may result
in differently expressed phenotypes in different cells, potentially inducing different
resistance mechanisms as responses to cytotoxic stress in a population of cells
bearing all the same genotype.

Introducing the population of cancer cells (indeed, the actual target of anticancer
treatments) naturally sets the scenery for Darwinian evolution of cells exposed to
anticancer drugs seen as an environmental selection pressure, as will be developed
in the next section. This viewpoint, introduced in theoretical ecology for quite
a long time already, is rather new in biology and medicine (where it has given
rise to the new field of Darwinian medicine), however, does not allow to decide
whether the selection is of pure Darwinian nature (selection of the fittest, cells
that were already present in the population before exposure to the drug) or may
involve a part of Lamarckian adaptation (no resistant cells initially present, but
stochastic triggering of resistance mechanisms in a few cells for which the response
to stress happens to be well adapted to resist the cytotoxic effects of the drug
in use). This alternative, discussed in a mathematical setting in [5] was already
the object of the biological experiment by Luria and Delbrück [23], concluding
to sheer Darwinian selection. However, Luria and Delbrück’s experiment was
performed not on cancer cells exposed to drugs, but on bacteria exposed to
bacterium-eating viruses (phages), while human and animal cancer cells bear a
genome—and epigenome, i.e., chromatin (histones)—that is by far richer than the
bacterial genome, which in our case does not allow to conclude. Nevertheless, the
cell population point of view clearly opens new ways to understand and overcome
drug resistance in cancer.

3 Cancer as Evolutionary Disease

3.1 Evolution of Multicellularity and Cancer

Darwinian evolution (together with possible Lamarckian adaptation) of cancer—
and healthy—cell populations (but healthy cell populations are in principle well
controlled as regards their possibilities of phenotype evolution) must of course be
considered on the short-time level of a human life or disease, but the much larger
time of evolution in the course of billions of years, from unicellular organisms
towards the organised and coherent forms of multicellularity represented by present
animals and plants, may also shed light on cancer as evolutionary disease. Cancer
is a disease of multicellular organisms, that may be defined as loss of coherence
between tissues due to loss of coherence control by those genes that have been
essential in the evolution towards multicellularity. In [9], it is advocated that the
genes that are altered in cancer are precisely the ones that have been employed by
evolution to design multicellular organisms. Indeed, evolution proceeds, as stated by
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Nobel prize laureate François Jacob in [18], by tinkering, i.e., it proceeds by trials
and errors taking advantage of any existing material, and, as regards multicellularity,
such tinkering may result in localised (in organs and physiological functions elicited
by corresponding genes) fragilities, that secondarily, under environmental pressure,
may be caught off guard and result in localised cancers. Such loss of coherence
control, unmasking a pluripotent phenotype that is also named plasticity, may in
particular be seen in the process of de-differentiation of cancer cells, i.e., adoption
of a pluripotential phenotype (eventually yielding the so-called ‘cancer stem cell’,
whose existence is likely to be transient [21]) making the cells that bear it, as
endowed with a rich panel of non-repressed genes, able to develop a wide variety of
responses to cytotoxic stress. The involvement of such failed multicellularity (i.e.,
unpreserved normal differentiation) control genes in revealing an ancient ‘toolkit’
of preexisting adaptations [9] still remains to be documented, but it certainly offers
new ways of considering cancer as an evolutionary disease and drug resistance in
cancer as an evolutionary—and adaptive—mechanism.

3.2 Heterogeneity and Plasticity in Cancer Cell Populations

Heterogeneity in cancer cell populations has been documented in advanced solid
tumours as of genetic nature, with evidence of multiple branched mutations [10],
but, as mentioned above, it may also consist of sheer epigenetic and reversible
modifications [31] linked to enzymatic activities located on the chromatin, i.e.,
without mutations in the genome. However, as recently shown in [30], such fast
epigenetic, non genetic, reprogramming of a sparse subpopulation of cancer cells
may eventually result in a stably resistant state.

Another look at heterogeneity induced in cancer cell populations by exposure
to cytotoxic drugs is presented in [35]. In this article, it is proposed that so-
called cold genes that have been identified as expressed in the genome of cancer
cells (multiple myeloma cells) have a very ancient origin, being conserved without
changes throughout evolution from unicellularity, and may be responsible for stress
response in extremely hostile and unpredictable situations (resulting from events
comparable, mutatis mutandis, to the impact on animal life of the meteorite that
66 million years ago hit the Earth—creating the Chicxulub crater in Yucatán—
subsequently putting an end to the dominance of dinosaurs), by possibly launching
secondary expression of various resistance mechanisms. In this respect, these very
ancient ‘cold genes’, elaborated in a remote past of our planet, when conditions of
life were different from the present (UV radiation, acidity, low oxygen concentration
in the oceans and in the atmosphere), might be the genetic toolkit of preexisting
adaptations mentioned above, or part of it.

The variety of resistance mechanisms developed by cancer cell populations
exposed to lethal doses of cytotoxic drugs—an extremely hostile and unpredictable
situation for any cell population—has been related to what is called bet hedging
in theoretical ecology. The term ‘bet hedging’ is used to qualify behaviour relying
on an ensemble of traits that make a population of living individuals adaptable to
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an unpredictable environment, using a so-called ‘risk-spreading strategy’, that at
the scale of the population may result in keeping safe only a small part of it, but a
part that will be able to reconstitute the whole population, with preservation of its
common genome, after such adaptation to the new environment [26]. Bet hedging
in tumours has been proposed as a stochastic ‘cancer strategy’. It is also presented
as “an ultimate explanation of intra-tumour heterogeneity” in chapter XVII of the
book [33].

Plasticity, mentioned above about de-differentiation of cancer cells and the
transient state of cancer stem cell, may be evidenced at the level of the single
cell (derepression of genes that must be epigenetically repressed in physiology to
produce the differentiation that yields about 200 different functional cell types in
the human organism), but also at the level of the cell population, since the spreading
of such pluripotent cells makes the population adaptable to environmental changes
(plastic), possibly by using expression of cold genes in a tiny subpopulation and
stochastic (or distributed) bet hedging of resistance phenotypes.

The plasticity—physiologically normal in highly undifferentiated cell states,
close to stem cells, but totally pathological in cell populations for which a defined
terminal physiological function exists—of the epigenetic landscape of a given
human genome, as metaphorically proposed in [34], recently revised from a systems
biology viewpoint by Sui Huang, see, e.g., [15, 16], provides another approach to
plasticity and evolution of cancer, that has been, for instance, exploited to study
lineage commitment in haematopoiesis by using bifurcation analysis of an ordinary
differential equation model [17].

4 Continuous Mathematical Models

4.1 Phenotype-Structured Mathematical Models

The modelling framework of adaptive dynamics we present here is more likely to
correspond biologically to epigenetic modifications rather than to genetic mutations,
as the evolution in phenotype is in this mathematical setting always reversible (not to
mention that, in the case of the application to drug resistance in cancer that we have
in mind, eventual induction of emergent resistant cell clones due to mutations under
drug pressure is never to be excluded in the long run). From the biologist’s point of
view, we study phenotypically heterogeneous, but genetically homogeneous, cancer
cell populations under stress (in particular by cytotoxic drugs).

The models considered here are all based on the so-called logistic ODE model,
which we recall here. It is given by the equation

dN

dt
= (r − dN) N,

which describes the time-evolution of the number of cells N(t), starting from a
prescribed initial condition N0.
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Coefficient r denotes the net selection rate of the cells, namely the difference
between their proliferation and death rates, while the logistic term dN stands for an
additional death rate proportional to the number of cells.

The underlying assumption is that competition for nutrients and space inside the
population does not allow for exponential unconstrained proliferation. Mathemati-
cally, it is indeed true that if N0 ≤ r

d
, then N(t) converges increasingly toward the

carrying capacity r
d

.
Let us now introduce a basic phenotype-structured model, where the quantity of

interest is a number of cells n(t, x) at time t > 0, and of phenotype expression level
(hereafter simply designed as phenotype) x ∈ [0, 1] standing for the resistance
to a given drug. We stress that this phenotype is taken to be continuous, because,
as already mentioned, it can be correlated to biological characteristics which
themselves are continuous. Here, [0, 1] is taken for simplicity but multi-dimensional
phenotypes can of course be considered.

The model reads

∂n

∂t
(t, x) = (r(x) − d(x)ρ(t)) n(t, x),

where ρ(t) := ∫ 1
0 n(t, x) dx is the total number of cells at time t , starting from some

initial condition n0(·). As before, r(x) is the net proliferation rate of cells of cells of
phenotype x, while d(x)ρ(t) is the natural extension of the previous logistic term.
Note that more general logistic death terms through a Kernel K can be considered,
in the form

∫ 1
0 K(x, y)n(t, y) dy.

The basic model described above is characterised by two main phenomena:
convergence and concentration. The first one means convergence of ρ(t) towards
max

(
r
d

)
, and concentration of the density n on the set of phenotypes where r

d

reaches its maximum, namely arg max
(

r
d

)
. This is why this class of models is

extensively used in adaptive dynamics to model selection: only the cells in the
fittest phenotypic states can survive, which corresponds mathematically to the
convergence of n(t, ·) to a sum of Dirac masses located on the set arg max

(
r
d

)
.

This modelling framework also extends to several populations, in which case
the competition between the populations is modelled through Lotka–Volterra-like
terms. Let us introduce a model of two interacting populations, which will be further
developed in the next section with the modelling of chemotherapy as control terms.
It is concerned with two densities of healthy and cancer cells nH (t, x) and nC(t, x)

respectively, where x is again a continuous phenotype, in the application we have in
mind describing the level of resistance to a given drug. The model is given by

∂nH

∂t
= [

rH (x) − dH (x) (aHH ρH (t) + aHCρC(t))
]
nH (t, x), (1)

∂nC

∂t
= [

rC(x) − dC(x) (aCCρC(t) + aCH ρH (t))
]
nC(t, x), (2)
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where, as before, ρH (t) = ∫ 1
0 nH (t, x) dx, ρC(t) = ∫ 1

0 nC(t, x) dx. The logistic
terms now incorporate an intraspecific competition term weighted by coefficients
aHC and aCH . Because healthy and cancer cells compete harder within their own
population than with the other population (in other words, cells belong to different
ecological niches, e.g., for metabolic and energetic reasons linked in particular to
respiratory oxidative phosphorylation in one case and glycolysis in the other), it is
quite natural to assume

aHC < aHH , aCH < aCC.

Under hypothesis (4.1), it is proved in [29] that the behaviour of (1) is again
convergence and concentration, where the asymptotic values of ρH , ρC and the sets
on which nH , nC concentrate can also be explicitly computed.

4.2 Optimal Control for Anticancer Therapeutics

Optimal control methods (reviewed in [32]) applied to models of cancer therapeutics
using systems of ordinary differential equations [4, 19, 20] or of partial differential
equations [29] are the appropriate tool to theoretically optimise cancer therapeutics,
in particular by taking into account the inevitable emergence of drug resistance in
cancer cell populations.

The built-in targets for theoretical therapeutic control that are present in the
phenotype-structured PDE models we advocate here are not supposed to represent
well-defined molecular effects of the drugs in use, but rather functional effects, i.e.,
related to cell death (cytotoxic drugs), or to proliferation in the sense of slowing
down the cell division cycle without killing cells (cytostatic drugs). We propose that
cell life-threatening drugs (cytotoxics) induce by far more resistance in the highly
plastic cancer cell populations than drugs that only limit their growth (cytostatics),
and that a rational combination of the two classes of drugs—and possibly others,
adding relevant targets to the model—may be optimised to propose therapeutic
control strategies to avoid the emergence of drug resistance in tumours.

We address this optimal control problem in the context of two populations,
healthy and cancer as in the model is given by (1), now complemented with two
types of drugs of infusion rates u1 and u2 for cytotoxic and cytostatic drugs,
respectively. The resistance phenotype x they are endowed with is defined with
respect to the cytotoxic drug pressure, and is taken to range from sensitiveness
(x = 0) to resistance (x = 1). The controlled model thus reads

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂nH

∂t
(t, x) =

[
rH (x)

1+αH u2(t)
− dH (x)IH (t) − μC(x)u1(t)

]

nH (t, x),

∂nC

∂t
(t, x) =

[
rC(x)

1+αCu2(t)
− dC(x)IC(t) − μH (x)u1(t)

]

nC(t, x),

(3)
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On a fixed therapeutic time-window [0, T ], the optimal control problem is to
choose the controls u1 and u2 so as to minimise the number of cancer cells ρC(T ),
while satisfying the three following constraints.

• remaining under maximum tolerated doses: 0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤

umax
2 ,

• avoiding the emergence of too big a tumour: ρH (t)
ρH (t)+ρC(t)

≥ θHC ,

• limiting unwanted adverse effects to the healthy cell population: ρH (t) ≥ θH ρ0
H .

This optimal control problem is motivated by the inefficacy of using constant
high doses of drugs, a strategy which on the long run violates the last two
constraints. This is indeed what is observed in the simulation presented in Fig. 1:
although the tumour size first decreases, it is at the expense of the cancer cell
density concentrating on a resistant phenotype. The treatment becomes inefficient
and relapse occurs.

Fig. 1 What should never be done in the clinic! Simulation with u1(t) = Cst = 3.5 and u2(t) =
Cst = 2, in time T = 10. Here ρCS(t) = ∫ 1

0 (1 − x)nC(t, x) dx is a measure of the number
of sensitive cells in the cancer cell population. Constant high doses of the cytotoxic drug yield
concentration of cancer cells around a resistant phenotype. The cancer cell population increases
steadily while healthy cells decrease
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In [29], the previously defined optimal control problem is analysed both numeri-
cally and theoretically. As the time T increases, it is found that the optimal control
strategy becomes increasingly close to a two-phase strategy.

• The first phase is long, and only constant low doses as given, so as to saturate
the second constraint. At the end of this first phase, the drug pressure has been
low enough to ensure that the cancer cell density has concentrated on a sensitive
phenotype.

• The second phase is short and starts with maximum tolerated doses for both
drugs, leading to a quick decrease of both cell numbers because they are efficient
on a sensitive cancer cell population. Once the third constraint (on the heathy cell
density) has been reached, cytostatic drugs switch to some intermediate value
(which can be computed in feedback form) which allows for a further decrease
of the tumour size while keeping the healthy cell number at its lower bound.

A numerical simulation of the optimal strategy is presented in Fig. 2.
For a practical implementation of the previous strategy, it is natural to repeat

it in a quasi-periodic manner. One can hope that after enough cycles, the tumour
will be eradicated, or at least made chronic. In order to decide when to switch from
the second short phase to another cycle with a long first phase, one must identify
markers for resistance. Indeed, as long as constant low doses do not violate the
second constraint on the relative tumour size, they must be given to ensure that
the (assumed to be plastic) tumour is becoming sensitive to the treatment again.
The switch to the second phase can be led as soon as the markers indicate that the
tumour has become sensitive enough again. Finally, if the healthy cells tissue is too
damaged (namely the third constraint saturates), one can hope to still let the tumour
decrease with a properly chosen cytotoxic drug infusion. When this is no longer
possible, one must switch back to the long first phase (no infusion).

5 Future Tracks in Modelling for Cancer Therapeutics

5.1 Beyond Present Models to Optimise Cancer Therapeutics

The models of adaptive population dynamics that we have presented here, with
their built-in targets for control, rely on a nonlocal Lotka–Volterra vision of cell-
cell population competition. This point of view could be extended to other modes of
interaction, which could be mutualistic or predator-prey like, and to an arbitrary
number of cell populations. For an analysis of a mutualistic integro-differential
2×2 system modelling interactions between breast cancer cells and their supporting
stroma (adipocytes), we refer to [27], whereas a more general Lotka–Volterra-like
model for N populations is analysed in [28]. The inferred asymptotic behaviour is
again convergence and concentration.
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Fig. 2 Simulation of the optimal control problem for T = 60. Here, the phenotype is concentrated
on a sensitive value at the end of the first delivery phase, and eventually likely more resistant—
but for a very rare surviving fraction—in the cancer cell population, if one compares the curves
showing ρC(t) and ρCS(t)/ρC(t) towards the end of the treatment course. Delivered at a high
dose for a brief duration only, followed by a medium dose for the remaining time, the cytotoxic
drug u1(t) impinges a drastic decrease, if not total eradication, in the cancer cell population, while
preserving healthy cell numbers over a predefined threshold

Let us now come to extensions of the integro-differential setting by considering
the basis 1-dimensional model that we first mentioned. Recall first that more general
logistic interaction terms can be considered. The other natural extension is to model
epimutations (occurring on the relevant time-scale, which is here that of a tumour).
They can either be modelled by a Laplacian, leading to

∂n

∂t
(t, x) = (r(x) − d(x)ρ(t)) n(t, x) + β�n(t, x),
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with Neumann boundary conditions, or more generally through a mutation kernel.
Note that both modelling are linked at the limit through a proper rescaling of the
kernel, as explained in [25].

A complementary advection term can be added, accounting for cells actively
adapting to their environment, seeking for phenotype changes that make them fitter.
These can be seen as stress-induced epimutations and with them the model becomes

∂n

∂t
(t, x) + ∂

∂x
(v(x)n(t, x)) = (r(x) − d(x)ρ(t)) n(t, x) + β�n(t, x).

Note that in [5], the advection happens to be compulsory to observe quick enough
dynamics to fit those obtained in the experiments presented in [31]. Besides, in [7],
the effects of an additional advection term are rigorously studied.

A further advantage of these more general PDE models is that they are able to
represent possible asymptotic coexistence of phenotypes, which is not the typical
output of the integro-differential models. Moreover, whereas in [5] the agent-based
model and the PDE model were treated concurrently in parallel, in [8], a general
method describing the passage from the former to the latter is rigorously presented.

A final possible extension worth-mentioning is the addition of a space variable,
since it is believed that the heterogeneity of a tumour varies from its periphery
to its centre. This is also particularly relevant in view of optimal control through
chemotherapy since drugs will efficiently access the outer rim of the tumour but less
its core. For possible cancer models taking both phenotype and space into account,
we refer to [22].

5.2 Need for Models with a Larger Evolutionary Perspective

From the biological part of this article, it clearly appears that the abovementioned
models, sophisticated though they may be, are not enough to study in mathematical
settings the evolution of multicellularity and its intrinsic failure, namely cancer,
nor are they presently enough to design optimised therapeutic strategies that can
overcome drug resistance in cancer. Open questions to biologists remain if one
wants to make available a framework within which mathematical modelling may
be designed. What are the genes that must be silenced in physiology and are re-
expressed in de-differentiated cancer cells? What are the observable links between
genes that are known to be essential for multicellularity and what are the genes that
are altered in cancer (the same, following [9])? What models to study physiological
coherence between tissues in the same organism, i.e., what sticks together in
harmony the 200 different cell types of a human organism? What part of the genome
bears the so-called cold genes, what part the individual signature of an organism that
is transmitted throughout differentiation (the ‘self’, certainly to be related with the
major histocompatibility complex, MHC), and what part the genes that are normally
sequentially silenced in the history of differentiations? As regards mechanisms of
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drug resistance, what part of launching in a cancer cell population is deterministic
(triggering cold genes) and what part is stochastic? And such list of open questions
is not intended to be comprehensive.

6 Conclusion: A Challenging New Field for Mathematicians

In this short description of cancer as evolutionary disease, focusing on the question
of drug resistance and its possible overcoming by optimised strategies in the
clinic, we have presented what has been recently developed in the framework of
mathematical modelling, that is, adaptive dynamics of cell populations represented
by phenotype-structured models relying on partial differential equations, together
with optimal control methods to guide their asymptotic behaviour. We have also
proposed immediate tracks for future extensions of these existing models, and
only sketched the scenery for future mathematical models that still lack biological
answers to guide their design. We are nevertheless confident in the fast progress
of cancer biology to help mathematicians design models that can be helpful in
prevention, prediction and control of cancer in the clinic, provided that the right
questions are posed, mathematically challenged and experimentally tackled.
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