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Preface

The present book is a collection of papers which have been accepted for publication
after a peer review evaluation by the Editorial Board of the BIOMAT Consortium
(http://www.biomat.org) and ad-hoc international referees. These papers have been
presented at the technical sessions of the BIOMAT 2017 International Symposium,
the 17th Symposium of the BIOMAT Series which was held at the Institute of
Numerical Mathematics of the Russian Academy of Sciences–Russia, from 30th
October to 03rd November 2017. On behalf of the BIOMAT Consortium, we thank
the Director of the Institute, Prof. Eugene Tyrtyshnikov, and the Co-Chairs of the
BIOMAT 2017 Local Organizing Committee, Prof. Yuri Vassilevski and Prof. Vitaly
Volpert, for their technical expertise in following the guidelines and fine tradition of
the BIOMAT Consortium for preserving the excellency of the BIOMAT Sympo-
sium Series on this first BIOMAT Conference in Russia. Research collaborators,
Ph.D. Students and Secretaries of the Institute like Alexander Danilov, Tatiana
Dobroserdova, Konstantin Novikov, Roman Pryamonosov, Nina Gorodnova and
Anna Zagumennykh have done their best to provide all local technical facilities
to help the speakers during the scientific sessions as well as to follow the Scientific
Programme of the BIOMAT 2017. We are so much indebted for their invaluable help
since the Opening Session on Monday morning to the Closing Session on Friday
evening.

Financial support in terms of accommodation, lunches and coffee-breaks has
been provided by the Institute of Numerical Mathematics, the International Union
of Biological Sciences, the Interdisciplinary Scientific Center Jean-Victor Poncelet,
Russian Foundation for Basic Research, Parseco Foundation, and the Federal
Agency for Scientific Organizations. We are also indebted for the special offer of
accommodation of the Keynote Speakers and the staff of the BIOMAT Consortium
in the hotel of the Steklov Mathematical Institute, Russian Academy of Sciences.

The BIOMAT Consortium has succeeded once more in its fundamental mission
of enhancing the interdisciplinary scientific activities of Mathematical and Biolog-
ical Sciences in Developing Countries with the organization of the BIOMAT 2017
International Symposium. Participants from Western and Eastern Europe, Asia,
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vi Preface

Africa, North and South America had the usual opportunity of exchanging scientific
feedback of their research fields with their colleagues from Russian Federation and
delegates coming from other 13 countries: Serbia, France, Brazil, Cuba, China P.R.,
Morocco, India, UK, USA, Pakistan, Portugal, Hungary, Italy.

The Editor of the book and President of the BIOMAT Consortium is very glad
for the collaboration and critical support of his wife Carmem Lucia on the editorial
work, from the reception of submitted papers for the peer review procedure of
BIOMAT Consortium Editorial Board to the ultimate publication of the Scientific
Programme. He also thanks his research student Simão C. de Albuquerque Neto
from the Federal University of Rio de Janeiro for his computational skills and
technical expertise with LaTeX versions.

Moscow, Russian Federation Rubem P. Mondaini
November 2017
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Evolution of Spatial Patterns in
Host-Parasitoid Metapopulation

Brajendra K. Singh and Somdatta Sinha

1 Introduction

Inclusion of spatial dimension in mathematical models of physical and biological
systems leads to evolution of interesting dynamical features [1, 2]. Particularly, the
important role of space, in the survival and coexistence of species populations, has
been fully established in both field and modeling studies in ecology [3, 4]. Space
assumes more significance in disease spread, and therefore the variation in spatial
structure is an important determinant of the distribution of any infectious disease.
In addition, unequal distributions of resources in space can allow for the explicit or
implicit introduction of spatial dimension in a population model. In many studies
of spatially extended single and interacting species metapopulation models, natural
(geographical) resources were heterogeneously distributed [5–14], even though the
subpopulation patches were homogeneous. The primary goal of these studies was
to show the stabilizing effect of population dispersal on the persistence of extinct-
prone single-patch population dynamics, in the metapopulation scenario [7, 8].
In these studies, all patches were considered to be identical, which counters the
scenario of continuous destruction and fragmentation of natural landscapes [15].

The classical discrete Nicholson-Bailey host-parasitoid (HP) population model
[16] is unstable leading to death of both the host and parasitoid. Some studies [17–
19] have considered the effect of environmental variability in spatial HP models to
resolve the stability/persistence problem. In a study [20] to enumerate the effects
of environmental variabilities in lattice metapopulations, it was shown that the HP

B. K. Singh
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metapopulation dynamics showed complete reversal in spatial patterns, if a small
amount of heterogeneity was introduced randomly in space. The spatial pattern,
which was primarily synchronous in homogeneous landscapes, showed asynchrony
in spatial dynamics with heterogeneity.

Variability in natural landscapes can be of several types. The most common one
is habitat structure, where the physical components of any habitat patch can be
different from their neighbouring patches due to presence of natural or man-made
dispersal barriers [15]. Such landscape heterogeneity can occur due to increased
socioeconomic activities by humans that induce varied levels of destruction and
fragmentation of natural habitats [21]. Another naturally occurring heterogeneity
can arise if the host and parasitoid populations living in these patches consist of
different genotypes having different phenotypic traits [19, 22], such as different
levels of ‘risk of parasitism’ for the host species distributed in different patches
[12, 23]. These two common types of variabilities observed in the metapopulation
scenario are known as ‘landscape heterogeneity’ and ‘demographic heterogeneity’.

In this paper we model the effect of various patterns of landscape and demo-
graphic heterogeneities on the spatial dynamics of host-parasitoid metapopulations.
These different patterns of heterogeneity coupled to different connectivity patterns
of the habitat patches are shown to lead to the evolution of different spatial patterns
in population distributions. These results are discussed in the light of possible role
of different types of dispersal barriers in animal migration and disease spread.

2 Single and Spatial Host-Parasite Model

The discrete Host-Parasitoid model used in this study is a simple modified
Nicholson-Bailey [20], where the host exhibits density-dependent logistic growth in
absence of the parasitoid. In presence of the parasitoid, which induces infection due
to which that fraction of the host population cannot reproduce, and the parasitoids
grow in infected hosts only. In a lattice metapopulation scenario, where each node
is a habitat that supports a HP subpopulation, with migration taking place amongst
the nearest neighbouring patches, the discrete HP model takes the form:

Ht+1(s) = F(H ′
, P

′
),

Pt+1(s) = G(H ′
, P

′
), (1)

where F(·) = H ′
μ(1−H ′

)e−βP
′

and G(·) = H ′
(1− e−βP ′ ).

The parameters, μ and β, are the host growth rate and the parasitoid attack
rate, respectively. H

′
and P

′
are the post-dispersal host and parasitoid population

densities at any site s ≡ (x, y) ∈ L ≡ (l × l), where L is a square lattice of
l2 number of habitat patches. Variants of this model have been studied by several
authors [13, 14] while investigating different questions.
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The dispersal functions to the nearest 8 neighbours in a square lattice is given by

H
′ = (1− d1)Ht (s)+ d1

8

8∑

j=1

Ht(j)

P ′ = (1− d2)Pt (s)+ d2

8∑

j=1

Pt (j)δ
j
t (s). (2)

where d1 and d2 are the host and parasitoid dispersal coefficients, respectively. The
dispersal of the host populations from any patch is independent of the population
level of the destination patches, it simply depends on its own population size. The
parasitoid dispersal is assumed to be dependent on both the host and the parasitoid
densities of the neighbouring patches [13, 14]. The term δ

j
t denotes the proportion

of dispersing parasitoid populations from the neighbouring sites (j ’s) to site s. The
functional form of δjt is given by:

δ
j
t (s) = CN

(
H
j
t (s)∑8

i=1H
j
t (i)

)η
,

where η is known as the ‘aggregation index’, and CN is a normalising constant such
that

∑8
i=1 δ

j
t (i) = 1.

The other model parameters were kept at: μ = 4, η = 1, d1 = 0.2 and d2 = 0.1.
Spatial patterns (mostly, spirals) were highly probable for these values of d1 and d2
[24]. For this study we have used two specific values of β: β = 4 for which the
single HP system shows quasiperiodic behaviour, and β = 5 for which it shows
chaotic dynamics. The results are shown for square lattices of size of l = 50, and
they were verified for l = 128 and l = 256. Zero-flux boundary conditions were
used for all metapopulations. Host initial population sizes on all habitable sites were
randomly selected from the range [0.2, 0.3]. Parasitoid populations were initially
assigned to only 2% (or, 50) randomly selected habitable sites, sampled from the
same range as used for the host. All results shown in the figures are the snapshots
taken at the end of 10,000 generations. The simulation experiments were repeated
10 times with different sets of initial population values.

3 Heterogeneous Landscapes

Non-homogeneous distribution of life supporting resources are common in natural
landscapes. Apart from the natural biotic and abiotic processes being responsible
for this heterogeneity, they can also happen due to ever increasing socio-economic
activities of anthropogenic origin, which is known to be one of the major causal
factors for worldwide habitat modifications, fragmentations and destructions [21].
Thus, the heterogeneity in model landscapes could be of highly diverse nature.
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Below we consider a few simple, yet plausible, cases of environmental heterogeneity
to study their effects on the spatial patterns of the population distributions of the
HP system as represented by (1) and (2). The spatiotemporal dynamics in these
landscapes are compared with those where such variability is not present (i.e., the
landscape is homogeneous).

In the first case (Type I), we consider the model landscape to have a small
number of vacant patches (lattice sites) that cannot support the growth of HP
populations and are not accessible for migration. All other patches are identically
habitable. The distribution of such vacant patches (5% of the total) in the landscape
can occur in several ways:

Type Ia: Individual vacant patches distributed randomly.
Type Ib: Clusters of (3× 3) vacant patches distributed randomly.
Type Ic: Vacant patches forming a certain pattern in the landscape. Two forms of

this patterned vacant regions are considered in this study: (1) an impermeable
barrier of vacant sites across the width (or length) of the landscape dividing
metapopulation into two parts; and (2) a barrier with one or more passages
through which population dispersal can occur between the parts.

In the second case (Type II), the metapopulation occupies a landscape that has all
habitable patches, but a few sites are demographically heterogeneous, i.e., species
have different life history traits. These sites are inhabited by parasitoid populations
that have a different attack rate (β) from those that inhabit the remaining sites.
This kind of demographic heterogeneity is common in natural world, where species
having different genotypes/phenotypes coexist [25, 26]. In this study we have used
two values of β. With host growth rate μ = 4, the HP model shows quasiperiodic
population dynamics for β = 4, and chaotic dynamics for β = 5 [20].

The distribution of these demographically different patches (5% of the total) in
the landscape can occur in different ways:

Type IIa: 5% randomly selected sites have the parasitoid with β = 5, while the rest
have β = 4.

Type IIb: The opposite of Type IIa, i.e., 5% sites have the parasitoid with β = 4,
while the rest have β = 5.

Type IIc: 4% of the total sites form a single sub-lattice of (10× 10) sites, where the
parasitoid populations have β = 5, while the rest of the sites have β = 4.

Type IId: The opposite of Type IIc, i.e., the single sub-lattice have parasitoid
populations with β = 4, while the rest of the sites have β = 5.

4 Results

Here the spatial dynamics of the HP metapopulation in heterogeneous landscapes
are described and discussed. First, the landscape heterogeneity is considered (Type
I), and then demographic heterogeneity (Type II) in a homogeneous landscape is
shown.
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Fig. 1 Spatial patterns in
host metapopulations: (a)
Homogeneous lattice; (b)
Lattice with Type Ia
heterogeneity; (c) Lattice
with Type Ib heterogeneity.
Lattices with Type Ic
heterogeneity—(d) without
any passage, (e) with one
passage, and (f) with three
passages. The initial
population densities of the
host and the parasitoid at the
occupied sites were the same
in all cases

4.1 Type I: Landscape Heterogeneity

It was shown earlier [20] that in a homogeneous metapopulation, where all sites
are occupied by H and P subpopulations with same life history parameters (r and
β), the spatial dynamics shows complete synchrony in the majority (>90%) of
simulations done with different initial conditions. In very few cases, the lattice
metapopulations showed slow evolution of large scale spatial patterns (e.g., spirals)
in their population distribution (as shown in Fig. 1a). These spatial structures,
when simulated long enough (>10,000 generations), slowly disappeared at the
boundaries. This statistics changes completely when low levels of heterogeneity,
in terms of randomly distributed 5% vacant sites, are present in the landscape
(Type Ia heterogeneity). The presence of such heterogeneity in the landscape resists
the process of spatial synchronization completely, and all lattice metapopulations
(with different initial population distributions) showed spiral patterns in population
distribution (Fig. 1b). However, these spatial structures in Fig. 1b not only evolved
much faster than those seen in the homogeneous metapopulations (Fig. 1a), the
spiral tips remain pinned to any of the vacant sites and the pattern was stable.

For Type Ib heterogeneity (clusters of 9 sites group of vacant patches distributed
randomly), the metapopulation showed similar spatial patterns, i.e., complete spatial
asynchrony with broken spirals. Here again the time taken for the pattern to evolve
was faster than case of Type Ia, and the pattern was stable. It is obvious that
low levels of landscape heterogeneity (Type Ia,b) lead to different numbers of
neighbours to HP subpopulations in habitable patches. For Type Ia heterogeneity,
depending on the distribution of these vacant sites, a subpopulation in a habitable
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site can in one extreme be solitary (i.e., all neighbours are vacant sites) or have all 8
neighbours. In general the number of habitable neighbours would be 1, 2, 3 to 7. This
local asymmetry can introduce nucleation of spatial patterns once they arise and
stabilize them as seen in Type Ia. The clustered pattern of landscape heterogeneity
(Type Ib) introduces smaller numbers of larger vacant regions. This has stronger
effect on breaking up the different parts of the spiral into smaller dynamical regions
thereby introducing irregular spatial patterns.

Lattices with Type Ic of patterned landscape heterogeneity was studied for
two cases—the vacant patches creating (1) an impermeable barrier and dividing
the metapopulation into two disconnected domains of homogeneous landscapes,
and, (2) a barrier of vacant line of sites with one or more passages through
which limited population dispersal can occur between the domains as shown
in Fig. 1d–f. In case of the impermeable barrier (Fig. 1d), the spatial patterns
formed in the two separate metapopulations are similar to the ones as observed
for homogeneous landscapes (Fig. 1a). In general spiral patterns evolve in these
domains, but irrespective of the size, that domain which does not contain the spiral
core shows spatial synchronization. Figure 1e and f show that the presence of one or
more passages (i.e., habitable sites having a HP subpopulation that can disperse to
neighbours in both domains) in the barrier prevents spatial synchronization. These
connecting subpopulations act as continuous sources of dynamic heterogeneity in
space and lead to generation of semi-circular travelling waves that get absorbed at
the boundaries (Fig. 1d). For the case of more than one passages (Fig. 1f), the waves
created at the different sources interfere with each other, and create complex wave
patterns depending upon the domain size. For larger domains, the wave front can
evolve to appear as if it was created by a single passage. However, if the domain
size is small, each wavefront does not get sufficient space and time to develop into a
single wave front. A detailed study of such barriers with breaks in real landscapes,
in terms of major geographical features and transport links, was shown in spatial
spread of the 2001 UK FMD epidemic [27].

4.2 Type II: Demographic Heterogeneity

It was shown earlier [20, 24] that the impact of demographic variability on the
dynamics of the spatial HP system is similar to the landscape heterogeneity,
i.e., it induces increasing number of cases of spatial asynchrony as parametric
heterogeneity among the subpopulations increase. The left plot in Fig. 2a for β = 4
is similar to Fig. 1a, and is an example of the case where the metapopulation
in a homogeneous landscape with no demographic heterogeneity shows spiral-
like spatial patterns. The right plot in Fig. 2a for β = 5 (chaotic dynamics in
single HP population) shows asynchrony with irregular pattern in population size
distributions for majority of the cases. Here we show that the spatial patterns of
the population abundance not only respond differently to different types of the
demographic heterogeneity, but also to the predominant intrinsic dynamics of the
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Fig. 2 Spatial patterns of
host metapopulations: (a)
Demographically
homogeneous landscape with
β = 4 (left) and β = 5
(right); (b) Lattices with
demographic heterogeneity of
Type IIa (left) and Type IIb
(right). (c) Lattices with
demographic heterogeneity of
Type IIc (left) and Type IId
(right)

HP system. The left plot in Fig. 2b shows the spatial pattern in the metapopulations
with Type IIa heterogeneity (i.e., 5% randomly selected sites having parasitoid
populations with β = 5) while the rest have β = 4. The right plot shows Type
IIb heterogeneity (i.e., 5% randomly selected sites have parasitoid populations with
β = 4, while the rest have β = 5). Both plots in Fig. 2b appear more incoherent
and take longer time to reach any coherent patterns (such as spirals) than what was
needed for demographically homogeneous case (Fig. 2a). It was observed that these
spatial patterns were unstable even after 5×104 generations for small lattices as used
in this study.

The Types IIc and IId of demographic heterogeneity in metapopulations
represent cases where 4% of the total sites (i.e. 100 sites) form a single sub-lattice of
(10 × 10) sites, where the parasitoid populations have attack rate β = 5, while the
rest of the sites have β = 4 (Type IIc) and vice versa (Type IId). The spatial
patterns are shown in Fig. 2c. For Type IIc, the pattern is similar to Type IIa
(Fig. 2b left plot), except that the block of sites with β = 5 can pin the spiral core.
It was observed that if the sub-lattice placed randomly happens to cover the core
of a spiral wave, then spatial synchronization emerges finally. On the other hand,
the spatial pattern for Type IId heterogeneity is quite different. The block of sites
having HP subpopulations with β = 4 showed coherent patterns of spiral waves or
of concentric circular waves with their core fixed at the sub-lattice. The concentric
circular pattern was common (≈80% of cases).

The emergence of wave patterns (spiral or circular) in the case of these two
types of heterogeneity (Type IIc and d) can be explained as an outcome of
interaction between the two types of dynamics exhibited by the HP system for
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β = 4 (quasiperiodic) and β = 5 (chaotic). Due to the slowly fluctuating and
comparatively more stable dynamics in the sub-lattice for β = 4, it continues to
maintain, on the average, a regular temporal pattern in the population density. The
rest of the lattice (before the wave patterns set in) have wild temporal oscillations
(for β = 5), which resist the formation of any coherent patterns. Once the
transient dynamics die down, the sub-lattice acts as a source from which the migrant
populations disperse out to the neighbouring sites with more regular periodic
intensity. This regular rhythmic flow eventually helps in starting or pinning the core
(centre), and subsequently in maintaining the spiral or circular wave patterns (right
plot of Fig. 2c). In the reverse case (Type IIc and left plot of Fig. 2c), the sub-lattice
sends out migrant populations at an erratic rate. As a consequence it fails to pin the
core (centre) of the spiral wave. This failure in turn does not have any great effect
on the existing spatial patterns in the rest of the lattice, which by and large remains
unaffected, unless, as stated previously, the sub-lattice happens to be selected at the
core of the spiral dominating the lattice.

When we used two sub-lattices of equal size (5×5), instead of a single (10×10)
size, there were two cores (centres) acting as the source of spatial waves. The two
sub-lattices can simultaneously be the core (centre) of the spiral (circular) wave
pattern or one of them can act as the core while the other as centre. It was found
that a minimum size for the sub-lattice is required below which it does not always
induce such coherent spatial patterns. This minimum size was found to be (4 × 4)
for both—for the single sub-lattice type, and the double sub-lattice type, in a 50×50
lattice metapopulation. This minimum size of the sub-lattice is required for pinning
of the spiral core. The dependence of the sub-lattice size and the whole lattice size
for the evolution of these different types of dynamic heterogeneity (stable, periodic,
quasi-periodic, and chaotic) needs further work.

5 Conclusions

The (seemingly) trivial inclusion of spatial dimensions in the population models
has shown the appearance of non-trivial and counter-intuitive spatial patterns [4],
which is the outcome of the self-organizing process. The mechanism of self-
organization has been found to operate in the functioning of many multi-component
dynamical systems—where global pattern emerges from the collective interaction of
the components following some simple local rules [28]. Self-organized patterns like
spiral waves [7, 9, 14, 29] observed in the models have contributed immense insights
in understanding the workings of natural systems. For example, it has explained
why species interaction (host-parasitoid system or the system of species competing
for a single resource) is inherently unstable and potentially capable of leading to a
total collapse, do survive and persist in nature for long time [4, 7, 30]. It has also
been argued that heterogeneity in landscape and phenotypic diversity in species
clearly reduce the risk of population extinction by resisting spatial synchrony in
dynamics, thereby indicating that ecological and demographic heterogeneity may
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have indirect adaptive value [20]. This argument, of course, remains valid till the
loss or destruction of habitat patches remain below a threshold beyond which the
habitat will get transformed into disconnected patches [4], which in turn will lead
to the eventual collapse of the metapopulation due to lack of resources and space.

Although it has been shown that the emerging spiral wave patterns are very
robust to environmental noise [8, 31], one of the intriguing questions that the
ecologists are grappling with is the observation and verification of such spatial
structures in field studies. Needless to say, any direct observation of the spiral wave
patterns in the empirical data is difficult, even though attempts are made towards
that [12, 32, 33]. The two major hurdles to uncover such patterns are—lack of
relevant spatial data, and the long transient period that the space-time dynamics
needs to settle down on any discernible geometrical patterns. This task becomes
more difficult with the frequent anthropogenic activities, recognized as one of most
causal factors for the habitat destructions and fragmentations [21]. The latter and its
consequences are perceived to have challenged the ecologists with a daunting task
of analysing and understanding the responses of various ecosystems to externally
induced perturbations [34].

This work has shown the differences in spatial patterns exhibited by metapopu-
lations for random single site variations and patterned heterogeneities. Getting an
exact parallel of the effect of patterned vacancy on the spatial patterns in natural
populations might be as difficult as the direct confirmation of the spiral waves (or
spatial chaos) in natural ecosystems [12, 32]. However, there are many examples
of human developmental activities that lead to the division of an otherwise single
landscape into many domains separated by the patterned barriers. The presence
of such barriers is seen everywhere [35]. As a specific example one can consider
the construction of the Indira Gandhi Canal (≈550 km long) in the late 1950s in
the north-western districts of Rajasthan, India. The canal with its tributaries runs
through a landscape that used to be a part (11%) of the great Indian desert. Needless
to say, the ecological impact of the canal on the species abundances in the region is
quite severe in terms of the loss of endemic biodiversity, as well as the emergence
of new human diseases, among other things [36].

The existence of low levels of heterogeneity—in number of neighbouring
patches to which migration can occur, or neighbours having different demographic
parameters/traits—essentially creates local anisotropies in an otherwise homoge-
neous space. These act like defects inducing synchronization failure in lattices. A
vacant site can act to pin the core of the spiral (like a quenched disorder), thereby
making it robust. Thus spatial asynchrony tends to persist for longer time even in
small lattices. Parametric inhomogeneity induces phase defects through difference
in the local dynamics between neighbouring sites, and induce spatial asynchrony
[37]. For demographically heterogeneous landscapes (Type II), at low levels of
dispersal, phase differences introduced due to difference in intrinsic dynamics,
even at few patches, will keep propagating through several hundreds or thousands
of generations before the metapopulation finally gets spatially synchronized [38].
The ecological implication of the above observation throws up the question as to
if the importance of transient spatial dynamics ever reduces in relevant ecological
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timescale. Then any effort to look for or anticipate stable spiral wave patterns in
species abundances may prove to be futile. Such instances of long term transient
dynamics were reported in other studies of spatially structured population models,
and the cautionary conclusions were drawn that the transient dynamics should
receive greater attention in order to fully understand the system’s functional
complexity than what it currently does [39].

In this study we have considered the presence of different types of isolated and
patterned heterogeneities (migration barriers or genotypic coexistence) one at a
time. However, in nature they are more likely to overlap. Identifying the natural
barriers, predicting the interaction among physical landscapes, species dispersal,
and gene flow, and using the information to manage ecological and epidemiological
functions are important problems [40]. Needless to say, the spatial patterns in
species populations will be exceedingly difficult to comprehend in the presence
of the environmental heterogeneities that have such combinatorial forms. But
ecologists continuously endeavour to find evidence(s) of stable patterns (spiral wave
patterns) in natural populations [41, 42].
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Dark States in Quantum Photosynthesis

S. V. Kozyrev and I. V. Volovich

1 Introduction

The effect of quantum photosynthesis is the experimental observation of quantum
coherences (observation of photonic echo) in photosynthetic complexes. Effec-
tiveness of exciton transport to reaction centers of photosynthetic complexes is
also elevated, this phenomenon is discussed as a result of application of quantum
coherencies by nature to improve the performance of photosynthetic systems. For
discussion of quantum photosynthesis and other quantum effects in biological
systems, see [1–4].

In this paper we model photosynthetic system in one exciton approximation by
open three level quantum system with energy levels ε0, ε1, ε2, ε0 < ε1 < ε2, which
interacts with three quantum fields (the reservoirs). The two lower levels |0〉, |1〉
are non-degenerate. The upper level ε2 is degenerate. Energy level ε0 describes
photosynthetic system without excitons, energy level ε1 is the state “exciton in
the reaction center” and the degenerate energy level ε2 describes excitons on
chromophores. Three possible transitions between the energy levels are paired to
different reservoirs: the transition between levels ε2, ε0 is paired to interaction with
light, the transition between levels ε2, ε1 is related to interaction with phonons
(vibrations of the protein matrix), the transition between levels ε1, ε0 is related to
interaction with the special sink field with zero temperature.

We will use the method of dissipative dynamics of open quantum systems [5],
namely the stochastic limit approach [6, 7]. The aim of the present paper is to prove
that in this case (dissipative dynamics of sufficiently complex degenerate quantum
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systems) generation of the so-called dark states (or dark-state polaritons) known in
quantum optics [8, 9] is possible. We conjecture that these dark states are related to
the effect of quantum photosynthesis.

The scheme of experiments on quantum photosynthesis is as follows: first,
one prepares a photosynthetic system and applies a laser field to the system (the
frequency of the laser should be in resonance to transitions in the photosynthetic
complex); second, one switches off the laser for short time; third, one applies
the same laser field to the system and observes the photonic echo. Our aim is
to reproduce this scheme using our model of dissipative dynamics in degenerate
system.

Dynamics of the system density matrix in the model under consideration is
described by a sum of three generators—the photonic generator, the phononic
generator and the generator of absorption of excitons. We consider the following
scheme of manipulation of quantum states of the system.

1. First, we compute the stationary state of the system taking into account only the
photonic generator and neglecting the effects of transport and absorption (this can
be considered as a strong light approximation). This state will contain quantum
coherencies (off-diagonal part of the density matrix).

2. Second, we investigate joint action of generators of transport and absorption on
the state prepared at the previous step. The observation is that a part of coherences
will survive due to the effect of dark states.

3. Third, we apply the laser field again and show that the interaction of the prepared
state with the laser field will be non-trivial, which gives the possibility of
photonic echo for this state.

In non-degenerate case (when energy level ε2 is non-degenerate) the considered
in this paper non-equilibrium quantum system was discussed in [10] and the flow
of excitons in the system was computed (earlier stochastic limit of nonequilibrium
three level quantum open system was considered in [11]). Open quantum systems
coupled to several reservoirs were considered in many papers, in particular in [12].
In paper [13] effects of degeneracy in exciton transport were investigated by the
stochastic limit method and it was shown that it is possible to achieve quantum
amplification of exciton transport (the supertransport effect). For discussion of
supertransport in quantum photosynthesis, see also [14–17]. The possibility of
excitation of non-decaying dark states in a degenerate system can be considered
as a side effect of the supertransport.

In [18] dark states in photosynthetic systems were studied experimentally. In
[19] dark states in photosynthesis were also considered but dark states in this paper
were considered in a different way compared to the approach of present paper, in
particular in this case the effect considered in the present paper does not take place.

In [5] application of quantum methods to computations and biology was dis-
cussed. Photosynthetic complex is an example of complex physical system, see [20]
for the review of ultrametric approach to complex systems in physics and biology.

The exposition of the present paper is as follows. In Sect. 2 the Hamiltonian
of light-harvesting system interacting with three reservoirs (photons, phonons and
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absorption) is described. In Sect. 3 the corresponding generators of dynamics of
density matrix of the system are considered (there are three such generators which
describe excitation, transport and absorption of excitons). In Sect. 4 bright, dark
and off-diagonal states for the mentioned generators are discussed. In Sect. 5
manipulation of quantum states of the described degenerate system by dissipative
dynamics is described.

2 Description of the Photosynthetic System

Let us consider the Hilbert space HS = C
N+1 and use the Dirac notations. Let

{|0〉, . . . , |N〉} denote an orthonormal basis in HS .
We consider a system with three energy levels ε0 < ε1 < ε2, where the upper

level is degenerate, with the Hamiltonian (operator in HS)

HS = ε0|0〉〈0| + ε1|1〉〈1| + ε2

N∑

j=2

|j 〉〈j |. (1)

This Hamiltonian describes a light-harvesting system, |0〉 corresponds to a state
without excitons, |1〉 is a state “exciton in the reaction center” (or sink), |j 〉
corresponds to one-exciton states of chromophores.

System interacts with three quantum fields (reservoirs) in a dipole way (the fields
are in temperature states). Transitions between the levels with energies ε0 and ε2 (in
particular creation of excitons) are related to interaction with light (Bose field in the
Gibbs state with the temperature β−1

em = 6000 K, or laser field with the frequency
ε2−ε0), transitions between the levels ε2 and ε1 (transport of excitons to the reaction
center) are related to interaction with phonons (described by the Bose field with the
temperature β−1

ph = 300 K), and transitions between the levels ε1 and ε0 (absorption
of excitons in the reaction center) are described by interaction with the sink reservoir
in the Fock state (i.e. reservoir with the zero temperature).

Thus we have three reservoirs described by Hamiltonians of quantum Bose fields
Hem (light, or electromagnetic field),Hph (phonons, or vibrations of protein matrix),
Hsink (sink, or absorption of excitons in the reaction center), each of the reservoir
Hamiltonians has the form

HR =
∫

R3
ωR(k)a

∗
R(k)aR(k)dk, (2)

here a∗R(k), aR(k) are creation and annihilation operators, [aR(k), a∗R(q)] = δ(k −
q), and the index R = em, ph, sink enumerates the reservoirs, ωR is the dispersion
of the Bose field aR (some nonnegative function). Each of the reservoirs is in a mean
zero Gaussian state with the quadratic correlator

〈a∗R(k)aR(k′)〉 = NR(k)δ(k − k′).
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HereNR(k) (number of the field quanta with wave number k) for the temperature
state is equal to

NR(k) = 1

eβRωR(k) − 1
(3)

where βR is the inverse temperature of the reservoir.
The full Hamiltonian of the system interacting with three reservoirs has the form

H = HS +Hem +Hph +Hsink + λ
(
HI,em +HI,ph +HI,sink

)
, (4)

where λ is a positive constant (coupling constant) and the interaction Hamiltonians
HI,em, HI,ph, HI,sink have dipole forms and are given by formulae (5)–(7) below.
The Hamiltonian H is an operator in the Hilbert space HS ⊗ Hem ⊗ Hph ⊗ Hsink
(in the following we omit the notation of tensor product).

Interaction of the system with light is described by the Hamiltonian

HI,em = Aem|χ〉〈0| + A∗em|0〉〈χ |, A∗em =
∫

R3
gem(k)a

∗
em(k)dk, (5)

here function gem(k) is the form-factor of interaction with the field, and the bright
photonic vector χ belongs to the level with energy ε2, i.e. HS |χ〉 = ε2|χ〉.

Transport of excitons to the reaction center is related to interaction of the system
with phonons

HI,ph = Aph|ψ〉〈1| + A∗ph|1〉〈ψ |, A∗ph =
∫

R3
gph(k)a

∗
ph(k)dk, (6)

where ψ is the bright phononic vector from the energy level ε2.
Vectors ψ and χ belong to the same degenerate level with energy ε2. Crucial

feature of the model under consideration is the following—vectors ψ and χ are
non-parallel.

Absorption of excitons in the reaction center is described by interaction with the
additional field of sink (with the zero temperature)

HI,sink = Asink|1〉〈0| + A∗sink|0〉〈1|, A∗sink =
∫

R3
gsink(k)a

∗
sink(k)dk. (7)

Remark Usually in papers on photosynthesis the system Hamiltonian HS is taken
non-diagonal and contains terms corresponding to the dipole interaction of excitons,
and the Hamiltonian of interaction with phonons is also different. Here we consider
the result of diagonalization of the system Hamiltonian HS (transition to the so-
called “global” basis), i.e. in our notations the states |j 〉 of the system belong to the
“global” basis. Relation between the “global” and “local” approaches in theory of
open quantum systems was discussed in [21].
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3 Generators of the Dissipative Dynamics

For investigation of the model we will use the method of quantum stochastic limit
[6, 7]. In this limit dynamics of reduced density matrix of a system interacting
with reservoir is generated by quantum dissipative operator in the Lindblad form,
see formulae (10)–(12) below. This approach allows to take into account quantum
decoherence, dissipation, transport and other thermodynamic phenomena. Quantum
dynamics in the stochastic limit in presence of a laser field was discussed in [22].
Properties of antibunched light are discussed, for instance, in [23].

For the considered model with three reservoirs the dynamics will be generated
by a sum of three generators (photonic, phononic and sink)

d

dt
ρ(t) = (

θem + i[·,Heff] + θph + θsink
)
(ρ(t)). (8)

Creation and annihilation of excitons are described by the photonic generator
equal to a sum of the dissipative Lindblad term θem and the term i[·,Heff] related to
interaction with a coherent field [6, 7]:

Lem = θem + i[·,Heff], Heff = s(|χ〉〈0| + |0〉〈χ |), s ∈ R. (9)

θem(ρ) = ‖χ‖2
[

2γ−re,em

(
〈χ̃ |ρ|χ̃〉|0〉〈0| − 1

2
{ρ, |χ̃〉〈χ̃ |}

)
− iγ−im,em[ρ, |χ̃〉〈χ̃ |]

+ 2γ+re,em

(
〈0|ρ|0〉|χ̃〉〈χ̃ | − 1

2
{ρ, |0〉〈0|}

)
+ iγ+im,em[ρ, |0〉〈0|]

]
.

(10)

The parameter s is the amplitude of the laser field. Here the normed bright photonic
vector has the form

|χ̃〉 = |χ〉
‖χ‖ .

Transport of excitons is described by the phononic generator

θph(ρ) = ‖ψ‖2
[

2γ−re,ph

(
〈ψ̃ |ρ|ψ̃〉|1〉〈1| − 1

2
{ρ, |ψ̃〉〈ψ̃ |}

)
− iγ−im,ph[ρ, |ψ̃〉〈ψ̃ |]

+ 2γ+re,ph

(
〈1|ρ|1〉|ψ̃〉〈ψ̃ | − 1

2
{ρ, |1〉〈1|}

)
+ iγ+im,ph[ρ, |1〉〈1|]

]
.

(11)

Here the normed bright phononic vector has the form

|ψ̃〉 = |ψ〉
‖ψ‖ .
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Let us note that for large ‖ψ‖ the transport of excitons will be amplified
(the generator is multiplied by ‖ψ‖2). This corresponds to the supertransport
phenomenon. The maximal possible amplification is equal to the degeneracy of the
upper level.

Absorption of excitons is described by the sink generator

θsink(ρ) = 2γ−re,sink

(
〈1|ρ|1〉|0〉〈0| − 1

2
{ρ, |1〉〈1|}

)
− iγ−im,sink[ρ, |1〉〈1|]. (12)

The constants γ have the form (where P. is the principal part, or Cauchy principal
value, generalized function)

γ+re,R = π
∫
|gR(k)|2δ(ωR(k)− ωR)NR(k)dk, (13)

γ−re,R = π
∫
|gR(k)|2δ(ωR(k)− ωR)(NR(k)+ 1)dk, (14)

γ+im,R = −
∫
|gR(k)|2 P.

1

ωR(k)− ωRNR(k)dk, (15)

γ−im,R = −
∫
|gR(k)|2 P.

1

ωR(k)− ωR (NR(k)+ 1)dk, (16)

ωem = ε2 − ε0, ωph = ε2 − ε1, ωsink = ε1 − ε0.

Here the function NR(k) is given by (3), β−1
em = 6000 K for the sun light, β−1

ph =
300 K for protein matrix at room temperature, β−1

sink = 0 K.
For purely laser field Nem(k) = 0, this implies γ+re,em = γ+im,em = 0, but

γ−re,em, γ
−
im,em �= 0 (i.e. dissipative part of the generator is non-zero even for coherent

field).
Combination of three generators (photonic, phononic and sink) in (8) provides a

quantum thermodynamic machine—a quantum system with thermodynamic cycle.
This machine operates by harvesting of photons, creation of excitons, transport of
excitons to the reaction center and absorption of excitons. The current (or flow)
of excitons [10] describes the effectiveness of this thermodynamic machine. In the
model under consideration bright photonic and phononic vectors χ and φ belonging
to the energy level ε2 are not parallel. Thus the quantum thermodynamic machine
is not perfectly developed and some quantum states may leak in the thermodynamic
cycle. In this paper, see also [24], we show that this leads to excitation of quantum
dark states with long lifetime. We conjecture that this phenomenon may describe
the effect of quantum photosynthesis (existence of photonic echo in photosynthetic
systems).
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Remark Generators in (10), (11) are proportional to the squares ‖χ‖2, ‖ψ‖2 of
bright photonic and phononic vectors. This corresponds to the superradiance effect
(actually superabsorption for (10) and supertransfer for (11))—effects of coherent
amplification of quantum interaction [25]. In the superradiance effect the interaction
between the field and a system of correlated oscillators is proportional to the square
n2 of the number of oscillators (not to the number n of oscillators as in the case of
a system of oscillators without correlation). Supertransfer was discussed in relation
to quantum photosynthesis [13–17].

4 Bright, Dark and Off-Diagonal Matrices

Lindblad generators (10)–(12) act on the space of matrices (which contains density
matrices of the system). For each of these generators one can consider expansion
of this space of matrices in a sum of orthogonal subspaces of bright, dark and off-
diagonal matrices. Bright and dark states were extensively discussed in quantum
optics, see [8, 9]. We use here the approach and notations of [13].

These subspaces depend on the generator and are different for different gen-
erators. Let us discuss the photonic generator θem given by (10). This generator
describes creation and annihilation of excitons by interaction of chromophores and
electromagnetic field. Bright matrices for this generator are linear combinations of
matrices (projections in (10))

|0〉〈0|, |χ〉〈χ |.

Dark matrices B are matrices which give zero when multiplied by any bright
matrix A, i.e.

AB = BA = 0.

For the generator θem dark matrices are linear combinations of matrices

|φ〉〈φ′|, |1〉〈1|, |φ〉〈1|, |1〉〈φ|, φ⊥χ, φ′⊥χ.

Off-diagonal matrices are matrices C orthogonal to all bright matrices A and all
dark matrices B with respect to the scalar product (·, ·) = tr(··), i.e.

tr(CA) = tr(CB) = 0.

This subspace contains matrices corresponding to transitions between bright and
dark subspaces, and between levels in the bright subspace, for the generator θem the
off-diagonal subspace is generated by matrices

|χ〉〈0|, |χ〉〈φ|, |χ〉〈1|, |1〉〈0|, |φ〉〈0|, φ⊥χ

and conjugated.
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Dark matrices described above are stationary with respect to the dynamics
generated by θem. The bright space corresponds to processes of creation and
annihilation of excitons (for the generator θem) and to process of transport of
excitons (for the generator θph). Off-diagonal matrices decay exponentially which
corresponds to the decoherence phenomenon. In the presence of a coherent field
(generator i[·,Heff]) off-diagonal matrices can be created.

Described expansion of the state of matrices depends on the generator and for
the phononic generator θph will be completely different. In particular matrix |1〉〈1|
is dark for θem and bright for θph, and matrix |χ〉〈χ | is bright for θem and contains
a combination of bright, dark and off-diagonal terms for θph. This non-coincidence
of expansions of a state of the system in a sum of bright, dark and off-diagonal
matrices due to non-parallel photonic and phononic bright vectors χ and ψ may
lead to interesting phenomena of possibility of manipulations with quantum states
discussed in the next section.

Expansion of the space of matrices in a sum of bright, dark and off-diagonal
subspaces for the phononic generator θph given by (11) is as follows. Bright matrices
for θph are linear combinations of matrices

|1〉〈1|, |ψ〉〈ψ |.

The space of dark matrices is generated by matrices

|η〉〈η′|, |0〉〈0|, |η〉〈0|, |0〉〈η|, η⊥ψ, η′⊥ψ.

The off-diagonal space is a linear span of matrices

|ψ〉〈1|, |ψ〉〈η|, |ψ〉〈0|, |0〉〈1|, |η〉〈1|, η⊥ψ

and conjugated.

5 Manipulation of Quantum States

The scheme of experiments on quantum photosynthesis is as follows. At the first step
photosynthetic system is excited by a laser pulse, photons are absorbed and excitons
are created. Then the system performs decoherence and transport of excitons in
absence of light (in the time period of order of one microsecond). At the third
step of the experiment the system interacts with another laser pulse. Observation of
photonic echo at the third step of this experiment was called the effect of quantum
photosynthesis, this phenomenon attracts a lot of attention [1–3, 18].

In this section we will reproduce this phenomenon by investigation of quantum
dynamics of the discussed in the present paper degenerate system interacting with
nonequilibrium environment in presence of coherent field (4), (1), (2), (5)–(7). We
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will consider a three step manipulation by quantum states of the system given by
application of quantum dissipative dynamics generated by different combinations
of operators (9)–(12).

5.1 Application of a Light Pulse

Let us discuss the process of manipulation of quantum states of excitons. The initial
state is the density matrix without excitons

ρ0 = |0〉〈0|.

Let us apply to this matrix the dynamics given by the photonic generator Lem =
θem+ i[·,Heff] of the form (9). One can say that we use the approximation of strong
light and ignore the contributions to the dynamics from the phononic generator θph
and the sink generator θsink in (8). In the limit t →∞ this dynamics puts the system
in a stationary state of the form

ρ1 = ρ00|0〉〈0| + ρχχ |χ̃〉〈χ̃ | + ρχ0|χ̃〉〈0| + ρ0χ |0〉〈χ̃ |, (17)

where

ρ00 =
γ−re,em − s2

‖χ‖2 Re
(

1
μχ0

)

γ+re,em + γ−re,em − 2 s2

‖χ‖2 Re
(

1
μχ0

) , (18)

ρχχ =
γ+re,em − s2

‖χ‖2 Re
(

1
μχ0

)

γ+re,em + γ−re,em − 2 s2

‖χ‖2 Re
(

1
μχ0

) , (19)

ρχ0 = is

‖χ‖μχ0

γ−re,em − γ+re,em

γ+re,em + γ−re,em − 2 s2

‖χ‖2 Re
(

1
μχ0

) , (20)

ρ0χ = − is

‖χ‖μ0χ

γ−re,em − γ+re,em

γ+re,em + γ−re,em − 2 s2

‖χ‖2 Re
(

1
μχ0

) , (21)

μχ0 = μ∗0χ = −γ−re,em − γ+re,em + iγ−im,em + iγ+im,em. (22)

In particular, if there is no coherent field (i.e. s = 0), then off-diagonal elements
of the matrix ρ1 vanish ρχ0 = ρ0χ = 0 and diagonal elements ρ00, ρχχ will be
given by the Gibbs state satisfying
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ρχχ

ρ00
= e−βem(ε2−ε0).

For the photonic generator Lem = θem+ i[·,Heff] there exist also dark stationary
matrices described in previous section, i.e. addition of a coherent field does not
change the space of stationary dark matrices.

5.2 Transport and Absorption of Excitons

At the second step of manipulation of quantum states of excitons we switch off the
light, i.e. we use the obtained at the previous step state ρ1 given by (17)–(21) as the
initial state for dynamics with the generator θph + θsink (sum of the phononic and
the sink generators).

Let us consider the expansion of the bright photonic vector χ̃

χ̃ = χ̃0 + χ̃1, χ̃0‖ψ̃, χ̃1⊥ψ̃

in the sum of contributions parallel and orthogonal to the bright phononic vector ψ̃

|χ̃0〉 = 〈ψ̃, χ̃〉|ψ̃〉 = |ψ̃〉〈ψ̃ ||χ̃〉, |χ̃1〉 = (1− |ψ̃〉〈ψ̃ |)|χ̃〉.

Let us substitute this expansion in expression (17)–(21) for the stationary
photonic state ρ1, apply the generator θph + θsink and consider the corresponding
dynamics. Discussion of Sect. 4 of dynamics in spaces of bright, dark and off-
diagonal matrices implies that all terms in the expansion which contain χ0 will
decay since the transport generator θph will transfer excitons to the reaction center
where excitons will be absorbed. Therefore the system density matrix will tend to
the stationary state ρ2 of the form

ρ2 = ρ00|0〉〈0| + ρχχ |χ̃1〉〈χ̃1| + ρχ0|χ̃1〉〈0| + ρ0χ |0〉〈χ̃1|, (23)

where ρχχ , ρχ0, ρ0χ are given by (18)–(21) and ρ00 is given by the condition that
trace of density matrix is equal to one

ρ00 = 1− ‖χ̃1‖2ρχχ .

We see that application of expansion of the space of matrices on the system
Hilbert space in a sum of bright, dark and off-diagonal subspaces allows to
describe the dynamics generated by dissipative Lindblad generators for degenerate
quantum system with complex interaction (formula (23) was obtained from (17) by
substitution of χ̃ by χ̃1).

In the model under consideration the obtained state (23) can exist infinite time
(in reality the lifetime should be finite but long). If the bright vectors for photons
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and phonons are parallel (i.e. |χ1〉 = 0) then we will get ρ2 = |0〉〈0|. In general
case of non-parallel ψ , χ the obtained state ρ2 will contain non-decaying dark part.
This part can be observed by interaction with laser pulse, see the next subsection.

5.3 Interaction with Laser

At the third step of manipulation of quantum states of excitons we subject the
obtained at the previous step state ρ2 of the form (23) to interaction with coherent
light. We ignore transport and absorption (for example, the light is strong and we
consider small times). We will show that in this situation the interaction will be
non-trivial, therefore it would be possible to observe photonic echo.

Spectroscopy is related to application of dynamics with the generator i[·,Heff] to
the off-diagonal part of the density matrix. Thus we are interested in the off-diagonal
term in (23) of the form

ρχ0|χ̃1〉〈0| + ρ0χ |0〉〈χ̃1|, (24)

where the matrix elements ρχ0, ρ0χ are given by (20). In particular this term can be
non-zero only if s �= 0, i.e. the state (17) should be excited by light with coherent
component.

Let us recall that χ̃1 is the orthogonal complement to projection of χ̃ (bright
photonic vector) to ψ̃ (bright phononic vector). We define χ̃2 as projection of χ̃1 to
χ̃ (i.e. χ̃2 is parallel to χ̃), then

|χ̃2〉 =
(

1− |〈ψ̃, χ̃〉|2
)
|χ̃〉.

Non-trivial contribution to spectroscopy can be given by application of [·,Heff]
to (24), i.e. by

ρ3 = i[ρχ0|χ̃2〉〈0| + ρ0χ |0〉〈χ̃2|,Heff].

Let us assume that the state ρ1 is prepared by application of laser field with the
amplitude s, and that for spectroscopy we use laser field with the same amplitude.
In the limit s →∞ (i.e. for strong laser fields) we get

lim
s→∞ ρ3 = −1

2
‖χ‖2π

∫
|gem(k)|2δ(ωem(k)− ε2 + ε0)dk

·
(

1− |〈ψ̃, χ̃〉|2
)
(|0〉〈0| − |χ̃ |〉〈χ̃ |) . (25)

Let us note that

1− |〈ψ̃, χ̃〉|2 = sin2 α,
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where α is the angle between bright photonic and phononic vectors χ and ψ .
If α �= 0, then the above expression (25) is non-zero. In this case one should
get the photonic echo in spectroscopic experiments. We conjecture that this effect
could explain the phenomenon of quantum photosynthesis, i.e. existence of quantum
coherences with long lifetime observed in photosynthetic systems.

Summary We have shown that the model of light-harvesting complex as a degen-
erate system with absorption and interaction with photons and phonons describes
excitation of dark states which will have long lifetime and will be visible in
spectroscopic experiments.

Earlier it was shown [13–17] that degeneracy can be used for quantum ampli-
fication of exciton transport (the supertransport effect). Discussion of the present
paper shows that in this case, as a side effect of the supertransport, we will obtain
coherent dark states with long lifetime. This result can be discussed in relation to
the phenomenon of quantum photosynthesis [1, 2] and experimental observation of
dark states in photosynthetic systems [18].

Remark We have discussed manipulations with quantum states, in particular with
dark states: excitation of the states by coherent fields and using of Lindblad
dissipation for projections of the states to some subspaces of matrices; since the
bright vectors for different fields (χ and ψ in the present model) can be non-parallel
the manipulations under consideration are nontrivial. Manipulations of quantum
states can be used for quantum computations [5].

Long lifetime of dark states could help to avoid decoherence in quantum
computers. For another approaches to reduce decoherence in quantum computers
and to manipulation of quantum states to quantum control, see [26–31]. Different
ideas of how to use photosynthetic quantum effects for computations and quantum
states manipulations are discussed in [1, 3, 24, 32]. In [33, 34] problems of quantum
information theory in particular quantum channel capacity were considered.

In [35] a new approach to investigation of quantum photosynthesis based on the
so-called holographic approach used earlier in high energy physics [36–38] was
proposed.
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Boundary Control Problems
in Hemodynamics

Adélia Sequeira, Jorge Tiago, and Telma Guerra

1 Introduction

Cardiovascular diseases, such as heart attack and strokes, are the major causes of
death in developed countries, with a significant impact in the cost and overall status
of healthcare. Understanding the fundamental mechanisms of the pathophysiology
and treatment of these diseases are matters of the greatest importance around the
world. This gives a key impulse to the progress in mathematical and numerical
modeling of the associated phenomena governed by complex physical laws, using
adequate and fully reliable in silico settings.

The increasing collaboration between scientists working in multidisciplinary
areas such as medical researchers and clinicians, mathematicians and bioengineers
has contributed to data information exchange that can be used in the numerical
simulations providing more realistic results. The final goal is to set up patient-
specific models and simulations incorporating data and measurements taken from
each single patient, that will be able to predict results of medical diagnosis and
therapeutic planning with reasonable accuracy and using non-invasive means.

Techniques based on the inclusion of data measurements in the numerical simu-
lations to improve the computational solution are known, in the literature, as Data
Assimilation (DA) techniques. They allow for the reconstruction or improvement
of the numerical solution of a given model that should match the data at the
locations where they were observed and include different types of approaches. This
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methodology has already been used in other engineering fields like geophysics
and meteorology (for an overview, see [1] and the references therein). More
recently, DA variational approaches were also used in hemodynamics, namely in
model parameter estimation, including material properties needed to properly define
FSI models and improve blood flow simulations, e.g. [2, 3]. Moreover, Kalman
filter techniques were suggested to perform parameter estimation in cardiovascular
modeling (see, e.g., [4, 5] and [6] for an overview).

In [2], several approaches were compared, namely the domain splitting method,
the matrix updating technique and also the variational approach which was shown
to give the best results among the three techniques. This approach consists in
minimizing the misfit between the observed data and the solution of the blood flow
modeled by Navier-Stokes equations, by controlling certain free parameters. The
authors assumed the value of the pressure on the inlet boundary as the control
parameter. In [3] this approach was reformulated to include the possibility of
controlling the blood inflow velocity profile. The authors performed a parameter
fitting for the cost function and verified the robustness of the approach with respect
to noise reduction in a 2D idealized stenosis. Another application of the DA
techniques was used in [7] to improve the accuracy of computational domains
reconstructed from medical images.

The existence of solution for these mathematical approaches to the DA problem
was not established yet. However, numerical solutions based on a Discretize then
Optimize (DO) direct approach were shown to be successful in several cases. (DO)
consists in first discretizing the variational (optimal control) problem describing
the DA method, and then in solving the resulting nonlinear finite-dimensional
optimization problem. An alternative method is the adjoint (indirect) or Optimize
then Discretize (OD) approach. Some authors [8, 9] suggested that the (DO)
approach may be preferred. In [10, 11] it was shown that, in the case of nonlinear
problems, such as in fluid control problems, (OD) could result in a discrete
optimal solution failing to be optimal for the continuous problem. However, for
stabilized advection equations both approaches can lead to different solutions but,
in certain cases, the (OD) has better asymptotic convergence properties [12, 13]. For
the Navier-Stokes equations, different perspectives were suggested (see [14] and
[15] using (DO) approaches of boundary control problem and distributed control
problems, respectively). It appears that, at the present stage, no general answer
can be given. In particular, for the problem studied here (see (1)–(6), Sect. 2),
this question remains open. In [2], where a pressure type control was considered,
the authors obtained a better performance of the (DO), in terms of accuracy of
the controlled solution. Based on these results, we have adopted here the (DO)
approach. Nevertheless, a detailed comparison of these two approaches still deserves
some attention.

In this paper we present a review of some results obtained for DA problem to
control the velocity inflow profile in 3D domains, based on the previous studies
using the (DO) approach, namely in [3, 16]. To simplify, the model is assumed
to be stationary, in order to neglect the fluid interaction with the vessel walls.
The assimilation of time dependent data to apply in clinical cases where the
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pulsatile nature of blood flow is determinant will be the subject of future work. The
methodology adopted in this work includes the usage of the Sequential Quadratic
Programming method [17] to solve the discretized optimization problem. As a result
we obtain a large scale finite dimensional, nonlinear optimization problem. Here,
we consider different idealized and realistic geometries, reconstructed from medical
images, to investigate the robustness of the method in such domains and analyze the
influence of the location of data measurements.

The paper is organized as follows. In Sect. 2 we introduce the 3D mathematical
blood flow model, considered as a shear-thinning non-Newtonian fluid, and describe
the variational approach for the DA problem. The (DO) methodology to solve
the control problem is also described and the optimization algorithm is presented.
Section 3 is devoted to numerical results obtained for different 3D geometries, where
blood is modeled as a Newtonian or a Generalized Newtonian fluid. This section
includes also a discussion of the obtained results.

2 Mathematical Models and Methods

Blood is a concentrated heterogeneous suspension of several formed cellular
elements, the blood cells or hematocytes, red blood cells (RBCs or erythrocytes),
white blood cells (WBCs or leukocytes) and platelets (thrombocytes), in an aqueous
polymeric and ionic solution (mainly Na+, K+, Ca2+ and CI−), the plasma. Plasma
represents ∼55% of the blood volume and is composed of ∼92% water and ∼3%
particles, namely, electrolytes, organic molecules, numerous proteins (albumin,
globulins and fibrinogen) and waste products. Its central physiological function is
to transport these dissolved substances, nutrients, wastes and the formed cellular
elements throughout the circulatory system.

Experimental studies over many years have shown that blood flow exhibits
non-Newtonian characteristics such as shear-thinning, viscoelasticity, yield stress
and thixotropy. The complex rheology of blood is influenced by numerous factors
including plasma viscosity, hematocrit (volume percentage of RBCs in blood) and
in particular, the ability of RBCs to form aggregates when at rest or at low shear
rates and to deform at high shear rates, storing and releasing energy (see, e.g.,
[18] and the references cited therein). Hemodynamic analysis of blood flow in
vascular beds and prosthetic devices requires the rheological behavior of blood to
be characterized by phenomenological constitutive equations relating the stress to
the rate of deformation and flow.

Blood is a non-Newtonian fluid, but it can be regarded as Newtonian depending
on the size of the blood vessels and the flow behavior, as in arteries with diameters
larger than 100µm where measurements of the apparent viscosity show that it
ranges from 0.003 to 0.004 Pa s and the typical Reynolds number is about 0.5.

In one of the case studies presented in this paper we account for the shear-
thinning viscosity behavior of blood at low shear rates and consider a Generalized
Newtonian model for blood. To simplify, blood flow is supposed to be steady and
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Fig. 1 Example: two-dimensional domain

the interaction with the vessel wall is neglected. The model reads as follows: let the
vector function u and the scalar function p represent the blood velocity and pressure,
respectively. Both quantities satisfy the momentum and mass balance equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−div τ(Du)+ ρ(u · ∇)u+ ∇p = f in �
div u = 0 in �
u = 0 on �wall
u = g on �in
σ · n = 0 on �out .

(1)

Here� represents part of an artery truncated by two artificial sections, the inflow
and outflow boundaries (Fig. 1). The vector function g describes the velocity profile
at the inflow boundary �in. The Cauchy stress tensor is represented by σ and n is
the unitary vector normal to the outflow boundary surface �out .

We consider a homogeneous Dirichlet boundary condition on the vessel wall
�wall and a homogeneous Neumann boundary condition on the outflow boundary
�out . The constant parameter ρ represents blood density and f is the body force
which we neglect by taking f = 0. The tensor of viscous stresses is represented by

τ = 2μ(γ̇ )Du, (2)

where μ is the dynamic viscosity, γ̇ refers to the shear rate

γ̇ =
√

1

2
(∇u+ (∇u)T ) : (∇u+ (∇u)T ) = √2|Du|

(the symbol “:” represents the inner product of two second-order tensors) and D is
the strain rate tensor

Du = 1

2

(∇u+ (∇u)T
)
,

corresponding to the symmetric part of the velocity gradient.
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When μ is constant (and does not depend on the shear rate), the extra-stress
tensor τ defined by (2) is proportional to the strain rate tensor D, and (1) becomes
the incompressible Navier-Stokes system, modeling blood flow in large vessels and
healthy conditions.

Viscosity functions with bounded and non-zero limiting values of viscosity can
be written in the general form

μ(γ̇ ) = μ∞ + (μ0 − μ∞)F (γ̇ ). (3)

where F(γ̇ ) is a shear dependent function, satisfying the limit conditions

lim
γ̇→0

F(γ̇ ) = 1 and lim
γ̇→+∞F(γ̇ ) = 0.

Hence, the viscosity ranges from μ0, when γ̇ tends to zero, to μ∞ when γ̇ goes to
infinity.

Different choices of F(γ̇ ), with μ0 higher than μ∞ correspond to different
shear-thinning models for blood flow, with material constants quite sensitive and
depending on a number of factors including hematocrit, temperature, plasma
viscosity, age of RBCs, exercise level, gender or health conditions [18]. The most
common is the so-called Generalized Cross model, where

F(γ̇ ) = 1

(1+ (λ γ̇ )b)a , a, b, λ > 0 (4)

and the Carreau model, corresponding to

F(γ̇ ) = (1+ (λ γ̇ )2) n−1
2 , λ > 0, 0 < n < 1. (5)

Here we only consider the Carreau viscosity model (see [3] for optimal control
results using the Generalized Cross model).

We follow in this work the DA approach proposed in [3] for the 2D case. It
consists in looking for the control function g such that the following cost functional

J (u, g) = β1

∫

�part

|u− ud |2 dx + β2

∫

�in

|∇sg|2 ds, (6)

will be minimized. Here u is the solution of (1) corresponding to g, and ud represents
the data available only on a part of the domain called�part . The first term in J is the
kernel term to be minimized, representing a misfit between the solution u and the
data ud ; the second term in J is the regularizing term that adds some convexity to the
cost function with respect to the dependence on the control parameter represented
by g, defined on �in. By fixing parameters β1 and β2, it is possible to decide whether
the minimization of J should emphasize a good approximation of the velocity vector
to ud or a smoother control measured by the norm of the tangential derivative ∇s(.).
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The above problem is a particular case of the broader class of variational
problems consisting of different choices of the functional J . We remark that in
[2, 19], for the Newtonian case, a Neumann control of the type

[−pI+ μ(∇u+ (∇u)T )]n = −gn (7)

was considered on �in. In Sect. 3 we shall present, for the non-Newtonian case,
results where the Dirichlet velocity control is compared with the Neumann pressure
control.

2.1 Mathematical Analysis

The well-posedness of several control problems has been studied for shear-thinning
models (see, e.g., [20, 21]). In the Newtonian case some results have also been
proved for problem (1)–(6) (see [22]).

Let � ⊂ ∂� and

H1
0(�) =

{
v ∈ L2(�) | ∇sv ∈ L2(�), γ∂�v = 0

}
.

At the inflow boundary we consider a vector function g ∈ U where

U =
{

g ∈ H1
0(�in) : such that (1) has a unique weak solution

}
.

We remark that U is not an empty set, since we can consider, for instance, g such
that ‖g‖H 1

0 (�)
≤ δ, for certain δ small enough.

Now consider (�pi )i to be a monotone sequence of subsets of �, such that

�p1 ⊂ �p2 . . . ⊂ �pm ⊂ �. (8)

In addition, assume also that for each i ∈ {1, . . . , m}, we have

∂�pi = �in ∪ �walli ∪ �outi
where �outi are disjoint surfaces corresponding to cross sections of �, and �walli
are nonempty wall segments such that �walli ⊂ �wall . Note that the construction of
each �pi in this way ensures that the inclusions (8) are verified and that each �pi
represents a part of the vessel �. Therefore, each �outi is in fact a cross section of
�.

We can now state the following result, as a consequence of Theorem 4.5 [22]:
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Corollary 2.1 Let β1, β2 > 0 and assume that the data ud is known in a part of
the domain given by �part = ∪mi=1si where si = �outi , for all i ∈ {1, . . . , m}. Then
there is an optimal solution (u, g) ∈ H1(�)× U to problem (1)–(6).

2.2 Numerical Approximation

In this section we describe the numerical algorithm to solve problem (1)–(6). It
is based on the Discretize then Optimize (DO) direct approach which consists in
first discretizing the optimal control problem and then solving the finite dimen-
sional optimization problem resulting from the discretization. Instead of the (DO)
approach it is often used the Optimize then Discretize (OD) approach, but it is not
yet clear which one of them is the most suitable for fluid control problems, as already
referred.

Assume that we look for u ∈ H1(�) and p ∈ L2
0(�). We consider

V = {v ∈ H1(�) : v|∂�D = 0}, where ∂�D = �in∪�wall , Q = L2
0(�), the spaces

of test functions corresponding to u and p, respectively. The weak formulation
of (1) can be formally obtained by multiplying both equations by suitable test
functions and integrating by parts, as follows:

{∫
�
τ(Du) : ∇v dx + ∫

�
(ρ(u · ∇)u) · v dx − ∫

�
p div v dx = ∫

�
f · v dx∫

�
q div u dx = 0

(9)

for all v ∈ V and q ∈ Q.
For the discretization of these equations we consider the finite dimensional

approximations

uh =
Nu∑

j=1

ujφj ∈ Vh, ph =
Np∑

k=1

pkψk ∈ Qh (10)

Here, Vh and Qh are finite dimensional subspaces of V and Q, such that dim(Vh) =
Nu and dim(Qh) = Np, φj and ψk are the shape functions, basis of Vh and Qh,
respectively, and uj and pk are the corresponding unknown coefficients. Vh and Qh

are Lagrange type Finite Elements spaces, associated to a partition Th of �, where
h > 0 is the discretization parameter.

The discrete problem is written as: find uh ∈ Vh and ph ∈ Qh such that

⎧
⎪⎪⎨

⎪⎪⎩

∫
�
τ(Duh) : ∇vh dx +

∫
�
(ρ(uh · ∇)uh) · vh dx −

∫
�
ph div vh dx

= ∫
�

f · vh dx, ∀vh ∈ V0,h∫
�
qh div uh dx = 0, ∀qh ∈ Qh.

(11)
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Since this is a convected dominated problem, a GLS (Galerkin-Least-Squares)
stabilization is adopted. We refer to [23, 24] for details on the numerical analysis of
the finite element discrete problem (11).

Let us consider the bilinear forms

a(uh, vh) =
∫

�

τ(Duh) : ∇vh +
∫

�

(ρ(uh · ∇)uh) · vh −
∫

�

ph div vh

and

b(uh, qh) =
∫

�

qh div uh.

Under this notation, the stabilization of system (11) consists in finding uh ∈ Vh and
ph ∈ Qh by adding new terms L1

h and L2
h such that

{
a(uh, vh)+ L1

h(uh, f, vh) = (f, vh)
b(uh, qh) = L2

h(ph, qh)
(12)

where

L1
h(uh, f, vh) =

∑

K∈τh
(L(uh, ph)− f, ϕ(uh, vh))

and

L2
h(ph, qh) =

(
−1

λ
ph, qh

)
.

so that L1
h verifies

L1
h(uh, f, vh) = 0. (13)

Here, λ is a penalty parameter (see [25]) and L and ϕ are given by

L(u, p) = −div τ(D(u))+ (u · ∇)u+∇p

ϕ(uh, vh) = δ((uh · ∇)vh + div τ(D(vh)).

The parameter δ should be suitably chosen. In this work, the parameter is taken
from [26] (see also [27] for more details) and can be optimized in the frame of
optimal control problems [12].
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In order to solve system (12), we first look to the diffusion term of a(yh, vh) and
its counterpart in L1

h(uh, f, vh)

∫

�

τ(Duh) : ∇vh +
∑

K∈Th

∫

K

−div τ(Duh) · ϕ(uh, vh).

Using the approximations (10) we can write this term in the matrix form, as
follows (see [3]):

⎛

⎝
∫

�

2μ

⎛

⎝
∣∣∣
Nu∑

j=1

ujDφj

∣∣∣

⎞

⎠
Nu∑

k=1

ukDφk : ∇φi
⎞

⎠

+
∑

K∈Th

∫

K

−div τ
⎛

⎝D

⎛

⎝
Nu∑

j=1

ujDφj

⎞

⎠

⎞

⎠ ·
(
δ

Nu∑

i=1

uiφi · ∇φi
)

= (Q+Q)(U), ∀i, j = 1 . . . Nu

where U = (u1, . . . , uNu)
T , and Q, Q are square matrices of order Nu.

Let us now consider the convective term and its counterpart in L1
h(uh, f, vh):

∫

�

((uh · ∇)uh) · vh +
∑

K∈Th

∫

K

((uh · ∇)uh) · ϕ(uh, vh).

Using again approximations (10), the above expression can be written as

⎛

⎝
Nu∑

j=1

uj

Nu∑

k=1

uk

∫

�

(φj · ∇)φk · φi
⎞

⎠

i=1,...,Nu

+
⎛

⎝
∑

K∈τh

Nu∑

j=1

uj

Nu∑

k=1

uk

∫

K

(φj · ∇)φk·

(
δ

(
Nu∑

l=1

ulφl · ∇φi + div τ(D(φi))
)))

i=1,...,Nu

= (N(U)+N (U))U,

where N(U) and N (U) are square matrices of order Nu.
We act in a similar way on the pressure and define the pressure term (BT + B)P

where

[BT ]i,j =
∫

�

ψjdiv φi ∀ i = 1, . . . , Nu; j = 1, . . . , Np
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[B]i,j =
∑

K∈Th

∫

K

∇ψj ·
(
δ

(∫

�

ψj

Nu∑

l=1

ulφl · ∇φi + div τ(D(φi))
))

∀ i = 1, . . . , Nu; j = 1, . . . , Np

Hence, adding the discretized terms of L1 and L2, system (12) becomes

{
(Q+Q)(U)+ (N(U)+N (U))U+ (BT + B)P = F
BU = B1P + boundary conditions

(14)

where

[B1]i,j = −
∑

K∈τh

∫

K

1

λ
ψiψj ∀i, j = 1, . . . , Np.

As for the cost function (6) we assume that Vh is associated to a partition Th of
the domain � so that some of the basis functions (φi)i=1...No can be associated to
the nodes on�part and others to the nodes on �in, which we denote by (φi)i=1...Ng .
Hence, similarly to uh, the approximated control function is defined by

gh =
Ng∑

j=1

gjφj ,

where the coefficients gj correspond to the velocity coefficients uj associated to
�in.

To discretize the first term we replace both u and ud by their respective finite
dimensional approximations uh and ud,h. The latter is given by

ud,h =
No∑

i=1

udi φi .

Then, we obtain

∫

�part

〈
No∑

i

(ui − ud i)φi,
No∑

j

(uj − udj )φj
〉
dx

=
∫

�part

No∑

i

(ui − ud i)
No∑

j

(uj − ud i)
〈
φi, φj

〉
dx
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=
No∑

i

(ui − ud i)
No∑

j

(uj − ud i)
∫

�part

φiφj dx

= (U− Ud)TM(U− Ud) = 〈(U− Ud),M(U− Ud)〉
= (U− Ud ,U− Ud)M = ‖U− Ud‖2

No
(15)

where ‖ · ‖No is the norm induced by the inner product (·, ·)M and M is a symmetric
No ×No matrix with general term given by

mij =
∫

�part

φiφj dx .

Finally, for the regularization term we have

∫

�in

∣∣∣∣∣∣

Ng∑

i

gi∇φi
∣∣∣∣∣∣

2

dx =
∫

�in

〈 Ng∑

i

gi∇φi,
Ng∑

j

gj∇φj
〉
dx

=
Ng∑

i

gi

Ng∑

j

gj

∫

�in

∇φi : ∇φj = GTAG

= 〈G,AG〉 = (G,G)A = ‖G‖2
Ng

(16)

where ‖ · ‖Ng is the norm induced by the inner product (·, ·)A and A is a symmetric
Ng ×Ng matrix whose elements are defined by

aij =
∫

�in

∇φi : ∇φj dx .

Taking into account (14)–(16), the discrete version of the control problem (6)–(1)
consists in minimizing the following discrete cost function:

J (U,G) = β1‖U− Ud‖2
No
+ β2‖G‖2

Ng
(17)

subject to (14).
We remark that vector U = (Ug,G) includes the controlled velocity coefficients

G and the uncontrolled ones Ug , which also depend on G. Therefore, the stabilized
problem can be written in the general form

min
G
F(G) = J (U(G),G) (18)

C(G) ≥ 0, (19)
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where (19) represents the problem constraints (14), including boundary conditions.
System (18)–(19) represents a large scale finite dimensional optimization problem
with nonlinear constraints and a quadratic cost. To solve this problem, we use the
Sequential Quadratic Programming algorithm, as described in [17]. The algorithm is
available in the SNOPT library [28] and was tested in several benchmark large scale
problems. The iterative procedure requires the evaluation of F(G) which, in turn,
implies solving the nonlinear system (14), which is done by the damped Newton
method, as described in [29].

We will now briefly describe the algorithm and refer to [17], for more details.
Let us assume that the solution G of (18)–(19) verifies the Karush-Kuhn-Tucker

(KKT) optimality conditions

DC(G)T λ = DF(G)
C(G)T λ = 0
C(G) ≥ 0
λ ≥ 0

where DF and DC are the gradients of F and C, respectively, and λ is the vector of
the Lagrange multipliers.

If one is able to find a good initial estimate G0 (and the corresponding λ0),
close enough to the optimal G, the following algorithm produces a sequence that
is globally convergent [17].

We remark that step 2 of Algorithm 1, which concerns the solution of the linear
quadratic problem, is implemented using the library SQOPT [28].

3 Results and Discussion

3.1 Controlling the Pressure Versus the Velocity Field at the
Inlet

As mentioned in the previous section, it is interesting to compare our results
obtained for the Dirichlet velocity control (approach (P1) of a vector function) with
those of [2] for the Neumann pressure control of type (7) (approach (P2) of a scalar
function). To this end, we first reproduce the results presented in [2] for an idealized
2D straight channel � = [0, 5] × [−0.5, 0.5] with �in = {0} × [−0.5, 0.5] and
�out = {5} × [−0.5, 0.5] (Fig. 1). The observations were assumed to correspond
to the sections {1} × [−0.5, 0.5], {2.5} × [−0.5, 0.5] and {4} × [−0.5, 0.5]. Taking
μ = 1, we consider the ground truth solution to be known exactly and given by
u = 1− 4y2 (in particular u = 0 on �wall = ∂� \ (�in ∪ �out )).

To solve (P2), the cost function needs to be properly rewritten, and Algorithm 1
(presented in the previous section) can be applied in a similar way. In [2], the
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Algorithm 1: SNOPT
while Optimality tolerance of KKT less than threshold do

1- Determine a quasi-Newton approximation Hk for the Hessian of the modified
Lagrangian

L(G,Gk, λk) = F(G)− λTk [C(Gk)−Gk −DC(Gk)(G−Gk)].

2- Solve the auxiliary Linear Quadratic problem

min
C

Q(G,Gk, λk) = F(Gk)+DFT (Gk)(G−Gk)− 1

2
(G−Gk)

THk(G−Gk)

Gk +DC(Gk)(G−Gk) ≥ 0 (20)

to obtain the intermediate iterate (Ḡk, λ̄k, s̄k), where ŝk is the vector of the slack variables
associated to the linear constraints in (20).

3- Compute αk+1 ∈ (0, 1] as the minimizer of the merit function

Mγ (G, λ, s) = F(G)+ λT (C(G)− s)+ 1

2

m∑

i=1

γi(Ci(G)− si )2

along the line

d(α) = (Gk, λk, sk)+ α[(Ḡk, λ̄k, s̄k)− (Gk, λk, sk)],

where si , for i = 1 . . . m, are the components of s and γ is a vector of penalty parameters (see
[3] for details on how to choose γ ).

4- Set (Gk+1, λk+1, sk+1) = d(αk+1).
5- Compute the optimality tolerance for the KKT conditions.

end while

weights in the cost function were set to be β1 = 1
2 and β2 = 10−9

2 , according
to the Morozov Discrepancy Principle associated to a certain fixed signal-to-noise
ratio (see, for instance, [30]).

We reproduced the results found in [2] to conclude that the controlled solution
given by (P2) approximates the exact solution with an acceptable relative error of
0.00112, that is, of order ≈ 0.1%. For this reason, we used this percentage as a
reference relative error to fix the weights β1 and β2 to compare results obtained
with (P1) and (P2).

Let us extend the previous domain to obtain the curved vessel represented in
Fig. 2 (left) and referred to as the ground truth domain.

We consider a parabolic profile at the inlet and solve system (1) associated to the
incompressible Navier-Stokes equations to obtain the ground truth solution ud .

An unstructured mesh corresponding to 43K degrees of freedom (max h = 1/20)
has been used. The nonlinear system was solved using the damped Newton’s
method, as mentioned in Sect. 2.
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Inlet 2Inlet 1

Outlet
Outlet

Inlet 2

S1

S2

S3

Fig. 2 Ground truth domain (left); working domain � with �part = S1 ∪ S2 ∪ S3 (right)

Table 1 Relative errors
RE�part ,β2 , for both (P1) and
(P2) approaches

β2 (P 1) β2 (P 2)

0.5× 10−2 0.02992 0.5× 10−5 0.02350

0.5× 10−3 0.01005 0.5× 10−6 0.01757

0.5× 10−4 0.00219 0.5× 10−7 0.00978

2.5× 10−5 0.00118 0.5× 10−8 0.00412

0.5× 10−5 0.000259 0.5× 10−9 0.00129

We also considered a more realistic situation where the unknown inlet boundary
condition did not correspond to a parabolic velocity profile, normal at �in, nor
to a pressure profile, that could be assumed axial dependent. For this reason, we
truncated the channel on the section labeled inlet 2, which became the new artificial
inlet �in of the smaller domain � represented in Fig. 2 (right). Therefore, we want
to fix a boundary condition at �in so that the solution in � would match, as much
as possible, with the ground truth solution ud . For the observations, we assumed to
have measured exactly the velocity profiles of ud at �part = S1 ∪ S2 ∪ S3, where
S1, S2 and S3 are lines that were chosen arbitrarily inside � (Fig. 2, left). Before
solving both problems (P1) and (P2), it was necessary to set β1 and β2. According
to the example in [2], we fixed β1 = 1

2 and looked for β2 so that the relative error

RE�part ,β2 =
‖uβ2 − ud‖L2(�part )

‖ud‖L2(�part )

,

is≈0.00112. In the expression of the relative error, uβ2 represents the solution of the
control problem associated to β2. This has been done by heuristically fixing a value
for β2 and evaluating the corresponding relative errors using Algorithm 1, with an
optimality tolerance of 10−6. The results are shown in Table 1.

From these conclusions β2 = 2.5 × 10−5 has been fixed for (P1) and β2 =
0.5× 10−9 for (P2).

The ground truth solution is represented in the first row of Fig. 3. As expected,
we can see that the pressure contours are not parallel to the cross sections in the
curved part of the truncated channel, and the velocity profile loses the parabolic
shape on those cross sections. The second and third rows (Fig. 3) represent the
solutions obtained for (P1) and (P2), respectively.
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Fig. 3 First row: ground
truth velocity magnitude
(m/s) (left) and ground truth
pressure (right). Second row:
controlled solution
(P1)—velocity magnitude
(m/s) (left) and pressure (Pa)
(right). Third row: controlled
solution (P2)—velocity
magnitude (m/s) (left) and
pressure (Pa) (right)

The results show that the solution obtained with the velocity control (P1) is
qualitatively closer to the ground truth solution, represented in the first row of Fig. 3.
To quantify these different performances, we use the relative error of the controlled
solutions with respect to ud , evaluated at different sites. In Table 2 we present the
values for
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Table 2 Relative errors, final value of the cost function (J ), and number of objective evaluations
NE for both (P1) and (P2) approaches

Approach RE� RE�in RE�part Cost NE

(P1) 0.00517 0.02286 0.00118 0.00953 230

(P2) 0.13443 0.57843 0.00129 7.40043e−4 126

(P2r) 0.10068 0.47189 0.01757 0.03435 68

RE� =
‖u− ud‖L2(�)

‖ud‖L2(�)

,

where ‖ ·‖L2(�) is the L2(�) norm, and for RE�in and RE�part , which are computed
analogously. We also indicate the final value obtained for the cost functional and
the number of cost evaluations. It can be seen that, while a relative error on the
observations site is kept of the same order, the solution of (P1) is globally closer
to ud than the solution of (P2). Actually, looking closer to the later pressure profile
(Fig. 3, third row), some oscillations can be seen at the inlet. This indicates that,
although the relative error on the observations was of the order 0.1%, the weight
β2 = 0.5 × 10−9 almost canceled the regularizing effect of the second term in the
cost function. An increase in β2 improves the regularizing effect, but the desired
relative error in �part is higher. We illustrate this behavior by considering the case
(P2r) with β2 = 0.5× 10−6, for which the results are shown in Table 2.

These values, validated by a convergence analysis with respect to mesh refine-
ment, indicate better results using a velocity control approach. A higher number of
cost evaluations might however be required. Such conclusion does not invalidate the
fact that (P2) has a good performance, when pressure contours align with the cross
sections in the region close to the inlet, as shown in [2, 31].

3.2 The Control Approach Applied to a Realistic Domain

In this section we present the numerical results found when applying the DA
approach (P1) to a realistic geometry obtained from the segmentation of Computed
Tomography (CT) data sets of a saccular brain aneurysm.

As in the previous example, the domain has been extended to compute the ground
truth solution ud used both to select the measured data and to estimate the accuracy
of the method. The ground truth domain is represented in Fig. 4 (left).

As model parameters, we considered μ = ν
ρ

with ν = 3.67× 10−3 Pa s, a value

within the range suggested in [32]. We also set ρ = 1050 kg/m3 and fixed a laminar
inflow profile—normal to the inlet—which corresponds to a flow rate of Q = 4 ×
10−6 m3/s. Again, these are typical parameters used for blood flow simulations in
[32]. At the inlet these values imply a physiological Reynolds number Re = 367.
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Fig. 4 Ground truth geometry (left); working geometry � (right)

No slip boundary conditions were imposed on the vessel wall and a homogeneous
Neumann (zero normal stress) condition was fixed on the outflow boundary.

The discrete Navier-Stokes system (particular case of (11)) has been solved using
P1-P1 finite elements and a GLS stabilizing method. First, we analyzed the case
when the same degrees of freedom were used both to generate ud and for the DA
procedure. Subsequently, in order to avoid the so-called inverse crime problem, the
ground truth solution was generated using a finer mesh. This is the usual strategy
when the same model and discretization are used both to generate the synthetic data,
from which the observations are chosen, and to solve the control (inverse) problem.

We consider � to be the subdomain starting in section inlet 2, which is shown in
Fig. 4, on the right. We identify this section with �in in problem (1)–(6). The goal
is again finding a velocity boundary condition to use at this section in such a way
that the corresponding solution matches ud . Additionally, we assume to have exact
measurements of the velocity on �part = S1 ∪ S2 ∪ S3 ∪ S4 where S1, S2, S3
and S4 are the sections represented in Fig. 4. The later assumption, concerning the
exactness of the measurements, will be relaxed in the next study case.

Concerning the choice of the weights for the cost function, they are set to
(β1, β2) = (105, 10−3). This choice can be justified when the presence of noise
on the observations is considered (see [16]).

To obtain the finite dimensional problem (18)–(19) the same type of finite
elements has been used. The control problem was solved using Algorithm 1 with
an optimality tolerance of 10−5.

Table 3 shows in the first row the relative error of the controlled solution u, with
respect to the ground truth solution ud , evaluated in different parts of the domain.
The relative error on �in allows to measure the significant difference between
the control vector and the ground truth solution at the artificial boundary, when
compared to the relative errors RE� and RE�part that show a very good accuracy in
the working domain, and almost a perfect match in �part .

To emphasize the gain achieved by the DA approach, we computed an alternative
solution, uQ, based on the assumption that on �part we can measure the exact
flow rate instead of the velocity profile. The corresponding solution was obtained
similarly to ud . The second row of Table 3 shows the relative errors of this
alternative solution with respect to the true solution ud . It can be found that the
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Table 3 Relative errors and
final value of the cost
function (J ) for (P1) in the
realistic domain

RE� RE�in RE�partSolution Cost

u 0.019522 0.176382 0.002823 0.001037

uQ 0.225058 0.40286 0.25353 0.04693

Fig. 5 Bypass:
computational domain

DA approach, resulting in u, undergoes an error reduction, in the whole domain,
from 22% to less than 2% when compared to the idealized solution uQ. In [16]
a representation of the relative error, for the WSS magnitude, of both u and uQ
with respect to the ground truth solution ud , has also been shown. While for the
solution uQ, based on the idealized laminar profile, the relative error is frequently
above 40% and sometimes above 60%, the relative error associated to the controlled
solution only reaches 10% close to the inlet, where we have chosen a coarse mesh.
This indicates an important potential gain of the DA approach in reducing the error
associated to WSS in silico measurements.

The robustness of the approach can be accessed with respect to the presence of
noise in the data, increasing Reynolds numbers, or observation sites available. These
aspects have been treated in [7].

3.3 Application to a Second Clinical Case

In this section, we present the results obtained with the Carreau viscosity model (5),
using the parameters μ0 = 0.0456 Pa s; μ∞ = 0.0032 Pa s; λ = 10.03 s; n =
0.344 (see [18]).

We apply the proposed Data Assimilation approach to a computational domain
representing the region of an artery including a bypass junction. The geometry was
obtained from a Magnetic Resonance Imaging (MRI) data set. After segmentation,
a NURBS based parametrization was used to generate the domain represented in
Fig. 5.

To obtain the synthetic solution, we used stabilized P1-P1 finite elements, corre-
sponding to 372,636 DOFS. As in the previous examples, at the inlet we imposed
a parabolic profile corresponding to a flow rate Q = 4 × 10−6 m3/s, a Reynolds
number Re = 355 and a maximum velocity U0 = 0.378788 m/s. On �out , consist-
ing of two boundaries, we have still imposed a homogeneous Neumann boundary
condition. This choice is clearly not representative of the pulsatile flow arising in
such type of pathological situation, but it serves the purpose of testing our method in
different 3D models, with realistic Reynolds numbers and computational domains.
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For the DA approach, we considered �part as the set of cross sections repre-
sented in Fig. 5. The discretization of the control problem is based on the same
finite elements used for the synthetic data. The control variable was discretized with
382 DOFS. Numerical tests have been performed for different pairs of parameters
(β1, β2) of the cost functional. Here, we present the results for two significant
pairs, p1 = (103, 10−3) and p2 = (104, 10−3). The objective is to highlight the
improvement of the results as the weight assigned to the data misfit term β1 increases
from 103 to 104.

As in the previous cases, we also compare the controlled solution with the
solution uQ, obtained by solving (14) using a constant velocity (averaged from the
flow rate Q) at the inlet. Therefore, when comparing u and uQ, the differences do
not depend on the flow rate, but rather on the velocity profile itself.

In Table 4 we present the computed errors between the synthetic solution ud and
both uQ, and the controlled solution u.

Comparing the results obtained with the weighting parameters p1 and p2, it is
clear that a higher weight provides lower error values and, consequently, better
optimization results. The results indicate that the relative error can be reduced down
to one-fifth, when using the DA procedure.

We have also performed several numerical tests, where the sections in�part (see
Fig. 5) have been changed, to identify the best location to collect data in order to
obtain more accurate results. From Table 5, we observe that the errors obtained in the
case where all sections in�part are considered are very similar to those obtained for
all sections, except sections 5 and 6. When considering all sections except section 4,
we can see that the error is significantly higher. From these results, it is possible to
conclude that cross sections 5 and 6 could be omitted in the numerical simulations.
However, the same does not happen with section 4, for which a larger error indicates
that this section is relevant in the simulations. This is an expected result, since the

Table 4 Bypass: relative
errors of the controlled
solutions u for both sets of
parameters p1 and p2, with
respect to ud and uQ

Errors uQ Weights u

RE� 0.122 p1 0.15241

p2 0.03056

RE�part 0.099241 p1 0.151772

p2 0.021544

Cost – p1 9.385× 10−4

p2 1.1× 10−3

Table 5 Bypass: relative errors obtained for different �part choices, using parameters p2 =
(104, 10−3)

Weight Errors All sections All sect. except 4 All sect. except 5 and 6

p2 RE� 0.03056 0.03382 0.03079

RE�part 0.021544 0.026353 0.021815

Cost function 1.1× 10−3 1.1× 10−3 1.1× 10−3
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cross sections 5 and 6 belong to a region where the flow rate is lower, and the
velocity profile doesn’t change significantly.

To verify that the previous conclusions were not a result of the so-called inverse
crime, we also performed several experiments adding noise to the data observations.
The noise was generated by adding to the synthetic solution, in�part , a perturbation
randomly generated. The noise was therefore taken along the normal distribution
with zero mean and standard deviation given by σ̄ = V

U0
3 . In this formula,

U0 represents the maximum velocity of ud measured at the inlet boundary and
V ∈ {0.1, 0.2, 0.4}. Such experiments are considered more realistic since, in real
situations, data measurements are subject to the inherent noise associated with
measurement devices. Table 6 shows the relative errors computed for both cases
p1 and p2, and for different values of V . The low relative errors confirm what has
been suggested in [2, 3], where it was shown that the variational DA approach can
be robust to noisy data.

Finally, we present numerical results in the case where, besides the inflow
velocity at �in, we also control the velocity at one of the outflow boundaries. We
chose the outflow boundary adjacent to cross-section 6, represented in Fig. 5. Since
the regularization term has now a different weight in the cost function, a new set of
parameters was numerically tested. In Table 7, we present the relative errors for the

Table 6 Bypass: relative
errors computed in �part
obtained by including noise
in the data, for both sets of
parameters p1 and p2

Errors Noise Weights u

RE�part 10% p1 0.151756

p2 0.021476

20% p1 0.15176

p2 0.021986

40% p1 0.153731

p2 0.023047

Table 7 Bypass: control of
two artificial boundaries

Errors uQ Weights u

AE� 3.16013× 10−5 p1 9.96291× 10−4

p2 8.9355× 10−6

p3 4.3118× 10−6

RE� 0.122 p1 0.17056

p1 0.03056

p3 0.01699

RE�part 0.099241 p1 0.17644

p2 0.02748

p3 0.00419

Cost function – p1 9.96291× 10−4

p2 1.25× 10−3

p3 1.3× 10−3

Relative errors of the controlled solutions u for both sets of
parameters p1 and p2, with respect to ud and uQ
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parameters p1 = (103, 10−3), p2 = (104, 10−3) and p3 = (105, 10−3). It can be
observed that, even in the case of two controlled boundaries, the Data Assimilation
procedure can substantially reduce the relative errors when compared to the solution
uQ, obtained from a known flow rate at �in.
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Segmentation Techniques for
Cardiovascular Modeling

A. A. Danilov, R. A. Pryamonosov, and A. S. Yurova

1 Introduction

In this paper we present methods and algorithms for construction of patient-
specific discrete geometric models for cardiovascular biomedical applications. Each
application imposes specific restrictions on both the input medical images and the
output patient-specific discrete model, and, therefore, requires a specific class of 3D
reconstruction methods.

Personalized modeling of cardiac hemodynamics received a great deal of
attention, and a vast number of models have been described in the literature.
Local hemodynamics modeling requires the patient-specific local reconstruction of
coronary and cerebral arteries [1, 2]. Given an imaging dataset, one performs image
segmentation, volume reconstruction, and numerical discretization.

Modeling of cardiac electrophysiology may be formalized as the full-scale study
of the heart electrical activity from inner-cellular level to the cardiac tissues level
[3]. The reconstruction of personalized anatomical model of the pathological heart
is one of the crucial steps in electrophysiology modeling. The bidomain model
requires an accurate anatomical model of patient heart and myocardium anisotropy
structure. Patient-specific segmentation should be focused on the heart tissues as
well as surrounding organs in the thorax and abdomen regions.

The cornerstone of medical image processing is the segmentation process that
assigns labels to the voxels. Various medical image segmentation techniques have
been developed [4–6]. The most promising fully automatic segmentation methods
belong to atlas-based techniques. The patient-specific segmentation is obtained
from the atlas of presegmented images. This atlas should contain enough different
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cases for accurate mapping of the new patient data. Thus atlas-based approach
requires huge amount of segmentation expert work for preparation of atlases and
the development of algorithms dealing with big data. Semi-automatic segmentation
technologies require interaction with the operator. They are used primarily for
precise local segmentation, where only one organ or tissue is processed. In our
previous work we used several techniques for adaptation of the once segmented
reference human model to different individuals. This technique relies on anthropo-
metric scaling, control points mapping and supervised segmentation [7, 8].

In this work we introduce our previous patient-specific segmentation techniques
and present in detail methods for segmentation and mesh generation of heart
ventricles using dynamic contrast enhanced Computed Tomography (ceCT) images.

2 Methodology

Vascular segmentation techniques were addressed in detail in our previous works
[9, 10]. We will briefly highlight the main steps of our pipeline. Input data
are DICOM datasets obtained with contrast enhanced Computed Tomography
Angiography (ceCTA). Essential steps of this method consist of aorta segmentation,
computation of vesselness values, searching branches of aorta arch or ostia points,
and removing segmentation errors near aorta boundary. We use fast variant of the
isoperimetric distance trees algorithm [11] for aorta identification. The coronary
arteries network is reconstructed by the use of Frangi vesselness filter [12], which
is based on Hessian 3D analysis of the ceCTA image and is applicable to all tubular
structures in the vascular dataset.

We examined several techniques for automatic segmentation of soft tissues,
and developed methods for detailed segmentation of the heart [13], and automatic
segmentation of surrounding tissues in the thorax [10]. In this work we will focus on
segmentation and mesh generation for dynamic datasets and validation of the soft
tissues segmentation.

2.1 Dynamic Cardiac Images Segmentation

We developed the technology for generation of a dynamic mesh for heart ventricles.
In this work we focus on the left ventricle. We tested the proposed pipeline on the
anonymized dynamic chest ceCT dataset of 100 images with 512×512×480 voxels
and 0.625× 0.625× 0.25 mm resolution.

At the first stage we applied 3D non-local means smoothing [14], cropped
and resampled the input images. Resulting smoothed images have 96 × 96 × 96
voxels and 1.25 × 1.25 × 1 mm resolution. We selected several images for manual
segmentation at different stages of cardiac cycle: the beginning of systole (image
#0), the end of systole (image #30), and the middle of rapid inflow during
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diastole (image #50). We used levelset method from ITK-SNAP package [15] for
user-guided segmentation, and segmented four materials: left ventricle, left atrium,
aorta, and right ventricle and atrium combined.

At the next stage we applied machine learning techniques to segment all images.
We constructed the random forest classifier, trained on the manually segmented
images. The result of classification is post-processed using a combination of
mathematical operations: dilation, erosion, and construction of connected regions.

At the final stage we reconstruct the position of valve planes by the principal
component analysis of the interfaces between left ventricle and left atrium, and
between left ventricle and aorta. We compute the mean position of the valve planes
across all images. We assume these planes will be fixed during the cardiac cycle for
simplicity of mesh generation and numerical modeling.

We construct the unstructured tetrahedral mesh for the first image #0 using
Delaunay triangulation from CGAL Mesh library [16]. The left ventricle domain
is defined implicitly by segmented image, the valve planes are defined explicitly.
We also split each tetrahedron with all four nodes lying on the boundary, enforcing
at least one internal node in each tetrahedron. We deform the mesh by node
movements for each subsequent image. At the first stage we move only boundary
nodes simultaneously propagating and smoothing the surface mesh. We shift each
boundary node in the direction of weighted sum of two vectors: vector along the
surface normal towards the new position of the boundary surface (weight 0.2),
and vector towards the center of surrounding nodes (weight 0.4). We repeat this
procedure until the maximum movement distance drops below ε = 0.001 mm, or
until the maximum number of 2000 iterations is exceeded. We pay special attention
to the nodes on the valve planes: they should always stay on the planes (Fig. 1).

At the second stage we apply simultaneous untangling and smoothing algorithm
[17, 18]; the boundary nodes are fixed, and only the internal nodes are shifted. As
mentioned above, we enforced all tetrahedra to have at least one internal node, thus
we greatly improved the robustness of untangling stage.

Fig. 1 Surface triangular mesh of the left ventricle for several ceCT images. (a) Image #0. (b)
Image #30. (c) Image #50. (d) Image #80
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Fig. 2 Volume cross-sections of the tetrahedral mesh of the left ventricle for several ceCT images.
(a) Image #0. (b) Image #30. (c) Image #50. (d) Image #80

As the final result we constructed the series of topologically invariant dynamic
meshes for the left ventricle based on the dynamic ceCT images (Fig. 2) containing
14,033 mesh nodes and 69,257 tetrahedra.

2.2 Segmentation of Abdominal Parenchymal Organs

In this part, we propose a method for segmentation of abdominal parenchymal
organs. The main steps of the algorithm are binary mask generation using analysis
of CT texture features and further extraction of the 3D organ models.

The fully automatic segmentation of abdominal cavity is a complicated task
because of several factors. First, there is a large anatomical variability of patients;
second, medical images come from different devices and have different properties;
third, similar intensity values for adjacent organs make boundary detection difficult.
To partly overcome this problem, we considered contrast-enhanced CT as input
data. Multiphase CT-scans are performed in order to enhance contrast between
anatomical structures. The main phases of enhancement are as follows: without
contrast (non-enhanced CT), arterial, portal and late phase. In our research, the
smoothed CT-scans of the portal phase are used.

We propose a method that is robust to inter-patient gray level and anatomical
variability. The main idea is based on two properties of parenchymal organs:
homogeneous structure and relatively sharp boundaries on the images with contrast.
We use texture analysis to measure these properties. In Ref. [19], some texture
features were proposed for 2D image classification. We used these ideas for
segmentation of 3D medical images.

Textural features are computed using s × s × s voxel neighborhood, where
s is an odd number greater than 1. In our study, we considered several textural
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features: contrast, inverse difference moment, second angular moment, etc. From
all experimental results, the entropy was chosen as the most informative and easily
processed:

ENT = −
∑

i,j

p(i, j) ln(p(i, j)), (1)

where p is the spatial-dependence matrix [19].
This entropy property describes two important anatomical peculiarities used for

segmentation process in this study: voxels inside of parenchymal organs have low
entropy values because of the homogeneous structure and voxels of the boundary
have high values because of diversity of intensities in the neighborhood (Fig. 3).

Figure 4 demonstrates the result of entropy computation for different neighbor-
hood sizes (s = 3, 5) and type of adjacency used in computation of p. Experiments

Fig. 3 Original ceCT slice and entropy computed using various neighborhood sizes. (a) ceCT
slice. (b) 3 × 3 × 3 vox neighborhood. (c) 5 × 5 × 5 vox neighborhood. (d) 7 × 7 × 7 vox
neighborhood
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Fig. 4 Entropy calculation using various neighborhood sizes and adjacency types. (a) 3 × 3 × 3
vox neighborhood with 6-adjacency. (b) 5×5×5 vox neighborhood with 6-adjacency. (c) 3×3×3
vox neighborhood with 26-adjacency. (d) 5× 5× 5 vox neighborhood with 26-adjacency

with different datasets have shown that the 3× 3× 3 voxel neighborhood (s = 3) is
sufficient for most parenchymal organs detection.

In some rare cases the neighborhood size should be increased. In Fig. 5 we
present several CT images with high inhomogeneity in the liver. The entropy values
calculated with small neighborhood size are not applicable for liver segmentation,
and a bigger neighborhood size should be used.

The second step of our algorithm is 3D volume extraction. Binary mask does not
represent organs as separated components because of the multiple “leaks”. We use
active contours method for extraction of parenchymal organs. We compared several
implementations of active contours methods [20, 21]. The most convenient one for
our purposes is the level set function implemented in Convert3D tool from ITK-
SNAP [15]. The coordinates of seed points can be found automatically using prior
anatomical knowledge.

The summary of our algorithm for parenchymal organs segmentation is presented
below:

1. Pre-process and smooth the input dataset.
2. Compute the spatial-dependence matrix (specified in Ref. [19]) for all voxels of

the smoothed dataset.
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Fig. 5 Entropy calculation using various neighborhood sizes for liver segmentation. (a) Individual
ceCT slices. (b) Entropy and binary mask with 3×3×3 vox neighborhood. (c) Entropy and binary
mask with 5× 5× 5 vox neighborhood
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3. Compute entropy (1) for each voxel using the spatial-dependence matrix.
4. Obtain the binary mask by entropy values thresholding.
5. Set the seed points for organs extraction.
6. Implement active contours method and extract 3D model.

This algorithm is especially useful for segmentation of a liver, which is one of
the significant organs during ECG modeling.

3 Validation of Results

We evaluated the results of image segmentation using 20 anonymized ceCT images.
Table 1 contains sex and age of each patient as well as general information about
ceCT images. For each image four organs were segmented using the proposed
texture-based method: spleen, stomach, gallbladder, and liver. We also included the
results of automatic liver segmentation produced by proprietary software Aquarius
iNtuition Client by TeraRecon company [22].

Each segmented organ was marked independently by three medical experts with
one of four possible grades. Each expert counted the number of minor and major
errors. Minor errors represent regions of incorrect voxels with insignificant volume
compared to the total volume of the object. Major errors represent significant regions

Table 1 Patient and image
information for validation test

N Sex Age Dimensions Resolution (mm)

1 M 34 512× 512× 843 0.713× 0.713× 0.4

2 M 67 512× 512× 748 0.782× 0.782× 0.3

3 F 54 512× 512× 578 0.781× 0.781× 0.4

4 F 47 512× 512× 656 0.601× 0.601× 0.3

5 M 74 512× 512× 695 0.743× 0.743× 0.4

6 M 45 512× 512× 747 0.740× 0.740× 0.4

7 F 78 512× 512× 934 0.782× 0.782× 0.4

8 M 82 512× 512× 594 0.625× 0.625× 0.3

9 M 68 512× 512× 932 0.885× 0.885× 0.4

10 F 75 512× 512× 683 0.743× 0.743× 0.4

11 F 78 512× 512× 832 0.781× 0.781× 0.4

12 M 43 512× 512× 1000 0.782× 0.782× 0.4

13 M 46 512× 512× 468 0.743× 0.743× 0.4

14 M 74 512× 512× 638 0.751× 0.751× 0.5

15 F 89 512× 512× 378 0.782× 0.782× 0.5

16 F 91 512× 512× 956 0.675× 0.675× 0.4

17 F 44 512× 512× 832 0.781× 0.781× 0.4

18 M 52 512× 512× 662 0.763× 0.763× 0.3

19 M 52 512× 512× 563 0.782× 0.782× 0.8

20 M 72 512× 512× 763 0.907× 0.907× 0.3
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Table 2 Expert evaluation of
segmented images by three
medical experts and their
average grades

Texture-based method TeraRecon

N Spleen Stomach Gallbladder Liver Liver

1 1/1/1 2/3/3 1/1/1 3/3/2 4/3/4

2 1/1/1 3/3/3 1/1/1 2/1/1 4/4/3

3 1/1/1 – 1/1/1 2/1/2 2/2/2

4 1/1/1 – 1/1/1 2/1/1 3/3/3

5 1/1/1 3/3/3 1/1/1 1/1/2 3/3/3

6 1/1/1 2/3/2 2/1/1 2/1/2 2/2/2

7 1/1/1 3/3/3 2/1/1 1/1/1 2/2/3

8 1/1/1 1/2/1 1/1/1 1/2/2 2/3/4

9 1/1/1 3/3/3 1/1/1 2/2/2 3/2/3

10 1/1/1 3/2/3 1/1/1 1/1/1 2/2/2

11 1/1/1 1/2/2 1/1/1 1/2/1 3/3/4

12 1/1/1 3/3/3 1/1/1 4/4/4 2/2/3

13 1/2/1 3/3/3 1/1/1 1/2/2 2/2/2

14 1/1/1 3/3/1 1/1/1 3/3/3 2/2/2

15 1/1/1 3/3/2 1/1/1 1/1/1 3/3/3

16 1/1/1 1/1/1 1/1/1 1/1/2 2/2/2

17 1/1/1 3/3/3 1/1/1 2/1/2 3/3/3

18 1/1/1 3/3/2 1/1/1 2/2/2 2/3/3

19 1/1/1 3/3/3 1/1/1 1/1/1 3/3/3

20 1/1/1 3/4/3 1/1/1 2/2/2 3/3/3

Avg1 1 2.56 1.1 1.75 2.6

Avg2 1.05 2.78 1 1.65 2.6

Avg3 1 2.44 1 1.8 2.85

The grades are explained in the text, the smaller the better

of incorrect voxels. Grade 1—excellent was used if no errors were observed, grade
2—good was used if 1–3 minor errors were observed, grade 3—satisfactory was
used if 4–6 minor errors were observed or 1 major and 0–3 minor errors were
observed, grade 4—poor was used in all other cases, e.g. two major errors or more
than 6 minor errors were observed.

The evaluation results are presented in Table 2. We observe excellent results for
segmentation of spleen and gallbladder due to their high contrast compared with the
surrounding tissues. The good-to-satisfactory results of stomach segmentation are
limited by inhomogeneity of the contents of the stomach. The liver segmentation by
texture-based method provides good results with some minor errors due to similar
texture of surrounding tissues. The automatic liver segmentation by TeraRecon
software provides good-to-satisfactory results. Further validation tests should be
conducted in order to ensure good segmentation quality.
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4 Conclusions

We introduced several segmentation techniques for cardiovascular biomedical appli-
cations developed in our group. The detailed algorithms and corresponding results
are presented in our previous papers [9, 10, 13]. A new technique for segmentation
and mesh generation using dynamic ceCT images was proposed. The texture-
based method of abdominal parenchymal organs segmentation was presented and
validated on several ceCT images. The segmented images and constructed meshes
are used in hemodynamics and electrophysiology modeling [7–9].
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Dynamics of an Infectious Disease
Including Ectoparasites, Rodents and
Humans

A. Dénes and G. Röst

1 Introduction

Ectoparasites are parasites that live on or in the skin but not within the body. These
parasites, e.g. lice, fleas, mites have long been known as vectors of several infectious
diseases including epidemic typhus and plague. It is also commonly known that in
several cases, ectoparasites are transmitted to humans from animals, most often
by rodents. A well-known example for this is plague, caused by the bacterium
Yersinia pestis: the fleas transmitting this disease were transmitted to humans by rats
[5]. Other notable examples are Omsk haemorrhagic fever, caused by a Flavivirus
transmitted by ticks on water voles and muskrats [4]; rickettsialpox, caused by the
bacteria Rickettsia akari transmitted by mites on mice [6]; murine typhus, caused by
the bacteria Rickettsia typhi, transmitted by fleas, usually on rats [9]; scrub typhus
caused by the parasite Orientia tsutsugamushi, transmitted by trombiculid mites,
carried by mice. The latter disease is estimated to cause more than a million cases
annually in Asia with more than a billion people being at risk, which makes scrub
typhus the most medically important rickettsial disease [10] (Figs. 1 and 2).

In this work, we consider an infectious disease caused by a pathogen spread by
ectoparasites which are harboured by rodents. We assume that ectoparasites spread
by the rodents might be infectious or non-infectious. A given rodent or human can be
infested only by one type (either infectious or non-infectious) of the ectoparasite. A
human can be infested (and hence possibly infected) through adequate contact with
an infested (infected) rodent or another human. We assume that the ectoparasites
are not transmitted back from humans to the rodents. Due to infestation and/or
treatment, infested and infected humans may become susceptible again.
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Fig. 1 The pathogen can
jump from rodents to humans
via ectoparasites. Figure:
courtesy of Júlia Röst

Fig. 2 Transmission diagram
representing transitions
between the rodent and the
human compartments

The structure of the paper is as follows. In Sect. 2, we establish a compartmental
model describing the spread of the infestation and the disease. In Sect. 3, we study
the subsystem formed by the equations for the rodent compartments, while, using
the results of Sect. 3, we study the human subsystem in Sect. 4.

2 The Model

We denote by R(t) the compartment of susceptible rodents, T (t) stands for the
rodents infested by non-infectious parasites, while Q(t) denotes the number of
rodents infested by infectious parasites. Similarly, we have three compartments
for the humans: S(t) denotes susceptibles, I (t) those infested by non-infectious
parasites, and J (t) those infested by infectious parasites.A and d stand for the birth,
resp. death rates of rodents. The notation β1 stands for the transmission rate between
the compartmentsR and T , while β2 is the transmission rate betweenR andQ, resp.
T and Q. B and δ stand for natural birth and death rates for humans, and ρ denotes
disease-induced death rate for the infected human compartment J . The parameter
ν1 denotes transmission rate between the compartments S and I , while ν2 denotes
transmission rate from J to S and J to I . The parameter η1 denotes the transmission
rate from rodents infested by non-infectious parasites to susceptible humans, while
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η2 is the transmission rate from rodents infested by infectious parasites to humans.
We denote by θ1, resp. θ2 the disinfestation, resp. recovery rate from compartments
I , resp. J .

Using the above notations, our equations take the following form:

R′(t) = A− β1R(t)T (t)− β2R(t)Q(t)− dR(t),
T ′(t) = β1R(t)T (t)− β2T (t)Q(t)− dT (t),
Q′(t) = β2R(t)Q(t)+ β2T (t)Q(t)− dQ(t),
S′(t) = B − η1S(t)T (t)− η2S(t)Q(t)− ν1S(t)I (t)− ν2S(t)J (t)

− δS(t)+ θ1I (t)+ θ2J (t),

I ′(t) = η1S(t)T (t)+ ν1S(t)I (t)

− η2I (t)Q(t)− ν2I (t)J (t)− δI (t)− θ1I (t),

J ′(t) = η2S(t)Q(t)+ η2I (t)Q(t)+ ν2S(t)J (t)+ ν2I (t)J (t)

− δJ (t)− ρJ (t)− θ2J (t),

(1)

with positive initial conditions R(0), T (0),Q(0), S(0), I (0), J (0) ≥ 0. The phase
space

R
6+ = {(R, T ,Q, S, I, J ) ∈ R

6 : R, T ,Q, S, I, J ≥ 0}

is clearly invariant to system (1).

3 The Rodent Subsystem

3.1 Equilibria, Local Stability

The first three equations of (1) can be decoupled from the remaining ones. The
subsystem for the spread among rodents, given by

R′(t) = A− β1R(t)T (t)− β2R(t)Q(t)− dR(t),
T ′(t) = β1R(t)T (t)− β2T (t)Q(t)− dT (t),
Q′(t) = β2R(t)Q(t)+ β2T (t)Q(t)− dQ(t)

(2)

has a similar structure as the model given by Dénes and Röst [1, 2], though, in
the present case, birth and death rates are not equal in contrast to the cited papers.
To calculate the equilibria of the full system, we start by calculating those of the
rodent subsystem (2), which are easily obtained by solving the algebraic system of
equations
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0 = A− β1RT − β2RQ− dR,
0 = β1RT − β2TQ− dT ,
0 = β2RQ+ β2TQ− dQ,

resulting in the four possible equilibria

ER =
(
A
d
, 0, 0

)
, ET =

(
d
β1
, A
d
− d
β1
, 0
)

EQ =
(
d
β2
, 0, A

d
− d
β2

)
, ETQ =

(
Aβ2
dβ1
, d
β2
− Aβ2

dβ1
, A
d
− d
β2

)
.

(3)

By introducing a single infested/infected individual into one of the equilibria ER ,
ET and EQ, we obtain three different reproduction numbers. If we introduce a
rodent infested by the non-infectious parasites into the disease- and infestation-free
equilibrium, we obtain the reproduction number r1 = Aβ1

d2 .
Introducing a rodent infested by the infectious parasites into the equilibrium ER ,

we obtain the reproduction number r2 = Aβ2
d2 .

If we introduce a rodent infested by the infectious parasites into the equilibrium
ET , we obtain again the same reproduction number r2. Finally, let us introduce a
rodent infested by the non-infectious parasites into the equilibrium EQ. In this case,
the expected sojourn time of an individual infected with the first strain in the T -
compartment is (β2Q

∗ + d)−1, and the number of new infections generated by this
individual is β1R

∗, where R∗ and Q∗ stand for the first, resp. third coordinates of

the equilibrium EQ. This way we obtain the reproduction number r3 = β1d
2

β2
2A

.

It is obvious that the equilibrium ER always exists, ET exists if and only if r1 >
1,EQ exists if and only if r2 > 1, whileETQ exists if and only if r2 > 1 and r3 > 1.

The following proposition on the local stability of the four equilibria can easily
be checked, see [3].

Proposition 3.1 The disease-free equilibrium ER is locally asymptotically stable
if r1 < 1 and r2 < 1 and unstable if r1 > 1 or r2 > 1. The equilibrium ET
is locally asymptotically stable if r1 > 1 and r2 < 1. The equilibrium EQ is
locally asymptotically stable if r2 > 1 and r3 < 1. The equilibrium ETQ is locally
asymptotically stable if r2 > 1 and r3 > 1.

3.2 Persistence

Before we can state our results on the persistence of the three compartments, we
will need some notions and theorems from [8].

Definition 3.1 Let X be a nonempty set and ρ : X → R+. A semiflow � : R+ ×
X → X is called uniformly weakly ρ-persistent, if there exists some ε > 0 such
that lim supt→∞ ρ(�(t, x)) > ε for all x ∈ X, ρ(x) > 0. � is called uniformly
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(strongly) ρ-persistent if there exists some ε > 0 such that lim inft→∞ ρ(�(t, x)) >
ε for all x ∈ X, ρ(x) > 0. A set M ⊆ X is called weakly ρ-repelling if there is no
x ∈ X such that ρ(x) > 0 and �(t, x)→ M as t →∞.

System (2) generates a continuous flow on the phase space

X :=
{
(R, T ,Q) ∈ R

3+
}
.

Theorem 3.1 R(t) is always uniformly persistent. T (t) is uniformly persistent if
r1 > 1 and r2 < 1 as well as if r2 > 1 and r3 > 1. Q(t) is uniformly persistent if
r2 > 1.

Proof To show uniform persistence of the susceptible compartment, we will use
the method of fluctuation (see, e.g., [7, Lemma A.1]). We denote by R∞ the limit
inferior of R(t), while T∞ and Q∞ denote the limit superior of T (t), resp. Q(t)
as t →∞. Using the fluctuation lemma we know that there exists a time sequence
tk →∞ such that R(tk)→ R∞ and R′(tk)→ 0 as k→∞. If we apply this to the
equation for R(t), we obtain

R′(tk)+ β1R(tk)T (tk)+ β2R(tk)Q(tk) = A.

It is easy to see that for the total rodent population we haveR(t)+T (t)+Q(t)→ A
d

,
thus, 0 ≤ T∞ ≤ A

d
and 0 ≤ Q∞ ≤ A

d
. Using this and letting k → ∞ we get

R∞ ≥ d
β1+β2

.
To show persistence of the infested compartments, we need some theory from

[8]. We use the notation x = (R, T ,Q) ∈ X for the state of the system and the
usual notation ω(x) for the ω-limit set of a point x defined as

ω(x) := {y ∈ X : ∃{tn}n≥1 s. t. tn→∞ and �(tn, x)→ y as n→∞}.

We first show the persistence of T (t). Let ρ(x) = T . Let us consider the invariant
extinction space of T , defined as XT := {x ∈ X : ρ(x) = 0}. We follow [8,
Chapter 8] and examine the set �x∈XT := ∪x∈XT ω(x). Applying the Bendixson–
Dulac criterion with Dulac function 1/Q and the Poincaré–Bendixson theorem, we
obtain that all solutions in the extinction space XT tend to an equilibrium.

Let us first consider the case r1 > 1 and r2 ≤ 1. Clearly, in this case � = {ER}.
As a first step, we prove weak ρ-persistence. In order to apply [8, Theorem 8.17],
we let M1 = {ER}. Then � is a subset of M1, which is isolated, compact, invariant
and acylic. We have to show that M1 is weakly ρ-repelling, from which we obtain
persistence.

Let us suppose that this does not hold, i.e. there exists a solution such that
limt→∞(R(t), T (t),Q(t)) = (A

d
, 0, 0) and T (t) > 0. Then for any ε > 0, for

sufficiently large t , we have R(t) > A
d
− ε and Q(t) < ε. For such t , we can give

the following estimation for T ′(t):
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T ′(t) = T (t)(β1R(t)− β2Q(t)− d) > T (t)
(
β1
A
d
− β1ε − β2ε − d

)
,

which is positive if ε is sufficiently small as Aβ1
d
> d follows from r1 > 1. This

contradicts T (t)→ 0.
In the second case, when r2 > 1 and r3 > 1, also EQ exists, so we have � =

{ER,EQ}. Now we let M1 = {ER} and M2 = {EQ}. Clearly, � ⊂ M1 ∪M2 and
{M1,M2} is acyclic andM1 andM2 are invariant, compact and isolated. We have to
show that M1 and M2 are weakly ρ-repelling.

Suppose first thatM1 is not weakly ρ-repelling. Then there exists a solution such
that limt→∞(R(t), T (t),Q(t)) = (Ad , 0, 0) and T (t) > 0. Again, for any ε > 0, for
sufficiently large t , we have R(t) > A

d
andQ(t) < ε and for such t , we can give the

following estimation for T ′(t):

T ′(t) = T (t)(β1R(t)− β2Q(t)− d) > T (t)
(
β2
A
d
− β1ε − β2ε − d

)
,

where we used that β1 > β2, which follows from r2r3 > 1. This expression is
positive for ε small enough, which contradicts T (t)→ 0.

Now let us suppose thatM2 is not weakly ρ-repelling. Then there exists a solution
such that limt→∞(R(t), T (t),Q(t)) =

(
d
β2
, 0, A

d
− d
β2

)
. Then, for any ε > 0, if t is

large enough, then R(t) > d
β2
− ε and Q(t) < A

d
− d

β2
+ ε and for such t we can

give the following estimation for T ′(t):

T ′(t) = T (t)(β1R(t)− β2Q(t)− d)
> T (t)

(
dβ1
β2
− β1ε − β2

[
A
d
− d
β2
+ ε

]
− d

)

= T (t)
(
dβ1
β2
− Aβ2

d
− (β1 + β2)ε

)
,

which is positive for ε small enough as r3 > 1. This contradicts T (t)→ 0.
Let us now turn to the persistence of Q(t) in the case r2 > 1. We set ρ(x) = Q.

We have the equilibrium ER if r1 ≤ 1 and the two equilibria ER and ET if r1 > 1.
Similarly to the case of T (t), we define the extinction space of Q as XQ := {x ∈
X : ρ(x) = 0} = {(R, T , 0) ∈ R

3+}. In this case we have � = ∪x∈XQω(x) = {ER}
if r1 ≤ 1 and � = ∪x∈XQω(x) = {ER,ET } if r1 > 1. We define M1 = {ER} and
M2 = {ET }. Just like in the proof of the persistence of T (t), � is invariant, and M1
and M2 are isolated and acyclic.

To show that M1 is weakly ρ-repelling, we can proceed in an analogous way as
in the case of T (t).

In the case r1 > 1, we have to show that M2 is weakly ρ-repelling. Suppose this
does not hold. Then there exists a solution such that limt→∞(R(t), T (t),Q(t)) =
( d
β1
, A
d
− d

β1
, 0) and Q(t) > 0. Then, for any ε > 0, if t is sufficiently large, then

R(t) > d
β1
− ε and T (t) > A

d
− d

β1
− ε and for such t we can give the following

estimation for Q(t):
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Q′(t) = Q(t)(β2R(t)+ β2T (t)− d)
> Q(t)

(
β2

(
d
β1
− ε

)
+ β2

(
A
d
− d
β1
− ε

)
− d

)

= Q(t)
(
Aβ2
d
− d − 2β2ε

)
,

which is positive if ε is small enough, as r2 > 1, which contradicts Q(t)→ 0.
We have shown uniform weak persistence in all cases; to show uniform (strong)

persistence, we apply Theorem 4.5 from [8]. Our flow is clearly continuous, the
subspaces XT ,XQ,X \ XT and X \ XQ are invariant. The existence of a compact
attractor is also clear, as all solutions enter a compact region after some time. This
means that all conditions of [8, Theorem 4.5] hold and thus we obtain uniform strong
persistence. ��

3.3 Global Stability

Theorem 3.2

(1) Equilibrium ER is globally asymptotically stable if r1 < 1 and r2 < 1.
(2) Equilibrium ET is globally asymptotically stable on X \ XT if r1 > 1 and

r2 < 1. ER is globally asymptotically stable on XT .
(3) Equilibrium EQ is globally asymptotically stable on X \ XQ if r2 > 1 and

r3 < 1.ER is globally asymptotically stable onXQ if r1 < 1 andET is globally
asymptotically stable on XQ if r1 > 1.

(4) Equilibrium ETQ is globally asymptotically stable on X \ (XT ∪XQ) if r2 > 1
and r3 > 1. ET is globally asymptotically stable on XQ and EQ is globally
asymptotically stable on XT .

Proof First we note that the rodent subsystem (2) can be reduced to two dimensions
by introducing the notation F(t) := R(t)+ T (t). We obtain the system

F ′(t) = A− β2F(t)Q(t)− dF(t),
Q′(t) = β2F(t)Q(t)− dQ(t).

(4)

This system has two equilibria,
(
A
d
, 0
)

and
(
d
β2
, A
d
− d

β2

)
, with the latter one only

existing if r2 > 1. We use the Dulac function 1/Q to show that there is no periodic
solution of (4):

∂

∂F

A− β2FQ− dF
Q

+ ∂

∂Q

β2FQ− dQ
Q

= −β2 − d

Q
< 0.
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Thus, applying the Bendixson–Dulac criterion, we obtain that there is no periodic
solution of (4), and by the Poincaré–Bendixson theorem we get that all solutions
tend to an equilibrium.

In the first two cases, when r2 < 1, only the first equilibrium exists. Thus, in this
caseQ(t)→ 0 and F(t)→ A

d
as t →∞, and therefore, the second equation of (2)

takes the following form on the limit set:

T ′(t) = β1
(
A
d
− T (t)) T (t)− dT (t) = γ T (t)− β1T

2(t)

with γ = (Aβ1
d
− d).

The solution started from T (t) = 0 is the constant solution T (t) ≡ 0, while the
nontrivial solutions take the form

Ceγ t

1+ β1
γ
Ceγ t

(5)

for C ∈ R+. Clearly, for r1 < 1 (which is equivalent to γ ≤ 0), the solutions tend
to zero on the limit set, therefore, for all solutions, T (t)→ 0 as t →∞.

If r1 > 0 (i.e. γ > 0), we have limt→∞ T (t) = A
d
− d

β1
on the limit set; using

the persistence of T (t) we obtain that for all solutions, T (t)→ A
d
− d
β1

as t →∞.
In the case r2 > 1, also the second equilibrium exists. However, we know

from the previous subsection that for r2 > 1, the compartment Q(t) is uniformly
persistent, so no solution with positive initial value in Q(t) can tend to the first
equilibrium. Thus, the limit of all such solutions is the second equilibrium and
Q(t) → (A

d
− d

β2
) as t → ∞. We can proceed in a similar way as in the case

r2 < 1: on the limit set, we can transform the second equation of (2) to

T ′(t) = β1

(
d
β2
− T (t)

)
T (t)− β2

(
A
d
− d
β2

)
T (t)− dT (t)

= γ T (t)− β1T
2(t)

with γ = ( dβ1
β2
− Aβ2

d

)
. Similarly as above, we can see that the solution started from

T (t) = 0 is the constant solution T (t) ≡ 0, while the nontrivial solutions take the
form (5). In the case r3 < 1 (which is equivalent to γ ≤ 0), the solutions tend to 0,
while if r3 > 1 (which is equivalent to γ > 0), we have limt→∞ T (t) = d

β2
− Aβ2

dβ1
,

and this is what we wanted to show. ��
Remark 3.1 We note that changing global asymptotic stability to attractivity, the
results of Theorem 3.2 also hold when the given reproduction numbers are equal to
1, instead of being smaller than 1.
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4 The Human Subsystem

Let us now turn to the human subsystem of (1) consisting of the last three equations.
In the sequel, we assume that the rodent subsystem is in a steady state, and

substitute any of the equilibria of the rodent subsystem into these equations to obtain
the system

S′(t) = B − η1T
∗S(t)− η2Q

∗S(t)− ν1S(t)I (t)− ν2S(t)J (t)

− δS(t)+ θ1I (t)+ θ2J (t),

I ′(t) = η1T
∗S(t)+ ν1S(t)I (t)

− η2Q
∗I (t)− ν2J (t)I (t)− δI (t)− θ1I (t),

J ′(t) = η2Q
∗S(t)+ η2Q

∗I (t)+ ν2S(t)J (t)+ ν2I (t)J (t)

− δJ (t)− ρJ (t)− θ2J (t),

(6)

where T ∗ and Q∗ are the second, resp. third coordinates in any of the four
equilibria (3).

To find all possible equilibria of (6), first we introduce the notation G(t) :=
S(t)+ I (t) to obtain the system

G′(t) = B − η2Q
∗G(t)− ν2G(t)J (t)− δG(t)+ θ2J (t),

J ′(t) = η2Q
∗G(t)+ ν2G(t)J (t)− δJ (t)− ρJ (t)− θ2J (t).

(7)

We will apply the Bendixson–Dulac criterion with Dulac function 1/J and the
Poincaré–Bendixson theorem to obtain that in this case, all solutions of system (7)
tend to one of the equilibria. Indeed, we have

∂

∂G

B − η2Q
∗G− ν2GJ − δG+ θ2J

J

+ ∂

∂J

η2Q
∗G+ ν2GJ − δJ − ρJ − θ2J

J

= − η2Q
∗

J
− ν2 − δ

J
− η2G

J 2 < 0,

from which we obtain the assertion above.
This equation may have two equilibria:

(
D+Bν2−

√
(D−Bν2)

2+4Bη2Q
∗ν2(δ+ρ)

2δν2
,
−D+Bν2+

√
(D−Bν2)

2+4Bη2Q
∗ν2(δ+ρ)

2(δ+ρ)ν2

)
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and
(
D+Bν2+

√
(D−Bν2)

2+4Bη2Q
∗ν2(δ+ρ)

2δν2
,
−D+Bν2−

√
(D−Bν2)

2+4Bη2Q
∗ν2(δ+ρ)

2(δ+ρ)ν2

)

denoted by E1 and E2, respectively, with D = δ2 +Q∗η2ρ + δ(Q∗η2 + θ2 + ρ).
The first coordinate of E1 is always positive, since this coordinate may be rewritten
as

D + Bν2 −
√
(D + Bν2)2 − 4Bδν2(δ + θ2 + ρ)

2δν2
.

It can easily be seen that the first coordinate of E2 is always positive.
Let us first consider the case Q∗ > 0, (i.e. when the rodent subsystem tends to

the equilibrium EQ or ETQ, which is equivalent to r2 > 1). In this case, the second
coordinate of E1 is always positive, while second coordinate of E2 is negative if
Q∗ > 0. Hence, in the case Q∗ > 0, there is only one equilibrium and using the
Poincaré–Bendixson theorem, we obtain that all solutions tend to E1.

In the case r2 ≤ 1, i.e. when Q∗ = 0, the system takes the simpler form

G′(t) = B − ν2G(t)J (t)− δG(t)+ θ2J (t),

J ′(t) = ν2G(t)J (t)− δJ (t)− ρJ (t)− θ2J (t).
(8)

This system has the two equilibria

e1 :=
(
B

δ
, 0

)
and e2 :=

(
δ + θ2 + ρ

ν2
,
Bν2 − δ(δ + θ2 + ρ)

ν2(δ + ρ)
)
.

Now, it is easy to see that the first of these equilibria always exists, while the second
one only exists if

RJ
0 := Bν2

δ(δ + θ2 + ρ) > 1.

Just as above, we obtain that all solutions of (8) tend to one of these equilibria. In
the case RJ

0 ≤ 1, this equilibrium is clearly e1. Using similar methods as for the
rodent subsystem, we will show that J (t) is always uniformly strongly persistent
if RJ

0 > 1. To show this, we choose ρ(x) = J . Consider the extinction space XJ
defined as XJ := {x ∈ R

2+ : ρ(x) = 0}; now � = M1 := e1, which is obviously
invariant, isolated and acyclic. Let us suppose thatM1 is not weakly ρ-repelling, i.e.
there is a solution which tends to e1 such that J (t) > 0. Then, given any ε > 0, for
t sufficiently large, we can give the following estimate for J ′(t):

J ′(t) = ν2G(t)J (t)− δJ (t)− ρJ (t)− θ2J (t)

> J (t)
(
ν2
B
δ
− ν2ε − δ − ρ − θ2

)
,
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which is positive as RJ
0 > 1. Hence, in the case RJ

0 > 1, all solutions of (8) started
with positive initial value J (0) tend to the equilibrium e2.

We have now finished the analysis of (7) and showed that in each case, depending
on the reproduction numbers r2 and RJ

0 , all solutions of this equation tend to an
equilibrium. Let us denote by J ∗ the second coordinate of this equilibrium and
substitute this value into the first two equations of (6) to obtain

S′(t) = B − η1T
∗S(t)− η2Q

∗S(t)− ν1S(t)I (t)− ν2J
∗S(t)

− δS(t)+ θ1I (t)+ θ2J
∗,

I ′(t) = η1T
∗S(t)+ ν1S(t)I (t)− η2Q

∗I (t)

− ν2J
∗I (t)− δI (t)− θ1I (t).

(9)

This equation has a similar structure as (7). The two possible equilibria of system (9)
are

(
ν1(B+θ2J

∗)+P−
√
(ν1(B+θ2J

∗)−P)2+H
2ν1K

,
ν1(B+θ2J

∗)−P+
√
(ν1(B+θ2J

∗)−P)2+H
2ν1K

)

and
(
ν1(B+θ2J

∗)+P+
√
(ν1(B+θ2J

∗)−P)2+H
2ν1K

,
ν1(B+θ2J

∗)−P−
√
(ν1(B+θ2J

∗)−P)2+H
2ν1K

)

denoted by E1 and E2, respectively, where the notations K , P and H are defined
as K = (δ + η2Q

∗ + ν2J
∗), P = K(δ + θ1 + η1T

∗ + η2Q
∗ + ν2J

∗) and H =
4η1ν1T

∗(B + θ2J
∗)K . Again, we can apply the Bendixson–Dulac criterion, in this

case with the Dulac function 1/I , to show that all solutions tend to an equilibrium:

∂

∂S

B − η1T
∗S − η2Q

∗S − ν1SI − ν2J
∗S − δS + θ1I + θ2J

∗

I

+ ∂

∂I

η1T
∗S + ν1SI − η2Q

∗I − ν2J
∗I − δI − θ1I

I

= −η1T
∗

I
− η2Q

∗

I
− ν1 − ν2J

∗

I
− δ

I
− η1T

∗S
I 2

,

which is negative for all I, S > 0.
Similarly as in the case of the equilibria of system (7), it is easy to see that

the first coordinates of E1 and E2 are always positive, while the second coordinate
of E2 is negative if T ∗ > 0 (i.e. when r1 > 1 and r2 < 1, meaning that ET is
globally asymptotically stable or r2 > 1 and r3 > 1 meaning that ETQ is globally
asymptotically stable). Hence, in this case there is only one equilibrium, and by the
Poincaré–Bendixson theorem, all solutions tend to this equilibrium.
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From the above, we obtain that if T ∗ > 0 and Q∗ > 0, i.e. when r2 > 1 and
r3 > 1, then all solutions tend to the equilibrium (E1

1 , E2
1 , E

2
1), where upper index i

denotes the ith coordinate of a given equilibrium.
In the case T ∗ > 0 and Q∗ = 0, i.e. when r1 > 1 and r2 ≤ 1, E1 is the only

equilibrium of (9), and the reproduction number RJ
0 determines which equilibrium

is the limit of the solutions of (8). Hence, if r1 > 1, r2 ≤ 1 and RJ
0 ≤ 1 then all

solutions of (6) tend to the equilibrium

(
E1

1 , E2
1 , 0

)
,

while if r1 > 1, r2 ≤ 1 and RJ
0 > 1 then all solutions of (6) tend to the equilibrium

(
E1

1 , E2
1 ,
Bν2 − δ(δ + θ2 + ρ)

ν2(δ + ρ)
)
.

In the case T ∗ = 0 (i.e. when r1 < 1 and r2 < 1, meaning that ER is
globally asymptotically stable or r2 > 1 and r3 < 1, meaning that EQ is globally
asymptotically stable), system (9) reduces to

S′(t) = B − η2Q
∗S(t)− ν1S(t)I (t)− ν2S(t)J

∗

− δS(t)+ θ1I (t)+ θ2J
∗,

I ′(t) = ν1S(t)I (t)− η2Q
∗I (t)− ν2I (t)J

∗ − δI (t)− θ1I (t),

(10)

which has two equilibria

E1 =
(
η2Q

∗ + ν2J
∗ + δ + θ1

ν1
,
ν1(B + θ2J

∗)− (η2Q
∗ + ν2J

∗ + δ)(η2Q
∗ + ν2J

∗ + δ + θ1)

ν1(η2Q∗ + ν2J ∗ + δ)
)
,

resp.

E2 =
(

B + θ2J
∗

η2Q∗ + ν2J ∗ + δ , 0
)
.

One may easily observe that the second equilibrium always exists, while the sign
of the second coordinate of the first equilibrium depends on the parameters and the
limits Q∗ and J ∗: the first equilibrium exists if and only if

RI
0 := ν1(B + θ2J

∗)
(η2Q∗ + ν2J ∗ + δ)(η2Q∗ + ν2J ∗ + δ + θ1)

> 1.

In the case RI
0 ≤ 1, there is only one equilibrium, E2, so it is clear from the above

that all solutions of (6) tend to the equilibrium
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(
B + θ2J

∗

η2Q∗ + ν2J ∗ + δ , 0, J
∗
)
.

In the case RI
0 > 1, we will again use persistence theory to show that all solutions

of (10) tend to the equilibrium E1. We now choose ρ(x) = I and consider the
extinction space XI := {x ∈ R

2+ : ρ(x) = 0}. It is clear that now � = M1 := {E2},
which is invariant, acylic and isolated. Let us suppose that M1 is not weakly ρ-
repelling, i.e. there exists a solution which tends to E2 such that I (t) > 0. Then, for
any ε > 0, for large enough t , we can estimate I ′(t) as

I ′(t) = I (t)(ν1S(t)− η2Q
∗ − ν2J

∗ − δ − θ1)

> I (t)

(
ν1

(
B + θ2J

∗

η2Q∗ + ν2J ∗ + δ + ε
)
− η2Q

∗ − ν2J
∗ − δ − θ1

)
,

which is positive as RI
0 > 1. From this we obtain that in the case RI

0 > 1, all
solutions of (10) started with positive initial value I (0) tend to E1.

On the ω-limit set of solutions of (6), Eq. (10) holds, which has at most two
equilibria. Hence, the global attractor of (10) consists either of a single equilibrium
or two equilibria and connecting orbits between them. When there is only one
equilibrium, then the solutions of (6) tend to this equilibrium. When two equilibria
exist, then J (t) is uniformly persistent, hence, the ω-limit set of positive solutions
of (6) can only be the equilibrium with the positive J coordinate.

Now we go through all possibilities regarding the value of Q∗ and J ∗ to give
a precise characterization. In the case Q∗ > 0 (i.e. r2 > 1), there is only one
equilibrium of (7), hence J (t) tends to E2

1 . This means that in the case r2 > 1 and
RI

0 ≤ 1 all solutions of (6) tend to the equilibrium

⎛

⎝ B + θ2E
2
1

η2

(
A
d
− d
β2

)
+ ν2E

2
1 + δ

, 0, E2
1

⎞

⎠ ,

while in the case r2 > 1 and RI
0 > 1, all solutions of (6) tend to the equilibrium

(
η2Q

∗+ν2E
2
1+δ+θ1

ν1
,
ν1(B+θ2E

2
1 )−(η2Q

∗+ν2E
2
1+δ)(η2Q

∗+ν2E
2
1+δ+θ1)

ν1(η2Q
∗+ν2E

2
1+δ)

, E2
1

)

with Q∗ = (
A
d
− d
β2

)
.

In the case r2 ≤ 1 (i.e. Q∗ = 0), the reproduction number RJ
0 determines the

limit of J (t). In the case r1 ≤ 1, r2 ≤ 1, RJ
0 ≤ 1, RI

0 ≤ 1, all solutions of (6) tend
to the equilibrium

(
B

δ
, 0, 0

)
.
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In the case r1 ≤ 1, r2 ≤ 1, RJ
0 ≤ 1, RI

0 > 1, all solutions of (6) tend to the
equilibrium

(
δ + θ1

ν1
,
B

δ
− δ + θ1

ν1
, 0

)
.

In the case r1 ≤ 1, r2 ≤ 1, RJ
0 > 1, RI

0 ≤ 1, all solutions of (6) tend to the
equilibrium

(
δ + θ2 + ρ

ν2
, 0,

ν2B − δ(δ + θ2 + ρ)
ν2(δ + ρ)

)
.

In the case r1 ≤ 1, r2 ≤ 1, RJ
0 > 1, RI

0 > 1, all solutions of (6) tend to the
equilibrium

(
ν2B + θ1ρ + δ(θ1 − θ2)

ν1(δ + ρ) ,
δθ2 − ν2B

ν1(δ + ρ) +
δ + θ2 + ρ

ν2
− θ1

ν1
,
ν2B − δ(δ + θ2 + ρ)

ν2(δ + ρ)
)
.

5 Discussion

We have established a six-compartment model to describe the spread of an infectious
disease spread by ectoparasites which are transmitted to humans by rodents.
We have identified three reproduction numbers for the rodent subsystem. These
threshold numbers determine which of the four possible equilibria of the rodent
subsystem is globally attractive. Assuming that the rodent subsystem is already
in a steady state, we studied the human subsystem and calculated the possible
equilibria of this subsystem depending on which of the rodent equilibria is globally
attractive. We also determined which equilibrium of the human subsystem is
globally attractive. Our results show that in each case, depending on the different
reproduction numbers, one equilibrium is globally attractive. Our results show that
if one type of the parasite (infectious or noninfectious) is present in the rodent
population, then the same type will also be present in the human population. Using
our results, we may study the possibilities of eradicating the disease. There are
three main ways to control the disease: we may decrease the transmission rates
η1,2 between humans and rodents, increase the disinfestation rates θ1,2 of humans
to shorten the duration of infestation of humans and we may reduce d which means
culling of the rodents.

Controlling only the human population (increasing the disinfestation rates θ1,2)
only results in a mitigation not sufficient to eradicate the disease. The same holds for
decreasing the transmission rates from rodents to humans, except the extreme case
of decreasing the transmission rates η1,2 to zero. In this latter case, one may decrease
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the human reproduction numbers to be less than 1 by increasing the disinfestation
rates θ1,2 and thus eliminate the infestation.

By controlling the rodent population (increasing the death rate d), one can reduce
the reproduction numbers r1 and r2 to be both less than 1 and this way one may
eliminate the infestation among the rodents. Also in this case, infestation from
rodents to humans can be eliminated and this way the human reproduction numbers
determine which equilibrium of the human subsystem will be globally attractive.
Hence, also in such a case, by increasing the disinfestation rate among humans may
result in the elimination of the parasites and of the disease.
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p-Adic Side of the Genetic Code and the
Genome

Branko Dragovich and Nataša Ž. Mišić

1 Introduction

The living organisms are the most complex systems on our planet Earth and
probably in the whole universe. A central role in the life functioning at the level of
living cells plays the genetic code (GC). The GC is a rule how 64 codons (building
blocks of the genes) code 20 amino acids (building blocks of the proteins) and one
stop signal. Mathematically, the genetic code is a map from a set of 64 elements onto
a set of 21 elements. There are more than three times codons with respect to protein
amino acids, so every amino acid could be coded by three codons. However amino
acids are not coded by equal number of codons. In the standard GC two amino acids
are coded by one codon, while other amino acids are coded by either two, three, four
or six codons (stop signal is coded by three codons), see Table 1. This property that
some amino acids are coded by more than one codon is called the degeneration of
the GC. By an estimation [1] there is more than 1084 possibilities to map set of 64
elements onto set of 21 elements, while in the living organisms there is practically
one basic genetic code with few dozen slight modifications. Then a question arises:
What are the essential properties of the basic genetic code and how to describe them
in the simple mathematical form. A satisfactory answer to this question belongs to
the adequate mathematical modeling.

The standard GC was deciphered in the mid-1960s. Usually it is presented by
the genetic code table (see Table 1), where an explicit relation between codons
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Table 1 Table of the standard genetic code

UUU Phe (F) UCU Ser (S) UAU Tyr (Y) UGU Cys (C)

UUC Phe (F) UCC Ser (S) UAC Tyr (Y) UGC Cys (C)

UUA Leu (L) UCA Ser (S) UAA Ter ( * ) UGA Ter ( * )

UUG Leu (L) UCG Ser (S) UAG Ter ( * ) UGG Trp (W)

CUU Leu (L) CCU Pro (P) CAU His (H) CGU Arg (R)

CUC Leu (L) CCC Pro (P) CAC His (H) CGC Arg (R)

CUA Leu (L) CCA Pro (P) CAA Gln (Q) CGA Arg (R)

CUG Leu (L) CCG Pro (P) CAG Gln (Q) CGG Arg (R)

AUU Ile (I) ACU Thr (T) AAU Asn (N) AGU Ser (S)

AUC Ile (I) ACC Thr (T) AAC Asn (N) AGC Ser (S)

AUA Ile (I) ACA Thr (T) AAA Lys (K) AGA Arg (R)

AUG Met (M) ACG Thr (T) AAG Lys (K) AGG Arg (R)

GUU Val (V) GCU Ala (A) GAU Asp (D) GGU Gly (G)

GUC Val (V) GCC Ala (A) GAC Asp (D) GGC Gly (G)

GUA Val (V) GCA Ala (A) GAA Glu (E) GGA Gly (G)

GUG Val (V) GCG Ala (A) GAG Glu (E) GGG Gly (G)

The 20 amino acids found in proteins are listed with three-letter and single-letter notation. The
mRNA codons representing each amino acid are also listed. All 64 possible 3-letter combinations
of nucleotides C, A, U and G are used either to encode one of these amino acids or as one of
the three stop codons that signal the end of a codon sequence. While mRNA can be decoded
unambiguously, it is not possible to exactly predict the corresponding mRNA sequence from its
amino acids sequence, because most amino acids have multiple codons

and amino acids is given. Already at the first sight, one can note that the relations
between codons and amino acids are not random but well arranged.

First attempts to model the GC were undertaken soon after discovery of the
double helix structure of DNA in 1953, i.e. before the standard genetic code was
deciphered. For a review of these, theoretically interesting and biologically wrong,
early models (of Gamow and Crick), see, e.g., Hayes [2]. Soon after deciphering of
the genetic code, Rumer [3] correctly noted that the first two bases (nucleotides) in
the codon are more important in coding than the third one.

There are many papers devoted to mathematical investigation of the genetic code,
and we refer [4–7] here only to a few of them which illustrate algebraic modeling.
They mainly connect irreducible representations of some algebras with structure
of the 64 codons. Although these algebraic approaches contain some interesting
results, they are rather complex mathematical constructions. In this context, it
is worth recalling the emergence of special theory of relativity and quantum
mechanics. In both cases there were experimental results without satisfactory
interpretation by known classical theories, which occurred to be complex along
efforts to adapt them to experimental data. However, invention of new theoretical
concepts and application of the corresponding mathematical methods provided
correct description and appearance of these two theories (relativistic and quantum)
which make the fundamental of modern theoretical physics.
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In 2006, a quite new and simple approach to model the genetic code was
proposed [8]. The basic idea is in the following. Two codons which code the
same amino acid are closer in the information sense than those codons which code
different amino acids. This closeness is in an ultrametric space which elements are
codons. The natural way to realize such ultrametric space is by introducing adequate
p-adic space of codons. In the Dragovich [8] approach was constructed related 5-
adic space and p-adic distance between codons was considered for p = 5 and
p = 2. This model very well describes the structure of the codon space which
appears in coding of amino acids. In a series of papers [8–13] was shown that the
concept of p-adic distance is adequate for description of the genetic code structure
and promising approach to further investigation of similarity in the genomes.

This article is mainly devoted to developments of p-adic modeling of the genetic
code and the genome initiated by B. Dragovich, where p = 5 and 2. In the case,
the vertebrate mitochondrial code (Table 4) is considered as the basic code. To the
nucleotides are assigned digits in three digit 5-adic numbers which correspond to
the codons. With respect to the smallest 5-adic distance, 64 codons form 16 codon
quadruplets. Each of these quadruplets is composed of two doublets according to 2-
adic distance. In this way, one obtains 32 codon doublets—within every doublet the
first two nucleotides are the same, while the third nucleotides are either purines or
pyrimidines. Every doublet is assigned either to an amino acid or to the stop signal.
In the vertebrate mitochondrial code there are 12 amino acids (aa) coded by single
doublets, 6 aa and stop signal are coded by two doublets, and 2 aa are coded by three
doublets. Note that the standard GC can be obtained from this mitochondrial one by
the following formal replacements in codon assignments: AUA: Met → Ile, AGA
and AGG: Ter→ Arg, UGA: Trp→ Ter, where Ter denotes stop (terminal) codon.

This paper is organized in the following way. In Sect. 2 we give basic information
on the genome and the genetic code. Section 3 contains a short and basic
introduction to ultrametric spaces and, in particular, to ultrametricity with p-adic
distance. Various aspects of the p-adic genetic code are considered in Sect. 4. A
p-adic approach to ultrametric side of the genome is presented in Sect. 5. Some
concluding remarks are stated in the last section.

2 On the Genome and the Genetic Code

We recall here some knowledge from molecular biology related to DNA, RNA,
proteins, their constituents, structures and functions.

The genome of an organism is its whole genetic material which consists of the
coding and non-coding parts of DNA. In some viruses, genetic material consists of
RNA. Investigation of the genome is the subject of genomics.

DNA (desoxyribonucleic acid) is a macromolecule which contains two polynu-
cleotide chains with double-helical structure discovered by Crick and Watson in
1953. Nucleotides consist of a base, a sugar and a phosphate group. The sugar and
phosphate groups provide a helical backbone of DNA. There are four nitrogenous
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bases: cytosine (C), adenine (A), thymine (T) and guanine (G). Cytosine and
thymine belong to pyrimidines, while adenine and guanine are purines. From
information point of view, bases and their corresponding nucleotides have the same
meaning. Two helical chains share complementary base pairing—to base C in one
chain corresponds G in the other one, and the same rule is valid for pairing of A and
T. Hence in DNA there is an equal number of C andG, and also an equal number of
A and T. DNA are packed in the chromosomes and their main role is to store genetic
information. For example, DNA of Homo sapiens contains over 3× 109 base pairs.
Only about 1.5% of human DNA code proteins, the rest is non-coding DNA related
to regulatory processes and unknown functions.

RNA (ribonucleic acid) is a single-strand polynucleotide molecule, where
thymine is substituted by uracil (U) which is also pyrimidine. As a result of gene
transcription from DNA one obtains messenger RNA (mRNA). In such process
nucleotides C, A, T, G from a gene are transcribed into their complements G, U, A,
C. After splicing mRNA comes to ribosomes where performs synthesis of proteins
on the basis of information contained in mRNA. In this gene expression some non-
coding RNAs (ncRNA) also participate, like microRNA (miRNA), transfer RNA
(tRNA) and ribosomal RNA (rRNA).

Codons are ordered triplets composed of the four nucleotides C, A, T(U), G.
There are 4 × 4 × 4 = 64 codons. Each of the codons contains information which
determines an amino acid or stop signal in the process of the protein synthesis.

Proteins [14] are polypeptide macromolecules composed of amino acids primar-
ily arranged in a linear chain. They are substantial ingredients of all living cells and
determine the phenotype of any organism. Proteins have primary, secondary and
tertiary structure which is closely related to their function. Proteomics is a study of
the proteome which is a set of all proteins of an organism.

Amino acids are molecules that consist of amino, carboxyl and side chain
group (R). There are 20 standard protein amino acids (alanine, cytosine, aspartate,
glutamate, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methion-
ine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan,
tyrosine) which differ with respect to R group. The sequence of codons in mRNA
determines sequence of amino acids in a protein.

As it was stated in Introduction, the genetic code is a concrete connection
between 64 codons and 20 amino acids with stop signal. It is not direct chemical
connection between codons and amino acids, but there are some intermediate steps.
After transcription of a gene from DNA, the corresponding RNA passes a splicing
process in which introns (some sequences of nucleotides) being removed and one
gets a maturated mRNA which is a definite sequence of codons. Such mRNA serves
as a matrix which strongly defines sequence of amino acids in proteins. The reading
of mRNA and synthesis of proteins performs in the ribosomes which are very
complex molecular systems composed of the rRNA and ribosomal proteins. An
amino acid incoming to protein synthesis is attached to its tRNA, while another
side of tRNA contains the corresponding anticodon. An anticodon consists of
nucleotides which are mainly complementary to nucleotides in the related codon.
According to Crick’s wobble hypothesis [15] there is a smaller number of tRNA
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than codons which code amino acids. Namely, the first to nucleotides of a codon
are recognized by tRNA according to complementary rule, but the third nucleotide
can be recognized by the first position in the tRNA anticodon as follows: (1) C
recognizes G; (2) A recognizes U; (3) U can recognize A and G; (4) G can recognize
C and U; and (5) I (inosine) can recognize C, A and U.

3 Ultrametric and p-Adic Distances

To measure distances between two objects with positions x and y at the straight line
one uses standard absolute value, i.e. d(x, y) = |x − y|. As distance is smaller one
says that objects are closer. M. Fréchet (1878–1973) in 1906 generalized notion of
distance and introduced the metric space (M,d), whereM is a set and d is a distance
function. Distance d is a real-valued function of any two elements x, y ∈ M which
satisfy the following properties:

(i) d(x, y) = 0 ⇔ x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ d(x, z)+ d(z, y),

where last property is called triangle inequality. An ultrametric space is a metric
space which also satisfies ultrametric (also known as strong triangle or non-
Archimedean) inequality

d(x, y) ≤ max{d(x, z), d(z, y)}. (1)

Ultrametric space was introduced in 1944 by M. Krasner (1912–1985), although
examples of ultrametric spaces have been used earlier in taxonomy, which started
1735 by C. Linné (1707–1778) as biological classification with hierarchical struc-
ture. Living beings with more common ancestors are ultrametrically closer than
those with less common. A very important class of ultrametric spaces contains p-
adic numbers which were introduced in 1897 by K. Hensel (1861–1941).

The ultrametric spaces have many unusual properties which are a consequence
of the ultrametric inequality (1). For example, by suitable notation of points x, y, z,
inequality (1) can be rewritten in the form d(x, y) ≤ d(x, z) = d(y, z). This
means that all ultrametric triangles are isosceles. One can note also the following
properties: (1) There is no partial intersection of the balls; (2) Any point of a ball
can be its center; (3) Each ball is both open and closed—clopen ball. For a proof of
these properties of ultrametric balls, see, e.g., Schikhof’s book [16].

To illustrate ultrametric spaces, it is worth considering an alphabet of k letters
with the corresponding words of the length n (n-letter words). Then there are kn

words. Let the related set of words be denoted byWk,n(kn). For simplicity and what
we will have in the sequel, we can consider ultrametricity of the case W4,3(64).
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As ultrametric distances, we shall consider: ordinary ultrametric distance, the Baire
distance and p-adic distance.

3.1 Ordinary Ultrametric Distance

Ordinary ultrametric distance between any two different words x and y is d(x, y) =
n − (m − 1), where m(m = 1, 2, . . . , n) is the first position at which letters differ
counting from the beginning. It takes n values, i.e. d(x, y) = 1, 2, . . . , n. Note that
one can redefine this distance by scaling it as ds(x, y) = n−m+1

n
and then the scaled

distances are between 1, n−1
n
, . . . , 2

n
, 1
n

.
In the concrete case W4,3(64) there are 64 three-letter words (see Table 2).

Possible distances d(x, y) are 1, 2, 3 and the corresponding scaling ones are

ds(x, y) = 4−m
3

=

⎧
⎪⎪⎨

⎪⎪⎩

1, m = 1
2
3 , m = 2
1
3 , m = 3.

(2)

For example, ds(abc, bac) = 1, ds(abc, acb) = 2
3 , ds(abc, abb) = 1

3 .

3.2 The Baire Distance

This distance is usually defined as dB(x, y) = 2−(m−1),wherem is as defined in the
above, i.e. it is the first position in words x and y at which letters differ, and it can
be m = 1, 2, . . . , n. Thus the Baire distance takes values 1, 1

2 ,
1
22 , . . . ,

1
2n−1 . Note

that instead of the base 2 one can take any natural number larger than 2.
In the case W4,3(64) the Baire distance is

dB(x, y) = 2−(m−1) =

⎧
⎪⎪⎨

⎪⎪⎩

1, m = 1
1
2 , m = 2
1
4 , m = 3.

(3)

For example, dB(abc, bac) = 1, dB(abc, acb) = 1
2 , dB(abc, abb) = 1

4 .
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3.3 p-Adic Distance

p-Adic absolute value (p-adic norm) of a non-zero integer x is |x|p = p−k, where
k is degree of a prime number p in x, and |0|p = 0. Since k ∈ N, p-adic absolute
value of any integer x is |x|p ≤ 1. p-Adic distance between two integers x and y
is dp(x, y) = |x − y|p. This distance is related to divisibility of x − y by prime
p (more divisible—lesser distance). With respect to a fixed prime p as a base, any
positive integer has its unique expansion x = x0+x1 p+x2 p

2+· · ·+xn pn,where
xi ∈ {0, 1, . . . , p − 1} are digits. If in this expansion xk is the first digit different
from zero, then p-adic norm of x is |x|p = p−k.

To have connection with the above alphabet and words it is natural to make a
correspondence between letters {a, b, c, d} and some four digits. In this way the role
of letters play digits (see Table 2). The smallest prime number base which contains
four digits is p = 5 and we use digits {1, 2, 3, 4}without digit 0. One can construct
some sets of 5-adic integers in the form

x = x0 + x1 5+ · · · + xk 5k or x ≡ x0x1 . . . xk, xi ∈ {1, 2, 3, 4}. (4)

Table 2 Table of words
constructed of four letters and
arranged in the ultrametric
form

111 aaa 211 baa 311 caa 411 daa
112 aab 212 bab 312 cab 412 dab
113 aac 213 bac 313 cac 413 dac
114 aad 214 bad 314 cad 414 dad
121 aba 221 bba 321 cba 421 dba
122 abb 222 bbb 322 cbb 422 dbb
123 abc 223 bbc 323 cbc 423 dbc
124 abd 224 bbd 324 cbd 424 dbd
131 aca 231 bca 331 cca 431 dca
132 acb 232 bcb 332 ccb 432 dcb
133 acc 233 bcc 333 ccc 433 dcc
134 acd 234 bcd 334 ccd 434 dcd
141 ada 241 bda 341 cda 441 dda
142 adb 242 bdb 342 cdb 442 ddb
143 adc 243 bdc 343 cdc 443 ddc
144 add 244 bdd 344 cdd 444 ddd

The same has done for three-digit 5-adic num-
bers, where four digits are identified as a =
1, b = 2, c = 3, d = 4. These cases illustrate
ultrametric spaces of W4,3(64). Here 64 three-
digit 5-adic numbers (three-letter words) are
presented so that within boxes 5-adic distance
is the smallest, i.e. d5(x, y) = 1

25 , while 5-adic
distance between any two boxes in vertical line
is 1

5 and otherwise is equal to 1. Ultrametric
tree illustration of these cases is in Fig. 1
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Note that our notation of natural numbers by position of digits is opposite with
respect to the usual decimal one. The four letters {a, b, c, d} can be identified with
the four digits {1, 2, 3, 4} as follows: a = 1, b = 2, c = 3, d = 4. Then there
are 64 words presented in two different ways—by three letters and three digits, see
Table 2.

In the case W4,3(64) there are three-letter words represented now by three-digit
5-adic numbers (see Table 2). The corresponding 5-adic distance of a pair of words
(numbers) x = x0 + x15+ x252 ≡ x0x1x2 and y = y0 + y15+ y252 ≡ y0y1y2 is

d5(x, y) = |x0x1x2 − y0y1y2)|5 =

⎧
⎪⎪⎨

⎪⎪⎩

1, x0 �= y0
1
5 , x0 = y0, x1 �= y1
1

25 , x0 = y0, x1 = y1, x2 �= y2 .

(5)

For example, d5(123, 213) = 1, d5(123, 132) = 1
5 , d5(123, 122) = 1

25 .

We shall see later that p-adic distance between words is finer and more
informative than the ordinary and the Baire distances. Namely, for the same set
of natural numbers one can also employ p-adic distance with p �= 5.

The most advanced examples of the ultrametric spaces are the fields of p-adic
numbers Qp, where index p denotes any prime number. There are infinitely many
fields Qp which are not mutually isomorphic—for every prime number p there is
its own Qp. There are also infinitely many algebraic extensions, which are some
analogs of the classical field C of complex numbers. The field Qp can be constructed
by completion of the field Q of rational numbers in the same procedure as it is
usually done for the field Q∞ ≡ R of real numbers, just one has to take | · |p
instead of the usual absolute value | · |∞ ≡ | · |. p-Adic numbers and their functions
are rather well-developed part of modern mathematics, see, e.g., books [16, 17].
Many applications from Planck scale physics via complex systems to the universe
as a whole, known as p-adic mathematical physics, have been considered, e.g. see
recent review articles [18, 19]. p-Adic and standard models (over real and complex
numbers) are connected within adelic framework, see adelic quantum mechanics
[20, 21]. In this modeling of the genetic code only p-adic distance is used.

The above examples illustrate how ultrametric distance measures dissimilarity
between two words, or in other words, dissimilarity between two elements of an
ultrametric space. Also these ultrametric examples can be represented by trees.
Namely, instead of the four letters {a, b, c, d} or digits {1, 2, 3, 4} in the three-letter
words one can take four line segments to draw edges of the related tree (see Fig. 1).

4 The p-Adic Genetic Code

Now we want to apply the above presented ultrametric and, in particular, p-
adic distance to the investigation of the genetic code properties. To this end we
have to establish connection between set of nucleotides {C, A, U, G} and set of
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Fig. 1 Ultrametric tree
related to Table 2. Tree is
related to W4,3(64) case and
also to the vertebrate
mitochondrial code presented
at Table 4. One can easily
calculate ordinary ultrametric
distance and see that distance
between any three tree end
points satisfies the strong
triangle (ultrametric)
inequality

Table 3 Eight possible
connections between the
nucleotides {C, G, U, A} and
the digits {1, 2, 3, 4} which
take care that 2-adic distance
between two pyrimidines (C,
U), as well as between two
purines (A, G), is 1

2

C = 1 A = 2 U = 3 G = 4

U = 1 G = 2 C = 3 A = 4

C = 1 G = 2 U = 3 A = 4

U = 1 A = 2 C = 3 G = 4

A = 1 C = 2 G = 3 U = 4

G = 1 U = 2 A = 3 C = 4

A = 1 U = 2 G = 3 C = 4

G = 1 C = 2 A = 3 U = 4

digits {1, 2, 3, 4}. There are 4! possible connections. However, taking into account
chemical properties of nucleotides and coded amino acids, 4! possibilities can be
reduced to 8 options presented in Table 3. Namely, there are two pyrimidines
which have similar structure (one ring) and two purines which also have similar
structure (two rings). Note that there is strong connection in living organisms
between structure and function. This similarity within two pyrimidines, as well as
similarity within two purines, can be described by 2-adic distance. Fortunately, by
2-adic distance one can also express dissimilarity between purines and pyrimidines.
Since d2(3, 1) = d2(4, 2) = |2|2 = 1

2 one has to connect nucleotides and digits
so that d2(U,C) = d2(G,A) = 1

2 and d2(purine, pyrimidine) = 1. As the most
suitable we take the following identification: C = 1, A = 2, U = 3, G = 4.

Since the vertebrate mitochondrial ((VM)) code is simpler than the standard
genetic code, we apply this approach first of all to the VM code, see Table 4 with
symmetry in distribution of codon doublets and quadruplets with respect to the
middle vertical line. It is worth noting that an amino acid in this VM code is coded
either by one, two or three pairs of codons. Every such pair of codons has the same
first two nucleotides and at third position are two pyrimidines or two purines. In
fact there are 16 codon quadruplets within which 5-adic distance is the smallest, i.e.
1
25 . A pair of two codons which has simultaneously 5-adic distance 1

25 and 2-adic
distance 1

2 is called doublet. In the case of VM code, 64 codons can be viewed as
32 codon doublets, which are distributed as follows: 12 amino acids (His, Gln, Asn,
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Table 4 The vertebrate mitochondrial code with p-adic ultrametric structure

111 CCC Pro 211 ACC Thr 311 UCC Ser 411 GCC Ala

112 CCA Pro 212 ACA Thr 312 UCA Ser 412 GCA Ala

113 CCU Pro 213 ACU Thr 313 UCU Ser 413 GCU Ala

114 CCG Pro 214 ACG Thr 314 UCG Ser 414 GCG Ala

121 CAC His 221 AAC Asn 321 UAC Tyr 421 GAC Asp

122 CAA Gln 222 AAA Lys 322 UAA Ter 422 GAA Glu

123 CAU His 223 AAU Asn 323 UAU Tyr 423 GAU Asp

124 CAG Gln 224 AAG Lys 324 UAG Ter 424 GAG Glu

131 CUC Leu 231 AUC Ile 331 UUC Phe 431 GUC Val

132 CUA Leu 232 AUA Met 332 UUA Leu 432 GUA Val

133 CUU Leu 233 AUU Ile 333 UUU Phe 433 GUU Val

134 CUG Leu 234 AUG Met 334 UUG Leu 434 GUG Val

141 CGC Arg 241 AGC Ser 341 UGC Cys 441 GGC Gly

142 CGA Arg 242 AGA Ter 342 UGA Trp 442 GGA Gly

143 CGU Arg 243 AGU Ser 343 UGU Cys 443 GGU Gly

144 CGG Arg 244 AGG Ter 344 UGG Trp 444 GGG Gly

Digits are related to nucleotides as follows: C = 1, A = 2, U = 3, G = 4. 5-Adic distance
between codons: 1

25 inside quadruplets, 1
5 between different quadruplets in the same column, 1

otherwise. Each quadruplet can be viewed as two doublets, where every doublet code one amino
acid or termination signal (Ter). 2-Adic distance between codons in doublets is 1

2 . Two doublets
which code the same aa belong to the same quadruplet. Amino acids leucine (Leu) and serine
(Ser) are coded by three doublets—the third doublet is at 1

2 2-adic distance with respect to the
corresponding doublet in quadruplet, which contains the first two doublets

Lys, Tyr, Asp, Glu, Ile, Met, Phe, Cys and Trp) are coded by single doublets, 6 aa
(Pro, Thr, Ala, Val, Arg and Gly) and stop signal are related to two doublets, and 2
aa (Ser and Leu) are coded by three doublets.

We can note that each of amino acids serine (Ser) and leucine (Leu) has one
doublet which is separated from their quadruplet codons at 5-adic distance equal 1,
but codons in the doublet are still at 1

2 2-adic distance with respect to codons in the
corresponding doublet within quadruplet.

Skipping digit 0 is suitable in p-adic modeling of the genetic code. Namely,
to use the digit 0 for a nucleotide is inadequate, because it may lead to non-
uniqueness in the representation of the sequence of codons in DNA and RNA by
natural numbers.

4.1 On Evolution of the Genetic Code

The origin and early evolution of the genetic code are among the most intriguing and
important problems of the origin and evolution of the life. Since there are no fossils
from that time, it gives rise to some speculations. However, it might be possible that
some of these hypotheses could be tested as related traces in the modern genomes.
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Biological evolution is an adaptive development of simpler living systems to
more complex ones. Living organisms are open systems in permanent interaction
with environment, guided by some internal rules and environmental factors.

One can conjecture [9] on the evolution of the genetic code using p-adic
approach to the genetic code and the genomic space, assuming that simpler codons
coded older amino acids.

According to this hypothesis standard codons evolved in three steps.

(i) Single nucleotide codons.
In this primitive code, single four nucleotides {C, A, U, G} play role of

codons and code four amino acids {Gly, Ala, Asp, Val}, which are the oldest
according to their temporal appearance, see Table 5. These amino acids are in
the last column of Table 4 and it is natural to assign mid-nucleotides to these
amino acids. Then the primitive code reads: C = 1 = Ala, A = 2 = Asp, U =
3 = Val, G = 4 = Gly.

(ii) Dinucleotide codons.
Dinucleotides are codons made of two nucleotides. According to this

hypothesis they appeared by adding four nucleotides in front of every four
primitive codons: C → CC, AC, UC, GC; A → CA, AA, UA, GA; U →
CU, AU, UU, GU; G → CG, AG, UG, GG. Addition of nucleotide G to
the primitive code does not change its meaning, i.e. GC = 41 = Ala, GA =
42 = Asp, GU = 43 = Val, GG = 44 = Gly, see Tables 4 and 6. Other 12
dinucleotides code 11 new amino acids so that serine (Ser) is coded twice, see
Table 5.

Table 5 Temporal
appearance of the 20 standard
amino acids

(1) Gly (2) Ala (3) Asp (4) Val

(5) Pro (6) Ser (7) Glu (8) Leu

(9) Thr (10) Arg (11) Ile (12) Gln

(13) Asn (14) His (15) Lys (16) Cys

(17) Phe (18) Tyr (19) Met (20) Trp

For details of this temporal appearance of the 20
standard amino acids, see Trifonov’s paper [22]

Table 6 Table of amino acids coded by the codons which have pyrimidine at the third position

11(11) CC Pro 21(12) AC Thr 31(13) UC Ser 41(14) GC Ala

12(21) CA His 22(22) AA Asn 32(23) UA Tyr 42(24) GA Asp

13(31) CU Leu 23(32) AU Ile 33(33) UU Phe 43(34) GU Val

14(41) CG Arg 24(42) AG Ser 34(43) UG Cys 44(44) GG Gly

Only serine (Ser) appears twice. By this way, there is a formal connection between the amino acids
and the root (dinucleotide) of codons coding them. Identifying these amino acids with related
codon roots (i.e. first two digits of 5-adic numbers) one gets some ultrametricity between above
amino acids (on importance of 16 codon roots, see Rumer’s paper). Since the amino acids which
are coded by codons having the same nucleotide at the second position have the similar chemical
properties, it is better to use ultrametric distance assigning digits to amino acids in opposite way,
as it is done in the brackets. This interchange of digits could be related to evolution of the genetic
code
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(iii) Trinucleotide codons.
Trinucleotide codons exist in all living cells. They were formed by adding

all four nucleotides C, A, U(T), G at the end of each 16 dinucleotides, i.e. at
the third position. These 64 codons provided possibility to code all 20 amino
acids and stop signal by more than 1 codon. Those dinucleotide codons that
got pyrimidine at the third position did not change their meaning, cf. Tables 4
and 6.

According to this genetic code evolution, formation of a trinucleotide codon
started by nucleotide which is now at the second position, then it was added
nucleotide which is now at the first position, and finally appeared nucleotide at
the third position. This evolution of codons is in agreement with evidence that
codons with the same nucleotide at the second position code amino acids with
similar chemical properties. Also this evolution hypothesis in three steps gives
an explanation why set of 64 codons is an ultrametric space, see Table 4 for the
vertebrate mitochondrial code.

Further evolution of the genetic code is related to variations in assignment of
some amino acids to some trinucleotide codons. These variations can be viewed
as slight changes in the VM code. For example, the standard code obtains by the
following changes:

• 232 (AUA): Met→ Ile,
• 242 (AGA) and 244 (AGG): Ter→ Arg,
• 342 (UGA): Trp→ Ter.

It seems that all versions of the genetic code are optimally arranged with respect to
possible mutations and evolution of other cell ingredients (coevolution [23]).

4.2 On the Genetic Code as an Ultrametric Network

Many systems can be considered as networks, which are sets of nodes (vertices)
joined together by edges (links). There are many examples in biological and social
systems. Let us see how the genetic code can be viewed as a p-adic ultrametric
network.

One can start from two separate systems of biomolecules—one related to 4
nucleotides and another based on 20 standard amino acids. Four types of nucleotides
are chemically linked to a large number of various sequences known as DNA and
RNA. Standard amino acids can also be chemically linked and form various peptides
and proteins. These sequences of DNA and RNA, as well as peptides and proteins,
are well-known examples of biological networks.

By the genetic code amino acids are linked to codons, which are elements of
an ultrametric space. Since standard amino acids can also be formally regarded as
elements of an ultrametric space (see Table 7), one can say that the genetic code
links two ultrametric networks to one larger ultrametric network of 85 elements (64
codons + 20 aa + 1 stop signal). Note that one can also consider ultrametric distance
between codons and amino acids with stop signal.
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Table 7 The rewritten and extended Table 6, where the first two digits are replaced

11 Pro 12 Thr 13 Ser 14 Ala

21 His 22 Asn 23 Tyr 24 Asp 212 Gln 222 Lys 242 Glu

31 Leu 32 Ile 33 Phe 34 Val 322 Met

41 Arg 43 Cys 44 Gly 432 Trp

Third digits are added to the amino acids which are coded by one doublet with purine at the
third position. Table contains ultrametrics between amino acids, which corresponds to some of
their physicochemical properties. 5-Adic distance between amino acids in rows is either 1

5 or 1
25 ,

otherwise it is equal to 1

If we look at codons as an ultrametric network with information content, then
they are nodes mutually linked by p-adic distance. Recall that there are three
possibilities of 5-adic distance between codons: 1

25 ,
1
5 and 1. With respect to

these distances, we can, respectively, call the corresponding subsets of codons as
small, intermediate and large community. Thus, any codon has 3 neighbors at 5-
adic distance 1

25 and makes a small community. Any codon is also linked to 12
and 48 other codons to make an intermediate and large community, respectively.
Consequently, any codon belongs simultaneously to a small, intermediate and large
community.

Amino acids in Table 7 have the following physicochemical similarities.

• First row: small size and moderate in hydropathy.
• Second row: average size and hydrophilic.
• Third row: average size and hydrophobic.
• Fourth row: special case of diversity.

5 The p-Adic Genome

In the previous section we demonstrated that codons and amino acids are elements
of some p-adic ultrametric spaces. Ultrametric approach should be useful also in
investigation of similarity (dissimilarity) between definite sequences of DNA, RNA
and proteins. These sequences can be genes, microRNA, peptides, or some other
polymers. Since elements of genes (proteins) are codons (amino acids), which have
ultrametric properties, it is natural to use their ultrametric similarity in determination
of similarity between genes (proteins). It means that one can consider not only
ultrametric similarity between two sequences (strings) but also ultrametrically
improved Hamming distance.
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5.1 p-Adic Modification of the Hamming Distance

Let a = a1 a2 · · · an and b = b1 b2 · · · bn be two strings of equal length. Hamming
distance between these two strings is dH (a, b) =∑n

i=1 d(ai, bi),where d(ai, bi) =
0 if ai = bi, and d(ai, bi) = 1 if ai �= bi. In other words, dH (a, b) = n−ν,where ν
is the number of positions at which elements of both strings are equal. We introduce
p-adic Hamming distance in the following way: dpH (a, b) = ∑n

i=1 dp(ai, bi),

where dp(ai, bi) = |ai − bi |p is p-adic distance between numbers ai and bi.
When ai, bi ∈ N then dp(ai, bi) ≤ 1. If also ai − bi �= 0 is divisible by p, then
dp(ai, bi) < 1. There is the following relation: dpH (a, b) ≤ dH (a, b) ≤ d(a, b),

where d(a, b) is the ordinary ultrametric distance. In the case of strings as parts
of DNA, RNA and proteins, this modified distance is finer and should be more
appropriate than Hamming distance itself. For example, elements ai and bi can
be nucleotides, codons and amino acids with above assigned natural numbers, and
primes p = 2 and p = 5.

6 Concluding Remarks

In this paper we presented some simple examples of ultrametric spaces. We applied
p-adic distances for modeling of 64 codons and 20 standard amino acids. Ultra-
metric space of codons is illustrated by the corresponding tree. We emphasized that
degeneracy of the vertebrate mitochondrial code has strong ultrametric structure.
A p-adic approach to evolution of codons and the genetic code is presented. It
is shown that codons and amino acids can be viewed as ultrametric networks
which are connected by the genetic code. Investigation of similarity (dissimilarity)
between genes, microRNA, proteins and some other polymers by p-adic ultrametric
approach, in particular by the p-adic Hamming distance, is proposed.

We plan to employ this ultrametric approach to investigation of concrete DNA,
RNA and protein sequences. This approach can also be applied to analyze similarity
of words in some human languages and some systems of hierarchical structure.
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Stochastic Assessment of Protein
Databases by Generalized Entropy
Measures

R. P. Mondaini and S. C. de Albuquerque Neto

1 Introduction

In this work we continue the development of the topic of identifying domain
regions in protein databases via functions of random variables like generalized
entropy measures [1–4]. We take as granted the familiarity with protein as sequences
of amino acids and with protein domains as characterized by expert biologists
[5–8]. From m protein family domains, we isolate nl amino acids on each domain,
l = 1, 2, . . . , m. We then discard all domains such that nl < n with n specified a
priori and we also delete (nl−n) amino acids on all remaining domains with nl > n.
According to Fig. 1, we then form blocks of m × n amino acids each. The sample
space of the subsequent statistical analysis to be undertaken is then formed from the
association of at least one of these blocks to each protein family domain.

Our aim is to identify the Evolution of proteins on protein databases via the
distribution of random variables functions like entropy measures.

By considering t ordered values of the n columns of the m × n block above,
j1 < j2 < · · · < jt−1 < jt with 1 ≤ t ≤ n such that
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Fig. 1 A m× n block of amino acids—a representative of a protein family

j1 = 1, 2, . . . , (n− t + 1)

j2 = (j1 + 1), . . . , (n− t + 2)

... (1)

jt−1 = (j1 + t − 2), . . . , (n− 1)

jt = (j1 + t − 1), . . . , (n)

and the random variables to be given by probabilities of occurrence:

pj1 j2...jt (a1, a2, . . . , at ) = nj1 j2...jt (a1, a2, . . . , at )

m
, 1 ≤ t ≤ n , (2)

where

a1, a2, . . . , at = A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y (3)

are the amino acids in the one-letter code, and nj1 j2...jt (a1, a2, . . . , at ) is the
number of occurrence of amino acids on each row of the ordered set of t columns
j1, j2, . . . , jt .

We also have
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∑

a1,a2,...,at

nj1 j2...jt (a1, a2, . . . , at ) = m  ⇒
∑

a1,a2,...,at

pj1 j2...jt (a1, a2, . . . , at ) = 1 (4)

There are then
(
n
t

)
objects pj1 j2...jt and each of those has (20)t = 10

(
1+ log 2

log 10

)
t

≈ 101.3t components which are given by Eq. (2).

2 From a Binomial Distribution to a Poisson Process

“Poissonization” is a current process in Mathematical Statistics. A discrete binomial
probability distribution with discrete time is embedded in a Poisson process of
continuous time [9]. This approach will be described in the present section. Let
p(nj (t), t) be the probability of finding nj amino acids of the same kind on the
j th column. Let σ be the probability per unit time that a transition will occur of an
amino acid from this column to a subsequent column. Then σ�t is the probability
that this transition will occur on the interval of time �t . Then (1 − σ�t) is the
probability that no transition to another column will occur during the same interval
of time �t . The master equation of this process can be written:

p(nj (t +�t), t +�t) = σ�tp(nj (t)− 1, t)+ (1− σ�t)p(nj (t), t) . (5)

We can then write for �t → 0,

∂p(nj (t), t)

∂t
= σ (p(nj (t)− 1, t)− p(nj (t), t)

)
(6)

∂p(n0(t), t)

∂t
= −σp(n0(t), t) (7)

At this point we introduce a pictorial note which aims to substantiate some
reasonings of the present section. Let us imagine that m icosahedron dice are being
tossed simultaneously by a “master devil player”—the owner of the “Ribosome
factory”. Let us also imagine that there is an adjoint library to the factory where
the results of all throws (books titled “How to build the a-amino acid”, a = A,
C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y) are allocated. After the
first throw of dice by the master devil, his assistant will deliver m books to the 1st
librarian. During the 2nd throw of dice, the 1st librarian will deliver his books to
the 2nd librarian, and after this 2nd throw, the 1st librarian will receive the new set
of m books from the assistant. During the 3rd throw, the 2nd librarian will deliver
his books to the 3rd librarian and the 1st will deliver his new books to the 2nd
librarian. The assistant will then deliver another set of m books to the 1st librarian
and so on up to nth throw of the master devil and the delivery of books to the nth
librarian. Dices are assumed to be fair, but there is a previous game played both with
tetrahedra (faces A, C, G, U) and icosahedra to follow the guidelines of the Genetic
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Code and actually, a successful game for organizing protein families should take
into consideration unfair icosahedron dice.

Initial conditions can be written for Eqs. (6), (7), by taking into consideration that
all amino acids should be stored at the “Ribosome factory” before the start of the
process. This means:

p(n0, 0) = 1 ; p(nj �=0, 0) = 0 (8)

Equations (6)–(8) after integration from 0 to t will lead to a Poisson process:

p(n0(t), t) = e−σ t

p(n1(t), t) = e−σ tσ t

p(n2(t), t) = e−σ t (σ t)
2

2
(9)

...

p(nj (t), t) = e−σ t (σ t)
nj

(nj )!
The moments of this Poisson distributions will be given by

〈(nj )k〉 =
∞∑

nj=1

(nj )
k e−σ t (σ t)

nj

(nj )! = e
−σ t

(
σ t

∂

∂(σ t)

)k−1 (
σ t eσ t

)
(10)

We then have:

〈nj 〉 = σ t (11)

〈(nj )2〉 = σ t + σ 2t2 (12)

〈(nj )3〉 = σ t + 3σ 2t2 + σ 3t3 (13)

〈(nj )4〉 = σ t + 7σ 2t2 + 6σ 3t3 + σ 4t4 (14)

〈(nj )5〉 = σ t + 15σ 2t2 + 25σ 3t3 + 10σ 4t4 + σ 5t5 (15)

3 From a Multinomial Distribution to the Gibbs–Shannon
Entropy Measure

We start this section by describing in more detail the tasks of the “librarians” of
Sect. 2. We now derive a multinomial distribution from the information of allocation
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of amino acids on the slots of each of the n columns. Let nj (a) be the number of
a-amino acids to be arranged in nj (a) slots among the m slots of the j th column.

The number of possibilities for arranging, e.g., A-amino acid is

Nj(A) =
(

m

nj (A)

)
= m!
nj (a)!

(
m− nj (a)

)! (16)

In order to arrange nj (C) amino acids on the slots of the same j th column, we have(
m − n(A)) available slots. The number of possibilities of arranging these nj (C)

amino acids is
(m−nj (A)
nj (C)

)
and the number of possibilities of arranging nj (A)+nj (C)

amino acids on the slots of the j th column is

Nj(A,C) =
(

m

Nj(A)

)(
m− nj (A)
nj (C)

)
= m!
nj (A)! nj (C)!

(
m− nj (A)− nj (C)

)!
(17)

There are then
(
m − nj (A) − nj (C)

)
available slots in the j th. The number of

possibilities of arranging nj (D) amino acids is
(m−nj (A)−nj (C)

nj (D)

)
. The number of

possibilities of arranging
(
nj (A)+ nj (C)+ nj (D)

)
amino acids is

Nj(A,C,D) =
(

m

Nj(A)

)(
m− nj (A)
nj (C)

)(
m− nj (A)− nj (C)

nj (D)

)

= m!(
nj (A)

)!(nj (C)
)!(nj (D)

)!(m− nj (A)− nj (C)− nj (D)
)!

(18)

We then write for the number of possibilities of arranging nj (A) + nj (C) + · · · +
nj (W)+ nj (Y) = m amino acids on the j th slot:

Nj(A,C, . . . ,W,Y) = m!
∏
a

(
nj (a)

)! (19)

Each amino acid has a probability of occurrence in the j th column of pj (a) =
1/20 ,∀j ,∀(a).

The probability of finding nj (a) amino acids in the j th column is (1/20)nj (a)

and the probability of
∑
a

nj (a) = m amino acids is given by

∏

a

(
1

20

)nj (a)
=
(

1

20

)∑
a
nj (a)

=
(

1

20

)m
(20)
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The probability of observing all possible configurations of m amino acids in the j th
column is:

p
(
nj (A), nj (C), . . . , nj (W), nj (Y)

) = m!
(20)m

∏
a

nj (a)
(21)

This corresponds to a special case of a multinomial distribution which is obtained
from

(
xj (A)+· · ·+xj (Y)

)m =
m∑

nj (A),...,nj (Y)=0

m!(xj (A)
)nj (A) · . . . · (xj (Y)

)nj (Y)

nj (A)! · . . . · nj (Y)! (22)

We have here
(
xj (a) ≡ pj (a)

)
, where pj (a) = nj (a)

m
is the probability of

occurrence of the a-amino acid in the j th column as obtained from Eq. (2) for t = 1,
and (22) will turn into

1 =
(
∑

a

pj (a)

)m
=

m∑

nj (A),...,nj (Y)=0

m!(pj (A)
)nj (A) · . . . · (pj (Y)

)nj (Y)

nj (A)! · . . . · nj (Y)! (23)

The maximum number Nj(A,C, . . . ,W,Y) is obtained when nj (A) = nj (C) =
· · · = nj (W) = nj (Y) which means pj (A) = pj (C) = · · · = pj (W) = pj (Y) =
1/20, and we have

(
pj (A)

)nj (A) · . . . · (pj (Y)
)nj (Y) =

(
1

20

)nj (A)+···+nj (Y)
=
(

1

20

)m
(24)

We then have

1 =
m∑

nj (a)=0

m!
(20)m

((
nj (a)

)!
)20

, ∀a (25)

which is a particular case of Eq. (23).
In order to introduce the Gibbs–Shannon entropy associated to the distribution

of amino acids on each column of the m× n block, [10] we write from Eq. (21)

logp
(
nj (A), nj (C), . . . , nj (W), nj (Y)

) = logm! −m log 20−
∑

a

log
(
nj (a)

)!
(26)

We now consider that m # 1, nj (a) # 1, ∀a and we apply the Stirling
approximation to Eq. (26),

logp
(
nj (a)

) ≈ m logm−m−m log 20−
∑

a

(
nj (a) log nj (a)− nj (a)

)
(27)
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Equation (27) can be also written as

1

m
logp

(
nj (a)

) ≈ − log 20−
∑

a

pj (a) logpj (a) (28)

where

Sj = −
∑

a

pj (a) logpj (a) (29)

is the Gibbs–Shannon entropy measure [10] associated to the distribution of amino
acids of Eq. (21).

This development is able to stress the possibility of working with entropy
measures which have the Gibbs–Shannon entropy as a special case. These entropy
measures, like the Sharma–Mittal two-parameter set

SMj(r, s) = − 1

1− r

(
1−

(∑

a

(
pj (a)

)s) 1−r
1−s

)
(30)

The limit forms corresponding to Gibbs–Shannon’s could be written as

lim
s→1

lim
r→s SMj (r, s) = lim

s→1
lim

r→2−s SMj (r, s) = lim
s→1

lim
r→1

SMj(r, s)

= Sj = −
∑

a

pj (a) logpj (a) (31)

These entropy measures should be proficient for analyzing the results associated
to intermediate values of the number of amino acids on each j th slot when the
Stirling approximation is not valid anymore. This will be studied on a forthcoming
publication.

We now check the result for the maximum of the Gibbs–Shannon entropy
measure on the m × n block of amino acids. Since nj (A) = · · · = nj (Y) do
correspond to the maximum value of Nj(A,C, . . . ,W,Y), this also corresponds to
the maximum value of p

(
nj (A), . . . , nj (Y)

)
which is given by

pmax
(
nj (a)

) = m!
(20)m

((
nj (a)

)!
)20

(32)

and from the Stirling approximation,

pmax
(
nj (a)

) ≈ e−m(m)m

(20)m
(
e−nj (a)

(
nj (a)

)nj (a))20
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= e−m(m)m

(20)me−m
(
nj (a)

)m ≡ 1 (33)

We then have from Eq. (28)

0 = 1

m
logpmax

(
nj (a)

) ≈ − log 20+ (Sj )max

or

(Sj )max = log 20 (34)

This is a trivial result and can be taken as a proof of the convenience of the
Gibbs–Shannon entropy for describing the distribution of amino acids in the slots
of the m× n blocks and on the limit of a very large number of amino acids.

4 The Fokker–Planck Equation

A Poisson process has been derived at the beginning of Sect. 2 from a master
equation, Eq. (5). We now take into consideration the explicit dependence of the
probability with the number of amino acids [9]. The probability of transfer of an
amino acid from the j th column will lead to

p
(
nj (t)− 1, t

) = p(nj (t), t
)− ∂p

(
nj (t), t

)

∂nj (t)
+ 1

2

∂2p
(
nj (t), t

)

∂n2
j (t)

(35)

We can then write from Eq. (5) after taking the limit �t → 0,

∂p
(
nj (t)

)

∂t
+ σ ∂p

(
nj (t), t

)

∂nj (t)
− 1

2
σ
∂2p

(
nj (t), t

)

∂n2
j (t)

= 0 (36)

The solution of this equation will provide a probability distribution function of each
kind of amino acid. This is a simple Fokker–Planck equation [11–13] and it can be
also written from the specification of the moments according to [13]. We should
have:

lim
t→0

〈�nj (t)〉
t

= lim
t→0

〈(nj (t)− 0
)〉

t − 0
= lim
t→0

σ t

t
= σ (37)

lim
t→0

〈(�nj (t)
)2〉

t
= lim
t→0

〈(nj (t)− 0
)2〉

t − 0
= lim
t→0

σ t + σ 2t2

t
= σ (38)
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lim
t→0

〈(�nj (t)
)k〉

t
= lim
t→0

〈(nj (t)− 0
)k〉

t − 0
= 0 , k ≥ 3 (39)

Equations (37)–(39) means that we should restrict the kinetic analysis to be built
from Eq. (36) to the two first moments 〈nj (t)〉, 〈

(
nj (t)

)2〉, since Eqs. (13)–(15) are
inconsistent with Eq. (39).

From the definition of the moments

1 =
∫ ∞

0
p
(
nj (t), t

)
dnj (t) (40)

〈nj (t)〉 =
∫ ∞

0
nj (t)p

(
nj (t), t

)
dnj (t) (41)

...

〈(nj (t)
)k〉 =

∫ ∞

0

(
nj (t)

)k
p
(
nj (t), t

)
dnj (t) (42)

where we have assumed that for large m × n blocks, m # 1, n # 1, all the sums
could be replaced by an integration and the boundary conditions could be given by

lim
nj→0

p
(
nj (t), t

) = 0 (43)

lim
nj→∞

(
nj (t)

)k
p
(
nj (t), t

) = 0 (44)

which means that all transferred amino acids will remain inside a region of large
size. After using Eqs. (40)–(42), (43), (44), we can write

∂〈nj (t)〉
∂t

= σ (45)

∂〈(nj (t)
)2〉

∂t
= 2σ 〈nj (t)〉 + σ (46)

∂〈(nj (t)
)3〉

∂t
= 3σ 〈(nj (t)

)2〉 + 3σ 〈nj (t)〉 (47)

∂〈(nj (t)
)4〉

∂t
= 4σ 〈(nj (t)

)3〉 + 6σ 〈(nj (t)
)2〉 (48)

...

∂〈(nj (t)
)k〉

∂t
= kσ 〈(nj (t)

)k−1〉 + k(k − 1)

2
σ 〈(nj (t))(k−2)〉 (49)
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and we have after integration from 0 to t :

〈nj (t)〉 = σ t (50)

〈(nj (t)
)2〉 = σ t + σ 2t2 (51)

〈(nj (t)
)3〉 = 3σ 2t2 + σ 3t3 (52)

〈(nj (t)
)4〉 = 3σ 2t2 + 6σ 3t3 + σ 4t4 (53)

〈(nj (t)
)5〉 = 15σ 3t3 + 10σ 4t4 + σ 5t5 (54)

All equations of this set will obviously satisfy Eqs. (37)–(39) and we notice the
equality of Eqs. (50)–(51) with Eqs. (11), (12) respectively.

5 The Maximization of Gibbs–Shannon Entropy Measure

We should stress that the present modelling does not apply to the evolution of an
“orphan” protein. Orphan proteins are characterized by m = 1 and we have from
Eq. (2), with t = 1,

pj (a) = nj (a)

1
= 0 , 1 , ∀j ,∀a (55)

From Eqs. (55), (29), we can write

Sj = −(0 · log 0+ 0 · log 0+ · · · + 1 · log 1+ · · · + 0 · log 0) = 0 (56)

If a successful modelling is supposed to improve the amount of information to
be obtained, we should start from a configuration of maximum entropy [10] and not
from a minimum one like that of an “orphan” protein. No model will be successful
if we start from a minimum of entropy.

The constrained maximization of the Gibbs–Shannon entropy which should be
restricted to the moments 〈nj (t)〉 and 〈(nj (t)

)2〉 and has been explained on the last
section can be written as

0 = δ
∫ ∞

0

[
− p(nj (t), t

)
logp

(
nj (t), t

)− λ0(t)p
(
nj (t), t

)

− λ1(t)nj (t)p
(
nj (t), t

)− λ2(t)
(
nj (t)

)2
p
(
nj (t), t

)]
δp
(
nj (t), t

)
dnj (t)

(57)
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where λ1(t), λ2(t) are Lagrangian multipliers. We then have

0 =
∫ ∞

0

[
− logp

(
nj (t), t

)− 1− λ0(t)− λ1(t)nj (t)− λ2(t)n
2
j (t)

]

· δp(nj (t), t
)
dnj (t) (58)

where δp
(
nj (t), t

)
are the arbitrary variations of p

(
nj (t), t

)
. The probability

distribution corresponding to the maximal entropy is

p
(
nj (t), t

) = e−
(

1+λ0(t)
)
e
−λ1(t)nj (t)−λ2(t)n

2
j (t) (59)

The Lagrangian multipliers will be derived from Eqs. (40)–(42). The multiplier
λ0(t) is given by:

e1+λ0(t) ≡ Z(t) =
∫ ∞

0
e
−λ1(t)nj (t)−λ2(t)n

2
j (t)dnj (t) (60)

where Z(t) is the Partition Function:

Z(t) = 1

2
√
λ2(t) ·M

(
y(t)

) (61)

where

y(t) = λ1(t)

2
√
λ2(t)

(62)

and

M
(
y(t)

) = 1√
π
· e−y2(t)

1− erf
(
y(t)

) (63)

with erf(y) as the Error Function [11]

erf(y) = 2√
π

∫ ∞

0
e−z2

dz (64)

Some of the moments 〈(nj (t)
)k〉 could be given from Eq. (61) as

〈nj (t)〉 = −∂Z/∂λ1

Z
= 1√

λ2

1

N(y)
(1− y N(y)) (65)

〈(nj (t)
)2〉 = ∂2Z/∂λ2

1

Z
= 1

λ2

1

N(y)

(− 2y + (1+ 2y2)N(y)
)

(66)
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〈(nj (t)
)3〉 = −∂

3Z/∂λ3
1

Z
= 1

λ2
√
λ2

1

N(y)

(
1+ y2 −

(
3

2
y + y3

)
N(y)

)
(67)

〈(nj (t)
)4〉 = ∂4Z/∂λ4

1

Z
= 1

2λ2
2

1

N(y)

(
−5y − 2y3 +

(
3

2
+ 2y4

)
N(y)

)
(68)

where

N(y) ≡ 1

M(y)
(69)

We then have from Eq. (59),

p
(
nj (t), t

) = 2
√
λ2(t)M

(
y(t)

)
e
−λ1nj (t)−λ2n

2
j (t) (70)

Some useful formulae:

M ′(y) = −2yM(y)+M2(y) (71)

M ′′(y) = −2(1− 2y2)M(y)− 6yM2(y)+ 2M3(y) (72)

Asymptotic expansions:

0 < y $ 1 , M(y) ≈ 1√
π

(
1+ 2√

π

)
y ; y # 1 , M(y) ≈ y (73)

To each point
(
ȳ,M(ȳ)

)
of the function will correspond to a solution of the

equations and a distribution function:

1√
λ2

1

N(y)

(
1− y N(y)) = σ t (74)

1

λ2

1

N(y)

[
−2y + (

1+ 2y2)N(y)
]
= σ t (75)

A class of solutions will be obtained by looking for a point y = ȳ in this parameter
space such that M2(ȳ) ≈ 0. We then consider the Taylor expansion:

M(y) ≈ M(ȳ)+M ′(ȳ)
(
y − ȳ)+O(y − ȳ)2

= (
1− 2ȳ(y − ȳ))M(ȳ)+O(y − ȳ)2 (76)

and we have:

1

λ2(t)

[
1

2
+ 2ȳ3M(ȳ)+ (1− 2ȳ2)M(ȳ)y

]
= σ t (77)
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1√
λ2(t)

[
y −M(ȳ)(1− 2ȳ(y − ȳ))] = σ t (78)

and y = λ1(t)/2
√
λ2(t).

From Eqs. (77), (78), we obtain the Lagrangian Multipliers:

λ1(ȳ) ≈ 1+ 2
(
1− 2ȳ2 + 2ȳ3

)
M(ȳ)

1+ 2ȳM(ȳ)
(79)

λ2(ȳ) ≈ 1+ 2
(
1− 2ȳ2 + 2ȳ3

)
M(ȳ)

2σ t
(80)

In Fig. 2, we depict the graphs of functionsM(y) and λ1(t) as well as the function
λ2(t) for three values of the non-dimensional parameter σ t = 1, 2, 3.

The family of distribution functions corresponding to Eqs. (74), (75)
and (77), (78) is given by

p
(
nj (t), t

) = 2

√
λ2(ȳ)

π
·
e−λ2(ȳ)

(
nj (t)− σ t

1+ 2ȳM(ȳ)

)2

1+ erf

(
σ t
√
λ2(ȳ)

1+ 2ȳM(ȳ)

) (81)

In Fig. 3, we show the graphs of three examples of probability distributions of the
family above (Table 1).

Fig. 2 (M(ȳ), solid line),
(λ1(ȳ), red solid line),
(λ2(ȳ), σ t = 1, blue solid
line), (λ2(ȳ), σ t = 2, green
solid line), (λ2(ȳ), σ t = 3,
orange solid line)

2

1.5

1

0.5

0–1–2 1
y
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Fig. 3 (p1(nj (t), t), red
solid line), (p2(nj (t), t), blue
solid line), (p3(nj (t), t),
green solid line)

Table 1 Probability distributions (Eq. (81)) corresponding to three sets of values of the parameters

p
(
nj (t), t

)
M(ȳ) M2(ȳ) λ2(ȳ) ȳ σ t

p1
(
nj (t), t

) ≈ 0 0 1 −3 3

p2
(
nj (t), t

) ≈ 0.030245 ≈ 0 0.06333 −1.5 3

p3
(
nj (t), t

) ≈ 0.053828 ≈ 0 0.045123 −1.3 3

6 Concluding Remarks

Many probability distribution functions can be derived from the maximization of
generalized entropy measures. In the present work we have chosen to work with the
maximization of the Gibbs–Shannon entropy measure. The essential message to be
remembered here is the feasibility of describing the evolution of the probabilities
of occurrence of amino acids on specified protein families as driven from the
maximization of a generic entropy measure which is supposed to be effective for
describing the formation of protein families. It is supposed that this will help to
clarify the evolution of the association of protein families into Clans. This will be
the subject of a forthcoming publication.
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Why Is Evolution Important in Cancer
and What Mathematics Should Be Used
to Treat Cancer? Focus on Drug
Resistance

Luís Almeida, Rebecca H. Chisholm, Jean Clairambault, Tommaso Lorenzi,
Alexander Lorz, Camille Pouchol, and Emmanuel Trélat

1 Introduction to Mathematical Modelling in Cancer

Mathematical models of cancer growth and therapy have already known numerous
developments and publications in the past 20 years or so. They belong to two general
classes: agent-based models, ruled by stochastic rules of growth (for division, death,
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motion, interactions with the environment) in which the individual agents are cancer
cells, and continuous models that rely on ordinary or partial differential equations,
sometimes delay differential equations, whose solutions are densities of cancer
cell populations. The benefits and limitations of these two respective classes of
models, with examples, are discussed, e.g., in [6]. As regards anticancer treatments,
the continuous version allows to take advantage of mathematical optimisation and
optimal control algorithms that have been designed in this framework, originally
in engineering settings. A short review of models designed with this therapeutic
control vision is presented, for instance, in [2]. It is sometimes possible to obtain
a continuous model starting from an agent-based one by averaging methods;
alternatively, one can also develop in parallel the two types of models applied to
the same biological problem and compare the predicted behaviour of the modelled
cell populations, as e.g., in [5], or in a general setting, in [3].

The goal of such models of cancer growth may be to merely understand the
biological phenomenon of cancer growth, by designing accurate models that are all
the more relevant to describe a biological reality as they are identified and validated
on biological measurements in vitro in culture dishes, in vivo on laboratory animals,
or from observations (e.g., radiological images) on humans, to be confronted to
theoretical growth curves depending on a priori unknown parameters (the physicist’s
viewpoint). But it may also be of a different nature, to represent the effects of
treatments on tumours, with the aim to optimise them. In the latter case, these effects
may be described either by their molecular effects on known drug targets (keeping in
mind that precision targeting is often alluring, since drugs may have unpredictable
effects on non recognised targets) or by their functional effects on the possible fates
of cell populations, namely proliferation, extinction, differentiation or senescence.
The respective advantages of these two points of view are also discussed, with
examples, in [6]. Whatever the chosen point of view, molecular or functional, the
goal of these models is here clearly established as understanding and improving the
efficacy of anticancer treatments (the physician’s viewpoint).

2 Drug Resistance in Cancer

2.1 The Two Main Pitfalls of Cancer Therapeutics

Unwanted toxic side effects on healthy cell populations and emergence of resistance
to treatments in cancer cell populations are the two main pitfalls of cancer
therapeutics in the clinic. Toxicity is always a concern for the clinician, as it limits
the tolerable doses of drugs delivered to the patient, who otherwise might see
his tumours eradicated, but at the expense of deadly insults to essential organs or
functions (haematopoiesis, digestion, skin covering, liver function, heart function).
It has lately been proposed that instead of delivering for short periods of time the
maximum tolerated dose (MTD), it might be as efficient to deliver small drug doses
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(the so-called metronomic strategy), thus minimising toxicity, with as good results
on the cancer cell population. To what extent is the immune system involved in the
efficacy of this new way of designing delivery schedules is not completely clear
and might depend on the anticancer drug in use [36, 37], however metronomic
therapies certainly challenge the MTD strategy in both limitation of toxicity and
improvement of efficacy. Note that an initial interpretation of the success of
metronomic therapies was more mechanic, postulating that too high amounts of
drugs destroy the blood vessels that bring the drugs to the tumour [1, 24]. It is
not exclusive of the immunogenic explanation [36, 37], which proposes that giving
small drug doses may reveal hidden (internalised) cancer antigens by shattering
a small number of cancer cells, enough to trigger an efficient immune response
towards the whole cancer cell population. Both explanations still remain to be
more biologically documented—especially with respect to the immune response—
mathematically modelled and tried in clinical settings; however, they address the
question of toxicity in an apparently paradoxical way (“more is not necessarily
better”) that is a challenge for modellers.

Drug resistance, the other major pitfall of cancer therapeutics, is a treatment
efficacy limitation of another nature; it may be defined as adaptation of the target
cancer cell populations to the hostile environment created by the drug. Resistance
to treatments in cancer cell populations, insofar as it is not constitutive of organisms
therapies apply to, but secondary, i.e., induced by treatments as a stress response.
In many cases (in fact, in most cases), treatments that show remarkable initial
efficacy by drastically shrinking tumours see their response decrease with time, until
they become totally inefficient as tumours regrow. Furthermore, the newly growing
cancer cell populations, that have become resistant to the drug in use, are out of
reach for this therapy, and often for others that have not been employed (multi-
drug resistance). At the molecular scale, different mechanisms have been identified,
such as overexpression of drug efflux pumps (ABC transporters [14], such as the
P-glycoprotein, also known as MDR1, or ABCB1), of intracellular drug processing
enzymes or of DNA repair enzymes, and it has been proposed to combine cytotoxic
drugs with inhibitors of these mechanisms, unfortunately eventually to no avail.
As mentioned above, the molecular point of view in pharmacological treatments in
principle offers a satisfying framework to perform cancer treatment optimisation,
but so-called targeted therapies (i.e., that target intracellular molecular pathways),
with a few exceptions, result in disappointing outcomes (see, e.g., [11, 12]).

2.2 From the Single Cancer Cell to Cancer Cell Populations

Indeed, these treatments share the same flaw, which is that they focus on a given
molecular target (or on several molecular targets), considering cancer as the disease
of the same single cell extended to large quantities, instead of taking into account
the population of cancer cells in its diversity, which might offer a key explanation of
their failure [13]. Such population diversity (or heterogeneity) is not necessarily of
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genetic nature but linked to epigenetic changes in the chromatin, thus reversible
[31], at least on the initiation of drug resistance (mutations can come later to
irreversibly establish resistance in a subclone of the cell population), and may result
in differently expressed phenotypes in different cells, potentially inducing different
resistance mechanisms as responses to cytotoxic stress in a population of cells
bearing all the same genotype.

Introducing the population of cancer cells (indeed, the actual target of anticancer
treatments) naturally sets the scenery for Darwinian evolution of cells exposed to
anticancer drugs seen as an environmental selection pressure, as will be developed
in the next section. This viewpoint, introduced in theoretical ecology for quite
a long time already, is rather new in biology and medicine (where it has given
rise to the new field of Darwinian medicine), however, does not allow to decide
whether the selection is of pure Darwinian nature (selection of the fittest, cells
that were already present in the population before exposure to the drug) or may
involve a part of Lamarckian adaptation (no resistant cells initially present, but
stochastic triggering of resistance mechanisms in a few cells for which the response
to stress happens to be well adapted to resist the cytotoxic effects of the drug
in use). This alternative, discussed in a mathematical setting in [5] was already
the object of the biological experiment by Luria and Delbrück [23], concluding
to sheer Darwinian selection. However, Luria and Delbrück’s experiment was
performed not on cancer cells exposed to drugs, but on bacteria exposed to
bacterium-eating viruses (phages), while human and animal cancer cells bear a
genome—and epigenome, i.e., chromatin (histones)—that is by far richer than the
bacterial genome, which in our case does not allow to conclude. Nevertheless, the
cell population point of view clearly opens new ways to understand and overcome
drug resistance in cancer.

3 Cancer as Evolutionary Disease

3.1 Evolution of Multicellularity and Cancer

Darwinian evolution (together with possible Lamarckian adaptation) of cancer—
and healthy—cell populations (but healthy cell populations are in principle well
controlled as regards their possibilities of phenotype evolution) must of course be
considered on the short-time level of a human life or disease, but the much larger
time of evolution in the course of billions of years, from unicellular organisms
towards the organised and coherent forms of multicellularity represented by present
animals and plants, may also shed light on cancer as evolutionary disease. Cancer
is a disease of multicellular organisms, that may be defined as loss of coherence
between tissues due to loss of coherence control by those genes that have been
essential in the evolution towards multicellularity. In [9], it is advocated that the
genes that are altered in cancer are precisely the ones that have been employed by
evolution to design multicellular organisms. Indeed, evolution proceeds, as stated by
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Nobel prize laureate François Jacob in [18], by tinkering, i.e., it proceeds by trials
and errors taking advantage of any existing material, and, as regards multicellularity,
such tinkering may result in localised (in organs and physiological functions elicited
by corresponding genes) fragilities, that secondarily, under environmental pressure,
may be caught off guard and result in localised cancers. Such loss of coherence
control, unmasking a pluripotent phenotype that is also named plasticity, may in
particular be seen in the process of de-differentiation of cancer cells, i.e., adoption
of a pluripotential phenotype (eventually yielding the so-called ‘cancer stem cell’,
whose existence is likely to be transient [21]) making the cells that bear it, as
endowed with a rich panel of non-repressed genes, able to develop a wide variety of
responses to cytotoxic stress. The involvement of such failed multicellularity (i.e.,
unpreserved normal differentiation) control genes in revealing an ancient ‘toolkit’
of preexisting adaptations [9] still remains to be documented, but it certainly offers
new ways of considering cancer as an evolutionary disease and drug resistance in
cancer as an evolutionary—and adaptive—mechanism.

3.2 Heterogeneity and Plasticity in Cancer Cell Populations

Heterogeneity in cancer cell populations has been documented in advanced solid
tumours as of genetic nature, with evidence of multiple branched mutations [10],
but, as mentioned above, it may also consist of sheer epigenetic and reversible
modifications [31] linked to enzymatic activities located on the chromatin, i.e.,
without mutations in the genome. However, as recently shown in [30], such fast
epigenetic, non genetic, reprogramming of a sparse subpopulation of cancer cells
may eventually result in a stably resistant state.

Another look at heterogeneity induced in cancer cell populations by exposure
to cytotoxic drugs is presented in [35]. In this article, it is proposed that so-
called cold genes that have been identified as expressed in the genome of cancer
cells (multiple myeloma cells) have a very ancient origin, being conserved without
changes throughout evolution from unicellularity, and may be responsible for stress
response in extremely hostile and unpredictable situations (resulting from events
comparable, mutatis mutandis, to the impact on animal life of the meteorite that
66 million years ago hit the Earth—creating the Chicxulub crater in Yucatán—
subsequently putting an end to the dominance of dinosaurs), by possibly launching
secondary expression of various resistance mechanisms. In this respect, these very
ancient ‘cold genes’, elaborated in a remote past of our planet, when conditions of
life were different from the present (UV radiation, acidity, low oxygen concentration
in the oceans and in the atmosphere), might be the genetic toolkit of preexisting
adaptations mentioned above, or part of it.

The variety of resistance mechanisms developed by cancer cell populations
exposed to lethal doses of cytotoxic drugs—an extremely hostile and unpredictable
situation for any cell population—has been related to what is called bet hedging
in theoretical ecology. The term ‘bet hedging’ is used to qualify behaviour relying
on an ensemble of traits that make a population of living individuals adaptable to
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an unpredictable environment, using a so-called ‘risk-spreading strategy’, that at
the scale of the population may result in keeping safe only a small part of it, but a
part that will be able to reconstitute the whole population, with preservation of its
common genome, after such adaptation to the new environment [26]. Bet hedging
in tumours has been proposed as a stochastic ‘cancer strategy’. It is also presented
as “an ultimate explanation of intra-tumour heterogeneity” in chapter XVII of the
book [33].

Plasticity, mentioned above about de-differentiation of cancer cells and the
transient state of cancer stem cell, may be evidenced at the level of the single
cell (derepression of genes that must be epigenetically repressed in physiology to
produce the differentiation that yields about 200 different functional cell types in
the human organism), but also at the level of the cell population, since the spreading
of such pluripotent cells makes the population adaptable to environmental changes
(plastic), possibly by using expression of cold genes in a tiny subpopulation and
stochastic (or distributed) bet hedging of resistance phenotypes.

The plasticity—physiologically normal in highly undifferentiated cell states,
close to stem cells, but totally pathological in cell populations for which a defined
terminal physiological function exists—of the epigenetic landscape of a given
human genome, as metaphorically proposed in [34], recently revised from a systems
biology viewpoint by Sui Huang, see, e.g., [15, 16], provides another approach to
plasticity and evolution of cancer, that has been, for instance, exploited to study
lineage commitment in haematopoiesis by using bifurcation analysis of an ordinary
differential equation model [17].

4 Continuous Mathematical Models

4.1 Phenotype-Structured Mathematical Models

The modelling framework of adaptive dynamics we present here is more likely to
correspond biologically to epigenetic modifications rather than to genetic mutations,
as the evolution in phenotype is in this mathematical setting always reversible (not to
mention that, in the case of the application to drug resistance in cancer that we have
in mind, eventual induction of emergent resistant cell clones due to mutations under
drug pressure is never to be excluded in the long run). From the biologist’s point of
view, we study phenotypically heterogeneous, but genetically homogeneous, cancer
cell populations under stress (in particular by cytotoxic drugs).

The models considered here are all based on the so-called logistic ODE model,
which we recall here. It is given by the equation

dN

dt
= (r − dN)N,

which describes the time-evolution of the number of cells N(t), starting from a
prescribed initial condition N0.



Why Is Evolution Important in Cancer and What Mathematics Should Be Used. . . 113

Coefficient r denotes the net selection rate of the cells, namely the difference
between their proliferation and death rates, while the logistic term dN stands for an
additional death rate proportional to the number of cells.

The underlying assumption is that competition for nutrients and space inside the
population does not allow for exponential unconstrained proliferation. Mathemati-
cally, it is indeed true that if N0 ≤ r

d
, then N(t) converges increasingly toward the

carrying capacity r
d

.
Let us now introduce a basic phenotype-structured model, where the quantity of

interest is a number of cells n(t, x) at time t > 0, and of phenotype expression level
(hereafter simply designed as phenotype) x ∈ [0, 1] standing for the resistance
to a given drug. We stress that this phenotype is taken to be continuous, because,
as already mentioned, it can be correlated to biological characteristics which
themselves are continuous. Here, [0, 1] is taken for simplicity but multi-dimensional
phenotypes can of course be considered.

The model reads

∂n

∂t
(t, x) = (r(x)− d(x)ρ(t)) n(t, x),

where ρ(t) := ∫ 1
0 n(t, x) dx is the total number of cells at time t , starting from some

initial condition n0(·). As before, r(x) is the net proliferation rate of cells of cells of
phenotype x, while d(x)ρ(t) is the natural extension of the previous logistic term.
Note that more general logistic death terms through a Kernel K can be considered,
in the form

∫ 1
0 K(x, y)n(t, y) dy.

The basic model described above is characterised by two main phenomena:
convergence and concentration. The first one means convergence of ρ(t) towards
max

(
r
d

)
, and concentration of the density n on the set of phenotypes where r

d

reaches its maximum, namely arg max
(
r
d

)
. This is why this class of models is

extensively used in adaptive dynamics to model selection: only the cells in the
fittest phenotypic states can survive, which corresponds mathematically to the
convergence of n(t, ·) to a sum of Dirac masses located on the set arg max

(
r
d

)
.

This modelling framework also extends to several populations, in which case
the competition between the populations is modelled through Lotka–Volterra-like
terms. Let us introduce a model of two interacting populations, which will be further
developed in the next section with the modelling of chemotherapy as control terms.
It is concerned with two densities of healthy and cancer cells nH (t, x) and nC(t, x)
respectively, where x is again a continuous phenotype, in the application we have in
mind describing the level of resistance to a given drug. The model is given by

∂nH

∂t
= [
rH (x)− dH (x) (aHHρH (t)+ aHCρC(t))

]
nH (t, x), (1)

∂nC

∂t
= [
rC(x)− dC(x) (aCCρC(t)+ aCHρH (t))

]
nC(t, x), (2)
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where, as before, ρH (t) =
∫ 1

0 nH (t, x) dx, ρC(t) =
∫ 1

0 nC(t, x) dx. The logistic
terms now incorporate an intraspecific competition term weighted by coefficients
aHC and aCH . Because healthy and cancer cells compete harder within their own
population than with the other population (in other words, cells belong to different
ecological niches, e.g., for metabolic and energetic reasons linked in particular to
respiratory oxidative phosphorylation in one case and glycolysis in the other), it is
quite natural to assume

aHC < aHH , aCH < aCC.

Under hypothesis (4.1), it is proved in [29] that the behaviour of (1) is again
convergence and concentration, where the asymptotic values of ρH , ρC and the sets
on which nH , nC concentrate can also be explicitly computed.

4.2 Optimal Control for Anticancer Therapeutics

Optimal control methods (reviewed in [32]) applied to models of cancer therapeutics
using systems of ordinary differential equations [4, 19, 20] or of partial differential
equations [29] are the appropriate tool to theoretically optimise cancer therapeutics,
in particular by taking into account the inevitable emergence of drug resistance in
cancer cell populations.

The built-in targets for theoretical therapeutic control that are present in the
phenotype-structured PDE models we advocate here are not supposed to represent
well-defined molecular effects of the drugs in use, but rather functional effects, i.e.,
related to cell death (cytotoxic drugs), or to proliferation in the sense of slowing
down the cell division cycle without killing cells (cytostatic drugs). We propose that
cell life-threatening drugs (cytotoxics) induce by far more resistance in the highly
plastic cancer cell populations than drugs that only limit their growth (cytostatics),
and that a rational combination of the two classes of drugs—and possibly others,
adding relevant targets to the model—may be optimised to propose therapeutic
control strategies to avoid the emergence of drug resistance in tumours.

We address this optimal control problem in the context of two populations,
healthy and cancer as in the model is given by (1), now complemented with two
types of drugs of infusion rates u1 and u2 for cytotoxic and cytostatic drugs,
respectively. The resistance phenotype x they are endowed with is defined with
respect to the cytotoxic drug pressure, and is taken to range from sensitiveness
(x = 0) to resistance (x = 1). The controlled model thus reads

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂nH
∂t
(t, x) =

[
rH (x)

1+αHu2(t)
− dH (x)IH (t)− μC(x)u1(t)

]
nH (t, x),

∂nC
∂t
(t, x) =

[
rC(x)

1+αCu2(t)
− dC(x)IC(t)− μH(x)u1(t)

]
nC(t, x),

(3)
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On a fixed therapeutic time-window [0, T ], the optimal control problem is to
choose the controls u1 and u2 so as to minimise the number of cancer cells ρC(T ),
while satisfying the three following constraints.

• remaining under maximum tolerated doses: 0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤

umax
2 ,

• avoiding the emergence of too big a tumour: ρH (t)
ρH (t)+ρC(t) ≥ θHC ,

• limiting unwanted adverse effects to the healthy cell population: ρH (t) ≥ θHρ0
H .

This optimal control problem is motivated by the inefficacy of using constant
high doses of drugs, a strategy which on the long run violates the last two
constraints. This is indeed what is observed in the simulation presented in Fig. 1:
although the tumour size first decreases, it is at the expense of the cancer cell
density concentrating on a resistant phenotype. The treatment becomes inefficient
and relapse occurs.

Fig. 1 What should never be done in the clinic! Simulation with u1(t) = Cst = 3.5 and u2(t) =
Cst = 2, in time T = 10. Here ρCS(t) =

∫ 1
0 (1 − x)nC(t, x) dx is a measure of the number

of sensitive cells in the cancer cell population. Constant high doses of the cytotoxic drug yield
concentration of cancer cells around a resistant phenotype. The cancer cell population increases
steadily while healthy cells decrease
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In [29], the previously defined optimal control problem is analysed both numeri-
cally and theoretically. As the time T increases, it is found that the optimal control
strategy becomes increasingly close to a two-phase strategy.

• The first phase is long, and only constant low doses as given, so as to saturate
the second constraint. At the end of this first phase, the drug pressure has been
low enough to ensure that the cancer cell density has concentrated on a sensitive
phenotype.

• The second phase is short and starts with maximum tolerated doses for both
drugs, leading to a quick decrease of both cell numbers because they are efficient
on a sensitive cancer cell population. Once the third constraint (on the heathy cell
density) has been reached, cytostatic drugs switch to some intermediate value
(which can be computed in feedback form) which allows for a further decrease
of the tumour size while keeping the healthy cell number at its lower bound.

A numerical simulation of the optimal strategy is presented in Fig. 2.
For a practical implementation of the previous strategy, it is natural to repeat

it in a quasi-periodic manner. One can hope that after enough cycles, the tumour
will be eradicated, or at least made chronic. In order to decide when to switch from
the second short phase to another cycle with a long first phase, one must identify
markers for resistance. Indeed, as long as constant low doses do not violate the
second constraint on the relative tumour size, they must be given to ensure that
the (assumed to be plastic) tumour is becoming sensitive to the treatment again.
The switch to the second phase can be led as soon as the markers indicate that the
tumour has become sensitive enough again. Finally, if the healthy cells tissue is too
damaged (namely the third constraint saturates), one can hope to still let the tumour
decrease with a properly chosen cytotoxic drug infusion. When this is no longer
possible, one must switch back to the long first phase (no infusion).

5 Future Tracks in Modelling for Cancer Therapeutics

5.1 Beyond Present Models to Optimise Cancer Therapeutics

The models of adaptive population dynamics that we have presented here, with
their built-in targets for control, rely on a nonlocal Lotka–Volterra vision of cell-
cell population competition. This point of view could be extended to other modes of
interaction, which could be mutualistic or predator-prey like, and to an arbitrary
number of cell populations. For an analysis of a mutualistic integro-differential
2×2 system modelling interactions between breast cancer cells and their supporting
stroma (adipocytes), we refer to [27], whereas a more general Lotka–Volterra-like
model for N populations is analysed in [28]. The inferred asymptotic behaviour is
again convergence and concentration.
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Fig. 2 Simulation of the optimal control problem for T = 60. Here, the phenotype is concentrated
on a sensitive value at the end of the first delivery phase, and eventually likely more resistant—
but for a very rare surviving fraction—in the cancer cell population, if one compares the curves
showing ρC(t) and ρCS(t)/ρC(t) towards the end of the treatment course. Delivered at a high
dose for a brief duration only, followed by a medium dose for the remaining time, the cytotoxic
drug u1(t) impinges a drastic decrease, if not total eradication, in the cancer cell population, while
preserving healthy cell numbers over a predefined threshold

Let us now come to extensions of the integro-differential setting by considering
the basis 1-dimensional model that we first mentioned. Recall first that more general
logistic interaction terms can be considered. The other natural extension is to model
epimutations (occurring on the relevant time-scale, which is here that of a tumour).
They can either be modelled by a Laplacian, leading to

∂n

∂t
(t, x) = (r(x)− d(x)ρ(t)) n(t, x)+ β�n(t, x),
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with Neumann boundary conditions, or more generally through a mutation kernel.
Note that both modelling are linked at the limit through a proper rescaling of the
kernel, as explained in [25].

A complementary advection term can be added, accounting for cells actively
adapting to their environment, seeking for phenotype changes that make them fitter.
These can be seen as stress-induced epimutations and with them the model becomes

∂n

∂t
(t, x)+ ∂

∂x
(v(x)n(t, x)) = (r(x)− d(x)ρ(t)) n(t, x)+ β�n(t, x).

Note that in [5], the advection happens to be compulsory to observe quick enough
dynamics to fit those obtained in the experiments presented in [31]. Besides, in [7],
the effects of an additional advection term are rigorously studied.

A further advantage of these more general PDE models is that they are able to
represent possible asymptotic coexistence of phenotypes, which is not the typical
output of the integro-differential models. Moreover, whereas in [5] the agent-based
model and the PDE model were treated concurrently in parallel, in [8], a general
method describing the passage from the former to the latter is rigorously presented.

A final possible extension worth-mentioning is the addition of a space variable,
since it is believed that the heterogeneity of a tumour varies from its periphery
to its centre. This is also particularly relevant in view of optimal control through
chemotherapy since drugs will efficiently access the outer rim of the tumour but less
its core. For possible cancer models taking both phenotype and space into account,
we refer to [22].

5.2 Need for Models with a Larger Evolutionary Perspective

From the biological part of this article, it clearly appears that the abovementioned
models, sophisticated though they may be, are not enough to study in mathematical
settings the evolution of multicellularity and its intrinsic failure, namely cancer,
nor are they presently enough to design optimised therapeutic strategies that can
overcome drug resistance in cancer. Open questions to biologists remain if one
wants to make available a framework within which mathematical modelling may
be designed. What are the genes that must be silenced in physiology and are re-
expressed in de-differentiated cancer cells? What are the observable links between
genes that are known to be essential for multicellularity and what are the genes that
are altered in cancer (the same, following [9])? What models to study physiological
coherence between tissues in the same organism, i.e., what sticks together in
harmony the 200 different cell types of a human organism? What part of the genome
bears the so-called cold genes, what part the individual signature of an organism that
is transmitted throughout differentiation (the ‘self’, certainly to be related with the
major histocompatibility complex, MHC), and what part the genes that are normally
sequentially silenced in the history of differentiations? As regards mechanisms of
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drug resistance, what part of launching in a cancer cell population is deterministic
(triggering cold genes) and what part is stochastic? And such list of open questions
is not intended to be comprehensive.

6 Conclusion: A Challenging New Field for Mathematicians

In this short description of cancer as evolutionary disease, focusing on the question
of drug resistance and its possible overcoming by optimised strategies in the
clinic, we have presented what has been recently developed in the framework of
mathematical modelling, that is, adaptive dynamics of cell populations represented
by phenotype-structured models relying on partial differential equations, together
with optimal control methods to guide their asymptotic behaviour. We have also
proposed immediate tracks for future extensions of these existing models, and
only sketched the scenery for future mathematical models that still lack biological
answers to guide their design. We are nevertheless confident in the fast progress
of cancer biology to help mathematicians design models that can be helpful in
prevention, prediction and control of cancer in the clinic, provided that the right
questions are posed, mathematically challenged and experimentally tackled.
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Optimal Resource Allocation for HIV
Prevention and Control

Dmitry Gromov, Ingo Bulla, and Ethan O. Romero-Severson

1 Introduction

When dealing with economically and socially significant infectious diseases, in
particular AIDS and tuberculosis, the central problem is to optimally distribute the
limited resources among different treatment and prophylaxis programs. The main
difficulty in doing so is that while the individual-level effect of these interventions
can be determined using controlled trials, their effectiveness as public health inter-
ventions cannot be ascertained with certainty. This is due to the fact that affected
populations are different both in terms of the disease transmission dynamics, but
also in the efficacy of available instruments given a specific population structure.
Identifying the optimal strategy of resource allocation must be based on a (dynamic)
model of the underlying medical, biological, and social processes that captures the
relevant features of the population.

Two standard approaches to modeling the dynamics of a disease are using either
an agent-based [2] or a population balance (compartmental) model [6] while ODE-
based compartmental models are generally preferred due to their computational
tractability. However, when using dynamic models a number of challenges arise.
These are related to the fact that certain parameters of the model cannot be assessed
while the others show a high variability. There are two possible ways to approach
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this problem. The first one consists in estimating the parameters using the available
data (in particular the data that can be obtained when testing individuals in the
framework of the intervention program) while another one concentrates on deriving
somewhat universal rules that can be applied to a wide range of situations.

In this paper we aim at presenting a number of problems and their solutions with
a particular emphasis on using optimal control based methods. As an illustration,
we consider the HIV epidemic in the men-having-sex-with-men (MSM) population.
By the introduction of highly active antiretroviral therapy (HAART) [12], HIV has
morphed from a lethal threat into a controllable chronic disease, at least for the
vast majority of HIV patients in the developed world. Nevertheless, little progress
has been made in driving HIV back in MSM, who are at much higher risk of HIV
infection than heterosexuals and are thus the key population for HIV interventions
in the industrialized world.

When on HAART, the infected patient becomes practically non-infectious [7].
This is referred to as the Treatment as Prophylaxis (TaP) modality in this paper.
An alternative consists in using a preventive drug in uninfected persons called pre-
exposure prophylaxis (PrEP), which has recently become commercially available.
Opposed to TaP, PrEP does not target individuals infected with HIV but rather
blocks infection in uninfected people for a short period of time (1–2 days) and when
taken continuously protects against infection even given frequent exposure [3]. The
target group of PrEP thus comprises persons running a high-risk of infection with
HIV, that is injecting drug users, sex workers, and MSM.

To evaluate the cost effectiveness of TaP or PrEP, until now the population
dynamics including the effects of the respective intervention were modeled and then
the number of prevented infections was related to the costs of the intervention [13].
Although this is an established approach in health economics of infectious diseases,
it neglects that different interventions might interact in an intricate manner and,
thus, should be modeled and analyzed jointly. Our work addresses this issue by
integrating both TaP and PrEP into one epidemiological dynamic model and then
optimizing the allocation of a limited budget to these two interventions. Hereby,
the allocation is time-variant and piece-wise constant. We assume that the target
population consists in the MSM population of a circumscribed geographical unit
(i.e., a larger city, region, or country), exhibiting two different levels in sexual risk
behavior. Furthermore, we employ two different disease stages, acute and chronic,
because the acute stage is associated with a largely higher infectivity.

The paper is structured as follows. Section 2 gives some basic facts about
population balance models and presents the HIV model used in the paper. Also, the
problem of observing the system states is discussed. The optimal control problem
along with variations thereof and the related numerical results are described in
Sect. 3. Section 4 discusses some issues that occur when applying the optimal
controls to real problems. Finally, we present conclusions and outlooks for further
research.
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2 Mathematical Model

2.1 Population Balance Model

The common modeling framework for describing infectious disease propagation
is the population balance. This means that the whole population is divided into
a number of homogeneous groups (compartments). That is to say, all individuals
within a compartment are assumed to be identical in their evolution [6, 11]. The
state variables of the model correspond to the number of people within each group
and the dynamics of the ith state is described by the following differential equation:

Ẋi =
∑

i �=j

(
aij (X)− aji(X)

)− aii(X)+ wi, (1)

where aji(X) is the flow rate from compartment i to compartment j , aii(X) is the
outflow out of the ith compartment, and wi is the inflow into the ith compartment
which is typically assumed to be constant. We also assume that the following
regularity conditions are fulfilled:

A1. aij (X) ≥ 0 and wi(X) ≥ 0 for all X ∈ R
n
≥0.

A2. Xi = 0 implies aji(X) = 0 and aii(X) = 0, i.e. there is no flow out of an
empty compartment.

It is known that the system (1) satisfying the above assumptions is non-negative
[10]. This means that for any initial condition x0 ∈ R

n
≥0, the solution x(t) of (1)

belongs to R
n
≥0 for all t ∈ [0,∞).

Controlled Population Balance Model While the population based models have
proved to be useful in modeling various infectious diseases, less attention has been
paid to controlling the propagation of the diseases within the population. In contrast
to classical control systems where the control is applied at the input or the output of
the system thus representing an external action, the notion of control for population
based models is associated with redistribution. Typically, the set of compartments is
extended by a number of new compartments and the controls are used to “modulate”
the flows from the old compartments into the new ones.

In particular, a new compartment can correspond to the people on treatment,
vaccinated or isolated infecteds and the respective controls define the inflows
into these compartments. The controls enter the model multiplicatively, i.e., the
system (1) turns into

Ẋi =
∑

i �=j

(
aij (X)− aji(X)

)− aii(X)+wi +
∑

k

∑

i �=j

(
ckij (X)− ckji(X)

)
uk, (2)

where ckij (X) is the total number of people within the j th compartment that can be
(potentially) assigned to a particular kind of treatment associated with the state Xi
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within the unit time interval, and uk is the fraction of this number that are enrolled
into this particular treatment. Due to obvious restrictions, uk ∈ [0, 1]. The upper
bound on uk means that the enrollment cannot exceed 100%. The functions ckij (X)
are assumed to satisfy the assumptions A1.–A2. and the system (2) can be shown to
be non-negative [9].

2.2 HIV Propagation Model

We consider an HIV propagation model of a general MSM population from the
United States. The detailed model derivation is presented in [9].

The total population is divided into nine compartments with corresponding
states. Transitions between states happen due to individuals becoming infected,
progressing from acute to chronic stage, and dying of AIDS (S· → IA· → IC· →
D). Moreover, individuals change their risk behavior ((·)L ↔ (·)H , P → SL),
thus going from high-risk to the low-risk category and back. There are two controls
that correspond to putting individuals on PrEP or TaP treatment (SH ↔ P ,
IC· ↔ T·). Note that the administered treatment may fail thus leading to the
(uncontrolled) flows from P and T back to the original compartments. Note that
high-risk individuals on PrEP who adapt a low-risk behavior cancel their PrEP
treatment and thus become low-risk susceptibles, i.e., move from P to SL. Finally
there is flow into the system due to individuals reaching an age of sexual activity and
outflow from the system because of non-HIV related death or individuals becoming
sexually inactive or settling in a monogamous, lifelong relationship.

The dynamics under study are described by the following system of ODEs:

ṠH = αH − (φH (X)+ ρH + μ) SH + ρLSL + xP − UP ζP (X)N
ṠL = αL − (φL(X)+ ρL + μ) SL + ρH (SH + P)
İCH = δAIAH − (ρH + μ+ δC + ūT )ICH + ρLICL + yTH − UT ζT,H (X)N
İCL = δAIAL − (ρL + μ+ δC + ūT )ICL + ρH ICH + yTL − UT ζT,L(X)N
İAH = φH (X)SH − (ρH + μ+ δA)IAH + ρLIAL
İAL = φL(X)SL − (ρL + μ+ δA)IAL + ρH IAH
ṪH = − (y + ρH + μ)TH + ūT ICH + ρLTL + UT ζT,H (X)N
ṪL = − (y + ρL + μ)TL + ūT ICL + ρHTH + UT ζT,L(X)N
Ṗ = − (x + ρH + μ)P + UP ζP (X)N,

(3)
where X = [

TH TL ICH ICL IAH IAL SH SL P
]′

is the vector of state variables;
N is the sum of all states, N = 〈1, X〉, 1 is the column of ones; φH (X), φL(X),
ζT ,H (X), ζT ,L(X), and ζP (X) are the non-linear (rational) functions of X which
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Table 1 Model parameters

Infection parameters

φH , φL Transmission rate for high-risk resp. low-risk susceptibles

δA Rate that acutely infected individuals become chronically infected

δC Rate that chronically infected individuals die due to AIDS

Treatment parameters

x Rate at which PrEP fails or is canceled

ūT Baseline enrollment rate into TaP

y Rate at which TaP fails or is canceled

Other parameters

αH , αL Recruitment rate of new high-risk resp. low-risk susceptibles

μ Rate that adults die of non-HIV related causes, reach an age of

sexual inactivity, or settle in a lifelong relationship

ρH Rate that high-risk persons become low-risk

ρL Rate that low-risk persons become high-risk

take on non-negative values for any X ∈ R
n
≥0. UP and UT are the control inputs

which correspond to the fraction of total population being involved either in PrEP
(UP ) or in TaP (UT ). All the remaining terms are non-negative constants1 (see
Table 1 for an explanation).

2.3 Enrollment and State Measurement

For the enrollment on PrEP and TaP, we assume that both are done by randomly
sampling individuals at locations where high-risk individuals resp. chronically
infecteds are prevalent. In case a sampled individual turns out to be a high-risk
susceptible resp. chronically infected, he is urged to enroll in PrEP resp. TaP.

That is, we assume that there is a high-risk environment (HRE) where high-
risk individuals are overrepresented, like bars or sex clubs. Then, denoting the
probability that a random high resp. low risk individual is in a HRE at a random
moment during the recruitment period by

pH = P(HRE|R = H), pL = P(HRE|R = L).

The probability of a random individual R encountered in a HRE at a random
moment to be in one of the states corresponding to the high-risk category, i.e. to be
in X ∈ ZH = {SH , IAH , ICH , TH , P }, is computed using the Bayes rule:

1Here and throughout the paper we use the convention that all variables are denoted by capital
letters and the constants by lowercase letters.
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P(X|HRE) = P(HRE|R = H)P (X)
P (HRE|R = H)P (R = H)+ P(HRE|R = L)P (R = L)

= pH
X
N

pH
NH
N
+ pLNLN

= rbX

rbNH +NL ,

whereNH = SH+IAH+ICH+P+TH ,NL = SL+IAL+ICL+TL,N = NH+NL,
and rb = pH/pL. That is, rb are the odds of a high-risk person to go to a HRE
compared to a low-risk person. The probability of a random individual encountered
in a HRE to be in one of the low-risk states, X ∈ ZL = {SL, IAL, ICL, TL} is
computed analogously to yield

P(X|HRE) = X

rbNH +NL
One can easily check that the consistency condition holds, i.e.,

∑

X∈ZH
P (X|HRE)+

∑

X∈ZL
P (X|HRE) = 1.

If, for instance, UP is the relative rate at which individuals are sampled at HREs
and then put on PrEP in case they are high risk susceptibles, the absolute rate for
transition from SH to P is

UP N P(SH |HRE) = UP rbSHN

rbNH +NL ,

where we assumed that the total number of individuals visiting a HRE during unit
time interval is equal to N or to put differently, that is that the expected number of
visits an individual makes at a HRE is equal to 1. Note that the term rbSHN

rbNH+NL in

the preceding equation is just the flow rate cUPP,SH (X) corresponding to the transition
from the SH compartment into the P compartment with the control UP , cf. (2).

State Estimation An important point is that the enrollment procedure can be used
to estimate the number of individuals in different states.

Let Ns be the number of individuals that were sampled while visiting a HRE
during the unit time. These individuals are interviewed and tested if necessary and
are divided in the respective categories according to the results. We denote the
number of individuals within the respective categories by Ŝ(·), Î(·), T̂(·), and P̂ ;
furthermore, we denote the fractions of the respective groups within the sample
ŝ(·), î(·), t̂(·), and p̂, where, e.g., ŝH = SH

Ns
. With this, the fractions of the respective

groups within the total population, denoted by s(·), i(·), t(·), and p, can be computed
from the respective Bayesian equations. To ensure that the problem is well defined,
an additional normalization condition stating that the sum of all fractions is equal
to 1 is imposed. With this, the respective fractions are found as the solution to the
following set of linear equations:
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[(
rbI 0
0 I

)
+ (1− rb)

(
diag(x̂H ) 0

0 diag(x̂L)

)(
1 0
1 0

)](
xH

xL

)
=
(
x̂H

x̂L

)
(4)

where I, 1, and 0 are the unitary matrix and the matrices of ones and zeros, all

of appropriate dimensions; xH =
(
sH iAH iCH tH p

)T
, xL =

(
sL iAL iCL

)T
, x̂H

and x̂L are defined in the same way, and diag(x̂H ), resp. diag(x̂L) are the diagonal
matrices whose entries correspond to the elements of the respective vectors. Note
that the vector xL does not contain the component tL which is computed from the
normalization constraint, i.e., tL = 1 − sH − iAH − iCH − tH − p − sL − iAL −
iCL. Obviously, the system (4) can be reformulated to exclude any other component
instead of tL.

Proposition 2.1 The matrix

MB =
[(
rbI 0
0 I

)
+ (1− rb)

(
diag(x̂H ) 0

0 diag(x̂L)

)(
1 0
1 0

)]
,

defined in (4) is invertible.

Proof The proof of invertibility boils down to checking that the submatrix rbI +
(1− rb) diag(x̂H ) is invertible. This matrix can be rewritten as rb

(
I− diag(x̂H )

)+
diag(x̂H ), which is a diagonal matrix with strictly positive elements as follows from
the fact that the elements of the vector x̂H (fractions) are positive and strictly less
than 1. ��
The above proposition implies that the system (4) is well defined and can be solved
to yield the fractions xH and xL. If an estimate of the size of the total population, N̂ ,
is available, one can obtain the estimates of the state variables, e.g., ŜH = sH · N̂
for the number of high-risk susceptibles and similarly for other states.

Remark 2.1 In practice, the members of some groups, i.e., of IAH and IAL cannot
be recognized during the interview and merge with other groups, in this case with
SH and SL. This results in a certain bias in the estimations that has to be resolved
using additional analysis. Moreover, there might be situations in which it is too
difficult to estimate rb, rendering the approach described here infeasible.

3 Optimal Control

3.1 Problem Statement

The optimal control problem is formulated as an optimization problem, whose goal
is to minimize the cost function while respecting some structural and budgetary
restrictions. The cost to be minimized is defined as
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JC(X,U) =
∫ tf

0
e−ρtC(X(t), U(t))dt, (5)

whereC(t,X(t), U(t)) is the instantaneous cost function; ρ > 0 is the discount rate,
and tf is the time horizon which corresponds to the duration of the intervention.
The discounting factor e−ρt is typically used to describe our priorities: one may
attach greater importance to decreasing the cost in the near future while paying less
attention to what will happen in the farther future.

Remark 3.1 Note that the optimization problem with the cost functional (5) is
well-posed if the instantaneous cost function C(X(t), U(t)) is nonnegative for
nonnegative arguments. This follows from the fact that we are interested only in
the nonnegative values of X(t) and U(t).

The restrictions imposed on the system are twofold:

Restriction on the Admissible Control Policies The first class of restrictions
is due to the structural limitations of the decision unit. Since the intervention is
performed by a state organization the control profile must be sufficiently regular.
The regularity requirement boils down to assuming that the set of admissible
controls consists of piecewise constant functions with a fixed interval between two
consecutive switches.

Let T = {ti}nint
i=0, 0 = t0 < t1 < · · · < tnint = tf be the time instants at which

control switches occur along with the initial and final time. We assume that for any
1 ≤ i ≤ nint, the duration of the respective interval is constant: ti − ti−1 = δt . The
admissible control is thus defined as a piecewise constant vector valued function
that take on the discrete values {Ui}i=1,...,nint , U

i ∈ R
m
≥0, during each interval. The

goal of the optimization is to determine these values in order to minimize the cost
function (5) while respecting the constraints.

Note that the control values are bounded by zero from below, but there are no
upper bounds.2 The upper bounds are imposed implicitly as will be described below.

Dynamic Budget Allocation The second class of constraints is due to the bud-
getary limitations. In practice, an intervention incurs large expenses which are only
partially compensated by the government and the insurance companies. We assume
that at the beginning of each control interval [ti−1, ti ) a baseline budget is set by
estimating the expected expenses. The money to be spent for the intervention is thus
allocated starting from this baseline. This works as follows:

The total expenditures related to treating people with TaP or PrEP and the
enrollment costs for TaP or PrEP are captured by the following cost function:

JBi (X,U
i) =

∫ ti

ti−1

B(X(s), U(s))ds,

2Strictly speaking, there is an upper bound Ui ≤ 1, but this turns out to be very loose as the real
values of the control are always less than 1.
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where B(X(s), U(s)) is a positive defined function that can be written as a sum of
two components, B(X(s), U(s)) = B1(X(s)) + B2(X(s))U(s). Here, B1(X(s))

describes the expenses related to treating chronically infected patients and the
costs related to carrying out the PrEP program while B2(X(s)) captures the
costs associated with interviewing and testing random individuals as well as the
enrollment costs.

We proceed as follows: for each interval [ti−1, ti ), i = 1, . . . , nint, the value of
JBi is computed for the uncontrolled case to determine the baseline expenses, i.e.,
the expenses that the state would defray if there is no enrollment. The assigned
budget is allocated atop the baseline budget. Let X̃i(t), t ∈ [ti−1, ti ) be the
uncontrolled (Ui = 0) solution of (3) for t ∈ [ti−1, ti ) with initial condition
X̃i(ti−1) = X(ti−1). The dynamic budget constraint (DBC) is thus formulated as
follows:

JBi (X,U
i)− JBi (X̃i , 0) ≤ B, i = 1, . . . , nint, (6)

where JBi (X̃i , 0) =
∫ ti
ti−1
B1(X̃(s))ds. The constraints (9) set an implicit limit to the

control values Ui .
The resulting optimization problem can thus be formulated as follows. Determine

the values of control Ui ∈ R
2≥0, i = 1, . . . , nint s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JC(X) = ∫ tf
0 e−ρtC(X(t), U(t))dt → min

JBi (X,U
i)− JBi (X̃i , 0) ≤ B, i = 1, . . . , nint

X(t), t ∈ [0, tf ],
satisfies (3) with X(0) = X0 and U(t) = Ui, t ∈ [ti−1, ti ),

X̃i(t), t ∈ [ti−1, ti] i = 1, . . . , nint

satisfies (3) with Xi(0) = X(ti) and U(t) = 0, t ∈ [ti−1, ti).

(7)

In this study, the optimal control problem consists in minimizing the incidence
of HIV infection, i.e.,

C(X,U) = SHφH (X)+ SLφL(X). (8)

The budgetary cost function is defined as

B(X(t), Ui) = k(t)T [TH (t)+ TL(t)] + k(t)P P (t)+ k(e)T N(t)UiT (t)+ k(e)P N(t)UiP (t)
(9)

for i = 1, . . . , nint and t ∈ [ti−1, ti ). Here, k(t)T and k(t)P are the monthly costs for

treatment with TaP and PrEP, respectively, per patient. The coefficients k(e)T and k(e)P
represent the costs for approaching and, if necessary, enrolling one patient into TaP
and PrEP, respectively.
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3.2 Numerical Optimal Control

In terms of optimal control theory the budgetary constraints can be classified as
mixed integral inequality path constraints. There is in general no way to handle
such constraints analytically, but they can be treated numerically using a modified
version of the orthogonal collocation method as described in detail in [9], see also
[14] for an overview of numerical optimal control methods.

To illustrate the use of numerical optimal control we consider an outbreak
scenario in a large US city with 100,000 at-risk MSM individuals. That is, the
introduction of HIV into a subpopulation with a low prevalence (e.g., people
aged 15–25) is considered. We assume that acutely infecteds are 15 times more
contagious than chronically infecteds [4]. Furthermore, we consider a situation in
which risk is static, that is ρH = ρL = 0 and assume that the proportion of the MSM
population exhibiting a low risk to those with a high-risk behavior is 9:1. Hence, we
set αL = 250 and αH = 28 to ensure that a newly entering individual is high-risk
with probability 0.1.

We set μ = 1/360, leading to the individuals staying 30 years in the system
on average if there was no HIV-related removal. We assume that the susceptible
get infected at the common site and that individuals from the high risk group have
ten times more sexual contacts than the ones from the low risk group based on
analysis of longitudinal sexual behavioral data [15]. The values of λL and ūT were
determined such that at equilibrium the prevalence was 20% and the proportion
of infected individuals on treatment was 25%, which is consistent with measured
values [16, 17]. Finally, it is assumed that treatment never fails and is never stopped,
i.e., y = 0.

We consider four scenarios varying in the value of x: 0, 1
60 , 1

24 , 1
12 . That is, in one

scenario PrEP never fails and is never canceled and in three scenarios this happens
on average after 5, 2, and 1 year, respectively. The parameters of the cost function
are given in Table 2. The cost of enrollment was estimated by considering the total
cost per enrollee of a similar intervention program implemented by the New York
City Department of Health [5] plus the cost of the labs involved in determining
infectious status. The cost of TaP and PrEP is taken from [1].

The optimal controls are shown in Fig. 1 and the ones of the number of
individuals in the various states in Figs. 2 and 3. We can observe that the lower
the value of x is, the lower is the total number of newly infecteds and the higher is
both the overall values of UP relative to UT and the number of individuals on PrEP.
Therefore, a lower x should render the overall intervention more effective.

Table 2 Numerical values of the coefficients in the budget functional

k
(t)
T k

(t)
P k

(e)
T k

(e)
P

1299 776 266 213
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Fig. 1 The trajectories of the controls for x = 0, 1/60, 1/24, 1/12 over 50 years

Fig. 2 The trajectories of SH , SL, TH , and TL over 50 years

3.3 Single Control Case

Albeit numerically solvable, the problem (7) remains rather computationally expen-
sive. Typically it takes a couple of hours to get the optimal profiles. Thus it makes
sense to consider a simplified problem that would be solvable with much less
effort while still offering sufficient information about the problem. It turns out that
the optimization problem can be tremendously simplified when being solved with
respect to one control while setting another one to zero.
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Fig. 3 The trajectories of IAH , IAL, ICH , and ICL over 50 years

Proposition 3.1 If one component of the control Ui is kept zero for all t ∈ [0, tf ],
the optimization problem (7) with cost functions (8) and (9) is equivalent to a set of
nint scalar optimization problems of the form:

Determine the value of control Ui ∈ {0} × R≥0 (Ui ∈ R≥0 × {0}) s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖Ui‖ → max,

JBi (X,U
i)− JBi (X̃i , 0) ≤ B,

X(t), t ∈ [ti−1, ti],
satisfies (3) with X(ti−1) = Xi−1 and U(t) = Ui,

X̃i(t), t ∈ [ti−1, ti]
satisfies (3) with X(ti−1) = Xi−1 and U(t) = 0,

(10)

which can be solved sequentially for i = 1, . . . , nint. At this, one has to ensure that
the initial value Xi is equal to the final value of the state obtained as the result of
solving the previous (partial) optimization problem.

Corollary 3.1 The solution to the single control optimization problem is invariant
with respect to the discount rate ρ.

That is to say, when optimizing with respect to a single control, the optimization
problem on each interval boils down to determining the maximal value of the
respective control such that the budgetary constraint holds. In contrast to (7), the
scalar optimization problems (10) can be solved within seconds. Thus, within the
reasonable time one can obtain a large amount of data for different values of model
parameters that can be used when making decisions about the intervention as will
be discussed in Sect. 4.
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4 Applications to Decision Making

As was discussed above, even the most precise optimization profile may turn out
to be useless if the parameters of the model are not exactly known. Therefore, the
epidemiologist who aims at designing the rules for resource allocation might wish to
have a less precise result that would however have sufficiently general validity, i.e. it
should be applicable to a wide class of problems. An alternative approach would be
to determine a subset of model parameters such that the process under study can be
controlled using the same set of rules. This issue is addressed in Sect. 4.1. On the
other hand, one can attempt to estimate the system’s parameters dynamically using
the available data. This is discussed in Sect. 4.2.

4.1 Derivation of General Rules Using Suboptimal Solutions

Table 3 shows the values of the cost function for three cases: single TaP (UP = 0),
single PrEP (UT = 0), and the mixed case corresponding to the results shown in
Fig. 1. Note that the value of the cost function corresponding to TaP is the same for
all cases as it does not depend on x.

We can see that the minimal value taken over the first two rows approximate
pretty well the best possible result that is achieved when using both controls.
Furthermore, the following rule can be formulated: the control policy corresponding
to the smaller value of the cost function dominates in the mixed case (e.g., x =
1/60). If the difference between the values of the respective cost functions is small,
the optimal control profile is likely to consist of two controls (e.g., x = 0).

To analyze the space of parameter sets, parallel coordinate plots can be employed.
That is, one varies the values of different parameters, e.g. λH/λL, βH/βL, and
ρL/ρH , and then determines for each parameter set whether exclusive allocation
in TaP resp. PrEP yields a lower cost. This information can be expressed in a
parallel coordinate plot as illustrated in Fig. 4. Compared with plotting histograms
for each parameter separately, PCPs allow for detection of dependencies between
parameters.

Table 3 Values of the cost function for different optimal control profiles and for different values
of x

x = 0 x = 1/60 x = 1/24 x = 1/12

Single TaP 6.843e+04 6.843e+04 6.843e+04 6.843e+04

Single PrEP 4.179e+04 7.753e+04 8.852e+04 9.300e+04

Mixed 4.109e+04 6.634e+04 6.829e+04 6.841e+04
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Fig. 4 For each parameter sets the cost of exclusive allocation in TaP resp. PrEP is compared. For
parameter sets represented by solid lines exclusive allocation in TaP yielded lower cost, for the
ones represented by dashed lines exclusive allocation in PrEP yielded lower cost

4.2 On-the-Fly Parameter Estimation

The problem of parameter estimation for epidemiological models is a crucial
component of any quantitative analysis of infectious disease dynamics. This is
considered to be a very challenging task as the related mathematical problems
are typically non-convex and ill-conditioned [8]. There is a number of approaches
among which we can mention Pseudo-Linear Regression, Prediction Error, and
Bayesian Methods just to mention a few. Most of these approaches are developed
for off-line identification. This means that the model parameters are identified on
the basis of some historical measurements. However, fast changes in parameters
make these estimations relatively useless as the obtained results may turn out to be
inconsistent with the current state of things. Thus, there is a need in the methods
that allow for an “on-the-fly” parameter estimation using the actually obtained data.

In this paper we present an optimization based approach to the parameter
estimation that requires only the actual measurements of the system state. Below
we present a schematic description of the algorithm. Let

ẋ = f (x, u, p) (11)

be the system of differential equations describing the studied process that depends
on the parameter p to be identified. We assume that the state is measured at certain
discrete time instants ti , i = 0, . . . , k, which are uniformly distributed (say, we
measure the state each month). We proceed as follows:

(1) Initialization:
Set x(t0) = x0, p = p̄, where p̄ is an a priori estimate of the parameter. Set

the index i = 1.
(2) Measure the state at ti to get x̂i .
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(3) Solve the following optimization problem:

min
p
‖xp(ti)− x̂i‖

ẋp = f (x, u, p), xp(ti−1) = xi−1.

(12)

using p̄ as the initial guess. The optimization involves solving the DE (11)
which can be performed either numerically or using the orthogonal collocations.

(4) Denote by po the optimal value of p found on the previous step. Set xi to
be the solution of (11) at time ti computed for p = po with initial condition
x(ti−1)− xi−1.

(5) Set i = i + 1. Go to (2).

We illustrate the described algorithm for the case described in Sect. 3.2. Namely, we
wish to estimate the value of the contact rate of high-risk individuals λH that enters
the expression for φH (x) (see [9] for details). We assume that the system’s states are
measured in some way, for instance using the approach described in Sect. 2.3 and
the measurements are performed each month. To make the setup more realistic, we
assume that the measured values of the state have the time lag of 2 weeks. That is to
say, what we expect to be the state on December 31 does actually correspond to the
value of the state as on December 16.

Figure 5 shows the estimated value of the parameter λH at time points ti . We
see that the estimated value of λH enters a small neighborhood of the actual value
λH = 40.9400 and stays there as time goes on. There is also a small bias in the
estimated parameter which is due to the lag in measurements.

Fig. 5 The estimated values of λH over 120 months
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5 Conclusion

In this contribution, we briefly described an application of optimal control theory to
the problem of resource allocation for HIV control and treatment as well as further
ramifications thereof. In particular, we addressed the issue of practical implementa-
tion of developed optimal control policies, the obstacles that one encounters when
applying these policies and possible ways to overcome these difficulties.

This contribution does not address the mentioned issues in full detail as a detailed
analysis of any of the outlined directions would unfold into a full-scale research
project. We hope that this brief overview will serve as a catalyst for the further
research along the lines presented in the paper.

Currently, we are in the process of setting up a computational framework
for calculating optimal controls for general epidemiological settings described by
basically any mass action model. The framework is composed of (1) clients, which
define settings for which they would like to have an optimal control calculated, and
(2) servers, which carry out the requested calculations. The communication between
clients and servers is realized via a MySQL database.
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The Inverse Magnetoencephalography
Problem and Its Flat Approximation

A. S. Demidov and M. A. Galchenkova

1 Unique Solution of the Inverse MEEG-Problem

The inverse MEEG-problem is the problem of finding the distribution of dipoles
q : Y → R

3 (current dipole moment) in the neurons of the brain, which occupies a
domain Y ⊂ R

3, according to the electric D = εE , as well as the magnetic induction
B = μH, measured on the surface X, which is the internal part of the helmet,
with the SQUID sensors (Superconducting quantum Interference device) [1, 2]. The
fields E and H are called the electric and magnetic field strengths. The parameters
μ and ε = ε(x) > 0 are magnetic and dielectric permeabilities. For the bio-medium
μ ≈ μ0 magnetic permeability of the vacuum. The dielectric permittivity ε = ε(x)
is generally speaking different in Y = Y−, Y0, Y+, where Y0 and Y+ as the regions
corresponding to the skull and the air surrounding the head.

We shall start from the Maxwell equations

μ∂tH(x, t)+ rot E(x, t) = 0 , divB(x, t) = 0 ,

−ε(x)∂tE(x, t)+ rotH(x, t) = Jv(x)+ Jp(x) , divD(x, t) = ρ .
(1)

Here Jv = σE is the so-called volumetric or, as they say, ohmic current (more
precisely, its density), because it satisfies Ohm’s law associated with the coefficient
of electrical conductivity σ = σ(x) ≥ 0, which is assumed to be independent of t.
We note that such conditions are physically justified:
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σ+ = 0 on Y+, σ0 > 0 on Y0, σ− > σ0 on Y−. (2)

The volume current is the result of the action of a macroscopic electric field on
the charge carriers in the conducting medium of the brain. Neuronal same activity
causes the so-called primary (principal) current Jp. It arises as a result of dielectric
polarization and it represents a movement of charges inside or near the cell. The
volume density of these charges is denoted by ρ. Particles possessing these charges
are part of the molecules. They are displaced from their equilibrium positions under
the action of an external electric field, without leaving the molecule into which they
enter.

Essential is the circumstance, especially noted in the fundamental work [2].
It is related to the frequency ratio ω of the oscillations of the electromagnetic
field H(x, t) = H(x)eiωt , E(x, t) = E(x)eiωt and the frequency of electrical
oscillations in brain cells. The analysis in [2] (on page 426) shows that the
quasistatic approximation for the (1) system is valid. There, on the same page, is
additionally noted: “A current dipole q, approximating a localized primary current,
is a widely used concept in neuromagnetism. . . In EEG and MEG applications, a
current dipole is used as an equivalent source for the unidirectional primary current
that may extend over several square centimeters of cortex.” As a result, we arrive at
the following equations

rotE = 0, rotB = μ(σE+ q), divB = 0, divD = ρ. (3)

By the Stokes–Poincare theorem,1,2

1The vector E, having the Cartesian coordinates (E1, E2, E3) corresponds to the differential form

ω1
E = E1dx1 + E2dx2 + E3dx3 ,

and to the vector rotE =
(
∂E3
∂x2

− ∂E2
∂x3
, ∂E1
∂x3

− ∂E3
∂x1
, ∂E2
∂x1

− ∂E1
∂x2

)
—is the differential form

ω2
rotE =

(
∂E3

∂x2
− ∂E2

∂x3

)
dx2 ∧ dx3 +

(
∂E1

∂x3
− ∂E3

∂x1

)
dx3 ∧ dx1 +

(
∂E2

∂x1
− ∂E1

∂x2

)
dx1 ∧ dx2 .

We have: dω1
E = ω2

rotE. Therefore, the condition rotE = 0 implies dω1
E = 0. Consequently,∫

∂�
ω1

E = ∫
�
dω1

E = 0 , where � is a surface in R
3, limited by the boundary ∂�. If ∂� is a

curve (in other words, � is a simply connected surface), then the equality
∫
∂�
ω1

E = 0 means that
the integral from some point P0 ∈ ∂� to some other point P ∈ ∂� does not depend on which
part of the curve ∂� it will be taken. In other words, ω1

E = E1dx1 + E2dx2 + E3dx3 is the total
differential: ω1

E = −d�, i.e. E = −∇�. According to physical representations, at infinity the
potential � of the field E = −∇� is a constant that can be considered equal to zero.
2If ω2

B = B1dx2∧dx3+B2dx3∧dx1+B3dx1∧dx2, then dω2
B = ω3

divB. Therefore, the condition
divB = 0 implies the equality dω2

B = 0, i.e. the closed form ω2
B. By the Poincare lemma, it is

exact in a simply-connected domain, that is ω2
B = dω1

A, in other words B = rotA. We can assume
that A

∣∣∞= 0 as B
∣∣∞= 0.
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rotE = 0 ⇔ E = −∇�, divB = 0 ⇔ B = rotA . (4)

Since div(εE) = ρ, then

−ε��−∇ε∇� = ρ. (5)

According to physical representations, the field potential �
(5)= �ρ at infinity is a

constant, which can be considered equal to zero. For similar reasons, the vector
potential A of field B = rotA is also chosen to be zero at infinity.

Since rot(rotA) = ∇ divA − �A, then �A = −rotB + ∇ divA. But rotB =
σE+ q, and E = −∇�. Thus

�A(x) = −q(x)+∇[σ(x)�(x)+ divA(x)
]−�(x)∇σ(x) . (6)

The vector potential A is determined up to a potential field. Indeed, we have:

rot(A− A∗) = 0
(4)⇔ A− A∗ = ∇ϕ, i.e. A = A∗ + ∇ϕ, where ϕ is a function.

Taking as ϕ solution of the equation3 �ϕ = −divA∗−σ�, subjected to condition
ϕ
∣∣∞ = 0 (because A∗

∣∣∞ = 0, �
∣∣∞ = 0), we obtain

�A(x) = −F(x) , where F(x) = q(x)+�ρ(x)∇σ(x) . (7)

Note that A = Aρ , like �, depends on ρ.
Assuming a = (a1, a2, a3), where �aj (x) = δ(x), aj (∞) = 0, ie aj (x) =

− 1
4π

1
|x| , we obtain

�A(x)
(7)= −

∫
F(y)�a(x− y) dy = �

[
−
∫

F(y)a(x− y) dy
]
.

From here

A(x) = 1

4π

∫
F(y)

1

|x− y| d y
(7)= 1

4π

∫ (
q(y)+�(y)∇σ(y)

) 1

|x− y| dy,

since the Laplace equation has a unique solution that vanishes at infinity (as already
noted, A

∣∣∞ = 0). As a result, we obtain an integral equation of the I-kind

∫

Y

q(y)dy
|x− y| = f(x) , x ∈ Y , (8)

3It depends on �ρ and therefore on ρ.
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whose right-hand side, given by the formula

f(x) = 4πA(x)−
∫

Y

�(y)∇σ(y)
|x− y| dy, (9)

is completely determined by the fields E = −∇�ρ and B = rotAρ, depending on
the functional parameter ρ.

If the function σ, subject to the condition (2), is piecewise constant, then

f(x)
(9)= 4πA(x)− (σ0 − σ+)nX

∫

X

�0(yX) dy
X

| x− y
X
| − (σ− − σ0)nS

∫

S

�0(yS ) dy
S

| x− y
S
| ,

where nX and nS are the external normals to X = ∂Y0 ∩ ∂Y+ = ∂Y+ and S =
∂Y0 ∩ ∂Y− = ∂Y .

We can assume [1, 2] that the components of the vector f are sufficiently smooth,
in any case, belongs to the Sobolev space Hs(Y ), where s > 3/2.

Theorem 1.1 (See [3]) Equation (8) is uniquely solvable and the solution has the
form

q(x) = q0(x)+ p0(y′)δ
∣∣∣
∂Y
∈ Hs−2(Y )+Hs+1(∂Y )⊗ δ

∣∣∣
∂Y
,

where δ
∣∣∣
∂Y

—δ-function on ∂Y .

The fact that the fields here E = −∇�ρ and B = rotAρ depend on the functional
parameter ρ allows us to apply the methods of optimal reconstruction (interpolation,
see [4–6]) of these fields by their values at a finite number of points of the set X.

We also note that in [7] a connection is established between the solution q of the
integral equation (8) and the solution u of an integral equation of the second kind

4πη2u(x)+
∫

Y

u(y)
|x− y|dy = f(x), x ∈ Y , η > 0. (10)

Theorem 1.2 (See [7]) The solution of equation (10) is representable in the form

u(x) = q0(x)+ 1

η
p0(y′)ϕ e−yn/η + r0(x, η), (11)

where ‖r0‖L2 ≤ C
√
η, yn is the distance along the normal from x to y′ ∈ �, and

ϕ ∈ C∞(Y ), ϕ ≡ 1 in a small neighborhood ∂Y and ϕ ≡ 0 outside a slightly
larger neighborhood.

The formula (11) can serve as a basis for numerical solution of the problem (8)–
(9).
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2 Flat Model of the Inverse MEG-Problem

This is not a MEEG problem, since there is no data on the electric field. However,
this problem is of particular interest, since it has a direct relationship to scanning
magnetic microscopes. These tools [8] make it possible to record magnetic fields, for
example, in integrated circuits, in magnetotactic bacteria. They are used in materials
science, mineralogy, paleomagnetic analysis [9, 10].

In those cases it is impossible to completely find q. However, partial information
about the distribution q : Y ( y )→ q(y) we can still get [11]. In the following
model case X is the plane R

2 ( x = (x1, x2), and Y is a parallel to it a flat layer,
which is kept from X at some distance α > 0, i.e.

Y = {y = (z,−h) : α ≤ h ≤ β , where z = (z1, z2) ∈ Z = R
2}.

And X is a surface at the points x of which the magnetic field B(x) =
(B1(x), B2(x), B3(x)) is measured, and Y is the set in which we have the distribution
of the electric dipoles q : Y ( y = (z,−h) )→ q(y) = (q1(y), q2(y), q3(y)). In
what follows we assume that the measuring system is such that μ

4π = 1.

Lemma 2.1 If β − α = 0, then4

∫

Y

K(x− y)q(y) dy = B(x) . (12)

Here K(x− y)q(y) = q(y)×(x−y)
|x−y|3 , a× b is cross product a and b. There by

K(t) =
⎡

⎣
0 K12(t) −K31(t)

−K12(t) 0 K23(t)
K31(t) −K23(t) 0

⎤

⎦ , t = (t1, t2, t3) ∈ R
3,

where

K12(t) = t3

|t|3 , K31(t) = t2

|t|3 , K23(t) = t1

|t|3 , |t| =
√
t21 + t22 + t23 . (13)

If β − α > 0, instead of (12) we will consider the following equation

4The formula (12) is an integral version of the Biot–Sawar law: B(x) = q×(x−y)
|x−y|3 for the field B,

that induced by a current dipole q. This formula, which was experimentally established in 1820 by
the French physicists Jean-Baptiste Biot (1774–1862) and Felix Sawar (1791–1841), in the process
of observing the effect on the magnetic needle of a conductor with the current flowing along it, is
a consequence of the equations Maxwell.
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∫

Z

[
1

β − α
∫ β

α

K(x− y)
∣∣∣
y=(z1,z2,−h)

dh

]
Q(z) dz = B(x) . (14)

for the function Q : R2 ( z )→ Q(z) = (
Q1(z),Q2(z),Q3(z)

)
, which is some

“averaging” for h of the function q(·, h) : z )→ q(z, h). For β − α = 0 the dipole q
will also be denoted by Q.

2.1 The Fourier Image of the Kernel K

Rewrite Eq. (14) in the term of pseudo-differential equation

Op
(
K̃(ξ)

)
Q = B , Op

(
K̃(ξ)

)def= F−1
ξ→x

(
K̃(ξ)

)
Fz→ξ

with the following matrix symbol

K̃ : R2 ( ξ = (ξ1, ξ2) )→ K̃(ξ) =
⎡

⎣
0 K̃12(ξ) −K̃31(ξ)

−K̃12(ξ) 0 K̃23(ξ)

K̃31(ξ) −K̃23(ξ) 0

⎤

⎦ .

Here K̃lm(ξ) = 1
β−α

∫ β
α
K̃lm(ξ, h)dh, and

K̃lm(ξ, h) = F s→ξ Klm(s, h) =
∫

R2
e−

◦
ısξKlm(s, h)ds , where

◦
ı
def= 2πi .

(15)
Equation (15) means that

K̃(ξ)Q̃(ξ) = B̃(ξ), where Q̃ = (Q̃1, Q̃2, Q̃3), B̃ = (B̃1, B̃2, B̃3), (16)

and Q̃j (ξ) = Fz→ξQj(z), B̃j (ξ) = Fx→ξBj (x).

Lemma 2.2 5

K̃(ξ) =
⎡

⎢⎣
0 1 i

ξ2|ξ |
−1 0 −i ξ1|ξ |
−i ξ2|ξ | i ξ1|ξ | 0

⎤

⎥⎦E(ξ) , (17)

where E(ξ) =
[

1−e−2π(β−α)|ξ |
(β−α)|ξ |

]
e−2πα|ξ | ⇒ lim

β→α E(ξ) = 2πe−2πα|ξ |.

5It has been proved by A.S. Kochurov.
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Proof Let
−
1 = {23}, −2 = {31}, −3 = {12}, i.e.

−
m—these are two of the three

digits {1, 2, 3} that complement the index m for a cyclic permutation: {1, 2, 3} →
{2, 3, 1} → {3, 1, 2}. We set sh = (s, h), s = (s1, s2). Note that

K−
m
(s, h)

(13)= − ∂

∂sm

1

|sh| when m �= 3 . (18)

Thus for m �= 3 we have

K̃−
m
(ξ, h) = − lim

N→∞

∫

s2
1+s2

2≤N2
e−

◦
ı(s1ξ1+s2ξ2) ∂

∂sm

1

|sh|ds1ds2 ,

and

K̃−
3
(ξ, h)

i.e.= K̃12(ξ, h)
(13)= h

∫

R2

e−
◦
ı(s1ξ1+s2ξ2) ds1ds2
[ s2

1 + s2
2 + h2]3/2 .

Assuming that reiφ = s1 + is2, ρeiψ = ξ1 + iξ2, |ξ | =
√
ξ2

1 + ξ2
2 , rewrite

K̃−
3
(ξ, h), using the following Hankel formula, also called the Fourier–Bessel

transform:

h

∫ ∞

r=0

∫ 2π

φ=0

e−
◦
ır|ξ | cos(φ−ψ)

[r2 + h2]3/2 r drdφ = 2πh
∫ ∞

0

rJ0(2π |ξ |r)
[r2 + h2]3/2 dr ,

where J0(ζ ) = 1
2π

∫ 2π
0 eiζ cos θ dθ is Bessel function of zero order. Similarly, for

m �= 3 we have

− lim
N→∞

∫

s2
1+s2

2≤N2
e−

◦
ı(s1ξ1+s2ξ2) ∂

∂sm

1√
s2

1 + s2
2 + h2

ds1ds2

= −◦ıξm lim
N→∞

∫

r=
√
s2
1+s2

2≤N
e−

◦
ı(s1ξ1+s2ξ2) ds1ds2

[r2(s1, s2)+ h2]1/2

= −◦ıξm lim
N→∞

∫ N

0

(∫ 2π

0

e−
◦
ırρ cosφ

[r2 + h2]1/2 dφ
)
rdr

= −2π
◦
ıξm

∫ ∞

0

rJ0(2π |ξ |r)
[r2 + h2]1/2 dr.
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It is known (see, for example, in [12] formulas 6.554 (1 and 4)) that

∫ ∞

0

rJ0(qr) dr

(r2 + a2)3/2
= 1

a
e−aq

∣∣∣
q>0
,

∫ ∞

0

rJ0(qr) dr

(r2 + a2)1/2
= 1

q
e−aq

∣∣∣
q>0
.

Thus,

K̃−
3
(ξ, h) = 2πe−2πh|ξ |, K̃−

m
(ξ, h)

∣∣∣
m�=3

= −2πi
ξm

|ξ |e
−2πh|ξ | .

��
According to Lemma 2.2, the coordinate-wise recording of Eq. (16) is as follows:

[
Q̃2(ξ)+ i ξ2|ξ |Q̃3(ξ)

]
E(ξ) = B̃1(ξ),

−
[
Q̃1(ξ)+ i ξ1|ξ |Q̃3(ξ)

]
E(ξ) = B̃2(ξ),

[
− i ξ2|ξ |Q̃1(ξ)+ i ξ1|ξ |Q̃2(ξ)

]
E(ξ) = B̃3(ξ).

(19)

Lemma 2.3 The following relations hold

Q̃1(ξ) = − B̃2(ξ)

E(ξ)
− i ξ1

|ξ |Q̃3(ξ), Q̃2(ξ) = B̃1(ξ)

E(ξ)
− i ξ2

|ξ |Q̃3(ξ), (20)

ξ1B̃1(ξ)+ ξ2B̃2(ξ)+ i|ξ |B̃3(ξ) = 0 . (21)

The formulas (20) instantly follow from (19), and substituting Q̃1(ξ) and Q̃2(ξ)

from (20) in
[
− i ξ2|ξ |Q̃1(ξ)+ i ξ1|ξ |Q̃2(ξ)

]
E(ξ)

(19)= B̃3(ξ), we get (21).

Directly from Lemma 2.3 follows6

Theorem 2.1 Let B̃1 and B̃2 are such that B̃k/E ∈ L1. Then the general solution
of equation will look like

∫

Z

[
1

β − α
∫ β

α

K(x− z, h)dh
]

Q(z) dz
(14)= B(x)

6A similar result is initiated by the problem of measuring the magnetic field by scanning magnetic
microscope, was obtained in [13] using a generalization of the classic decomposition Hodge
Laplace operator on a compact orientable manifold in the form of a sum dδ + δd , where δ is
the operator conjugate to the operator of exterior differentiation d.
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and is representable in the form Q = QB +Q0. Here Q0 = (Q0
1,Q

0
2,Q

0
3), where

Q0
1 = −Op

(
i
ξ1

|ξ |
)
Q3, Q0

2 = −Op
(
i
ξ2

|ξ |
)
Q3, Q0

3 ∈ L2,

and QB = (A1(y) , A2(y) , 0), where

A1(y)
def= F−1

ξ→y

(
− B̃2(ξ)

E(ξ)

)
, A2(y)

def= F−1
ξ→y

( B̃1(ξ)

E(ξ)

)
. (22)

In the next subsection we strengthen Theorem 2.1, by taking into account that the
vector B, according to its physical meaning, is real and is given in a finite number
of points xk .

2.2 Formulas for Numerical Calculations

The vector B = (B1, B2, B3), according to the physical meaning, is real. It is
given in a finite collection of points xk ∈ X. Therefore, the condition B̃k/E ∈ L1

stipulated in Theorem 2.1 is naturally supplemented by such requirements:

(1) The functions F−1
ξ→xB̃j (ξ) are real7 for each j = 1÷ 3.

(2) Vector function ξ )→ (
B̃1(ξ), B̃2(ξ), B̃3(ξ)

)∣∣∣
B̃3(ξ)

(21)= i
|ξ |
(
ξ1B̃1(ξ)+ξ2B̃2(ξ)

) delivers

a minimum of functional

� : B̃ )→ �(B̃) =
3∑

j=1

∑

k=(k1,k2)

∣∣∣F−1
ξ→xk

B̃j (ξ)− Bj (xk)
∣∣∣
2
, (23)

where Bj (xk) are the experimental values of Bj at the points xk .

When analyzing these requirements and numerical realization of the formu-
las (22) and (23), the following two sentences are useful.

Proposition 2.1 Let x1 = r cos 2πθ , x2 = r sin 2πθ and

D(r, θ)
def= d(x1, x2) =

∑

m∈Z
Dm(r)e

◦
ımθ , Dm(r) ∈ C.

7This imposes restrictions on the real and imaginary parts of the functions B̃j .
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Then

Fx→ξ d(x) =
∑

n∈Z
(−i)ne◦ıωn

∫ ∞

0
rDn(r)Jn(2π |ξ |r) dr , (24)

where x = (x1, x2), ξ = (ξ1, ξ2) and ξ1 = |ξ | cos 2πω, ξ2 = |ξ | sin 2πω.

Proof We have

Fx→ξ d(x) =
∫∞

0 r
(∫ 1

0 D(r, θ)e
−◦ı|ξ |r cos 2π(θ−ω)dθ

)
dr, and8

e−
◦
ı|ξ |r cos 2π(θ−ω) =

∑

n∈Z
Jn(−2π |ξ |r)ine◦ın(θ−ω) . (25)

And since
∫ 1

0 e
◦
ı(n−m)θdθ =

{
0 in condition when m �= n
1 and m = n, and

J−n(−a) = Jn(a) def= 1

π

∫ π

0
cos(nt − a sin t)dt,

we have (24). ��
Similarly we can prove9

Proposition 2.2 Let ξ1 = |ξ | cos 2πω, ξ2 = |ξ | sin 2πω, and C̃(|ξ |, ω) def=
c̃(ξ1, ξ2) = ∑

m∈Z
C̃m(|ξ |)e−

◦
ımω, C̃m(ρ) ∈ C. Then

F−1
ξ→yc̃(ξ ) =

∑

n∈Z
ine−

◦
ıφn

∫ ∞

0
|ξ |C̃n(|ξ |)Jn(2π |ξ |ρ) d|ξ | , (26)

when ξ = (ξ1, ξ2), y = (y1, y2) and y1 = ρ cos 2πφ, y2 = ρ sin 2πφ.

Corollary 2.1 F−1
ξ→x

1
|ξ | =

∫∞
0 |ξ | 1

|ξ |J0(2π |x||ξ |) d|ξ | = 1
2π |x| .

8Generating function for Jn(μ), i.e. the formal power series
∑
n∈Z Jn(μ) tn, is e

μ
2

(
t− 1

t

)
(see [14]).

Assuming t = ie◦ı(θ−ω), we derive (25).
9F−1
ξ→yc̃(ξ) = ∫∞

0 |ξ |
(∫ 1

0 C̃(|ξ |, ω)e
◦
ıρ|ξ | cos 2π(ω−φ)dω

)
d|ξ | and e

◦
ıρ|ξ | cos 2π(ω−φ) =

∑
n∈Z

Jn(2πρ|ξ |)ine
◦
ın(ω−φ) (cf. (25)).
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Lemma 2.4 Let x = (x1, x2) = (ρ cos 2πφ, ρ sin 2πφ), and B̃k(ξ)
∣∣∣
k=1,2

=
∑
n∈Z

C̃kn(|ξ |)e−
◦
ınω, where C̃kn(|ξ |) = pkn(|ξ |) + iqkn(|ξ |) satisfy the expression:

B̃k(ξ) = 0 when |ξ | > R for some R > 0 and, furthermore, suppose the following
condition is satisfied10:

∑
ł∈Z(−1)l

∫∞
0 |ξ |

{[
J2l

[
qk2l cos(4πlφ)− pk2l sin(4πlφ)

]
d|ξ |

+J2l+1
[
pk2l+1 cos

(
2π(2l + 1)φ

)

+qk2l+1 sin
(
2π(2l + 1)φ

)]]}
d|ξ | = 0. (27)

Then

Bk(x)
∣∣∣
k=1,2

= F−1
ξ→xB̃k(ξ) and B3(x) = F−1

ξ→x

( i
(
ξ1B̃1(ξ)+ ξ2B̃2(ξ)

)

|ξ |
)

are real, and for k = 1, 2 (and x = (ρ cos 2πφ, ρ sin 2πφ))

Bk(x) =
∑

ł∈Z
(−1)l

∫ ∞

0
|ξ |

{[
J2l

[
pk2l cos(4πlφ)+ qk2l sin(4πlφ)

]

+J2l+1
[
pk2l+1 sin

(
2π(2l + 1)φ

)− qk2l+1 cos
(
2π(2l + 1)φ

)]]
d|ξ | ,

(28)

and

B3(x) = 1

4π2

∫

R2

∂y1B1(y)+ ∂y2B2(y)
|x− y| dy . (29)

Proof Indeed, taking into account (26), we have

Bk(x) =
∑

ł∈Z
(−1)l

∫ ∞

0
|ξ |e−2

◦
ılφ
{[(
pk2l + iqk2l

)
J2l

]

+ie−◦ıφ
[(
pk2l+1 + iqk2l+1

)
J2l+1

]}
d|ξ |

=
∑

ł∈Z
(−1)l

∫ ∞

0
|ξ |e−2

◦
ılφ
{[
pk2lJ2l − e−

◦
ıφqk2l+1J2l+1

]

10Arguments of pkn(|ξ |), qkn(|ξ |), Jn(2π |ξ |ρ) for brevity are omitted.
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+i
[
qk2lJ2l + e−

◦
ıφpk2l+1J2l+1

]}
d|ξ |

=
∑

ł∈Z
(−1)l

∫ ∞

0

[
|ξ |{ cos(4πlφ)− i sin(4πlφ)

}

×{[(pk2lJ2l −
(

cos(2πφ)− i sin(2πφ)
)
qk2l+1J2l+1

]

+i[(qk2lJ2l +
(

cos(2πφ)− i sin(2πφ)
)
pk2l+1J2l+1

]}]
d|ξ |

=
∑

ł∈Z
(−1)l

∫ ∞

0

[
|ξ |{ cos(4πlφ)− i sin(4πlφ)

}

×{[pk2lJ2l − cos(2πφ)qk2l+1J2l+1 + i sin(2πφ)qk2l+1J2l+1
]

+i[qk2lJ2l + cos(2πφ)pk2l+1J2l+1 − i sin(2πφ)pk2l+1J2l+1
]}]
d|ξ |

=
∑

ł∈Z
(−1)l

∫ ∞

0

[
|ξ |{ cos(4πlφ)− i sin(4πlφ)

}

×{[pk2lJ2l − cos(2πφ)qk2l+1J2l+1 + sin(2πφ)pk2l+1J2l+1
]

+i[qk2lJ2l + cos(2πφ)pk2l+1J2l+1 + sin(2πφ)qk2l+1J2l+1
]}]
d|ξ |

=
∑

ł∈Z
(−1)l

∫ ∞

0
|ξ |

{[
J2l

[
pk2l cos(4πlφ)+ qk2l sin(4πlφ)

]

+J2l+1
[
pk2l+1 sin

(
2π(2l + 1)φ

)− qk2l+1 cos
(
2π(2l + 1)φ

)]]

+i
[
J2l

[
qk2l cos(4πlφ)− pk2l sin(4πlφ)

]

+J2l+1
[
pk2l+1 cos

(
2π(2l + 1)φ

)+ qk2l+1 sin
(
2π(2l + 1)φ

)]]}
d|ξ | .

Hence we obtain the formula (28) under the condition (27). The formula (29)
follows directly from Corollary 2.1, since F−1

ξ→xiξkB̃k(ξ) = 1
2π ∂xkBk(x).

2.3 The Problem of Minimization

Let x = (x1, x2) = (ρ cos 2πφ, ρ sin 2πφ), and B̃k(ξ)
∣∣∣
k=1,2

= ∑
n∈Z

C̃kn(|ξ |)e−
◦
ınω,

where C̃kn(|ξ |) = pkn(|ξ |) + iqkn(|ξ |) are that B̃k(ξ) = 0 when |ξ | > R for some
R > 0. Then
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Bk(x)
∣∣∣
k=1,2

= F−1
ξ→xB̃k(ξ) and B3(x) = F−1

ξ→x

( i
(
ξ1B̃1(ξ)+ ξ2B̃2(ξ)

)

|ξ |
)

are real, and for k = 1, 2 (and x = (ρ cos 2πφ, ρ sin 2πφ))

Bk(x) =
∑

ł∈Z
(−1)l

∫ ∞

0
|ξ |

{[
J2l

[
pk2l cos(4πlφ)+ qk2l sin(4πlφ)

]

+J2l+1
[
pk2l+1 sin

(
2π(2l + 1)φ

)− qk2l+1 cos
(
2π(2l + 1)φ

)]]
d|ξ | ,

and

B3(x) = 1

4π2

∫

R2

∂y1B1(y)+ ∂y2B2(y)
|x− y| dy . (30)

The required vector of the magnetic field must deliver the minimum to the
following functional (cf. [15]):

�(B̃(x)) =
3∑

j=1

∑

k=(k1,k2)

∣∣∣F−1
ξ→xk B̃(xk)− B(xk)

∣∣∣ .
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Reaction–Diffusion Equations
with Density Dependent Diffusion

V. N. Razzhevaikin

1 Basic Equation

Consider a reaction–diffusion equation of the form

ut = D(u)∇x (N(u)∇xu)+ F(u). (1)

Here x ∈ � ⊂ Rn stands for space variable, t ∈ R+ for time, u = u(x, t) ∈ R
for phase variable. The density dependent diffusion is described by two parts: the
internal N(u) > N0 > 0 and external diffusion functions D(u) > D0 > 0. The
monotone change of variable u of the form v(u) = ∫ u

0 N(y) dy or w(u) = ∫ u
0

dy
D(y)

can kill, respectively, the first or the second of them by redefining the remaining
diffusion function and the reaction (source) function F(u). So, for general results
(see, e.g., the next section) we can leave only one of them without loss of generality.
Nevertheless, we prefer to ignore this possibility for the sake of convenience in using
the received results and for getting several estimates, which can’t be achieved for
Eq. (1) in the form with a single nonlinear diffusion function (see below Sect. 3.2).
Note that in the case of the constant diffusion functions D(u) ≡ N(u) ≡ 1 we get
the classical form of the reaction–diffusion equation.

V. N. Razzhevaikin (�)
A.A. Dorodnicyn Computing Center of the Russian Academy of Sciences, Moscow, Russia
e-mail: evt@ccac.ru

© Springer International Publishing AG, part of Springer Nature 2018
R. P. Mondaini (ed.), Trends in Biomathematics: Modeling, Optimization and
Computational Problems, https://doi.org/10.1007/978-3-319-91092-5_11

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91092-5_11&domain=pdf
mailto:evt@ccac.ru
https://doi.org/10.1007/978-3-319-91092-5_11


154 V. N. Razzhevaikin

2 Instability and Stabilization

2.1 Instability in Bounded Convex Domain

For a convex bounded region � = co� � Rn, with a smooth impenetrable
boundary ∂� (i.e., (∇xu, ν) |∂� = 0, ν⊥∂�) the following result takes place.

Theorem 2.1 (Razzhevaikin [1]) Any stationary non-constant solution of equa-
tion (1) on a convex bounded region with impenetrable boundary is not stable (e.g.,
in norm C(�)).

2.2 Instability on Real Line

For the whole real line � = R the instability result is also true if there is no
monotonic staying wave (see Sect. 3.1). A more strict statement is the following.
Define a potential function as

J (U) =
∫ U

0

F(u)N(u)

D(u)
du. (2)

Theorem 2.2 (Razzhevaikin [2]) Any non-constant stationary bounded solu-
tion of equation (1) on the whole real line is not stable if the source
function F(u) does not have two different zeros with equal potentials (i.e.,
(u1 �= u2)& (F (u1) = F(u2) = 0)⇒ (J (u1) �= J (u2))).

2.3 Stabilization to Dominating Equilibrium

Let � = Rn, I = [0, 1], F(0) ≥ 0, F(1) ≤ 0. The stationary solution (i.e.,
equilibrium) of equation (1) ũ(x) ≡ U ∈ I (i.e., such that F(U) = 0) is said
to be dominating in I , if J (U) > J(u) for all u ∈ I\{U}. Here J (u) is from (2).
It is evidently stable, i.e., (u − U)F(u) < 0 for all u ∈ O(U)\{U} ⊂ I (O(U) is
some vicinity of U ).

We say that u(x, t) stabilizes to ũ(x) if for any bounded K � Rn sup
x∈K

|u(x, t)−
ũ(x)| → 0 as t →+∞.

The following theorem characterizes the dominating equilibrium as an “almost”
global attractor for solutions with initial distributions inside I .

Theorem 2.3 (Razzhevaikin [3]) Let ũ(x) ≡ U be the dominating equilibrium of
Eq. (1) on I , and some neighborhood O(U) ⊂ I does not include other equilibria.
Then for any segment [A,B] ⊂ O(U),A < U < B, there exists X > 0 such
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that the solution u(x, t) of equation (1) with an initial distribution u(x, 0) ∈ I for
x ∈ Rn and u(x, 0) ∈ [A,B] for ‖x‖ < X stabilizes to U .

3 Single Travelling Wave

3.1 Travelling Waves

Let � = R, U1 < U2, F(U1,2) = 0. A travelling wave (TW) (or a wave solution)
between U1 and U2 is a solution of the form u(x, t) = U(ξ) with U(ξ) ∈ [U1, U2],
ξ = x + ct for some c ∈ R, for which the boundary conditions

U(−∞) = U1, U(+∞) = U2 (3)

are satisfied. TW corresponds to motion of the wave having the profile U(ξ) and the
velocity c (from the right to the left for c > 0).

As far as TW satisfies the equation cUξ = D(U)(N(U)Uξ )ξ + F(U), the
problem of finding all of them is reduced to the one parameter boundary value
problem for it and (3).

Let P(ξ) = N(U(ξ))Uξ (ξ). Instead of the last second order ordinary differential
equation one can use the following system

⎧
⎪⎨

⎪⎩

Uξ = P
N(U)

Pξ = cP
N(U)D(U)

− F(U)
D(U)

.

(4)

Theorem 3.1 (Razzhevaikin [4]) Solutions of boundary value problem (4), (3)
with U(ξ) ∈ [U1, U2] for all ξ ∈ R satisfy the inequality P(ξ) > 0.

Thus, TW is monotonic. By division the equations in (4) under condition Uξ > 0
one can also get the equation for P̂ (U) such that P̂ (U(ξ)) = P(ξ)

dP̂

dU
= c

D(U)
− F(U)N(U)

D(U)P̂
. (5)

From (3) we also get P̂ (U1) = P̂ (U2) = 0. Multiplying (5) by P̂ (U) and integrating
over U ∈ [U1, U2] we get for J (U) from (2) the relationship J (U2) − J (U1) =
c
∫ U2
U1

P̂ (U)
D(U)

dU , so sign (J (U2) − J (U1)) = sign c. Thus, we have a simple way
to find the direction of TW motion. The case of J (U2) = J (U1) corresponds to
existence of a monotonic staying wave (see Sect. 2.2) with c = 0. When considered

over the plane (U,E), where E = E(U,P ) = P 2

2 + J (U) is an “energy” function,

TW corresponds to a monotonic (as far as dE(U,P )
dU

= Pc
D(U)

) curve connecting two
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extremal points of J (U) (e.g., U1 and U2, where JU(U1,2) = 0 with P̂ (U1,2) = 0).
So, any equilibrium (Ū , 0) on the tale of TW should be stable for homogeneous over
x system corresponding to (1) in rather small half-neighborhood of Ū onto the range
ofU(ξ) direction. Indeed, for c ≥ 0 the “energy” shouldn’t decrease with increasing
U and hence J (U) should increase while P(U) vanishes withU → Ū−0. Note that
without loss of generality we can suppose here and further that c ≥ 0. Otherwise
we can use the following changes: ĉ = −c, x̂ = −x, û = −u, F̂ (û) = −F(−û),
D̂(û) = D(−û), N̂(û) = N(−û).

As to the equilibrium on the front of TW, it can be either stable or unstable. The
first case is called trigger, whereas the second one is Kolmogorov’s case (the first
work where it was studied is Kolmogorov[5]).

Investigation of boundary value problem (4), (3) is based upon studying of
asymptotic solutions, which meet system (4) and one of boundary conditions (3).
The comparison technique applied to them results in existence and uniqueness
theorems. The most important of them are presented below.

3.2 Kolmogorov’s Case

The following result generalizes the well-known theorem from Kolmogorov [5].
Let U1 < U2, F(U1) = F(U2) = 0 and F(u) > 0 for u ∈ (U1, U2), and let

cm = 2
√
N (U1)D (U1) Fu (U1), cM = 2

√
sup

u∈(U1,U2)

N(u)F (u)/
∫ u
U1

dv
D(v)

.

Theorem 3.2 (Razzhevaikin [4]) There exists some minimal 0 < c∗ ∈ [cm, cM ]
such that for all c ≥ c∗ TW between U1 and U2 exists.

3.3 Trigger Case

When both zeros U1 < U2 of F(u) are stable there exists at most one TW between
them. Moreover, if F(U1 + ε) < 0, F(U2 − ε) > 0 for all rather small ε > 0 it
really exists when the following conditions are fulfilled.

(i) ∀u ∈ (U1, U2), J (u) < J(U2),
(ii) ū ∈ (U1, U2)&F(ū) = 0 ⇒ J (ū) ≤ J (U1).

Theorem 3.3 (Razzhevaikin [4]) Conditions (i) and (ii) together are sufficient for
existence of TW between U1 and U2. Moreover, under them such TW is unique and
its velocity c ≥ 0.

Remarks

1. In (ii) it’s enough to check zeros ū with F(ū − ε) > 0, ∀ε ∈ (0, ε0) for some
ε0 > 0.
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2. From Theorem 3.3 the existence of TW with some c ∈ R between two
neighboring stable zeros of F(u) follows. Indeed, the change of variables
indicated above can bring the alternative situation to the conditions of this
theorem.

4 Wave Chains

Let 0 = u0 < u1 < · · · < uk = 1 be isolated zeros of F(u) such that ui for i ≥ 1
are stable (u0 may be unstable). Assume also that between neighboring zeros ui and
ui+1 there exists at most one zero, which evidently should be unstable. We shall call
such a collection of zeros a full set of zeros.

According to Theorems 3.3 and 3.2 between neighboring zeros ui and ui+1 in
the full set of zeros there exists a TW solution (single for i ≥ 1) with velocity
ci,i+1 ∈ R. One shouldn’t exclude the case of existence of TW between ui and
uj with velocity cij ∈ R when j �= i + 1. We shall denote this TW as C(i, j).
When such a wave does not exist, one can observe a chain of travelling waves with
monotonic total profile and several intermediate zeros from the full set of zeros
staying for boundary conditions for each wave from the chain. It is rather interesting
that asymptotic of such chains is defined rigorously almost independently on initial
monotonic distributions (see Sect. 5 below).

4.1 Trigger Wave Chains

It proves to be that when a back wave overtakes a leading one a united wave appears
with an intermediate velocity. Successive junctions of waves result in a chain of
waves with not increasing velocities. For the trigger case it turns out to be that such
a final chain is single.

Theorem 4.1 (Razzhevaikin [4]) For any full set of stable zeros {ui, i = 1, . . . , k}
there exists a single subset {ij , j = 1, . . . , κ} ⊂ {1, . . . , k} such that

i) i1 = 1, iκ = k;
ii) there exists the travelling wave C(ij , ij+1) with velocity cij ,ij+1 ∈ R for each
j ∈ {1, . . . , κ − 1};

iii) cij ,ij+1 ≥ cij+1ij+2 for each j ∈ {1, . . . , κ − 2}.
Such a chain would be called the true trigger chain over the full set of stable zeros
{ui, i = 1, . . . , k}.



158 V. N. Razzhevaikin

4.2 Kolmogorov’s Wave Chains

When u0 = 0 in the full set of zeros is unstable then F(u) > 0 for all u ∈ (u0, u1).
Using Theorem 3.2 we can get a set of TW between u0 and u1 with velocities
c ∈ [c∗,+∞). TW between u0 and ui for i > 1 can also exist.

Theorem 4.2 (Razzhevaikin [4]) In Kolmogorov’s case the velocity values range
Ii = [ci, ĉi ) for i ≥ 2 such that TW C(0, i) with velocity c exists if c ∈ Ii can be
constructed by the following inductive procedure.

Let c1 = c∗ from Theorem 3.2 with U1 = 0 and U2 = u1 and ĉ1 = +∞. For
i ≥ 2 ĉi is the minimal wave velocity in the true trigger chain formed over the full
set of zeros {u1, . . . , ui}. If Ii−1 is already defined, then ci ∈ Ii−1. Moreover, if
ci−1 > cm from Theorem 3.2, then ci > ci−1.

Thus, Ii shrinks with increasing i up to empty set when decreasing ĉi becomes
not greater than ci . Note also that from Theorems 3.2 and 4.2 it follows that c > 0
even in the case of Fu(0) = 0.

From Theorem 4.2 it follows that behind TW one can observe a true trigger chain
formed over the remainder of the full set of zeros after ignoring those its elements
that were found inside segment [u0, ui]. Moreover, velocity of leading TW in this
remaining chain is larger than velocity of TW between u0 and ui . Its union with
this true trigger chain is called a true Kolmogorov’s chain over the full set of zeros
{ui, i = 0, . . . , k}. It is already not unique but it is possible to select among such
chains one with minimal velocity of the leading wave. This selected chain is called
the minimal velocity true Kolmogorov’s chain.

5 Stabilization to Wave Chains

5.1 Phase Plane Equation

Let again in Eq. (1) x ∈ R, and F(0) = F(1) = 0. If u(x, 0) is not constant and
not decreasing, then for solution u(x, t) of the Cauchy problem for all t > 0 and
x ∈ R its space derivative exists and ux(x, t) > 0. So, we can construct the function
Q(u, t) such thatQ(u(x, t), t) = ux(x, t). It ought to satisfy the following equation

Qt = Q2
(
D (QN)u + F

Q

)

u

(
= Q2(D(QN)u)u + FuQ− FQu

)
. (6)

This equation is called the phase plane equation whereas its solution Q(u, t) is
called the phase plane solution corresponding to solution u(x, t) of equation (1).

If u(±∞, 0) = α±(0) and functions α±(t) are the solutions of the Cauchy
problems ±α±(t)

dt
= ±F(α±) ≥ 0 with initials α±(0), then the range of Q(u, t) is

the increasing in time interval (α−(t), α+(t)). Moreover, the following result takes
place.
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Theorem 5.1 (Razzhevaikin [4]) Let Q(u, 0) be an everywhere positive initial
distribution defined over (α−(0), α+(0)) and α±(t) as above. Then there exists a
unique solution Q(u, t) > 0 of equation (6) with the continuous almost every-
where positive initial distribution Q(u, 0), which satisfies the boundary conditions
Q(±α±(t), t) = 0 and for which the integrals

∫ α±(t)∓ε
α±(t)

du
Q(u,t)

diverge for t > 0.

5.2 True Solutions and Phase Plain Convergence

Solutions of equation (6) with constant α±(t) = α̂± such that F(α̂±) = 0 are called
true solutions. Any of them, which is positive for t > 0, correspond to a simple
wave, i.e. to a monotonic over x solution of equation (1) up to shifting along x.
Those ones, which have zeros at zeros of function F(u), corresponds to a “chain”
of simple waves ordered in accordance with zeroes order and infinitely shifted one
from other.

Among true solutions one can find phase plain wave chains that correspond to
true trigger and true Kolmogorov’s wave chains. Those ones are stationary, i.e., do
not change with time. The convergence of true solutions to phase plain wave chains
is called the phase plain convergence. Such a convergence results in convergence of
u(x, t) to some representative of a true wave chain.

The main technique in proofs of the phase plain convergence is based on prop-
erties of sub- and super-solutions of equation (6) that satisfy inequalities obtained
from (6) by changing the first sign of equality by sign≤ and≥, respectively. Among
these, stationary ones have a special interest. Their main property is the following.
True solutions of (6), which have sub-solutions (respectively, super-solutions) as
the initial distributions, monotonically increase (respectively, decrease) in time. The
comparison technique allows to establish that any super-solution remains greater
than any sub-solution if it takes place at the beginning. Thus, for establishing
the phase plain convergence it is enough for the phase plane solution Q(u, t̂)
corresponding to solution u(x, t̂) of equation (1) at some moment t̂ ≥ 0 to find, on
the one hand, such a stationary sub-solution, which is a lower bound ofQ(u, t̂), and,
on the other hand, an exceeding Q(u, t̂) stationary super-solution, between which
one can find only one stationary solution of (6), which is also a phase plain wave
chain. For details see Razzhevaikin [4]. Here we only formulate several theorems.

Theorem 5.2 (Razzhevaikin [4]) If in the trigger case a continuous distribution
Q(u, 0) is positive over interval (α, β) with F(α) ≤ 0 and F(β) ≥ 0 and takes
zero values outside it, then the true solution of equation (6) converges on the phase
plain to a true trigger chain. This trigger chain is the minimal chain over interval
(u−, u+) ⊃ (α, β), where u± are stable zeros of F(u), for which other its zeros
between them and respectively α and β do not exist.
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5.3 Convergence to Minimal Velocity True Kolmogorov’s
Chains

Let 0 = u0 < u1 < · · · < uk = u+ be the full set of zeros of function F(u)
with unstable u0, i.e., F(u) > 0 for u ∈ (u0, u1). Let also the initial distribution
Q(u, 0) satisfy conditions of Theorem 5.2 with α ≡ 0 and β ∈ (uk−1, uk). The
characteristic equation for Jacobian of system (4) at point (0, 0) may be written as

c = qλD(0)N(0)+ Fu(0)

λ
(= c̃(λ)) , (7)

where λ is slope of Qλ(u) (the solution of equation (5) with the parameter c
from (7)) at 0. Let λ̃(c) = min{λ > 0 : c̃(λ) = c} for Fu(0) > 0 and λ̃(c) ≡ 0 for

Fu(0) = 0. The function c = c̃(λ) > 0 has minimum cm at λ̂ =
√

Fu(0)
(D(0)N(0)) . Let the

minimal velocity of TW between u0 and u1 is equal to c∗ ≥ cm (see Theorem 3.2).

Theorem 5.3 (Razzhevaikin [4]) Let a nonnegative continuous function Q(u, 0)
be positive over (0, β) with F (β) > 0 or β ∈ {ui}, i = 1, . . . , k. Then under
the inequality lim inf

u→+0

Q(u,0)
u

≥ λ̃(c∗) for Fu(0) > 0 (or > 1
c∗ for Fu(0) = 0) the

true solution Q(u, t) with the initial distribution Q(u, 0) converges on the phase
plain to the minimal velocity true Kolmogorov’s chain on interval (0, u+), where
u+ = min ui ≥ β, i = 1, . . . , k.

Corollary (Razzhevaikin [4]) In the case of a strictly increasing initial distribution
u(x, 0), vanishing at some finite x̄ with ux(x̄, 0) > 0 or with ux(x, 0) > 0 and
uxx(x, 0) > −δ for x ∈ (x̄, x̄ + ε) and some ε, δ > 0 the first wave velocity would
be minimal.

5.4 The Case of Non-minimal Velocity

The conditions of Theorem 5.3 imply rather hard restrictions forQ(u, 0) asymptotic
under u→+0. Their violation can result in the other character of asymptotic behav-
ior of solutions of equation (6). For example, in the case of single Kolmogorov’s
wave (k = 1) under all its conditions with the exclusion of the asymptotic inequality
for Q(u, 0), stationary solutions of equation (6), which correspond to non-minimal
velocity, also satisfy it. It appears that nevertheless, such solutions are also stable in
somewhat weaker sense. Hereafter in this section we restrict our consideration with
the case of a single wave, i.e., with F(0) = F(1) = 0 and F(u) > 0 for u ∈ (0, 1).

A stationary solution of equation (6) is uniquely defined by its velocity c > c∗
value. We shall denote it as Cc(u).

Theorem 5.4 (Razzhevaikin [4]) Let Q(u, 0) = u(q + g(u)) with q ∈ (0, λ̃(c∗))
and a continuous over [0, 1] function g(u) = o(1), for which integral

∫ 1
+0

g(u)
u
du

converges. Then the true solution Q(u, t) converges to the wave Cc̃(q)(u) with t →
+∞ in the following sense.
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There exist functions Q±(u, t) such that

i) 0 ≤ Q−(u, t) ≤ Q(u, t) ≤ Q+(u, t),
ii) Q−(u, t) ≤ Cc̃(q)(u) ≤ Q+(u, t),

iii) Q−(u, t) converges to Cc̃(q)(u) uniformly on compacts I � (0, 1),
iv) ρt

(
Q+(u, t), Cc̃(q)(u)

) → 0 with t → +∞ in metric ρt (Q1,Q2) =
∫ +∞
t

∫ 1
0
F(u)
D(u)

∣∣∣ 1
Q1(u,τ )

− 1
Q2(u,τ )

∣∣∣ dudτ.

Remarks

1. Statements of Theorem 5.4 may be strengthened. The two-sided boundedness
u−(x, t) ≤ u(x, t) ≤ u+(x, t) ≤ for solutions of equation (1) also takes place.
Here u±(x, t) are the properly shifted solutions of equation (1) corresponding to
Q±(u, t), respectively.

2. Under conditions of Theorem 5.4 there exists a derivativeQu(u, 0)|u=+0 = q. It
implies particularly, an asymptotics u(x, 0) ∼ eqx for x →−∞. Convergence of
the integral takes place for any initial Qu(u, 0) with Hölder continuous at u = 0
derivative.

6 Leader Selection in Competing Species Diffusion Model

Consider the reaction–diffusion competition system with Lotka–Volterra reaction
term. This system is assumed to describe the dynamics of a biological community
distributed over space variables. Suppose for simplicity that such a distribution can
be reduced to a single variable x ∈ R. Let also i = 1, . . . , N stand for species
numbers, ui(x, t) ≥ 0 is density of i-th species at (x, t). The diffusion coefficient of

i-th species is Di > 0 whereas F i(u) = ui

(
Mi −

N∑
j=1

γiju
j

)
is its Malthusian

function, which depends on the whole vector u = (u1, . . . , uN) of population
densities uj = uj (x, t) at (x, t). Also, M = (M1, . . . ,MN) > 0 is the vector of
Malthusian coefficients in the absence of competition. Local interactions between
species are assumed to be described by coefficients γij with γii > 0.

The reaction–diffusion system has the form:

uit = Diuixx + uiF i(u). (8)

We discuss several asymptotical properties of solutions of Cauchy problems
for (8) with initial distributions ui(x, 0) ≥ 0 that have bounded supports Si =
supp ui(x, 0) = cl{x : ui(x, 0) > 0} �= ∅. The total convex envelope S =
co

(
N⋃
i=1
Si
)

is called the seat of the community.

The following robust assumption is called the “common ecological niche
hypothesis.”



162 V. N. Razzhevaikin

(H1) γij = αiβj , and mi = Mi

αi
are different.

For N = 1 we can find Kolmogorov’s velocity c1 = 2
√
D1M1 and the

asymptotical value û1 = M1

γ11
.

A species with number i1 ∈ {1, . . . , N} is called a leader in system (8), if for
any fixed collection of δl > 0 for all X > 0 there exist x̂ > X and t̂ > 0 for which
the following conditions are fulfilled:

(1) ui1(x̂, t̂ ) > δi ;
(2) uk(x, t̂) < δk ∀k �= i1 and x ≥ x̂.

We assume also the following robust assumption

(H2) For i1 ∈ {1, . . . , N} the problem

√
Di1Mi1 = max

i

{√
DiMi

}

has a unique solution.

Theorem 6.1 (Razzhevaikin[6]) Under hypotheses (H1) and (H2) the leader in
system (8) exists and its number does not depend on initial finite distributions.

7 Diffusion Model of Genetic Waves

As an example of application of the theory of reaction–diffusion equations with
density dependent diffusion consider a model of genetic waves propagation over
space [7]. It describes a population structured over space and several discrete
genetic parameters. The dynamical properties of individuals depend on phenotypic
characteristics whereas those ones change in accordance with genetic lows.

7.1 Basic Hypotheses

The following hypotheses are assumed to be fulfilled.

H1. The population is distributed in space with one variable x ∈ R.
H2. Phenotypic particularities of genotypes differ in one two-allelic gene with

alleles A and a.
H3. Let p(x, t) be the part of the population fertile individuals density at (x, t)

recounted as fraction of the allele’s A number to the number of both alleles
A and a. So, if UA(x, t), UAa(x, t), Ua(x, t) are the densities of AA, Aa and
aa pairs carriers, then p(x, t) = 2UA(x,t)+UAa(x,t)

2(UA(x,t)+UAa(x,t)+Ua(x,t)) . Let q(x, t) be the
corresponding value for a. Thus the total density for both alleles A and a is
constant: p(x, t)+ q(x, t) = 1.
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H4. Changes of alleles A and a numbers occur through their carriers with
genotypes AA, Aa, and aa, each of which has the fitness (the probability to
alive from conception to the fertile stage) equal, respectively, to α, β, γ (all
are positive constants). The departure rate from the fertile stage (death-rate
plus aging) is assumed to be constant.

H5. The full panmixia locally over each x is assumed to be fulfilled.
H6. Crossbreeding is realized via the gametes spatial carrying (e.g., via moveable

sperm), which depend only on p(x, t) and does not depend on other genotype
properties including their densities.

7.2 Integro-Differential Model

The resulting base mathematical model has an integro-differential form. To describe
it we shall take the maturation time h as the time unit.

Define the long-range genetic action operator as convolution of the form
K(p)(x, t) = ∫ +∞

−∞ k(x · ξ)p(ξ, t)dξ with the normal distribution with the kernel

k(x · ξ) = e
− (x−ξ)2

2σ2√
2πσ 2

for some σ > 0, so K(1) = 1. Denote ϕ(x, t) =
K(p)(x, t), ψ(x, t) = K(q)(x, t) = 1 − ϕ(x, t) (gametes distributions, see H6);
uA(x, t) = p(x, t)ϕ(x, t), uAa(x, t) = p(x, t)ψ(x, t)+ q(x, t)ϕ(x, t), ua(x, t) =
q(x, t)ψ(x, t) (conception of AA, Aa, and aa genotypes carriers rates, see H5).
Over long time intervals one can use a differential approximation of changes for
p(x, t) and q(x, t), so in accordance with H4 it is possible to construct the following
integro-differential system

⎧
⎨

⎩

pt (x, t) = 2αuA(x, t)+ βuAa(x, t)− p(x, t)r(x, t),

qt (x, t) = βuAa(x, t)+ 2γ ua(x, t)− q(x, t)r(x, t),
(9)

where r(x, t) is defined from condition H3, so, r(x, t) = r(x, t)(p(x, t) +
q(x, t)) = 2(αuA(x, t) + βuAa(x, t) + γ ua(x, t)). For q(x, t) = 1 − p(x, t)

instead (9) we have

pt (x, t) = ϕ(x, t)R(p(x, t))+ [βp(x, t)(1− 2p(x, t))− 2p(x, t)(1− p(x, t))γ ],
(10)

with

R(p) = 2(α + γ − 2β)p(1− p)+ β > 0. (11)
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7.3 PDE Approximation

Via expending p(ξ, t) = p(x, t)+ ∂p(x,t)
∂x

(ξ−x)+ 1
2
∂2p(x,t)

∂x2 (ξ−x)2+· · · we have for

small σ > 0 the following approximation K(p)(x, t) = p(x, t)+ σ 2

2
∂2p(x,t)

∂x2 + · · ·
that from (10) results in the equation

pt = D(p)pxx + F(p) (12)

with D(p) = σ 2

2 R(p), R(p) from (11) and

F(p) = pR(p)+ βp(1− 2p)− 2p(1− p)γ
= 2p[(2β − α − γ )p2 + (α + 2γ − 3β)p + (β − γ )]. (13)

7.4 Main Results

The function F(u) from (13) has three zeros:

p0 = 0, p1 = 1, p∗ = γ − β
α + γ − 2β

that serves as equilibria in Eq. (12).
The direction of TW for (12) is defined by sign of integral J = ∫ 1

0
F(u)
D(u)

du. It is

easy to see that sign J = sign
(

1
2 − p∗

)
.

Let δ = α+γ
2 . Without loss of generality assume that α > γ . The following

properties depend on β localization with respect to α and γ . Note also, that the
function R(p) is concave for δ > β and is convex for δ < β.

7.4.1 Case β < γ

In this case F ′(0) = 2(β − γ ) < 0, F ′(1) = 2(β − α) < 0, and p∗ ∈
(

0, 1
2

)
. Thus,

it corresponds to the trigger case. As far as J (1) > 0 then TW goes from p0 to p1.
In genetic waves interpretation it may be treated as spreading of the stronger allele
A with the weaker allele a vanishing. Note that the initial distribution of p(x, 0)
should be ruther large for this wave can occur. At least it is necessary that measure
of the region where p(x, 0) > p∗ is positive.
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7.4.2 Case γ < β < δ

Here F ′(0) > 0, F ′(1) < 0, and p∗ < 0. Thus F(p) > 0 for p ∈ (0, 1). It
corresponds to Kolmogorov’s case. TW solutions with velocity c ≥ c∗ ≥ cK ,
where c∗ is some minimal value and cK = 2

√
D(0)F ′(0) = 2σ

√
β(β − γ ) is

Kolmogorov’s velocity. The genetic waves interpretation is the same as above, but
the velocity of the wave depends already on the initial distribution (asymptotically
minimal for initial bounded distribution of allele A). Also, there is no need to
demand of massive initial distribution. For the wave to appear it’s enough to have
any distribution of p(x, 0) with a positive integral.

7.4.3 Case δ < β < α

Here F ′(0) > 0, F ′(1) < 0, and p∗ > 1. So, again F(p) > 0 for p ∈ (0, 1). Since
in this case the function D(p) is convex (hence its maximums are localized at the
ends of the interval (0, 1)), and for p ∈ (0, 1) from F ′(p) > 0 follows F ′′(p) < 0
(the inflection point of a cubic curve is between its extremums), then c∗ = cK . The
genetic waves interpretation is just the same as above, but the minimal velocity of
the wave is already known.

7.4.4 Case β > α

Here again F ′(0) > 0, F ′(1) > 0, whereas p∗ ∈
(

1
2 , 1

)
. For monotonic initial

distribution with p(x, 0) → 1
2 ± 1

2 for x → ±∞ one can observe a chain
of two waves scattering from p∗ into opposite directions. Their velocities value
spread depending on initial distributions, respectively, from c0

K = 2
√
D(0)F ′(0) =

2σ
√
β(β − γ ) and c1

K = 2
√
D(1)F ′(1) = 2σ

√
β(β − α) to +∞. Note that

the velocities’ minimal values are exact and are reached for bounded supporters
(in this case it is where p(x, 0) �= 1

2 ± 1
2 ). Here it follows from implication

F ′′(ū) = 0 ⇒ F ′(ū) < 0. The interpretation in terms of genetic waves here
corresponds to the heterozygotic genotype propagation over the region.
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A Plankton-Nutrient Model with Holling
Type III Response Function

Anal Chatterjee, Samares Pal, and Ezio Venturino

1 Introduction

Many models have now appeared in the literature for plantkon ecosystems, since
the seminal paper [16]. The recent literature in plankton research has evolved
from these early works toward more complex configurations: for instance, flip and
Hopf bifurcations in a discrete predator–prey model with non-monotonic functional
response are studied in [21] using the center manifold theorem.

There are several important reasons for investigating plankton ecosystems. At
least three are the main grounds for basic research in this field: their role as basic
food source, oxygen production, and more and more frequent insurgence of red
tides. As far as the first one is concerned, plankton lies indeed at the bottom level
of the trophic chain in the sea, and, in view of the oceans’ extension, ultimately
on Earth, so that it therefore is the food source of all the higher- level aquatic
life forms. It is the basic resource on which fisheries then rely. In this context,
following the early works in mathematical bioeconomics, [12], and their follow-ups
for general predator–prey systems, such as [4, 13, 30], also recent efforts in plankton
modeling include harvesting, especially in connection to fisheries, [14]. In [8], both
in the presence and in the absence of constant harvesting rates, a detailed bifurcation
study is performed for a two-species ratio-dependent model, assessing sustainability
properties of the stock and the resource rent earned. Note that the optimal harvesting
policy is investigated in [7] for a structured predator–prey system with stage-
dependent predators. In [27] harvesting and time delay are combined, considering
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two basic models, namely the generalized Gause-type predator–prey model and
the Wangersky–Cunningham model. A somewhat simpler model of Gause type is
considered in [18]. It is a two population model with a sigmoidal response function,
containing further an additional feature, the Allee effect. It exhibits features such as
tristability and the existence of two limit cycles, one of which is unstable and the
other one stable. Similarly, the Leslie–Gower situation is investigated in [19].

Further, studying plankton is important because most of the oxygen produced
daily on this planet comes from marine resources, i.e., essentially from phytoplank-
ton; for possible future dreadful scenarios due to climatic changes in this context,
see the very recent investigations [35].

But nowadays one of the most relevant issues that we are facing are the so-called
“red” (or “brown”) tides that are responsible for the eutrophication phenomena that
cause many problems to fisheries and tourism. It is being argued that these harmful
algal blooms should be ascribed to the presence of toxin-releasing phytoplanktons.
In such context, harvesting of a predator–prey fishery has been considered in
[14]. In addition, as these are recurrent phenomena, a mathematical model for the
investigation of interactions between phytoplankton and zooplankton in a periodic
environment is presented in [26] that incorporates possible parameter variations
mainly due to seasonal changes.

Deterministic models in ecology are not able to account for environmental
fluctuations, because they neglect the effects of random parameter variations, [2].
The deterministic approach thus has some limitations in biology, being unable
to deal with environmental noise in predicting the future states of the system.
A stochastic model may instead describe more realistically a natural system and
therefore should also be considered, in order to provide a clearer understanding
of the situation. Recently, rather general deterministic and stochastic nutrient-
phytoplankton-zooplankton models with toxin-producing phytoplankton have been
discussed in [22], showing that increasing toxins production rates can induce chaotic
system behavior, but low nutrient input may act as a control in this situation. In
this context, the issue of global stability of the coexistence equilibrium becomes of
paramount importance: for instance, considering epidemic models, such situations
are addressed in [23] and [24]. In the former, stability of the endemic equilibrium
point of the SEIR epidemic model is considered, while the latter focuses on a similar
issue in the presence of delays.

In this paper, we introduce a new model, both in its deterministic and stochastic
counterparts. It incorporates a feature that appears for the first time in this situation,
the emergence of a Holling type III response function that has only very recently
been suggested, [28]. The way of parametrizing the functional response affects food
chain models. In particular the Holling type III function is theoretically known
to help system stabilization, but apparently the results of laboratory experiments
challenge its use. In [28] however the use of sigmoid response functions are
advocated for the plankton models that do not explicitly take into account vertical
heterogeneity of the population’s distribution and zooplankton’s active food search
behavior. This is because the latter can follow phytoplankton and feed on the vertical
ocean layers that are more populated by herbivores.
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The use of a Holling type III functional response is however in contrast to other
current models, such as [29], where the system exhibits Holling type I and type
II response functions. A Holling type II with two-zooplankton one-phytoplankton
system in the presence of toxicity has been discussed in [6]. The model presented
here considers nutrients, as in [34], in addition to the plankton populations, but
does not explicitly incorporate space. There are two trophic levels, phytoplankton,
also known as autotroph, since they are able to produce their food requirement by
photosynthesis from inorganic materials, and zooplankton, or herbivores, grazing on
the former. The latter is assumed to be subject to harvesting which is not modeled in
[5]. In contrast to many other current models, we account also for an additional food
source for the autotroph biomass, represented by vitamin B12 as suggested in [5,
15], which helps in destabilizing the zooplankton-free equilibrium, i.e., it maintains
coexistence even in the presence of a high harvesting rate. Positive invariance of
the ecosystem solutions and charaterization of its equilibria are obtained, together
with an analysis of the Hopf bifurcation at coexistence and of the stability of the
bifurcating periodic solution.

We then move on to the stochastic counterpart of the basic model by introduc-
ing a random driving force into each system equation. This again constitutes a
generalization of [29], because in the latter noise appears only in the harvest rate
parameter. In our analysis we further briefly deal also with the global stability of
the coexistence equilibrium, using a Lyapunov function. The stochastic stability is
characterized, and conditions for the insurgence of persistent oscillations of all the
system populations are investigated also via numerical simulations. Our findings
show that the control proposed in the absence of the environmental disturbances
retains its validity also in the presence of environmental stochasticity, provided that
the intensity of the environmental fluctuation is below a critical threshold.

The paper is organized as follows. In the next section, the deterministic model
is introduced, and analyzed in Sect. 3. The stochastic counterpart is presented next,
results on the numerical simulations are reported in Sect. 5 and discussed in the final
section.

2 The Mathematical Model

Let N(t) be the concentration of the nutrient at time t . Let P(t) the autotroph
biomass and Z(t) the number of herbivores present at time t . LetN0 be the constant
input of nutrient concentration, D is the dilution rate of nutrient. Its inverse D−1

represents the average time that nutrient and waste products spend in the system. Let
α1 and α2 be the nutrient uptake rate for the autotroph biomass and conversion rate
of nutrient for the growth of the autotroph biomass, respectively (α2 ≤ α1). Further,
μ and μ2 denote respectively the mortality rates of the autotroph biomass and of the
herbivore population. Let μ3 (μ3 ≤ μ) and μ4 (μ4 ≤ μ2) be the nutrient recycle
rates respectively coming from the dead autotroph biomass and the dead herbivore
population. The maximal zooplankton’s herbivore hunting rate is represented by γ1
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while γ2 (γ2 ≤ γ1) is its maximal herbivore conversion rate. We choose Holling type
II and type III functional forms to describe the grazing phenomena with K1 and K2
as half saturation constants. We also include harvesting of the top population in this
food chain, at rate h. The harvesting is modeled via a Holling type II function with
half-saturation constant E, to mimic the diminishing returns obtained via constant
harvesting efforts, as it is common in fisheries models, [12].

In this subject, most current models in the literature use the Holling type I
or II response function to simulate the grazing of phytoplankton by zooplankton,
see, e.g., [5, 29]. In this paper, we use it to describe the uptake of nutrients by
phytoplankton. Recent results in plankton modeling indicate however that a better
way of modeling the zooplankton grazing is provided by a Holling type III response
function [28]. Following these ideas, we propose here a system with this assumption
that, to our knowledge, sets therefore this contribution apart from other previous and
current works in the field.

In addition, it has been observed that other food sources are occasionally
available to phytoplankton, other than the basic nutrients N . The additional food
source is vitamin B12, [5, 15]. We include the latter in our description. Thus,
let rP be the phytoplankton’s growth rate due to this additional vitamin supply.
Then the autotroph biomass mortality rate is μ1 = μ − r ∈ R. With these
assumptions, our deterministic system is Ẋ = F(X), with F : R+3 → R3,
X(t) = (N(t), P (t), Z(t))T ∈ R3, F(X) = [F1(X), F2(X), F3(X)]T . Explicitly,
with its Jacobian V , it reads

dN

dt
= D(N0 −N)− α1PN

K1 +N + μ3P + μ4Z ≡ F1(N, P,Z)

dP

dt
= α2PN

K1 +N − γ1P
2Z

K2
2 + P 2

− μ1P ≡ F2(N, P,Z)

dZ

dt
= γ2P

2Z

K2
2 + P 2

− μ2Z − hZ

E + Z ≡ F3(N, P,Z). (1)

V =

⎡

⎢⎢⎢⎣

−D − α1K1P

(K1+N)2 − α1N
K1+N + μ3 μ4

K1α2P

(K1+N)2
α2N
K1+N −

2K2
2γ1Z P

(K2
2+P 2)2

− μ1 − γ1P
2

K2
2+P 2

0
2K2

2γ2P Z

(K2
2+P 2)2

γ2P
2

K2
2+P 2 − μ2 − Eh

(E+Z)2

⎤

⎥⎥⎥⎦ . (2)

Note that some entries have a definite sign:

V11 < 0, V13 > 0, V21 > 0, V23 < 0, V32 > 0, V33 > 0. (3)



A Plankton-Nutrient Model with Holling Type III Response Function 171

3 Analysis of the Deterministic System

3.1 Positive Invariance

Due to the constant supply of nutrients N0, the system (1) is not homogeneous.
Hence the origin cannot be a solution of the equilibrium equations. It is easy to
check that whenever choosing X(0) ∈ R+3 with N = 0, P �= 0, Z �= 0, then
F1(X) > 0. Hence on the plane N = 0 trajectories are entering the positive
octant. The remaining coordinate planes are solutions of the respective equilibrium
equations, so by the existence and uniqueness theorem, trajectories cannot cross
these planes from the positive octant into the unfeasible domain.

This ensures that the solution remains within the positive octant, ensuring the
biological well-posedness of the system.

3.2 Equilibria

The system (1) possesses the following three equilibria: the nutrient-only equilib-
rium E0 = (N0, 0, 0), the zooplankton-free equilibrium E1 = (N1, P1, 0), and the
coexistence of the three populations, E∗ = (N∗, P ∗, Z∗).
The Nutrient-Only Equilibrium E0 is always feasible; it is unstable for μ1 < 0:
the eigenvalues of the Jacobian (2) evaluated at this point being−D < 0,−(hE−1+
μ2) < 0 and μ1(R0 − 1), and are locally asymptotically stable if and only if

R0 := α2N
0

μ1(K1 +N0)
< 1. (4)

The Zooplankton-Free Equilibrium At E1 the population levels are

N1 = μ1K1

α2 − μ1
, P1 = Dα2[N0α2 − (N0 +K1)μ1]

(α2 − μ1)[α1μ1 − μ3α2] .

Therefore, for μ1 > 0 this equilibrium is feasible if α2 > μ1 > 0 and either one of
the two alternative conditions hold:

μ1
N0 +K1

N0 ≤ α2 < α1
μ1

μ3
; α1

μ1

μ3
< α2 ≤ μ1

N0 +K1

N0 . (5)

At E1 the Jacobian (2) factorizes, to give one explicit eigenvalue γ2P
2
1 (K

2
2 +

P 2
1 )
−1 − μ2 − hE−1 and the quadratic equation

λ2 + λ
(
D + α1K1P1

(K1 +N1)2

)
+ K1α2P1

(K1 +N1)2

(
α1N1

K1 +N1
− μ3

)
= 0.
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The Routh–Hurwitz conditions for the latter are easily seen to hold, but only when
the first condition (5) is satisfied. Stability of E1 is ensured by

R1 = γ2ED
2α2

2M
2

J 2 +D2α2
2M

2(μ2E + h)
< 1, (6)

where J = K2
2 (α2 − μ1)

2(α1μ1 − α2μ3) and M = N0α2 − μ1(N
0 +K1).

Remark 1 Whenever stable, E1 is also globally asymptotically stable in the N − P
phase subspace, as shown by the Lyapunov function

W(N,P ) =
∫ N

N1

x −N1

x
dx + α1N1 − μ3(K1 +N1)

α2N1

∫ P

P1

x − P1

x
dx.

Estimating from above its time derivative along the trajectories of the subsystem (1)
with Z = 0, we find using the very first inequality in (5)

dW

dt
= (N −N1)

[
D(N0 −N)

N
− D(N0 −N1)

N1
− P

(
α1

K1 +N − μ3

N

)

+ P1

(
α1

K1 +N1
− μ3

N1

)
+
(

α1

K1 +N1
− μ3

N1

)(
K1

K1 +N
)
(P − P1)

]

≤ −(N −N1)
2D

N
− (N −N1)

2

NN1
[Pμ3 +D(N0 −N1)] < 0.

The Coexistence Equilibrium At E∗ = (N∗, P ∗, Z∗), the levels are

N∗ = (γ1P
∗Z∗ + μ1(K

2
2 + P ∗2))K1

(α2 − μ1)(K
2
2 + P ∗2)− γ1P ∗Z∗

, Z∗ = (K2
2 + P ∗2)h

(γ2 − μ2)P ∗2 −K2
2μ2

− E.

while P ∗ which solves the equation with no closed form solution:

D(N0 −N∗)− α1N
∗P ∗

K1 +N∗ + μ3P
∗ + μ4Z

∗ = 0.

Thus E∗ is investigated numerically. For feasibility, we certainly need

h >
E[(γ2 − μ2)P

∗2 −K2
2μ2]

K2
2 + P ∗2

, α2 > μ1 + γ1P
∗Z∗

K2
2 + P ∗2

. (7)

For stability, all entries of the Jacobian V but one have a definite sign. In addition to
those of (3), we have V12 = −(α1N

∗)(K1+N∗)−1+μ3 < 0, V22 = γ1P
∗Z∗[P ∗2−

K2
2 ](K2

2 + P ∗2)−2 ∈ R. The characteristic equation is

y3 + A1y
2 + A2y + A3 = 0 (8)
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where A1 = −tr(V ), A2 = V11V22 + V22V33 + V11V33 − V23V32 − V12V21;A3 =
det(V ). Sufficient conditions for ensuring the positivity of these coefficients can be
stated, which help the simulations to give bounds for P ∗. In addition to the Routh–
Hurwitz condition A1A2 > A3, two cases arise.

Assume at first that V22 > 0. Now A1 > 0 is implied by

D + α1K1P
∗

(K1 +N∗)2 +
γ1P

∗Z∗(K2
2 − P ∗2)

(K2
2 + P ∗2)2

>
hZ∗

(E + Z∗)2 ; (9)

A2 > 0 is instead ensured by V22V33 − V23V32 − V12V21 > −(V11V22 + V11V33);
A3 > 0 holds whenever V11V23V32 − V33V11V22 > V13V21V32 − V33V12V21.

For V22 < 0, we find instead thatA1 > 0 is satisfied if the opposite inequality (9)
is verified whileA2 > 0 holds if V11V22−V23V32−V12V21 > −(V11V33+V22V33);
and finallyA3 > 0 is implied by V11V23V32−V33V11V22 > V13V21V32−V33V12V21.

Remark 2 The system could have a Hopf bifurcation at the coexistence equilibrium
if the following two conditions are satisfied:

A1(h
∗)A2(h

∗)− A3(h
∗) = 0, A′1(h∗)A2(h

∗)+ A1(h
∗)A′2(h∗)− A′3(h∗) �= 0.

(10)

Hopf Bifurcation at Coexistence The Hopf bifurcation occurs when the character-
istic equation (8) has two purely imaginary roots ±η2i, where i = √−1 denotes the
imaginary unit, in addition to the one real root η1. It follows that it can be rewritten
as (y2 + η2

2)(y − η1) = 0. Expanding, we find y3 − η1y
2 + η2

2y − η1η2 = 0.
Comparing the coefficients with those of (8), the first condition (10) follows. Let
the eigenvalues of the characteristic equation be written as λi = ui + iηi . The
second condition (10) is obtained by observing that these eigenvalues must satisfy
the transversality condition

dui

dh

∣∣∣∣
h=h∗

�= 0.

Let us also write S = A1A2 − A3. Substituting λi into the characteristic equation,
separating the real and imaginary parts, and eliminating η, we get 8u3 + 8A1u

2 +
2u(A2

1 + A2)+ S = 0. Differentiating it with respect to h:

24u2 du

dh
+ 16A1u

du

dh
+ 2(A2

1 + A2)
du

dh
+ 2u

[
2A1

dA1

dh
+ dA2

dh

]
+ dS

dh
= 0.

At h = h∗, we have u(h∗) = 0, so that the above equation becomes

[
du

dh

]

h=h∗
= − 1

2(A2
1 + A2)

[
dS

dh

]

h=h∗
�= 0
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providing the second condition (10). An analytic verification of (10) appears in these
conditions a very difficult task, as the coefficients depend on the population levels
at equilibrium E∗. But the numerical simulations reveal the existence of sustained
population oscillations, see, e.g., Fig. 1.

Theorem 1 The parameter μ22 determines the direction of the Hopf bifurcation.
If μ22 > 0 (< 0) then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for h > h∗.

The stability and the period of the bifurcating periodic solutions are respectively
determined by the parameters β2 and τ2 defined in the proof. The solutions are
orbitally stable (unstable) if β2 < 0 (> 0) and the period increases (decreases) if
τ2 > 0 (< 0).

Proof We just outline the proof, the method being based on the normal form theory
[20]. Assuming (10), let us denote by a bar the system parameters; the eigenvector
corresponding to the eigenvalue σ = iv is

ω

[
(iv)2 − (V22 + V33)iv + V22V33 − V32V23

V21V32
,
σ − V33

V32
, 1

]T
, ω ∈ R.

Let us define the following quantities b31 = 1, b32 = 0, b33 = 1,

b11 = −v
2 + V22V33 − V32V23

V21V32
, b12 = v(V22 + V33)

V21V32
, b21 = −V33

V32
,

b13 = v2 − (V22 + V33)v + V22V33 − V32V23

V21V32
, b22 = − v

V32
, b23 = v − V33

V32
.

Using the transformation N = N∗ + b11x1 + b12y1 + b13p1, P = P ∗ + b21x1 +
b22y1 + b23p1, Z = Z∗ + b31x1 + b32y1 + b33p1, system (1) then reduces to

dx1

dt
= W3B2 −W1b22 +W2b12

B2 − B1
:= G1, (11)

dy1

dt
= (B2 − B1 + B3)W1 + B4W2 + (b13B1 − b11B2)W3

b12(B2 − B1)
:= G2,

dp1

dt
= W1b22 −W2b12 −W3B1

B2 − B1
:= G3,

where as a shorthand we have introduced the following quantities:

B1 = b11b22 − b21b12, B2 = b13b22 − b23b12, B3 = b11b22 − b13b22,

B4 = b13b12 − b11b12, W1 = D̄(N̄0 −N∗ − b11x1 − b12y1 − b13p1)

− ᾱ1(N
∗ + b11x1 + b12y1 + b13p1)(P

∗ + b21x1 + b22y1 + b23p1)

K̄1 +N∗ + b11x1 + b12y1 + b13p1

+μ̄3(P
∗ + b21x1 + b22y1 + b23p1)+ μ̄4(Z

∗ + b31x1 + b32y1 + b33p1),



A Plankton-Nutrient Model with Holling Type III Response Function 175

W2 = ᾱ2(N
∗ + b11x1 + b12y1 + b13p1)(P

∗ + b21x1 + b22y1 + b23p1)

K̄1 +N∗ + b11x1 + b12y1 + b13p1

− γ̄1(P
∗ + b21x1 + b22y1 + b23p1)

2(Z∗ + b31x1 + b32y1 + b33p1)

K̄2
2 + (P ∗ + b21x1 + b22y1 + b23p1)2

−μ̄1(P
∗ + b21x1 + b22y1 + b23p1),

W3 = γ̄2(P
∗ + b21x1 + b22y1 + b23p1)

2((Z∗ + b31x1 + b32y1 + b33p1))

K̄2
2 + (P ∗ + b21x1 + b22y1 + b23p1)2

−μ̄2(Z
∗ + b31x1 + b32y1 + b33p1)− h̄(Z∗ + b31x1 + b32y1 + b33p1)

Ē + (Z∗ + b31x1 + b32y1 + b33p1)
.

The equilibrium point of the new system (11) is now the origin. At it, the Jacobian
of (11) simplifies since several entries vanish:

∂G1

∂x1
= ∂G2

∂y1
= ∂G1

∂p1
= ∂G3

∂x1
= ∂G3

∂y1
= ∂G2

∂p1
= 0.

Further, the following auxiliary quantities can be explicitly calculated in terms of
the system parameters, but we omit the explicit formulae:

D1 = ∂G3

∂p1
, g11 = 1

4

[
∂2G1

∂x2
1

+ ∂2G2

∂y2
1

+ i

(
∂2G2

∂x2
1

+ ∂2G1

∂y2
1

)]
,

g02 = 1

4

[
∂2G1

∂x2
1

− ∂2G2

∂y2
1

− 2
∂2G2

∂x1∂y1
+ i

(
∂2G2

∂x2
1

− ∂2G1

∂y2
1

)
+ 2

∂2G1

∂x1∂y1

]
,

g20 = 1

4

[
∂2G1

∂x2
1

− ∂2G2

∂y2
1

+ 2
∂2G2

∂x1∂y1
+ i

(
∂2G2

∂x2
1

− ∂2G1

∂y2
1

)
− 2

∂2G1

∂x1∂y1

]
,

G21 = 1

8

[
∂3G1

∂x3
1

+ ∂3G1

∂x1∂y
2
1

+ ∂3G2

∂2x1∂y1
+ ∂3G2

∂y3
1

]

+ i
8

[
∂3G2

∂x3
1

+ ∂3G2

∂x1∂y
2
1

− ∂3G1

∂2x1∂y1
− ∂3G1

∂y3
1

]
,

G110 = 1

2

[
∂2G1

∂x1∂p1
+ ∂2G1

∂y1∂p1
+ i

(
∂2G2

∂x1∂p1
− ∂2G2

∂y1∂p1

)]
,
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G101 = 1

2

[
∂2G1

∂x1∂p1
− ∂2G1

∂y1∂p1
+ i

(
∂2G2

∂x1∂p1
+ ∂2G2

∂y1∂p1

)]
,

h11 = 1

4

[
∂2G3

∂x2
1

+ ∂2G3

∂y2
1

]
, h20 = 1

4

[
∂2G3

∂x2
1

− ∂2G3

∂y2
1

− 2i
∂2G3

∂x1∂y1

]
,

ω11 = −h11

D1
, ω20 = − h20

D1 − 2iω0
, g21 = G21 + 2G110ω11 +G101ω20.

The values of μ22 and τ2, obtained from [20, 36], can now be calculated:

c1(0) = i
2ω0

[
g20g11 − 2|g11|2 − 1

3
|g02|2

]
+ g21

2
,

μ22 = −Re[c1(0)]
u′(0)

, τ2 = − Im[c1(0)] + μ22ω
′(0)

ω(0)
, β2 = 2Re[c1(0)].

Recalling finally [20], if the root of the characteristic equation increases for
increasing values of the bifurcation parameter h, namely u′(0) > 0, the cycle for
μ22 > 0 is supercritical while it is subcritical for μ22 < 0.

The analytical results are summarized in Table 1.

4 The Stochastic Model

The above discussion rests on the assumption that the environmental parameters
involved with the model are all constants irrespective of time and environmental
fluctuations. In this section, we introduce the effect of environmental fluctuation on
the system and consider the stochastic stability of the coexistence equilibrium.

There are two ways to develop the stochastic model from an existing determinis-
tic system. Firstly, one can replace the environmental parameters in the deterministic
model by some random parameters. For instance, the growth rate parameter ‘r’
could be replaced by r0+εγ (t), where r0 is the average growth rate, γ (t) is the noise
function, and ε is the intensity of fluctuation. Secondly, one can add a randomly

Table 1 Thresholds and stability of steady states

Thresholds (R0, R1) (N0, 0, 0) (N1, P1, 0) (N∗, P ∗, Z∗)
R0 < 1 Asymptotically Not feasible Not feasible

stable

R0 > 1, R1 < 1 Unstable Asymptotically Not feasible
stable

R1 > 1 Unstable Unstable Asymptotically
stable
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fluctuating driving force directly into the deterministic dynamic equations without
altering any particular parameter [37]. Here we follow the latter approach. We
assume that the stochastic perturbations of the state variables around their steady-
state values E∗ are of Gaussian white noise type, which is extremely effective
to model rapidly fluctuating phenomena. Thus the stochastic perturbations are
proportional to the distances of each population from its equilibrium value, [3].
From the deterministic system (1), we get the stochastic model

dN = F1(N, P,Z)dt + σ1(N −N∗)dξ1
t , (12)

dP = F2(N, P,Z)dt + σ2(P − P ∗)dξ2
t ,

dZ = F3(N, P,Z)dt + σ3(Z − Z∗)dξ3
t

where the intensities of environmental fluctuations σ1, σ2, σ3 ∈ R ξ it = ξi(t), i =
1, 2, 3 are standard Wiener processes independent of each other.

We consider (12) as an Itō stochastic differential system of the type

dXt = F(t,Xt )dt + g(t,Xt )dξt , Xt0 = X0, (13)

where the solution Xt = (N, P,Z)T , for t > 0 is a Itō process, F is the
slowly varying continuous component or drift coefficient, the diagonal matrix
g = diag[σ1(N − N∗), σ2(P − P ∗), σ3(Z − Z∗)] expresses the rapidly varying
continuous random component or diffusion coefficient and ξt = (ξ1

t , ξ
2
t , ξ

3
t )
T is

a three-dimensional stochastic process having scalar Wiener process components
with increments �ξjt = ξj (t +�t) − ξj (t) that are independent Gaussian random
variables N(0,�t). Since the diffusion matrix g depends upon the solution of
Xt , (12) has multiplicative noise.

4.1 Stochastic Stability of the Coexistence Equilibrium

The stochastic differential system (12) can be centered at its coexistence equilibrium
E∗ by introducing the perturbation vector U(t) = (u1(t), u2(t), u3(t))

T , with u1 =
N − N∗, u2 = P − P ∗, u3 = Z − Z∗. To derive the asymptotic stability in the
mean square sense by the Lyapunov functions method, working on the complete
nonlinear equation (12) could be attempted. But for simplicity we deal with the
stochastic differential equations obtained by linearizing (12) about coexistence E∗
and we assume that there is no additional food source, i.e., r = 0, or, equivalently,
μ1 = μ. The linearized version of (13) around E∗ is given by

dU(t) = FL(U(t))dt + g(U(t))dξ(t), (14)

where now g(U(t)) = diag[σ1u1, σ2u2, σ3u3] and

FL(U(t)) =
⎡

⎣
V11u1 + V12u2 + V13u3

V21u1 + V22u2 + V23u3

V31u1 + V32u2 + V33u3

⎤

⎦ = VU,
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and the coexistence equilibrium corresponds now to the origin (u1, u2, u3) =
(0, 0, 0). Let � = [

(t ≥ t0)× R3, t0 ∈ R+
]

and let �(t,X) ∈ C(1,2)(�) be a
differentiable function of time t and twice differentiable function of X. Let us use
set further

L�(t, u) = ∂�(t, u(t))

∂t
+ f T (u(t))∂�(t, u)

∂u

+1

2
tr

[
gT (u(t))

∂2�(t, u)

∂u2
g(u(t))

]
, (15)

where

∂�

∂u
=
(
∂�

∂u1
,
∂�

∂u2
,
∂�

∂u3

)T
,

∂2�(t, u)

∂u2 =
(
∂2�

∂uj∂ui

)

i,j=1,2,3
.

With these positions, we now recall the following result, [1].

Theorem 2 Assume that the functions �(U, t) ∈ C3(�) and L� for α > 0 satisfy
the inequalities

r1|U |α ≤ �(U, t) ≤ r2|U |α, L�(U, t) ≤ −r3|U |α, ri > 0, i = 1, 2, 3. (16)

Then the trivial solution of (14) is exponentially α-stable for all time t ≥ 0.

Remark 3 For α = 2 in (16), the trivial solution of (14) is exponentially mean
square stable; furthermore, the trivial solution of (14) is globally asymptotically
stable in probability, [1].

Theorem 3 Assume Vij < 0, i, j = 1, 2, 3, and that for some positive real values
of ωk , k = 1, 2, the following inequality holds

[
2(1+ ω2)V22 + 2V32ω2 + (1+ ω2)σ

2
2

] [
2V13ω1 + 2V23ω1 + 2V33(ω1 + ω2)

+(ω1 + ω2)σ
2
3

]
> [V12ω1 + V22ω2 + V23(1+ ω2)+ V32(ω1 + ω2)

+ V33ω2]2 . (17)

Then if σ 2
1 < −2V11, it follows that

σ 2
2 < −

2V22(1+ ω2)+ 2V32ω2

1+ ω2
, σ 2

3 < −
2V13ω1 + 2V23ω1 + 2V33(ω1 + ω2)

ω1 + ω2
,

(18)

ω1
∗ = V21

V13 + V11 + V33 − V12 − V32
, ω2

∗ = V11 + V13 + V33

V12 − (V13 + V11 + V33)+ V32
,

(19)

and the zero solution of system (12) is asymptotically mean square stable.
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Proof Consider�(u(t)) = 1
2

[
ω1(u1 + u3)

2 + u2
2 + ω2(u2 + u3)

2
]
, the Lyapunov

function with ωk real positive constants to be chosen later.
It is easy to check that the left inequalities (16) hold for α = 2. Then

L�(u(t)) = [V22(1+ ω2)+ V32ω2] u2
2 + [V13ω1 + V23ω2 + V33(ω1 + ω2)] u

2
3

+u1u2 [V12ω1 − V21(1+ ω2)+ V32ω1]

+u2u3 [V12ω1 + V22ω2 + V23(1+ ω2)

+V32(ω1 + ω2)+ V33ω2]+ u3u1 [V13ω1 + V11ω1 − V21ω2 + V33ω1]

+V11ω1u
2
1 +

1

2
tr

[
gT (u(t))

∂2�

∂u2 g(u(t))

]
.

Now we can evaluate the trace of the matrix

∂2�

∂u2
=
∣∣∣∣∣∣

ω1 0 ω1

0 1+ ω2 ω2

ω1 ω2 ω1 + ω2

∣∣∣∣∣∣
,

tr

[
gT (u(t))

∂2�

∂u2
g(u(t))

]
= ω1σ1

2u1
2 + (1+ ω2)σ2

2u2
2 + (ω1 + ω2)σ3

2u3
2.

Using then (19), the Lyapunov function becomes L�(u(t)) = −uTQu, with

Q =
∣∣∣∣∣∣

−V11ω1 − 1
2ω1σ

2
1 0 0

0 −(1+ ω2)V22 − ω2V32 − 1
2 (1+ ω2)σ

2
2 Q23

0 Q23 Q33

∣∣∣∣∣∣

the real symmetric matrix whereQ23 = − 1
2 [V12ω1+V22ω2+V23(1+ω2)+V32(ω1+

ω2)+V33ω2] andQ33 = −V13ω1−V23ω2−V33(ω1+ω2)− 1
2 (ω1+ω2)σ

2
3 . Easily,

the inequality L�(u(t)) ≤ −uTQu holds. On the other hand, (17) and (18) imply
that Q is positive definite and therefore all its eigenvalues λi(Q), i = 1, 2, 3, are
positive real numbers. Let λm = min{λi(Q), i = 1, 2, 3} > 0. From the previous
inequality for L�(u(t)) we thus get L�(u(t)) ≤ −λm|u(t)|2 < 0.

Remark 4 Theorem 3 provides the necessary conditions for the stochastic stability
of the coexistence equilibrium E∗ under environmental fluctuations, [2]. Thus the
model parameters and environmental fluctuations intensities help in maintaining the
stability of the stochastic system.
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Table 2 Parameter values

Parameter Definition Unit Source

N0 = 2.0 Constant input of nutrient mg ml−1 [11]

D = 0.5 Dilution rate of nutrient day−1 [17]

α1 = 1.6 Nutrient uptake rate for the autotroph biomass day−1 –

α2 = 1.2 Nutrient conversion rate for the growth of autotroph day−1 –

γ1 = 1 Autotroph biomass uptake rate for the herbivore day−1 [16]

γ2 = 0.9 Autotroph biomass conversion rate for the herbivore day−1 [16]

μ1 = 0.6 Mortality rate of autotroph biomass day−1 [11]

μ2 = 0.4 Mortality rate of herbivore day−1 –

μ3 = 0.1 Nutrient recycle rate due to the death autotroph day−1 [25]

μ4 = 0.1 Nutrient recycle rate due to the death of herbivore day−1 [25]

K1 = 0.3 Half-saturation constant for autotroph mg ml−1 –

K2 = 0.3 Half-saturation constant for herbivore mg ml−1 –

h = 0.4 Harvesting rate of herbivore population day−1 [31]

E = 1.0 Effort required to harvest the herbivores mg ml−1 [31]

5 Numerical Simulations

In this section, we focus our attention on the occurrence and termination of the
populations fluctuations. We take as the reference parameter set the one given
in Table 2, see also [29] and [11], for which the existence condition of the
coexistence equilibrium point E∗ = (0.7297, 0.6331, 0.1941) is feasible and
locally asymptotically stable, namely a stable focus in view of the eigenvalues
−0.5081,−0.0327± i0.3106, see Fig. 1.

In each of the following subsections, we vary just one or two of the parameters
at the time and keep the remaining ones at the reference level. Not all figures will
be shown. In these simulations, we do not consider the additional food source, thus
setting r = 0 and μ1 > 0. In general, we observe that when we use the same
set of parameter values of Table 2, i.e., taking r = 0.14, the supplementary food
destabilizes the whole system. Moreover, changing μ = 0.6 into μ = 0.06, μ3 =
0.1 into μ3 = 0.01, and r = 0 into r = 0.14, we observe the oscillatory behavior
for μ1 < 0, and we obtain similar results for N0, D, and h; but in the latter case for
μ1 > 0, we must exclude from these considerations the value h = 0.5.

Effects of D For D = 0.55, leaving all other parameters unaltered, the system
exhibits persistent oscillations around the positive interior equilibrium E∗ with
eigenvalues −0.5698, 0.0092± i0.3232, see Fig. 1.

Effects of N0 Increasing N0 from 2 to 2.2, the system again exhibits persistent
oscillations; eigenvalues at E∗ are −0.5068, 0.0232± i0.3391.

Effects of h Decreasing the value of h from 0.4 to 0.2, once again the system
exhibits oscillatory behavior. The eigenvalues at E∗ now are −0.5028, 0.0152 ±
i0.4172. This is in line with our analytical results: when h crosses the value h∗, the
system has a Hopf bifurcation, see Fig. 2 left.
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Fig. 1 The plot is obtained
for the reference parameter
values given in Table 2, but
with D = 0.55
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Fig. 2 The plot is obtained for the reference parameter values given in Table 2, on the left we
however take h = 0.2, but on the right h = 0.5

On the other hand, the system shifts to the herbivore-free stable node E1 =
(0.3000, 1.2143, 0), when h increases from 0.4 to 0.5, see Fig. 2 right.

Combined Effect of h and D Starting from the cycles for h = 0.2 but decreasing
D from 0.5 to 0.4, coexistence returns to be stable.

Combined Effect of h and N0 Once again starting from the cycles for h = 0.2,
decreasing N0 from 2 to 1.6, coexistence restabilizes.

Combined Effect of h and r As noted above, when h = 0.5 and in the absence
of additional food, the system settles to the herbivore-free equilibrium E1. In the
presence of the additional food, taking r = 0.14 preserves the herbivores, since the
system trajectories tend once again to the coexistence equilibrium E∗, see Fig. 3.

Hopf Bifurcations For a clear understanding of the dynamical implications of
some parameter changes, we plot suitable bifurcation diagrams. We report the
findings in Fig. 4 respectively in terms of the bifurcation parameters h and N0,
keeping the remaining parameters always at their reference values. Observe that
f1(h) = A1(h)A2(h) and f2(h) = A3 intersect at h∗ = 0.135 and h∗∗ = 0.368
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Fig. 3 The plot is obtained for the reference parameter values given in Table 2, but with h = 0.5;
in addition, we take r = 0, the continuous line, and r = 0.14, the dotted line
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Fig. 4 Bifurcation diagrams in terms of h (left), N0 (right), with the other parameters at the
reference values given in Table 2. In each frame, top to bottom, we have the Nutrient, Autotroph,
and Herbivore populations

indicating that the system (1) changes its stability when the parameter h crosses
the thresholds h∗ and h∗∗. Moreover, for h > h∗ we see that f1(h) < f2(h) the
system (1) becomes unstable at E∗. On the other hand, for h > h∗∗ we observe
that f1(h) > f2(h), satisfying the condition of stability at E∗ (cf. Fig. 5a). More
specifically, it is found that the tangent to g1(h) = f1(h)− f2(h) both at h∗ and at
h∗∗ is not parallel to the h axis, satisfying the second condition of (10) (cf. Fig. 5b).
Also Fig. 6a indicates the stability behavior of the system (1) for N0. Moreover,
Fig. 6b shows that the second condition of (10) for N0 holds. For the dilution rate
of the nutrient D, a diagram similar to the one of N0 is obtained, not shown, with
the threshold value for the bifurcation given by D∗ = 0.53.
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Changes in Mortalities and Recycle Rates We now perform numerical simula-
tions in terms of μ1 = μ− r , taking μ1 < 0. When r = 0.14, keeping all the other
parameters at their fixed reference value, but changing μ from 0.6 to 0.06, μ2 from
0.4 to 0.04, μ3 from 0.1 to 0.01, and μ4 from 0.1 to 0.01, the system shows stable
behavior. Thus when the additional food supply exceeds the mortality rate of the
autotroph biomass, the system exhibits a stable behavior. Instead, taking r = 0.14,
and keeping all the parameters at their reference value, but changing μ from 0.6 to
0.06, μ2 from 0.4 to 0.2, μ3 from 0.1 to 0.01, and μ4 from 0.1 to 0.01, the system
oscillates and similarly for μ1 < 0.

Environmental Fluctuations Finally, we investigate the dynamical behavior of the
system in the presence of environmental disturbances. For the numerical simulation
of the stochastic differential equation (12), we use the Euler–Maruyama method
and MATLAB software. For the stochastic model, we have obtained the condition
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Fig. 7 Effects of environmental fluctuations. Left: σ1 = 0.09, σ2 = 0.08, σ3 = 0.09; Right:
σ1 = 0.25, σ2 = 0.15, σ3 = 0.12

for the asymptotic stability of the coexistence equilibrium point E∗ in the mean
square sense by using a suitable function. These conditions depend upon σ1, σ2, σ3
and the parameters of the model (12). Using the reference values for the model
parameters in Table 2 and taking the following values for the intensities of the
environmental perturbations, σ1 = 0.09, σ2 = 0.08, and σ3 = 0.09, values that
satisfy condition (18). In these conditions, the system is stochastically stable, all the
three species coexist, Fig. 7 left. Instead, increasing the perturbations, σ1 = 0.25,
σ2 = 0.15, σ3 = 0.12, the amplitude of the fluctuations increases, implying
instability of the coexistence equilibrium, Fig. 7 right.

6 Discussion

Two autotroph–herbivore interaction models are considered, a deterministic one
and its corresponding stochastic version. Their main features are the use of general
nutrient uptake functions and instantaneous nutrient recycling. Note that this model
differs from [11] because in it the HTII response function is used, but above all
because the main assumption is that the phytoplankton produces harmful toxins
for the zooplankton, a fact that here is not taken into account. A similar model
with HTI response was earlier introduced in [32]. Also in [9] a model similar to
the present one is considered, using however an HTII response function. The other
major assumption that distinguishes it from this ecosystem is that zooplankton is
assumed to feed not only on phytoplankton but on nutrients as well. In view of
this assumption, contrary to our findings here, zooplankton can survive also in
the absence of phytoplankton. Qualitatively the other exhibited features are quite
similar, differing clearly however in the quantitative expressions of the equilibria
population values. The ecosystem modeled in [10] instead contains additionally
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detritus, which degrades into nutrients. But in this case zooplankton does not feed
directly on nutrients, hence the phytoplankton-free state is not allowed. Indeed the
situation with no phytoplankton, while all the other populations thrive, does not exist
because zooplankton would not be able to thrive without it. Also, detritus is present
only if plankton is also. This is evident, because if there is nothing to degrade into
detritus, the latter will slowly decompose and turn into basic nutrients.

This paper is mainly based on the earlier one [29], but the functional response
forms used here are the Holling II and III in place of their Holling types I and
II counterparts. Further, we have considered stochastic perturbation terms built
directly into the growth equations, in order to incorporate the effects of a randomly
fluctuating environment. In [29] instead noise was introduced just in the harvest rate
h and does not incorporate additional food sources for the autotroph biomass, that
we instead further take into consideration. For these reasons, both our deterministic
and stochastic results differ from those of [29]. In what follows in particular we
further outline the investigations performed on the roles that varying the model
parameters has, either just considering changes in one of them or instead by
combining some of them.

Firstly, the deterministic model is studied analytically and the threshold values
for the feasibility and stability of the three possible steady states are assessed,
see Table 1. These are the nutrient-only, the herbivore-free, and the coexistence
equilibria. They are related to each other by transcritical bifurcations, when the
system parameter values satisfy suitable threshold conditions. In particular, the
nutrient-only point can be obtained from the herbivore-free state if the nutrients
fall below a critical value. Note that in [17] also, low nutrient concentrations imply
the disappearance of plankton.

Furthermore, analytical results for a Hopf bifurcation at the coexistence equi-
librium are determined. Numerical evidence supports this finding. The persistent
oscillations are shown to occur for changes in various parameters. The bifurcation
diagrams of Fig. 4 show that increasing values of the nutrient input as well as
of its dilution rate lead to sustained population oscillations. Similar results are
also found in the literature, but simulated eutrophication is obtained with further
increase, for instance in the nutrient input. These phenomena are also found in
other simpler models and in their delayed counterparts, [34]; they induce oscillations
ultimately leading to ecosystem collapse, [17]. The same outcome occurs if instead
we decrease the harvesting rate. High exploitation values of the herbivore population
instead tend to deplete the system of this resource. Thriving of the latter in
these conditions can be ensured if additional food for autotroph biomass becomes
available. Thus increasing the intrinsic growth rate of the autotroph trophic level
may prevent the herbivore population extinction.

These results in practice imply that to control the plankton population and to
maintain stability of the coexistence equilibrium, we have to control the constant
nutrient input, the dilution rate of the nutrients, and the harvesting rate of the
herbivores. These are especially influenced by artificial eutrophication. But note that
other considerable agents responsible for nutrient addition to the aquatic ecosystem
are geological weathering and inputs from ocean upwelling.
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We now compare the deterministic results of this research with those of the
investigations involving Holling-type II response functions, e.g., [33], where toxin-
producing phytoplankton and zooplankton are considered. Environmental noise for
the growth rates of toxic-phytoplankton and zooplankton is assumed. Low values of
noise intensities are found to lead to stochastic asymptotic stability of the system.
On the other hand, slightly higher values of noise intensities give rise to oscillations
with large amplitudes that become larger with increasingly higher noise intensities
ultimately entailing extinction of both plankton populations. Comparison with our
results seems to suggest that the different assumptions on the response functions
imply drastically different system’s behaviors.

We have also found that stochastically our system is stable in suitable conditions
involving both the model parameters as well as the maximum size of the envi-
ronmental random fluctuations. In particular, the latter must remain within certain
threshold values to prevent possible unpredictable consequences in the system’s
behavior. Exogenous influences such as weather harsh conditions and climate
changes may deeply affect these ecosystems and should therefore be monitored,
to assess suitable harvesting policies that at least in the medium term contrast the
ecosystem collapse.

In this respect, our conclusions agree with those in [26], where nonautonomous
models are proposed in which a seasonal change in temperature is taken into
account. Specifically, the phytoplankton growth rate, two zooplanktons’ relevant
parameters, the mortality and the ratio of grazed biomass to new herbivores are
all assumed to be time-dependent. This model predicts indeed that low nutrient
concentrations prevent harmful algal blooms. Also, in [26] the “predator’s average
growth rate” threshold is introduced, depending on nutrients availability and on the
predator’s viability, which helps in assessing whether the ecosystem will persist.
It essentially unveils the role of zooplankton mortality on the ecosystem behavior.
Our simulations reveal a similar behavior in the deterministic version of our model,
because Hopf bifurcations are triggered by increasing zooplankton harvesting,
although their sizes are apparently not too large and the minima keep away from
zero. In [22], similar conclusions are obtained by higher toxin production rates,
which induce higher zooplankton mortality. The stochastic variant of our system
instead shows equilibrium destabilization and increasing oscillations amplitudes.
The latter could become dangerous for the ecosystem survival if their minima
achieve very small values. This is in line with the findings of a delayed stochastic
model, [37], involving two plankton populations that release toxins only in the
presence of the other population, in which competition is modeled via a simple
Holling-type I interaction and white noise stochastic environmental parameter
fluctuations are introduced: ecosystem extinction has indeed been assessed. Similar
results hold considering as bifurcation parameter the nutrient input rate, and
are matched by similar observations in [26]. This holds both qualitatively and
quantitatively, as the bifurcation in both cases occurs for almost the same value
of the nutrient input rate.

One final word comes from the various plankton models that appeared in the
literature. Since many of them have a similar structure but mainly differ on the
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equilibria values, it would be of help if from laboratory and field experiments carried
out by ecologists and biologists these equilibrium values may be assessed. From
them the missing parameter values might then be evaluated. In this way, it would
perhaps be possible to decide the most suitable form of the model for the ecosystem
under consideration.
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Modeling the Endophytic Fungus
Epicoccum nigrum Action to Fight the
“Olive Knot” Disease Caused by
Pseudomonas savastanoi pv. savastanoi
(Psv) Bacteria in Olea europaea L. Trees

Cecilia Berardo, Iulia Martina Bulai, Ezio Venturino, Paula Baptista,
and Teresa Gomes

1 Introduction

Olive knot, caused by Pseudomonas savastanoi pv. savastanoi (Psv), is one of the
most important diseases of olive crop [11]. This bacterial species produces tumorous
galls or knots, mostly on stems and branches of olive trees, causing their death and
loss of tree vigor, and thus endangering olive harvest [11]. Psv does not survive
for long in soil, being usually found in olive tree phyllosphere as an epiphyte [10]
and/or endophyte [7]. Disease development is shown to be dependent on several
factors, such as concentration of Psv at infection sites and their interaction with
other microorganisms [11]. These interacting microorganisms are usually found as
epiphytic but can also occur in the knots [6, 8, 9]. When found in olive knots together
with Psv, some of them have been shown either to depress Psv growth or to produce
an increase in knot size [6]. Since olive knot is difficult to control, prevention
being the only reliable strategy, information of naturally occurring antagonistic
microorganisms with capacity to suppress Psv is of great importance. In fact, the use
of these antagonists as biological control agents against Psv could be a promising
tool to reduce olive knot incidence on olive crops. The use of such biocontrol agents
meets many of the European policies aiming at moving toward more sustainable
crop production systems (Directive 2009/128/EC) and follows the “Guidelines for
Integrated Production of Olives” published by IOBC/WPRS [5]. In line with this,
we have started studying the endophytic fungal community associated to Psv in
the phyllosphere of Portuguese olive tree cultivars, and their capacity to antagonize
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Psv under in vitro conditions. Antagonism tested on solid media with agar overlays
showed an inhibition zone for the endophyte Epicoccum nigrum and its supernatant
was showed to reduce Psv growth/biomass around 96%, after 48 h of incubation
(unpublished data).

Mathematical models in biology and ecology have become of widespread use
nowadays. In particular, it is possible to model population interactions. Two most
common features in these interactions are the classical predator–prey systems
introduced by Lotka and Volterra, about a century ago, [4, 13], and competition
systems, first studied experimentally in [2], see also the classical monography
[14]. However, population communities also can benefit from their associations,
leading to diverse phenomena such as mutualism, amensalism, and symbiosis. Some
investigations of mathematical nature in the latter framework have recently been
performed [1, 3, 12]. The ecological setting described above shows that in the
context of the olive tree all the three types of mutual relationships described in this
paragraph simultaneously occur. In order to begin to better understand the effect of
the resident fungus (E. nigrum) in the Psv development, we formulate and develop a
mathematical model, taking into account the interactions olive tree–Psv–E. nigrum.
This model helps in elucidating the role of the endophytic fungi on the spread and
severity of olive knot disease.

The paper is organized as follows. In the next section, we formulate the model,
while the following section contains the equilibria analysis. Numerical simulations
are then carried out and a final discussion concludes the paper. The appendices
contain some more technical mathematical details.

2 The Model

We consider a single olive tree (Olea europaea) that is affected by the olive knot
disease caused by the bacterium Psv. We assume the presence of the endophytic
fungus E. nigrum on the olive tree, having a double effect: a positive one on the
tree, and another one at large on the environment, removing bacteria. In doing so,
the endophytic fungus also receives a benefit, by gaining indirectly more space on
the plant and directly more food from the plant that they inhabit.

The four populations that are modeled in the ecosystem, all measurable by
biomass (or extent of their surface), are:

• S: the healthy branches of the olive tree;
• I : the branches of the same olive tree that are infected by bacteria;
• B: the pathogenic bacterium Psv, attacking and infecting the olive branches;
• N : the endophytic fungus E. nigrum, that removes the Psv bacterium B, with

this action benefiting by getting more space for their own growth and also more
nutrients from the plant; with this behavior, they also exert a beneficial effect on
the healthy parts of the plant, S.

The model, in which all the parameters represent nonnegative quantities, reads:
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dS

dt
= s

(
1− S + I

K

)
S − λSB + bNS (1)

dI

dt
= λSB − qIB − s S + I

K
I − gI

dB

dt
= hqIB − aNB −mB − rB2

dN

dt
= ebNS + uaNB − nN − pN2.

In the first equation, the evolution of the tree’s healthy branches is modeled. They
reproduce following a logistic growth, with net biomass production rate s and
carrying capacity K and become infected at rate λ by the action of the bacterium.
We assume that there is well mixing of the bacteria in all parts of the tree because
they are transported by the wind and the rain. In this way, their interaction with
the healthy parts of the tree is modeled via a mass action term, this fact in
epidemiological terms corresponding to the homogeneous mixing λSB. The last
term expresses the fact that they get benefit at rate b from the endophytic fungi,
with which they have a beneficial relationship.

The second equation for the infected branches shows firstly that they become so
when they are attacked by the bacterium, secondly they also suffer the action of
the bacteria B at rate q, then they are also subject to intraspecific competition for
space and nutrients from other healthy and infected branches, and finally experience
an additional, disease-related, mortality at rate g. However, the pathogenic bacteria
and endophytic fungus remain in dead branches and thus are still part of the tree
ecosystem.

In the third equation, we model the bacterium. It gets nutrients from the infected
branches, as already mentioned at rate q, with a conversion factor h < 1. The second
term indicates that they are killed by the E. nigrum at rate a, and the third one that
their natural mortality rate is m. Bacteria can die also by intraspecific competition
at rate r .

The endophytic fungus is modeled in the fourth equation. They get benefit from
their relationship with the healthy branches, at rate b, scaled by a factor e < 1, and
also by killing the bacterium at rate a, because in this way they get more space
for growth, and indirectly also more nutrients. Here, u < 1 represents another
conversion factor. In the last two terms, we model their removal from the ecosystem:
E. nigrum naturally die at rate n and experience also intraspecific competition at
rate p.

The Jacobian of (1) is

J =

⎡

⎢⎢⎢⎢⎣

J11 − s
K
S −λS bS

λB − s

K
I J22 λS − qI 0

0 hqB J33 −aB
ebN 0 uaN J44

⎤

⎥⎥⎥⎥⎦
(2)
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where

J11 = s − 2s

K
S − s

K
I − λB + bN, J22 = −qB − g − s

K
S − 2s

K
I,

J33 = hqI − aN −m− 2rB, J44 = ebS + uaB − n− 2pN .
To study the local stability of the equilibria, we evaluate (2) at each equilibrium

point and compute the sign of the eigenvalues of the characteristic polynomials.

3 The Ecosystem’s Steady States

By solving the system equilibrium equations, we find the following five possible
feasible equilibria.

There are the originE0 = (0, 0, 0, 0) and the healthy-tree only equilibriumE1 =
(K, 0, 0, 0), which are both always feasible.

The eigenvalues for E0 are −g < 0, −m < 0, −n < 0, and s > 0, showing its
unconditional instability.

The corresponding eigenvalues of E1 are −s < 0, −m < 0, −g − s < 0, and
ebK − n, giving the following condition ensuring the stability of the equilibrium:

ebK < n. (3)

Then, there is the equilibrium in which the endophytic fungi are absent:

E2 =
(
K −

(
1+ λhqK

rs

)
I2 + λmK

rs
, I2,

hq

r
I2 − m

r
, 0

)
(4)

where I2 is the positive root of the quadratic equation:

U2I
2
2 + V2I2 + Z2 = 0, U2 = −λ

2h2q2K

r2s
− hq2

r
,

V2 = λKhq

r
+ 2

λ2hqKm

r2s
+ mq

r
− g − s,

Z2 = −λKm
r

− λ2m2K

r2s
(5)

with U2 < 0 and Z2 < 0. For a nonnegative root, by Descartes’ rule of signs, we
need the conditions:

V2 > 0, V 2
2 ≥ 4U2Z2.

Moreover, the conditions:

hqI2 ≥ m

r
, K + λmK

rs
>

(
1+ λhqK

rs

)
I2
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ensure the nonnegativity of the populations B2 and S2 at this point and therefore
impose an interval in which the infected branches must lie. The feasibility conditions
are then given by:

V2 > 0, V 2
2 ≥ 4U2Z2,

m

hq
< I2 <

K(rs + λm)
rs + λhqK . (6)

For E2, one eigenvalue is explicit, given by − sI2
K
− λS2B2. It is always negative,

with S2, I2, and B2 given in (4), while the other three eigenvalues are the roots of
the cubic equation μ3 + R1μ

2 + R2μ + R3 = 0, with R1, R2, and R3 given in
Appendix 5. Here, stability is ensured by the Routh–Hurwitz conditions:

R1 > 0, R3 > 0, R1R2 > R3. (7)

Next, there is the point with no infection, i.e., where the tree is healthy and the
phyllosphere microorganisms thrive in it,

E3 =
(
K(bn− sp)
Keb2 − sp , 0, 0,

s(n−Keb)
Keb2 − sp

)
.

It is feasible if either one of the following sets of conditions holds:

max

{
sp

n
,

√
sp

Ke

}
< b <

n

Ke
(8)

or

n

Ke
< b < min

{
sp

n
,

√
sp

Ke

}
. (9)

These conditions ensure the nonnegativity of the populations at this point.
Two of the eigenvalues of J (E3) are explicitly evaluated as −g − sK−1S3 < 0,

−m − aN3 < 0. The remaining two eigenvalues are the roots of the quadratic
equation:

μ2 − tr(Q)+ det(Q) = 0

with

−tr(Q) = s

K
S3 + pN3 > 0, det(Q) = s

K
pS3N3 − b2eS3N3.

By the Routh–Hurwitz criterion, the stability of E3 reduces to ensuring that
det(Q) > 0, that is:

sp > Kb2e. (10)
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Note that condition (8) is the opposite of the stability condition (10) for E3. Thus,
whenever (8) holds, the equilibrium E3 is unstable. Conversely, in case of (9),
condition (10) is verified and E3 is stable.

Further, by comparing the stability condition (3) of E1 with the feasibility
condition (9) ofE3, a transcritical bifurcation is seen to connect these two equilibria.

Finally, the coexistence equilibrium is also a possible outcome:

E∗ =
(
sK − sI ∗ − kλB∗ +KbN∗

s
, I ∗, B∗, hqI

∗ − rB∗ −m
a

)
. (11)

It is obtained with the following steps:

• Step 1: S∗ in (11) is obtained solving the first equilibrium equation of (1). The
population is nonnegative if sK +KbN∗ > sI ∗ +KλB∗.

• Step 2: From the third equation in (1), we obtain N∗. This population is
nonnegative if hqI ∗ > rB∗ +m.

• Step 3: We evaluate the fourth equation in (1) using the values of S∗ and N∗
obtained in Steps 1 and 2, to obtain an equation for I ∗ and B∗, that we consider
a quadratic equation in I ∗:

eb · hqI
∗ − rB∗ −m

a
· sK − sI

∗ −KλB∗ +KbN
s

+uaB∗ · hqI
∗ − rB∗ −m

a
− nhqI ∗ − nrB∗ − nm

a

−p ·
(
hqI ∗ − rB∗ −m

a

)2

= 0. (12)

Its roots provide the following two values for I ∗:

I ∗1 =
b∗r +m
hq

, I ∗2 =
ABB

∗ + AC
AI

, (13)

with

AB = −abeKλ− b2eKr + a2su+ pru, (14)

AC = abeKs − b2eKm− ans +mps,
AI = −b2ehKq + abes + hpqs.

We concentrate only on the case of I ∗1 , for which, in view of the nonnegativity
of the parameters involved in (13), clearly no additional conditions need to be
imposed to guarantee its nonnegativity.

• Step 4: We evaluate the second equilibrium equation of (1) using S∗ and I ∗1 to
get the following second degree equation in B∗:

U1B
∗2 + V1B

∗ + Z1 = 0, (15)
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where the coefficients U1, V1, and Z1, in view of their complexity, are explicitly
deferred to the Appendix 5.

The quadratic equation (15) has real roots if and only if V 2
1 −4U1Z1 ≥ 0. Further,

for feasibility of just one value of B∗ we need exactly one sign variation, which is
ensured by one of the alternative situations: U1V1 < 0 or V1Z1 < 0 or U1Z1 < 0.
If instead U1 and Z1 have the same sign and V1 the opposite one, both roots of (15)
are positive. To sum up, the following conditions ensure the feasibility of E∗:

sK +KbN∗ > sI ∗ +KλB∗, hqI ∗ > rB∗ +m, V 2
1 − 4U1Z1 ≥ 0. (16)

Stability of the coexistence equilibrium E∗ is guaranteed by the Routh–Hurwitz
conditions

P3 > 0, P4 > 0, P1P2P3 > P
3
3 + P 2

1 P4, (17)

where the above quantities are the coefficients of the characteristic polynomial of
J (E∗)

μ4 + P1μ
3 + P2μ

2 + P3μ+ P4. (18)

Although these coefficients are known explicitly, they are not reported here because
their representations are rather complicated.

4 Numerical Simulations

The ecosystem (1) embeds a symbiotic subsystem among the S and N populations.
It is well known that this classical two-populations’ mathematical model can lead
to unbounded, ecologically unrealistic, growth, if its isoclines are suitably chosen.
We now investigate the assumptions that need to be made on the ecosystem
parameters in order to avoid this phenomenon, that might obscure our findings in
the simulations that we will perform for the larger envisaged ecosystem (1).

From the first and the fourth equilibrium equations of the model, we obtain the
symbiotic subsystem isoclines by imposing the parameters λ and h to vanish:

s − s

K
S + bN = 0 (19)

ebS − n− pN = 0.

They intersect at the coexistence point

(
K(nb − sp)
Keb2 − sp ,

s

b

(
−1+ nb − sp

Keb2 − sp
))

, (20)



196 C. Berardo et al.

for which the nonnegativity of the coordinates of the intersection of the two curves
gives the two sets of alternative feasibility conditions, (8) and (9), already found for
the feasibility of E3, and that are assumed from now on.

We want to control the spread of the disease in the olive tree and pay attention
to the scenarios obtained varying mainly the disease transmission rate λ. Most
importantly, for the parameters a and m, we use the fixed values m = 0.183 (the
time unit is taken to be hours) and a = 0.021 (time unit in hours) provided by
our laboratory experiments, yet unpublished. The parameter b is not experimentally
known and thus it is chosen to satisfy the conditions (8) and (9). To run the
simulations, the intrinsic ode45 routine of Matlab2016a and the bifurcation software
XPPAUT are used.

For the remaining set of parameters, we take hypothetical reference values

s = 4.24476, b = 0.2, q = 9.24772, g = 6.42079, (21)

h = 0.226653, m = 0.183, a = 0.021, e = 0.9,

n = 1.045, u = 0.214479, K = 50, r = 3.95804, p = 0.8 .

Using the initial conditions,

S(0) = 7.0300, I (0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348, (22)

we construct the one-parameter bifurcation diagrams for the four populations S,
I , B, and N , reported in Figs. 1 and 2. In view of the constraints (8) and (9), the
parameter b can lie only in the rather narrow approximate range [0.023, 0.2747].

In the first diagram for the population S, we can observe that for 0.5 � λ �
11.86 five equilibrium points are feasible: for 0.5 � λ � 4.83, one of the two
coexistence equilibria is stable, given by the line (b), while the lines (a), (c), and (d)
denote the unstable equilibria. The same equilibrium points can be noted in the other
bifurcation diagrams for I , B, and N , denoted with the same letters. In the second
diagram of Fig. 2, for λ � 4.83, the population N collapses to 0 and E2, the line
(d), becomes stable after a transcritical bifurcation (TCB), which occurs between
(b) and (d) for λ � 4.83. A saddle-node bifurcation (SNB) occurring at λ � 0.5
separates the stable coexistence equilibrium (b) from the unstable one, denoted with
(a). For values of λ larger than 11.86, the three nonvanishing populations S, I , and
B in the solution of the system (1) oscillate, due to the presence of a stable limit
cycle, whose maximum and minimum values are both plotted (line (e)). The Hopf
bifurcation from which the limit cycle originates occurs for λ � 11.9 (HB). At
λ � 11.86, another Hopf bifurcation leads to the presence of an unstable limit
cycle, surrounding the stable one. It is however not represented in the bifurcation
diagrams in order not to clutter the figures.

Figure 3 shows the results for higher values of λ, namely for λ = 55. The
solutions for S, I , and N according to continuous time are characterized by high
amplitude oscillations, approaching values dangerously close to zero, while the N
population rapidly decays and ultimately vanishes.
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Fig. 1 Left: bifurcation diagram (λ, S). Right: bifurcation diagram (λ, I ). Parameter values: s =
4.24476, b = 0.2, q = 9.24772, g = 6.42079, h = 0.226653, m = 0.183, a = 0.021, e = 0.9,
u = 0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8. Initial conditions: S(0) = 7.0300,
I (0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. HB: Hopf bifurcation point. TCB: transcritical
bifurcation point. SNB: saddle-node bifurcation point. (a), (b), (c), (d): equilibrium points. (e):
stable limit cycle

Fig. 2 Left: bifurcation diagram (λ, B). Right: bifurcation diagram (λ,N). Parameter values: s =
4.24476, b = 0.2, q = 9.24772, g = 6.42079, h = 0.226653, m = 0.183, a = 0.021, e = 0.9,
u = 0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8. Initial conditions: S(0) = 7.0300,
I (0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. HB: Hopf bifurcation point. TCB: transcritical
bifurcation point. SNB: saddle-node bifurcation point. (a), (b), (c), (d): equilibrium points. (e):
stable limit cycle

In Fig. 4, the trajectories for λ = 0.2 are shown: we note that for values
of λ smaller than about 0.5 the system converges to the equilibrium point E3.
Consequently, the disease is eradicated due to the low value of the transmission
rate. The healthy branches’ population thrives to very high levels, higher than the
carrying capacity, because of the beneficial effect of the endophytic fungus.
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Fig. 3 The populations S, I , N , and B, shown in clockwise order as functions of time for the
parameter values: λ = 55, s = 4.24476, b = 0.2, q = 9.24772, g = 6.42079, h = 0.226653,
m = 0.183, a = 0.021, e = 0.9, u = 0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8.
Initial conditions: S(0) = 7.0300, I (0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. Note that the
zero value is located at higher level than the frames’ bottom

Now, we perform some equilibria sensitivity analysis to variations in two
parameters. This makes sense also in view of possible effects due to climate changes
that may induce substantial changes in the ecosystem.

Firstly, Fig. 5 considers the pair λ − g, where the parameter g is the additional
disease-related mortality rate of the infected part of the plant. For the same set of
parameters and initial conditions used in Figs. 1 and 2, namely (21) and (22), but
allowing the parameters to vary in the ranges λ ∈ [0, 10] and g ∈ [0, 10], we obtain
the surfaces indicating the equilibrium value of each population. Observe that for
low values of λ and values of g approximately higher than 6, the populations I and
B vanish, while S and N thrive at rather high levels. In this region, the equilibrium



Modeling the Endophytic Fungus Epicoccum nigrum Action to Fight the “Olive. . . 199

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110

S

time
0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

6

7

8

9

10

I
time

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8

9

10

B

time
0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30
N

time

Fig. 4 The populations S, I , N , and B, shown in clockwise order as functions of time for the
parameter values: λ = 0.2, s = 4.24476, b = 0.2, q = 9.24772, g = 6.42079, h = 0.226653,
m = 0.183, a = 0.021, e = 0.9, u = 0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8.
Initial conditions: S(0) = 7.0300, I (0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. Note that both
infected branches and bacteria disappear, the zero value is indeed located at higher level than the
frames’ bottom

E3 is stable and the disease is thus eradicated from the plant. This appears to be
sensible, because the rate at which the disease spreads among the branches of the
olive tree is low and the additional rate at which the infected part of the plant dies
is high, in turn damaging the bacteria in the plant and causing the infected branches
to disappear. For low values of both g and λ, instead the system converges to the
coexistence equilibrium and when λ � 4.83, the population of the endophytic fungi,
N , disappears. Then, in such case the ecosystem converges to the endophytic fungi-
free equilibrium E2, but with alarmingly small values of the healthy parts of the
plant.
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Fig. 5 The populations S, I , N , and B, shown in clockwise order as functions of the parameters
λ and g. Remaining parameter values: s = 4.24476, b = 0.2, q = 9.24772, h = 0.226653,
m = 0.183, a = 0.021, e = 0.9, u = 0.214479, n = 1.045,K = 50, r = 3.95804, p = 0.8. Initial
conditions: S(0) = 7.0300, I (0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348

In the two-parameters’ bifurcation diagrams of Fig. 6, we consider the system’s
equilibria as function of the transmission rate and the rate at which the antagonistic
fungi produce a beneficial effect on the plant, i.e., the pair of parameters λ − b, in
the respective ranges [0, 11] and [0.023, 0.2747]. For b, we impose the feasibility
conditions for E3 to be satisfied, given by (8) and (9). The system settles to the
equilibrium point E3 when the values of λ lie below about 0.5. This matches the
analytical results for the equilibria stability, since b varies in the range in which
the feasibility and stability conditions for E3 are satisfied, and also the results of
the previously analyzed one-parameter bifurcation diagram in Figs. 1 and 2. In this
case, the bacteria and the infected parts of the plant disappear and only the healthy
branches and the antagonistic fungi thrive in the ecosystem. Moreover, for low
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Fig. 6 The populations S, I , N , and B, shown in clockwise order as functions of the parameters
λ and b. Remaining parameter values: s = 4.24476, q = 9.24772, g = 6.42079, h = 0.226653,
m = 0.183, a = 0.021, e = 0.9, u = 0.214479, n = 1.045,K = 50, r = 3.95804, p = 0.8. Initial
conditions: S = 7.0300, I = 7.5415, B = 5.4729, N = 5.5348

values of b the two species present in the system assume low values, while for values
of b higher than approximately 0.25 they increase to biologically considerable high
values. Figure 6 provides information on the range for the parameter b leading
the system to settle onto the disease-free equilibrium E3, favorable for the olive
tree, where both the disease and the infected branches are eradicated. For 0.5 �
λ � 4.83, the system converges to a coexistence equilibrium point: N assumes low
values, very close to zero. They appear a bit difficult to be clearly shown graphically,
in the chosen range of the two-parameters’ bifurcation diagram. For λ � 4.83,
instead the equilibrium E2 with no endophytic fungus E. nigrum becomes stable.
When λ is close to 4.83 and b approaches 0.2747, the infected branches and bacteria
populations I and B attain their highest values, while S andN rapidly drop to values
close to zero.
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We finally consider the parameter pair λ − q, recalling that the latter represents
the mortality rate of the infected branches due to the attack of the bacteria. Keeping
on using the previously chosen set (21) of the parameters, for values of λ bigger than
11.9, the system converges to a stable limit cycle, in which however the endophytic
fungi population N vanishes. Figure 7 shows the system solutions as functions of
time for λ = 20 > 11.9 and q = 5, q = 8, and q = 25. Note that the change in the
values of the disease-related mortality rate q of the infected branches does not affect
the feasibility and stability of the equilibrium, but it rather influences the amplitude
of the oscillations, which decreases for higher values of q.

Figure 8 shows the system behavior in terms of the variations of the parameter
q in the range [0, 20], together with the influence of the disease transmission
coefficient λ ∈ [0, 20].

For low values of the parameter q, independently of the value of λ, the system
settles to the disease-free equilibrium E3, with the presence of only the healthy part
of the plant and of the antagonistic endophytic fungi. We can distinguish a region,
close to the origin, where the favorable equilibrium point E3 is stable. Then, for
higher values of q and λ � 0.5, the system achieves coexistence at steady values,
with S and N showing a quick decrease toward zero. Finally, larger values of λ
and q lead the system to attain the equilibrium point E2, with the presence of the
disease and of the infected branches, together with the healthy branches, where the
endophytic fungi disappear. For larger values of the disease transmission coefficient,
λ > 11.9, the ecosystem starts to oscillate. The surfaces with the highest and
lowest peaks in the limit cycles are shown for the populations S, I , and B while
N disappears.

5 Conclusions

We have proposed a model for studying how to fight by natural means the harmful
bacteria that harbor in the olive trees.

From a biological point of view, the disease-free equilibrium point E3 is the most
relevant one. If the system settles at E3, the healthy branches and the endophytic
fungi survive, while the infected parts of the plant and the bacterium Psv disappear.
Note that the plant benefits from the symbiotic action of the fungi, in that it thrives
better, at higher levels, as shown in Fig. 4. However, for the healthy thriving of the
tree, from the qualitative analysis, we obtain that the parameter b must satisfy the
condition (9), to have E3 both feasible and stable, but this implies a very narrow
range of allowed values for b. In other words, the benefit that the endophytic fungi
exert on the tree must be confined to a certain appropriate range.

The disease-and-endophytic fungi-free equilibrium point E1 is also good for the
plant, since it ensures anyway the survival of the healthy part of the olive tree plant.
Here, without the helpful action of the endophytic fungi, the branches attain just
their own carrying capacity.



Modeling the Endophytic Fungus Epicoccum nigrum Action to Fight the “Olive. . . 203

320 330 340 350 360 370 380 390 400
0

10
20

S

time

320 330 340 350 360 370 380 390 400
0
5

10
15

I

time

320 330 340 350 360 370 380 390 400
0

1

2

B

time

320 330 340 350 360 370 380 390 400
−0.1

0

0.1

N

time

320 330 340 350 360 370 380 390 400
0

10
20

S

time

320 330 340 350 360 370 380 390 400
0
5

10
15

I

time

320 330 340 350 360 370 380 390 400
0
2
4

B

time

320 330 340 350 360 370 380 390 400
−0.1

0

0.1

N

time

320 330 340 350 360 370 380 390 400
0

0.5

1

S

time

320 330 340 350 360 370 380 390 400
0

0.2
0.4

I

time

320 330 340 350 360 370 380 390 400
0

0.2
0.4

B

time

320 330 340 350 360 370 380 390 400
−0.1

0

0.1

N

time

Fig. 7 Persistent limit cycles of the system. Top, left: q = 5. Top, right: q = 8. Bottom: q = 25.
Remaining parameter values: λ = 20, s = 4.24476, b = 0.2, g = 6.42079, h = 0.226653,
m = 0.183, a = 0.021, e = 0.9, u = 0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8.
Initial conditions: S = 7.0300, I = 7.5415, B = 5.4729, N = 5.5348. Note that the solutions are
plotted for time values in the range [320, 400]

On the other hand, there are equilibria that must possibly be avoided, E2 and E∗,
because they still harbor the harmful bacteria.
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λ and q. Remaining parameter values: s = 4.24476, g = 6.42079, h = 0.226653, m = 0.183,
a = 0.021, e = 0.9, u = 0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8, b = 0.2. Initial
conditions: S = 7.0300, I = 7.5415, B = 5.4729, N = 5.5348

First of all, observe that the endemic endophytic fungi-free equilibrium E2
is dangerous for the plant, because the endophytic fungi provide an effective
suppression mechanism for Psv bacteria’s growth.

Further, note that a highly virulent disease, with large transmission coefficient,
leads to populations’ oscillations that are extremely close to vanishing levels, see
Fig. 3. It is known that stochastic environmental fluctuations in such situations may
lead to the ecosystem collapse and therefore ultimately to the tree’s death.

An additional difficulty for obtaining a stable disease-free equilibrium is the fact
that the disease transmission rate λ must be low and further it must assume values
in a very small range. As shown in the two-parameters’ bifurcation diagrams in
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Fig. 5, the additional disease-related mortality rate must also be high, because in
this way infected branches are bound to die fast and thus prevent the replication of
the bacteria on the tree.

A final point is that also the disease-and-endophytic fungi-free equilibrium point
E1 is difficult to be achieved in practice, due to the fact that the stability condition
hinges on high values of the parameter n, the fungi mortality, which is however
known in general to be quite small.

If at all possible, field measurements of at least some of the above parameters
might clarify whether they fall within the required ranges for disease eradication.
Should this not be the case, our investigation shows that an alternative exists,
although perhaps quite expensive, as it requires a rather continuous surveillance
of the situation. The findings on the sensitivity analysis indeed indicate that a high
infected branch mortality g helps in controlling the disease, providing a guideline
on how to proceed for fighting the pathogens. This indeed can also be achieved by
human-related external means, like pruning of the leaves and branches that appear
to be disease-affected. This remark indicates that a constant close monitoring of the
tree is necessary in order to keep it healthy.
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Appendix 1

R1 = KhqI2 +KλS2B2 −Km+ sS2 + sI2
K
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Appendix 2
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Numerical Modeling of Transcranial
Ultrasound

I. B. Petrov, A. V. Vasyukov, K. A. Beklemysheva, A. S. Ermakov,
A. O. Kazakov, Y. V. Vassilevski, V. Y. Salamatova, A. A. Danilov,
G. K. Grigoriev, and N. S. Kulberg

Arterial aneurysm is one of the most dangerous diseases of cerebral vessels. In total,
about 70% of patients with ruptured arterial aneurysms of cerebral vessels die from
primary or repeated hemorrhages. A vast majority of arterial aneurysms are located
on the arteries of the base of the brain. In a pathoanatomic study of corpses of people
who died from various causes, arterial aneurysms of cerebral vessels are found in
1–5% of cases.

It is considered that the first arterial aneurysm of cerebral vessels was discovered
by Morgagni more than 200 years ago (1761), but only after the introduction of the
clinical practice of cerebral angiography [13] this disease of the brain vessels was
well studied and began to be diagnosed in living patients. Attempts were made to
surgically treat arterial cerebral aneurysms [5, 8].

The ultrasound is capable of determining both the shape of vessels and the
direction of the blood flow in real time. It is a very cheap, common, and efficient
tool for detecting the early treatable stages of aneurysm, but its application for
the cerebral vessels is very limited at the moment. The human skull is mostly
impenetrable by ultrasound waves due to the cancellous bone tissue which consumes
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elastic waves. Only several gaps are available for the ultrasound, and most of them
give a small aperture, which is insufficient for medical observations. The most
promising way at the moment is using the temple gap. It is a place on the human
skull that doesn’t contain the cancellous bone tissue, and ultrasound waves can reach
cerebral vessels, reflect, and return to the sensor. The only problem is the thin layer
of cortical bone, which acts as an irregularly shaped lens, distorting the final image.
Making the ultrasound applicable for the cerebral vessels is the final goal of our
research, and the first step is to develop a reliable mathematical model of transcranial
ultrasound.

1 Mathematical Model and Numerical Method

The ultrasound imaging inherently implies that the ultrasound speed is homoge-
neous in the human body. It means that all the tissues are assumed to have the same
speed of longitudinal waves and there are no shear waves. This assumption allows
to obtain B-scans in real time, allowing the ultrasound operator to determine size
and position of internal organs.

Mechanical studies show that human tissues behave like nonlinear viscoelastic
media with a great variability of material parameters [4, 9–12]. The assumption
about the ultrasound speed homogeneity is applicable because of three reasons.
Firstly, nonlinear effects in soft tissues mainly manifest themselves in static and
quasi-static tests, especially strength tests. Ultrasound pressure is very low in
comparison with the tissue strength, and the material behaves almost according to
Hooke’s law—though, certain attenuation effects can still be observed. Secondly,
shear waves may not be taken into consideration because they attenuate too fast
to leave a significant trace on an ultrasound sensor. Thirdly, though soft tissue
parameters may vary from one person to another, they tend to have close values
in a single organism. They are close enough that it is possible to determine the size
of internal organs within a reasonable error.

We used the acoustic material model with the Maxwell viscosity model to
reproduce both the longitudinal elastic wave pattern and its attenuation. Ultrasound
waves reflect from a boundary between tissues only if their material properties are at
least slightly different, so we couldn’t follow the assumption about the sound speed
homogeneity. The details about material properties, governing equations, and the
numerical method are thoroughly described in Ref. [16].

The grid-characteristic method [3, 14, 16] was selected because it is well adapted
for modeling wave processes. The method takes characteristic properties of the
governing equations system into consideration, and gives us the possibility to easily
implement any possible type of border or contact condition.

For the calculations, we used a 3D segmented model of a human head [6, 7]. The
general view of the tetrahedral grid can be observed in Fig. 1. All the tissues of the
human head were grouped into five segments with different rheological parameters:
fat, muscle, bone, brain, and vessels.



Numerical Modeling of Transcranial Ultrasound 211

Fig. 1 Tetrahedral grid for
the human head model: (a)
general view, (b) bone (white)
and vessels (black) tissues

Although previous studies [3] showed that it is necessary to distinguish blood
in vessels as a separate segment to obtain reliable results, in this study we
used a homogenous vessel model with averaged properties. The problem is that
the distinguishing of vessel walls as a separate segment requires a considerable
refinement of the mesh, leading to a considerable increase of the calculation time.
Current ultrasound technology requires several (up to 200) beams to obtain a single
B-scan. In terms of numerical modeling, it means conducting several separate
calculations (one for each ultrasound beam), and reducing the calculation time is
one of the priority development directions for the current study. The problem can be
solved by using hierarchical meshes and time steps, combined with calculations on
large supercomputers.

Another development direction is implementing a hybrid method to use an elastic
model for bones and an acoustic model for soft tissues. Shear waves don’t attenuate
in bones as fast as in soft tissues, and these shear waves in bones can generate
longitudinal waves in soft tissues. It happens due to their complex shape—when an
elastic wave falls on an inclined boundary, it generates waves of both types, shear
and longitudinal [1]. Thus, though shear waves attenuate rapidly in soft tissues and
don’t affect sensor data, they still must be modeled in bones. The acoustic model
is insufficient in that case, so we need an elastic model at least in bones segment.
At the same time, using the elastic model for the whole craniocerebral area is very
ineffective in terms of calculation time. Using the grid-characteristic method, we
can easily assign different attenuation coefficients for longitudinal and shear waves,
obtaining a wave pattern which will be even closer to the experimental data than
an acoustic one. We plan to use this elastic model for calculations of a small area
directly beneath the sensor, but applying it to the whole human head model will also
considerably increase calculation time.

We used an ultrasound scanner Sonomed-500. The transducer has a phased linear
array of 64 elements, its sizes are 1.5 × 2.0 cm, and operational frequencies range
from 2 to 7.5 MHz. For the virtual transcranial ultrasound examination, we use the
frequency 3.5 MHz to reduce the attenuation. The emitter phase is modeled as a
boundary condition (external pressure), the receiver is modeled by recording the
signal as the pressure in the same boundary nodes.
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2 Numerical Results

2.1 Phantom

Modeling the transcranial ultrasound is a complex task, consisting of several
important steps—from building a reliable human heal model to conducting numer-
ous large calculations. To verify the numerical method and the signal processing
model, we used an ultrasound phantom Gammex 1430 LE. It contains different
types of inhomogeneities, which can be seen on a B-scan in Fig. 2. Phantoms
are used to teach ultrasound techniques, to adjust instruments, and to determine
instrument parameters: penetration depth, axial and transverse resolution, distance
measurement accuracy, “dead zone” size. Parameters of their inhomogeneities are
documented, which facilitate the development of their model.

Diffuse areas—areas with different concentrations of contrasting powder—
exhibit behavior similar to the behavior of pipes with fluid (in the case of real
biological objects—vessels). Both of them give distinct artifacts—bright spots at
points located on a straight line connecting the sensor and the center of the tube.
These artifacts are usually a hindrance to the ultrasound study, but they allow us to
estimate the distance between objects. Diffuse areas are located at a depth of 43 mm
and at a distance of 19 mm from each other. The radius of each area is 4 mm. If the
sensor is aligned parallel to the pipes, a line can be seen on the screen.

Point reflectors in the phantom are thin nylon threads—about 0.1 mm in diameter.
If the sensor is aligned parallel to the thread, a line can be seen on the screen,
otherwise it is a bright point. The threads are located at a depth of 16 mm and
at a distance of 15 mm from each other. Simulation of such small objects would
require an extremely fine mesh (or at least local mesh refinement) and a very large
calculation time. Thus, it was decided to simulate wider threads—about 0.5 mm
thick.

Fig. 2 B-scan of the ultrasound phantom Gammex 1430 LE



Numerical Modeling of Transcranial Ultrasound 213

Fig. 3 A scheme of calculation area for the phantom Gammex 1430 LE: (a) two threads, (b) single
pipe

Fig. 4 Numerical raw ultrasound B-scan for a single pipe: (a) before processing, (b) after
narrowband filtering, (c) after Hilbert transformation

A scheme of calculation area is shown in Fig. 3. All borders except for the sensor
are consuming, effectively modeling a huge bulk of material—a signal from its back
side doesn’t reach the sensor in the considered time.

Calculation results for a single water pipe are presented in Fig. 4. Without a
detailed documentation on signal processing in the ultrasound scanner, we could
only assume certain processing steps. The first one is a narrowband filtering, which
reduces amount of background noise and allows us to apply the Hilbert transform
to obtain the signal envelope and eliminate the carrier frequency [2, 15].
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Fig. 5 Raw ultrasound B-scans for two nylon threads: (a) before processing, (b) after narrowband
filtering and Hilbert transformation, (c) experimental data

Calculation results for two nylon threads and a comparison with the experimental
data are presented in Fig. 5. The same two filters were used. Between the images of
the threads, one can see the noise that did not disappear after the application of
these filters. This is due to the fact that the size of the threads in the calculation was
significantly larger than in the real phantom. Also, in a real sensor, other filters can
be applied. They presumably compress the “significant” portions of the signal and
reduce the size of the point source in the resulting image. For the correct modeling of
these filters and quantitative comparison with the experimental data, documentation
on the Sonomed-500 sensor is required, which is not available for public access.

2.2 Human Head Model

The pressure distribution at different times in the frontal plane is depicted in Fig. 6.
The distribution of the velocity modulus at different times on the cerebral vessels

is depicted in Fig. 7. Two cases are considered—with the aneurysm and without one.
The differences arise due to the changed geometry of the vascular tissue; however,
their quantification requires other methods of analyzing the results.
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Fig. 6 The pressure distribution at different times in the frontal plane

3 Conclusions

The grid-characteristic numerical method for a viscoelastic material model on
irregular tetrahedral grids was implemented as a parallel set of programs. A 3D
segmented model for the human head and a model of signal processing in an
ultrasound sensor were developed.

A set of calculations was performed for the medical ultrasound phantom model
and the human head model. B-scans were obtained and compared to the results of
the ultrasound sensor Sonomed-500. The results of the comparison show that the
signal processing requires further development, but we can already judge distances
to the obstacles and their size.
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Fig. 7 The wave pattern on cerebral vessels: (a) without the aneurysm, (b) with the aneurysm
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On the Dynamics of a Discrete
Predator–Prey Model

Priyanka Saha, Nandadulal Bairagi, and Milan Biswas

1 Introduction

Nonlinear system of differential equations play very important role in studying dif-
ferent physical, chemical and biological phenomena. However, in general, nonlinear
differential equations cannot be solved analytically and therefore discretization
is inevitable for good approximation of the solutions [1]. Another reason of
constructing discrete models, at least in case of population model, is that it permits
arbitrary time-step units [2, 3]. Unfortunately, conventional discretization schemes,
such as Euler method, Runge-Kutta method, show dynamic inconsistency [4]. It
produces spurious solutions which are not observed in its parent model and its
dynamics depend on the step-size. For example, consider the simple logistic model
in continuous system:

dx

dt
= rx

(
1− x

K

)
, x(0) = x0 > 0, (1)

where r and K are positive constants. The system (1) has two equilibrium points
with the following dynamical properties:

1. the trivial equilibrium point x = 0 is always unstable.
2. the nontrivial equilibrium point x = K is always stable.
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Fig. 1 Time series of the continuous system (1). It shows that the system (1) is stable around the
interior equilibrium point x = K . Initial point and parameters are taken as x(0) = 0.4, r = 3 and
K = 50

Figure 1 shows that even if we start very close to zero (x0 = 0.3) the solution goes
to x = K = 50, implying that the system is stable around the equilibrium point
x = K and unstable around x = 0.

The corresponding discrete model formulated by standard finite difference
schemes (such as Euler forward method) is given by Anguelov and Lubuma [1]

xn+1 − xn
h

= rxn
(

1− xn

K

)
. (2)

This equation can be transformed into logistic difference equation

xn+1 = xn + hrxn
(

1− xn

K

)
, (3)

where h is the step-size. The system (3) also has same equilibrium points with the
following dynamic properties:

1. the trivial equilibrium point x = 0 is always unstable.
2. the nontrivial equilibrium point x = K is stable if h < 2

r
.

The bifurcation diagram of Euler model (3) (Fig. 2) with h as the bifurcating
parameter shows that the fixed point x = K changes its stability as the step-size
h crosses the value 2

r
= 0.666. The fixed point is stable for h < 0.666 and shows

more complex behaviors (period doubling bifurcation) as the step-size is further
increased. Thus, dynamics of Euler forward model (3) depends on the step-size and
exhibits spurious dynamics which are not observed in the corresponding continuous
system (1).
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Fig. 2 Bifurcation diagram of the model (3) with h as the bifurcating parameter. It shows that the
system is stable till the step-size h is less than 0.666 and unstable for higher values of h. Parameters
and initial point are as in Fig. 1

Let us consider another simple example (decay equation)

dx

dt
= −λx, λ > 0, x(0) = x0 > 0. (4)

Its solution, given by

x(t) = x0e
−λt ,

is always positive. The corresponding discrete model constructed by Euler forward
method is given by

xn+1 = (1− λh)xn. (5)

Note that its solution will not be positive if λh is sufficiently large and therefore
supposed to show numerical instability.

These examples demonstrate that the discrete systems constructed by standard
finite difference scheme is unable to preserve some properties of its corresponding
continuous systems. Dynamic behaviors of the discrete model depend strongly on
the step-size. However, on principles, the corresponding discrete system should
have same properties to that of the original continuous system. It is therefore of
immense importance to construct discrete model which will preserve the properties
of its constituent continuous models. In the recent past, a considerable effort
has been given in the construction of discrete-time model to preserve dynamic
consistency of the corresponding continuous-time model without any limitation on
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the step-size. Mickens first proved that corresponding to any ODE, there exists
an exact difference equation which has zero local truncation error [3, 4] and
proposed a non-standard finite difference scheme (NSFD) in 1989 [2]. Later in
1994, he introduced the concept of elementary stability, the property which brings
correspondence between the local stability at equilibria of the differential equation
and the numerical method [5]. Anguelov and Lubuma [6] formalized some of the
foundations of Micken’s rules, including convergence properties of non-standard
finite difference schemes. They defined qualitative stability, which means that the
constructed discrete system satisfies some properties like positivity of solutions,
conservation laws and equilibria for any step-size. In 2005, Micken coined the
term dynamic consistency, which means that a numerical method is qualitatively
stable with respect to all desired properties of the solutions to the differential
equation [7]. NSFD scheme has gained lot of attention in the last few years
because it generally does not show spurious behavior as compared to other standard
finite difference methods. NSFD scheme has been successfully used in different
fields like economics [8], physiology [9], epidemic [10–12], ecology [13–15] and
physics [16, 17]. Here we shall discretize a nonlinear continuous-time predator–
prey system following dynamics preserving non-standard finite difference (NSFD)
method introduced by Mickens [2].

The paper is arranged in the following sequence. In the next section we describe
the considered continuous-time model. Section 3 contains some definitions and
general technique of constructing an NSFD model. Section 4 contains the analysis of
NSFD and Euler models. Extensive simulations are presented in Sect. 5. The paper
ends with the summary in Sect. 6.

2 The Model

Celik [18] has investigated the following dimensionless Holling-Tanner predator–
prey system with ratio-dependent functional response:

dN

dt
= N(1−N)− NP

N + αP , (6)

dP

dt
= βP

(
δ − P

N

)
.

The state variablesN and P represent, respectively, the density of prey and predator
populations at time t , andN(t) > 0, P (t) ≥ 0 for all t . Here α, β and δ are positive
constants. For more description of the model, readers are referred to the work of
Celik [18].

Celik [18] discussed about the existence and stability of the coexistence interior
equilibrium E∗ = (N∗, P ∗), where

N∗ = 1+ αδ − δ
1+ αδ , P ∗ = δN∗.

The following results are known.
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Theorem 1.1 The interior equilibrium point E∗ of the system (6) exists and
becomes stable if

(i)αδ + 1 > δ, (ii)δ(2+ αδ) < (1+ αδ)2(1+ βδ).
Here we seek to construct a discrete model of the corresponding continuous
model (6) that preserves the qualitative properties of the continuous system and
maintains dynamic consistency. We also construct the corresponding Euler discrete
model and compare its results with the results of NSFD model.

3 Some Definitions

Consider the differential equation

dx

dt
= f (x, t, λ), (7)

where λ represents the parameter defining the system (7). Assume that a finite
difference scheme corresponding to the continuous system (7) is described by

xk+1 = F(xk, tk, h, λ). (8)

We assume that F(., ., ., .) is such that the proper uniqueness-existence properties
holds; the step size is h = ∇t with tk = hk, k = integer; and xk is an approximation
to x(tk).

Definition 3.1 ([7]) Let the differential equation (7) and/or its solutions have a
property P . The discrete model (8) is said to be dynamically consistent with Eq. (7)
if it and/or its solutions also have the property P .

Definition 3.2 ([7, 19, 20]) The NSFD procedures are based on just two fundamen-
tal rules:

(i) the discrete first–derivative has the representation
dx
dt
→ xk+1−ψ(h)xk

φ(h)
, h = /t , where φ(h), ψ(h) satisfy the conditions

ψ(h) = 1+O(h2), φ(h) = h+O(h2);
(ii) both linear and nonlinear terms may require a nonlocal representation on the

discrete computational lattice; for example,

x → 2xk − xk+1, x3 → (
xk+1+xk−1

2 )x2
k ,

x3 → 2x3
k − x2

k xk+1, x2 → (
xk+1+xk+xk−1

3 )xk .

While no general principles currently exist for selecting the functions ψ(h) and
φ(h), particular forms for a specific equation can easily be determined. Functional
forms commonly used for ψ(h) and φ(h) are

φ(h) = 1− e−λh
λ

, ψ(h) = cos(λh),

where λ is some parameter appearing in the differential equation.



224 P. Saha et al.

Definition 3.3 The finite difference method (8) is called positive if for any value of
the step size h, solution of the discrete system remains positive for all positive initial
values.

Definition 3.4 The finite difference method (8) is called elementary stable if for
any value of the step size h, the fixed points of the difference equation are those of
the differential system and the linear stability properties of each fixed point being
the same for both the differential system and the discrete system.

Definition 3.5 ([21]) A method that follows the Mickens rules (given in the
Definition 3.2) and preserves the positivity of the solutions is called positive and
elementary stable nonstandard (PESN) method.

4 Nonstandard Finite Difference (NSFD) Model

For convenience, at first we can write the continuous system (6) as

dN

dt
= N −N2 − NP

(N + αP ) + (N −N)(N + αP ), (9)

dP

dt
= βδP − βP 2

N
.

Now we express the above system as follows:

dN

dt
= N −N2 −NA(N,P )+ (N −N)B(N,P ), (10)

dP

dt
= βδP − βPC(N,P ),

where A(N,P ) = P
N+αP , B(N,P ) = (N + αP ) and C(N,P ) = P

N
.

We employ the following non-local approximations termwise for the system (10):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dN
dt
→ Nn+1−Nn

h
, dP

dt
→ Pn+1−Pn

h

N → Nn, P → Pn,

N2 → NnNn+1,

PC(N, P )→ Pn+1C(Nn, Pn),

NA(N,P )→ Nn+1A(Nn, Pn),

(N −N)B(N,P )→ (Nn −Nn+1)B(Nn, Pn),

(11)

where h (> 0) is the step-size.
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By these transformations, the continuous-time system (9) is converted to

Nn+1 −Nn
h

= Nn −NnNn+1 − Nn+1Pn

Nn + αPn + (Nn −Nn+1)(Nn + αPn),
Pn+1 − Pn

h
= βδPn − βPn+1Pn

Nn
. (12)

System (12) can be simplified to

Nn+1 = Nn{1+ h+ h(Nn + αPn)}(Nn + αPn)
(1+ 2hNn + αhPn)(Nn + αPn)+ hPn , (13)

Pn+1 = PnNn(1+ βδh)
Nn + βhPn .

Note that all solutions of the discrete-time system (13) remains positive for any step-
size if they start with positive initial values. Therefore, the system (13) is positive.

4.1 Existence of Fixed Points

Fixed points of the system (13) are the solutions of the coupled algebraic equations
obtained by putting Nn+1 = Nn = N and Pn+1 = Pn = P in (13). However,
the fixed points can be obtained more easily from (12) with the same substitutions.
Thus, fixed points are the solutions of the following nonlinear algebraic equations:

N −N2 − NP

N + αP = 0, (14)

βδP − βP 2

N
= 0.

It is easy to observe that E1 = (1, 0) is the predator-free fixed point. The interior
fixed point E∗ = (N∗, P ∗) satisfies

1−N∗ − P ∗

N∗ + αP ∗ = 0 and δ − P ∗

N∗
= 0. (15)

From the second equation of (15), we have P ∗ = δN∗. Substituting P ∗ in the first
equation of (15), we find N∗ = 1+αδ−δ

1+αδ , which is always positive if 1 + αδ > δ.
Thus the positive fixed point E∗ exists if 1+ αδ > δ.
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4.2 Stability Analysis of Fixed Points

The variational matrix of system (13) evaluated at an arbitrary fixed point (N, P ) is
given by

J (N, P ) =
(
a11 a12

a21 a22

)
, (16)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = {1+h+h(Nn+αPn)}(Nn+αPn)
(1+2hNn+αhPn)(Nn+αPn)+hPn + hNn(Nn+αPn)

(1+2hNn+αhPn)(Nn+αPn)+hPn
+ Nn{1+h+h(Nn+αPn)}
(1+2hNn+αhPn)(Nn+αPn)+hPn

− Nn{1+h+h(Nn+αPn)}(Nn+αPn){2h(Nn+αPn)+(1+2hNn+αhPn)}
{(1+2hNn+αhPn)(Nn+αPn)+hPn}2 ,

a12 = αhNn(Nn+αPn)
(1+2hNn+αhPn)(Nn+αPn)+hPn +

αNn{1+h+h(Nn+αPn)}
(1+2hNn+αhPn)(Nn+αPn)+hPn

− Nn{1+h+h(Nn+αPn)}(Nn+αPn){αh(Nn+αPn)+α(1+2hNn+αhPn)+h}
{(1+2hNn+αhPn)(Nn+αPn)+hPn}2 ,

a21 = Pn(1+βδh)
Nn+βhPn −

PnNn(1+βδh)
(Nn+βhPn)2 ,

a22 = (1+βδh)Nn
Nn+βhPn −

βhPnNn(1+βδh)
(Nn+βhPn)2 .

Let λ1 and λ2 be the eigenvalues of the variational matrix (16) then we give the
following definition in relation to the stability of the system (13).

Definition 4.1 A fixed point (x, y) of the system (13) is called stable if |λ1| < 1,
|λ2| < 1 and a source if |λ1| > 1, |λ2| > 1. It is called a saddle if |λ1| < 1, |λ2| > 1
or |λ1| > 1, |λ2| < 1 and a non-hyperbolic fixed point if either |λ1| = 1 or |λ2| = 1.

Lemma 4.1 ([22]) Let λ1 and λ2 be the eigenvalues of the variational matrix (16).
Then |λ1| < 1 and |λ2| < 1 iff (i)1− det (J ) > 0, (ii)1− trace(J )+ det (J ) > 0
and (iii)0 < a11 < 1, 0 < a22 < 1.

Theorem 4.1 Suppose that conditions of Theorem 1.1 hold. Then the fixed pointE∗
of the system (13) is locally asymptotically stable.

Proof At the interior fixed point E∗, the variational matrix reads as

J (N∗, P ∗) =
(
a∗11 a

∗
12

a∗21 a
∗
22

)
,

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a∗11 = 1+ N∗h(1−2N∗−αP ∗)
G

,

a∗12 = N∗h(α−αN∗−1)
G

,

a∗21 = βδhP ∗
H

,

a∗22 = 1− βhP ∗
H

(17)

with G = {1+ h+ h(N∗ + αP ∗)}(N∗ + αP ∗) and H = (1+ βδh)N∗.
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Using P ∗ = δN∗ in (17), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a∗11 = 1+ N∗h(1−2N∗−αδN∗)
G

,

a∗12 = N∗h(α−αN∗−1)
G

,

a∗21 = βδ2hN∗
H

,

a∗22 = 1− βδhN∗
H

.

(18)

One can compute that 1 − det (J ) = − (N∗)2h{(1−βδ−αβδ2)−(2+αδ)N∗}
GH

+
βδh2(N∗)2{N∗(1+αδ)+N∗(1+αδ)2+ αδ2

1+αδ }
GH

> 0, provided−(1−βδ−αβδ2)+(2+αδ)N∗ >
0, i.e. δ(2+αδ) < (1+αδ)2(1+βδ). Note that trace(J ) = (N∗)2

GH
[(1+αδ){2+h(2+

βδ+2N∗αδ)}+h(1+N∗αδ)+h2βδ{ 2δ
1+αδ +αδ(1+N∗ +N∗αδ)+N∗}] > 0 and

1−trace(J )+det (J ) = βδh2(N∗)2(1+αδ−δ)
GH

> 0, following the existing condition of
E∗. Therefore, the positive fixed point E∗ is locally asymptotically stable provided
conditions of Theorem 1.1 hold. Hence the theorem is proven.

4.3 The Euler Forward Method

By Euler forward method, we transform the continuous model (6) in the following
discrete model:

Nn+1 −Nn
h

= Nn
[

1−Nn − Pn

Nn + αPn
]
, (19)

Pn+1 − Pn
h

= βPn
[
δ − Pn

Pn

]
,

where h > 0 is the step size. Rearranging the above equations, we have

Nn+1 = Nn + hNn
[

1−Nn − Pn

Nn + αPn
]
, (20)

Pn+1 = Pn + hβPn
[
δ − Pn

Nn

]
.

It is to be noticed that the system (20) with positive initial values is not uncondi-
tionally positive due to the presence of negative terms. The system may therefore
exhibit spurious behaviors and numerical instabilities [5].
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4.3.1 Existence and Stability of Fixed Points

At the fixed point, we substitute Nn+1 = Nn = N and Pn+1 = Pn = P . One can
easily compute that (20) has the same interior fixed points as in the previous case.
The fixed point E1 = (1, 0) always exist and the fixed point E∗ = (N∗, P ∗) exists
if 1 + αδ > δ, where N∗ = 1+αδ−δ

1+αδ , P ∗ = δN∗. We are interested for interior
equilibrium only.

The variational matrix of the system (20) at any arbitrary fixed point (N, P ) is
given by

J (x, y) =
(
a11 a12

a21 a22

)
,

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11 = 1+ h
[
1−Nn − Pn

Nn+αPn
]
+ hNn

[
−1+ Pn

(Nn+αPn)2
]
,

a12 = −h
(

Nn
Nn+αPn

)2
,

a21 = hβ
(
Pn
Nn

)2
,

a22 = 1+ h
[
βδ − βPn

Nn
− β Pn

Nn

]
.

Theorem 4.2 Suppose that the conditions of Theorem 1.1 hold. The interior
fixed point E∗ of the system (20) is then locally asymptotically stable if h <

min[G
H
,

2(1+αδ)2
G

], where G = (1 + αδ)2(1 + βδ) − δ(2 + αδ), H = βδ(1 +
αδ − δ)(1+ αδ).
Proof At the interior equilibrium point E∗, the Jacobian matrix is evaluated as

J (N∗, P ∗) =
(
a11 a12

a21 a22

)
,

where a11 = 1−hN∗[1− P ∗
(N∗+αP ∗)2 ], a12 = −h( N∗

N∗+αP ∗ )
2, a21 = hβ( P ∗N∗ )2, a22 =

1−hβ P ∗
N∗ . Note that 1− trace(J )+det (J ) = h2βP ∗ is always positive, following

the existence conditions of E∗. Thus, condition (ii) of Lemma 4.1 is satisfied. One
can compute that det (J ) = 1 − hN∗[G

H
− h]. Here H is positive following the

existence condition of E∗ and G > 0 if (1 + αδ)2(1 + βδ) > δ(2 + αδ). Thus
condition (i) of Lemma 4.1 is satisfied if h > G

H
. Simple computations give 1 +

trace(J ) + det (J ) = 2(2 − h G
(1+αδ)2 ) + h2H . This expression will be positive if

0 < h < 2(1+αδ)2
G

. Therefore, coexistence equilibrium point E∗ exists and becomes

stable if 1 + αδ > δ, δ(2 + αδ) < (1 + αδ)2(1 + βδ) and h < min[G
H
,

2(1+αδ)2
G

].
Hence the theorem. ��
Remark 4.1 Note that if h > G

H
then E∗ is unstable even when the other two

conditions are satisfied.
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5 Numerical Simulations

In this section, we present some numerical simulations to validate our analytical
results of the NSFD discrete system (13) and the Euler system (20) with their
continuous counterpart (6). For this experiment, we consider the parameters set as
in Celik [18]: α = 0.7, β = 0.9, δ = 0.6. The step size is kept fixed at h = 0.1 in all
simulations, if not stated otherwise. We consider the initial value I1 = (0.2, 0.2) as
in Celik [18] for all simulations. For the above parameter set, the interior fixed point
is evaluated as E∗ = (N∗, P ∗) = (0.5775, 0.3465). We first reproduce the phase
plane diagrams (Fig. 3) of the continuous system (6), the NSFD discrete system (13)
and the Euler discrete system (20) by using ODE45 of the software Matlab 7.11.
Following the analytical results stated in Sect. 3, the phase plane diagrams show
that the equilibrium E∗ is stable for all three cases.

To compare step-size dependency of the Euler model and NSFD model, we have
plotted the bifurcation diagrams of prey population of the systems (20) and (13)

N
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Fig. 3 Phase diagrams of the continuous system (6) (a), the NSFD discrete system (13) (b) and
the Euler system (20) (c). These figures show that solution in each case converges to the stable
coexistence equilibrium E∗ for the parameters α = 0.7, β = 0.9, δ = 0.6. Here G = (1 +
αδ)2(1+ βδ)− δ(2+ αδ) = 1.6533 and h = 0.1 < min{G

H
,

2(1+αδ)2
G

} = min{2.6293, 2.4393}
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Fig. 4 Bifurcation diagrams of prey population of Euler forward model (20) (a) and NSFD
model (13) (b) with step-size h as the bifurcation parameter. All the parameters and initial value
are same as in Fig. 3. The first figure shows that the prey population is stable for small step-size h
and unstable for higher value of h. The second figure shows that the prey population is stable for
all step-size h

considering step-size h as the bifurcation parameter (Fig. 4) for the same parameter
values as in Fig. 3. Figure 4a shows that behavior of the Euler model depends on
the step-size. If step-size is small, system population is stable and the dynamics
resembles with the continuous system (6). As the step-size is increased, system
population becomes unstable and therefore the dynamics is inconsistent with the
continuous system. However, the second figure (Fig. 4b) shows that the NSFD
model (13) remains stable for all h, indicating that the dynamics is independent
of step-size.

In particular, we plot (Fig. 5) time series behavior of the NSFD system (13) and

Euler discrete system (20) for h = 2(< min{G
H
,

2(1+αδ)2
G

} = min{2.6293, 2.4393})
and for h = 2.67(> min{2.6293, 2.4393}). The first two Fig. 5a, b show that
both populations are stable when the step-size is h = 2. Figure 5c shows that
populations of NSFD system (13) remain stable for all step-size, indicating its
dynamic consistency with the continuous system, but Fig. 5d shows that populations
of Euler system (20) oscillate for h = 2.67, indicating its dynamic inconsistency
with its continuous counterpart.

6 Summary

Nonstandard finite difference (NSFD) scheme has gained lot of attention in the
last few years mostly for two reasons. First, it generally does not show spurious
behavior as compared to other standard finite difference methods and second,
dynamics of the NSFD model does not depend on the step-size. NSFD scheme also
reduces the computational cost of traditional finite-difference schemes. In this work,
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Fig. 5 Time series solutions of the NSFD system (13) and Euler system (20) for two particular
values of step-size (h). Here h = 2 for (a and b) and h = 2.67 for (c and d). Other parameters are
in Fig. 4

we have studied two discrete systems constructed by NSFD scheme and forward
Euler scheme of a well-studied two-dimensional Holling-Tanner type predator–prey
system with ratio-dependent functional response. We have shown that dynamics of
the discrete system formulated by NSFD scheme are same as that of the continuous
system. It preserves the local stability of the fixed point and the positivity of the
solutions of the continuous system for any step size. Simulation experiments show
that NSFD system always converge to the correct steady-state solutions for any
arbitrary large value of the step size (h) in accordance with the theoretical results.
However, the discrete model formulated by forward Euler method does not show
dynamic consistency with its continuous counterpart. Rather it shows scheme-
dependent instability when step-size restriction is violated.
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Frequent Temporal Pattern Mining with
Extended Lists

A. Kocheturov and P. M. Pardalos

1 Introduction

In this paper we consider a problem of extracting features from records composed
of multivariate time series. It lies on the intersection of knowledge discovery and
classification. Our main emphasis is on a faster approach for mining class-specific
patterns having temporal resolution which can be used as features for classification
purposes.

Mining predictive features is a difficult task. Data usually comes in the form of a
collection of records where each record is characterized by a number of numerical
time series (e.g., heart rate or blood pressure during a surgical procedure) combined
with categorical or numerical attributes like gender and age. Each data record has
several outcomes such as a complication or death of the patient within 90 days after
surgery. In this paper, we limit ourselves with extracting temporal patterns from
multivariate time series only, independent of the attributes available.

Due to several limitations of data-acquisition process, samples of time series may
be taken in different time moments among the records and within them. For a given
record, some portions or whole time series may be missing as well.

Mining Frequent Patterns was first formulated in [1, 14]. Over the years,
several extensions and algorithms have emerged [3, 8, 9, 16]. The framework was
successfully applied in a number of medical domains [7, 10, 12, 13] where the
importance of temporal relations between patterns was realized.
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In this paper, we continue the work of Batal et al. [4–7] by introducing a new
faster algorithm for Frequent Temporal Pattern Mining based on the idea of extended
lists which we will explore further. The structure of the manuscript is as follows.
In Sect. 2, we introduce essential definitions and concepts. In Sect. 3, the general
framework for Mining Frequent Temporal Patterns is described. In Sect. 4, the new
algorithm is presented. Computational results are given in Sect. 5. Finally, the paper
is concluded in Sect. 6.

2 Definitions

We follow the definitions given in [4–7]. For the sake of clarity, we repeat them here
with minor modifications.

The approach starts with reducing dimensionality through converting each time
series into a set of temporal abstractions in the form 〈v1[s1, e1], . . . , vk[sk, ek]〉,
where vi ∈ � is a temporal abstraction that is in effect from start time si till end
time ei . � is the alphabet or set of possible abstractions. For a given time series, we
also require s1 ≤ e1 ≤ s2 · · · ≤ sk ≤ ek meaning that an abstraction may not start
earlier than any previous one finishes. Based on common logic, we also forbid two
consecutive temporal abstractions inside the same time variable to be represented
by a single time stamp (e.g., sk = ek = sk+1 = ek+1). Those are rather technical
constraints but they are important for constructing temporal patterns.

The alphabet � can be defined in several ways. Two examples that we use in the
paper are:

(1) Value Abstractions. � = {VL,L,N,H, VH } where VL,L,N,H , and VH
stand for Very Low, Low, Normal, High and Very High, respectively. Particular
ranges for transformation can be, for instance, set up by a field expert or be
data-driven and unique for each time series.

(2) Trend Abstractions. � = {S, I,D} where S, I , and D stand for Steady,
Increasing, and Decreasing, respectively.

If one decides to combine several ways and let the time abstractions overlap,
copying the time series and applying one way per copy will solve the issue.

Definition 1 S = (F, V ) is a state where F is a temporal variable (e.g., heart rate)
and V ∈ � is an abstraction value (e.g., very low).

Definition 2 E = (F, V, s, e) is a state interval where F is a temporal variable,
V ∈ � is an abstraction value, and s and e are the start and end times, (e.g., heart
rate, very high, 0, 10).

In other words, a state interval is a temporal interval for a specific time variable.
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Fig. 1 An artificial record with two time variables heart rate (HR) and blood pressure (BP) after
converting them into temporal abstractions

Definition 3 Z = 〈E1, . . . , El〉 , Ei.s ≤ Ei+1.s ∀i = 1, . . . , l − 1 is a
Multivariate State Sequence (MSS) consisting of l state intervals which are
arranged according to non-decreasing order of their start times.

In Fig. 1, the MSS Z = 〈 (HR,H,0,3), (BP,VH,2,5), (HR,VL,4,7), (HR,H,8,11),
(BP,VH,10,13), (HR,L,12,15), (HR,H,16,19), (BP,VH,18,21), (HR,VL,20,23),
(BP,L,22,25) 〉 is depicted.

The next level of abstraction which is called Temporal Pattern will allow us
to make a transition from particular values of start and end times and concentrate
instead on temporal relationships of the state intervals inside MSS. For this purpose,
we utilize Allen’s logic [2] but instead of using all 13 possible time relations we take
only 2.

For two states Ei and Ej with Ei.s ≤ Ej .s, we say that Ei finishes before Ej
starts ifEi.e < Ej .s and denote it as b(Ei,Ej). Otherwise, we say thatEi co-occurs
with Ej and denote it as c(Ei,Ej).

Because we always have uncertainty and errors in the data, other temporal
relations of Allen’s logic create patterns that represent notions that are very
close to each other. Moreover, using them simultaneously makes pattern mining
computationally expensive.

Definition 4 P = (〈S1, . . . , Sk〉 , R) is a k-Temporal Pattern (k-TP), or simply
Temporal Pattern (TP), of k states S1, . . . , Sk , where R is an upper-triangular matrix
describing pair-wise temporal relationships between the states: Ri,j ∈ {b, c} ∀ 1 ≤
i < j ≤ k.

Definition 5 Given an MSS Z = 〈E1, E2, . . . , El〉 and a temporal pattern P =
(〈S1, . . . , Sk〉 , R), we say that Z contains P , denoted as P ∈ Z, if there is an
injective mapping π : {1, . . . , k} → {1, . . . , l} (k ≤ l) that matches every state
S in P to a state interval Eπ(i) in Z such that:

(1) Si.F = Eπ(i).F ∧ Si.V = Eπ(i).V ∀ 1 ≤ i ≤ k,
(2) π(i) < π(j) ∀ i < j ,
(3) Ri,j (Eπ(i), Eπ(j)) ∀ i < j

The first requirement guarantees that the states of P match the corresponding
state intervals of Z, while the last two constraints enforce the temporal relations in
P and Z to coincide.
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Definition 6 k1-TP P
′

is a subpattern of k2-TP P (k1 < k2), denoted as P
′ ⊂ P , if

there is injective mapping π : {1, . . . , k1} → {1, . . . , k2} such that:

(1) S
′
i = Sπ(i) ∀ 1 ≤ i ≤ k where S

′
i is a state in P

′
and Sπ(i) is a state in P ,

(2) π(i) < π(j) ∀ i < j
(3) R

′
i,j = Rπ(i),π(j) ∀ 1 ≤ i < j ≤ k1.

It is straightforward to check that:

Corollary 1 If P
′

is subpattern of P and P ∈ Z, then Z contains P
′

as well.

This corollary, also known as the a priori property, is the main driving force of
our approach.

Definition 7 Let Sub(P ) denote the set of all subpatterns of P :

Sub(P ) = {P ′ : P ′ ⊂ P }

Definition 8 Let Subk(P ) denote the set of all subpatterns of P of length k:

Subk(P ) = {P ′ : P ′
is k − T P ∧ P ′ ⊂ P }

The overall goal is to mine class-specific temporal patterns which appear in a
number of MSSs belonging to a certain class. For this purpose, we use the threshold
g ∈ [0, 1] and define the minimum supports, or class-specific thresholds gi’s:

gi = g × |Di |.

Assume that D = {Z1, . . . , Zn} is a data set of n MSSs and Y = {y1, . . . , yc} is
a set of possible classes, or outcomes. Let Di denote a set of records from D which
belong to class yi (each record belongs to one class). Zj ∈ Di denotes that record j
is in class yi .

Definition 9 For a given P , threshold g, and class y, we define support of P in
class y, denoted as T P − supgy(P ), as a number of MSSs from Dy having P :

T P − supgy(P ) = |{Z ∈ Dy : P ∈ Z}|.

Definition 10 k-temporal pattern P is a k-Frequent Temporal Pattern (k-FTP) in
D, if:

∃i : T P − supgyi (P ) ≥ gi.

In other words, P is an FTP, if the number of MSSs having it is not less than the
corresponding class-specific threshold for at least one class.
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Corollary 2 (P
′ ⊂ P) ∧ (P

′
is not FTP)  ⇒ P is not FTP.

The proof is a straightforward consequence of Corollary 1 and Definition 10.

3 Mining Frequent Temporal Patterns

To find all FTPs, a breadth-search procedure is applied. First, all FTPs of length
1 are found. Then a list of candidate TPs of length 2 is generated. After that
each candidate TP is checked for being an FTP and a list of FTPs of length
2 is formed. The procedure is repeated until all FTPs are found or another
stopping criterion is met, e.g., length is no more than a predefined threshold kmax.

Input: D, 1-FTPs
Output: FTPs
FTPs← 1-FTPs;
k← 1 ;
while |k-FTPs| > 0 and no other stopping criteria are met do

(k + 1)-FTPs← ∅ ;
(k + 1)-candidates← CreateCandidates(k-FTPs, 1-FTPs) ;
forall the T P ∈ (k + 1)-candidates do

if T P is FTP in D then
(k + 1)-FTPs← (k + 1)-FTPs ∪ {T P } ;

end
end
FTPs← FTPs ∪(k + 1)-FTPs ;
k← k + 1 ;

end
Algorithm 1: The general framework

An important remark is that stopping criteria must not contradict with the a priori
property, because some FTPs may be missing, otherwise.

The “create candidates” function takes all FTPs of lengths k and 1 and return
candidates of length k + 1. We use the so-called backward extension of temporal
patterns.

Definition 11 Pnew is a backward extension of P = (〈S1, . . . , Sk〉 , R) with state
S0. It is constructed in the following manner:

(1) Snewi = Si−1 ∀i = 1, . . . , k + 1,
(2) Rnewi+1,j+1 = Ri,j ∀1 ≤ i < j ≤ k,
(3) Rnew1,j can be either b or c ∀j = 2, . . . , k + 1.

We call P a suffix, or parent of Pnew. We write:

P = parent (P new), or Pnew.parent = P
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Thus, this process can create 2k possible new (k + 1)-patterns for each pair
(P0, P1) depending on how the temporal relations are chosen. Indeed, less than
k + 1 possible patterns are coherent (feasible):

Theorem 3.1 There are at most k+1 coherent candidates that result from extending
a single k-FTP backward with a new state [7].

Let us illustrate it on an example. If we extend a 3-FTP backward with a state,
the temporal relations of the first state of the resulting candidate TP can be only
{b, b, b}, {c, b, b}, {c, c, b}, and {c, c, c}. It may not be of the form {b, c, b}, because
it means that the first state co-occurs with the third state but is before the second one
which is impossible in any MSS since the state intervals are ordered according to
their start times. Moreover, if let say the third state’s temporal variable is the same
as that one of the first state, then only {b, b, b}, {c, b, b} are possible because of the
restriction that the state intervals of the same temporal variable cannot co-occur.

These two properties allow to reduce the search space by elimination of
impossible TPs.

The most computationally expensive part of this framework is checking if a
candidate TP is indeed frequent. Thus, further careful elimination of infrequent TPs
at the step of creating candidates is very important.

Based on the a priori property, (k+1)-TP is frequent only if all of its subpatterns
are frequent. Indeed, we need to check only if subpatterns of length k are frequent
due to transitivity.

Also a simple idea of assigning to each FTP a list of record identifiers which
contain it:

P.ids = {i : P ∈ Zi}
reduces the search space drastically [7]. It is based on the vertical data format [17,
18]. Again due to the a priori property, a candidate T P of length k + 1 will appear
only in records where all its subpatterns appear as well. And again we need to check
only its k-subpatterns because the record id list of a subpattern of smaller lengths
includes the list for at least one k-subpattern (for which it is its subpattern). Such a
list is called the list of potential records:

P.p_ids = ∩
P
′ ∈Sub(P )

P
′
.ids = ∩

P
′ ∈Subk(P )

P
′
.ids

If for all classes number of the potential records is smaller than the corresponding
minimal support values, then this pattern is not frequent, and it can be discarded.
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4 Extended Lists

For given record and FTP we keep track of positions (indices of the state intervals
in the record) where the first state of the pattern appears inside the record. We say
that the pattern starts at those positions.

Assume we have this information for all FTPs of all length k. A coherent
candidate (k+1)-temporal pattern P constructed from k-FTP and state S has exactly
k+1 subpatterns of length k (|Subk(P )| = k+1). From Subk(P ), exactly k patterns
start with state S and they all are in

Subk(P ) \ parent (P ).

It is easy to see that P cannot start at a position i insideZ if at least one k-subpatterns
doesn’t start at the same position.

For example, assume that we want to find if temporal pattern (Fig. 2)

P = (〈(HR,H), (BP, VH), (HR,L)〉 , R)

with R1,2 = c, R1,3 = b,R2,3 = c is inside MSS Z (Fig. 1).
Pattern P has two subpatterns Ps1 (Fig. 3) and Ps2 (Fig. 4) which have the same

first state:

Ps1 = (〈(HR,H), (BP, VH)〉 , R1,2 = c),

Ps2 = (〈(HR,H), (HR,L)〉 , R1,2 = b).

Ps1 starts at positions 3 and 6 in Z, while Ps2 starts at positions 0 and 3. Thus, P
may potentially start only at position 3 where both the subpatterns start.

Definition 12 Let P.ppos[i] denote all potential positions at which P may appear
inside Zi .

Fig. 2 3-T P
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Fig. 3 First 2-FTP
subpattern

Fig. 4 Second 2-FTP
subpattern

Fig. 5 Locations of S1 and S2 in Z

Fig. 6 Possible starting positions of P1 and starting positions of P2

Thus,

P.p_pos[i] = ∩
P ′∈X

P ′.pos[i], where X = Subk(P ) \ parent (P ).

Furthermore, potential positions can be used very efficiently while checking if a
record has a T P .

To see this, let us assume that there is a candidate (k + 1)-TP P1 with states
S1, . . . , Sk+1 and its parent P2 starting with state S2 is FTP as well as all other
subpatterns of P1. Assume also that we know that states S1 and S2 appear in MSS
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Fig. 7 Links between positions of the patterns before checking

Fig. 8 Links between positions of the patterns after checking

Z as presented in Fig. 5 (all other states are located at different positions and are
not depicted here). Then, we know that P2 starts only at positions as at the bottom
of Fig. 6 (all locations of S2 where P2 doesn’t start are shaded). After intersecting
all starting positions of patterns from Sub(P1) \ P2, we have potential starting
position of P1 as at the top of Fig. 6. Then we link all possible positions of P1 with
closest larger positions of P2 as in Fig. 7. Thus, one can see that the set of possible
combinations of S1 and S2 locations is significantly smaller than if we had to check
all initial locations of the states: now for states S1 and S2, we need to check only
pairs (10, 20), (10, 50), . . . , (10, 170), (40, 50), . . . , (130, 170).

Then, after checking some combinations have gone away and we have only a few
combinations of real positions of P1 in Z with links to the positions of P2, e.g., it
could be as in Fig. 8.

Definition 13 For given frequent temporal pattern P and record Zi , extended list
denoted as P.ex_list[i] specifies the starting positions of P inside Zi with links onto
the starting positions of parent (P ).

Definition 14 For given temporal pattern P and record Zi , possible extended list
denoted as P.p_ex_list[i] specifies the possible starting positions of P inside Zi
with links onto the starting positions of parent (P ).

Now we are ready to present our version of the algorithm called “Frequent
Temporal Pattern Mining with Extended Lists”:
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Input: D, 1-FTPs
Output: FTPs
FTPs← 1-FTPs;
k← 1 ;
while |k-FTPs| > 0 and no other stopping criteria are met do

(k + 1)-FTPs← ∅ ;
(k + 1)-candidates← CreateCoherentCandidates(k-FTPs, 1-FTPs) ;
forall the P ∈ (k + 1)-candidates do

if ∃P ′ ∈ Subk(P ) such that P
′

isn’t frequent then
continue

end
P.p_ids ← ∩

P
′ ∈Subk(P ) P

′
.ids;

if not PotentiallyFrequent(P .p_ids) then
continue

end
forall the id ∈ P.p_ids do

P.p_pos[id] = ∩P ′∈Subk(P )\parent (P ) P ′.pos[id] ;
if P.p_pos[id] = ∅ then

P.p_ids ← P.p_ids \ id
end
else

P.p_ex_list[id] ← CreateLinks(P .p_pos[id], P .parent.pos[id]) ;
if P.p_ex_list[id] = ∅ then

P.p_ids ← P.p_ids \ id
end

end
end
if not PotentiallyFrequent(P .p_ids) then

continue
end
P.ids ← P.p_ids ;
forall the id ∈ P.ids do

P.ex_list[id] ← FindPositionsAndLinks(P .p_ex_list[id]) ;
if P.ex_list[id] = ∅ then

P.ids ← P.ids \ id
end

end
if P is FTP in D then

(k + 1)-FTPs← (k + 1)-FTPs ∪ {P } ;
end

end
FTPs← FTPs ∪(k + 1)-FTPs ;
k← k + 1 ;

end
Algorithm 2: Frequent temporal pattern mining with extended lists

5 Computational Results and Simulation

To check the performance of our approach we tested it on two data sets. First data
set rand_DS consists of n = 5000 records of 2 classes (2500 for each class) where
each record has two time series withm = 30 randomly sampled points from uniform
distribution from [0, 1] interval.
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The second data set AKI_DS consists of n = 5200 medical records of time
series taken during different surgical procedures [11, 15]. Two time variables were
chosen for examination: Blood Pressure and Heart Rate. Each record has an outcome
associated with it: 1 if Acute Kidney Injury (AKI) was diagnosed after the surgery
(2700 records), and 0, otherwise (2500 records).

In both data sets, the value abstractions were used to convert time series from
time domain to abstraction domain. The support threshold of 0.8 was used to mine
frequent patterns.

The results are depicted below:

by Batal etal
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48

rand_DS AKI_DS

1400

380

1

10

100

1000

10000

Our approach

6 Conclusions

In this paper we presented a new faster algorithm for mining Frequent Temporal
Patterns. It outperformed the existing approach by an order of magnitude faster on
real-life data. Even on random data, where each pattern appears almost everywhere,
the structure of extended lists exhibited more efficiency.

The approach can be generalized and applied on other domains where the notion
of pattern is defined in other ways.
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Unravelling the Sensitivity of Two Motif
Structures Under Random Perturbation

Suvankar Halder, Samrat Chatterjee, and Nandadulal Bairagi

1 Introduction

There are studies demonstrating multiple outputs produced at the level of changes
in gene expression and cellular activities [4, 17, 18, 20, 21, 26, 27]. These are
clear evidence on sensitivity of intracellular signalling systems to variations in
input stimuli which may potentially be induced through either extracellular noise or
intracellular stochastic perturbations of the intracellular components (e.g. mutations,
alterations in protein turn-over rates, etc.). However, for these inappropriate and
non-specific responses the system has its own safe guards, which still needs further
investigation.

To probe the issue of maintenance of response-specificity, we selected a condition
wherein cells were subjected to varying levels of stochastic perturbations and
evaluated the consequent steady state value, rather than the kinetic features, of the
output attained [4, 9, 15, 22]. It is the change in steady state levels that have been
shown to govern the outcome in complex biological processes such as adaptability,
immune memory, development, and cell differentiation [5, 22, 24]. So, in a large
signalling network we seek for steady state input-output (I/O) relation in the
presence of random perturbation to capture the cell mechanism that prevents any
damage due to inappropriate signalling.

The dynamical properties of signalling networks were defined by motifs that are
embedded [9, 19, 29]. The analysis of a network through organisation of components
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and modules into motifs describes the regulatory features of the network. There
are different motif structures identified till date, which collectively constitute the
building blocks of biological networks [1, 6, 23]. A very frequently observed
motif is the feedback loop. Negative feedback loop can give rise to adaptation
and desensitisation, while positive feedback loop can lead to emergent network
properties such as ultrasensitivity and bistability [2, 5, 14]. In fact, the pattern of
motif organisation defines the information processing capabilities of the signalling
network, influencing the specificity and plasticity of I/O relationships [1, 22].

One of the aims of the present study is to capture the I/O relation in the
structure and how they are influenced by parameter variation specially under random
perturbation. The I/O relation becomes more important when a structure showed
bistability (simultaneous existence of two stable equilibrium points) as they play a
very vital role in cell signalling and functioning. Depending on the initial value
of nodes, the output signal can attain any of the two bistable values for the
same parameter set value. It is key for understanding basic phenomena of cellular
functioning, such as decision-making processes in cell cycle progression, cellular
differentiation [16] and apoptosis [13]. It also plays an important role in diseases
like cancer and Prion disease [28]. In cancer it is mainly involved in loss of cellular
homeostasis associated with beginning of the disease. Bistability can be generated
by a positive feedback loop with an ultrasensitive regulatory step. Positive feedback
loops is an important regulatory motif in cellular signal transduction [10].

In the present study, we took two particular motif structures (see Fig. 1) that were
showing bistability and analysed signal-noise relation between them. Schematic
diagrams of two nodes signalling motifs are given in Fig. 1, where node A receives
the input signal which then influences the output of node B. The difference between
the first and second structure is in the self-activation and inhibition for node A and
node B. In structure 1, node A is a self-activator and node B is a self-inhibitor, while
in structure 2 it is opposite. kA and kB are the self-regulators for the node A and
node B, respectively. There is one more difference between the two structures. In
structure 1, node A is activating node B and node B is inhibiting node A, while in
the structure 2 it is opposite. Here, k1 and k2 are regulatory constants of node A

(b)(a)

Fig. 1 Schematic diagram for two-node motif showing all possible interactions between two
nodes. Figure (a) depicts the structure 1 and figure (b) depicts the structure 2. Details of the
structures are given in the text
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on B and node B on A, respectively. Here, I is the input signal affecting node A
(representing protein A) at a rate kI . So, the input signal is ultimately the steady
state of node A denoted by A∗, say. Finally output signal is the steady state of node
B (representing protein B) denoted by B∗, say.

2 Construction of the Deterministic Models

An ordinary differential equation model is constructed based on the pathway
map shown in Fig. 1. The first model (for the structure 1) consists of a coupled-
differential equations. The nodes represent the proteins present in a cell. Equations
of the model describe the rates of loss and creation of particular labelled forms
of proteins (nodes) in the system. Our model is based on ODEs and consists of
activated form of node A (denoted by A) and node B (denoted by B). Biologically,
the total concentration of protein/node (active and inactive form) within the system
is constant and for simplicity assumed to be 1 as taken in previous models [22].
The equations are based on the Michaelis-Menten form of equation as described in
previous model [22]. The system of differential equations is as follows:

dA

dt
= kI I (1− A)
kmI + (1− A) +

kAA(1− A)
kmA + (1− A) −

k2BA

km2 + A,

dB

dt
= k1A(1− B)
km1 + (1− B) −

kBB
2

kmB + B , (1)

The parameter I is the input function, kI is the activation rate of input signal on node
A and kmI is the corresponding half saturation constant, ki (i = 1, 2) denote the
activation or inhibition rates of one node on another node, kj (j = A,B) represents
the self-activation or self-inhibition rates of the nodes, kmi (i = 1, 2, A,B) are the
respective half saturation constants.

By similar arguments as of structure 1 (with same parameter) an ordinary
differential equation model is constructed for structure 2, which is as follows:

dA

dt
= kI I (1− A)
kmI + (1− A) +

k2B(1− A)
km2 + (1− A) −

kAA
2

kmA + A,
dB

dt
= kBB(1− B)
kmB + (1− B) −

k1AB

km1 + B . (2)
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2.1 Analytical Results

2.1.1 Positive Invariance and Boundedness

Let us put the system of Eq. (1) in a vector form by setting X =
[
A

B

]
∈ R2.

F(X) =
[
F1(X)

F2(X)

]
=
[

kI I (1−A)
kmI+(1−A) +

kAA(1−A)
kmA+(1−A) − k2BA

km2+A
k1A(1−B)
km1+(1−B) − kBB

2

kmB+B

]
, (3)

where F : C+ → R2. Then Eq. (1) becomes

Ẋ = F(X), (4)

with X(0) = X0 ∈ R+2. It is easy to check in Eq. (3) that whenever choosing
X(0) ∈ R+2 such that Xi = 0, then Fi(X)|Xi=0 ≥ 0, (i = 1, 2). Due to lemma
[25], any solution of Eq. (4) with X(0) ∈ R+2, say X(t) = X(t;X0), is such that
X(t) ∈ R+2 for all t > 0.

Since the total concentration of protein/node within the system is constant and
is equal to 1, so the maximum value that A, B can take is 1. Hence by model
assumption both are bounded.

Similarly for structure 2, again setting X =
[
A

B

]
∈ R2 and

F̂ (X) =
[
F̂1(X)

F̂2(X)

]
=
[

kI I (1−A)
kmI+(1−A) +

k2B(1−A)
km2+(1−A) − kAA

2

kmA+A
kBB(1−B)
kmB+(1−B) − k1AB

km1+B

]
, (5)

By similar argument as in the case of structure 1, we can prove the positive
invariance and boundedness of structure 2.

2.1.2 Equilibrium Points of the System (1) and Their Stability Properties

As here we are interested in studying the I/O relation, so we look for only the interior
equilibrium point. The interior equilibrium point is denoted by E∗ ≡ (A∗, B∗),
where

A∗ = kBB
∗2[km1 + (1− B∗)]

k1(kmB + B∗)(1− B∗) (6)

and B∗ satisfies the equation
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kI I
(

1−
(
kBB

∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

))

kmI +
(

1−
(
kBB

∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)) −
k2B

∗
(
kBB

∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)

km2 +
(
kBB

∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)

+
kA

(
kBB

∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

) (
1−

(
kBB

∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

))

kmA +
(

1−
(
kBB

∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)) = 0 . (7)

The corresponding Jacobian matrix (J ) evaluated at E∗ = (A∗, B∗) is denoted
by J (A∗, B∗) and given by

J (A∗, B∗) =
[
a11 −a12

a21 a22

]
(8)

with

a11 = kA(1− A∗)
kmA + (1− A∗)−

kI kmI I

(kmI + (1− A∗))2−
kAkmAA

∗

(kmA + (1− A∗))2−
k2km2B

∗

(km2 + A∗)2 ,

a12 = k2A
∗

km2 + A∗ ,

a21 = k1(1− B∗)
km1 + (1− B∗) ,

a22 = − k1km1A
∗

(km1 + (1− B∗))2 −
kBB

∗(2kmB + B∗)
(kmB + B∗)2 .

The characteristic equation is given by

λ2 − trace(J )λ+ determinant(J ) = 0 . (9)

The interior equilibrium point is stable if

trace(J ) < 0

determinant(J ) > 0. (10)

So, the interior equilibrium point is stable if

a11 + a22 < 0 , (11)

a11a22 + a12a21 > 0 . (12)
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2.1.3 Equilibrium Points of the System (2) and Their Stability Properties

The system (2) has an axial equilibrium point Ê ≡ (Â, 0), where Â satisfies the
following equation

kAÂ
3 − {kI I + kA(kmI + 1)} Â2 + (1− kmA)kI I Â+ kI IkmA = 0 . (13)

It has also an interior equilibrium E∗ ≡ (A∗, B∗), where

A∗ = kBB
∗(1− B∗)(km1 + B∗)

[kmB + (1− B∗)]k1B∗
(14)

and B∗ satisfies the equation

kI I
(

1−
(
kBB

∗(1−B∗)(km1+B∗)[kmB+(1−B∗)]k1B
∗
))

kmI +
(

1−
(
kBB

∗(1−B∗)(km1+B∗)[kmB+(1−B∗)]k1B
∗
)) +

k2B
∗
(

1−
(
kBB

∗(1−B∗)(km1+B∗)[kmB+(1−B∗)]k1B
∗
))

km2 +
(

1−
(
kBB

∗(1−B∗)(km1+B∗)[kmB+(1−B∗)]k1B
∗
))

−
kA

(
kBB

∗(1−B∗)(km1+B∗)[kmB+(1−B∗)]k1B
∗
)2

kmA +
(
kBB

∗(1−B∗)(km1+B∗)[kmB+(1−B∗)]k1B
∗
) = 0 (15)

Following the Jacobian matrix and stability definition (as given in (9) and (10)),
the interior equilibrium point is stable if

b11 + b22 < 0 (16)

b11b22 + b12b21 > 0 (17)

where

b11 = − kI kmI I

[kmI + (1− A∗)]2 −
k2km2B

∗

[km2 + (1− A∗)]2 −
kAA

∗(2kmA + A∗)
(kmA + A∗)2

b12 = k2(1− A∗)
km2 + (1− A∗)

b21 = k1B
∗

km1 + B∗

b22 = kB(1− B∗)
kmB + (1− B∗) −

kBkmBB
∗

[kmB + (1− B∗)]2 −
k1km1A

∗

(km1 + B∗)2
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Table 1 Parameters description and the initial values

Parameters Description Default values

I Initial input 0.097

kI Activation rate of I on node A 1

k1 Activation rate of node A on node B 1

k2 Deactivation rate of node B on node A 1

kA Self-activation rate of node A 1

kB Self-deactivation rate of node B 1

kmI Half saturation constant respect to kI 0.1

km1 Half saturation constant respect to k1 0.4

km2 Half saturation constant respect to k2 0.1

kmA Half saturation constant respect to kA 0.1

kmB Half saturation constant respect to kB 0.8
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Fig. 2 Phase portrait showing bistability of the system (1). Parameters are as in Table 1

2.2 Simulation Results

2.2.1 Numerical Analysis for the System (1)

We solved the system of differential equations (1) in MATLAB with parameter
values as in Table 1 and observed that it shows bistability, see Fig. 2. We, then, varied
each parameters ten folds up and down from their base value (given in Table 1). The
range of each parameter for which bi- or mono-stability was observed has been
plotted in Fig. 3. Bistability was observed around the base value and mono-stability
was observed as we moved away from the base value.

Global Sensitivity Analysis The global sensitivity analysis (GSA) helps to identify
model parameters that could be particularly important. We used the Partially Ranked
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Fig. 3 Parameter ranges for which the system shows mono- or bi-stabilities. Here, the black colour
shows the range of each parameter for which the system has only one stable point and the white
colour shows the range of each parameter for which the system is bistable

Correlation Coefficients (PRCC) [8] technique for the GSA and their associated p-
values to identify the most sensitive parameters. To calculate PRCCs, we used Latin
Hypercube Sampling (LHS) method to randomly select vectors of parameter-values
used for each run of PRCCs calculations. Over 1000 simulations were performed
to calculate PRCCs. In each simulation, system was solved up to 100 time steps,
as it was observed from the time series solutions that the system behaves uniformly
much before 100 time steps. Figure 4 depicts the sensitivity of each parameter for
the variable B. We used a cut-off of ±0.4 to define the sensitive parameters, i.e.,
if PRCC value of a particular parameter lies beyond ±0.4 then that parameter will
be called a sensitive parameter. The GSA analysis suggests that the most sensitive
parameters in structure 1 are k1, kB , km1 and kmB . These parameters are affecting
primarily the output signal of Node B and they are associated with node B.

2.2.2 Numerical Analysis for the System (2)

We solved the system of differential equations (2) in MATLAB with parameter
values as in Table 2 and observed that it shows bistability, see Fig. 5. We, then,
varied each parameters ten folds up and down from their base value (given in
Table 2) and divide them in equal partitions and calculated the number of stable
equilibrium points. We observed that structure 2 shows bistability for a wider range
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Fig. 4 Global sensitivity analysis (GSA) of model parameters of node B using Latin Hypercube
Sampling (LHS) method

Table 2 Parameters description and the initial values

Parameters Description Default values

I Initial input 0.3

kI Activation rate of I on node A 0.001

k1 Deactivation rate of node A on node B 1

k2 Activation rate of node B on node A 1

kA Self-deactivation rate of node A 0.001

kB Self-activation rate of node B 1

kmI Half saturation constant respect to kI 0.1

km1 Half saturation constant respect to k1 0.7

km2 Half saturation constant respect to k2 0.1

kmA Half saturation constant respect to kA 0.1

kmB Half saturation constant respect to kB 0.1

when compare to structure 1, see Fig. 3. In case of structure 2, we also observed a
region for non-existence of stable equilibrium point, which was not there in structure
1 (Fig. 6).

Global Sensitivity Analysis
The global sensitivity analysis (GSA) of system (2) was done using Partially

Ranked Correlation Coefficients (PRCC) [8] technique similar to the system (1).
Figure 7 depicts the sensitivity of each parameter for each variable. We used a cut-
off of ±0.4 to define the sensitive parameters, i.e., if PRCC value of a particular
parameter lies beyond±0.4 then that parameter will be called a sensitive parameter.
The GSA analysis suggests that the most sensitive parameters in structure 2 are k1,
kB , km1 and kmB . So, here also most of the sensitive parameter effecting the output
signal are of Node B.
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Fig. 5 Phase portrait showing bistability of the system (2). Parameters as in Table 2
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Fig. 6 Parameter ranges for which the number of equilibrium point(s) changes. Here, the black
colour shows the range of each parameter for which the system has no stable point, grey colour
shows the range of each parameter for which the system has only one stable equilibrium point and
the white colour shows the range of each parameter for which the system is bistable

3 Construction of the Stochastic Models

In previous sections we observed that depending on the motif structure and the
parameter value, the nature of the output signal may vary from mono-stability to
bi-stability. Next we want to see how this rich dynamics behave under random
perturbation. This will help us to understand the I/O relationship for the two motifs
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Fig. 7 Global sensitivity analysis (GSA) of model parameters of node B using Latin Hypercube
Sampling (LHS) method

in the presence of noise. These random perturbations may arise through mutations
and alteration in turnover rates. Random perturbation may also appear due to
improper network signaling. To probe this, we incorporated a dispersed stochastic
perturbation in our model that could influence any of the components of the motif
independent of the signal input. The rationale of using dispersed perturbation was
derived from the fact that there exists multiple intrinsic and extrinsic factors, such as
cytokines, growth factors, nutrients, environmental stresses, modulation in protein
stability and many others, which can potentially influence any of the signaling
components through a diverse range of mechanisms [7, 21, 30]. Cumulative effects
of such perturbations would exert a heterogeneous influence on the basal state of the
signaling network. We considered such random influences as systemic perturbations
and incorporated these effects into the model as multiplicative Gaussian white noise
[10, 18]. Thus we introduce the stochastic perturbation terms into the equations of
both node A and node B. The stochastic perturbations of the state variables around
their steady-state values E∗ are Gaussian white noise which are proportional to
the distances of A,B from their steady-state values A∗, B∗, respectively. So, the
deterministic model system (1) results in the following stochastic model system

dA = F1(A,B)dt + σ1(A− A∗)dξ1
t ,

dB = F2(A,B)dt + σ2(B − B∗)dξ2
t . (18)

where σ1 and σ2 are real constants and known as the intensity of the fluctuations,
ξ it = ξi(t), i = 1, 2 are standard Wiener processes, independent of each other, and
F1, F2 are defined in Eq. (3). We consider Eq. (18) as an Ito stochastic differential
system of the type

dXt = F(t,Xt )dt +G(t,Xt )dξt (19)
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where the solution (Xt ,t > 0) is an Ito process, ‘F ’ is the drift coefficient, ‘G’
is the diffusion coefficient and ξt is a two-dimensional stochastic process having
scaler Wiener process components with increments /ξjt = ξj (t + /t) − ξj (t) are
independent Gaussian random variables N(0,/t). In the case of system (18),

Xt =
[
A

B

]
, ξt =

[
ξ1
t

ξ2
t

]
, (20)

F =
[
F1(A,B)

F2(A,B)

]
,G =

[
σ1(A− A∗) 0

0 σ2(B − B∗)
]

(21)

Since the diffusion matrix ‘G’ depends upon the solution of Xt , system (18) is
said to have multiplicative noise.

Following above, the deterministic model system (2) results in the following
stochastic model system

dA = F̂1(A,B)dt + σ1(A− A∗)dξ1
t ,

dB = F̂2(A,B)dt + σ2(B − B∗)dξ2
t . (22)

where σ1 and σ2 are real constants and known as the intensity of the fluctuations,
ξ it = ξi(t), i = 1, 2 are standard Wiener processes, independent of each other, and
F̂1, F̂2 are defined in Eq. (5). We consider Eq. (18) as an Ito stochastic differential
system of the type

dXt = F̂ (t, Xt )dt +G(t,Xt )dξt (23)

with

Xt =
[
A

B

]
, ξt =

[
ξ1
t

ξ2
t

]
, (24)

F̂ =
[
F̂1(A,B)

F̂2(A,B)

]
,G =

[
σ1(A− A∗) 0

0 σ2(B − B∗)
]

(25)

Since the diffusion matrix ‘G’ depends upon the solution of Xt , system (22) is said
to have multiplicative noise.

3.1 Stochastic Stability of Interior Equilibrium

The stochastic differential system (18) can be centred at its positive equilibrium
pointsE∗(A∗, B∗) by introducing the variablesU1 = A−A∗, U2 = B−B∗. It looks
to be a very difficult problem to derive asymptotic stability in mean square sense
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by Lyapunov functions method working on the complete nonlinear equation (18).
For simplicity of mathematical calculations, we deal with the stochastic differential
equation obtained by linearising the vector function ‘F ’ in (21) about the positive
equilibrium point E∗. The linearised version of (19) around E∗ is given by

dU(t) = f (U(t))dt +G(U(t))dξ(t) , (26)

where

U(t) =
[
U1(t)

U2(t)

]
, (27)

f (U(t)) =
[−P11U1 − P12U2

P21U1 − P22U2

]
, (28)

G(U(t)) =
[
σ1U1 0

0 σ2U2

]
(29)

with

P11 = kI kmI I

(kmI + (1− A∗))2 +
k2km2B

∗

(km2 + A∗)2 ,

+kAkmAA
∗ − kA(1− A∗)(kmA + (1− A∗))
(kmA + (1− A∗))2 (30)

P12 = k2A
∗

km2 + A∗ , (31)

P13 = k1(1− B∗)
km1 + (1− B∗) , (32)

P14 = k1km1A
∗

(km1 + (1− B∗))2 +
kBB

∗(2kmB + B∗)
(kmB + B∗)2 (33)

Note that, in (26) the positive equilibrium E∗ corresponds to the trivial solution
(U1, U2) = (0, 0). Let � be the set defined by � = [

(t � t0)× R2, t0 ∈ R+
]
. We

define the following theorem [12]

Theorem 3.1 Suppose there exists a differentiable function V (U, t) ∈ C2(�)

satisfying the inequalities

K1|U |α ≤ V (U, t) ≤ K2|U |α (34)

LV (U, t) ≤ −K3|U |α, Ki > 0, i = 1, 2, 3, α > 0 . (35)

Then the trivial solution of (26) is exponentially α stable for all time t ≥ 0.
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Note that, if in (34), (35), α = 2, then the trivial solution of (26) is exponentially
mean square stable. Furthermore, the trivial solution of (26) is globally asymptoti-
cally stable in probability.

Here, following (26),

LV (t, U) = ∂V (t, U(t))

∂t
+ f T (U(t))∂V (t, U)

∂U

+ 1

2
T r

[
GT (U(t))

∂2V (t, U)

∂U2 G(U(t))

] (36)

where

∂V

∂U
=
(
∂V
∂U1

∂V
∂U2

)T
,
∂2V (t, U)

∂U2 =
(

∂2V

∂Uj∂Ui

)

i,j=1,2

and T means transposition.
We can prove the following theorem:

Theorem 3.2 When the inequality

kI kmI I

(kmI + (1− A∗))2 +
kAkmAA

∗

(kmA + (1− A∗))2 +
k2km2B

∗

(km2 + A∗)2 >
kA(1− A∗)

kmA + (1− A∗)
(37)

holds true then the zero solutions of the system (18) will be exponentially 2-stable if

σ1
2 < 2

[
kI kmI I

(kmI + (1− A∗))2 +
kAkmAA

∗

(kmA + (1− A∗))2
]

+2

[
k2km2B

∗

(km2 + A∗)2 −
kA(1− A∗)

kmA + (1− A∗)
]
,

σ2
2 < 2

[
k1km1A

∗

(km1 + (1− B∗))2 +
kBB

∗(2kmB + B∗)
(kmB + B∗)2

]
. (38)

with the positive constants ω1 and ω2, where ω1 = km2+A∗
k2A

∗ and ω2 = km1+(1−B∗)
k1(1−B∗) .

Proof Let us consider the Lyapunov function

V (U(t)) = 1

2

[
ω1U1

2 + ω2U2
2
]

(39)

where ωi are real positive constants to be chosen later. It is easy to check the
inequalities in (34) are true for α = 2.

Next, using (29) and (36),

LV (U(t)) =
(
−P11 + 1

2
σ1

2
)
ω1U1

2 +
(
−P22 + 1

2
σ2

2
)
ω2U2

2 (40)

+ (P21ω2 − P12ω1) U1U2
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Assuming

ω1 = km2 + A∗
k2A∗

, and ω2 = km1 + (1− B∗)
k1(1− B∗) ,

(40) becomes

LV (U(t)) =
(
−P11 + 1

2
σ1

2
)
ω1U1

2 +
(
−P22 + 1

2
σ2

2
)
ω2U2

2

= −UTQU
(41)

where

Q =
⎡

⎣

(
P11 − 1

2σ1
2
)
ω1 0

0
(
P22 − 1

2σ2
2
)
ω2

⎤

⎦ .

The relations (37) and (38) imply thatQ is a real symmetric positive definite matrix
and therefore all its eigenvalues λi(Q), i = 1, 2 are positive real numbers. Let
λm = min{λi(Q), i = 1, 2}, λm > 0. From (41), we get

LV (U(t)) ≤ −λm|U(t)|2.

If the conditions in Theorem 3.2 hold true, then the zero solutions of the system (18)
are exponentially mean square stable.

Hence the proof. ��
Thus we observed analytically that under certain threshold on σi’s the determin-

istic stable system remains stable under stochastic perturbation, which also agrees
with our numerical result, see Fig. 8. But when σ becomes greater than the threshold
value given in Theorem 3.2, we observed that the bi-stable points obtained for the
system (1) with Table 1 shows scattered dots (Fig. 9). Figure 10 confirms that the
system (1) loses its bistability under stochastic perturbation for high noise intensity.

Following similar arguments, one can prove the following theorem for the
stochastic differential system (22).

Theorem 3.3 When the following inequality holds true

kBkmBB
∗

(kmB + (1− B∗))2 +
k1km1A

∗

(km1 + B∗)2 >
kB(1− B∗)

kmB + (1− B∗) (42)

then the zero solutions of the system (22) will be exponentially 2-stable if

σ1
2 < 2

[
kI kmI I

(kmI + (1− A∗))2 +
k2km2B

∗

(km2 + (1− A∗))2 +
kAA

∗(2kma + A∗)
(kmA + A∗)2

]
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Fig. 8 The figure showing stability of the system (18) under stochastic perturbation for σ1,2 = 0.1
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Fig. 9 Phase plane diagram for the system (18). Top figure shows stable nature of E∗ for low
value of σ1,2 = 0.1 and the bottom figures show the probability clouds for σ1,2 = 1.3, above the
threshold value

σ2
2 < 2

[
kBkmBB

∗

(kmB + (1− B∗))2 +
k1km1A

∗

(km1 + B∗)2 −
kB(1− B∗)

kmB + (1− B∗)
]

with positive constants ω1 and ω2 are ω1 = km2+(1−A∗)
k2(1−A∗) , ω2 = km1+B∗

k1B
∗ .
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Fig. 10 Phase plane diagram for the system (22). Top figure shows stable nature of E∗ for low
value of σ1,2 = 0.1 and the bottom figures show the probability clouds for σ1,2 = 1.2, above the
threshold value

The behaviour of the system (22) for lower and higher values of sigma than its
threshold value (given in Theorem 3.3) is presented in Fig. 10. It shows that the
bistable equilibrium points have been replaced by two clods.

4 Discussion

In the stochastic environment of diverse physical and physiological stimuli, the
biological system displays remarkable robustness. Some of the attributes that impart
robustness to both external and internal perturbations include topological features of
the signaling network [3]. The topological features can further be weighted in their
magnitude of influence depending on net concentration of the constituent nodes as
well as stochastic variations in their level owing to various intrinsic mechanisms
[11]. However the contribution of these features towards overall robustness and
sensitivity of biological networks are still to be understood.

In the present article, we studied two well-observed motif structures which show
bistability, i.e., depending upon the initial conditions the final outcome can take any
of the two steady state values. We observed that the range of output signal depends
on the structure but the sensitivity of the parameter is independent of the structure.
In both the structures, it is the downstream node which is more sensitive in the
outcome of output signal. We also observed that under random perturbation with
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high noise intensity, the systems loses its stability and the bistable points scattered
leading to undesirable output signal. This is a small study focusing on only two
specific structures, but it shows the importance of the structure and the noise in the
signalling mechanism. In future we will extend our study on other structures and on
higher dimension with three and possibly four nodes.
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Modelling the Adaptive Immune
Response in HIV Infection with Three
Saturated Rates and Therapy

Karam Allali

1 Introduction

HIV stands for the human immunodeficiency virus disease. This pathogen causes
the acquired immunodeficiency syndrome (AIDS) which is considered as the last
stage of this severe disease. After this stage is reached, the immune system fails to
play its essential role which is to protect the whole body [3, 24]. This deficiency
is due to the loss of the large majority of CD4+ T cells by the HIV free viruses,
reducing their amount to a small number does not exceed 200 cells per µl. In order
to study and to better understand this deadly disease many mathematical models
describing HIV dynamics were developed (see, for instance, [2, 5, 11, 14, 16, 20],
and the references therein). The mathematical model representing the dynamics of
HIV with CD4+ T cells and the Cytotoxic T Lymphocytes (CTL) immune response,
taking into account two saturated rates that describe viral infection and Cytotoxic T
Lymphocytes proliferation is tackled in [20]. The authors study, among others, how
the CTL immune response may reduce the HIV viral replication. In a recent work,
the role of antibodies in minimizing the load of HIV viruses is studied in [21]. More
recently, the same problem was considered by incorporating two kinds of therapies
into the model [1], the objective of the first one is to reduce the infected cells number,
however the role of the second is to obstruct the free viruses expansion. Indeed, there
are two major types of antiretroviral drugs approved for treatment of individuals
infected with HIV. These drugs are Reverse Transcriptase Inhibitors (RTIs) and
Protease Inhibitors (PIs) [15]. Reverse Transcriptase Inhibitors (RTIs) is one of the
chemotherapies which opposes the conversion of RNA of the virus to DNA (reverse
transcription), so that the viral population will be minimum and on the other hand
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the CD4+ count remains higher and the host can survive. The Protease Inhibitors
(PIs) prevents the production of viruses from the actively infected CD4+ T-cells. In
this paper, we extend the latter work [1] by incorporating an antibody proliferation
saturated rate into the model and study the dynamics and the local stability of the
new derived model. The dynamics of HIV infection with CTL, antibody responses
and three saturated rates that we consider is given by the following nonlinear system
of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= s − dT − (1− η)βV T

1+ aV + ρI,
dI

dt
= (1− η)βV T

1+ aV − (δ + ρ)I − pIZ,
dV

dt
= (1− ε)NδI − μV − qVW,

dW

dt
= gVW

1+ γV − hW,
dZ

dt
= cIZ

1+ αI − bZ.

(1)

With the initial conditions T (0) = T0, I (0) = I0, V (0) = V0, Z(0) = Z0 and
W(0) = W0.

In this model, T , I , V , Z and W denote the concentration of uninfected cells,
infected cells, free virus, CTL cells and antibodies, respectively. Susceptible host
cells CD4+ T cells are produced at a rate s, die at a rate dT and become infected by

virus at a rate
(1− η)βV T

1+ aV . Infected cells die at a rate δI and are killed by the CTL

response at a rate pIZ. Free virus is produced by infected cells at a rate (1− ε)NδI
and decays in the presence of antibodies at a rate μV + qVW . CTLs expand in

response to viral antigen derived from infected cells at a rate
cIZ

1+ αI and decay in

the absence of antigenic stimulation at a rate bZ. Antibodies develop in response

to free virus at a rate
gVW

1+ γV and decay at a rate hW . The new parameters to the

model η and ε stand for the two treatments which measure the efficacy of reverse
transcriptase inhibitor and protease inhibitor, respectively.

Note that this model (1) includes a cure rate ρ of the infected cells that reverted
to the uninfected state by loss of all cccDNA from their nucleus, these cells are
called based gene therapy [10, 12, 17, 25]. The model contains also three saturated
rates, the first is the saturated mass action [18, 19] which describe better the rate of
viral infection while the second and the third are the saturated functions describing
CTL and antibody proliferation when they are reduced by the presence of immune
impairment effects caused by HIV infection [9]. The aim of this present work is to
study the dynamics of the problem (1) and to highlight the effect of the incorporated
third saturated rate and therapy in HIV dynamics.
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The rest of the paper is organized as follows. In Sect. 2, we study the positivity
and boundedness of solutions. The analysis of the model is described in Sect. 3.
Results obtained by numerical simulations are given in Sect. 4 and we conclude in
the last section.

2 Positivity and Boundedness of Solutions

For the problems deal with cell population evolution, the cell densities should
remain non-negative and bounded. In this section, we will establish the positivity
and boundedness of solutions of the model (1). First of all, for biological reasons,
the parameters T0, I0, V0, W0 and Z0 must be larger than or equal to 0. Hence, we
have the following result:

Proposition 2.1 The solutions of the problem (1) exist. Moreover, they are bounded,
nonnegative and verify:

(i) T1(t) ≤ T1(0)+ s

δ1
,

(ii) V (t) ≤ V (0)+ (1− ε)Nδ
μ

‖I‖∞,

(iii) W(t) ≤ W(0)+ g

q

[
max

(
1; 2− μ

h

)
V (0)

+
(
(1− ε)Nδ

μ
+ (1− ε)Nδ

h

)
‖I‖∞

]
,

(iv) Z(t) ≤ Z(0)+ c

p

[
max

(
1; 2− d

b

)
T (0)+ I (0)+max

( s
b
; s
d

)

+max

(
0; 1− δ

b

)
‖I‖∞

]
,

where T1(t) = T (t)+ I (t) and δ1 = min(d; δ).
Proof Simple application of Proposition A.1 in [22] shows (T (t), I (t), V (t),W(t),
Z(t)) ∈ R

5+. By adding the first and second equation in (1), we have Ṫ1 = s−dT −
δI − pIZ, thus

T1(t) ≤ T1(0)e
−δ1t + s

δ1
(1− e−δ1t )

since 0 ≤ e−δ1t ≤ 1 and 1− e−δ1t ≤ 1, we deduce (i).
From the equation V̇ = (1− ε)NδI − μV − qVW , we have

V (t) ≤ V (0)e−μt + (1− ε)Nδ
∫ t

0
I (ξ)e(ξ−t)μdξ
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then,

V (t) ≤ V (0)+ (1− ε)Nδ
μ

‖I‖∞ (1− e−μt )

Since 1− e−μt ≤ 1, we have (ii).
The two equations V̇ = (1− ε)NδI −μV −qVW and Ẇ = gVW −hW imply

Ẇ + hW = gVW

1+ γV ≤ gVW = g

q

(
(1− ε)NδI − (V̇ + μV ))

then,

W(t) = W0 e
−ht + g

q

{∫ t

0
[(1− ε)NδI (ξ)+ (h− μ)V (s)]eh(ξ−t)dξ − V (t)

+ V (0)e−ht
}
.

If h− μ ≤ 0, then we have

W(t) ≤ W0 + g

q

{
(1− ε)Nδ

h
‖I‖∞ + V (0)

}

else, we will have

W(t) ≤ W0 + g

q

{(
(1− ε)Nδ

h
+ (1− ε)Nδ

μ

)
‖I‖∞ +

(
2− μ

h

)
V (0)

}
.

From the two last inequalities, we deduce (iii).

Finally, from the equation Ż = cIZ

1+ αI − bZ we have

Ż + bZ ≤ cIZ.

Since cIZ = c

p
[s − (Ṫ + dT )− (İ + δI )], we get

Z(t) ≤
[
c

p

(
T (0)+ I (0)− s

b

)
+ Z(0)

]
e−bt + c

p

{
s

b
+
∫ t

0
[(b − d)T (ξ)

+ (b − δ)I (ξ)]eb(ξ−t)dξ − T (t)− I (t)
}
.

Following the same reasoning as in the previous cases for each sign of the (b − d)
and (b − δ), we will deduce (iv). ��



Modelling the Adaptive Immune Response in HIV Infection with Three. . . 269

3 Analysis of the Model

In this section, we show that there exist a disease free equilibrium point and four
infection equilibrium points, we study the stability of these equilibrium points and
we will give some numerical simulations.

3.1 Stability of the Disease-Free Equilibrium

System (1) has an infection-free equilibrium Ef =
( s
d
, 0, 0, 0, 0

)
, corresponding

to the maximal level of healthy CD4+ T-cells. In this case, the disease cannot invade
the cell population. By a simple calculation, the basic reproduction number of (1) is
given by

R0 = (1− θ)βNδs
dμ(δ + ρ) . (2)

Here, we put θ = η + ε − ηε, which represents the combined efficacy of the two
drugs. Then 1−θ = (1−η)(1−ε) which implies that each drug acts independently.

At any arbitrary point, the Jacobian matrix of the system (1) is given by

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d − (1− η)βV
1+ aV ρ − (1− η)βT

(1+ aV )2 0 0

(1− η)βV
1+ aV −(δ + ρ)− pZ (1− η)βT

(1+ aV )2 0 −pI
0 (1− ε)Nδ −μ− qW −qV 0

0 0
gW

(1+ γV )2
gV

1+ γV − h 0

0
cZ

(1+ αI)2 0 0
cI

1+ αI − b

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Proposition 3.1

(1) The disease-free equilibrium, Ef , is locally asymptotically stable for R0 < 1.
(2) The disease-free equilibrium, Ef , is unstable for R0 > 1.

Proof At the disease-free equilibrium, Ef , the Jacobian matrix is given as follows:

JEf =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−d ρ − (1− η)βs
d

0 0

0 −(δ + ρ) (1− η)βs
d

0 0

0 (1− ε)Nδ −μ 0 0
0 0 0 −h 0
0 0 0 0 −b

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(4)
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The characteristic polynomial of JEf is

PEf (ξ) = (ξ + d)(ξ + b)(ξ + h)[ξ2 + (δ + ρ + μ)ξ + (δ + ρ)μ(1− R0)],

then the eigenvalues of the matrix JEf are

ξ1 = −d,
ξ2 = −b,
ξ3 = −h,

ξ4 = −(δ + ρ + μ)−√
(δ + ρ + μ)2 − 4(δ + ρ)μ(1− R0)

2
,

ξ5 = −(δ + ρ + μ)+√
(δ + ρ + μ)2 − 4(δ + ρ)μ(1− R0)

2
,

it is clear that ξ1, ξ2, ξ3 and ξ4 are negative. Moreover, ξ5 is negative when R0 < 1,
which means that Ef is locally asymptotically stable. ��

3.2 Infection Steady States

In this section, we focus on the existence and stability of the infection steady states.
All these steady states exist when the basic reproduction number exceeds the unity
and the disease invasion is always possible. In fact, it is easily verified that the
system (1) has four of them:
E1 = (T1, I1, V1, 0, 0), where

T1 = s

d

[
a(1− ε)Ns + μ
a(1− ε)Ns + μR0

]
, I1 = s

δ

[
μ(R0 − 1)

a(1− ε)Ns + μR0

]
,

V1 = (1− ε)Ns(R0 − 1)

a(1− ε)Ns + μR0
,

E2 = (T2, I2, V2,W2, 0), where

V2 = h

g − hγ ,

T2 = s(δ + ρ)(aV2 + 1)

βδ(1− η)V2 + d(δ + ρ)(aV2 + 1)
,

I2 = βs(1− η)V2

βδ(1− η)V2 + d(δ + ρ)(aV2 + 1)
,
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W2 = μ

q

[
βsNδ(1− θ)

μβδ(1− η)V2 + dμ(δ + ρ)(aV2 + 1)
− 1

]
,

E3 = (T3, I3, V3, 0, Z3), where

I3 = b

c − αb , V3 = Nδ(1− ε)
μI3

,

T3 = aμsV 2
3 + aρNδ(1− ε)V3 + μsV3 + ρNδ(1− ε)
μd(1+ aV3)V3 + μβ(1− η)V 2

3

,

Z3 = 1

p

(
s

I3
− dT3

I3
− δ

)
,

and E4 = (T4, I4, V4,W4, Z4), where

I4 = b

c − αb , V4 = −h
(−g + hγ ) ,

T4 = (s + ρI4)(1+ aV4)

d(1+ aV4)+ (1− η)βV4
,

W4 = 1

q

(
(1− ε)NδI4

V4
− 1

)
, Z4 = 1

p

(
s

I4
− dT4

I4
− δ

)
.

Here the endemic equilibrium point E1 represents the equilibrium case in the
absence of the adaptive immune response (CTLs and antibody responses). The
endemic equilibria points E2 and E3 represent the equilibrium case in the presence
of only one kind of the adaptive immune response antibody response and CTL
response, respectively. While the last endemic equilibrium point E4 represents
the equilibrium case of chronic HIV infection with the presence of both kinds of
adaptive immune response CTLs and antibody type. In order to study the local
stability of the points E1, E2, E3 and E4, we first define the following numbers:

DW0 = (1− ε)gNs
hμ

, D̃W0 = DW0
μR0

a(1− ε)Ns + μR0 + (1− ε)Nγ s(R0 − 1)
,

HW
0 = 1

1

R0
+ 1

D̃W0

,

DZ0 =
cs

bδ
, D̃Z0 = DZ0

μδR0

(a(1− ε)Ns + μR0)+ αμs(R0 − 1)
,

HZ
0 =

1
1

R0
+ 1

D̃Z0
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and

H
W,Z
0 = chβs(1− η)

βbh(1− η)(αs + δ)+ cd(δ + ρ)(ah+ g − hγ ) ,

where DZ0 represents the CTL immune response reproduction number, DW0 repre-
sents the antibody immune response reproduction number,HW

0 is the half harmonic

mean of R0 and D̃W0 and HZ
0 is the half harmonic mean of R0 and D̃Z0 .

For the first point E1, we have the following result:

Proposition 3.2

(1) If R0 < 1, then the point E1 does not exist.
(2) If R0 = 1, then E1 = Ef .
(3) If R0 > 1, then E1 is locally asymptotically stable for HW

0 < 1, and HZ
0 < 1;

however it is unstable for HW
0 > 1 or HZ

0 > 1.

Proof It easy to see that if R0 < 1, then the point E1 does not exist and if R0 = 1
the two points E1 and Ef coincide. If R0 > 1, the Jacobian matrix at E1 is given by

JE1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d − (1− η)βV1

1+ aV1
ρ − (1− η)βT1

(1+ aV1)2
0 0

(1− η)βV1

1+ aV1
−(δ + ρ) (1− η)βT1

(1+ aV1)2
0 −pI1

0 (1− ε)Nδ −μ −qV1 0

0 0 0
gV1

1+ γV1
− h 0

0 0 0 0
cI1

1+ αI1 − b

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

then, its characteristic equation is

(
ξ + h− gV1

1+ γV1

)(
ξ + b − cI1

1+ αI1
)
(ξ3 + a1ξ

2 + a2ξ + a3) = 0,

where

a1 = d + δ + μ+ ρ + (1− η)βV1

1+ aV1
,

a2 = (δ + μ+ ρ)d + (μ+ δ) (1− η)βV1

1+ aV1
+ μ(δ + ρ)− (1− θ)NδβT1

(1+ aV1)2
,

a3 = μd(δ + ρ)+ μδ(1− η)βV1

1+ aV1
− (1− θ)NδβT1d

(1+ aV1)2
,
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Simple calculation leads to
gV1

1+ γV1
− h = hD̃W0 (H

W
0 − 1)

HW
0

and
cI1

1+ αI1 − b =
bD̃Z0 (H

Z
0 − 1)

HZ
0

. They are two eigenvalues of JE1 . The sign of the eigenvalue

hD̃W0 (H
W
0 − 1)

HW
0

is negative if HW
0 < 1, zero if HW

0 = 1 and positive if HW
0 > 1.

The sign of the eigenvalue
bD̃Z0 (H

Z
0 − 1)

HZ
0

is negative if HZ
0 < 1, zero if HZ

0 = 1

and positive if HZ
0 > 1. On the other hand, we have a1 > 0 and a1a2 − a3 > 0

(as R0 > 1). From the Routh-Hurwitz Theorem [7], the other eigenvalues of the
above matrix have negative real parts. Consequently, E1 is unstable when HW

0 > 1
or HZ

0 > 1 and locally asymptotically stable when R0 > 1, HW
0 < 1 and HZ

0 < 1.
��

For the second endemic-equilibrium point E2, we have the following result:

Proposition 3.3

(1) If γ >
g

h
or HW

0 < 1, then the point E2 does not exist.

(2) If HW
0 = 1 then E2 = E1.

(3) If HW
0 > 1 and γ <

g

h
then E2 is locally asymptotically stable for HW,Z

0 < 1

and unstable for HW,Z
0 > 1.

Proof We notice that the condition HW
0 > 1 is equivalent to V2 < V1. It easy to

verify that the point E2 does not exist if HW
0 < 1; moreover, we have E2 = E1

when HW
0 = 1. Now, we assume that HW

0 > 1, the Jacobian matrix at E2 is

JE2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d − (1− η)βV2

1+ aV2
ρ − (1− η)βT2

(1+ aV2)2
0 0

(1− η)βV2

1+ aV2
−ρ − δ (1− η)βT2

(1+ aV2)2
0 −pI2

0 (1− ε)Nδ −μ− qW2 −qV2 0

0 0
gW2

(1+ γV2)2

gV2

1+ γV2
− h 0

0 0 0 0
cI2

1+ αI2 − b

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The characteristic equation associated with JE2 is given by

(
cI2

1+ αI2 − b − ξ
)
(ξ4 + b1ξ

3 + b2ξ
2 + b3ξ + b4) = 0, (5)
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where

b1 = qW2 + μ− gV2Y + d + (1− η)βV2X + δ + ρ + h,
b2 = hμ+ hδ + hρ + hd + μδ + μρ + μd + δd + ρd + gW2qV2Y

2

− gV2qW2Y + qW2(1− η)βV2X − gV2μY − gV2δY − gV2ρY − gV2dY

− gV 2
2 (1− η)βXY + hqW2 + h(1− η)βV2X − (1− ε)Nδ(1− η)βT2X

2

+ μ(1− η)βV2X + qW2δ + qW2ρ + qW2d + δ(1− η)βV2X,

b3 = hqW2(1− η)βV2X − gV2qW2δY − gV2qW2ρY − gV2qW2dY

− gV 2
2 qW2(1− η)βXY + gV2(1− ε)Nδ(1− η)βT2X

2Y

+ qW2δ(1− η)βV2X + gV2qW2δY
2 + gV2qW2ρY

2 + gV2qW2dY
2

+ gV 2
2 qW2(1− η)βXY 2 − h(1− ε)Nδ(1− η)βT2X

2

+ hXμ(1− η)βV2X
2 + hqW2δ + hqW2ρ + hqW2d + hδ(1− η)βV2X

− gV2μδY − gV2μρY − gV2μdY − gV 2
2 μ(1− η)βXY − gV2δdY

− gV 2
2 δ(1− η)βXY − gV2ρdY + μδ(1− η)βV2X + qW2δd + qW2ρd

− (1−ε)Nδ(1−η)βT2dX
2+hμδ+hμρ+hμd+hδd+hρd+μδd+μρd,

b4 = −gW2qV2ρdY + hμρd − gV2μδdY + hqW2δ(1− η)βV2X − gV2μρdY

+ gW2qV2δdY
2 + gW2qV

2
2 δ(1− η)βXY 2 − h(1− ε)Nδ(1− η)βT2dX

2

+ hμδ(1− η)βV2X + hμδd + hqW2δd + gW2qV2ρdY
2 + hqW2ρd

− gW2qV2δdY − gV 2
2 μδ(1− η)βXY + gV2(1− ε)Nδ(1− η)βT2dX

2Y

− gW2qV
2
2 Xδ(1− η)βX2Y,

here X = 1/(1+ aV2) and Y = 1/(1+ γV2). Since
cI2

1+ αI2 − b is an eigenvalue

of JE2 , by assuming
cI2

1+ αI2 − b = b(H
W,Z
0 − 1), we deduce that the sign of

this eigenvalue is negative when HW,Z
0 < 1, zero when HW,Z

0 = 1 and positive

for HW,Z
0 > 1. On the other hand, from the Routh-Hurwitz Theorem applied to

the fourth order polynomial in the characteristic equation, the other eigenvalues of
the above matrix have negative real parts when HW,Z

0 < 1 (since b1b2 > b3 and

b1b2b3 > b
4
3 + b2

1b4). Consequently, E2 is unstable when HW
0 > 1 and HW,Z

0 > 1

and locally asymptotically stable when HW
0 > 1 and HW,Z

0 < 1. ��
For the third endemic-equilibrium point E3, we have the following result:
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Proposition 3.4

(1) If α >
c

b
or HZ

0 < 1, then the point E3 does not exist and E3 = E2 when

HZ
0 = 1.

(2) If α <
c

b
, HZ

0 > 1 and gc2
(

1− αb

c

)
DW0 < b2gDZ0 + c2

(
1− αb

c

)
hγ ,

then E3 is locally asymptotically stable.

(3) If α <
c

b
,HZ

0 > 1 and gc2
(

1− αb

c

)
DW0 > b2gDZ0 +c2

(
1− αb

c

)
hγ , then

E3 is unstable.

Proof We notice that the condition α <
c

b
and HZ

0 > 1 is equivalent to I3 < I1. It

easy to verify that the point E3 does not exist if HZ
0 < 1 or α >

c

b
. Moreover, we

have E3 = E1 for HZ
0 = 1. We assume now that α <

c

b
and HZ

0 > 1; the Jacobian

matrix at E3 is

JE3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d − (1− η)βV3

C
ρ − (1− η)βT3

(1+ aV3)
2

0 0

(1− η)βV3

1+ aV3
−ρ − δ − pZ3

(1− η)βT3

(1+ aV3)
2

0 −pI3
0 (1− ε)Nδ −μ −qV3 0

0 0 0
gV3

1+ γV3
− h 0

0
cZ3

(1+ αI3)2
0 0

cI3

1+ αI3 − b

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The characteristic equation associated with JE3 is given by
(
ξ − gV3

1+ γV3
+ h

)
(ξ4 + c1ξ

3 + c2ξ
2 + c3ξ + c4) = 0 (6)

where

c1 =− cI3B3 + ρ + d + B1 + δ + pZ3 + μ+ b,
c2 =− I3cB3d + I3cZ3B

2
3p − I3cB3B1 − I3cB3ρ + δd +NδB2ε − I3cB3δ

+ μB1 − I3cB3μ− I3cB3pZ3+δB1 + ρd+μρ + μpZ3 + pZ3d + pZ3B1

+ μδ + μd −NδB2

c3 =− I3cB3pZ3d + μδB1 − I3cB3pZ3B1 +NδB2εd + μpZ3B1 − I3cB3ρd

+ I3cB3NδB2 − I3cB3δB1 + I3cZ3B
2
3pμ− I3cB3δd − I3cB3μδ

+ I3cZ3B
2
3pd + I3cZ3B

2
3pB1 − I3cB3NδB2ε − I3cB3μB1 − I3cB3μd

+ μpZ3d + μρd − I3cB3μpZ3 + μδd − I3cB3μρ −NδB2d
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c4 =I3cZ3B
2
3pμB1 − I3cB3NδB2εd − I3cB3μδB1 + I3cZ3B

2
3pμd

− I3cB3μpZ3B1 − I3cB3μδd + I3cB3NδB2d − I3cB3μpZ3d − I3cB3μρd,

here B1 = (1− η)βV3

1+ aV3
, B2 = (1− η)βT3

(1+ aV3)2
and B3 = (1+ αI3)−1.

It is clear that gV3−h = h

⎛

⎜⎜⎝

gc2
(

1− αb

c

)
DW0

b2gDZ0 + c2

(
1− αb

c

)
hγ

− 1

⎞

⎟⎟⎠ is an eigenvalue

of JE3 . The sign of this eigenvalue is negative if gc2
(

1− αb

c

)
DW0 < b2gDZ0 +

c2
(

1− αb

c

)
hγ .

Again by Routh-Hurwitz stability criterion, the other eigenvalues of the above
matrix have negative real parts when HZ

0 > 1. We conclude that E3 is unstable

when HZ
0 > 1 and DW0 >

(
1− αb

c

)
DZ0 and locally asymptotically stable when

DW0 <

(
1− αb

c

)
DZ0 and HZ

0 > 1. ��

Using the same reasoning as for the previous theorems, we finally have the
following result concerning the last endemic-equilibrium point E4:

Proposition 3.5

(1) If α >
c

b
or gc2

(
1− αb

c

)
DW0 < b2gDZ0 + c2

(
1− αb

c

)
hγ or HW,Z

0 < 1,

then the point E4 does not exist. Moreover E4 = E2 when HW,Z
0 = 1 and

E4 = E3 when DW0 = DZ0
(2) If α <

c

b
, gc2

(
1− αb

c

)
DW0 > b2gDZ0 + c2

(
1− αb

c

)
hγ and HW,Z

0 > 1,

then E4 is locally asymptotically stable.

4 Numerical Simulations

For our numerical simulations, we have used the Euler finite-difference scheme
method in order to discretize the five equations. The parameters of the simulations
are inspired from [4, 6, 20, 21], while the other new three parameters to the prob-
lem (1); q, g and h are chosen adequately since they may vary with various types of
antibodies [23]. Also, we will take into account the initial conditions approaching
the clinical data values for HIV infected individuals during symptomatic phase [8].
Here, the chosen initial conditions are:

T0 = 200, I0 = 80, V0 = 12,000, W0 = 50, Z0 = 100.
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The chosen interval time of our simulation will vary between 100 days to 200
days. This choice is in good agreement with some biological studies since it was
observed that some patients became negative for infectious HIV after 3–6 months
of therapy [13]. Our numerical simulations are oriented towards the study of the
effect of the antibody proliferation saturated rate and the role of therapy in HIV viral
dynamics. We remark that this saturated rate has no effect on the dynamics when
the numerical simulations are concerned with the stability of the steady states Ef ,
E1 or E3 since all the curves representing with and without the added saturated rate
coincide (not shown). We explain this result by the fact that the fourth component
of these steady states, which corresponds to antibodies, is zero. Figure 1 shows
the evolution of the infection during the first 200 days for s = 10, β = 0.000024,
d = 0.02, δ = 0.5, p = 0.001,N = 1200, μ = 3, ρ = 0.01, a = 0.001, α = 0.001,
c = 0.03, b = 0.2, q = 0.001, g = 10−4, h = 0.01, η = 0.55 and ε = 0.45. This
case corresponds to the case of the endemic-equilibrium E2. It is interesting to point
out that with the antibody proliferation saturated rate a significant reduction of the
antibodies amount is observed. However, no effect is observed on the other problem
variables. Figure 2 depicts the evolution of HIV dynamics during the first days of
observation. In this figure, we observe clearly that the antibody proliferation rate
has a significant effect on the dynamics of HIV. Indeed, with this saturated rate,
an increase of viral load is observed. This leads to a decrease of the healthy cells
amount and an increase of the infected cells. Finally, Fig. 3 shows the behavior of
the disease for the last endemic points E4. The plots show that with therapy we may
control better the infection than without treatments.

5 Conclusion

A mathematical model describing Human Immunodeficiency Virus (HIV) dynamics
in the presence of the adaptive immune response, therapy and three saturated rate
is studied in this work. The adaptive immunity is represented by the cytotoxic T
lymphocytes (CTL) and the antibody immune responses. The three saturated are
considered in order to better describe the viral infection, the CTL and the antibodies
proliferations. In this work, attention is focused on the role of added proliferation
saturated rate and therapy in HIV dynamics and in controlling viral replication. To
this end, two types of treatments were incorporated to the model; the aim of the first
one is to reduce the number of infected cells, while the objective of the second one is
to block the free viruses. The positivity and the boundedness of solutions are proved;
which is consistent with biological studies. Moreover, we have studied the stability
of the disease-free equilibrium and endemic equilibria. It was established that the
disease free steady state is locally asymptotically stable when the basic reproduction
number is less than unity (R0 < 1). When this basic reproduction number exceeds
unity (R0 > 1), four infection steady states were observed. Their local stability
depends, beyond the basic reproduction number R0, on the CTL immune response
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Fig. 1 Behavior of the
infection during the time for
s = 10, β = 0.000024,
d = 0.02, δ = 0.5,
p = 0.001, N = 1200,
μ = 3, ρ = 0.01, a = 0.001,
α = 0.001, c = 0.03,
b = 0.2, q = 0.001,
g = 10−4, h = 0.01,
η = 0.55 and ε = 0.45 which
correspond to the stability of
the endemic-equilibrium E2
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Fig. 2 Behavior of the
infection during the time for
s = 10, β = 0.000024,
d = 0.02, δ = 0.5,
p = 0.001, N = 1200,
μ = 3, ρ = 0.01, a = 0.001,
α = 0.001, c = 0.03,
b = 0.2, q = 0.5, g = 10−4,
h = 0.1, η = 0.05 and
ε = 0.2, which correspond to
the stability of the
endemic-equilibrium E4
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Fig. 3 Behavior of the
infection during the time for
s = 10, β = 0.000024,
d = 0.02, δ = 0.5,
p = 0.001, N = 1200,
μ = 3, ρ = 0.01, a = 0.001,
α = 0.001, c = 0.03,
b = 0.2, q = 0.5, g = 10−4,
h = 0.1 and γ = 0.001,
which correspond to the
stability of the
endemic-equilibrium E4
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reproduction number DZ0 and the antibody immune response reproduction number
DW0 . In addition, numerical simulations are performed in order to show the behavior
of infection during the first days of therapy. In the presence of therapy, an increase of
the uninfected cells and a decrease of the infected cells are observed. Therefore, the
therapy plays an essential role in reducing the HIV viral load. Also, in the presence
of the antibody proliferation saturated rate a change of HIV dynamics is observed.
Hence, this saturated rate must be taken into consideration in HIV viral dynamics.
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Numerical Study on Biological Tissue
Freezing Using Dual Phase Lag Bio-Heat
Equation

Sushil Kumar and Sonalika Singh

1 Introduction

The heat transfer problems involving melting and freezing process are known as
phase change problems and the phase change interface boundary movement depends
on the absorption or liberation of latent heat. Phase change heat transfer is a wide
area that finds applications in almost all engineering disciplines. Freezing and
melting processes are related with high heat transfer rate. The heat transfer involved
in phase change is necessary in biomedical applications such as cryopreservation
and cryosurgery. Cryosurgery is a technique to treat tumour and can be used inside
the body and on the skin. The extreme cold is used for freezing and destroying
abnormal cells by introducing liquid nitrogen through cryoprobe into the targeted
region. The aim of cryosurgery is to maximize the damage to undesired tissues
within the define domain and minimizing the injury to the surrounding healthy
tissues [1, 2].

Various models have been proposed to model the heat transport phenomena in
blood perfuse tissues, e.g. Pennes Model [3], The Chen and Holmes (CH) Model
[4], The Weinbaum, Jiji and Lemons (WJL) Model [5, 6], The Wainbaum and Jiji
(WJ) Model [7]. Pennes bio-heat equation is the most widely applied model for
temperature distribution in the living biological tissues. This is the earliest model
for energy transport in tissues and is represented as

ρc
∂T

∂t
= −∇.q+ (ρc)bwb(Tb − T )+Qm, (1)
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where ρ is the density of tissue; k, thermal conductivity; cb , specific heat of blood;
wb, blood perfusion rate; T , temperature; t , time; Tb, arterial blood temperature and
Qm is the metabolic heat generation in the tissue. In Pennes bioheat equation, the
heat conduction in biological tissue is modeled by using Fourier’s law

q(t, X) = −k∇T (t,X) (2)

where q and T (t,X) represent heat flux and temperature at position X = (x, y, z)
and time t , respectively. It assumes that q and ∇T appear at the same time instant.
This implies that thermal signals propagate with an infinite speed [8]. In fact, heat is
always found to propagate at finite speed. On the other hand, biological systems are
non-homogeneous where heat flux responds to temperature gradient via relaxation
behaviour. To solve the paradox occurred in Pennes model, different other models
were developed. Cattaneo [9] and Vernotte [10] independently proposed a modified
heat flux model as

q(t + τq,X) = −k∇T (t,X), (3)

where τq is the delay between the heat flux vector and the temperature gradient. In
Eq. (3), the temperature gradient is established at time t , but the heat flux vector will
be established at a later time t + τq , at the same point X. The first order Taylor’s
expansion of Eq. (3) is called as Cattaneo and Vernotte (CV) constitutive relation.
Using first order Taylor expansion of Eq. (3) and combining with Eq. (1) one can get
the following hyperbolic bioheat equation

τqρc
∂2T

∂t2
+ (ρc+ τqρbcbwb)∂T

∂t
= k∇2T (t,X)+Qm+ ρbcbwb(Tb − T ) (4)

This equation is called thermal wave model of bioheat equation, as it predicts
a wave like behaviour of heat transport. Many researchers have studied the heat
transfer in tissue using thermal wave bioheat model. Singh and Kumar [11, 12]
studied heat transfer during cryosurgery using hyperbolic model. Although a lot
of experiments confirmed that CV constitutive relation produces a more accurate
prediction than the classical Fourier’s law, it still establishes an instantaneous
response between the temperature gradient and the energy transport [13–15]. It also
establishes that the temperature gradient is always the cause for heat flux while heat
flux is always effect in the process of energy transport [13, 14]. Further thermal wave
model does not consider the micro-scale response in space, although it considers the
micro scale response in time [14, 16, 17].
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In-depth study presents that the CV constitutive relation describes only the fast
transient effects and not the micro-structural interactions. In order to solve the
paradox in Fourier model and to consider the effect of micro structural effect in
the fast transient process of heat transport, Tzou [14] proposed a dual phase lag
(DPL) model that allows either the temperature gradient to precede heat flux vector
or the heat flux vector to precede the temperature gradient, i.e.

q(t + τq,X) = −k∇T (t + τT ,X). (5)

Equation (5) represents that the temperature gradient at a point X of the material
at time t + τT corresponds to the heat flux density vector at time t + τq at the same
point X. The delay time τT is interpreted as being caused by the micro structural
interactions and is called the phase-lag of the temperature gradient [13, 14]. The
other delay time τq is interpreted as the relaxation time due to the fast-transient
effects of thermal inertia and is called the phase-lag of the heat flux. Both of the
phase-lags are treated as intrinsic thermal or structural properties of the material.
The first order Taylor’s expansion of Eq. (5) gives the dual phase lag constitutive
relation.

q+ τq ∂q
∂t
= −k∇

{
T (t,X)+ τT ∂T

∂t

}
. (6)

Elimination of q from energy balance equation (Eq. (1)) and the dual phase lag
constitutive relation (Eq. (6)) lead to the following equation

τqρc
∂2T

∂t2
+ (ρc + τqρbcbwb)∂T

∂t
= k∇2

{
T (t,X)+ τT ∂T

∂t

}

+Qm + ρbcbwb(Tb − T ) (7)

Equation (7) is the modification of the Pennes bio-heat equation by considering
non-Fourier effect and is called as dual-phase lag bio-heat equation. It converts
into hyperbolic bio-heat equation if τT = 0, and into parabolic bio heat equation
for τT = 0 and τq = 0. Many researchers [18–23] have studied the dual-
phase lag bio-heat model without phase change. Liu et al. [18, 19] explain the
dual-phase lag bio-heat model during hyperthermia treatment. Majchrzak [20] has
described the solution of the dual-phase lag bio-heat model by using the boundary
element method. Zhang et al. [23] have studied the dual-phase lag model with
non-equilibrium heat transfer in arterial blood, venous blood and biological tissue
and also calculated the phase lag of temperature gradient and heat flux in different
condition. Zhou et al. [24, 25] have considered the dual-phase lag bio-heat model
during the laser heating of living tissues. Singh and Kumar [26] have also studied
dual phase change heat transfer model in three layer skin tissue.

In biological tissues, phase change occurs over a wide range and there exist
moving boundaries between the two phases thus resulting mathematical models
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are non-linear. Analytical solution is only possible for one-dimensional, steady
state cases [27]. Numerical methods appear to offer a more practical approach for
solving these problems. Existing numerical approaches can be divided into two
categories: front tracking and non-front tracking [27]. Enthalpy method, a non-front
tracking method is easy to implement as fixed grids can be used for computation
purpose and the non-linearity at the moving boundary can also be avoided. Finite
difference methods are the most popular choice for numerical solution of phase
change problems [11, 12, 28–35] though finite element method [36–38], boundary
element methods [29] have also been introduced for the phase change problem in
biological tissue.

In the present study, the dual-phase lag model is obtained by modifying the
classical Pennes bio-heat equation. Pennes bio-heat equation is based on classical
Fourier’s law of heat conduction while the dual-phase lag bio-heat model is based
on dual-phase lag constitutive relation. The dual-phase lag model with nonideal
property, blood perfusion and metabolic heat generation has been considered for
studying the effect of parameters in the freezing of biological tissue during phase
change. The finite difference method is used to solve the enthalpy formulation of the
dual-phase lag bio-heat equation during freezing. The effects of both phase lags and
blood perfusion on temperature profile and interface positions have been studied.
Comparative study of three heat transfer models, i.e. parabolic, hyperbolic and DPL
has also been presented here.

2 Mathematical Model

2.1 Governing Equation

One-dimensional dual-phase lag bio-heat equation in frozen region and unfrozen
region is given below.

(a) In frozen region: for 0 ≤ x ≤ s(t)

τqρf cf
∂2Tf

∂t2
+ ρf cf ∂Tf

∂t
= kf ∂

2Tf

∂x2
+ τT kf ∂

3Tf

∂t∂x2
. (8)

(b) In unfrozen region: for s(t) ≤ x ≤ l

τqρucu
∂2Tu

∂t2
+ (
ρucu + τqρbcbwb

) ∂Tu
∂t

= ku
(
∂2Tu

∂x2
+ τT ∂

3Tu

∂t∂x2

)

+Qm + ρbcbwb(Tb − Tu). (9)

(c) Conditions at phase change interface x = s(t) are

ρf L
∂s
∂t
+ τqρf L∂2s

∂t2
= kf

(
∂Tf
∂x
+ τT ∂

2Tf
∂t∂x

)
− ku

(
∂Tu
∂x
+ τT ∂2Tu

∂t∂x

)
, (10)
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and

Tu(t, s(t)) = Tf (t, s(t)) = Tph, (11)

where subscripts f, u and ph denote frozen, unfrozen and phase change, respec-
tively and l denotes the length of tissue.

Major difficulties, those arise in phase change heat transfer of biological tissue
is its non-linearity due to variable disconnection between different phase region
and unknown position of phase change interfaces. Thus, for the solution purpose
we consider the enthalpy formulation of dual-phase lag bio-heat equation for phase
change problem associated with freezing.

Using enthalpyH(T ) =
T∫

T0

cdT , where T0 is the reference temperature, Eqs. (8)–

(11) reduce in single equation as follows:

τqρ
∂2H

∂t2
+
(
ρ + τqρbcbwb

c

) ∂H
∂t

= k
(
∂2T

∂x2
+ τT ∂3T

∂t∂x2

)

+Qm + ρbcbwb(Tb − T ), (12)

enthalpy and tissue temperature are related as [39, 40]

H =

⎧
⎪⎪⎨

⎪⎪⎩

cf (T − Tms), T < Tms

ca(T − Tms)+ L

�T
(T − Tms), Tms ≤ T ≤ Tml

L+ ca�T + cu(T − Tml), T > Tml,

(13)

where L is the latent heat of freezing, ca = cf+cu
2 and �T = Tml − Tms .

2.2 Assumptions

The following assumptions have been made to solve the dual phase lag bio-heat
transfer model

(i) Heat conduction follows non-Fourier law of heat conduction.
(ii) Latent heat is constant.

(iii) Heat source due to metabolism and blood perfusion is present when tissue is
not frozen [28, 29].

(iv) Non-ideal property of tissue is used with liquidus and solidus temperature as
−1 and −8 ◦C, respectively [41, 42].

(v) Thermo-physical properties are different in frozen and unfrozen region.
(vi) One-dimensional model has been considered.
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2.3 Initial Condition and Boundary Conditions

The following initial and boundary conditions are used for the mathematical
model

(a) at t = 0

Ti(x, t) = T0 = 37 ◦C and
∂Ti

∂t
= 0, i = u, f (14)

(b) at x = 0

Ti(x, t) = Tc, i = u, f (15)

(c) at x = l
∂Ti(x, t)

∂x
= 0, i = u, f, (16)

where T0 is the body core temperature, 37 ◦C and Tc is the cryoprobe temperature,
−196 ◦C.

3 Numerical Solution

Finite difference approximation has been used to solve the mathematical model.

The space length l is divided into N equal parts where N = l

�x
; xi = i/x and

tn = n/t , where i and n are space and time indexes, respectively; �x and �t
are the increment in space and time, respectively. Introducing forward difference
approximation for first order time derivative and central difference approximation
for space derivative and second order time derivative into Eq. (12), we get

Hn+1
i = Hn

i +
{

Ani

Ani + Bni

}(
Hn
i −Hn−1

i

)
−
{

2Eni + 2Dni + Fni
Ani + Bni

}
T ni

+
{
Eni +Dni
Ani + Bni

} (
T ni+1 + T ni−1

)−
{

Dni

Ani + Bni

}(
T n−1
i+1 + T n−1

i−1

−2T n−1
i

)
+
{

Fni

Ani + Bni

}
Tb + Qm

Ani + Bni
(17)
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where

Ani =
τqρ

n
i

(�t)2
, Bni =

[
ρni

(�t)
+ τqρbcbwb

cni (�t)

]
,

Dni =
kni τT

(�t)(�x)2
, Eni =

kni

(�x)2
, F ni = ρbcbwb.

The above Eq. (17) can be written as

Hn+1
i = (

1+ Uni
)
Hn
i − Uni Hn−1

i − (
2Wn

i + 2V ni + Yni
)
T ni +

(
Wn
i + V ni

)

(T ni+1 + T ni−1)− V ni
(
T n−1
i+1 − 2T n−1

i + T n−1
i−1

)
+ Yni Tb + Zni (18)

where

Unn =
Ani

Ani + Bni
, V nn =

Dni

Ani + Bni
, Wn

n =
Eni

Ani + Bni
,

Y nn =
Fni

Ani + Bni
, Znn =

Qm

Ani + Bni
.

Equation (18) gives the enthalpy at (n + 1)th time step in terms of enthalpy and
temperature at nth time level. The time and space increments are adjusted in such a
way that they should satisfy the stability criteria,

max
(/t) {2k(/t)+ 2kτT + ρbcbwb(/t)(/x)2

}

(/x)2 {2cτqρ + cρ(/t)+ τqρbcbwb(/t)
} ≤ 1. (19)

After getting the enthalpy at (n+1)th time level, temperature at (n+1)th time level
can be obtained by reverting Eq. (13) as follows:

T =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H

cf
+ Tms, H < 0,

H�T

ca�T + L + Tms, 0 ≤ H ≤ L+ ca�T,
H − L− ca�T

cu
+ Tml, H > L+ ca�T .

(20)

Once the new temperature field is obtained from enthalpies the process is repeated.
Isotherms at −1 and −8 ◦C give the position of upper and lower phase change
interfaces, respectively.
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4 Results and Discussion

The computer code accuracy has already been validated in our previous study [26].
In the present study, the numerical results are shown for dual phase lag, hyperbolic
(τT = 0) and parabolic (τT = 0, τq = 0) bio-heat transfer with phase change
during freezing of biological process. The thermal properties of the biological tissue
used are given in Table 1 [30, 35, 41–44]. The initial temperature of the tissue is
T = 37 ◦C. For the numerical solution, the value of the phase-lag of the heat flux
are τq = 0 s, τq = 5 s, τq = 10 s, τq = 15 s and the value of the phase-lag of the
temperature gradient are τT = 0 s, τT = 5 s, τT = 10 s [20, 44–46]. During the
freezing process of the biological tissue, the temperature distribution and interface
position are important for the prediction of the damage of the infected tissues and
minimum damage of the healthy tissues.

The temperature distributions in the tissue at time t = 600 s with respect to
distance x for the DPL, hyperbolic and parabolic models are shown in Fig. 1.
It is observed that parabolic model gives lowest temperature in the tissue with
comparison to DPL and hyperbolic model, while the highest temperature is obtained
for hyperbolic model. This shows that parabolic model gives the fastest heat flow in
the media while slowest is for hyperbolic model.

To study the effect of these three models on temperature distribution with respect
to time in tissue, the variation of temperature versus time for parabolic, hyperbolic
and DPL model at the point x = 0.01 m is plotted in Fig. 2. Again from Fig. 2, it is
clear that decline in temperature is highest for parabolic and lowest for hyperbolic
with comparison to DPL model.

The liquidus and solidus interfaces position of the phase change interface during
the freezing process for DPL, parabolic and hyperbolic models are shown in

Table 1 Thermal properties of tissue

Parameter Value

Density of unfrozen tissue (kg/m3) 1000

Specific heat of unfrozen tissue (J/kg ◦C) 3600

Thermal conductivity of unfrozen tissue (W/m ◦C) 0.5

Density of frozen tissue (kg/m3) 1000

Specific heat of frozen tissue (J/kg ◦C) 1800

Thermal conductivity of frozen tissue (W/m ◦C) 2

Density of blood (kg/m3) 1050

Specific heat of blood (J/kg ◦C) 3770

Blood perfusion in tissue (ml/s/ml) 0.005

Metabolic heat generation (W/m3) 4200

Latent heat (J/m3) 250,000

The upper limit of phase change temperature (◦C) −1

The lower limit of phase change temperature (◦C) −8

Arterial blood temperature (◦C) 37
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Fig. 1 The temperature profile along the target tissue for parabolic, hyperbolic and DPL model at
the time t = 600 s
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Fig. 2 The variation of temperature versus time for parabolic, hyperbolic and DPL model at the
point x = 0.01 m
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Fig. 3 Liquidus interface position for parabolic, hyperbolic and DPL model

Figs. 3 and 4, respectively. It is clear that the phase change interfaces movement
is slowest for the hyperbolic model while fastest is for parabolic model, i.e., the
time required for complete tissue freezing is minimum for parabolic model while it
is maximum for hyperbolic model.

To study the effect of phase lag on freezing process, temperature profiles in tissue
at time t = 800 s are plotted in Fig. 5 for different value of τq , i.e. 5, 10, 15 s keeping
fixed value of τT = 5 s. In this case, lowest temperature is observed for minimum
value of τq .

The liquidus and solidus interface position for τq = 15 s; τq = 10 s and τq = 5 s
and τT = 5 s are plotted in Figs. 6 and 7, respectively. Time taken to reach the
liquidus interface at x = 0.02 m is 742, 703 and 661 s for τq = 15 s, τq = 10 s
and τq = 5 s, respectively, while solidus interface reaches at x = 0.02 m in time is
781.32 s, 741.63 s and 699.33 ms for τq = 15 s, τq = 10 s and τq = 5 s, respectively.
It shows that the phase change interfaces for the DPL model move slower with
increasing value of τq . That is the time required for complete tissue solidification in
the DPL model for fixed value of the phase-lag of the temperature gradient τT = 5 s
increases with increased value of τq . τq denote the delay time due to the fast transient
effect of thermal inertias, thus a larger value of τq will result in delay of tissue
freezing.

In the freezing process, energy transfer in the biological tissue is due to thermal
conduction, blood tissue convection, blood perfusion and metabolic heat generation.
These parameters have significant effect of transient temperature profile and position
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Fig. 4 Solidus interface position for parabolic, hyperbolic and DPL model
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Fig. 8 Liquidus interface position for DPL model at τq = 10 s and τT = 10 s for different value
of blood perfusion

of solidus and liquidus interfaces. The effect of blood perfusion on freezing process
using DPL, hyperbolic and parabolic model has been studied in the present study.
For DPL model position of liquidus and solidus interfaces for wb = 0.05 ml/s/ml ,
wb = 0.01 ml/s/ml andwb = 0.005 ml/s/ml are plotted in Figs. 8 and 9, respectively.
The liquidus interface reaches at distance x = 0.02 m in time t = 1095 s and
t = 705 s for wb = 0.01 ml/s/ml and wb = 0.005 ml/s/ml, respectively. Similarly
solidus interface reaches at distance x = 0.02 m in time t = 1122.4 s and t = 742 s
for wb = 0.01 ml/s/ml and wb = 0.005 ml/s/ml, respectively.

For hyperbolic model position of liquidus and solidus interfaces for wb =
0.05 ml/s/ml, wb = 0.01 ml/s/ml and wb = 0.005 ml/s/ml are plotted in Figs. 10
and 11, respectively. The liquidus interface reaches at distance x = 0.02 m in time
t = 1132 s and t = 773.15 s for wb = 0.01 ml/s/ml and wb = 0.005 ml/s/ml,
respectively. Similarly solidus interface reaches at distance x = 0.02 m in time
t = 1163.2 s and t = 807.67 s for wb = 0.01 ml/s/ml and wb = 0.005 ml/s/ml,
respectively.

For parabolic model position of liquidus and solidus interfaces for wb =
0.05 ml/s/ml , wb = 0.01 ml/s/ml and wb = 0.005 ml/s/ml are plotted in Figs. 12
and 13 respectively. The liquidus interface reaches at distance x = 0.02 m in time
t = 942.30 s and t = 609.15 s for wb = 0.01 ml/s/ml and wb = 0.005 ml/s/ml
respectively. Similarly solidus interface reaches at distance x = 0.02 m in time
t = 973 s and t = 645.94 s for wb = 0.01 ml/s/ml and wb = 0.005 ml/s/ml
respectively.
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Fig. 9 Solidus interface position for DPL model at τq = 10 s and τT = 10 s for different value of
blood perfusion
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Fig. 10 Liquidus interface position for hyperbolic model at τq = 10 s and τT = 0 s for different
value of blood perfusion
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Fig. 11 Solidus interface position for hyperbolic model at τq = 10 s and τT = 0 s for different
value of blood perfusion
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value of blood perfusion
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Fig. 13 Solidus interface position for parabolic model at τq = 0 s and τT = 0 s for different value
of blood perfusion

It is observed that for increased value of blood perfusion freezing process slows
down. Due to blood perfusion, heat is added to the tissue which opposes the freezing
process and hence slows it down.

5 Conclusions

In the present study, the temperature dependent enthalpy formulation and finite
difference method is used to obtain the temperature profile and interface position
based on DPL model. Comparison of DPL model with parabolic and hyperbolic
model of heat transport is also made in the study. It is observed that among the DPL,
hyperbolic and parabolic model total time required for complete tissue freezing is
least for parabolic model and largest for hyperbolic model while for DPL model it is
moderate. The phase lag of heat flux and the phase lag of temperature gradient have
a significant effect on the temperature profile and interface position of phase change
interfaces. In DPL model, the phase change interface accelerates with decreasing
value of phase lag of heat flux. It is also observed that freezing process slows down
with increased value of the blood perfusion in all the three models of heat transfer.



Numerical Study on Biological Tissue Freezing Using Dual Phase Lag. . . 299

Acknowledgements The authors Sushil Kumar and Sonalika Singh are thankful to S. V. National
Institute of Technology, Surat, India for providing CPDA grant and Senior Research Fellowship,
(SRF) respectively, for the research work presented in this manuscript. Sushil Kumar thanks to
the International Union of Biological Sciences (IUBS) for partial support of living expenses in
Moscow, during the 17th BIOMAT International Symposium, October 29-November 04, 2017.

List of Abbreviations

T Temperature (◦C)
t Time (s)
x Distance (0 ≤ x ≤ l) (m)
l Length of tissue (0 ≤ x ≤ l) (m)
s(t) Position of phase change interface (m)
ρ Density (kg/m3)
c Specific heat (J/kg◦C)
k Thermal conductivity (W/m◦C)
wb Blood perfusion in tissue (ml/s/ml)
Qm Metabolic heat generation (W/m3)
L Latent heat (J/m3)
Tb Arterial blood temperature (◦C)
q Heat flux
H Enthalpy (J/kg◦C)
/t Time step (s)
/x Space step (m)
τq Heat flux relaxation time (s)
τT Temperature gradient relaxation time (s)

Subscripts

ph Phase change
f Frozen
u Unfrozen
i Space step
b Blood
ml The upper limit of phase change (liquidus)
ms The lower limit of phase change (solidus)

Superscript

n Time step
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Computational Modeling of Multiple
Stenoses in Carotid and Vertebral
Arteries

T. Gamilov, S. Simakov, and P. Kopylov

1 Introduction

Cerebrovascular accidents are among the leading reasons for the mortality and
disability in the world. Ischemic strokes can be caused by various factors. The most
important ones are atherosclerosis of brachiocephalic arteries (BCA), pathological
tortuosity of BCA, and occlusions of vertebral arteries. Medical treatment involves
drug administration, diet, and/or surgical endovascular interventions (e.g., carotid
endarterectomy [1], carotid stenting).

The type of the treatment is selected after the assessment of the stenoses sever-
ity (hemodynamic significance/importance). The assessment of the hemodynamic
importance is regularly based on the noninvasive Doppler velocity measurements
in carotid, vertebral, and cerebral arteries, which are accessible for ultrasound
measurements [2]. The final decision is usually made by a surgeon. It is based
on the interpretation of the well-known reference values from the literature. This
interpretation may be inappropriate for the individual case.

Surgical interventions may be the reason of various postsurgical and periopera-
tive complications, e.g., strokes [3]. Thus, it is important to know the blood flow
variations during and after endovascular surgery for the specific patient. Normally,
these variations are monitored at several selected points before and after the surgery.
Comprehensive analysis of the whole brain circulation is out of current regular
practice. It should be mentioned that anatomical features of the circle of Willis may
substantially affect the blood flow redistribution after the intervention [4, 5].
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In the cases of the multivessel stenotic diseases of the BCA and vertebral arteries,
the evaluation of the hemodynamic significance is less obvious due to the complex
contribution of each stenosis to the whole hemodynamics and due to the ambiguity
of collateral circulation.

Summarizing the above, we conclude that assessment of the stenoses severity
in the cases of single and multivessel diseases of the BCA and vertebral arteries
and comprehensive analysis of the cerebral circulation during and after the surgical
intervention for the specific patient are still not well studied.

The possible solution that may be helpful to surgeons is mathematical modeling
of patient-specific cerebral circulation before, during, and after the surgical inter-
vention. It allows to carry out preoperative analysis of possible scenarios, risks,
postoperative effect, and negative consequences. The structure of the cerebrovas-
cular network is complex. The simulations based on the straight solution of the
Navier–Stokes equations in the network of flexible tubes require substantial compu-
tational resources [6]. The 1D models established by cross-sectional averaging are
more effective. The 1D modeling of pulsatile blood flow in the brain circulation is
a well-developed area [7–13]. It allows simulating a large number of arteries and
veins. Some models take into account cerebral autoregulation [10] and baroreflex
regulation [8, 9]. Some works make an emphasis on the structure of cerebral veins
and investigate associated diseases [7]. In other works, the vein drainage is modeled
by 0D compartments or by boundary conditions [10]. Carotid artery stenosis and the
impact of surgical interventions were numerically evaluated in the works [12, 13].
The complex shape of the stenosis and pathological tortuosity of BCA can be
considered by the multidimensional 1D–3D approach [11].

In this work, the emphasis is made on patient-specific modeling of the blood flow
in the BCA, vertebral, and cerebral arteries. The datasets from the randomly picked
five patients were analyzed. The 1D structure of the vascular network was extracted
from the CT images by the previously developed algorithm [14]. The functional
parameters (pulse wave velocity index, hydraulic resistance coefficient, cardiac
output) were identified by fitting the computed and measured velocity in the control
points before the surgical intervention. A 1D blood flow model was used to predict
the changes in blood flow velocities after the carotid endarterectomy [12, 13]. The
values were compared to the measured ones. The mean relative error was 6%,
and the maximum relative error was 20%. We limit ourselves by the data quality
available from the typical hospital CT scans. The structure of the small vessels is
poorly visible in the images of such kind. Thus we simulated and compared the
two possible situations: A complete circle of Willis and the circle of Willis with
missed posterior communicating arteries [5]. The impact of this anatomical feature
is illustrated by the case of several stenoses.

An index for the evaluation of the stenosis severity was proposed. It was
calculated as a ratio between the blood flow velocity distal to the stenosis and the
blood flow velocity in a collateral artery. These velocities can be directly measured
by using the noninvasive Doppler ultrasound technique. The values below 0.75 can
be associated with the severe stenosis as the reverse blood flow in a closed circle of
Willis occurs in these situations.



Computational Modeling of Multiple Stenoses in Carotid and Vertebral Arteries 303

2 Mathematical Model

2.1 Blood Flow Model

The 1D hemodynamics model used in this work is the model of viscous incom-
pressible fluid in a network of elastic tubes. Networks of arteries are obtained from
patients’ CT images. In this section, a brief description of the model [15, 16] is
presented. Blood flow in each vessel is described by a hyperbolic set of mass and
momentum balances:

∂Ak/∂t + ∂(Akuk) /∂x = 0, (1)

∂uk/∂t + ∂
(
u2
k/2+ pk/ρ

)
/∂x = ff r(Ak, uk) , (2)

where k is the index of the vessel; t is the time; x is the distance along the vessel
counted from the vessel junction point; ρ is the blood density (constant); Ak(t, x)
is the vessel cross-sectional area; pk is the blood pressure; uk(t, x) is the linear
velocity averaged over the cross section; ff r is the friction force. The relationship
between pressure and cross section is given by the wall-state equation:

pk(Ak)− p∗k = ρwc2
kf (Ak) , (3)

where ρw is vessel wall density (constant); f (A) is a function

f (Ak) =
{

exp (Ak/A0k − 1)− 1, Ak/A0k > 1

lnAk/A0k, Ak/A0k � 1,
(4)

p∗k is pressure in the tissues surrounding the vessel; A0k is the unstressed cross-
sectional area. ck defines elastic properties of the wall and can be considered as the
velocity of small disturbances propagation.

At the entry point of the aorta, the blood flow is assigned

u(t, 0) A(t, 0) = QH (t) . (5)

Here function QH(t) corresponds to the heart rate value of 1 Hz and stroke volume
of 60 ml.

Bifurcation points are divided into two groups: (1) common junctions (between
arteries and arteries or veins and veins), and (2) microcirculation junctions (between
arteries and veins). At common junctions, continuity of total pressure is postulated

pi (Ai (t, x̃i ))+ ρu2
i (t, x̃i )

2
= pj

(
Aj

(
t, x̃j

))+ ρu2
j

(
t, x̃j

)

2
, (6)
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Fig. 1 Iterative process for calculation of cross section and blood flow velocity at terminal points

where i, j are indices of the vessels. x̃ is the coordinate of the boundary point of the
vessel. Each terminal artery with an index k was connected to the venous pressure
pveins = 12 mm Hg through a hydraulic resistance Rk

pk (Ak (t, x̃k))− pveins = RkAk (t, x̃k) uk (t, x̃k) . (7)

Parameters Rk are adjusted to simulate pressure drop between arteries and veins.
To close the system, we add the mass conservation condition and compatibility
conditions of the hyperbolic set (1),(2) (see [17]).

Cross sectionAt and velocity ut at the terminal point are calculated with the help
of an iterative process. First, blood pressure pt is taken from the previous time step.
After that blood flow Qt = Atut is calculated with (7). Compatibility condition is
used to calculate cross section At and velocity ut . Finally, blood pressure pnewt is
calculated with the wall-state equation (4). If the difference between pnewt and pt is
big enough, pnewt is taken as a new value of pt and cycle repeats (Fig. 1).

Stenosis is simulated as a separate vessel with decreased diameter. Diameter in
the stenosed vessel is calculated based on the degree of stenosis α

dsten = dnon-sten(1− α), (8)

where dsten is the diameter in the stenosed vessel, dnon-sten is the diameter in a
healthy vessel.

2.2 Reconstruction of Patient-Specific Vessel Structure

The vessel network reconstruction algorithm involves vessel segmentation,
thinning-based extraction of centerlines, and graph reconstruction [12, 14].
Input data are 3D DICOM datasets, obtained with contrast-enhanced computed
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tomography angiography (CTA). Resolution of each 2D transverse slice is 512×512
voxels. Only the quasi-isotopic voxel grids with deviation from cubic grids less than
10% were used; other grids can be resampled into isotopic ones.

Anatomy of the cerebral vessels in the human body is represented by carotid
arteries rooting at aorta, vertebral arteries separating from subclavian arteries (that
also rooting at aorta), and small arteries in the brain. Carotid and vertebral arteries
merged in the circle of Willis that allows blood bypass stenoses in the neck
vessels. Some of the segmented arteries (vertebral arteries) are very close to the
bones (spine). Separating the bones voxels from the arteries voxels is an important
segmentation step. The multiscale MMBE algorithm was used [12] at this stage.
It requires two datasets at the input: the CTA contrast-enhanced and not enhanced
images.

After the segmentation step, the vessel’s centerlines are extracted with a modified
version of the thinning method with False Twigs Elimination algorithm [14]. These
centerlines are used to produce a graph of the arterial network where each node
corresponds to bifurcation or end of the vessel. The length and the mean radius
were assigned as parameters to every edge of this graph.

Five patient-specific networks were processed by the above algorithm (Fig. 2).
Patient A had an 80% 4 cm stenosis in the left carotid artery (LCA, vessels 8,9);
patient B had a 72% 4 cm stenosis in the LCA (vessel 14); patient C had 75% 2 cm
stenosis in the LCA (the vessels 8,10); patient D had 75% 3 cm stenosis in the right
carotid artery (RCA, vessels 3,4); patient E had 92% 4 cm stenosis in the LCA
(vessels 13,15). None of the networks have a fully closed circle of Willis. There are
two possible reasons for this. The first is that the contrast agent could not reach the
small distant arteries. The second is the anatomical feature of the patient.

Each patient had ultrasound Doppler measurements of blood flow velocities
before and after the carotid endarterectomy. The measurements were performed
in carotid arteries (common, inner, and outer), subclavian arteries, and vertebral
arteries.

3 Results

3.1 Prediction of Blood Flow Velocities After the Carotid
Endarterectomy

The measurements before the treatment were used for calibrating the network and
setting the parameters ck and Rk . At the next step, the stenosis was artificially
removed and the blood flow velocities for a healthy case were calculated. These
velocities were compared to the measured values after the treatment. We neglect the
difference in the elasticity of the healthy and repaired vessel wall. Figure 3 shows
a comparison between calculated and measured velocities for the considered cases.
The mean absolute error is 3 cm/s. The maximum absolute error is 9 cm/s. The mean
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Fig. 2 Patient-specific structures of the head and neck arterial network. Stenoses are designated
by dotted lines

relative error is 6%. The maximum relative error is 20%. Figure 4 shows relative
errors for the calculated and measured velocity values. It is obvious that the relative
error decreases with the increase of the velocity value. This is especially important
for the analysis of critical zones with high blood velocity in cerebral circulation
during and after the surgical intervention.

Results show that the proposed algorithm of the 1D vessel network reconstruc-
tion provides a good basis for the patient-specific simulations. It can be used
to predict the results of the stenosis treatment and to calculate the blood flow
distribution.
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Fig. 3 Velocities after the treatment

Fig. 4 Relative error between the calculated and measured velocity values after the treatment

3.2 Numerical Simulations of the Collateral Flow for the
Complete Circle of Willis

Network C was modified to complete the circle of Willis (Fig. 5). This network was
used to compare velocities and pressures in the stenosed LCA (vessel 8) and the
collateral RCA (vessel 5). The case of single stenosis (B) is considered.

A series of numerical simulations was performed for stenosis B of the degrees

0%, 50%, 80%, and 95% and the length 2 cm. The ratio
Pd

P a
was calculated in every
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Fig. 5 The modified network
C (Fig. 2). A, B, C, D denote
the possible stenoses. Dashed
lines denote the virtual
vessels added in order to
complete the circle of Willis

case, where Pd is an average pressure distal to the stenosis and Pa is an average
aortic pressure. This parameter is analogous to the fractional flow reserve (FFR)
coefficient for the coronary vessels [15]. It is widely used for the coronary stenosis

severity assessment. For the network presented in Fig. 5, the values of the
Pd

P a
were

equal to 1.0 with a maximum difference of 1% relative to the initial case (the degree
of 0%). It means that the blood pressure distal to the stenosis remains the same even
in the worst considered case (stenosis of the degree 95%). It can be explained by the
collateral blood flow through the right carotid and right and left vertebral arteries
(the vessels 5, 13, 17 in Fig. 5). In the next series of the numerical simulations,
several stenoses of the degree 95% are arranged in all collateral arteries (A, B, C, D

in Fig. 5). The value of the ratio
Pd

P a
is changed to 0.2. This comparison shows that

the ratio
Pd

P a
can’t be used for the carotid stenosis severity assessment in the case of

single stenosis.

For the stenosis of the degree 50%, the ratio
Pd

P a
in the above simulations equals

to 1.0 while the blood flow velocity in the anterior communicating artery (ACA,
vessel 6) is reversed in comparison to the non-stenosed case. It shows that stenosis
of the degree 50% causes the change of the blood flow direction in a circle of Willis
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Table 1 Blood flow
velocities in collateral carotid
arteries and blood flow
through ACA

Stenosis ust , cm/s ucoll , cm/s ust
ucoll

QACA,ml/s

0% 90 91 0.99 0.21

40% 81 92 0.88 0.08

50% 73 99 0.74 −0.02

80% 10 115 0.09 −0.53

95% −32 140 −0.22 −0.57

Fig. 6 Configurations of the
circle of Willis

and should be considered as hemodynamically significant. We propose an index of

the stenosis severity, which is calculated as the ratio
ust

ucoll
, where ust is a systolic

velocity in the stenosed carotid artery distal to the stenosis and ucoll is a systolic

velocity in the non-stenosed collateral carotid artery. The ratio
ust

ucoll
was calculated

for the same range of the stenoses B degrees as in the first series above. Results
are presented in Table 1. From Table 1, it follows that the change of the blood flow
direction in the circle of Willis occurs for the stenosis of the degree 50%, which

corresponds to the value
ust

ucoll
< 0.75. The relative velocity difference in stenosis B

for the cases of the degrees 50% and 0% is less than that of 20%.

3.3 Numerical Simulations of the Blood Flow in the Circle of
Willis in the Case of Multiple Stenoses

The network of the vessels presented in Fig. 5 was used for the numerical simula-
tions of the blood flow in the circle of Willis in the case of multiple stenoses in the
BCA and vertebral arteries. Stenoses were virtually arranged in the right and left
inner carotid arteries (A and B) and right and left vertebral arteries (C and D). Each
stenosis is 2 cm long with a degree of 90%. Four configurations of the stenoses
arrangement were numerically studied: healthy subject (no stenoses), carotid and
vertebral arteries (ABCD), carotid arteries (AB), left carotid and vertebral arteries
(BCD). Two cases of the circle of Willis structure were considered (Fig. 6). The first
is a complete circle of Willis. The second is the circle of Willis without connections
between carotid and vertebral arteries.
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Table 2 Blood flow through
left middle cerebral artery
(LMCA, vessel 7 in Fig. 5)
for different senosis
configurations

LMCA blood flow, ml/s

Circle of Willis Healthy ABCD AB BCD

Closed 1.21 0.25 1.15 1.19

Not closed 1.02 0.21 0.20 1.01

Closed circle of Willis—vessels 15 and 16 are
present; Not closed circle of Willis—vessels 15 and
16 are absent

Blood flow through the left middle cerebral artery (LMCA, vessel 7 in Fig. 5)
was calculated in every case. Results are presented in Table 2. In the first case, it
follows that the blood flow through the LMCA remains almost the same if at least
one of the collateral paths is not stenosed. Only the worst case ABCD provides a
substantial decrease of the flow in LMCA. In the second case, the vertebral arteries
are “switched off” from collateral perfusion. It results in the substantial decrease
of the flow in LMCA even in the case of two stenosed carotid arteries AB. This
example emphasizes the importance of the circle of Willis anatomy for the stenosis
severity assessment in the BCA and vertebral arteries.

4 Conclusion

The results of this work show that the proposed vessel network reconstruction
algorithm and 1D model of hemodynamics can be jointly used to predict the results
of stenosis treatment and to calculate the blood flow redistribution during and
after the surgical endovascular intervention. The average absolute error 3 cm/s has
the same order of magnitude as the measurements error by using the ultrasound
Doppler technique. It was demonstrated that the relative error decreases with the
increase of the velocity value. It is especially important for the robust critical zones
identification during and after the surgical intervention. It should be noted that
the value of the blood flow velocity depends on the control point at which the
measurement is performed. This ambiguity can be removed with the development
of a proper clinical protocol for the blood flow velocity measurements.

It was numerically demonstrated that the anatomy of the circle of Willis
substantially affects the result of the BCA and vertebral arteries revascularization.
At least six possible cases of the circle of Willis closing [5] are known which must
be analyzed in the future work. The ratio between the blood flow velocity distal
to the stenosis and the blood flow velocity in a collateral artery was analyzed for
one patient. This value can be directly measured using the ultrasound technique. It
was numerically demonstrated that the values below 0.75 can be associated with
the reverse blood flow in the closed circle of Willis. This index can be used as
one of the possible measures of the stenosis severity in the cerebral arteries. More
patient-specific cases are needed for the detailed analysis of the critical range of the
proposed index. It remains unclear how the changes of hemodynamic parameters
are related to the postoperative complications. More cases should be analyzed to
solve this problem.
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Delay Induced Oscillations in a
Dynamical Model for Infectious Disease

A. Kumar and P. K. Srivastava

1 Introduction

Time delays are inherent to natural as well as man-made systems and similar is the
case of disease dynamics. There are various interactions in infectious disease models
where time delays play an important role. Incorporating these time delays in model
systems gives rise to the delay differential equations. Delay differential equation
models have been extensively used in literature to explore the dynamics of the
infectious diseases considering various delays. Interesting and complex dynamics
such as delay induced stability and instability of equilibria, existence of different
types of bifurcations, oscillations, etc. have been an important observation of these
models [2, 7, 18, 24, 30, 31]. From biological point of view, delay differential
equation models are close to real life system in comparison to ordinary differential
equation models. However, there is associated mathematical complexity in dealing
with models with delays. In the last few years, there has been growing interest
among researchers to study the dynamics of infectious diseases considering various
time delays in disease progression.

Delays in infectious disease models have been well studied in literature. Cooke
et al. proposed an epidemic model in which they considered the effect of maturation
delay in the growth of population [4]. They found that when R0 > 1, the disease
remains endemic, either approaching to an equilibrium value or oscillating about
this value. Greenhalgh et al., in 2005, proposed an SIRS model which accounts
for the effect of vaccination and also quantified the impact of delay on waning the
vaccine-induced immunity [11]. They established the existence of Hopf bifurcation.
Further, in 2005, a delay differential equation model (SIR) was proposed by
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Kyrychko et al. which accounts for the effect of nonlinear incidence rate along
with delay effect in loss of vaccine immunity [20]. They showed that the infected
equilibrium is globally stable if the time lag in loss of vaccine immunity crosses
a threshold quantity. Wen et al., in 2008, proposed a delayed SIRS model along
with temporary immunity [33]. They found the disease free equilibrium is always
globally sable whenever the basic reproduction number is less than one. Further,
they established the global stability of the infected equilibrium by constructing a
Lyapunov function. In 2010, Huang et al. proposed a set of SIR, SIS, SEIR and SEI
epidemiological models with time delays and a general incidence rate and studied
their global stability properties [14]. Recently, Banerjee et al. have found that the
delay may help in stabilizing the system [2].

During the outbreaks, it has been noticed that information about disease induces
behavioural changes of the individuals which eventually affects the disease progres-
sion [1, 12, 22, 27, 28]. The information about disease is propagated via media which
depends on disease prevalence as well as active social and educational programs. In
literature two kinds of approaches are found to incorporate behavioural changes
due to the information in the infectious disease model. In the first approach, a
correction in the incidence rate (force of infection) due to the information was
considered [3, 5, 6, 21–23, 32]. Another approach is using subclass of individuals
with information or awareness and then model using compartment model technique
[9, 10, 15–17, 26]. The effect of human behavioural response on diseases is
presented in the book of Manfredi and d’Onofrio [25].

In this paper we propose and analyse a delay differential equation model which
also incorporates the effect of information induced behavioural change in the model
leaving the susceptible population virtually immune to infection. Thereby moving
these virtually immune individuals to recovered class. The waning of immunity
is considered and it is assumed that these individuals, after a time lag, rejoin the
susceptible class. The model analysis is performed for stability and we observe
hopf bifurcation. We numerically validate our analytical results for a fixed set of
parameters.

2 Mathematical Model

In this section, we consider the model proposed by Kumar et al. [19] with modified
rate equation for the dynamics of information. In Kumar et al. [19], the authors have
considered the growth of information as saturated function of infective population.
In this study, we consider the growth function as linear function of infective to avoid
complex calculations.

Further, we propose the corresponding delay model considering the delay in
waning immunity. As in practice, there is always a time lag in loss of immunity
and individuals will take some time to become susceptible again after attaining
immunity. Hence, we consider a delay effect in waning of immunity and assume
that after a time lag τ > 0, recovered individuals will lose the immunity and then
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will move to susceptible class. In view of this, the corresponding proposed model
with delay effect is given by

dS(t)

dt
= �− βS(t)I (t)− μS(t)− u1dZ(t)S(t)+ δ0R(t − τ),

dI (t)

dt
= βS(t)I (t)− (μ+ δ + γ )I (t), (1)

dR(t)

dt
= γ I (t)+ u1dZ(t)S(t)− μR(t)− δ0R(t − τ),

dZ(t)

dt
= aI (t)− a0Z(t),

with initial conditions S(θ) = S0 ≥ 0, I (θ) = I0 ≥ 0, R(θ) = R0 ≥ 0
and Z(θ) = Z0 ≥ 0, θ ∈ [−τ, 0], where (S(θ), I (θ), R(θ), Z(θ)) ∈ C([−τ,
0], R4+), the Banach space of continuous functions mapping the interval [−τ, 0] into
R4+ (non-negative cone in R4). Here, the total variable population N(t) is divided
into three subpopulations depending on the state of the disease: S(t)-susceptible
population, I (t)-infective population and R(t)-removed population, respectively, at
any given time t .

Also, all parameters are taken to be non-negative. The parameter � represents
growth rate of susceptible population and γ is a constant recovery rate of infected
population. The parameter μ represents the natural mortality rate and δ is the
disease related death rate. The parameter β is the disease transmission rate from
susceptible population to infective population and it is assumed that the interaction
follows mass action type contact when population is homogenously mixed. The
parameter δ0 represents the rate of loss of total immunity which includes the loss
of natural immunity and the loss of immunity of protective measures. The factor
u1dZ(t)S(t) represents the behavioural response of susceptible individuals induced
by the information about the disease prevalence [19]. Here u1d is the corresponding
response rate. Parameter d is information interaction rate by which individuals
change their behaviour with 0 ≤ u1 ≤ 1 response intensity. Parameter a is the
growth rate of information which depends on the infective population, and on active
social and educational campaigns. The parameter a0 denotes natural degradation
rate of information.

3 Model Analysis

In this section, first, boundedness of the solutions of delay model system is estab-
lished. Further, existence and stability of equilibria are discussed. Subsequently,
occurrence of Hopf bifurcation due to delay effect is investigated.
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3.1 Positivity and Boundedness

We assume that the initial population are so chosen so that all the population
components remain positive. Moreover, from the model system (1), we note that the
total populationN(t) = S(t)+I (t)+R(t) is governed by the following differential
equation

dN(t)

dt
= �− μN(t)− δI (t) ≤ �− μN(t).

This gives that lim sup
t→∞

N(t) ≤ �
μ

. Hence all solutions S(t), I (t) and R(t) are

bounded by �
μ

. Further dZ(t)
dt

= aI (t − τ2) − a0Z(t), this implies lim sup
t→∞

Z(t) ≤
a�
a0μ

by using the bound of I . Thus the biologically feasible region of the model
system (1) is the following positive invariant set:

� =
{
(S(t), I (t), R(t), Z(t)) ∈ R

4+ | 0 ≤ S(t), I (t), R(t) ≤ �

μ
,Z(t) ≤ a�

a0μ

}
.

3.2 Existence of the Equilibrium Points

From Kumar et al. [19], the basic reproduction number (R0) of the model system (1)
is given by

R0 = �β

μ(μ+ δ + γ ) .

It is also easy to find that the model system (1) has the following two equilibria:

1. a disease free equilibrium E1 =
(
�
μ
, 0, 0, 0

)
which always exists, and

2. a unique infected equilibrium E2 = (S∗, I∗, R∗, Z∗), which exists if and only if

R0 > 1. Here S∗ = (μ+δ+γ )
β

, R∗ = I∗
μ+δ0

(
γ + du1a(μ+δ+γ )

a0β

)
, Z∗ = aI∗

a0
and

I∗ = −C
B

, where B = μ(μ+δ+γ )+δ0(μ+δ)
(μ+δ0) + μdu1a(μ+δ+γ )

βa0(μ+δ0) and C = �
(

1
R0
− 1

)
.

Further, we shall state the stability result obtained in Kumar et al. [19] for the no
delay case, i.e. τ = 0.

Theorem 3.1 ([19]) For τ = 0,

(i) the disease free equilibrium E1 of the system (1) is locally asymptotically stable
if R0 < 1 and is unstable if R0 > 1,

(ii) if R0 > 1 then the unique infected equilibrium E2 is locally asymptotically
stable provided the following conditions are satisfied:
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P1P2 > P3 and P1(P2P3 − P1P4) > P
2
3 .

Here, P1 = a0 + 2μ+ δ0 + βI∗ + du1Z∗, P2 = a0(μ+ δ0) + (μ+ a0)(μ+
βI∗ + du1Z∗) + δ0(μ + βI∗) + β2S∗I∗, P3 = βI∗((a0 + μ)(μ + δ + γ ) +
δ0(μ+ δ))+μa(μ+ βI∗ + du1Z∗)+ a0δ0(μ+ βI∗)+ adu1βS∗I∗ and P4 =
βa0I∗(μ(μ+ δ + γ )+ δ0(μ+ δ))+ aμβdu1S∗I∗.

3.3 Stability of the Delay Model

In the following, we shall investigate the stability of the equilibrium points of the
delay model (1).

3.3.1 Stability of the Disease Free Equilibrium E1

Theorem 3.2 For all time delay τ ≥ 0, the disease free equilibrium E1 of the
system (1) is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1.

Proof The Jacobian matrix J at disease free equilibrium E1 is given by

JE1 =

⎛

⎜⎜⎜⎝

−μ −β �
μ

δ0 −du1
�
μ

0 β �
μ
− (μ+ δ + γ ) 0 0

0 γ −(μ+ δ0) du1
�
μ

0 a 0 −a0

⎞

⎟⎟⎟⎠ .

The characteristic equation of JE1 is given by

(λ+ μ)(λ+ (μ+ δ0))(λ+ a0)(λ+ ((μ+ δ + γ )(R0 − 1))) = 0.

If R0 < 1, then all the eigenvalues of JE1 are negative and hence, E1 is locally
asymptotically stable and it is unstable when R0 > 1 for any time delay τ ≥ 0. ��

3.3.2 Stability of the Infected Equilibrium E2

Here, we shall establish the local stability of the infected equilibrium E2. The
linearized system corresponding to the delay system (1) around the infected
equilibrium E2 is given as:

dY (t)

dt
= J1Y (t)+ J2Y (t − τ). (2)
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Here, J1 =

⎛

⎜⎜⎝

−(μ+ βI∗ + du1Z∗) −βS∗ 0 −du1S∗
βI∗ 0 0 0
du1Z∗ γ −μ du1S∗

0 a 0 −a0

⎞

⎟⎟⎠, J2 =

⎛

⎜⎜⎝

0 0 δ0 0
0 0 0 0
0 0 −δ0 0
0 0 0 0

⎞

⎟⎟⎠

and Y (t) = (S(t), I (t), R(t), Z(t))T .
The characteristic equation corresponding to the linearized system (2) is given by

D(λ, τ) := det (λI4 − (J1 + e−λτ J2)) = 0,

here, I4 is the identity matrix of order four. This can be written as

D(λ, τ) := λ4+A1λ
3+A2λ

2+A3λ+A4+ e−λτ (B1λ
3+B2λ

2+B3λ+B4) = 0,
(3)

where

A1 = a0 + 2μ+ βI∗ + du1Z∗ > 0

A2 = a0μ+ (μ+ a0)(μ+ βI∗ + du1Z∗)+ β2S∗I∗ > 0

A3 = βI∗(a0 + μ)(μ+ δ + γ )+ μa0(μ+ βI∗ + du1Z∗)+ adu1βS∗I∗ > 0

A4 = βa0I∗μ(μ+ δ + γ )+ μadu1βS∗I∗ > 0

B1 = δ0 > 0

B2 = δ0(a0 + μ+ βI∗) > 0

B3 = a0δ0(μ+ βI∗)+ βI∗δ0(μ+ δ) > 0

B4 = βa0I∗δ0(μ+ δ) > 0.

Clearly, the characteristic equation (3) is a transcendental equation in λ and hence
it has infinitely many complex roots. For the stability of E2, we follow the same
argument as in Ref. [29]. The sign of real parts of the roots of characteristic
equation (3) will determine the stability of infected equilibrium E2. If all the roots
of Eq. (3) have negative real parts, then E2 will be the locally stable. Whereas
existence of a purely imaginary root leads the instability of E2, i.e. a root crosses
the imaginary axis. Determination of sign of roots of Eq. (3) is a cumbersome task
due to its transcendental nature. Rouche’s Theorem and continuity in τ infer that the
sign of roots of Eq. (3) will change if it crosses imaginary axis, i.e. if Eq. (3) has a
pair of purely imaginary root.

As Eq. (3) is in transcendental nature, then it would have infinity complex
roots. Hence, in presence of τ , the analysis of the sign of roots of Eq. (3) is very
complicated. Thus, in order to recognize the purely imaginary root, we put λ = iω
in Eq. (3) and further separate the real and imaginary parts and given as follows:

ω4 − A2ω
2 + A4 = (B2ω

2 − B4) cosωτ + (B1ω
3 − B3ω) sinωτ. (4)
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A3ω − A1ω
3 = (B1ω

3 − B3ω) cosωτ − (B2ω
2 − B4) sinωτ. (5)

Now, squaring and adding both the sides of Eqs. (4) and (5), we get

ω8 + A11ω
6 + A12ω

4 + A13ω
2 + A14 = 0. (6)

Here, A11 = A2
1 − 2A2 − B2

1 , A12 = A2
2 + 2A4 − 2A1A3 − B2

2 + 2B1B3, A13 =
A2

3 − 2A2A4 + 2B2B4 − B2
3 and A14 = A2

4 − B2
4 .

Now, we substituting m = ω2 in Eq. (6), we have

ψ(m) = m4 + A11m
3 + A12m

2 + A13m+ A14 = 0. (7)

Notice that if Routh-Hurwitz criterion is satisfied then Eq. (7) will have all roots
with negative real part, i.e. it has no purely imaginary root. Hence, the following
result is given as

Theorem 3.3 The unique infected equilibrium E2 of the delay system (1) will be
locally asymptotically stable for all τ > 0 provided the following conditions hold

A11 > 0, A13 > 0, A14 > 0 and A11A12A13 > A
2
13 + A2

11A14.

3.4 Existence of Hopf Bifurcation

Here, we show the existence of family of periodic solutions around the infected
equilibrium point E2 via Hopf bifurcation. For this purpose, we consider the delay
parameter τ as a bifurcation parameter. For the existence of the Hopf bifurcation
there must be a threshold value of the delay τ0 such that:

(H1) λ1,2(τ0) = ±iω10(ω10 > 0) and all other eigenvalues are with negative real
parts at τ = τ0.

(H2)

[
Re

(
dλ1,2
dτ

)−1
]∣∣∣∣
λ=iω10

�= 0.

For the (H1) condition, we require at least one positive root of Eq. (7). In the
following, we determine the conditions for the existence of at least one positive root
of Eq. (7) using Descartes’ rule of signs. Thus we have the following lemma.

Lemma 3.1 The Eq. (7) has

(i) at least one positive root (either one or three) if

(a) A11 > 0, A12 < 0, A13 > 0, A14 < 0.
(b) A11 < 0, A12 < 0, A13 > 0, A14 < 0.
(c) A11 < 0, A12 > 0, A13 > 0, A14 < 0.
(d) A11 < 0, A12 > 0, A13 < 0, A14 < 0.
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(ii) exactly one positive root if

(a) A11 < 0, A12 < 0, A13 < 0, A14 < 0.
(b) A11 > 0, A12 < 0, A13 < 0, A14 < 0.
(c) A11 > 0, A12 > 0, A13 < 0, A14 < 0.
(d) A11 > 0, A12 > 0, A13 > 0, A14 < 0.

Assuming that Eq. (7) has one positive root satisfying one of the conditions given
in Lemma 3.1. Let m10 = ω1

2
0 be a positive root of Eq. (7) then ±iω10 is a pair of

purely imaginary root of Eq. (3) for the threshold value of the delay τ . In further,
we shall determine the threshold value of the delay τ for which the delay system (1)
will remain stable. Using Eqs. (4) and (5), we get the following threshold value:

τ0 = 1

ω10
[arccos(ϒ(ω10))], (8)

where ϒ(ω10) = (B2ω1
2
0−B4)(ω1

4
0−A2ω1

2
0+A4+C2)+(B1ω1

3
0−B3ω10)((A3+C1)ω10−A1ω1

3
0)

(B2ω1
2
0−B4)

2+(B1ω1
3
0−B3ω10)

2 .

Now, we further determine the transversality condition (H2). For this, we
differentiate Eq. (3) with respect to τ , we have

[
Re

(
dλ

dτ

)−1
]∣∣∣∣∣
λ=iω10

= ψ
′
(m)

(B2ω1
2
0 − B4)2 + (B1ω1

3
0 − B3ω10)

2
. (9)

In the following result, we state the condition for the transversality condition.

Lemma 3.2 Let iω10 be a purely imaginary root with m10 = ω1
2
0 such that

ψ(ω10) = 0 and ψ
′
(ω10) �= 0, then

[
Re

(
dλ
dτ

)−1
]∣∣∣
λ=iω10

�= 0 and its sign is the

same as ψ
′
(ω10) �= 0.

Thus transversality condition holds. Now we summarise the above discussion in the
following result as follows.

Theorem 3.4 The unique infected equilibrium E2 is locally asymptotically stable
for τ < τ0 and is unstable for τ > τ0. At τ = τ0, a Hopf bifurcation occurs, i.e.
a family of periodic solutions bifurcates from the infected equilibrium E2 as delay
parameter τ crosses the threshold value τ0 [8, 13].

3.4.1 Numerical Validation

Here, we numerically validate the Hopf bifurcation result obtained above.
For this, we consider the set of representative parameters as: � = 10, β =
0.0325, μ = 0.04, d = 0.17, δ = 0.5, δ0 = 0.5, a = 0.1, b = 0.1, a0 =
0.1, γ = 0.1, u1 = 0.9. The model system has the unique infected equilibrium
E2 = (19.69, 11.95, 68.91, 11.95) along with disease free equilibrium E1 =
(250, 0, 0, 0) when R0 = 12.69 > 1. In this case, note that the coefficients
A11, A12, A13 andA14 satisfy the condition i(a) of Lemma 3.1. Thus Eq. (7) has one



Delay Induced Oscillations in a Dynamical Model for Infectious Disease 321

positive root (0.0546) and hence Lemma 3.1 follows. We find that the characteristic
equation (3) has a pair of purely imaginary root ±0.233i with ω10 = 0.233.
Using (8), the corresponding threshold value of the delay parameter is given as

τ0 = 8.73 and the transversality condition
[
Re

(
dλ
dτ

)−1
]∣∣∣
λ=iω10

= 2.308 > 0 also

holds true. Thus we conclude from Theorem 3.4 that the delay system (1) will be
stable for the delay range τ ∈ [0, τ0) and unstable for τ > τ0. At the threshold
value of delay τ = τ0 = 8.73, periodic oscillations bifurcate near unique infected
equilibrium E2 as τ crosses τ0.

Further, we solve the delay system (1) using DDE23 in MATLAB to show the
stability and instability of the unique infected equilibriumE2. For this, we first solve
the delay system for the delay parameter τ = 8.45 < τ0 and other parameters as
given above along with initial population size S(0) = 21, I (0) = 10, R(0) = 65
and Z(0) = 11. The corresponding results are shown in Fig. 1. One can easily
see that the solution trajectories approaching to the unique infected equilibrium E2
showing the asymptotic stability of E2.

Further from Theorem 3.4, we infer that as τ crosses τ0 = 8.45, a family of
periodic solutions bifurcate around the unique infected equilibrium E2. For this,
we further solve the delay system (1) for τ = 9.6 and the corresponding results
are shown in Fig. 2 which clearly show the existence of periodic solutions of
populations. This infers that the disease will persist in the oscillatory nature within
the population due to the delay effect in waning the immunity of protection. For this
set of parameters, we numerically find that if there is a time lag of about 9 days in the
waning of immunity related with protection gained from protective measures, then
the infected population show oscillations. Thus in this case the disease elimination
may be very critical and challenging due to oscillations.

In order to plot the bifurcation diagram to show the occurrence of periodic
orbits, we vary τ ∈ [8, 9.75] along with other parameters given as above. The
corresponding bifurcation diagrams are plotted in Fig. 3. One can easily see that
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Fig. 1 (a) Solution trajectory of susceptible population showing stability for τ = 8.45. (b)
Solution trajectory of infective population showing stability for τ = 8.45
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Fig. 2 (a) Oscillation in susceptible population for τ = 9.6. (b) Oscillation in infective population
for τ = 9.6
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Fig. 3 Plot for the bifurcation diagram showing the occurrence of periodic orbits when τ crosses
τ0 = 8.45 in I-R and Z-R planes

when τ ∈ [8, 8.45), the unique infected equilibrium E2 is stable and when τ passes
the threshold value τ0 = 8.45 periodic orbits arise for τ > 8.45.

4 Conclusion

A nonlinear delay differential equation model SIRS for the disease dynamics is
proposed and analysed which accounts for the effect of human behavioural response
and the delayed impact of immunity loss. Model analysis is carried out and it is
found that the disease free equilibrium is locally stable always for R0 < 1. A unique
infected equilibrium is obtained when R0 > 1 which is locally stable when time
delay is less than a threshold quantity (τ < τ0). Existence of Hopf bifurcation
around the unique infected equilibrium is investigated if the time delay crosses a
threshold value. Hence, the delay in waning the immunity destabilises the system
and causes the occurrence of oscillations. Thus, we finally conclude that the delay
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effect destabilises the system and induces the oscillatory persistence of the disease
within the population. Hence, the delay in waning immunity shows rich and complex
dynamics in the model and provides important insight.

Finally, we would like to comment on the fact that if the period of study is long
then the survival probability of recovered individuals will come into consideration.
This can be done by multiplying the delay term by e−μτ which is survival
probability of recovered individuals who have spent time in recovered class and
survived the period to return back to susceptible class. This will make mathematical
analysis complicated but at the same time will give important insight. We intend to
take up the problem in future.
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Pressure Gradient Influence on Global
Lymph Flow

A. S. Mozokhina and S. I. Mukhin

1 Introduction

Modeling of lymph flow through the lymphatic system is an important task which
attends great interest in the last years because of different medical problems related
to the lymph flow such as lymphedema and distribution of infections and drugs
through the organism. Investigation of these problems is based on the models of
systemic lymphodynamics, and we propose to use for such modeling quasi-one-
dimensional approach, which gives great results in the modeling of systemic blood
circulation. One of the aims of this work is investigation of lymph propagation
through the complicated topology and determining influence of different driving
forces on lymph flow.

The physiological mechanisms of lymph flow are not still clear enough. Accord-
ing to physiological concepts, there are two main forces, which provide lymph flow:
pressure gradient and contractions, active and passive, of segments of lymphatic
vessels [1]. In the quasi-one-dimensional approach, the pressure gradient is an initial
data of the model, but its influence on lymph propagation in the complicated struc-
ture of vessels with different sizes and properties should be studied. Contractions
are one more driving force, and their mathematical and algorithmic implementation
is independent and nontrivial problem.

Lymphatic system contains lymphatic vessels and lymph nodes. Lymphatic ves-
sels have different sizes and properties, they have specific structure, which influence
lymph flow. The vessels have valves, which prevent backward flow, and segments
of vessels between adjacent pairs of valves can produce active contractions. Such
segments are called “lymphangions”. The model of systemic lymphodynamics
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requires a mathematically formalized model of lymphatic system as a domain for
calculations. Model of the lymphatic system in quasi-one-dimensional approach is
a graph with vertices representing vessel bifurcations, and arcs representing vessels
and lymph nodes. Creation of such model is a challenge because of complicated and
slightly structured topology.

The most well-known model of systemic lymph circulation is the model of
Reddy [2], where the lymph flow in the set of lymphangions is considered. This
model introduces description of lymph flow in lumped approach in the tree of
main lymphatic vessels. There is a simple graph of the lymphatic system, and it is
not spatially oriented. Quasi-one-dimensional approximation is used in [3], where
lymph flow is considered through the series of lymphangions, without studying
systemic circulation. Most of the other models also not consider systemic lymph
circulation, and investigate flow through the series of lymphangions, as in [4], or
focus on flow mechanisms in one lymphangion [5, 6], using lumped models or
multidimensional ones.

In the current work, we introduce a graph of the lymphatic system and quasi-
one-dimensional mathematical models for lymph flow through different parts of
such graph. This graph was specially designed for joint modeling of lymphatic and
cardiovascular systems. On the basis of different physiological data, the typical
spatial structure of lymphatic system was segmented with thorough description
of its elements: types of vessels, characteristics of vessels, areas of lymph nodes,
and their internal topology. Segments of the system are topologically linked to the
corresponding areas of cardiovascular system, and the whole graph (with a large
set of appropriate physiological data) is physiologically adequate and represents the
whole common lymphatic system in the form, suitable for numerical simulations.
Topology, parameters of vessels, and nodes can be easily changed in any way
according to current task.

In this paper, the results of numerical investigation of the flow under the pressure
gradient are shown for both horizontal and vertical positions of the graph. The
influence of valves in the biggest (in the sense of the diameter) vessels on the global
circulation is also investigated, and the results of such investigation are presented.

2 Lymphatic System Modeling

2.1 Physiology Overview

The lymphatic system complements the cardiovascular system and they form
together common vessel system in the human body. About 10 % of blood volume
goes to the lymphatic system due to the capillary filtration [7], and then returns to
the venous part of the cardiovascular system.

The lymphatic system is not closed. It starts with the initial lymphatics in the
interstitial fluid and ends with the biggest lymphatic vessels (the right lymphatic
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Fig. 1 Valves in lymphatic vessels in opened (left) and closed (right) states. Arrows show direction
of lymph flow

and the thoracic ducts), which open in the upper vena cava (to the right and to
the left venous angles, respectively). The lymphatic system is not connected to the
heart directly and this leads to low-velocity and low-pressure gradients of lymph
flow. Lymph goes into the lymphatic system through the initial lymphatics and flows
in one direction: from interstitial space of the periphery to the upper vena cava.
This unidirectional movement is provided by the numerous valves in the lymphatic
vessels, which restrict backward flow. The lymphatic vessel is divided into segments
by valves. These segments are called “lymphangions” (see Fig. 1).

Lymphatic net consists of lymphatic vessels and lymph nodes. The vessels vary
in diameter and structure. The biggest vessels in the lymphatic system are trunks
and ducts. The diameter of such vessels is about 1.5–2 mm [8]. The length of
lymphangions in this case can reach 5 and 10 cm. The velocity of lymph flow in such
vessels is about 0.5–1 cm/s. Other vessels (except for capillaries) are not classified
as trunks and ducts, but their diameters can reach similar values. The diameter of
these vessels varies from 3–5µm to 1–2 mm [8]. The length of lymphangions can
be about 2 mm, so valves in such vessels are located very close to each other. It
is assumed that length of the lymphangions correlates with the vessels diameter:
the greater the diameter is, the greater the lymphangion length is. Lymphangions
of all mentioned vessels can produce active contractions, and elastic properties of
such vessels are close to such of veins. The lymphatic capillaries are the entries of
lymphatic system. Such vessels have no valves and cannot produce contractions.
The diameter of lymphatic capillaries is about 20–200µm .

There are about 400–500 lymph nodes in the human body. Lymph nodes perform,
among others, transport and filtration functions. There are about 3–4 vessels
entering the node and 1–2 ones exiting the node [1]. There are valves in regions
where vessels connect with the node, so lymph can flow generally in one direction
in the node, the same as in lymphatic vessels.

Pressure value in the initial lymphatic vessels is hard to measure, so it is
commonly used the value in the interstitial fluid. It is used to consider that the
pressure in the upper vena cava is about 10 mm Hg or less [7].

2.2 Graph of the Lymphatic System

On the basis of these anatomical and physiological data, we were able to create a
graph of the lymphatic system (see Fig. 2). This graph is anatomically adequate and
is spatially consistent with analogical graph of the cardiovascular system [9]. The
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Fig. 2 Graph of the
lymphatic system: (i) head,
(ii) neck, (iii) diaphragm, (iv)
elbows, (v) groin; (1) thoracic
duct, (2) right lymphatic duct,
(3) cisterna chyli, (4)
subclavian trunks, (5) lumbar
trunks, (6) lymph nodes

graph contains 543 arcs representing lymphatic vessels and lymph nodes and 478
vertices representing points of vessel bifurcations. One hundred and sixty one arcs
of the graph represent lymph nodes.

The graph contains main trunks and ducks, 46 regional groups of lymph nodes
according to [1], afferent and efferent vessels for each node, effective representation
of lymphatic capillaries, which are the entries of lymphatic system, and two exits:
the left and the right venous angles.

All elements of the graph can be divided into four groups. Each group differs
from others by the influence on lymph flow and parameters of the vessels forming
it. These groups are:

1. Main trunks and ducts, which are characterized by big diameters, long lym-
phangions, valves preventing backward flow of lymph, and active contractions
of lymphangions.

2. All lymphatic vessels except for trunks and ducts (first group), and capillaries
(third group). These vessels are characterized by smaller diameters, short lym-
phangions, valves preventing backward flow of lymph, and active contractions of
lymphangions. The main difference from the previous group is that in this group
segments between valves are very short (can be about 2 mm).

3. Effective representation of lymphatic capillaries, which have no valves, no
lymphangions, and no contractions.

4. Lymph nodes which are complicated structures of the lymphatic system, and
modeling of lymph flow through them is a special field of research, e.g., see [10].
In our approximation, lymph nodes are some kind of lymphangions of the vessels
of first group: they have big diameters and can produce active contractions.

One more challenge in the creation of the graph of the lymphatic system is a
choice of parameters of the vessels and nodes. Available data about diameters of
lymphatic vessels is rather poor and concerns mostly the largest vessels. Information
about small vessels for obvious reasons is approximate, and their parameters we will
define using average meanings.
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Table 1 Diameters and
cross-section area of the
vessels and nodes of the
lymphatic system graph

Name d (cm) S (cm2)

Effective vessels 0.020 0.0002

Collectors 0.107 0.0090

Lumbar trunks 0.150 0.0177

Other trunks 0.100 0.0079

Ducts 0.200 0.0314

Cisterna chyli 0.400 0.1257

Lymph nodes 0.200 0.0314

Fig. 3 Binary tree of
lymphatic capillaries. It is
proposed that on each level of
bifurcation vessels have the
same pressure gradient �pi ,
length li , cross-sections area
Si , and lateral area σi ,
i = 0, . . . , n

Parameters of the vessels of our graph are presented in Table 1. The diameters
for vessels of the first group are taken from the literature. In the current realization,
all vessels of the second group are taken with the same diameters.

2.3 Representation of Capillaries

Lymphatic capillaries are very small and numerous, so an effective representation
of nets of capillaries is used in the graph.

Let us assume that lymphatic capillaries have the topology of a binary tree (see
Fig. 3). We want to substitute this net with one effective element (effective vessel),
which contains the parameters the pressure gradient �p, flux Q, and lateral surface
area σ of the net.

Let us assume that there are the following relations between vessel parameters
from different levels of bifurcations: Si = qSi−1, li = pli−1, i = 1, . . . , n, q >
0, p > 0. Then, Si = qiS0, li = pil0, i = 1, . . . , n, q > 0, p > 0 and parameters
of the effective vessel, which guarantee the conservation of pressure gradient, flux,
and lateral surface area of the net, are defined as follows:

l̂ = l0
⎡

⎣
n∑

i=0

(
p

2q2

)i ( n∑

i=0

(
2p
√
q
)i
)4

⎤

⎦
1/5

, Ŝ = S0

⎡
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∑n
i=0

(
2p
√
q
)i

∑n
i=1

(
p

2q2

)i

⎤

⎥⎦

2/5

(1)

where l̂ is the length of the effective element and Ŝ is its cross-section area. If we
assume that

p

2q2 < 1, 2p
√
q < 1 (2)
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then series in (1) converge when n→∞, and Eq. (1) take the following form:

l̂ = l0
(

2q2

(
2q2 − p) (1− 2p

√
q
)4

)1/5

, Ŝ = S0

(
2q2 − p

2q2
(
1− 2p

√
q
)
)2/5

. (3)

3 Modeling of Lymph Flow

3.1 Mathematical Models of Lymph Flow

Quasi-one-dimensional approach for description of incompressible fluid is applica-
ble if the radial part of velocity is much less than its axial part. In this case, we get
the following system of equations:

∂S

∂t
+ ∂uS

∂x
= 0,

∂u

∂t
+ ∂

∂x

(
u2

2

)
+ 1

ρ

∂p

∂x
= −8πν

u

S
, S = S(p), (4)

where x is a spatial coordinate, t is time, unknown functions are u(x, t) and
p(x, t), velocity and pressure, respectively. S(x, t) is cross-section area, and the
third equation defines its dependence on pressure p. ρ is constant density and ν is
friction coefficient, which is also constant.

This system can be used for description of lymph flow in the first-order
approximation, but there is no respect for specific behavior of lymphatic vessels,
namely, for restriction of backward flow of lymph by valves and for contractions
of lymphangions. Lymphatic vessels have lymphangions of different length, and
this fact leads us to include in the model the valves of two types depending on
lymphangion length. If the distance between adjacent pairs of valves is big (about
or more than 1 cm, as it is in trunks and ducts), the restriction of backward flow is
proposed to be the following condition in the bifurcation point:

Qi =
{
Qj, uiz > 0

0, uiz < 0
, (5)

whereQi andQj are fluxes in i and j vessels, respectively, ui and uj are velocities
of lymph in the i and j vessels, respectively, z shows which direction the flux is
allowed to flow in: from i vessel to j one, or vice versa. In other words, if the
flux is accepted by valve, condition (5) transforms to flux continuity condition, and
if flux is restricted by valve, condition (5) gives flux equating to zero. This valve
model is simple enough, gives us appropriate behavior, and is used in many works of
modeling lymph flow, e.g., [2, 3, 5], but when valves are too close to each other and
when there are too many valves (vessels of second group), this model is unsuitable.
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Fig. 4 Sigmoid as an example of monotonic continuous function of viscosity coefficient ν(u) in
the momentum equation of (4). Sigmoid tends to ν1 when flow is allowed by valves and to ν2 when
flow is restricted by valves

If the length of the lymphangions is small enough (about 2 mm, as it is in the
vessels of second group), then the valves are proposed to be modeled by some
additional force of valve resistance in second equation of (4). This equation takes
the following form:

∂u

∂t
+ u∂u

∂x
+ 1

ρ

∂p

∂x
= −8πν

u

S
+ fvlv(u), (6)

where fvlv is some function of u. fvlv can be considered as friction force with
friction coefficient depending on velocity direction, and in that case the movement
equation can be written in the form:

∂u

∂t
+ u∂u

∂x
+ 1

ρ

∂p

∂x
= −8πν(u)

u

S
, (7)

where friction coefficient ν is not constant but depends on velocity u. This
coefficient can be discontinuous or continuous described by monotonic function
with small values in one direction and much more in another (e.g., some kind
of sigmoid shown in Fig. 4). This model allows us to deal with huge amount
of valves in vessels of second group. The disadvantage of this model is that it
restricts backward flow in each point of the vessel, not only in valves. But when
the system (4), (7) is solved numerically, the step of spatial net is comparable to
lymphangion length, and so the mentioned restriction is negligible in our case. Such
approach for valve modeling was used in [11], and similar one in lumped model of
chain of contracting elements [4].

Modeling of lymphangion’s contractions will be considered in the following
work.
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3.2 Calculations

The main goal of numeric investigations presented in current work is to find out if
the flow is possible under pressure gradient in complicated system of vessels without
specific mechanisms of lymph flow regulation both in horizontal and vertical cases.
One more goal is to specify the influence of valves in big vessels on lymph flow, in
other words, we want to determine if the valves (5) in big vessels are important for
our model of lymph flow.

All calculations are performed in Cardio-Vascular Simulation System (CVSS)
software [9]. The domain of calculations is the graph of the lymphatic system,
described in Sect. 2.2 (see Fig. 2). On each arc, the system (4) with partially
linear state equation is stated. In the points of bifurcations, the conditions of mass
conservation and pressure equality are stated. In points of bifurcations which have
the sense of valves in big vessels, condition (5) instead of mass conservation is
stated. There are 25 such valves in the graph. Boundary condition for the system is
pressure gradient. Some parameters of the arcs of the graph are shown in Table 1.

First set of calculations we perform in the graph without any valves under the
pressure gradient of 5 mm Hg for the horizontal case (g = 0 cm/s2): 5 mm Hg
in the interstitial space and 0 mm Hg in the upper vena cava. The results of the
calculations in the horizontal case (see Fig. 5a) show that varying of parameters
of effective representation of nets of lymphatic capillaries can give physiologically
correct output flux in 0.029 ml/s. However, in the vertical case (g = 1000 cm/s2)
lymph flow is principally impossible: the lymph flows into the system from each
entry point, and there is no output point even if the pressure gradient increases up to
80 mm Hg. So, in the vertical case the specific mechanisms of lymph flow regulation
become necessary.

Second set of calculations is performed in the graph with 25 valves in the points
of bifurcations. The pressure is 5 mm Hg in the interstitial space and 0 mm Hg in the
upper vena cava for the horizontal case, and 60 mm Hg in the interstitial space and
0 mm Hg in the upper vena cava for the vertical case. Calculations in horizontal case
give the same results as calculations in the graph without any valves (see Fig. 5b), so
in the horizontal case such valves have no influence on lymph flow. In the vertical
case, the presence of valves (5) leads to change of pattern of lymph flow. Now,
lymph flows in the “right” direction in both main trunks, which open in upper vena
cava, so the model has two outputs: the right and the left venous angles, as it must be.
However, the pressure gradient required for lymph flow is 60 mm Hg in this case. So,
other mechanisms of lymph flow regulations must be implemented to compensate
the influence of gravity force.
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Fig. 5 There are output fluxes upon time as results of the calculations of lymph flow in the graph of
the lymphatic system (Fig. 2) under pressure gradient influence: (a) calculations in model without
valves in horizontal (solid) and vertical (dashed) cases. In the horizontal case, physiologically
adequate value 0.029 ml/s of output flux is obtained. Negative values of flux mean that lymph flows
out of the system, while positive values mean that lymph flows into the system from the right and
the left venous angles. In the vertical case, flux has “wrong” direction and further calculations are
not possible. This scenario in the vertical case is true for other pressure gradients (from 5 mm Hg to
80 mm Hg); (b) calculations in lymphatic system with valves (5) in horizontal (solid) and vertical
(dashed) cases. In the horizontal case, the physiological value 0.029 ml/s of flux is obtained—the
same as for model without valves. In the vertical case, lymph flows in the “right” direction

4 Conclusion

The anatomically adequate graph of the lymphatic system was created, and this
graph is spatially consistent with analogy graph of the cardiovascular system. Math-
ematical description of specific mechanisms of lymph flow regulation was offered.
Some calculations in the model of first-order approximation were performed, and
the results have shown that even without any specific regulatory mechanisms the
flow exists in the horizontal case. Calculations also have shown that in the vertical
case the valves in big vessels are extremely important: the flow cannot exist without
them. The presence of valves gives right pattern of lymph flow, but the required
pressure gradient of 60 mm Hg is much more than physiological value for the
lymphatic system, so other regulatory mechanisms must be implemented in order
to get more accurate model of flow in the lymphatic system.
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Blood Flows in Vascular Networks:
Numerical Results vs Experimental Data

T. K. Dobroserdova, A. A. Cherevko, and E. A. Sakharova

1 Introduction

Methods of blood flow modelling are actively developed nowadays [1]. Such
models are demanded and successfully used for many medical applications, in
particular, for patient-specific simulations [2, 3]. A number of 1D numerical blood
flow models have been developed [4]. The problem of model verification is still
actual and significant. It is difficult and often impossible to collect enough data
from real humans or animals. Several physical experiments have been designed to
provide data for blood flow model verification. Two benchmarks of this sort will be
described in this paper. In the first experiment fluid flows in the network of silicone
tubes which imitates main arteries of the human body. In the second case the fluid
flow in the bifurcation of carotid arteries is modelled. The bifurcation geometry is
presented as a cavity in a silicone block. Both experiments provide enough data for
simulations. The numerical results will be compared with experimentally measured
data.
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2 Blood Flow Model

Blood is assumed to be viscous incompressible fluid flowing in the vascular
network. Every vessel is considered as an elastic tube. Poiseuille’s velocity profile
is assumed in every cross section. Let S be the area of vessel cross section, ū is the
axial velocity and p̄ is the pressure (both averaged over cross section). The model
is based on mass and momentum conservation laws. The third equation is the state
equation that describes elastic properties of the vessel walls. The model system of
equations is the following [5]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂S

∂t
+ ∂(Sū)

∂x
= ϕ(t, x, S, ū)

∂ū

∂t
+ ∂(ū2/2+ p̄/ρ)

∂x
= ψ(t, x, S, ū)

p̄ − pext = f (S)

for x ∈ [0, l], (1)

where l is the length of the vessel, ρ is the fluid density, pext is the external pressure
(in this work pext = 0), ϕ is known function of a source or sink of the fluid (ϕ = 0 in
this work), ψ is known function of external forces, e.g. friction. Function f (S)may
be different depending on the vessel wall material properties [6]. One common state
equation for tubes with linear elastic properties of wall material is the following:

f (S) =
√
πhE

(1− σ 2)S0
(
√
S −√

S0), (2)

where h is the wall thickness, E is Young’s modulus, σ is Poisson’s ratio, S0 is the
cross section area of a vessel at rest.

The system of Eqs. (1) should be closed by boundary conditions. Hyperbolic type
of the system (1) guarantees one condition for every boundary point of the vessel.
For the blood flow model in vascular networks we ask for continuity of total pressure
and mass conservation at every point of vessel junctions (network node):

pi + ρu2
i

2
= pj +

ρu2
j

2
∀i, j ∈ [1, n], (3)

∑

i=1,...,n

εiSiui = 0, (4)

where n is the number of connected vessels, εi = 1 for incoming vessels and εi =
−1 for outgoing vessels. Depending on the task, the condition of the total pressure
continuity (3) can be replaced with the condition of pressure continuity

pi = pj ∀i, j ∈ [1, n], (5)
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or with Poiseuille’s pressure drop conditions:

pi − pnode = RiεiSiui ∀i ∈ [1, n], (6)

where Ri is the hydraulic resistance for the flow between the vessel with the number
i and the center of the network node, pnode is the pressure in the network node.

The numerical model used in this work is presented in [5, 7, 8] where grid-
characteristic method is used for the numerical integration of the 1D model
equations. The first order scheme is applied to the characteristic form of (1).

3 Modelling of Fluid Flow in the Vascular Network

The physical experiment is presented in the paper [9]. The system of 37 silicone
tapered tubes (Fig. 1) imitates main human arteries. Properties of the silicone are
the following: Young’s modulus is E = 1.2 MPa, Poisson’s ratio is σ = 0.5.
Water-glycerol mixture has properties similar to blood: density is ρ = 1050 kg/m3

and viscosity is μ = 2.5 mPa. The fluid is pumped through the silicone network.
Terminal vessels are connected to the overflow reservoir via single small-diameter
tubes (passive resistance elements).

At the inlet of the network the flow rate measured in vitro is prescribed as the
inflow boundary condition. The flow rate corresponds to heart output. Terminal
vessels are coupled to single-resistance terminal models. Pressure and flux are
measured in middle points of several vessels.

Fig. 1 Scheme of silicone
network
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Fig. 2 Convergence of numerical solution in 10 and 11 vessels

The uniform mesh is used in the whole vascular network. Let L be the integer
part of the vessel length l cm (L = [l]). The series of simulations with mesh
consisting of 10L, 20L, 40L, 80L, 160L calculation points in each vessel are
presented. Time steps are 1E−5, 5E−6, 2.5E−6, 1.25E−6, 5.125E−7, respectively.
The convergence of numerical solutions in the middle points of vessels 10 and
11 is shown in Fig. 2. The red line is experimental (in vitro) data. The black line
corresponds to reference data. Let us call the reference data representative curves of
pressure and flux calculated in points of experimental measurements by numerical
model. Described benchmark is calculated by several 1D blood flow models with
different numerical methods. All results are similar and are summarized in [4]. One
of such identical numerical solutions in points of experimental measurements is
chosen as reference data. Numerical solutions produced in the current series of
simulations by our model converge to the reference data. We have calculated the
relative L2 error norm of numerical flux as follows:

||q(xi)− qref (xi)||L2

||qref (xi)||L2

=
√∫

T
(q(xi)− qref (xi))2dt
√∫

T
(qref (xi))2dt

,
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where qref (xi) and q(xi) are the reference data and our numerical solution in points
xi , xi is the point of experimental measurement (the middle point of corresponding
vessel), T ∈ [14; 16]. Relative L2 error norm of numerical pressure is calculated in
the same manner. Errors of numerical pressure and flux are summarized in Tables 1
and 2. Numerical solutions converge to the reference data. In some vessels we can
see the first order convergence, in particular, on coarse meshes (10L, 20L, 40L
meshes). The convergence decays on fine meshes because the error is small and the
limit curve (mesh and time steps tend to zero) of numerical solutions does not match
exactly the reference curve. We can see that the numerical results on 80L and 160L
meshes are good enough.

Comparisons between experimental (line 1) and numerical (line 2) pressure and
flow profiles in eight vessels are shown in Fig. 3. Numerical results (line 2) are
shown for mesh with 80L points in each vessel. Line 3 corresponds to the reference
data [4]. The present 1D blood flow model provides the same results as other 1D
blood flow models based on different numerical methods. It is capable to capture
the main features of in vitro observed pressure and flow waveforms.

As was stated in [4] and seen in Fig. 3, numerical predictions overestimate
the amplitude of the high-frequency oscillations observed in the in vitro pressure
and flow waveforms of some vessels (e.g. 7, 14, 20, 34). We presented the same

Table 1 Relative L2 error
norms for pressure

Vessel Mesh

10L 20L 40L 80L 160L

7 6.3E−2 2.7E−2 1.2E−2 5.9E−3 3.0E−3

10 5.3E−2 2.9E−2 1.5 E−2 8.3E−3 4.5E−3

11 4.2E−2 2.4E−2 1.2E−2 7.1E−3 4.0E−3

14 2.7E−2 1.7E−2 9.7E−3 6.0E−3 4.0E−3

17 3.1E−2 1.9E−2 1.0E−2 5.7E−3 3.3E−3

20 2.4E−2 1.6E−2 9.4E−3 6.3E−3 4.8E−3

29 2.7E−2 1.0E−2 4.9E−2 2.8E−3 2.3E−3

34 4.5E−2 1.8E−2 7.3E−3 3.6E−3 3.2E−3

Table 2 Relative L2 error
norms for fluid flux

Vessel Mesh

10L 20L 40L 80L 160L

7 7.6E−2 3.6E−2 1.6E−2 9.8E−3 7.4E−3

10 1.2E−1 6.4E−2 3.2E−2 1.9E−3 1.4E−3

11 1.0E−1 5.2E−2 2.7E−2 1.7E−3 1.3E−3

14 4.6E−2 2.8E−2 1.0E−2 8.2E−3 7.4E−3

17 1.6E−1 8.3E−2 4.2E−2 2.7E−2 2.1E−2

20 3.4E−2 2.3E−2 1.6E−2 1.6E−3 1.6E−3

29 8.2E−2 4.7E−2 2.3E−2 2.0E−3 1.9E−3

34 6.3E−2 3.2E−2 1.2E−2 8.2E−3 7.0E−3
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Fig. 3 Comparison of pressure (a) and fluid flux (b) in several vessels: 1—experimental measure-
ments, 2—numerical results, 3—reference numerical results. All tubes are considered tapered

simulation neglecting the tapered tube shape and assuming the constant (average)
diameter along the tube. The numerical results are shown in Fig. 4. Flux and pressure
profiles become smoother. Such results better correspond to experimental data.
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Fig. 4 Comparison of pressure (a) and fluid flux (b) in several vessels: 1—experimental measure-
ments, 2—numerical results, 3—reference numerical results. All tubes are considered nontapered
with constant (average) diameter along the vessel

Tapered vessel shape causes wave reflections from bifurcation and terminal
points. Neglecting the tapered form we may underestimate real reflections. At the
same time the model still captures all main features of in vitro pressure and flow
waveforms, even better for some vessels than the model with tapered vessels.
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We also presented a series of numerical experiments with different mesh size
and time step. There is no noticeable difference in the numerical solutions even for
meshes with 10L and 20L calculations points at each vessel. It means that the mesh
may be considerably coarser for vascular network if the diameter is constant along
every vessel. The computational time can be greatly reduced on coarse meshes.

The simulation prescribing the continuity of pressure (5) instead of total pres-
sure (3) in network nodes does not show noticeable difference in numerical results.

4 Modelling of Fluid Flow in Bifurcation of Carotid Arteries

In this numerical experiment we use the data obtained in another physical exper-
iment. A cavity in a silicone block represents geometry of carotid arteries. Fluid
flow in this domain is simulated with special engineering device [10]. Diameters
of common, external and internal arteries are 8, 4.62 and 5.56 mm, lengths are 90,
60 and 60 mm, respectively. The silicone block is made of Sylgard 184 material,
Young’s modulus E = 1.84 MPa, Poisson’s ratio σ = 0.5. Properties of the fluid
are similar to blood (viscosity is 4 mPa s, density is 1 g/cm3). The fluid is pumped
through the cavity. The inflow flux is generated as an average statistical flow rate in
the human common carotid artery.

Intravascular guide wire ComboWire is applied for velocity and pressure mea-
surements. It is shown schematically in Fig. 5. This guide wire is used in endovascu-
lar operations. It can measure the pressure inside the vessel. Velocity measurement
is based on the ultrasound Doppler method. The result is the range of velocity values
in vicinity of the device. The dependence of maximal velocity value on time can be
obtained in this cross section. Measurements of pressure and velocity are provided
in several points: C1, C2, E2, E3, I2, I3 (Fig. 6).

In assumption of Poiseuille’s velocity profile the maximal velocity value should
be halved to get the velocity averaged over cross section. Therefore Doppler
data which corresponds to maximal values of velocity should be halved for the
comparison with numerical results of the 1D blood flow model.

·
· ·

·
· ·

1.5 cm Offset
Model 9515

Flow
Sensor

Pressure
Sensor

1.5 cm
Offset

Radiopaque
Tip

Flow
Sensor

Pressure
Sensor

0.0 cm Offset
Model 9500

0.014” (0.36mm) Diameter Torque Device
Unlock

Lock Connector

501-0100.105/002

Pressure Plug

Flow Plug

PTFE Coating

Working Length 185 cm

Flexible Length 30 cm SlyDxTM Coating

Radiopaque
Tip 3 cm

Fig. 5 Scheme of intravascular guide wire ComboWire
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Fig. 6 Scheme of silicone carotid bifurcation

0
4 0

2000

4000

6000

8000

10000

12000

14000

16000

18000

5

6

7

8

9

10

11

12

13

14

a b

0.2 0.4 0.6 0.8

t, S

u,
 s

m
/s

P
, P

a

1 1.2

Velocity

Velocity on inflow boundary (C1) Pressure on outflow boundaries (I3 and E3)

Pressure

1.4 0 0.2 0.4 0.6 0.8

t, S

1 1.2 1.4

Fig. 7 Measured velocity on inflow boundary (a) and pressure on outflow boundaries (b)

The computational domain was bounded by the C1, E3, I3 sections. Velocity
waveform measured in C1 section and halved is set as the inflow boundary condition
(Fig. 7a). Equal pressures measured in E3 and I3 sections are set as the outflow
boundary conditions (Fig. 7b). The set of conditions (3) and (4) is used in the
bifurcation node.

Numerical results and experimental measurements are compared in sections
C2, E2, I2. The pressure drop along the domain is very small comparing with
the pressure value. The pressure dependence on time (Fig. 7b) is observed in all
studied cross sections. Comparison of calculated velocity profiles and measured data
(halved) is shown in Fig. 8. The model reproduces time velocity profile in mother
vessel. Nevertheless we can see significant difference in the velocity values in
daughter vessels: numerical predictions overestimate experimental data in internal
carotid artery and underestimate it in external carotid artery.

We performed the 3D modelling of fluid flow in the bifurcation for better
understanding of the flow nature. The 3D model is based on the Navier-Stokes
equations. Vessel walls are considered to be fixed. This assumption is possible
because the silicone block is rather rigid. The bifurcation geometry is complex:
branching vessels are curved. At the moment of maximal velocity vortex appears
(Fig. 9) in internal carotid artery which lasts during diastolic part of the cycle. It
leads to the flux redistribution in daughter vessels: flux and velocity decrease in
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Fig. 8 Comparison of
calculated and measured
average velocities in C2, I2,
E2 cross sections

2
1.6 1.8 2 2.2 2.4

t, s

Time velocity profiles

u,
 c

m
/s

2.6 2.8 3

4

C2 - Calculations
I2 - Calculations

E2 - Calculations
C2 - Measurements
I2 - Measurements

E2 - Measurements

6

8

10

12

14

16

18

20

internal carotid artery and increase in external carotid artery. This fact should be
taken into account by the bifurcation node boundary condition in the 1D model.

All types of 1D network node boundary conditions mentioned in Sect. 2 have
been tested. The continuity of pressure (5) is used instead of the continuity of total
pressure (3). The numerical solution has not changed. The pressure drop between
C2,I2,E2 cross sections and the point in the middle of bifurcation was calculated
by the 3D model of fluid flow. The average hydraulic resistances were obtained
from expression (6). The simulation by the 1D blood flow model with (4)–(6)
conditions in the bifurcation node was performed. There is no noticeable difference
in velocity comparing with the previous numerical results calculated by the 1D
model with (3)–(4) conditions. Hydraulic resistance in (6) condition effects on the
numerical pressure but not on the flux.

In general Doppler data does not provide enough information for 1D blood flow
model because the velocity profile is not necessarily Poiseuille’s. In this case the
ratio between maximal and mean velocities is also unknown. For this experiment
the mean velocities are obtained with MRI scan [10]. Numerical simulations were
performed by the 1D blood flow model with MRI mean inflow velocity. Numerical
predictions also overestimated experimental MRI measurements in daughter ves-
sels. Therefore the problem of the 1D simulation is the bifurcation node condition
and not the measured data.

5 Conclusions

The numerical 1D blood flow model was verified on two benchmarks. First, the fluid
flow in the network of silicone tubes was simulated. Numerical pressure and flux
correspond to reference data and experimental data very well. Neglecting the vessel
tapered form and assuming average constant diameter along every vessel allows us



Blood Flows in Vascular Networks: Numerical Results vs Experimental Data 345

Fig. 9 Streamlines of numerical 3D solution at several times: vortex in the bifurcation

to capture all main features of in vitro pressure and flow waveforms. In this case the
mesh can be considerably coarser and the simulation can be much faster.

In the second case the fluid flow in bifurcation of carotid arteries was modelled.
The fluid flow is rather complex in the bifurcation. The vortex is seen in the 3D
numerical solution. Numerical velocities, calculated by the 1D blood flow model,
are different from the experimental data in daughter vessels. The improvement of
the 1D blood flow model and especially boundary conditions in the network node is
demanded for modelling of complex 3D flows.
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Optimization of Combined Antitumor
Chemotherapy with Bevacizumab by
Means of Mathematical Modeling

M. B. Kuznetsov and A. V. Kolobov

1 Introduction

Pre-existing vascular system limits the rate of tumor growth, mainly due to the
fact that tumor cells require much larger nutrient supply than normal cells. This
limitation is overcome by tumor angiogenesis, or neovascularization, governed
by tumor-induced proangiogenic factors, of which vascular endothelial growth
factor, or VEGF, is accepted to be the most important one. Antiangiogenic therapy
(AAT) was suggested in 1971 by Folkman [15]. The first antiangiogenic drug,
bevacizumab, which irreversibly binds to VEGF, was approved for medical use in
2004 and is widely used nowadays.

Due to overproduction of proangiogenic factors by tumors, their newly formed
microvasculatory system is chaotic and the capillaries themselves are dilated,
tortuous and their walls are highly permeable [4]. AAT by bevacizumab not only
prevents the formation of new capillaries, but also leads to capillaries maturation,
i.e., brings them to more physiologically normal state with normalized permeability
of walls, both factors resulting in depriving tumor of nutrients and thus decelerating
its growth.

Compared to traditional radio- and chemotherapy (CT), AAT has moderate side-
effects, but it alone cannot completely eradicate tumor and therefore should have
limited efficiency, which has been proved in clinics [13]. Nowadays almost all of
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the approved administration schemes, which include bevacizumab, combine it with
various chemotherapy agents [17], aimed at direct killing of actively dividing cells,
but also associated with significant side-effects.

Two different types of drugs, administered simultaneously, interact with each
other in different ways. Of note, AAT often eventually leads to reduced influx
of chemotherapeutic drug in tumor, which was observed experimentally [9, 29].
Therefore, a great challenge concerning CT combined with antiangiogenic agents
is the problem of optimal scheduling of drugs administration in order to maximize
antitumor effect and minimize side-effects. The topic is being actively investigated
now, and mathematical modeling can facilitate it.

However, in contrast to clinical practice, mathematical modeling of combined
CT and AAT has begun only recently [3, 19]. The effect of antiangiogenic drugs is
described only phenomenologically in existing models. Moreover, all works of this
type do not take into account the spatial structure of the tumor, which indicates that
they are only suitable for simulation of postoperative (adjuvant) therapy. However,
there are a lot of works to rely upon, which model classical CT [10, 14, 33] and AAT
with bevacizumab, considering its pharmacokinetics in blood and tissue [8, 26].

In this work we compare the efficiencies of different schemes of palliative
combined chemotherapy with bevacizumab. This kind of therapy is administered
when surgical intervention is not possible, and drug administration continues until
tumor remission or lethal outcome.

2 Model

2.1 Equations

Figure 1 demonstrates the block-scheme of the model under investigation. We
consider tumor as heterogeneous colony of malignant cells, introducing variables
of normalized density of proliferating cells, n1(r, t), where r and t are space and
time coordinates, and resting cells, n2(r, t), which are able to move in tissue in
accordance with widely accepted principle of migration/proliferation dichotomy
of tumor cells [18]. Cells can change their states depending on the concentration
of glucose S(r, t), which is selected as the key metabolite. The tissue tumor
grows in consists of normal cells with density h(r, t). When dying due to either
lack of glucose or CT, tumor and normal cells form necrosis, whose fraction in
tissue is denoted as m(r, t). In absence of tumor, the tissue contains preexisting
normal capillary network, the bulk density of its surface is EC(r, t). As a result
of tumor neovascularization, it expands by addition of angiogenic capillaries, their
surface bulk density is FC(r, t). The model also takes into account concentrations
of VEGF, V (r, t), bevacizumab A(r, t) and cytotoxic drug. For consideration of
pharmacokinetics of the latter we use parameters of cisplatin, which is one of the
chemotherapeutic agents, frequently used in combination with bevacizumab [17].
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m 

VEGF 

n1

A

h 
n2

S

Tf

EC+FC

Tb

Fig. 1 Block-scheme of the model of tumor progression and combined chemotherapy with
bevacizumab: n1 and n2 are proliferating and migrating tumor cells, respectively, h is host cells,m
is necrosis, S is glucose, VEGF is vascular endothelial growth factor, EC and FC are preexisting
and angiogenic microcirculatory networks, respectively,A is bevacizumab, T f and T b are free and
protein-bound forms of cisplatin, respectively. Gray arrows indicate stimulating relations, black
arrows indicate inhibiting relations, white arrows denote cell transitions

Since it possesses high affinity for plasma proteins, we take into account two forms
of cisplatin in the model by including variables of concentrations of its free and
protein-bound forms, T f (r, t) and T b(r, t), respectively. Equations, describing the
densities of cell populations and necrosis fraction, are as follows:

∂n1

∂t
=

proliferation︷︸︸︷
Bn1

transitions︷ ︸︸ ︷
−P1(S)n1 + P2(S)n2

death by CT︷ ︸︸ ︷
−kT TnT n1

convection︷ ︸︸ ︷
−∇(In1),

∂n2

∂t
=

transitions︷ ︸︸ ︷
P1(S)n1 − P2(S)n2

death︷ ︸︸ ︷
−dn(S)n2

convection︷ ︸︸ ︷
−∇(In2)+

migration︷ ︸︸ ︷
Dnn2 ,

∂h

∂t
=

death︷ ︸︸ ︷
−dh(S)h

convection︷ ︸︸ ︷
−∇(Ih),

∂m

∂t
=

cell death︷ ︸︸ ︷
dn(S)n2 + dh(S)h+ kT TnT n1

convection︷ ︸︸ ︷
−∇(Im), (1)
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where n1 + n2 +m+ h = 1,

∇I = Bn1 +Dn�n2,

P1(S) = k1exp(−k2S),

P2(S) = 1

2
k3(1− tanh[εtr (Str − S)]),

di(S) = 1

2
dmaxi (1+ tanh[εd(Sd − S)]), i = n, h.

The forms of functions of transitions from one state to another P1(S) and P2(S)

are described in detail in our previous work [26]. Herein we consider only cell cycle-
specific action of chemotherapeutic agent. The physical meanings of parameters and
their values used in this work are discussed in Sect. 2.2.

We consider an incompressible dense tissue, in which space distribution of
components is affected by their local kinetics—e.g., dividing cells push out sur-
rounding tissues, providing an increase of tumor size. To account for these effects,
we introduce the convective velocity field I(r, t), which is derived analogically to
[25].

As already mentioned, the model uses two variables to describe the vascular
network, namely, its preexisting and angiogenic parts, the latter having signif-
icantly higher permeability of walls. With tumor progression microcirculatory
network locally degrades under the influence of increased local pressure due to
cell proliferation and migration [6] and various chemical factors [21], accounted
for implicitly via the fact that degradation rate is non-zero inside necrosis, but lower
than in presence of tumor cells. Under sufficient amount of VEGF, formation of
new angiogenic capillaries takes place along with “dematuration” of preexisting
ones, which is introduced in the model to reflect increase in vascular walls
permeability due to the action of VEGF and is described by transition from EC

to FC. Under small concentrations of VEGF capillaries maturate and reverse
transition takes place. Of note, angiogenesis rate decreases in presence of cisplatin,
which kills dividing endothelial cells as well. The term microvasculature pruning
is introduced for description of microcirculatory network tendency to return to
constant physiologically reasonable density, this term responsible for its returning
to normal state when tumor angiogenesis is stopped by therapeutic intervention.
All capillaries move with the convective flows, although slower, than the cells, due
to the connectivity of microvasculature. Migration of angiogenic capillaries is also
included to reflect stimulation of capillaries motility by VEGF.



Optimization of Combined Antitumor Chemotherapy with Bevacizumab by. . . 351

Equations describing the dynamics of capillary surface density are as follows:

∂EC

∂t
=

degradation︷ ︸︸ ︷
−[l(n1 + n2)+ lmm]EC

maturation︷ ︸︸ ︷
+vmat · V

∗

V + V ∗ FC
dematuration︷ ︸︸ ︷

−vdem · V
V + V ∗ EC

microvessel pruning︷ ︸︸ ︷
−μ(EC + FC − 1)EC ·�(EC + FC − 1)

convection︷ ︸︸ ︷
−∇(γ I · EC),

∂FC

∂t
=

angiogenesis︷ ︸︸ ︷

Re−kAT T V

V + V ∗ (EC + FC)
[

1− (EC + FC)
Cmax

]

degradation︷ ︸︸ ︷
−[l(n1 + n2)+ lmm]FC

maturation︷ ︸︸ ︷
−vmat · V

∗

V + V ∗ FC
dematuration︷ ︸︸ ︷

+vdem · V
V + V ∗ EC

microvessel pruning︷ ︸︸ ︷
−μ(EC + FC − 1)EC ·�(EC + FC − 1)

migration︷ ︸︸ ︷
+DFC�FC

convection︷ ︸︸ ︷
−∇(γ I · FC) . (2)

Glucose enters the tissue from the microvasculature, its inflow being governed by
the process of transvascular diffusion [28]. The inflow term accounts for difference
in permeabilities of walls of different capillaries for glucose. Glucose blood level
is considered to be constant. All types of cells consume glucose, consumption
rate of proliferating cells being much higher due to specific features of tumor
metabolism [20]. Glucose diffuses in tissue, its local diffusion coefficient being
known to decrease with the concentration of cells [39], or, which is the same in
terms of this model, to increase with concentration of necrosis.

Moreover, since it is known that diffusion coefficient of substances increases
in necrosis, DW-MRI being working on this very principle [36], we introduce
dependence of diffusion coefficient on necrosis fraction for all the substances in
the model, using the simplest linear form of relevant function:

Di(m) = D0
i (1+ αm), i = S, V,A, T f , T b.

Thus, change of glucose concentration is defined by the equation:

∂S

∂t
=

inflow︷ ︸︸ ︷
[PS,ECEC + PS,FCFC](Sbl − S)

consumption︷ ︸︸ ︷
−[qn1n1 + qn2n2 + qhh] S

S + S∗
diffusion︷ ︸︸ ︷

+DS(m)�S . (3)
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Proangiogenic factor VEGF is produced by malignant cells. Since metabolic
stress significantly upregulates its production [37], its secretion only by resting
cells is taken into account. Also we take into account VEGF internalization by
endothelial cells, diffusion in tissue, molecular degradation and outflow from tissue,
the latter being included in the model in explicit form under the assumption that
VEGF concentration in blood is equal to zero.

Bevacizumab is administered intravenously, which is reflected by the ordinary
equation for its blood concentration, consisting of administration term, due to which
blood concentration of bevacizumab abruptly increases by unity in the moments of
its injection, and the term of its blood clearance. Bevacizumab comes from blood
into the tissue, where it diffuses and binds irreversibly to VEGF, thus rendering it
inactive. Difference in permeabilities of walls of different capillaries is significant
for bevacizumab, as its size is comparable to pore sizes of normal body capillaries.

Since bevacizumab is a macromolecule, developed especially for VEGF inhibi-
tion, it practically does not interact with tissue elements.

∂V

∂t
=

production︷︸︸︷
pn2

internalization︷ ︸︸ ︷
−ωV (EC + FC)

outflow︷ ︸︸ ︷
−[PV,ECEC + PV,FCFC]V

degradation︷ ︸︸ ︷
−dV V

neutralization︷ ︸︸ ︷
−(kAAn)AV

diffusion in tissue︷ ︸︸ ︷
+DV�V,

∂A

∂t
=

inflow︷ ︸︸ ︷
[PA,ECEC + PA,FCFC](Abl − A)
binding to VEGF︷ ︸︸ ︷
−(kAVn)AV

diffusion in tissue︷ ︸︸ ︷
+DA�A,

∂Abl

∂t
=

injection︷︸︸︷
F ivA

clearance︷ ︸︸ ︷
−dAAbl . (4)

Cisplatin enters the systemic circulation by intravenous administration as well,
that is also reflected in the model by abrupt increase by unity. Cisplatin strongly
interacts with blood proteins and as a result exists in blood and tissue in two
forms—as free small active drug molecules (which concentration is denoted by
T f ) and large protein-bound inactive complex (concentration denoted by T b). Both
fractions of drug come from blood into the tissue, where they diffuse and continue
to pass from one form to another. The rate on protein binding should depend
on the concentration of proteins, which is usually much higher in blood than in
normal tissue. However, since we consider tumor tissue, to the time of therapy
blood protein should accumulate inside it to the levels comparable to blood ones
due to enhanced permeability of walls of angiogenic microvasculature and impaired
lymphatic drainage of interstitial fluid, so we consider unchanged rates of binding
to blood proteins inside the tissue. We neglect blood clearance of protein-bound
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complex as well as its binding to tissue elements as being very small compared to
the ones of free drug.

∂T f

∂t
=

inflow︷ ︸︸ ︷
[PEC,Tf EC + PFC,Tf FC]

(
T
f
bl − T f

)
interactions with proteins︷ ︸︸ ︷
−konT f + koff T b

non-specific binding︷ ︸︸ ︷
−dT T f

diffusion︷ ︸︸ ︷
+DTf�T f ,

∂T b

∂t
=

inflow︷ ︸︸ ︷
[PEC,T bEC + PEC,T bFC]

(
T bbl − T b

)

interactions with proteins︷ ︸︸ ︷
+konT f − koff T b

diffusion︷ ︸︸ ︷
+DTb�T b,

∂T
f
bl

∂t
=

injection︷︸︸︷
F ivT

interactions with proteins︷ ︸︸ ︷
−konT fbl + koff T bbl

clearance︷ ︸︸ ︷
−dT,blT f ,

∂T bbl

∂t
=

interactions with proteins︷ ︸︸ ︷
konT

f
bl − koff T bbl. (5)

2.2 Parameters

The model contains several dozens of parameters, which are taken from var-
ious experiments of different nature, where possible, or estimated in order to
reflect known features of tumor growth. The basic set of parameters in given in
Table 1, where the following normalization parameters are used to obtain their
model values: tn = 1 h for time, Ln = 10−2 cm for length, Sn = 1 mM for glucose
concentration. Normalization parameters for VEGF, bevacizumab and cisplatin
are used in corresponding terms describing actions of therapies and are chosen
to be Vn = 10−11 mol/ml, An = 1.6× 10−9 mol/ml, Tn = 5× 10−8 mol/ml, the
latter two values estimated as blood concentration of relevant drug in aver-
age man right after its injection. Maximal density of tumor cells is equal to
3× 108 cells/ml and is taken from [16]. Normal capillary surface density is taken to
be ECn = 100 cm2/cm3, based on averaged value for human muscle [28].

In estimations of tumor cells proliferation rate and nutrient consumption rates of
proliferating cells we rely on the corresponding values obtained at the initial stage
of tumor spheroids growth in suspension, but we assume that these values should
be proportionally diminished during the growth of relevant tumor in tissue due to
such factors as mechanical pressure, increased acidity and production of lactate by
tumor cells [32]. Estimation of glucose uptake rate of resting tumor cells is based on
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Table 1 Model parameters

Parameter Description Value
Model
value

Estimations
based on

Tumor cells

B Proliferation rate 0.02 h−1 0.02 [16]

k1 Maximum rate of
transition to rest

0.4 h−1 0.4 [35]

k2 Sensitivity of transition
to rest to glucose

19.8 (mg/ml)−1 3.6 [35]

k3 Maximum rate of
transition to
proliferation

0.16 h−1 0.16 [26]

εtr Sensitivity of transition
to proliferation

1.8 1.8 [26]

to glucose

Str Threshold glucose
concentration

1.7 mM 1.7 [26]

for transition to
proliferation

kT Sensitivity to cisplatin Varies See text

dmaxn Maximum rate of death 0.02 h−1 0.02 [22]

εd Sensitivity of death rate
to glucose

5 5 See text

Sd Threshold glucose
concentration for death

0.55 See text

Dn Migration coefficient 10−10 cm2/s 0.0036 See text

Normal cells

dmaxh Maximum rate of death 0.03 h−1 0.03 [22]

Capillaries

l Degradation rate in
viable region

1.7× 10−10 (cells/ml)−1 s−1 0.05 See text

lm Degradation rate in
necrosis

1× 10−10 (cells/ml)−1 s−1 0.03 See text

vmat Maturation rate 0.05 h−1 0.05 See text

V ∗ Michaelis constant for
angiogenesis rate

10−14 mol/ml 0.001 See text

vdem Dematuration rate 0.05 h−1 0.05 See text

μ Pruning rate 10−5 (cm2/cm3)−1 s−1 0.001 See text

γ Network elasticity 0.5 0.5 See text

R Maximum angiogenesis
rate

0.02 h−1 0.02 See text

Cmax Maximum capillary area
surface density

500 cm2/cm3 5 See text

kAT Sensitivity of
angiogenesis to cisplatin

0.35× 10−8 mol/ml 10 See text

(continued)
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Table 1 (continued)

Parameter Description Value
Model
value

Estimations
based on

DFC Migration coefficient 10−11 cm2/s 0.00036 See text

Glucose

α Diffusion sensitivity to
necrosis fraction

0.3 0.3 [36, 39]

PEC,S Permeability of continuous
capillaries’ walls

1.1× 10−5 cm/s 4 [28]

PFC,S Permeability of angiogenic
capillaries’ walls

2.8× 10−5 cm/s 10 [28]

Sbl Blood level 5.5 mM 5.5 [1]

qn1 Proliferating tumor cells
uptake rate

8.0× 10−17 mol/cell·s 70 [16]

qn2 Resting tumor cells uptake
rate

2.3× 10−18 mol/cell·s 2 [35]

qh Normal cells uptake rate 0.49 mg/min · 100 ml 1.6 [2]

S∗ Michaelis constant for uptake
rate

0.04 mM 0.04 [7]

D0
S Diffusion coefficient 2.6× 10−6 cm2/s 94 [40]

VEGF

p Production rate 2 fg/h cell 1 [23]

ω Internalization rate 2.8× 10−4 s−1 1 [31]

PEC,V Permeability of continuous
capillaries’ walls

6.4× 10−8 cm/s 0.023 [28]

PFC,V Permeability of angiogenic
capillaries’ walls

7.8× 10−7 cm/s 0.28 [28]

dV Degradation rate 0.01 h−1 0.01 [24]

kA Binding to bevacizumab 5.3× 105 M−1 s−1 1.9× 1012 [34]

D0
V Diffusion coefficient 5.9× 10−7 cm2/s 21.2 [24]

Avastin

PEC,A Permeability of continuous
capillaries’ walls

1.6× 10−9 cm/s 6 · 10−4 [28]

PFC,A Permeability of angiogenic
capillaries’ walls

1.2× 10−7 cm/s 0.044 [28]

D0
A Diffusion coefficient 4× 10−7 cm2/s 14.3 See text

dA Blood clearance rate 0.035 day−1 0.0014 [17]

Cisplatin

PEC,Tf Permeability of continuous
capillaries’ walls

8× 10−6 cm/s 3 [28]

PFC,Tf Permeability of angiogenic
capillaries’ walls

2.2× 10−5 7.9 [28]

kon Rate of binding to proteins 0.46 0.46 [42]

koff Rate of unbinding from
proteins

0.04 0.04 [42]

(continued)
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Table 2 (continued)

Parameter Description Value
Model
value

Estimations
based on

dT Rate of non-specific binding Varies See text

with tissue elements

D0
T Diffusion coefficient 2.1× 10−6 cm2/s 77.2 See text

dT,bl Clearance rate 0.13 h−1 0.13 [41]

Protein-bound cisplatin

PEC,T b Permeability of continuous
capillaries’ walls

2.8× 10−8 cm/s 0.01 [28]

PFC,T b Permeability of angiogenic
capillaries’ walls

4.5× 10−7 cm/s 0.16 [28]

D0
T b Diffusion coefficient 5.8× 10−7 cm2/s 20.9 See text

the observation, made in [35], that it should be at least 40 times lower than glucose
consumption rate of proliferating cells of corresponding tumor cell line. The values
of death rates of normal and tumor cells are assessed on experimental data on cell
behavior under extreme nutrient deprivation, the parameters of sensitivity to glucose
concentration being chosen so that cell death becomes significant only under its
considerable decrease, normal cells being more sensitive to nutrient deprivation.
Migration coefficient of tumor cells corresponds to non-invasive tumor. We vary the
value of tumor cells sensitivity to cisplatin and non-specific binding of cisplatin to
investigate relative efficiencies of different schemes of drugs administration under
different conditions. Microvasculature parameters are estimated in order for the
model microvasculature behavior to adequately approximate general features of
structure and dynamics of functional tumor microvasculature [11, 12, 38]. Perme-
abilities of capillaries for different substances are assessed using Renkin equation,
analogically to how it was done in [26]. Diffusion coefficients for bevacizumab and
two forms of cisplatin are estimated based on already defined values for glucose
and VEGF and molecule radii of all substances in use. The radius of albumin is
used for estimations of parameters of protein-bound cisplatin. Since the rate of non-
specific binding of cisplatin strongly depends on patient-specific characteristics,
tumor localization and various other factors, which introduced a large portion of
uncertainty in its clinical estimation, we choose this parameter to vary in simulations
presented herein along with tumor cells sensitivity to cisplatin.

2.3 Numerical Solving

The set of Eqs. (1)–(5) was solved in one-dimensional region with size of L = 2 cm
using plane geometry, since it brings practically no difference to simulation results
in comparison with spherically symmetric case, as center of large tumor is occupied
with necrosis in our simulations as well as in numerous experimental studies. Initial
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conditions correspond to normal tissue with a small colony of tumor cells situated on
the left border, so n1(x, 0) = max(0, 0.25[1− (x/10)2]), h(x, 0) = 1− n1(x, 0),
EC(x, 0) = 1. The initial distribution of glucose S(x, 0) is calculated as its steady-
state concentration in normal tissue. The other variables at the initial moment of
time are equal to zero. For all variables zero-flux boundary conditions are set on
both borders. The convective flow speed is set zero on the left border, free boundary
condition is used for it on the right border, which results in the following equation
for convective flow speed:

I (x, t) =
∫ x

0
[Bn1(r, t)]dr +Dn∇n2(x, t).

To speed up the calculations, equations for VEGF and glucose are considered in
the quasi-stationary approximation due to high rates of their reactions with respect
to these rates for other variables and are solved numerically using the tridiagonal
matrix algorithm. For other variables, the method of splitting into physical processes
is used. Kinetic equations are solved via the fourth-order Runge-Kutta method, and
Crank-Nicholson scheme is used for the diffusion equations. Convective equations
are solved using the flux-corrected transport algorithm [5] with the use of explicit
anti-diffusion stage.

3 Results

Figure 2 demonstrates the distribution of model variables during monochemother-
apy under tumor cells sensitivity to cisplatin kT = 5×109 and non-specific binding
rate of cisplatin dT = 1.5. The scheme of drug administration is one dose every
3 weeks, with total of six injections. Figure 2a relates to the day right before
the beginning of the treatment and thus shows structure of untreated tumor and
its microenvironment, which adequately represents experimental observations. Few
functional capillaries are situated inside the tumor, which main mass consists of
necrosis m, while massive angiogenic extension of microvasculature FC is located
adjacent to the tumor. Due to elevated capillary density as well as increased per-
meability of walls of angiogenic microvasculature compared to that of normalized
one EC, this region provides enhanced supply of glucose S to the tumor cells,
which are concentrated near the tumor boundary, comprising a viable rim of several
millimeters in width, with proliferating cells n1 on its outer side. However, close
location to capillaries renders them rather vulnerable to the action of cisplatin,
whose inflow in tissue also depends on amount and state of capillaries, and in a
more intense way, since considerable amount of drug enters tissue in a protein-
bound form, for which relation in permeabilities of capillaries of two types is much
bigger than that for small molecules like glucose and free cisplatin (16 versus
approximately 2.5 for both).
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Fig. 2 Profiles of proliferating tumor cells density n1, total tumor cells density n1 + n2, fraction
of tumor with necrosis n1 + n2 +m, concentration of VEGF V , normal microcirculatory network
surface density EC, total microcirculatory network surface density EC + FC, concentrations of
glucose S and cisplatin T under tumor cells sensitivity to cisplatin kT = 5× 109 and non-specific
binding of cisplatin dT = 1.5 on the days: (a) 0 (the day before the start of chemotherapy), (b) 1
(first injection of cisplatin), (c) 22 (second injection of cisplatin) (d) 106 (sixth and last injection
of cisplatin), (e) 135 and (f) 430

With the first injection of cisplatin T (Fig. 2b), depth of glucose penetration
into the tumor increases in result of death of proliferating cells, which are its main
consumers. This leads to active transition of resting cells n2 into proliferating state,
in which they are also killed by the action of chemotherapeutic drug. Reduction
of number of resting cells leads to decrease in production of VEGF V , which,
altogether with direct killing of proliferating endothelial cells by cisplatin, leads
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to stop of angiogenesis, and subsequent maturation of capillaries, reflected in the
model as transition from FC to EC, as well as pruning of capillaries, described by
tendency of microvasculature density to return to its normalized state EC = 1.

However, not all tumor cells are killed by the first injection of drug, and a small
amount of them remains alive on some distance from the tumor border, where
sufficient amount of drug does not penetrate. Before the next injection of cisplatin
on day 22 (Fig. 2c) they have time to proliferate and consume enough glucose
to noticeably lower its concentration inside the tumor, which leads to transition
of some cells to resting state which actively produce VEGF anew, due to which
during last days before the second drug injection dematuration and growth of
capillaries takes place, both factors again enhancing the inflow of cisplatin, and
subsequently deepening its penetration, compared to what it would have been in
case of normalized microvasculature.

Nevertheless, in result of several drug infusions, after every one of which the
majority of tumor cells are killed and the remaining ones settle deeper inside the
tumor mass, microvasculature in tissue adjacent to tumor becomes almost fully
normalized, thus pointing out implicit slow antiangiogenic action of CT (Fig. 2d).
However, if some cells still remain alive inside the necrotic mass, like in this model
case, they provide slow tumor remission, which apparently is fostered by renewed
angiogenesis resulting in enhanced supply of nutrients, availability of which defines
the rate of remission (Fig. 2e, f). Thus, it is clear that administration of angiogenic
drug after end of CT will restrain the rate of tumor remission, if the one is to
take place. This notion is supported in clinical practice since administration of
antiangiogenic drugs as a rule continues after the end of CT [17].

But is it efficient to use AAT during the whole course of CT—the way which
is widely accepted in clinical practice? The insights of what happens with tumor
during CT, provided above, imply that this question should not have explicit
and clear answer, since a large number of processes simultaneously influence the
outcome of treatment. From one hand, AAT suppresses the inflow of nutrients to
tumor cells, thus limiting their proliferation rate, from the other hand—it as well
impairs the delivery of chemotherapeutic agent, which is the one that kills tumor
cells directly. It is reasonable to assume that the relative efficiency of combined CT
and AAT would depend on specific parameters of case under consideration.

To prove this idea, herein we consider the variation of two parameters of different
nature: the first one is tumor cells sensitivity to cisplatin kT , which is both drug-
and tumor-related parameter; the second one is the rate of non-specific binding of
chemotherapeutic drug to tissue elements dT , which is drug- and patient-related
parameter. We compare two schemes of drug administration: the one widely used
in clinics, where administrations of both drugs take place simultaneously with
continuation of AAT after the end of CT, hereafter denoted as scheme A for
convenience; and the scheme B, proposed herein and not used in clinics, in which
administration of antiangiogenic drug bevacizumab begins together with the last
injection of cisplatin. In both cases there are six injections of cisplatin at 3 weeks
intervals.
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scheme A: CT+AAT from its 1st dose
scheme B: CT+AAT from its 6th dose
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Fig. 3 Total number of tumor cells during combined chemotherapy with bevacizumab under
different schemes of drugs administration, tumor cells sensitivity to cisplatin kT and rate of
non-specific binding of cisplatin dT . CT is chemotherapy, AAT is antiangiogenic therapy. (a)
kT = 3 × 109, dT = 1, (b) kT = 5 × 109, dT = 1, (c) kT = 3 × 109, dT = 1.5, (d)
kT = 5× 109, dT = 1.5

Figure 3 illustrates the most typical cases of what the difference between results
of two considered treatments may be, demonstrating dependencies of tumor cells
number over time. Of note, in every presented case number of cells after the first
injection of cisplatin is reduced more markedly in absence of AAT, since, as it
has been mentioned above, larger amount of drug enters tumor tissue. However,
as Fig. 3a, b demonstrates, in cases of low rate of cisplatin non-specific binding, in
long-term run scheme B may temporarily lose its advantage. It happens due to the
fact that cisplatin is able to penetrate deep enough inside the tumor to eventually
kill almost all tumor cells even under relatively low inflow of cisplatin provided
by normalized microvasculature, which also suppresses inflow of glucose, resulting
in ambivalent influence of AAT on overall system dynamics. The number of cells
exhibits complex quasioscillatory behavior and though the scheme B without initial
administration of AAT proves to be slightly more efficient in presented case, in terms
of tumor remission time, it is apparent that this result may change provided CT is
finished earlier. Nevertheless, the observation that under the same number of tumor
cells a single dose of CT administered without AAT turns out to be more efficient,
like in the case of fifth injection in Fig. 3b, suggests that the scheme B would still be
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more profitable in the majority of cases. Of note, the behavior of the system under
low value of dT is difficultly predictable—e.g., using the scheme A results in death
of practically all cells at one particular moment under lower value of sensitivity of
tumor cell to cisplatin kT , while a small amount of cells always remains alive under
higher kT .

The situation qualitatively changes under higher value of dT , when drug pene-
tration inside the tumor becomes compromised and consequently the sensitivity of
proliferating tumor cells to cisplatin begins to play crucial role. Under relatively
low value of kT both schemes of treatment turn out to be little effective, as Fig. 3c
demonstrates, with only slight advantage of scheme B. However, under bigger value
of kT scheme B reveals its power, as under these values of parameters the ability of
cisplatin to penetrate deeper and thus kill more cells proves to be the main factor
defining the outcome of treatment. Scheme B alone is able in this case to potentially
kill all of the tumor cells, and, if not, to lead to significant delay in tumor remission
of approximately 90 days, compared to that of scheme A, since tumor cells have to
begin regrowth at larger depth.

4 Discussion

In the presented article, a comparative study of the efficiencies of two protocols
of palliative combined chemotherapy with antiangiogenic therapy was conducted.
The classical protocol was considered as the basic one, which is the simultaneous
administration of chemotherapeutic and antiangiogenic drugs. It was compared with
the scheme, proposed by authors, in which the administration of antiangiogenic
agent starts together with the last injection of cytotoxic drug. The idea of such
a protocol is to take advantage of increased permeability of angiogenic capillary
network in the peritumoral region, compared to the mature network which forms in
result of the antiangiogenic therapy. Thus, using of this scheme leads to increased
penetration of the cytotoxic agent into the tumor.

An important moment is that, like in clinical practice, in the considered model a
significant part of the cytotoxic drug enters the tissue in a complex with large blood
proteins, such as albumin. The molecular mass of the resulting complex is more than
two orders of magnitude greater than the molecular mass of cisplatin itself, and for
such heavy molecules the permeabilities of the walls of angiogenic and normalized
capillaries in practice differ in dozens of times. This significantly distinguishes the
considered model from the one proposed by the authors in the previous work [27],
where this binding was not taken into account.

An essential feature of this model is the retention of necrotic tissue after the
action of the cytotoxic agent. In clinical practice, this volume can both significantly
decrease and remain practically unchanged [30]. Apparently, such differences are
determined by the rate of outflow of interstitial fluid through the lymphatic system.
In order to take into account the effects associated with the reduction of primary
tumor volume in result of therapy, we are going to include in our model the detailed
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dynamics of interstitial fluid. In the model herein, the proportion of interstitial fluid
associated with the necrotic tissue fraction influenced only the diffusion rate of
substances within the tumor.

The results are obtained in the limitation of small chemotherapeutic drug. For
such drugs, which size is smaller than the size of pores in capillaries walls,
transvascular transport occurs via the process of diffusion. For modeling of dynam-
ics of widely used polymer-conjugated macromolecular drugs their transvascular
convection must also be taken into account, which would also be possible to do
when dynamics of the interstitial fluid will be included in the model. Moreover, it
is apparent that variation of other parameters related to tumor, drugs, and patients
features will also affect the relative efficiencies of different administration schemes.
Their influence will also be studied separately.

It should be noted that the maximum increase in the efficiency of combined
CT+AAT by using the proposed protocol instead of the standard one, i.e., the
increase in the remission period by 3 months, is not observed for all values of the
model parameters. In the cases of strong enough cytotoxic drug with low rate of
binding to tissue elements, which infers its ability to freely penetrate throughout
the tumor volume, the difference is not so significant. Surely, in practice in every
particular case the relative efficiencies of different schemes of drugs administration
will depend on colossal number of parameters of different nature. However, the
model results presented herein, which are based on the consideration of the most
crucial processes taking place during tumor progression, undoubtedly indicate the
potential of the proposed protocol of combined palliative therapy and the need for
carrying out experimental studies to verify it.
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Math Model of the Passage of a Diffusible
Indicator Throughout Microcirculation
Based on a Stochastic Description of
Diffusion and Flow

V. V. Kislukhin and E. V. Kislukhina

1 Introduction

In his quest to select from different math models that generate a transport function
for a liver’s circulation Goresky [1] found out that by the linear transformation
of any dilution curves (from RBC-Cr51 to the DHO) one get all dilution curves
coincided, see Fig. 1. To perform Goresky transformation one takes maximum of
RBC curve and maximum of chosen diffusible curve. The transformation coefficient
K is equal to ratio K = max(RBC)/max(diffusible indicator). Now all heights of
diffusible dilution curve are multiplied by coefficient K . Simultaneously the times
of points of diffusible dilution are reduced by the same factor, K . In other words,
for diffusible indicator its Y -axis is up K times, and X-axis is shortened K-times.
However, for some situations Goresky transform gives poor coincidence. But why
the coincidence varies was unclear [2]. Paragraphs should have its first line indented
by about 0.25 in. except where the paragraph is preceded by a heading and the
abstract should be indented on both sides by 0.25 in. from the main body of the
text.

Thus the aim of the manuscript is

(a) To present a mathematical model of the passage of diffusing tracer throughout
microcirculation.

(b) To address conditions for dilution curves be coincidental.
(c) To reveal that Goresky transform can be used for estimation of the permeability

of a capillary wall.
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Fig. 1 Original dilution
curves (above) and the same
curves after Goresky
transform
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2 Math Equations for First Four Events

The next five events constitute the pass through microcirculation: (1) be in intravas-
cular space, (2) be in extravascular space (for diffusible particles), (3) a microvessel
is closed, (4) a microvessel is open, and (5) a particle, being in open microvessel,
experiences a variation of velocity.

2.1 Math Equations for First Four Events

Assumed Markovian property leads to exponential distributions for all four first
events [3].
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List of distributions with characteristic parameters is as follows:

1. Density of distribution to be in intravascular space is

fδ(t) = δ · exp(−δt) (1)

with 1/δ as the mean time to be in vascular space before entering tissue.
2. Density of distribution to be in extravascular space is

fγ (t) = γ · exp(−γ t) (2)

with 1/γ as the mean time for a particle to be in the tissue before returning into
blood.

3. The time for resuming of flow has the density

fμ(t) = μ · exp(−μt) (3)

and 1/μ is the mean time for resuming of flow.
4. The time for microvessels to be open has the density

fβ(t) = β · exp(−βt) (4)

and 1/β is the mean time for a microvessel being open.

2.2 The Passage Through Open Microvessels

Let us denote time to pass open microvessels as T . A distribution of T , G(T ), can
be taken as Gamma distribution. The choice for G(T ) is based on the statement:
G(T ) is infinitely divisible [3]. To show this we follow the next reasoning. In
microcirculation due to the absence of inertia pressure gradient and velocity are
instantly connected V = k · gradP [4]. Thus variations of pressure produce new
velocities and also the variations of time to pass microcirculation. Now, if we
divided each path within microcirculation into two about equal parts, then the
G(T ) would become the convolution of two mutually independent distributions.
Let us denote them as G1/2(T ). We can continue this procedure thus G(T ) can be
presented as convolution of any number of distributions. Thus G(T ) is infinitely
divisible distribution and for simplicity Gamma distribution with density.

fα,ν(T ) = ανT ν−1exp(−αT )
�(ν)

(5)
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3 Equations of Math Model

Equations (1) through (5) are the “bricks” from which a model of the passage of
diffusible or intravascular indicators is made.

3.1 The Passage of a Diffusing Indicator

Since time between two jumps out of vascular space has density of exponential
distribution, Eq. (1), the n jumps during time s (time spent by particle within
intravascular space) has a Poisson distribution pn = exp(−δ · s) · (δ · s)n/n! [3].
If a particle is not consumable, then appearance in tissue follows by returning into
vasculature. Thus D(r, s) (with f 0∗

γ (r − s) = 1; if r = s and zero if r > s, with r
as time to be in microcirculation, intra- and extra- vascular space) is:

D(r, s) =
∞∑

n=0

pn · f n∗γ (r − s)

= exp(−δ · s)f 0∗
γ (r − s)+ exp(−δ · s)

∞∑

n=1

(δ · s)n
n! f n∗γ (r − s) (6)

Laplace transform of (6) with ϕ(λ) = λγ + δ + λ
γ + λ

d(λ, s) =
∫

exp(−λr)D(r, s)dr

= exp

(
−sλ

(
γ + δ + λ
γ + λ

))
= exp

(− sϕ(λ)) (7)

The (7) is a conditional Laplace transform. Now we need to perform random-
ization of s in d(λ, s). The randomization of the expression (7) by distribution of s
leads to the Laplace transform of the V (s) with the replacement of λ in exp(−λ · s)
by ϕ(λ):

d(λ) =
∫

exp
(− sϕ(λ))V (s)ds (8)

Thus our next step is to find the distribution for the s, V (s).
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3.2 An Intravascular Indicator: The Search for V (s, T ), with
T as Time Spent by Particle Within Open Microvessels

The passage of an intravascular indicator is the composition of two processes (a)
the change of the state of any microvessel, meaning that some closed microvessels
become open and vice versa, and (b) a variation of the time T to pass through open
microvessels. We start with T fixed.

Since time between two stops follows exponential distribution the probability
of n stops is given by Poisson distribution, pn = exp(−βT )(βT )n/n!. Every stop
follows by resuming of flow. Thus we get a compound Poisson distribution for the
transit time of an intravascular indicator with the density V (s, T ), and f 0∗

μ (s−T ) =
1 if s = T and 0, if s > T .

V (s, T ) =
∞∑

n=0

pn · f n∗μ (s − T )

= exp(−βT )
∞∑

n=0

(βT )n

n! f n∗μ (s − T ) (9)

Laplace transform of (9) with φ(λ) = λ
(
β + μ+ λ
μ+ λ

)
is:

v(λ, T ) =
∫

exp(−λs)V (s, T )ds

= exp

(
−λT

(
μ+ β + λ
μ+ λ

))
(10)

Thus we have conditional Laplace transform for intravascular indicator. Now
final step: to obtain unconditional distributions for diffusing and intravascular
indicators.

3.3 Unconditional Distributions to Pass Through
Microcirculation

The randomization of T in v(λ, T ), Eq. (10), leads to Laplace transform for fα,ν(T ),
only parameter λ is replaced by φ(λ):

v(λ) =
∫

exp
(− T φ(λ))fa,ν(T )dT = aν

(
a + φ(λ))−ν (11)

The unconditional Laplace transform for d(λ) is obtained in two steps:
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(a) From d(λ, s) as conditional Laplace transform is obtained d(λ, T ), with fixed T:

d(λ, T ) =
∫

exp
(− s · φ(λ))V (s, T )ds = exp

(
− T · φ(ϕ(λ))

)
(12)

(b) From d(λ, T ), by randomizing T with fα,ν(T ) is obtained d(λ):

d(λ) =
∫

exp
(
− T · φ(ϕ(λ))

)
fa,ν(T )dT = aν

(
a + φ(ϕ(λ))

)
(13)

It is possible to transform expressions (11) and (13) into corresponding distri-
bution functions. However for all practical purposes it is better to analyze Laplace
transformation itself.

3.4 Goresky Transform

Formally Goresky transform is performed in two steps:

(a) Obtaining of the coefficient a of the transform:

a(MV − T ) = MD − T ; a = MD − T
MV − T (14)

whereMV is the mean time to pass investigated tissue by intravascular indicator,
MD is the mean time to pass by diffusing indicator, and T is the common delay;

(b) The distribution of diffusing indicator, D(t), changes to DGT(t):

DGT = aD
(
T + (t − T )

a

)
, t > T ; DGT = 0 , t = T , or t < T (15)

Thus we obtain the Goresky coefficient, a, and the new shape, DGT(t), for
diffusing indicator.

Goresky Phenomenon If two distributions, F(t) and G(t) are coincide, then
all their moments Mk = (−1)kf (k)(0), where f (λ) is the Laplace transform
of F(t), are equal, Mk(F) = Mk(G), for each k. Practical coincidence can be
reached by equalities of the first two moments, or, what is the same, the equality
of the means and dispersions. In our case we have two dilution curves, from
intravascular indicator, V (t) and, after Goresky transform, DGT(t), the dilution
curve obtained from diffusing indicator, D(t). Goresky phenomenon takes place
if applying Goresky coefficient, D2

D = a2D2
V , in other words dispersions of V (t)

and DGT(t) are equal [3].

Experiments with Goresky Transform In Figs. 2 and 3 there are experiments on
PC with math model of intravascular and diffusing indicators, respectively.
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Fig. 2 Math model curves following Goresky phenomenon
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Fig. 3 Math model curves following Goresky phenomenon

The distribution to pass intravascular space is characterized by delay 2 s, and by
binomial distribution given on N = 40 points between 2 and 8 s, thus with step
h = 0.15 s, and p = 0.4 thus pi = 40!

i!(40−1)!p
i(1 − p)40−i . The mean transit time

MV = Nph+ T = 2.4+ 2 = 4.4; and dispersion D2
V = Np(1− p)(h)2 = 0.216.

The distributions of diffusing indicators additionally characterized by relation
of extravascular/intravascular distribution, this is δ/γ . Thus we have relation
between two means to pass microcirculation (diffusing and intravascular): MD =
MV (1 + δ/γ ). For experiment are chosen three types of diffusing indicator, with
δ/γ equal 0.5, 1.0 and 2.0 (by other words with small, medium and expanded
extravascular space). Goresky transform leads to the next three, corresponding
Goresky coefficients (12): 1.8; 2.7, and 4.4.

In common case dispersions are not connected by Goresky coefficient a2D2
V �=

D2
D . However if we choose γ to fulfill equality between dispersion: D2

D = a2D2
V ;

then Goresky transform leads to the dilutions given in Fig. 2, right.
Figure 3 presents the same intravascular dilution but diffusing indicators are

different. The probability to return into intravascular space is two times down (from
presented in Fig. 1), thus dispersions to pass microcirculation are increased and
application of Goresky transform does not lead to the coincidence dilution curves,
Fig. 3, right.



372 V. V. Kislukhin and E. V. Kislukhina

3.5 Permeability by Goresky Transform

Our diffusing indicator has a distribution with Laplace transform d(λ) =
g
(
φ
(
ϕ(λ)

))
(13), and intravascular indicator has Laplace transform v(λ) =

g
(
φ(λ)

)
(11). Due to stochastic description of the diffusion the function ϕ(λ)

looks as: ϕ(λ) = λγ + δ + λ
γ + δ .

With such a presentation of ϕ(λ) Goresky transform leads to the determination
of the characteristic of permeability of endothelial barrier, these are δ and γ . Also
will be found out that the specificity of g(λ) and φ(λ) has no role (but φ(λ) should
be infinitely divisible).

Indeed, the mean and dispersion of diffusible indicator are

MD = MV

(
1+ δ

γ

)
; D2

D = D2
V

(
1+ δ

γ

)2

+MV

2δ

γ 2 ; (16)

where MV and DV are mean and dispersion for intravascular indicator. The (14) is
follow from next equations established connection between M and D2 of any dis-
tribution, f (t), and derivatives of its Laplace transform F(λ) = ∫

exp(−λt)f (t)dt .
Thus M = F ′(λ)|λ=0; and D2 = F ′′(λ)|λ=0 −M2.

Now, if we put relations between two means, given by (14) into Eq. (12), we get,
for Goresky coefficient, next equality:

a = MD − T
MV − T =

MV

(
1+ δ

γ

)
− T

MV − T
Thus the knowledge of Goresky coefficient leads to the obtaining of δ/γ :

δ

γ
= (a − 1)

(MV − T )
MV

; (17)

The use of the second relation in (14), the knowledge of dispersions, leads to the
obtaining of γ :

γ = 2δ ·MV

γ ·D2
V

(
D2
D

D2
V

−
(

1+ δ

γ

)2
)−1

(18)

4 Discussion

The comprehensive descriptions of stochastic models are given in [5, 6]. Application
of stochastic approaches is based on the approximation of real dilution curves,
meaning that parameters of chosen distributions become parameters of recorded
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curves. Such formal approach has problem with physiological interpretation of
model’s parameters.

In given manuscript it is shown that assumption of stochasticity leads to the
uniqueness of math equations of model for blood flow.

Since four basic events: (1) to be in extravascular space, (2) to be in intravascular
space, (3) a microvessel is closed, and (4) a microvessel is open, due to Markovian
property, follow exponential distributions, we have a very effective application of
Laplace transform. The combinations of these processes become compound Poisson
distributions thus the combinations have Laplace transform as exp

(− t · f (λ)). The
randomization of t in exp

(−t ·f (λ)) by any distribution becomes Laplace transform
of this distribution also, only λ is replaced by f (λ).

5 Conclusion

From the assumption of stochasticity follows uniqueness of distributions that
formed the passage of indicator through microcirculation. Thus exponential dis-
tributions and their generalization, gamma-distribution, become the motivations for
introducing the permeability of endothelium.
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Influence of External Factors on
Inter-City Influenza Spread in Russia: A
Modeling Approach

V. N. Leonenko and Yu. K. Novoselova

1 Introduction

Influenza and acute respiratory infections (ARI) are the most frequent infections in
the world. Epidemic outbreaks of ARI and influenza cause 3–5 million of severe
cases of illness and 250–500 thousand deaths yearly [20]. For the sake of control of
epidemic situation surveillance networks are used by healthcare organs, like ILINet
in the USA, Sentinelles in France and the Russian surveillance system deployed at
Research Institute of Influenza. Due to big delays of data acquisition, only partial
coverage of the countries’ territories by surveillance posts [5], under-reporting (for
instance, due to reduced show-up during holidays) the incidence data delivered
by these networks is of limited use for planning containment measures. Thus, the
healthcare organs start to employ the influenza epidemic prediction frameworks
based on the statistical methods and mathematical modelling.

In the late 1960s, multiple mathematical models of influenza-like illness out-
breaks were created. While some of them relied on influenza modeling in local
urban areas [17], the others took into account the fact that influenza epidemics
are caused by flu virus strains circulating over the globe with migration flows.
The simplest form of reproducing this mechanism mathematically is to rely on
coupled SEIR epidemic models, i.e. to consider consequent flu epidemic outbreaks
within a group of interconnected urban territories (for instance, a country) caused
by inter-city movement of infected individuals. One of the first models of that type
was implemented by Baroyan and Rvachev [3]. Initially designed to reproduce the
spread of flu among the cities of Soviet Union, it was later applied to model flu
outbreaks in France [4], Cuba [1] and worldwide pandemic flu circulation [14].
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The Baroyan-Rvachev approach demonstrated that the combination of Kermack-
McKendrick SEIR model and a linear model of inter-city migration flows could
satisfactory match the true incidence data and provide accurate forecasts of the
outbreaks starts and peaks for Soviet cities. However, since early 1980s the Soviet
modeling complex for flu forecasting, created in Research Institute of Influenza [13]
and based on Baroyan-Rvachev model, showed the signs of growing incoherence
with the seasonal epidemic outbreak patterns observed in Soviet cities [7]. The
reason for that, according to one of the versions, is in the growing levels of collective
immunity to flu due to increasing speed of its circulation around the globe. The
dynamics of growth of collective immunity could be dependent from different
factors, including the structure of contact networks within an urban area, that’s why
the original assumption that fraction of non-immune individuals is the same for all
Soviet cities and depends only on currently circulating virus strain, seems to be less
applicable [7].

Due to the circumstances described above the simplified models do not capture in
detail the dynamics of within-country flu epidemic process. The experiments with
the SEIR models calibration on the available Russian ARI incidence data [9, 11]
demonstrated that using standard models one can obtain the prediction of prospected
epidemic peak height with satisfactory accuracy, but there is no chance to assess in
advance the epidemic peak day. To enhance the prediction accuracy it’s vital to
obtain more data, particularly the one on migration flows between the cities.

This paper represents the first stage of the broader investigation aimed at inter-
city modeling of flu propagation with regard to heterogeneity of Russian cities
caused by different herd immunity levels and other local factors. The objective of
the current research is to assess the accuracy of the coupled models approach in
contemporary conditions using the incidence data provided by Research Institute
of Influenza. Particularly we want to establish a baseline accuracy for the sake of
comparison with future corrected metapopulation models and to assess the levels
of prediction biases caused by uncertainties in migration flow data. The novelty of
the task is proved by the fact that the modeling of influenza dynamics in Russia
using the modern incidence data was never performed. Nevertheless, the region-
specific peculiarities in influenza dynamics [18] limit the usage of general models
and demand for the accounting of distinct features of epidemic situation in each
country. Due to that the creation of prediction models of seasonal ARI dynamics
and influenza epidemics for the case of Russia is an important task.

2 Outbreak Incidence Data

The original dataset provided by the Research Institute of Influenza [13] contains
weekly cumulative incidence for all the ARI types (including flu) in 41 Russian
cities from 2000 to 2015. Before the model fitting, we have to refine the incidence
data by restoring the missed values and fixing the under-reporting. We also need
to extract flu incidence from the cumulative ARI incidence data. Corresponding
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algorithms are described in detail in [10], here we introduce briefly the sequence of
operations.

• Under-reporting correction. Since infected people avoid visiting healthcare
facilities during holidays, the corresponding weekly prevalence is lower than the
actual number of newly infected. This under-reporting bias can be corrected by
means of cubic interpolation [3] using the incidence registered in the adjacent
weeks. The sporadic gaps in incidence data are filled in the same fashion.

• Bringing the incidence data to daily format. The daily incidence is found with the
help of cubic interpolation of weekly incidence. We assume that nT huinf = nWinf /7,

where nWinf is the weekly incidence taken from the database and nT huinf is the daily
incidence for Thursday of the corresponding week.

• Extracting data on influenza outbreak from the cumulative seasonal ARI data
with the help of a separate epidemic curve allocation algorithm. At first, the
algorithm finds higher non-flu ARI incidence level a2, which corresponds to the
average number of newly infected in non-epidemic period. ARI epidemic curves,
which are detected as flu outbreaks, should have their peaks well above the higher
ARI level. They should also comply with the time period during which the ARI
prevalence exceeds the non-epidemic ARI threshold assessed in the Flu Research
Institute. The beginning and ending of the extracted curve is chosen to match the
level a2. The first incidence point of the curve is considered to be the first day of
the epidemic outbreak.

3 Model Structure

3.1 Local Model

The local submodel used in the Baroyan-Rvachev prediction framework was
represented by the system of difference equations, with the time step equal to 1 day.
Let xt be the fraction of susceptibles in the population, yt be the number of newly
infected individuals at the moment t and yt—the cumulative number of infectious
persons (i.e. those who can transmit flu) by the time t . Then, the equation system
may be written in the following manner [6]:

yt =
T∑

τ=0

yt−τ gτ , (1)

yt+1 = β

ρ
xtyt ,

xt+1 = xt − yt+1,

x0 = αρ. (2)
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The piecewise constant function gτ gives a fraction of infectious individuals in
the group of individuals infected τ days before the current moment t . The function
reflects the change of individual infectiousness over time from the moment of
acquiring influenza. It is assumed that there exists some moment t : ∀t ≥ t gτ = 0,
which reflects the moment of recovery.

3.2 Global Model

Let us consider an influenza epidemic in n cities. We assume that the outbreak
is started in one of those cities and transmits from one city to another with the
migration flows. In this case the local model (1)–(2) is transformed by adding the
description of this process, giving us the following set of equations:

yj (t) =
T∑

τ=0

yj (t, τ )g(τ ), (3)

yj (t + 1, 0) = βj

ρj
xj (t)yj (t),

yj (t + 1, τ ) = yj (t, τ − 1)+
n∑

t=1

σij
yi(t, τ − 1)

ρi
,

xj (t + 1) = xj (t)− yj (t + 1, 0),

xj (0) = αjρj ,
j = 1, 2, . . . , n; (4)

Here j is the city index and σij corresponds to the migration flow from the city i to
the city j per time unit.

4 Predicting Outbreaks

4.1 Local Model Fitting

Let Z(dat) be the set of incidence data points loaded from the input file and
corresponding to one particular outbreak. Assume that the number of points is t1,
which equals the observed duration of the outbreak. The algorithm varies the values
of model parameters to achieve the model output, which minimizes the distance
between the modeled and real incidence points [9]:

F
(
Z(mod), Z(dat)

)
=

t1∑

i=0

(
z
(mod)
i − z(dat)i

)2
, (5)
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Here z(dat)i and z(mod)i are the absolute incidence numbers for the i-th day taken from
the input dataset and derived from the model correspondingly. The limited-memory
BFGS optimization method is used to find the best fit [12]. Since the existence of
several local minima is possible, the algorithm has to be launched several times with
different initial values of input variables. The best fit is chosen as a minimum among
the distances achieved from all the algorithm runs. To characterize the goodness of
fit we utilize the coefficient of determination R2 ∈ (0, 1]. This coefficient shows the
fraction of the response variable variation that is explained by a model [19].

Before optimizing the model parameters, we need to match accurately the model
timeline (t = 0, 1, . . . ) to the timeline of the epidemic outbreak incidence dataset.
For that, we assume that the peak moment of the modeled epidemic curve coincides
with the epidemic peak day from the dataset.

The parameter description of the fitting algorithm which corresponds to Baroyan-
Rvachev model is given in Table 1. In addition to the parameters taken from the
model (1)–(2), a curve positioning parameter �p is introduced. In the ideal case,
the best fit of the model curve to data should give the model curve peak occurring
at the same day as the real peak seen from the incidence data. In that case, �p is
fixed and equals zero, so there is no need to vary it. However, sometimes the best fit
is achieved when the modeled and the real peak moments differ by several days due
to discrepancies between the real outbreak process and its theoretical model, that is
why we made this parameter variable.

It has been proven [3] that without the loss of fit quality we can vary the
sole auxiliary value s = αβ instead of variation α and β separately. This fact
results from the biologically plausible assumption that the virulence of the current
circulating influenza strain and the immunity level to this strain in the population
are interconnected [6]. Another idea of the algorithm is that s = s(k), where k

Table 1 Parameters of the fitting algorithm for the local model

Definition Description Value Unit

Model parameters

α Initial ratio of susceptible
individuals in the population

Estimated –

β Intensity of infection Estimated –

I0 Initial ratio of infected in the
population

Estimated –

T Duration of infection Fixed Day

gτ A fraction of infectious individuals
among those who were infected τ
days before the current moment

Fixed –

ρ Population size Fixed Persons

Curve positioning parameters

�p Absolute horizontal bias of the
modeled incidence curve peak
position compared to the data

Estimated Day
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is a semi-empirical parameter which approximates the initial fraction of infectious
individuals in the first stage of the outbreak [3]. Finally we come to the idea that it
is k that should be varied, and s is consequently calculated as a function of k (see
the formula below).

The calibration algorithm structure is similar for the cases was first described in
[9] and conforms to the following sequence of operations.

• For each fixed combination of values {k, I0} generated by BFGS optimization
procedure, and for every �p:

1. Derive the value of s from the current value of k using the following formula:

s = kT+1

∑T
τ=0 k

T−τ gτ
(6)

2. Set the preliminary model parameter values, α′ and β ′, to make them conform
to the equation α′β ′ = s, for instance:

α′ = 1, β ′ = s
3. Find the preliminary numerical solution of the model (1)–(2) with the

parameter values α = α′, β = β ′ and the initial conditions y0 = I (0), y−1 =
· · · = y−T = 0.

4. Derive the preliminary number of newly infected each day from the model

output: z(mod)
′

i := yi , i ∈ 0, t1 − 1.
5. Derive the baseline level for the modeled outbreak start zbase from the value

for higher ARI incidence level a2 and subtract it from the data incidence
points:

z
(dat)
i := z(dat)i − a2, i ∈ 0, t1 − 1

6. According to the algorithm, we need to match in time the model peak with the
incidence data peak. For that purpose we find the shift δadj :

δadj = t (mod)peak −
(
t
(dat)
peak +�p

)
, (7)

where t (dat)peak and t (mod)peak are peak days for the data incidence and the modeled
incidence correspondingly, �p is the difference between the modeled peak
and the data peak after the shift. After performing a shift, we are to compare
the distance between the following datasets:

Z(dat) =
{
z
(dat)
0 , z

(dat)
1 , . . . , z

(dat)
N−1

}
,

Z(mod)
′ =

{
z(mod)

′
(δadj ), z

(mod)′(δadj + 1), . . . , z(mod)
′
(δadj +N − 1)

}
,

where N is the total number of incidence points.
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7. Assigning optimal values to α, β. It was mathematically justified in [3] that
for α, β : αβ = s

min
α,β

F (Z(mod)(α, β,�p), Z
(dat)) = F(Z(mod)(α̃, β̃,�p), Z(dat)),

maxZ(mod)(α̃, β̃,�p) = maxZ(dat) +�p;

where α̃ = α′a, β̃ = β ′
a

, a is the correction coefficient calculated according
to the formula:

a =
∑t1
i=0 z

(dat)
i

∑t1
i=0

(
z
(mod)′
i

)2
.

To avoid launching the simulation for the second time, now with the values
α = α̃, β = β̃, one may obtain the new model incidence values z(mod)i by
multiplying the corresponding preliminary values by a [6], that is:

z
(mod)
i = az(mod)′i , z

(mod)
i ∈ Z(mod)(α̃, β̃,�p), z(mod)′i ∈ Z(mod)′ .

In that manner we find the optimal parameter values and the corresponding
model curve Z(mod).

It is worth mentioning that α has the sense of fraction, α ∈ [0; 1]. In the
case if α̃ > 1, we artificially set it to 1.

8. Calculate the value of the fit function F(Z(mod), Z(dat)) according to the
formula (5).

The BFGS algorithm finds the least distance F�p in the described manner for

every value of �p. We define �(min)p : F(�(min)p , . . . ) = minF(�p, . . . ), and the

parameter set {α, β, I0}, corresponding to �(min)p . These values are the final result
of our optimization procedure.

The described fitting algorithm for the local model features some differences
from the original one, firstly introduced in [6], namely:

• The curve positioning parameter �p was introduced (the similar parameter was
mentioned in [6], but it was not explicitly included into the fitting procedure).

• The iteration over the values of variable k with a fixed step was replaced by BFGS
optimization algorithm.

• The value of I0 was changed from fixed to varied. This change was made due to
the ambiguity of flu epidemic outbreak start detection in seasonal incidence data
[8]. This allows the algorithm to fit the model to the early outbreak stages more
accurately.

The modifications described enhanced both the accuracy and the performance of
the algorithm.
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4.2 Transport Flow Matrices

One of the issues we faced during the work on the model is the absence of reliable
transport flow data appropriate to be used for assessing σij . The official statistics
of Russian Federal Migration Service, which is the first source of necessary data
that comes to mind, includes only the incoming number of people for a fixed city,
but not their city of departure. Also it is subjected to under-reporting and includes
only the statistics on people who moved to the city for a long stay, which makes it
inapplicable for the modeling purposes.

The movements of people between the cities can be traced more accurately by
calculating the number of sold airplane, train and bus tickets in different directions,
like it was made by Baroyan and Rvachev for the sake of influenza modeling in
USSR [3]. Due to the fact that now the data on sold tickets could be harder to get
than in Soviet times, as it belongs to commercial companies rather than to state
officials, the rougher way to assess the migration flows could be employed based on
the capacities of planes, buses and trains performing regular transportation between
the cities.

As the assessment biases are inevitable for any chosen way to assess the
migration flows, in the current paper we have decided to compare the prediction
accuracy of received with the help of calibrated global model with three different
transport matrices. The following generation methods were used.

The first two matrices were generated using the airline flights statistics between
the cities under consideration. The flight schedule was formed via an online service
[21]. The numbers of passengers were derived from the maximum number of seats
for the plane types used for particular flights, taking into account the partial load
(for the sake of simplicity and due to the absence of accurate data the fraction of
occupied seats was set constant for all the flights). The formed matrices differ by
the time periods of flight schedules that were used as algorithm input:

• First matrix: daily flight schedule for October 20, 2016;
• Second matrix: weekly flight schedule for the period from February 27th to

March 5th, 2017. The daily flows were assessed simply by dividing the weekly
flows by 7.

The third matrix was generated using the so-called “gravitational model”,
according to which the migration between two areas is directly proportional to
the product of the quantities of their inhabitants and inversely proportional to the
squared distance between them [2]. The corresponding formula has the following
form:

Vij = γ ρiρj
d2
ij

,

where Vij = σij + σji . In our case we assume that the transport flow matrix is

symmetric, i.e. σij = σji , so σij = Vij
2 .
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The parameter γ is the correction coefficient of the model, it was assessed with
the help of the open long-term data on the airline passengers flow between Moscow
and Saint Petersburg [16] and kept constant for all the pairs of cities.

Strictly speaking, to model accurately the migration flow, we need to use
dynamically formed transport matrices based on the schedule for every particular
day of the modeled epidemic spread instead of applying constant transport matrices.
Nevertheless, it is not worth additional efforts in case the order of bias caused by
this simplification is less than the order of biases caused by inaccurate flow data
assessment, or if the sensitivity of the model output on the transport flow data is
low. Below we will demonstrate that this is apparently the case for our simulation.

4.3 Global Model Calibration

The application of the global model for the purpose of influenza outbreak prediction
in Russian cities is possible under the following assumptions [3]:

• The all-Russian influenza epidemic starts from the outbreak in one of the Russian
cities caused by an infectious person who came from abroad.

• Epidemic outbreaks in another Russian cities are caused by the migration of the
infectious individuals within the country.

• The epidemic process in the country is mostly driven by a single dominant virus
strain, and this strain is the same for all the cities.

Let the first influenza outbreak of the current season be registered in the city
j , j ∈ 1, n (for our case n = 41). In this case the prediction procedure can be
performed according to the following sequence of actions:

• Wait until the outbreak reaches its peak and collect the corresponding raw
incidence data.

• Correct the data with the algorithms described in Sect. 2.
• Calibrate the local model (see Sect. 4.1) and find the model parameters α, β.
• Assuming that ∀i ∈ 1, n αi ≡ α, βi ≡ β, and taking the values of σij , i, j ∈ 1, n,

from the transport flow matrix, launch the global model and find the quantities of
infected in every city over time.

• Gather the statistics on the days of outbreak peaks and their height.

The preliminary predictions could also be made before the moment of the
outbreak peak in the first city using the incomplete incidence data from that city
[6], but in that case the accuracy of parameter assessment can drop dramatically [9],
thus making implausible the predictions for another cities.
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5 Numerical Experiment

We used the interpolated daily ARI incidence data for 41 Russian cities from 2000 to
2015 to perform the retrospective forecast of epidemic peak days and the maximum
number of infected (peak heights) in every fixed city in a given epidemic season
where the epidemic did take place (those that were not affected by flu in a fixed
season were excluded). To assess the accuracy of prediction results, we have used
the criteria employed in 1970s for the Soviet flu outbreak prediction framework
[6]:

• ‘Square’. The prediction is thought to be accurate if dt ∈ −8 . . . 8 and dh ∈
(0.5; 2.0).

• ‘Vertical stripe’. Accurate prediction should have dt ∈ −7 . . . 7.
• ‘Horizontal stripe’. Accurate prediction should have dh ∈ (0.7; 1.5).

As it was stated in Sect. 4.2, to find the impact of transport flow assessment
accuracy on the accuracy of predictions we have prepared three different transport
matrices in the experiment. Also, to reduce the effect of poor model calibration in
some intricate cases of the first outbreaks, we have decided to launch simulations
with the local model parameters estimated by calibrating it to incidence data of the
first, the second and the third cities affected by the epidemics during the season.
Thus, in sum nine simulation runs were performed for each epidemic season.

The example of prediction for eight different cities in a fixed epidemic season
is given in Fig. 1. One can see that for some cities (Barnaul, Perm, Chelyabinsk)
the peak day is predicted better than the height, for some others (Norilsk, Nizhny
Novgorod, Kazan) it is the other way round, and for a few cities (Kursk, Irkutsk) the
model was unable to give satisfactory predictions neither for a peak day nor for its
height.

The experiment brought us to the following results.

• The influence of the choice of transport matrix on the accuracy of peak
predictions could be considered negligible. In most of the cases the percentage of
accurate predictions is the same for all three matrices, save for several epidemic
seasons when slight difference was demonstrated (see Table 2). Although this
result is somewhat unexpected, it complies to the earlier experiments with the
model on USSR data performed by Baroyan and Rvachev [3].

• As one can see from Table 3, the accuracy of the predictions varies dramatically
depending on the city chosen for model calibration. At the same time, these
discrepancies are not related directly to poor model fitting (in most of the
epidemic seasons the value of R2 was higher than 0.9 and more or less equal for
the different choice of city for local model calibration). The possible explanation
of this effect is that the first outbreak within the country registered during the
season can be not the one that caused a full-fledged epidemic, so the global
epidemic parameters should be derived from the outbreak in another city. Also
it’s worth mentioning that on the scale of the week which the initial incidence
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Fig. 1 Model trajectories compared to real data, 2013–2014, gravitation model, calibration to the
first outbreak city data (in this particular case—Magadan)

data has it is sometimes impossible to understand what of the cities infected
during the week 1 is really “the first city”.

• The achieved peak prediction accuracy for any of the criteria is sufficiently lower
than those achieved in Soviet times. For instance, the average compliance to
vertical stripe criterion for the predictions made in the 1970s is said to be 87.4%
[6], whereas in our case it varies from 3.85% to 72.73%. Also the prediction
accuracy shown for Moscow, Saint Petersburg and Novosibirsk is lower than
the one for the same cities demonstrated by another approaches which do not
use explicitly the transport flow data [9, 11]. Some examples of peak prediction
biases are given in (Fig. 2).
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Table 2 Overall compliance of peak predictions to accuracy criteria for different transport
matrices and different cities chosen for calibration, 2012–2013 epidemic season

Transport matrix
generation

Vertical stripe Horizontal stripe Square

Daily schedule 14.71 2.94 11.76 5.88 50.0 44.12 2.94 2.94 11.76

Weekly schedule 14.71 2.94 11.76 5.88 47.06 44.12 2.94 2.94 11.76

Gravitational model 0.0 2.94 11.76 41.18 47.06 44.12 0.0 2.94 11.76

Table 3 Overall compliance of peak predictions to accuracy criteria, transport matrix No. 2
(averaged weekly schedule)

Year Vertical stripe Horizontal stripe Square

2000 3.85 0.0 3.85 7.69 11.54 30.77 3.85 3.85 3.85
2001 23.08 11.54 3.85 15.38 0.0 73.08 7.69 7.69 3.85

2002 72.73 6.06 9.09 54.55 54.55 54.55 60.61 3.03 12.12

2003 0.0 33.33 33.33 45.45 27.27 24.24 3.03 27.27 33.33
2004 3.33 10.0 43.33 43.33 23.33 36.67 3.33 6.67 26.67
2005 7.41 14.81 3.7 44.44 18.52 48.15 7.41 7.41 3.7

2006 21.43 21.43 3.57 3.57 39.29 28.57 7.14 17.86 3.57

2007 3.23 38.71 3.23 38.71 32.26 35.48 6.45 22.58 3.23

2008 23.53 41.18 14.71 41.18 35.29 20.59 11.76 23.53 2.94

2009 5.41 2.7 2.7 45.95 13.51 27.03 5.41 2.7 2.7

2010 10.81 2.7 2.7 2.7 5.41 0.0 2.7 0.0 0.0

2011 45.45 18.18 9.09 36.36 54.55 0.0 36.36 18.18 9.09

2012 14.71 2.94 11.76 5.88 47.06 44.12 2.94 2.94 11.76

2013 35.29 35.29 17.65 41.18 52.94 23.53 29.41 29.41 17.65

2014 3.23 3.23 3.23 35.48 51.61 3.23 3.23 3.23 3.23

2015 18.42 10.53 5.26 34.21 31.58 55.26 7.89 10.53 5.26

The highest accuracy is marked with bold

6 Discussion and Future Works

As the experiment demonstrated, the accuracy of peaks predictions made by
homogeneous coupled SEIR models on the contemporary incidence data is much
lower than it used to be in Soviet times and does not allow to use this approach for
the disease forecasting. The reason for low accuracy does not seem to be connected
with the accuracy of assessing the migration flows, as the change of transport matrix
generation doesn’t change it significantly. The hypothesis that still not proved or
disproved is that the main cause is the difference between the values of α and β
for the different cities. We are planning to conduct several separate investigations
to shed light on that matter, using additional data on virus spread from Russian
Institute of Influenza.

In any case, calculating α, β separately for each city will inevitably cause issues
with the early disease prediction, that is why we want to try to implement another
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Fig. 2 Scatterplots reflecting the peak prediction biases for the 15 cities affected by flu during
the epidemic season of 2013–2014, gravitation model. The model parameters were found by
calibrating to incidence data from Magadan, Khabarovsk and Barnaul correspondingly

model updates before proceeding with that idea. Particularly one of the changes
in flu transmission over the years that is mentioned in healthcare reports and may
possibly account for decreased efficiency of homogeneous coupled models is the
growing role of age structure of the population [7]. This fact was also mentioned in
the modeling studies conducted using the data of French Sentinelles flu surveillance
network [15]. Enhancing the model prediction accuracy by incorporating age
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structure seems like an interesting challenge, although the odds of success are hard
to be estimated.

In case of α and β remaining the same constants for all the cities yet another
issue arises, which was demonstrated both by old studies [3] and by our numerical
experiment described in the previous section. This issue is dramatic dependence of
the model output on the city chosen for calibration. Apparently the choice of the
city should be made according to the real epidemic course, and the question arises
how to distinguish separate local outbreaks caused either by the resurgence of the
old seasonal virus strain or some severe non-flu ARI infection from the circulation
of current epidemic strain. For this purpose the data of laboratory virus studies may
serve well. We plan additional investigations aimed at understanding the role of first
city chosen for calibration on the resulting model parameter values and establishing
the indicators that may help understand what city was really the first affected by the
incoming flu epidemic.

By means of conducting the research described above we hope to consequently
improve the model prediction performance, thus making its usage worthwhile by
the healthcare officials.

The enhanced performance of the model may require more detailed transport
data, such as dynamically changing transport matrices connected with particular
days, or the account of other means of transport beside planes. In case of necessity
we plan to obtain these data by collaborating with another scientific groups in our
facility who deal with urban informatics and transport flow models.
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Two Views on the Protein Folding Puzzle

Alexei V. Finkelstein, Oxana V. Galzitskaya, Sergiy O. Garbuzynskiy,
Azat J. Badretdin, Dmitry N. Ivankov, and Natalya S. Bogatyreva

1 Introduction

1.1 Overview of the Protein Folding Problem

The ability of proteins to fold spontaneously puzzled protein science for a long time.
It is well known that a protein chain (actually, the chain of a globular protein) can
spontaneously fold into its unique native 3D structure [1, 2]. In doing so, the protein
chain has to find its native (and seemingly the most stable) fold among zillions of
others within only minutes or seconds given for its folding.

Indeed, the number of alternatives is vast [3, 4]: it is at least 2100 but rather
may be 3100 or 10100 (or even 100100) for a 100-residue chain, because at least 2
(“right” and “wrong”), but more likely 3 (α, β, “coil”) or 10 [5] (or even (10 for ϕ)
× (10 for !) = 100 [3, 4]) conformations are possible for each residue (Fig. 1).

Since the chain cannot pass from one conformation to another faster than within
a picosecond (the time of a thermal vibration), the exhaustive search would take at
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Fig. 1 The Levinthal’s choice problem

least ∼2100 ps (or 3100 or 10100 or even 100100 ps), that is, ∼1010 (or 1025 or even
1080 or 10180) years. And it looks like the sampling has to be really exhaustive,
because the protein can “feel” that it has come to the stable structure only when it
hits it precisely, while even a 1 Å deviation can strongly increase the chain energy
in the closely packed globule.

Then, how does the protein choose its native structure among zillions of possible
others, asked Levinthal [3, 4] (who first noticed this paradox), and answered: It
seems that the protein folding follows some specific pathway, and the native fold is
simply the end of this pathway, no matter if it is the most stable chain fold or not.
In other words, Levithal suggested that the native protein structure is determined
by kinetics rather than stability and corresponds to the easily accessible local free-
energy minimum rather than the global one.

However, computer experiments with lattice models of protein chains strongly
suggest that the chains fold to their stable structure, i.e., that the “native protein
structure” is the lowest-energy one, and protein folding is under thermodynamic
rather than kinetic control [6, 7].

Nevertheless, most of the suggested hypotheses on protein folding are based on
the “kinetic control assumption.”

Ahead of Levinthal, Phillips [8] proposed that the protein folding nucleus is
formed near the N-end of the nascent protein chain, and the remaining chain wraps
around it. However, successful in vitro folding of many single-domain proteins and
protein domains does not begin from the N-end [9, 10].

Wetlaufer [11] hypothesized formation of the folding nucleus by adjacent
residues of the protein chain. However, in vitro experiments show that this is far
not always so [12].

Ptitsyn [13] proposed a model of hierarchical folding, i.e., a stepwise involve-
ment of different interactions and formation of different folding intermediate states.
This hypothesis has some important advantages and drawbacks; below, it will be
considered in detail, together with some interesting implications [14, 15] that follow
from the Ptitsyn’s model.

Alongside with approaches based on various hypotheses of “kinetic choice” of
the protein native structure, some models and theories are based on the idea of the
“stability choice” of this structure.

In particular, various “folding funnel” models [16–19] have become popular
for illustrating and describing fast folding processes. These models, which have
their own important advantages and drawbacks, will be considered below in detail
as well.
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On the top of that, the free-energy barrier separating the folded (native) and
unfolded states of protein chains has been investigated, and the estimated rate of
overcoming of this barrier [20, 21] turned out to be in a good concordance with
experimental results (see below).

The difficulty of the “kinetics vs. stability” problem, underlined by Levinthal, is
that it hardly can be solved by direct experiment. Indeed, suppose that a protein has
some structure that is more stable than the native one. How can we find it if the
protein does not do so itself? Shall we wait for ∼1010 (or even ∼10180) years?

On the other hand, the question as to whether the protein structure is controlled by
kinetics or stability arises again and again when one has to solve practical problems
of protein physics and engineering. For example, in predicting a protein’s structure
from its sequence, what should we look for? The most stable or the most rapidly
folding structure? In designing a protein de novo, should we maximize stability of
the desired fold, or create a rapid pathway to this fold?

However, is there a real contradiction between “the most stable” and the “rapidly
folding” structure? Maybe, the stable structure automatically forms a focus for the
“rapid” folding pathways, and therefore it is automatically capable of fast folding?

1.2 Overview of the Basic Thermodynamic Facts Related to
Protein Folding

Before considering the kinetic aspects of protein folding, let us recall some basic
experimental facts concerning protein thermodynamics (as usual, we will consider
single-domain proteins only, i.e., chains of ∼100 residues). These facts will help
us to understand what chains and what folding conditions we have to consider. The
facts are as follows:

1. The denatured state of proteins, at least that of small proteins treated with a strong
denaturant, is often the unfolded random coil [22].

2. Protein unfolding is reversible [2]; moreover, the denatured and native states
of a protein can be in a kinetic equilibrium [23]; and there is an “all-or-none”
transition between them [5]. The latter means that only two states of the protein
molecule, native and denatured, are present (close to the midpoint of the folding–
unfolding equilibrium) in a visible quantity, while all others, “semi-native” or
misfolded, are virtually absent.

(Notes: (1) the “all-or-none” transition makes the protein function reliable:
like a light bulb, the protein either works or not; (2) the physical theory shows
that such a transition requires the amino acid sequence that provides a large
“energy gap” between the most stable structure and the bulk of misfolded ones
[6, 24–27].)

3. Even under normal physiological conditions, the native (i.e., the lowest-energy)
state of a protein is only more stable than its unfolded (i.e., the highest-entropy)
state by a few kilocalories per mole [5] (and these two states have equal stability
at mid-transition, naturally).
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(Notes: For the below theoretical analysis, it is essential that (1) as is
customary in the literature on this subject, the term “entropy” as applied to
protein folding means only conformational entropy of the chain without solvent
entropy; (2) accordingly, the term “energy” actually implies “free energy of
interactions” (often called the “mean force potential”), so that hydrophobic
and other solvent-mediated forces, with all their solvent entropy [22], come
within “energy.” This terminology is commonly used to concentrate on the main
problem of sampling the protein chain conformations.)

The abovementioned “all-or-none” transition means that the native (N) and
denatured (U) states are separated by a high free-energy barrier. It is the height
of this barrier that limits the kinetics of this transition, and just this height is to be
estimated to solve the Levinthal’s paradox.

1.3 Is the Levinthal’s Paradox a Paradox Indeed?

However, to begin with, it is not out of place considering whether the “Levinthal’s
paradox” is a paradox indeed. Bryngelson and Wolynes [28] mentioned that this
“paradox” is based on the absolutely flat (and therefore unrealistic) “golf course”
model of the protein potential energy surface (Fig. 2a), and somewhat later Leopold
et al. [16], following the line of Gō and Abe [29], considered more realistic (tilted
and biased to the protein’s native structure) energy surfaces and introduced the
“folding funnels” (Fig. 2b), which seemingly eliminate the “paradox” at all.

Its not as simple as that, though. . .

Fig. 2 Schematic illustration of basic models of the energy landscape of protein chains. (a) The
“golf course” (Levinthal’s) model of the protein potential energy landscape. (b) The “funnel”
model of the protein potential energy landscape. The funnel is centered in the lowest-energy
(“native”) structure. (c) In more detail: the bumpy potential energy landscape of a protein chain. A
wide (of many kBTmelt, where kB is Boltzmann’s constant and Tmelt is protein melting temperature)
energy gap between the global and other energy minima is necessary to provide the “all-or-none”
type of decay of the stable protein structure. Only two coordinates (q1 and q2) can be shown in the
figures, while the protein chain conformation is determined by hundreds of coordinates
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The problem of huge sampling does exist even for realistic energy surfaces. It has
been mathematically proven that, despite the folding funnels and all that, finding the
lowest free-energy conformation of a protein chain is the so-called NP-hard problem
[30, 31], which, loosely speaking, requires an exponentially large time to be solved
(by a folding chain or by a man).

Anyhow, various “folding funnel” models became popular for explaining and
illustrating protein folding [17, 32, 33]. In the funnel, the lowest-energy structure
(formed, thus, by a set of most powerful interactions) is the center surrounded by
higher-energy structures containing only a part of these interactions. The “energy
funnels” are not perfectly smooth due to some “frustrations,” i.e., contradictions
between optimal interactions for different links of a heteropolymer forming the pro-
tein globule, but a stable protein structure is distinguished by minimal frustrations
(that is, most of its elements have enhanced stability) [28, 34–36]. Anyhow, the
“energy funnel” directs movement toward the lowest-energy structure, which seems
to help the protein chains to avoid the “Levinthal’s” sampling of all conformations.

However, it can be shown that the energy funnels per se do not solve the
Levinthal’s paradox. Strict analysis [37] of the straightforwardly presented funnel
models [19, 38] shows that close to the midpoint of the folding–unfolding equilib-
rium they cannot simultaneously explain both the major features observed in protein
folding: (1) its nonastronomical time, and (2) the “all-or-none” transition, i.e.,
coexistence of native and unfolded protein molecules during the folding process.

By the way, the stepwise mechanism of protein folding [13], taken per se, also
cannot [39] simultaneously explain these two major features observed in protein
folding. Rather, it states that the folding must be fast if each subsequent folding
intermediate is much more stable than the preceding one (and thus, if the native fold
is much more stable than the unfolded state of the chain).

Thus, neither stepwise nor simple funnel mechanisms solve the Levinthal’s
problem, although they give a hint as to what accelerates protein folding.

The basic solution of the paradox is provided by very special nucleation funnels
[20, 21]: those, considering the separation of the unfolded and native phases within
the folding chain (now called the “capillarity theory” [40]).

It will be described in the next part of this review.

2 Physical Estimate of the Height of Free-Energy Barrier
Between the Folded and Unfolded States: View at the
Barrier from the Side of the Folded State

To solve the “Levinthal’s paradox” and to show that the most stable chain fold can
be found within a reasonable time, we could, to a first approximation, consider only
the rate of the “all-or-none” transition between the coil and the most stable structure.
And we may consider this transition only for the crucial case when the most stable
fold is as stable as (or only a little more stable than) the coil, with all other states of
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the chain being unstable, i.e., close to the “all-or-none” transition midpoint. Here,
the analysis can be made in the simplest form, without accounting for accumulating
intermediates. True, the maximum folding rate is achieved when the native fold is
considerably more stable than the coil [23, 41], and then observable intermediates
often arise; but let us consider not the fastest but the simplest case. . . (We have to
note that this special attention to the mid-transition conditions differs our approach
[20, 21, 42] from those that prevailed from 1960s to the middle of 1990s.)

Since the “all-or-none” transition requires a large energy gap between the most
stable structure and misfolded ones [6, 24–27] (Fig. 2c), we will assume that the
considered amino acid sequence provides such a gap. Our aim is to estimate the rate
of the “all-or-none” transition and to prove (if possible) that the most stable structure
of a normal size domain (∼100 residues) can fold within minutes or seconds or even
faster.

To prove that the most stable chain structure is capable of rapid folding, it is
sufficient to prove that at least one rapid folding pathway (i.e., passing the low-
free-energy barrier) leads to this structure. Additional pathways can only accelerate
the folding since the rates of parallel reactions are additive. And we can avoid
considering folding of other, non-native structures. They have high energy because
of the “energy gap,” and, near the point of the “all-or-none” transition between the
most stable globule and the unfolded chain, they are unstable even taken together,
and therefore, they cannot serve as “folding traps” that absorb folding chains. (One
can imagine water leaking from a full pool to an empty one through cracks in the
wall between them: when the cracks cannot absorb all the water, each additional
crack accelerates filling of the empty pool.)

To be rapid, the pathway must consist of not too many steps, and most
importantly, it must not require overcoming of a too high-free-energy barrier.

An L-residue chain can, in principle, attain its lowest-energy fold in L steps,
each adding one fixed residue to the growing structure (Fig. 3). If the free energy
went downhill along the entire pathway, a 100-residue chain would fold in ∼100–
1000 ns, since the growth of a structure (e.g., an α-helix) by one residue is known
to take a few nanoseconds [43].

Protein folding takes minutes or seconds or even milliseconds rather than a
fraction of a microsecond because of the free-energy barrier: most of the folding
time is spent on climbing up this barrier and falling back, rather than on moving
along the folding pathway.

The key role in this process is played by the transition state, i.e., the least stable
(“barrier”) state on the reaction pathway. According to the conventional transition
state theory [44–46], the time of the multistep process of overcoming the barrier is
estimated as

TIME ∼ τ × exp(+�F #/RT ) , (1)

where τ is the time of one elementary step, and�F # is the height of the free-energy
barrier.
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Fig. 3 A scheme [21] of a sequential folding pathway of some globular structure (if passed in
the opposite direction, it is the sequential unfolding pathway of this structure). At each step of
sequential folding, one residue leaves the coil and takes its final position in the structure. The
free energy of intermediates is elevated due to the interface of folded and unfolded phases. The
# sign indicates the most unstable (“transition”) state. The folded part (shaded) of semi-folded
intermediates which constitute the optimal (“low-free-energy”) pathway must be compact (having
a small boundary between the folded and unfolded phases). The bold lines show the backbone fixed
in the already folded part; fixed side chains are not shown for the sake of simplicity (the volume
that they occupy is shaded). The broken line shows the yet unfolded chain

As for �F #, this is our main question: how high is the free- energy barrier F #

on the pathway leading to the lowest-energy structure? Formation of this structure
decreases both the chain entropy (because of an increase in the chain’s ordering)
and its energy (due to formation of contacts stabilizing the lowest-energy fold). The
former increases and the latter decreases free energy of the chain.

If fold-stabilizing contacts start to arise only when the chain comes very close
to its final structure (i.e., if the chain has to lose almost all its entropy before the
energy starts to decrease), the initial free-energy increase would form a very high-
free-energy barrier (proportional to the total chain entropy loss). The Levinthal’s
paradox claiming that the lowest-energy fold cannot be found within any reasonable
time since this involves exhaustive sampling of all chain conformations originates
exactly from this picture (loss of the entire entropy before the energy gain).

However, this paradox can be avoided if there is a folding pathway where the
entropy decrease is immediately or nearly immediately compensated for by the
energy decrease [29].

Let us consider a sequential wetlaufer1 folding pathway (Fig. 3). More specifi-
cally, we will consider a process at each step of which one residue leaves the coil
and takes its final position in the lowest-energy 3D structure. True, this pathway may
look a bit artificial, but actually the outlined pathway is exactly the pathway that one
expects to see watching the movie on unfolding, but in the opposite direction.

According to the well-known in physics detailed balance law [47], the direct
and reverse reactions follow the same pathway and have equal rates when both
the end states have equal stability. (This law follows from the second law of
thermodynamics. It is proved by contradiction: if, in thermodynamic-equilibrium
ambient conditions, the pathway A → 1 → B is faster than A → 2 → B for the
A → B reaction, while the pathway A ← 2 ← B is faster than A ← 1 ← B for
the reciprocal A← B reaction under the same conditions, one obtains a permanent

flow A B1 2 , which contradicts to the second law of thermodynamics.)
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Thus, one can use the detailed balance law to find the transition state for folding
by finding the optimal transition state for unfolding! An advantage of analysis of the
unfolding pathway is that it is much easier: for any final globular structure, one can
easily figure out its sequential unfolding passing through the least unstable semi-
unfolded states, i.e., those where the compact globular phase is separated from the
unfolded one (Fig. 3) by minimal interfaces [20, 21, 48, 49].

(In this connection, it is not out of place mentioning that, odd enough, protein
unfolding, in contrast to folding, has been never treated as a “puzzle,” although it
is well known for a long time that these two states, unfolded and folded, can be
in kinetic equilibrium! Despite all that, nobody asked a question complementary
to Levithal’s one, that is, how the protein gains a huge energy required for
unfolding. . . This shows that it is easier to imagine how to unfold any protein
structure than how to fold it.)

Thus, let us consider the energy change �E, the entropy change �S, and the
resultant free-energy change�F = �E−T�S along the sequential (Fig. 3) folding
pathway (reconstructed from the way of sequential unfolding).

When a piece of the final globule grows sequentially, the interactions that
stabilize its final fold are restored sequentially as well. If the folded piece remains
compact, as in Figs. 3 and 4a, the number of restored interactions grows (and their
total energy decreases, see Fig. 4c) approximately in proportion to the number n of
residues that have taken their final positions.

Approximately in proportion—but with one significant deviation: At the begin-
ning of folding, the energy decrease is a little slower, since the contact of a newly
joined residue with the surface of a small globule is, on average, smaller than its
contact with the surface of a large globule. This results in a nonlinear surface term
(the surface being proportional to ≈n2/3) in the energy �E of the growing globule.

Thus, the maximal deviation from the linear energy decrease is proportional
to L2/3, while the total energy decrease is proportional to the total number L of
residues. The deviation is still greater, see dotted line in Fig. 4c, if the folded parts
do not form a compact piece, as in Fig. 4b.

The entropy decrease is also approximately proportional to the number n of
residues that have taken their final positions (Fig. 4d).

At the beginning of folding, though, the entropy decrease can be a little faster
owing to disordered but closed loops protruding from the growing globule (Figs. 3
and 5). The maximal number of such loops is proportional to the interface between
the folded and unfolded phases, and the free energy of a loop is known [50, 51]
to have a very slow, logarithmic dependence on its length. This again results in
a nonlinear surface term in the entropy �S of the growing globule. The overall
entropy decrease is proportional to L again, and the maximal deviation from the
linear entropy decrease again is proportional to L2/3 (actually, it is proportional to
∼ L2/3× ln(L1/3) at the most, but the multiplier ln(L1/3) is insignificant, about 1–2
when L is 10–1000) [20]; see also the later rigorous mathematical papers [52, 53].

Both linear and surface constituents of �S and �E enter the free energy �F =
�E−T�S of the growing (or unfolding) globule. However, when the final globule
is in thermodynamic equilibrium with the coil, the large linear terms annihilate each
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Fig. 4 Schematic illustration of sequential folding/unfolding with compact (a) and non-compact
(b) semi-folded intermediates and the change of energy (c), entropy (d), and free energy (e) along
these sequential folding/unfolding pathways close to the point of thermodynamic equilibrium
between the coil (n = 0) and the final structure (n = L: all the L chain residues are folded).
The full energy and entropy changes, �E(L) and �S(L), are approximately proportional to L.
The bar-dotted lines show the linear (proportional to the number of already folded residues n)
parts of �E(n) and �S(n). The nonlinear parts of �E(n) and �S(n) result mainly from the
surface of the folded part of the molecule (solid lines: for a pathway with compact intermediate
structures; dotted lines: for that with non-compact intermediates). The maximal deviations of the
�E(n) and �S(n) values from linear dependences are proportional to only L2/3. As a result,
�F(n) = �E(n) − T�S(n) also deviates from the linear dependence (bar-dotted line) by a
value of only∼L2/3 for compact intermediate structures (while for non-compact intermediates, the
deviations are greater). Thus, at the equilibrium point (where �F(0) = �F(L)), the maximal on
this pathway free-energy excess�F # (“the barrier”) over the bar-dotted free-energy baseline is also
proportional to only L2/3 for compact intermediate structures. The change �F(n) on the pathway
to other structures looks similar (see inset in panel (e)), but these pathways can be neglected,
because all these structures are unstable with �F(n = 0) < �F(L) in the presence of the energy
gap and the “all-or-none” transition between the unfolded and the most stable globular state of the
chain. Adapted from [20, 21]

other in the difference �E − T�S (since �F = 0 both in the coil (i.e., at n = 0)
and in the final globule (at n = L)), and only the surface terms remain: �F(n)
would be zero all along the pathway in the absence of surface terms.

Thus, the free-energy barrier (Figs. 4e and 6) on a sequential folding pathway
with compact semi-folded structures depends only on relatively small globule
surface effects, and its height is proportional not to L (as Levinthal’s estimate
implies), but to L2/3 only.

In the most simplified form (for details, see [20, 21, 42, 49]), free energy of the
barrier is estimated as follows.

The fastest folding pathway is that having the lowest free-energy barrier; the
barrier, on a given pathway, corresponds to the intermediate with the highest free
energy, that is, the maximal for this pathway interface between the folded and
unfolded phases; this interface contains about L2/3 residues.
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Fig. 5 A compact semi-folded intermediate with protruding unfolded loops. Its growth corre-
sponds to a shift of the boundary between the folded (globular) and unfolded parts. Successful
folding requires correct knotting (a) of loops: the structure with incorrect knotting (b) cannot
change directly to the correct final structure: first it has to unfold and achieve the correct knotting.
However, since a chain of∼100 residues can only form one or two knots [42], the search for correct
knotting can only slow down the folding twofold or at most fourfold; thus, the search for correct
chain knotting does not limit the folding rate of normal size protein chains. Adapted from [42]

Fig. 6 This purely illustrative drawing shows how entropy converts the energy funnel (illustrated
in Fig. 2b) into a “volcano-shaped” (as it is called now [54]) free-energy folding landscape with
free-energy barriers (Fig. 4e) on each pathway leading from an unfolded conformation to the native
fold. Any pathway from the unfolded state to the native one first goes uphill, and only then, from the
barrier (i.e., crater edge), descends into the “free-energy funnel.” The smooth free-energy landscape
corresponds to compact semi-folded intermediate structures (shown in Fig. 4a), the rocks (denoted
by dotted lines) present a landscape including non-compact semi-folded intermediate structures
(shown in Fig. 4b). More accurate but less beautiful scheme of a free-energy landscape is shown in
Fig. 2 in [48]

The energy constituent �E# of the barrier free energy results from interactions
lost by the interface residues; it is about

L2/3 · 1

4
ε , (2a)

where ε ≈ 1.3 kcal/mol≈ 2kBTmel is the average heat of protein melting per residue
[5] (this is the first empirical parameter used by the theory), and ≈ 1

4 is the fraction
of interactions lost by an interface residue. Thus,

�E#

kBTmelt
≈ 0.5L2/3 . (2b)

The entropy constituent �S# of the barrier free energy is caused by entropy loss
in closed loops protruding from the globular into the unfolded phase (see Fig. 5).
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The upper limit of �S# is zero (when the interface contains no such loops).
The lower limit of �S# is about

(�S#)lower = 1

6
L2/3

[
−5

2
kB ln(3L1/3)

]
, (3a)

where 1
6L

2/3 corresponds to the maximal number of closed loops protruding from
the optimal (minimally covered by loops) globule/coil interface (actually, this is the
average number for one globule cross section (Fig. 5), since the interface residue can
have 6 directions—4 along the surface, 1 inside, and only 1 outside; and the folding-
involved interface must be covered by a minimal, never exceeding the average,

number of loops). 3L1/3 ≡ (
L
2

)
/
(

1
6L

2/3
)

is the average number of residues in

such a loop (equal to the number of unfolded residues divided by the number of
loops), and − 5

2kB ln(3L1/3) is entropy lost by such a closed loop (the interior parts
of which do not penetrate inside the globule; this changes the conventional Flory’s
coefficient, 3/2 to 5/2 [20, 21]). Having L ∼ 100 (actually, this approximation is
good for the whole range of L = 10–1000), we obtain

(�S#)lower ≈ −kBL2/3 (3b)

As a result, the time of both folding and unfolding of the most stable chain structure
grows with the number of chain residues L not “according to Levinthal” (i.e., not as
2L , or 10L , or any exponent of L), but, in mid-transition conditions, as

TIME ∼ τ × exp
[
(1± 0.5)L2/3

]
(4)

where τ ≈ 10 ns [43] (this is the second and the last empirical parameter used in
the theory).

The folding time depends on the size and the shape (see above) of the folding
protein’s native structure.

The physical reason for this “non-Levinthal” estimate is that (1) during folding,
the entropy decrease is almost immediately and almost completely compensated
for by an energy decrease along the sequential folding pathway (and, likewise, the
energy increase is almost immediately and almost completely compensated for by
an entropy increase along the same sequential unfolding pathway), and (2) the free
energy results only from surface effects which are relatively weak.

The observed protein folding times span (Fig. 7) 11 orders of magnitude (which
is akin to the difference between the life span of a mosquito and the age of the
universe). The range of folding times at mid-transition (where �F = 0) is from
10 ns× exp(0.5L2/3) to 10 ns × exp(1.5L2/3), in accordance with the estimate
obtained. Under more physiological conditions (“in water”, where �F < 0), L2/3

is replaced by L2/3 + 0.4�F/RT (see Sect. 4), but in all other respects the range
remains the same.
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It is noteworthy that the outlined sequential folding pathways do not require
any rearrangement of the dense globular part (which could take a lot of time): all
rearrangements occur in the coil.

Anyhow, the obtained Eq. (4) illustrated in Fig. 7 shows that a chain of L �
80–90 residues will find its most stable fold within minutes (or faster) even under
“nonbiological” mid-transition conditions, where folding is known [23, 41] to be the
slowest. Native structures of such relatively small proteins are under thermodynamic
control: they are the most stable among all structures of these chains.

Native structures of larger proteins (of ≈90–400 residues) are, in addition, under
a “structural control,” in a sense that too entangled folds of their long chains cannot
be achieved within days or weeks even if they are thermodynamically stable; and
indeed, greatly entangled folds of long protein chains have been never observed
[49]: they seem to be excluded from the repertoire of existing protein structures. This
also explains why larger proteins should be far from spherical or consist (according
to the “divide and rule” principle) of separately folding domains: otherwise, chains
of more than 400 residues would fold too slowly. This is a “structural control” again.
Its effect, in some sense, resembles that of Levinthal’s “kinetic control,” though at
another level and only for large proteins. The above estimates (≈80– 90 and ≈400
residues) are somewhat elevated when the native fold free energy �F is lower than
that of the unfolded chain (see below), but essentially they remain the same [49].

One thing is left to be said:
The “quasi-Levinthal” search over intermediates with different chain knotting

(Fig. 5) can, in principle, be a “Levinthal-like” rate-limiting factor, since knotting
cannot be changed without a decay of the globular part. However, since the computer
experiments show that one knot involves about a hundred residues, the search for
correct knotting can only be rate-limiting for extremely long chains (see [42] and
references therein) which cannot fold within a reasonable time (according to Eq. (4))
in any case.

3 Estimating Dependence of the Sampling Volume on Protein
Size: View at the Barrier from the Side of Unfolded State

The above given estimate of the folding time is based on consideration of protein
unfolding rather than folding. We have considered unfolding because it is easier to
outline a good unfolding pathway (and time, see above) of any structure than a good
folding pathway leading to the lowest-energy fold, while the free-energy barrier at
both pathways is the same.

In other words, we considered the free-energy barrier between the unfolded and
folded states (Figs. 5 and 6) with the focus on its unfolding side (connected with
energy increase on the pathway from the volcano throat to the crater edge) and did
not consider its folding side (connected with entropy loss on the pathway from the
unfolded state to the crater edge). Since the rates of direct and reverse reactions
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Fig. 7 Main panel: experimentally measured in vitro folding rate constants in water (under
approximately “biological” conditions) and at mid-transition for 107 single-domain proteins (or
separate domains) without SS bonds and covalently bound ligands (though the rates for proteins
with and without SS bonds are principally the same [55]). Triangle: the region allowed by physics;
its gray part (with the dark belt) corresponds to biologically reasonable folding times (≤10 min);
the larger folding times (i.e., the smaller folding rates) are observed (for some proteins) only under
mid-transition, i.e., nonbiological conditions. The light-gray dashed line limits the area allowed
only for oblate (1:2) and oblong (2:1) globules at mid-transition; the dark-gray dashed line means
the same for “biologically normal” conditions. L is the number of amino acid residues in the
protein chain under study.�F is the free-energy difference between the native and unfolded states
of the chain. Adapted from [49]. Supplementary panels: Typical forms of “chevron plots” for the
folding/unfolding kinetics of proteins that fold without and with folding intermediates (after [41])

are equal under mid-transition conditions (as follows from the physical “detailed
balance” principle), here the “unfolding” and “folding” sides of the barrier are of
equal heights, and therefore, examination of only one (“unfolding”) side is sufficient
to estimate the barrier height.

However, a complete analysis of folding urges us to look at the barrier from
its folding (connected with entropy loss) side, which is most interesting for the
biological audience, and obtain the second view on the protein folding puzzle.

To analyze folding, we have to analyze sampling of conformations of the protein
chain.

The total volume of the protein conformation space estimated at the level of
amino acid residues by Levinthal [4] is huge indeed: as many as from 3100 to 100100

conformations for a 100-residue chain.
However, should the chain sample all these conformations in search for its most

stable fold? No: the conformation space is covered by local energy minima, each
surrounded by a local energy funnel (Fig. 2b) providing fast downhill decent to this
local minimum.

Actually, the folding protein chain has to sample not all its possible conforma-
tions, but only various ways of packing the chain in the compact protein globule.



404 A. V. Finkelstein et al.

Fig. 8 A scheme of Ptitsyn’s [13] hypothetical mechanism of stepwise protein folding. Cylinders:
α-helices; arrows: β-strands. Both predicted in 1973 intermediates have been observed in 1980s–
1990s [62]

Therefore, to estimate the actual volume of sampling, one has to estimate the
number of local energy minima (and also the time taken by jumping from one energy
minimum to another). In some sense, this is similar to the idea to enumerate possible
“topomers” that a protein chain can form [56, 57], but our aim is not to calculate the
protein folding rate, but to estimate its lower limit only (which is very different
from the somewhat contradictive [58] theory of the native-like topomer search by
simulation).

An overview of protein structures shows that interactions occurring in the chains
are mainly connected with secondary structures [13, 59–61]. Thus, a question arises
as to how large the total number of energy minima is, if considered at the level of
formation and assembly of secondary structures into a globule, that is, at the level
considered by Ptitsyn [13] in his model (Fig. 8) of stepwise protein folding.

It turns out that the number of conformations at the level of secondary structures
is by many orders of magnitude smaller than that of conformations of amino acid
residues of the chain [14]: the latter, according to Levinthal’s estimate, scales up as
something like 100L or 10L or 3L with the number L of residues in the chain, while
the former scales up not faster than ∼LN with the number of residues L and the
number N of the secondary structure elements. N is much less than L, and this is
the main reason for the drastic decrease of the conformation space.

The estimate LN was obtained as follows (see Fig. 9).
The number of architectures (i.e., types of dense stacks of secondary structures)

is small (cf. [59, 60, 63]), usually∼10 or less for a given set of secondary structures
(Fig. 9a), since the architectures are packings of a few secondary structure layers
(each containing several secondary structures), and therefore combinatorics of
the layers is very small as compared to combinatorics of much more numerous
secondary structure elements (see Fig. 9b–e).

The maximal number of packings, i.e., all combinations of positions of N
elements in the given protein architecture, cannot exceed N ! (Fig. 9b).

The maximal number of topologies, i.e., all combinations of directions of these
elements cannot exceed 2N (Fig. 9c).

Transverse shifts and tilts of an element within each dense packing are prohibited
(Fig. 9d).
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Fig. 9 A scheme of estimate of the conformation space volume at the level of secondary structure
assembly. Adapted from Supplement to [14]. (a) Architectures of N = 3 structural elements. (b)
Packings: N ! = N × (N − 1) × . . . × 2 × 1. (c) Topologies: 2N . (d) Transverse shifts and tilts:
prohibited. (e) Coupled shift and rotation

Longitudinal shifts and turns about the axes of secondary structure elements
within a dense packing are coupled (this is shown in Fig. 9e using a β-sheet as
the best illustrative example, but this is also true for α-helices—remember “knobs
in the holes” close packings by Crick [64]); as a result, each α or β element can have
about L/N (that is, about the mean chain length per element) possible shift/turns in
the globule formed by N secondary structures of the L-residue chain.

All this limits the number of energy minima in the conformational space to
∼10 × (L/N)N × 2N × N ! conformations; this (using Stirling’s approximation
N ! ∼ (N/e)N ) gives

NUMBER of energy minima to be sampled ∼ LN (5)

in the main term (if L# N # 1) [14].
This number can be somewhat reduced by symmetry of the globule; also, no α-

helix can take the place of a β-strand without rearrangement of other elements, and
vice versa, because the β-strand needs a partner to form hydrogen bonds, while
the α-helix avoids such a partnership. Further, short or crossing loops between
secondary structures can prevent these from taking arbitrary positions and directions
in the globule, etc. [65]. However, this reduction is not important to us, because our
aim now is to estimate the upper limit of the number of conformations.

Here, a question may arise as to how the chain knows where to form a secondary
structure and what secondary structure is to be formed there. The answer seems
to be as follows. Most of secondary structures are determined by local amino acid
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sequences [13, 66]. Anyhow, the choice of “to be or not to be” for a secondary
structure element adds only 1 state to the number L/N of its possible shift/turn
states (already taken into account), and conversion only duplicates it, which is not
significant (see [67]).

In a compact globule of not too small size, the length of a secondary structure
element should be proportional to the globule’s diameter, i.e., to ∼L1/3. More
specifically, the globule’s volume is about 150 Å3 × L (and thus its diameter is
≈5 Å × L1/3), while the shift per residue is about 1.5 Å in a helix and 3 Å in an
extended strand [61]. Therefore, a helix consists of ≈3L1/3 residues, while a β-
strand, as well as a loop, comprises ≈1.5L1/3 residues. Thus, the mean number of
residues in “secondary structure + loop” element is

L/N ≈ 4.5L1/3 − 3L1/3 , (6)

(which, at L ∼ 100, is close to the value of L/N = 15 ± 5 found from protein
statistics [54]), and the mean number of “secondary structure + loop” elements is

N ≈ L2/3

4.5
—
L2/3

3
. (7)

Thus, the value LN (the sampling volume) is within the range

∼ LL2/3
4.5 ≡ exp

([
ln(L)

4.5

]
× L2/3

)
— ∼ LL2/3

3 ≡ exp

([
ln(L)

3

]
× L2/3

)

(8)
Analogous scaling was obtained [52, 53] from mathematical consideration of

complexity of the choice problem. Also, one can see that, since ln(L)/4.5 ≈ 1 and
ln(L)/3 ≈ 1.5 for L ∼ 100, the estimate given by Eq. (8) is, eventually, more or
less close to the upper limit outlined by Eq. (4).

Taking, from experiments on folding of the smallest proteins [68, 69], a few
microseconds as a rough estimate of the time necessary to sample one conformation
and the valueL/N = 15±5 from protein statistics, we see that the time theoretically
needed to sample the whole conformation space at the level of secondary structure
formation and assembly closely approaches (Fig. 10) the upper limit of experimental
folding times observed for small (L � 80–90) residue proteins. It is also close to
the upper limit of the folding time estimate given by Eq. (4), earlier obtained from
consideration of unfolding and illustrated in Fig. 7; note that folding of these small
proteins is, as we have concluded, under complete thermodynamic control.

The above consideration does not mean, of course, that a folding protein samples
the entire conformation space at the level of secondary structure formation and
packings (though a chain of 80–90 residues or less can do this within minutes (or
faster), as Fig. 10 shows for the most slowly folding proteins of such size). It means
only that the native fold-leading “energy funnel,” working at the level of secondary
structures, has to accelerate (for some, rapidly folding proteins) the folding process
by several orders of magnitude (as Fig. 10 shows for the majority of proteins), rather
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Fig. 10 Sampling rate and folding rate. Folding rates (circles and squares) are shown for proteins
experimentally studied at mid-transition (i.e., at equal stability of their folded and unfolded states);
the dark- gray/light-gray triangle shows the predicted (from consideration of unfolding!) range
of these rates (cf. Fig. 7). The netted shading shows a theoretical estimate of the minimal rate of
exhaustive sampling, at folding, of all possible packings of protein secondary elements (helices and
strands). The maximal “Levinthal-like” sampling rate (1012 s−1/3L, allowing for 3 possible states:
α, β, and coil) is shown by the double dashed line; the lines for “Levinthal-like” sampling rates
with 10 or 100 possible states of a residue would have been much below (in the dark-gray zone).
Adapted from [70]

than for all proteins and by many tens or hundreds of orders, which would have been
the case if the funnel were to start working from the level of amino acid residues
(cf. with the theory of searching for topomers [56, 57]). Figure 10 shows that the
“funnel-due” acceleration is pronounced for chains of >100 residues, but even then
the main work is done by secondary structures.

Bird’s-eye view of the obtained estimates (4)–(8) of the number of chain
conformations (or rather, of all kinds of chain packing in a compact globule), which
have to be enumerated when searching for the most stable protein structure is as
follows. This number scales, in the main term, in proportion to the globule’s surface,
i.e., to the number of surface residues or—nearly the same—to the number of the
secondary structures N , which are both proportional to L2/3. The physical reason
is that in a dense globule all independent degrees of freedom are connected only
with its surface, because the globule’s density prohibits independent rearrangements
of residues in its interior [24, 27], just like the secondary structure prohibits
independent movements of residue backbones inside it. From this point of view, the
used secondary structure elements are not necessary for estimating the scaling law
(estimates by Fu and Wang [52] and Steinhofel et al. [53], as well as our estimates
based on unfolding pathways [20, 21, 48, 49], did not use secondary structures),
though these structures do form the protein core, and they are useful for refinement
of the principal law.
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4 Discussion and Conclusion

We have viewed the pathways through the “volcano-shaped” (illustrated in Fig. 5)
folding landscape both from outside, i.e., from the “volcano” foot, and from inside,
that is, from its crater. In this way, we investigated the free-energy barrier separating
the folded and unfolded states of a protein chain from its both sides. We have passed
it there and back again and obtained two views on the protein folding puzzle; these
two views solve the Levinthal’s paradox.

The barrier side facing the folded state is easier for investigation because it is
easier to outline a reasonable unfolding pathway from any given fold than a good
folding pathway to a fold that is still unknown for the chain. The view from inside
of the folding funnel gave us an estimate of the range of unfolding times, and then
we used the detailed balance principle to find the folding time.

The view from outside of the folding funnel gave us only the upper limit of the
folding (or rather, sampling) time.

It is worth mentioning that the unfolding-based estimate gives both the upper and
lower estimates of the folding time, while the folding-based estimate gives its upper
limit only.

The same scheme can be applicable to formation of the native protein structure
not only from the coil (which we used in this study for simplicity) but also from
the molten globule or from another intermediate. However, for these scenarios, all
the estimates would be much more cumbersome due to more complicated nature
of the denatured state of the protein, while these processes do not demonstrate (in
experiment, see Fig. 7) any drastic advantage in the folding rate. Therefore, we now
will not go beyond the simplest case of the coil-to-native globule transition.

It is not out of place mentioning that something similar to the Levinthal’s problem
must exist in crystallization (which resembles protein folding, because atoms of a
few sorts have to acquire a particular conformation among plentiful others in “yet
unknown” for them crystal; though, to our best knowledge, it did not attract there as
much attention as in the protein science (cf. [71, 72]).

A few more things remain to be said:

1. Our estimate of the number of the secondary structure ensembles (i.e., the energy
minima to be sampled) is independent (see Eqs. (5)–(8)) on stability of these
ensembles. The influence of the native state stability (�F ) on the folding time is
considered below.

2. Our basic estimate of the folding time, Eq. (4), referred, up to now, to �F =
0, i.e., to the point of equilibrium between the unfolded and native states—but
here the observed folding time is at a maximum and can exceed by orders of
magnitude the folding time under native conditions [41].

How will the folding time change when the native state becomes somewhat
more stable than the coil (that is, �F < 0)? In accordance with experiment (see
[41]), the theoretical analysis [21, 61, 73, 74] shows that as long as−�F is small,
about a few kBT , so that no stable intermediates arise, the folding time decreases
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with increasing stability, and, theoretically, it can be estimated [49] as

TIME ∼ τ × exp
[
(1± 0.5)× (L2/3 + 0.4×�F/RT )

]
; (9)

the multiplier 0.4 corresponds to the approximate theoretical estimate of the
average fraction of a chain involved in the folding nucleus, so that 0.4 × �F
is the approximate change of the nucleus free energy. (The overview of other
details of folding nuclei is out of the scope of this paper; one can find them in
[41, 48, 61, 73, 74]). Equation (9) gives a unified approximate estimate of folding
rates occurring under various conditions (see Fig. 6).

For the case of a very high native fold stability (−�F # kBT ), another
but similar to Eq. (4) scaling law (ln(TIME) ∼ L1/2) was obtained [75]. Then,
protein folding is the fastest, because it essentially goes “downhill” in energy
all the way; but the “downhill slope” has (due to protein heterogeneity) random
bumps, whose energy is proportional to L1/2. However, numerical experiments
with lattice protein chains have shown [27, 76] that, at the temperature providing
the fastest folding, the folding time grows with the chain length as ln(TIME) ∼
A × ln(L), where the coefficient A equals to 6 for chains with “random”
sequences and 4 for sequences selected to fold most rapidly (i.e., for chains
having a large energy gap between the most stable fold and other ones). This
emphasizes once again the dependence of the folding rate on experimental
conditions and on the difference in stability between the lowest-energy fold and
its competitors [26, 40].

3. Here, it is worth mentioning that some, quite rare proteins are “metamorphic”
[77]: they are observed in two or more distinct folds. Of interest for us are those
very few in number (e.g., serpin) that first obtain some “native,” that is, working
structure, work in the cell or a test tube for an hour or so, and then acquire
another, non-working but more stable structure [78]. Significantly, this transition
is not connected with a change in the protein’s environment (aggregation, as in
amyloids, or formation of some complexes). Thus, the chain of such a protein
has two stable folds: one of them folds faster, the other is more stable. It seems,
though, that such “metamorphic” (or “polymorphous”) proteins are and must
be very rare: theoretical estimates [61, 74] show that the amino acid sequence
coding for one stable chain fold (i.e., whose energy is separated by a wide gap
from energies of others) is a kind of wonder by itself, but the sequence coding
for two stable folds is a squared wonder. . .

4. Equations (4), (9) estimate the range of possible folding rates rather than folding
rates of an individual protein, which, even for proteins of the same size, may
differ (Fig. 6) from one another by orders of magnitude. The influence of a
particular protein chain fold shape upon the folding rate can be estimated using
a phenomenological “contact order” parameter (CO%) [79]. CO% is equal to the
average distance along the chain between residues that are in contact in the native
protein fold, divided by the chain length (see also [33, 80]). A high CO% value
reflects the presence of many long closed loops in the protein fold, while a high
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value of (1±0.5) factor in Eqs. (4), (9) reflects their presence at the surface of the
semi-folded globule (Fig. 5). Therefore, CO% is more or less proportional to this
factor (1±0.5) [81]. CO% by itself is a good predictor of folding rates of proteins
equal in size, but it fails to compare folding rates of small proteins with those of
large ones, because CO% decreases approximately in proportion to L−1/3 with
increasing protein size L [49, 81, 82] (which reflects a low entangling of chains
forming large domains)—while the folding rate decreases, on the average, with
increasing protein size (Fig. 6)).

Therefore, a really good predictor of protein folding rates is AbsCO= CO%×
L, which scales as L2/3 [81] and combines the effect of protein fold shape [79,
82] with the main effect of protein size.

5. The attempts to use machine learning and information provided by protein
sequences to raise the quality of predictions over the level achieved with AbsCO
(or ln(AbsCO) [83]) were not quite successful up to now [84].

6. Coming back to the Levinthal’s paradox, we can conclude that it is solved for
protein chains of less than 100 amino acid residues (provided that sequences
of these chains ensure a significant stability to only one of their folds); this is
because (1) these chains can overcome free-energy barrier at the pathway to
their most stable folds, independently of their complexity (Fig. 7), and (2) they
are able to sample all their folds at the level of secondary structure formation
and assembly (Fig. 10) and find the most stable one. As to the chains of larger
proteins, they can sample only relatively simple (not too entangled) folds, and
it remains a question whether some another fold can be more stable than the
native one (which is indeed observed for some “exceptional” proteins like serpin,
having a 400-residue chain).

7. All told above is also applicable to in vivo folding, because NMR studies
of 15N, 13C-labeled nascent chains of small protein state that “polypeptides
[at ribosomes] remain unstructured during elongation but fold into a compact,
native-like structure when the entire sequence is available” [85, 86]; thus, there
is no principal difference between in vivo and in vitro protein folding.
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Navier–Stokes equations, 302
1D models, 302
patient-specific vessel structure,

reconstruction of, 304–305
Multivariate State Sequence (MSS), 235–236
Murine typhus, 59

N
Navier-Stokes equations, 28, 31, 39, 43, 302,

343
Nitrogenous bases, 77–78
Noninvasive Doppler ultrasound technique,

302
Non-minimal velocity, 160–161
Non-standard finite difference (NSFD) scheme,

222, 224–225, 231–232
existence of fixed points, 225
stability analysis of fixed points, 226–227

NP-hard problem, 395
NSFD scheme, see Non-standard finite

difference scheme
Nucleotides, 76–79, 82–86, 88
Numerical optimal control, 130–132
Nutrient-only equilibrium, 171

O
Off-diagonal matrices, 19–20
Olea europaea, 190
Olive knot, Epicoccum nigrum, 189

disease-and-endophytic fungi-free
equilibrium point, 202, 205

disease-free equilibrium point, 202
ecosystem’s steady states, 192–195
mathematical models, 190
model, 190–192
numerical simulations, 195–204
stable disease-free equilibrium, 204

Omsk haemorrhagic fever, 59
1D blood flow model, 344
1D models, 302, 303
On-the-fly parameter estimation, 134–135
Open quantum systems, 13, 14

Optimal control, AIDS
numerical optimal control, 130–132
problem statement, 127–129
single control case, 131–132

Optimal control problem, 127–129
Orientia tsutsugamushi, 59
Orphan proteins, 100

P
p-Adic distance, 81–82
p-Adic genetic code, 82–84

evolution, 84–86
as ultrametric network, 86–87

p-Adic genome, 87–88
p-Adic modeling, 77

genetic code, 77
Parabolic model

liquidus interface position, 292, 293, 297
solidus interface position, 293, 297, 298
temperature profile, 291
temperature versus time, 291

Partially Ranked Correlation Coefficients
(PRCC) technique, 251–253

Partition function, 101
Pennes bio-heat equation, 284, 286
Pennes model, 283, 284
Persistence, 62–65
Phantom, 212–214
Phase change heat transfer, 283, 285, 287
Phase plain convergence, 159
Phase plane equation, 158–159
Phenotype-structured mathematical models,

112–114
Phononic generator, 14, 17, 20
Photonic generator, 14, 17, 20
Photosynthetic system

absorption of excitons, 16
energy levels, 13
“global” basis, 16
Hamiltonian, 15–16
transport of excitons, 16

Plague, 59
Plankton-nutrient model

deterministic system, analysis of, 185
equilibria, 171–176
positive invariance, 171

mathematical model, 169–170
nonautonomous models, 186
numerical simulations, 180–184
stochastic model, 176–180

Plasticity, 111–112
Poincaré–Bendixson theorem, 66, 68
Poiseuille’s velocity profile, 336, 342
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Poisson process, 93–94
Population balance model, 121, 123–124
Population balance (compartmental) model,

121
PRCC technique, see Partially Ranked

Correlation Coefficients (PRCC)
technique

Predator–prey systems, 167, 190
Pre-exposure prophylaxis (PrEP), 122
Pressure gradient influence on global lymph

flow
bifurcation point, 330
calculations, 332–333
lymphangions, 331
lymphatic system modeling

graph of, 327–329
lymphatic capillaries, 329–330
physiology, 326–327

quasi-one-dimensional approach, 325, 326,
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sigmoid, 331
Probability distributions, 104
Protease Inhibitors (PIs), 265, 266
Protein databases, 91

Fokker–Planck equation, 98–100
Gibbs–Shannon entropy measure

maximization, 100–104
multinomial distribution to, 94–98

m× n block of amino acids, 92
poisson process, binomial distribution to,

93–94
Protein folding

“contact order” parameter, 409–410
folding funnel models, 392
folding time, 408
free-energy barrier, 395–402

“all-or-none” transition, 395, 396
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protruding unfolded loops, 400
detailed balance law, 397, 398
energy funnel, 400
entropy, 400–401
interface residue, 400
kinetic control, 402
L-residue chain, 396
nonbiological mid-transition conditions,

402
sequential folding pathway, 396, 397
sequential folding/unfolding with

compact, 398–399
structural control, 402
times span, 401, 403

kinetic choice, 392, 393
kinetic control assumption, 392
Levinthal’s choice problem, 391, 392
Levinthal’s paradox, 394–395, 397, 410
metamorphic, 409
native protein structure, 392
nucleus, 392
sampling volume on protein

conformation space volume, 404, 405
protein unfolding, 402, 403
Ptitsyn’s hypothetical mechanism, 404
sampling and folding rate, 406, 407
secondary structure + loop elements,

406
stability choice, 392, 393
thermodynamic facts, 393–394
volcano-shaped folding, 408

Pseudo-differential equation, 144
Pseudomonas savastanoi pv. savastanoi (Psv),

189–190, 202
Ptitsyn’s hypothetical mechanism, 404
Ptitsyn’s model, 392

Q
Quantum photosynthesis

bright, dark and off-diagonal matrices,
19–20

dark states
coherent, 24
excitation, 24
long lifetime, 24
non-decaying, 14
in quantum optics, 14

generators, dissipative dynamics
absorption of excitons, 18
Cauchy principal value, 18
phononic generator, 17
photonic generator, 17
quantum stochastic limit, 17
quantum thermodynamic machine, 18
superradiance effect, 19
transport of excitons, 17

photosynthetic complexe, 13, 14
photosynthetic system

absorption of excitons, 16
energy levels, 13
“global” basis, 16
Hamiltonian, 15–16
transport of excitons, 16

quantum coherences, 13
quantum states manipulation

application of a light pulse, 21–22
interaction with laser, 23–24
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quantum dissipative dynamics, 21
scheme of experiments, 14, 20
transport and absorption of excitons,

22–23
system density matrix dynamics, 14

Quasi-one-dimensional approach, 325, 326,
330

R
Ratio-dependent functional response, 222, 231
Reaction–diffusion competition system,

161–162
Reaction–diffusion equations, 153

competing species diffusion model, leader
selection in, 161–162

genetic waves, diffusion model of, 164–165
hypotheses, 162–163
integro-differential model, 163
PDE approximation, 164

instability
bounded convex domain, 154
on real line, 154

single travelling wave
Kolmogorov theorem, 156
travelling waves, 155–156
trigger wave, 156–157

stabilization
to dominating equilibrium, 154–155
minimal velocity true Kolmogorov’s

chains, convergence to, 160
non-minimal velocity, 160–161
phase plane equation, 158–159
true solutions and phase plain

convergence, 159
wave chains

Kolmogorov, 158
trigger, 157

Renkin equation, 356
Reverse Transcriptase Inhibitors (RTIs),

265–266
Ribonucleic acid (RNA), 77, 78, 84, 86–88,

265
Ribosome factory, 93, 94
Rickettsia akari, 59
Rickettsialpox, 59
Rickettsia typhi, 59
Right carotid artery (RCA), 305, 307
Risk-spreading strategy, 112
Rodent subsystem, infectious disease

equilibria, local stability, 61–62
global stability, 65–66
persistence, 62–65
reproduction numbers, 72–73

Rouche’s Theorem, 318
Routh–Hurwitz criterion, 193, 319
Routh–Hurwitz Theorem, 273, 274, 276
Runge-Kutta method, 219
Russian Federal Migration Service, 382

S
Saddle-node bifurcation (SNB), 196
Scanning magnetic microscopes, 143
Scrub typhus, 59
SEIR epidemic models, 375, 376
Sensitive parameter, 252–253
Sequential Quadratic Programming method, 29
Simple wave, 159
Single nucleotide codons, 85
Single travelling wave, reaction–diffusion

equations
Kolmogorov theorem, 156
travelling waves, 155–156
trigger wave, 156–157

Sonomed-500, 211, 214, 215
Spatial dimension

in mathematical models, 1
in population model, 1

HP metapopulation (see Host-parasitoid
metapopulation)

non-trivial and counter-intuitive spatial
patterns, 8

State, definitions of, 234
State interval, definition of, 234
Stochastic limit approach, 13
Stochastic models, 254

Gaussian white noise, 255
global sensitivity analysis, 255
interior equilibrium, 255–261
Wiener processes, 255, 256

Stochastic stability, 169, 176–180
Stokes–Poincare theorem, 140–141
Superconducting quantum Interference device

(SQUID) sensors, 139

T
Taylor expansion, 102, 284
Thermal wave model, 284
3D mathematical blood flow model

blood cells/hematocytes, 29
Carreau viscosity model, 31
Cauchy stress tensor, 30
Generalized Cross model, 31
hemodynamic analysis, 29
inflow and outflow boundaries, 30
mathematical analysis, 32–33
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3D mathematical blood flow model (cont.)
momentum and mass balance equations, 30
Neumann control, 32
non-Newtonian characteristics, 29
numerical approximation, DO direct

approach
approximated control function, 36
diffusion term, 35
discrete cost function, 37
discrete problem, 33
discretized terms, 36
finite dimensional approximations, 33,

36
GLS stabilization, 34
KKT optimality conditions, 38
Lagrange multipliers, 38
optimal control problems, 34
pressure term, 35
regularization term, 37
Sequential Quadratic Programming

algorithm, 38
SNOPT algorithm, 38, 39

plasma, 29
platelets/thrombocytes, 29
RBCs/erythrocytes, 29
scalar function, 30
shear dependent function, 31
shear-thinning models, 31
strain rate tensor, 30
tensor of viscous stresses, 30
vector function, 30
viscosity functions, 31
WBCs/leukocytes, 29

3D segmented model, human head, 210, 211,
215

Thymine, 78
Topomers, 404
Toxicity, 108, 109, 169
Traditional radio-and chemotherapy (CT), 347,

348, 359
Transcranial ultrasound

arterial aneurysm, 209
cerebral vessels, wave pattern on, 216
human head model, 214, 215
mathematical model and numerical method,

210–211
phantom, 212–214

Transcritical bifurcation (TCB), 185, 194, 196
Travelling waves, 155–156
Treatment as Prophylaxis (TaP) modality, 122
Trend abstractions, 234
Trigger wave chains, 157
Trinucleotide codons, 86
True solutions, 159

Two motif structures, random perturbation,
261–262

deterministic models, construction of
bistability of system, 251, 252
differential equations, 247
global sensitivity analysis, 251–254
interior equilibrium point, 248–250
monostabilities, 251, 252
parameters description and initial

values, 251, 253
positive invariance and boundedness,

248
I/O relation, 245, 246
negative feedback loop, 246
positive feedback loop, 246
signalling networks, 245–246
stable equilibrium point, non-existence of,

253, 254
stochastic models, 254

Gaussian white noise, 255
global sensitivity analysis, 255
interior equilibrium, 255–261
Wiener processes, 255, 256

two nodes signalling motifs, 246–247

U
Uracil, 78

V
Value abstractions, 234, 335, 421
Vascular endothelial growth factor (VEGF),

347, 350, 352, 358–359
Vascular networks, blood flows in

fluid flow, 337, 342
bifurcation of carotid arteries, 342–344
comparison of pressure, 339–341
convergence of numerical solution, 338
L2 error norm of numerical flux,

338–339
relative L2 error norms for pressure,

339
uniform mesh, 338

1D numerical blood, 335
Poiseuille’s velocity profile, 336
silicone network, 337

Vascular segmentation techniques, ceCTA
images

abdominal parenchymal organs
algorithm, 54, 56
binary mask generation, 52
entropy calculation, 53–55
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fully automatic segmentation, 52
multiphase CT-scans, 52
textural features, 52–53
3D volume extraction, 54

atlas-based techniques, 49–50
dynamic cardiac images segmentation

cropped and resampled input images,
50

machine learning techniques, 51
position reconstruction, 51
surface triangular mesh, 51
3D non-local means smoothing, 50
volume cross-sections, tetrahedral

mesh, 52
Hessian 3D analysis, 50
isoperimetric distance trees algorithm, 50
procedure, 50
results validation, 56–57
semi-automatic segmentation technologies,

50
Vertebral arteries, 302,305, 308, 310

Vertebrate mitochondrial (VM) code, 83, 84
Vitamin B12, 169

W
Wangersky–Cunningham model, 168
Weinbaum, Jiji and Lemons (WJL) Model, 283
Wiener processes, 255
Wobble hypothesis, 78–79

X
XPPAUT, 196

Y
Yersinia pestis, 59

Z
Zero local truncation error, 222
Zooplankton-free equilibrium, 171
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