
Chapter 9
An Accelerated Introduction to Memetic
Algorithms

Pablo Moscato and Carlos Cotta

Abstract Memetic algorithms (MAs) are optimization techniques based on the or-
chestrated interplay between global and local search components and have the ex-
ploitation of specific problem knowledge as one of their guiding principles. In its
most classical form, a MA is typically composed of an underlying population-based
engine onto which a local search component is integrated. These aspects are de-
scribed in this chapter in some detail, paying particular attention to design and in-
tegration issues. After this description of the basic architecture of MAs, we move
to different algorithmic extensions that give rise to more sophisticated memetic ap-
proaches. After providing a meta-review of the numerous practical applications of
MAs, we close this chapter with an overview of current perspectives of memetic
algorithms.

9.1 Introduction and Historical Notes

The generic denomination of ‘Memetic Algorithms’ (MAs) [135] is used to encom-
pass a broad class of metaheuristics, understanding the latter as high-level templates
that orchestrate the functioning on low-level rules and heuristics. The method, which
is based on a population of agents, had practical success in a variety of problem do-
mains, in particular for the heuristic resolution of NP-hard optimization problems.
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Unlike traditional evolutionary computation (EC) methods, MAs are intrinsically
concerned with exploiting all available knowledge about the problem under study.
The incorporation of problem domain knowledge is not an optional mechanism,
but a fundamental feature that characterizes MAs. This functioning philosophy is
perfectly illustrated by the term “memetic”. Coined by Dawkins [40], the word
‘meme’ denotes an analogous to the gene in the context of cultural evolution [116].
In Dawkins’ words:

Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of making pots
or of building arches. Just as genes propagate themselves in the gene pool by leaping from
body to body via sperms or eggs, so memes propagate themselves in the meme pool by
leaping from brain to brain via a process which, in the broad sense, can be called imitation.

This characterization of a meme suggests that in cultural evolution processes,
information is not simply transmitted unaltered between individuals. Rather, it is
processed and enhanced by the communicating parts. This enhancement is accom-
plished in MAs by incorporating heuristics, approximation algorithms, local search
techniques, specialized recombination operators, truncated exact methods, etc. In
essence, most MAs can be interpreted as a search strategy in which a population of
optimizing agents cooperate and compete [144]. The success of MAs can probably
be explained as being a direct consequence of the synergy of the different search
approaches they incorporate.

The most crucial and distinctive feature of MAs, the inclusion of problem knowl-
edge, is also supported by strong theoretical results. As Hart and Belew [68] initially
stated and Wolpert and Macready [190] later popularized in the so-called No-Free-
Lunch Theorem, a search algorithm strictly performs in accordance with the amount
and quality of the problem knowledge they incorporate. More precisely, the theo-
rem establishes that the performance of any search algorithm is indistinguishable
on average from any other one when all possible problems are considered, a sce-
nario that captures the lack of knowledge on the target problem (this very broad
assumption can be challenged [45]; this said, similar results can be found for more
restricted scenarios [78, 165]). The quest for universal solvers is thus futile [36]: us-
ing and exploiting problem knowledge is a requirement for attaining efficient prob-
lem solvers [116]. Given that the term hybridization is often used to denote the
process of incorporating problem knowledge (due to the fact that it is accomplished
by combining or hybridizing concepts from different resolution algorithms [39]), it
is not surprising that MAs are sometimes called ‘Hybrid Evolutionary Algorithms’
(hybrid EAs) as well.

One of the first algorithms to which the MA label was assigned dates back to
1988 [144], and was regarded by many as a hybrid of traditional Genetic Algo-
rithms (GAs) and Simulated Annealing (SA). Part of the initial motivation was to
find a way out of the limitations of both techniques on a well-studied combinato-
rial optimization problem the MIN EUCLIDEAN TRAVELING SALESMAN problem
(MIN ETSP)—the reader interested in the historical circumstances of the initial de-
velopments in this field is directed to a personal and very detailed account in [119].
According to the authors, the original inspiration came from computer game tour-
naments [72] used to study “the evolution of cooperation” [4, 130]. That approach
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had several features which anticipated many current algorithms in practice today.
The competitive phase of the algorithm was based on the new allocation of search
points in the configuration space, a process involving a “battle” for survival fol-
lowed by the so-called “cloning”, which has a strong similarity with ‘go with the
winners’ algorithms [1, 150]. Thus, the cooperative phase followed by local search
may be better named “go-with-the-local-winners” since the topological arrange-
ment of the optimizing agents was a two-dimensional toroidal lattice. After initial
computer experiments, an insight was derived on the particular relevance of the
“spatial” organization, when coupled with an appropriate set of rules, for the over-
all performance of population search processes. A few months later, Moscato and
Norman discovered that they shared similar views with other researchers [61, 126]
and other authors proposing “island models” for GAs. Spacialization is now being
recognized as the “catalyzer” responsible for a variety of phenomena [129, 130].
This is an important research issue, currently only understood in a rather heuristic
way. However, some proper undecidability results have been obtained for related
problems [63] giving some hope to a more formal treatment.

Less than a year later, in 1989, Moscato and Norman identified several authors
who were also pioneering the introduction of heuristics to improve the solutions be-
fore recombining them [60, 127] (see other references and the discussion in [116]).
Particularly coming from the GA field, several authors were introducing problem-
domain knowledge in a variety of ways. In [116] the denomination of ‘memetic
algorithms’ was introduced for the first time. It was also suggested that cultural
evolution can be a better working metaphor for these metaheuristics to avoid “bio-
logically constrained” thinking that was restricting progress at that time.

Thirty years later, albeit unfortunately under different names, MAs have become
an important optimization approach, with several successes in a variety of classical
NP-hard optimization problems. We aim to provide an updated and self-contained
introduction to MAs, focusing on their technical innards and formal features, but
without loosing the perspective of their practical applications and open research
issues.

9.2 Memetic Algorithms

Before proceeding to the description of MAs, it is necessary to provide some ba-
sic concepts and definitions. Several notions introduced in the first subsection are
strongly related to the field of computational complexity. Nevertheless, we approach
them in a slightly different way, more oriented toward the subsequent developments
in the chapter. These basic concepts will give rise to the notions of local search and
population-based search, upon which MAs are founded. This latter class of search
settles the scenario for recombination, a crucial mechanism in the functioning of
MAs that will be studied to some depth. Finally, a basic algorithmic template and
some guidelines for designing MAs will be presented.
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9.2.1 Basic Concepts

An algorithm is a detailed step-by-step procedure for solving a computational prob-
lem. A computational problem P denotes a class of algorithmically-doable tasks,
and it has an input domain set of instances denoted IP. For each instance x ∈ IP,
there is an associated set solP(x) which denotes the feasible solutions for problem
P given instance x. The set solP(x) is also known as the set of acceptable or valid
solutions.

We are expected to deliver an algorithm that solves problem P; this means that
our algorithm, given instance x ∈ IP, must return at least one element y from a set
of answers ansP(x) (also called given solutions) that satisfies the requirements of
the problem. This is the first design issue to face. To be precise, depending on the
kind of answers expected, computational problems can be classified into different
categories; for example:

• finding all solutions in solP(x), i.e., enumeration problems.
• counting how many solutions exist in solP(x), i.e. counting problems.
• determining whether the set solP(x) is empty or not, i.e., decision problems.
• finding a solution in solP(x) maximizing or minimizing a given function, i.e.,

optimization problems.

In this chapter, we will focus on the last possibility, that is, a problem will be
considered solved by finding a feasible solution y ∈ solP(x) which is optimal or by
giving an indication that no such feasible solution exists. It is thus convenient in
many situations to define a Boolean feasibility function f easibleP(x,y) in order to
identify whether a given solution y ∈ ansP(x) is acceptable for an instance x ∈ IP of
a computational problem P, i.e., checking if y ∈ solP(x).

An algorithm is said to solve problem P if it can fulfill this condition for any
given instance x ∈ IP. This definition is certainly too broad, so a more restrictive
characterization for our problems of interest is necessary. This characterization is
provided by restricting ourselves to the so-called combinatorial optimization prob-
lems. These constitute a special subclass of computational problems in which for
each instance x ∈ IP:

• the cardinality of solP(x) is finite.
• each solution y ∈ solP(x) has a goodness integer value mP(y,x), obtained by

means of an associated objective function mP.
• a partial order ≺P is defined over the set of goodness values returned by the

objective function, thus allowing to determine which of two goodness values is
preferable.

An instance x∈ IP of a combinatorial optimization problem P is solved by finding
the best solution y∗ ∈ solP(x), i.e., finding a solution y∗ such that no other solution
y ≺P y∗ exists if solP(x) is not empty. It is very common to have ≺P defining a total
order. In this case, the best solution is the one that maximizes (or minimizes) the
objective function.
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As an example of a combinatorial optimization problem consider the 0–1 MUL-
TIPLE KNAPSACK PROBLEM (0–1 MKP). Each instance x of this problem is defined
by a vector of profits V = {v0, · · · ,vn−1}, a vector of capacities C = {c0, · · · ,cm−1},
and a matrix of capacity constraints coefficients M = {mi j : 0 � i < m, 0 � j < n}.
Intuitively, the problem consists of selecting a set of objects so as to maximize the
profit of this set without violating the capacity constraints. If the objects are indexed
with the elements of the set Nn = {0,1, · · · ,n− 1}, the answer set ansP(x) for an
instance x is simply the power set of Nn, that is, each subset of Nn is a possible
answer. Furthermore, the set of feasible answers solP(x) is composed of those sub-
sets whose incidence vector B verifies M ·B � C. Finally, the objective function is
defined as mP(y,x) = ∑i∈y vi, i.e., the sum of profits for all selected objects, the goal
being to maximize this value.

Notice that a decisional version can be associated with a combinatorial opti-
mization problem. To formulate the decision problem, an integer goodness value K
is considered, and instead of trying to find the best solution of instance x, we ask
whether x has a solution whose goodness is equal or better than K. In the above
example, we could ask whether a feasible solution y exists such that its associated
profit is equal or better than K.

9.2.2 Search Landscapes

As mentioned above, having defined the concept of combinatorial optimization
problem, the goal is to find at least one of the optimal solutions for a given instance.
For this purpose, a search algorithm must be used. Before discussing search algo-
rithms, three entities must be discussed. These are the search space, the neighbor-
hood relation, and the guiding function. It is important to consider that, for any given
computational problem, these three entities can be instantiated in several ways, giv-
ing rise to different optimization tasks.

Let us start by defining the concept of search space for a combinatorial problem
P. To do so, we consider a set SP(x), whose elements must satisfy the following
requirements:

• Each element s ∈SP(x) represents at least one answer in ansP(x).
• For decision problems: at least one element of solP(x) that stands for a ‘Yes’

answer must be represented by one element in SP(x).
• For optimization problems: at least one optimal element y∗ of solP(x) is repre-

sented by one element in SP(x).

Each element of SP(x) is called a configuration. It is related to an answer in ansP(x)
by a growth function g : SP(x)→ ansP(x). Note that the first requirement refers to
ansP(x) and not to solP(x), i.e., some configurations in the search space may corre-
spond to infeasible solutions. Thus, the search algorithm may need to be prepared
to deal with this fact. If these requirements have been achieved, we say that we have
a valid representation or valid formulation of the problem. For simplicity, we will
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just write S to refer to SP(x) when x and P are clear from the context. People using
biologically-inspired metaphors like to call SP(x) the genotype space and ansP(x)
the phenotype space, so we appropriately refer to g as the growth function.

To illustrate this notion of search space, consider again the case of the 0–1 MKP.
Since solutions in ansP(x) are subsets of Nn, we can define the search space as the
set of n-dimensional binary vectors. Each vector will represent the incidence vector
of a certain subset, i.e., the growth function g is defined as g(s) = g(b0b1 · · ·bn−1) =
{i | bi = 1}. As mentioned above, many binary vectors may correspond to infea-
sible sets of objects. Another possibility is defining the search space as the set of
permutations of elements in Nn [62]. In this case, the growth function may consist
of applying a greedy construction algorithm, considering objects in the order pro-
vided by the permutation. Unlike the binary search space previously mentioned, all
configurations represent feasible solutions in this case.

The role of the search space is to provide a “ground” where the search algorithm
will act. Important properties of the search space that affect the dynamics of the
search algorithm are related to the accessibility relationships between the configura-
tions. These relationships are dependent of a neighborhood function N : S → 2S .
This function assigns to each element s ∈S a set N (s)⊆S of neighboring con-
figurations of s. The set N (s) is called the neighborhood of s and each member
s′ ∈N (s) is called a neighbor of s.

It must be noted that the neighborhood depends on the instance, so the notation
N (s) is a simplified form of NP(s,x) since it is clear from the context. The ele-
ments of N (s) need not be listed explicitly. In fact, it is very usual to define them
implicitly by referring to a set of possible moves, which define transitions between
configurations. Moves are usually defined as “local” modifications of some part of
s, where “locality” refers to the fact that the move is done on a single solution to
obtain another single solution. This “locality”, is one of the key ingredients of local
search, and actually it has also given the name to the whole search paradigm.

As examples of concrete neighborhood definitions, consider the two representa-
tions of solutions for the 0–1 MKP presented above. In the first case (binary rep-
resentation), moves can be defined as changing the values of a number of bits.
If just one bit is modified at a time, the resulting neighborhood structure is the
n-dimensional binary hypercube. In the second case (permutation representation),
moves can be defined as the interchange of two positions in the permutation. Thus,
two configurations are neighboring if, and only if, they differ in exactly two posi-
tions.

This definition of locality presented above is not necessarily related to “close-
ness” under some kind of distance relationship between configurations (except in
the tautological situation in which the distance between two configurations s and s′
is defined as the number of moves needed to reach s′ from s). As a matter of fact,
it is possible to give common examples of very complex neighborhood definitions
unrelated to intuitive distance measures.

An important feature that must be considered when selecting the class of moves
to be used in the search algorithm is its “ergodicity”, that is the ability, given any
s ∈S to find a sequence of moves that can reach all other configurations s′ ∈S .
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In many situations this property is self-evident and no explicit demonstration is re-
quired. It is important since even if we have a valid representation (recall the defini-
tion above), it is necessary to guarantee a priori that at least one optimal solution is
reachable from any given initial solution. Again, consider the binary representation
of solutions for a 0–1 MKP instance. If moves are defined as single bit-flips, it is
easily seen that any configuration s′ can be reached from another configuration s in
exactly h moves, where h is the Hamming distance between these configurations.
This is not always the case though.

The last entity that must be defined is the guiding function. To do so, we require
a set F whose elements are termed fitness values (typically F ≡ R), and a partial
order ≺F on F (typically, but not always, ≺F≡<). The guiding function is defined
as a function Fg : S →F that associates to each configuration s ∈S a value Fg(s)
that assesses the quality of the solution. The behavior of the search algorithm will
be “controlled” by these fitness values.

Notice that for optimization problems there is an obvious direct connection be-
tween the guiding function Fg and the objective function mP (and hence between
partial orders ≺P and ≺F ). As a matter of fact, it is very common to enforce this re-
lationship to the point that both terms are usually considered equivalent. However,
this equivalence is not necessary and, in many situations, not even desirable. For
decision problems, since a solution is a ‘Yes’ or ‘No’ answer, associated guiding
functions usually take the form of distance to satisfiability.

A typical example is the BOOLEAN SATISFIABILITY PROBLEM, i.e., determin-
ing whether a Boolean expression in conjunctive normal form is satisfiable. In this
case, solutions are assignments of Boolean values to variables, and the objective
function mP is a binary function returning 1 if the solution satisfies the Boolean
expression, and 0 otherwise. This objective function could be used as the guiding
function. However, a much more typical choice is to use the number of satisfied
clauses in the current configuration as guiding function, i.e., Fg(s) = ∑i fi(s), the
sum over clause indexes i of fi(s), defined as fi(s) = 0 for a yet unsatisfied clause
i, and fi(s) = 1 if the clause i is satisfied. Hence, the goal is to maximize this num-
ber. Notice that the guiding function in this case is the objective function of the
associated NP-hard optimization problem called MAX SAT.

The above differentiation between objective function and guiding function is also
very important in the context of constrained optimization problems, i.e., problems
for which, in general, solP(x) is chosen to be a proper subset of ansP(x). Since
the growth function establishes a mapping from S to ansP(x), the search algo-
rithm may need to process both feasible solutions (whose goodness values are well-
defined) and infeasible solutions (whose goodness values are ill-defined in general).
In many implementations of MAs for these problems, a guiding function is defined
as a weighted sum of the value of the objective function and the distance to feasi-
bility (which accounts for the constraints). Typically, a higher weight is assigned to
the constraints, so as to give preference to feasibility over optimality. Several other
remedies to this problem abound, including resorting to multi-objective techniques.

The combination of a certain problem instance and the three entities defined
above induces a so-called fitness landscape [87]. Essentially, a fitness landscape
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can be defined as a weighted digraph, in which the vertices are configurations of
the search space S , and the arcs connect neighboring configurations. The weights
are the differences between the guiding function values of the two endpoint con-
figurations. The search can thus be seen as the process of “navigating” the fitness
landscape using the information provided by the guiding function. This is a very
powerful metaphor; it allows interpretations in terms of well-known topographical
objects such as peaks, valleys, mesas, etc., which is of great utility to visualize the
search progress, and to grasp factors affecting the performance of the process. In
particular, the important notion of local optimum is associated with this definition
of fitness landscape. To be precise, a local optimum is a vertex of the fitness land-
scape whose guiding function value is better than the values of all its neighbors. No-
tice that different moves define different neighborhoods and hence different fitness
landscapes, even when the same problem instance is considered. For this reason, the
notion of local optimum is not intrinsic to a problem instance as it is, sometimes,
erroneously considered.

The notion of fitness landscape is not only useful for conceptual or visualization
purposes. It also serves as a very useful instrument in order to analyze the properties
of the search space as regarded by a certain search algorithm (via the moves used by
the latter). Thus, analytical tools such as random-walk correlation or fitness distance
correlation can be used to assess the difficulty perceived by the optimizer, and other
statistical tools can be utilized to guide the design/parameterization of the search
algorithm—see [111].

9.2.3 Local vs. Population-Based Search

The definitions presented in the previous subsection naturally lead to the notion
of local search algorithm. A local search algorithm starts from a configuration
s0 ∈S , generated at random or constructed by some other algorithm. Subsequently,
it iterates using at each step a transition based on the neighborhood of the current
configuration. Transitions leading to preferable (according to the partial order ≺F )
configurations are accepted, i.e., the newly generated configuration turns to be the
current configuration in the next step. Otherwise, the current configuration is kept.
This process is repeated until a certain termination criterion is met. Typical crite-
ria are the realization of a pre-specified number of iterations, not having found any
improvement in the last m iterations, or even more complex mechanisms based on
estimating the probability of being at a local optimum [29]. Due to these character-
istics, the approach is metaphorically called “hill climbing”. The whole process is
sketched in Algorithm 1.

The selection of the particular type of moves to use (which are also known as
mutations in the context of GAs) does certainly depend on the specific character-
istics of the problem and the representation chosen. There is no general advice for
this, since it is a matter of the available computer time for the whole process as
well as other algorithmic decisions that include ease of coding, etc. In some cases
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Algorithm 1: A local search algorithm

Procedure Local-Search-Engine (current);1
begin2

repeat3
new ← GenerateNeighbor(current);4
if Fg(new)≺F Fg(current) then5

current ← new;6
endif7

until TerminationCriterion() ;8
return current;9

end10

some moves are conspicuous, for example it can be the change of the value of one
single variable or the swap of the values of two different variables. Sometimes the
“step” may also be composed of a chain of transitions. For instance, in relation with
MAs, Radcliffe and Surry introduced the concept of Binomial Minimal Mutation,
where the number of mutations to perform is selected according to a certain bino-
mial distribution [159]. In the context of fitness landscapes, this is equivalent to a
redefinition of the neighborhood relation, considering two configurations as neigh-
bors when there exists a chain of transitions connecting them.

Local search algorithms are thus characterized by keeping a single configuration
at a time. The immediate generalization of this behavior is the simultaneous main-
tenance of k, (k � 2) configurations. The term population-based search algorithms
has been coined to denote search techniques behaving this way.

The availability of several configurations at a time allows the use of new power-
ful mechanisms for traversing the fitness landscape in addition to the standard mu-
tation operator. The most popular of these mechanisms, the recombination operator,
will be studied in more depth in the next section. In any case, notice that the general
functioning of population-based search techniques is very similar to the pseudocode
depicted in Algorithm 1. As a matter of fact, a population-based algorithm can be
seen as a procedure in which we sequentially visit vertices of a hypergraph. Each
vertex of the hypergraph represents a set of configurations in SP(x), i.e., a pop-
ulation. The next vertex to be visited, i.e., the new population, can be established
according to the composition of the neighborhoods of the different transition mech-
anisms used in the population algorithm. Despite the analogy with local search, it is
widely accepted in the scientific literature to apply the denomination ‘local’ just to
one-configuration-at-a-time search algorithms. For this reason, the term ‘local’ will
be used with this interpretation in the remainder of the chapter.
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9.2.4 Recombination

As mentioned in the previous section, local search is based on the application of a
mutation operator to a single configuration. Despite the apparent simplicity of this
mechanism, “mutation-based” local search has revealed itself a very powerful mech-
anism for obtaining good quality solutions for NP-hard problems. For this reason,
some researchers have tried to provide a more theoretically-solid background to this
class of search. In this line, it is worth mentioning the definition of the Polynomial
Local Search class (PLS) by Johnson et al. [86]. Basically, this complexity class
comprises a problem and an associated search landscape such that for any given
point in the search landscape we can decide in polynomial time if it is a local op-
timum or not, and in the latter case find an improved solution in the neighborhood.
Unfortunately, this does not mean that we can find a local optimum in polynomial
time (in fact, it may generally take an exponential number of steps to do so). This
fact has justified the quest for additional search mechanisms to be used as stand-
alone operators or as complements to standard mutation.

In this line, recall that population-based search allowed the definition of gener-
alized move operators termed recombination operators. In essence, recombination
can be defined as a process in which a set Spar of n configurations (informally re-
ferred to as “parents”) is taken into consideration to create a set Sdesc ⊆ solP(x)
of m new configurations (informally termed “descendants”). The creation of these
descendants involves the identification and combination of features extracted from
the parents.

At this point, it is possible to consider properties of interest that can be exhib-
ited by recombination operators [159]. The first property, respect, represents the
exploitation side of recombination. A recombination operator is said to be respect-
ful, regarding a particular type of features of the configurations, if, and only if, it
generates descendants carrying all basic features common to all parents (where the
term ‘basic’ refers to features being used to represent solutions, hence constituting
a representation basis in an algebraic sense). Notice that, if all parent configurations
are identical, a respectful recombination operator is forced to return the same con-
figuration as a descendant. This property is termed purity, and can be achieved even
when the recombination operator is not generally respectful.

On the other hand, assortment represents the exploratory side of recombination.
A recombination operator is said to be properly assorting if, and only if, it can
generate descendants carrying any combination of compatible features taken from
the parents. The assortment is said to be weak if this cannot be accomplished in a
single recombination event, and further applications of the recombination operator
on the offspring are required.

Finally, transmission is a very important property that captures the intuitive role
of recombination. An operator is said to be transmitting if every feature exhibited
by the offspring is present in at least one of the parents. Thus, a transmitting re-
combination operator combines the information present in the parents but does not
introduce new information. This latter task is usually left to the mutation opera-
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tor. For this reason, a non-transmitting recombination operator is said to introduce
implicit mutation.

The three properties above suffice to describe the abstract input/output behav-
ior of a recombination operator regarding some particular features. It provides a
characterization of the possible descendants that can be produced by the operator.
Nevertheless, there exist other aspects of the functioning of recombination that must
be studied. In particular, it is interesting to consider how the construction of Sdesc

is approached.
First of all, a recombination operator is said to be blind if it has no other input

than Spar, i.e., it does not use any information from the problem instance. This
definition is certainly very restrictive, and hence is sometimes relaxed to allow the
recombination operator to use information regarding the problem constraints (so as
to construct feasible descendants), and possibly the fitness values of configurations
y ∈ Spar (so as to bias the generation of descendants toward the best parents). A
typical example of a blind recombination operator is the classical Uniform crossover
[180]. This operator is defined on search spaces S ≡ Σ n, i.e., strings of n symbols

taken from an alphabet Σ . The construction of the descendant is done by randomly
selecting at each position one of the symbols appearing in that position in any of the
parents. This random selection can be totally uniform or can be biased according
to the fitness values of the parents as mentioned before. Furthermore, the selection
can be done so as to enforce feasibility (e.g., consider the binary representation of
solutions in the 0–1 MKP). Notice that, in this case, the resulting operator is neither
respectful nor transmitting in general.

The use of blind recombination operators has been usually justified on the
grounds of not introducing excessive bias in the search algorithm, thus preventing
extremely fast convergence to suboptimal solutions. This is questionable though.
First, notice that the behavior of the algorithm is in fact biased by the choice of rep-
resentation and the mechanics of the particular operators. Second, there exist widely
known mechanisms (e.g., spatial isolation) to hinder these problems. Finally, it can
be better to quickly obtain a suboptimal solution and restart the algorithm than using
blind operators for a long time in pursuit of an asymptotically optimal behavior (not
even guaranteed in most cases).

Recombination operators that use problem knowledge are commonly termed
heuristic or hybrid. In these operators, problem information is utilized to guide the
process of constructing the descendants. This can be done in a plethora of ways for
each problem, so it is difficult to provide a taxonomy of heuristic recombination
operators. Nevertheless, there exist two main aspects into which problem knowl-
edge can be injected: the selection of the parental features that will be transmitted
to the descendant, and the selection of non-parental features that will be added to it.
A heuristic recombination operator can focus in one of these aspects, or in both of
them simultaneously.

As an example of a heuristic recombination operator focusing on the first aspect,
Dynastically Optimal Recombination (DOR) [27] can be mentioned. This operator
explores the dynastic potential (i.e., the set of possible children) of the configura-
tions being recombined, so as to find the best member of this set (notice that, since
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configurations in the dynastic potential are entirely composed of features taken from
any of the parents, this is a transmitting operator). This exploration is done using a
subordinate complete algorithm, and its goal is thus to find the best combination
of parental features giving rise to a feasible child. This can be accomplished us-
ing techniques such as branch and bound (BnB) or dynamic programming (see, e.g.
[57]). This operator is monotonic in the sense that any child generated is at least as
good as the best parent.

With regard to heuristic operators concentrating on the selection of non-parental
features, one can cite the patching-by-forma-completion operators proposed by Rad-
cliffe and Surry [158]. These operators are based on generating an incomplete child
using a non-heuristic procedure (e.g., the RARω operator [157]), and then complet-
ing the child either using a local hill climbing procedure restricted to non-specified
features (locally optimal forma completion) or a global search procedure that finds
the globally best solution carrying the specified features (globally optimal forma
completion). Notice the similarity of this latter approach with DOR.

Finally, there exist some operators trying to exploit knowledge in both of the
above aspects. A distinguished example is the Edge Assembly Crossover (EAX)
[128]. EAX is a specialized operator for the TSP (both for symmetric and asymmet-
ric instances) in which the construction of the child comprises two-phases: the first
one involves the generation of an incomplete child via the so-called E-sets (subtours
composed of alternating edges from each parent); subsequently, these subtours are
merged into a single feasible subtour using a greedy repair algorithm. The authors
of this operator reported impressive results in terms of accuracy and speed. It has
some similarities with the recombination operator proposed in [117]. We can also
mention the use of path relinking [59], a method based on creating a trajectory in
the search space between the solutions being “recombined” and picking the best
solution along that path.

A final comment must be made in relation to the computational complexity of re-
combination. It is clear that combining the features of several solutions is in general
computationally more expensive than modifying a single solution (i.e., a mutation).
Furthermore, the recombination operation will be usually invoked a large number of
times. For this reason, it is convenient (and in many situations mandatory) to keep
it at a low computational cost. A reasonable guideline is to consider an O(N logN)
upper bound for its complexity, where N is the size of the input (the set Spar and the
problem instance x). Such limit is easily affordable for blind recombination opera-
tors, which are called crossover, a reasonable name to convey their low complexity
(yet not always used in this context). However, this limit can be relatively astringent
in the case of heuristic recombination, mainly when epistasis (non-additive inter-
feature influence on the fitness value) is involved. This admits several solutions de-
pending upon the particular heuristic used. For example, DOR has exponential worst
case behavior, but it can be made affordable by picking larger pieces of information
from each parent (the larger the size of these pieces of information, the lower the
number of them needed to complete the child) [26]. In any case, heuristic recom-
bination operators provide better solutions than blind recombination operators, and
hence they need not be invoked the same number of times.
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Algorithm 2: A population-based search algorithm

Procedure Population-Based-Search-Engine;1
begin2

Initialize pop using GenerateInitialPopulation();3
repeat4

newpop ← GenerateNewPopulation(pop);5
pop ← UpdatePopulation (pop, newpop);6
if pop has converged then7

pop ← RestartPopulation(pop);8
endif9

until TerminationCriterion() ;10

end11

Algorithm 3: Injecting high-quality solutions in the initial population

Procedure GenerateInitialPopulation;1
begin2

Initialize pop using EmptyPopulation();3
for j ← 1 to popsize do4

i ← GenerateRandomConfiguration();5
i ← Local-Search-Engine (i);6
InsertInPopulation individual i to pop;7

endfor8
return pop;9

end10

9.2.5 A Memetic Algorithm Template

In light of the above considerations, it is possible to provide a general template for
a memetic algorithm. As mentioned in Sect. 9.2.3, this template is very similar to
that of a local search procedure acting on a set of |pop| � 2 configurations. This is
shown in Algorithm 2.

This template requires some explanation. First of all, the GenerateInitialPopu-
lation procedure is responsible for creating the initial set of |pop| configurations.
This can be done by simply generating |pop| random configurations or by using
a more sophisticated seeding mechanism (for instance, some constructive heuris-
tic), by means of which high-quality configurations are injected in the initial pop-
ulation [179]. Another possibility is to use the Local-Search-Engine presented in
Sect. 9.2.3 (as shown in Algorithm 3) or any other randomized constructive algo-
rithm for that matter. For example, a Greedy Randomized Adaptive Search Proce-
dure (GRASP) [161, 162] mechanism was used in [51], and Beam Search [189] was
used in [56].

As for the TerminationCriterion function, it can be defined very similarly to Lo-
cal Search, i.e., setting a limit on the total number of iterations, reaching a maximum
number of iterations without improvement or performing a certain number of popu-
lation restarts, etc.
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Algorithm 4: The pipelined GenerateNewPopulation procedure

Procedure GenerateNewPopulation (pop);1
begin2

buffer0 ← pop;3
for j ← 1 to nop do4

Initialize buffer j using EmptyPopulation();5
endfor6
for j ← 1 to nop do7

S j
par ← ExtractFromBuffer (buffer j−1, arity j

in);8

S j
desc ← ApplyOperator (op j , S j

par);9

for z ← 1 to arity j
out do10

InsertInPopulation individual S j
desc[z] to buffer j;11

endfor12

endfor13
return buffernop ;14

end15

The GenerateNewPopulation procedure is at the core of memetic algorithms. Es-
sentially, this procedure can be seen as a pipelined process comprising nop stages.
Each of these stages consists of applying a variation (or reproductive) operator op j

by taking arity j
in configurations from the previous stage to produce arity j

out new con-
figurations. This pipeline is restricted to have arity1

in = popsize. The whole process
is sketched in Algorithm 4.

This template for the GenerateNewPopulation procedure is typically instantiated
in GAs by letting nop = 3, using a selection, a recombination, and a mutation opera-
tor. Traditionally, mutation is applied after recombination, i.e., on each child gener-
ated by the recombination operator. However, if a heuristic recombination operator
is being used, it may be more convenient to apply mutation before recombination.
Since the purpose of mutation is simply to introduce new features in the configura-
tion pool, using it in advance is possible in this case. Furthermore, the smart feature
combination performed by the heuristic operator would not be disturbed this way.

This situation is slightly different in MAs. In this case, it is very common to let
nop = 4, inserting a Local-Search-Engine right after applying op2 and op3 (respec-
tively recombination and mutation). Due to the local optimization performed after
mutation, their combined effect (i.e., mutation + local search) cannot be regarded as
a simple disruption of a computationally-demanding recombination. Note also that
the interplay between mutation and local search requires the former to be differ-
ent than the neighborhood structure used in the latter; otherwise mutations can be
readily reverted by local search, and their usefulness would be negligible.

The UpdatePopulation procedure is used to reconstruct the current population us-
ing the old population pop and the newly generated population newpop. Borrowing
the terminology from the evolution strategy [160, 166] community, there exist two
main possibilities to carry on this reconstruction: the plus strategy and the comma
strategy. In the former, the current population is constructed taken the best popsize
configurations from pop∪ newpop. For the latter, the best popsize configurations
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are taken just from newpop. In this case, it is required to have |newpop|> popsize,
so as to put some selective pressure on the process (the bigger the |newpop|/popsize
ratio, the stronger the pressure). Otherwise, the search would reduce to a random
wandering through S .

There are a number of studies regarding appropriate choices for the UpdatePopu-
lation procedure (see e.g., [6]). As a general guideline, the comma strategy is usually
regarded as less prone to stagnation, with the ratio |newpop|/popsize � 6 being a
common choice [7]. Nevertheless, this option can be somewhat computationally ex-
pensive if the guiding function is complex and time-consuming. Another common
alternative is to use a plus strategy with a low value of |newpop|, analogous to the
so-called steady-state replacement strategy in GAs [187]. This option usually pro-
vides a faster convergence to high-quality solutions. However, care has to be taken
with premature convergence to suboptimal regions of the search space, i.e., all con-
figurations in the population being very similar to each other, hence hindering the
exploration of other regions of S .

The above consideration about premature convergence leads to the last compo-
nent of the template shown in Algorithm 2, the restarting procedure. First of all,
it must be decided whether the population has degraded or has not. To do so, it
is possible to use some measure of information diversity in the population such as
Shannon’s entropy [38]. If this measure falls below a predefined threshold, the pop-
ulation is considered to be in a degenerate state. This threshold depends upon the
representation (number of values per variable, constraints, etc.) and hence must be
determined in an ad-hoc fashion. A different possibility is using a probabilistic ap-
proach to determine with a desired confidence that the population has converged.
For example, in [77] a Bayesian approach is presented for this purpose.

Once the population is considered to be at a degenerate state, the restart procedure
is invoked. Again, this can be implemented in a number of ways. A very typical
strategy is to keep a fraction of the current population (this fraction can be as small
as one solution, the current best), and substituting the remaining configurations with
newly generated (from scratch) solutions, as shown in Algorithm 5.

The procedure shown in Algorithm 5 is also known as the random-immigrant
strategy [20]. Another possibility is using the previous search history [178] or ac-
tivate a strong or heavy mutation operator in order to drive the population away
from its current location in the search space. Both options have their advantages
and disadvantages. For example, when using the random-immigrant strategy, one
has to take some caution to prevent the preserved configurations to take over the
population (this can be achieved by putting a low selective pressure, at least in the
first iterations after a restart). As to the heavy mutation strategy, one has to achieve a
tradeoff between an excessively strong mutation that would destroy any information
contained in the current population, and a not so strong mutation that would cause
the population to converge again in a few iterations.
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Algorithm 5: The RestartPopulation procedure

Procedure RestartPopulation (pop);1
begin2

Initialize newpop using EmptyPopulation();3
#preserved ← popsize ·%preserve;4
for j ← 1 to #preserved do5

i ← ExtractBestFromPopulation(pop);6
InsertInPopulation individual i to newpop;7

endfor8
for j ← #preserved +1 to popsize do9

i ← GenerateRandomConfiguration();10
i ← Local-Search-Engine (i);11
InsertInPopulation individual i to newpop;12

endfor13
return newpop;14

end15

9.2.6 Designing an Effective Memetic Algorithm

The general template of MAs depicted in the previous section must be instantiated
with precise components in order to be used for solving a specific problem. This
instantiation has to be done carefully so as to obtain an effective optimization tool.
We will address some design issues in this section.

A first obvious remark is that there exist no general approach for the design of ef-
fective MAs. This observation is based on different proofs depending on the precise
definition of effective in the previous statement. Such proofs may involve classical
complexity results and conjectures if ‘effective’ is understood as ‘polynomial-time’,
or the NFL Theorem if we consider a more general set of performance measures,
and even Computability Theory if we relax the definition to arbitrary decision prob-
lems. For these reasons, we can only define several design heuristics that will likely
result in good-performing MAs, but without explicit guarantees for this.

This said, MAs are commonly implemented as evolutionary algorithms endowed
with an independent search component, sometimes provided by a local search mech-
anism (recall previous section), and as such can benefit from the theoretical corpus
available for EAs. This is particularly applicable to some basic aspects such as the
representation of solutions in terms of meaningful information units [37, 158]. Fo-
cusing now on more specific aspects of MAs, the first consideration that must be
clearly taken into account is the interplay among the local search component and
the remaining operators, mostly with respect to the characteristics of the search
landscape. A good example of this issue can be found in the work of Merz and
Freisleben on the TSP [49]. They consider the use of a highly intensive local search
procedure—the Lin-Kernighan heuristic [104]—and note that the average distance
between local optima is similar to the average distance between a local optimum and
the global optimum. For this reason, they introduce a distance-preserving crossover
(DPX) operator that generate offspring whose distance from the parents is the same
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as the distance between the parents themselves. Such an operator is likely to be
less effective if a not-so-powerful local improvement method, e.g., 2-opt, was used,
inducing a different distribution of local optima.

Another important choice refers to the learning model used. The most common
option is to use a Lamarckian model, whereby an improved solution is sought via
local search and the corresponding genotypic changes are retained in the solution.
However, there also exists the possibility of using a Baldwinian model, in which
the improved solution is only used for the purposes of fitness computation, but the
actual solution is not changed at all. This might be useful in order to avoid local
optima while converging to the global optimum [58, 89, 192]; see also [188] for a
classical analysis of these two strategies in optimization.

In addition to the particular choice (or choices) of local search operator, there
remains the issue of determining an adequate parameterization for the procedure,
namely, how much effort must be spent on each local search, how often the local
search must be applied, and—were it not applied to every new solution generated—
how to select the solutions that will undergo local improvement. Regarding the first
two items, there exists theoretical evidence [99, 175] that an inadequate parameter
setting can turn the algorithmic solution from easily solvable to non-polynomially
solvable. Besides, there are obvious practical limitations in situations where the lo-
cal search and/or the fitness function is computationally expensive. This fact admits
different solutions. On the one hand, the use of surrogates (i.e., fast approximate
models of the true function) to accelerate evolution is an increasingly popular option
in such highly demanding problems [64, 102, 185, 186, 194]. On the other hand, par-
tial lamarckism [23, 74, 149], where not every individual is subject to local search,
is commonly used as well. The precise value for the local search application prob-
ability (or multiple values when more than one local search procedure is available)
largely depends on the problem under consideration [81], and its determination is
in many cases an art. For this reason, adaptive and self-adaptive mechanisms have
been defined in order to let the algorithm learn what the most appropriate setting
is (see Sect. 9.3.4). The interested reader is referred to [176, 177] for a more in-
depth analysis of the balance between the local and global (i.e., population-based)
components of the memetic algorithm.

As to the selection of individuals that will undergo local search, the most com-
mon options are random-selection, and fitness-based selection, where only the best
individuals are subject to local improvement. Nguyen et al. [136] also consider a
‘stratified’ approach, in which the population is sorted and divided into k levels (k
being the number of local search applications), and one individual per level is ran-
domly selected. Their experimentation on some continuous functions indicates that
this strategy and improve-the-best (i.e., applying local search to the best individ-
uals) provide better results than random selection. Such strategies can be readily
deployed on a structured MA as defined by Moscato et al. [10, 15, 48, 110, 125],
where good solutions flow upwards within a tree-structured population, and lay-
ers are explicitly available. Other population management strategies are possible as
well, see [14, 153, 154, 173].
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9.3 Algorithmic Extensions of Memetic Algorithms

The algorithmic template and design guidelines described in the previous section
can characterize most basic incarnations of MAs, namely population-based algo-
rithms endowed with static local search for single-objective optimization. However,
more sophisticated approaches can be conceived, and are certainly required in cer-
tain applications. This section is aimed at providing an overview of more advanced
algorithmic extensions used in the MA realm.

9.3.1 Multiobjective Memetic Algorithms

Multiobjective problems are frequent in real-world applications. Rather than having
a single objective to be optimized, the solver is faced with multiple, partially con-
flicting objectives. As a result, there is no a priori single optimal solution but rather
a collection of optimal solutions, providing different trade-offs among the objectives
considered. In this scenario, the notion of Pareto-dominance is essential: given two
solutions s,s′ ∈ solP(x), s is said to dominate s′ if it is better than s′ in at least one of
the objectives, and it is no worse in the remaining ones. This clearly induces a partial
order ≺P, since given two solutions it may be the case that none of them dominates
the other. This collection of optimal solutions is termed the optimal Pareto front, or
the optimal non-dominated front.

Population-based search techniques, in particular evolutionary algorithms (EAs),
are naturally fit to deal with multiobjective problems, due to the availability of a
population of solutions which can approach the optimal Pareto front from different
directions. There is an extensive literature on the deployment of EAs in multiobjec-
tive settings, and the reader is referred to [21, 22, 42, 195], among others, for more
information on this topic. MAs can obviously benefit from this corpus of knowl-
edge. However, MAs typically incorporate a local search mechanism, and it has to
be adapted to the multiobjective setting as well. This can be done in different ways
[94], which can be roughly classified into two major classes: scalarizing approaches,
and Pareto-based approaches. Scalarizing approaches are based on the use of some
aggregation mechanism to combine the multiple objectives into a single scalar value.
This is usually done using a linear combination of the objective values, with weights
that are either fixed (at random or otherwise) for the whole execution of the local
search procedure [182], or adapted as the local search progresses [66]. With regard
to Pareto-based approaches, the notion of Pareto-dominance is considered for de-
ciding transitions among neighboring solutions, typically coupled with the use of
some measure of crowding to spread the search, e.g, [91].

A full-fledged multiobjective MA (MOMA) is obtained by appropriately com-
bining population-based and local search-based components for multiobjective op-
timization. Again, the strategy used in the local search mechanism can be used to
classify most MOMAs. On one hand, we have aggregation approaches. Thus, two
proposals due to Ishibuchi and Murata [79, 80] and Jaszkiewicz [83, 84] are based
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on the use of random scalarization each time a local search is to be used. Alterna-
tively, a single-objective local search could be used to optimize individual objectives
[82]. Ad hoc mating strategies based on the particular weights chosen at each local
search invocation (whereby the solutions to be recombined are picked according
to these weights) are used as well. A related approach—including the on-line ad-
justment of scalarizing weights—is followed by Guo et al. [65–67]. On the other
hand, we have Pareto-based approaches. In this line, a MA based on PAES (Pareto
Archived Evolution Strategy) was defined by Knowles and Corne [92, 93]. More
recently, a MOMA based on particle swarm optimization (PSO) has been defined
by Liu et al. [101, 108]. In this algorithm, an archive of non-dominated solutions is
maintained and randomly sampled to obtain reference points for particles. A differ-
ent approach is used by Schuetze et al. [164] for numerical-optimization problems.
The continuous nature of solution variables allows using their values for computing
search directions. This fact is exploited in their local search procedure (HCS for
Hill Climber with Sidestep) to direct the search toward specific regions (e.g., along
the Pareto front) when required. We refer to [85] for a more in-depth discussion on
multiobjective MAs.

9.3.2 Continuous Optimization

Continuous optimization problems are defined on a dense search space [183], typ-
ically by some subset of the n-fold Cartesian product Rn. Many problems have de-
cision variables of this continuous nature and hence continuous optimization is a
realm of paramount importance. Throughout previous sections, MAs were admit-
tedly described with a discrete background in mind. Indeed, discrete optimization
problems put to test the skills of the algorithmic designer in the sense that the dif-
ficulty of solving a particular problem and the effectiveness of the solver depend
on the precise instantiation of notions such as the neighborhood relation. This said,
most of the ideas and concepts sketched before for discrete optimization are also ap-
plicable to continuous optimization. Of course, in this realm there is a natural notion
of neighborhood of a point s given by open balls Bd(s) = {s′ : ||s− s′|| < d}, i.e.,
those points located within distance d of x, for a suitable distance metric (typically,
but not necessarily, the Euclidean distance—see [44]).

The different components of a classic MA, namely the population-based engine
and the local search technique, must be adapted to deal with this new domain of
solutions. Regarding the former, there is plenty of literature on how to adapt the
variation operators to tackle continuous optimization [70, 71, 109, 191] and actually
some evolutionary computation families lend themselves naturally to this kind of
optimization [13, 174]. Typical options with regard to the recombination operator
are the following (assuming for the sake of notation that parental solutions s =
〈s1, . . . ,sn〉 and s′ = 〈s′1, . . . ,s′n〉 are being recombined to obtain u = 〈u1, . . . ,un〉):
• use a discrete approach and create the offspring by using the precise values the

decision variable have in the parental solutions, i.e., ui ∈ {si,s′i}.
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• use some arithmetical operation to combine the values of homologous variables
in the parental solutions, e.g., compute an average: ui = (si + s′i)/2.

• use some sampling procedure within some hyperrectangle, hyperellipse, or other
suitable hypersurface defined by the parental solutions, e.g., ui ∈ [mi,Mi] where
mi = min(si,s′i)−αdi, Mi = max(si,s′i)+αdi, di = |si − s′i|, α � 0.

The situation is more flexible when multiparent recombination is used. In this case,
other possibilities exist in addition to the previous methods, such as utilizing some
subset of the parental solutions to create a hypersurface and using some projection
technique to create the offspring, much like it is done in the Nelder-Mead method
[131]. For mutation, it is typically accomplished by some additive or multiplicative
perturbation to variable values, obtained by means of some predefined distribution
such as uniform, Gaussian or Cauchy, just to cite some of the most common exam-
ples. The extent of the perturbation is a parameter than can be subject to adaptation
during the run (cf. Sect. 9.3.4)

Regarding the local search component, there are many techniques that can be
used for this purpose, just by adapting the definition of neighborhood as mentioned
before and using some kind of gradient ascent, possibly modulated with some mech-
anism to escape from local optima (as it is done in e.g., simulated annealing); see
[41] for a more detailed discussion of these. One particular issue worth mentioning
in connection with local search is the fact that, unlike many typical discrete opti-
mization scenarios in which the objective function can be decomposed in order to
isolate the effect caused by the modification of a certain decision variable (i.e., the
fitness value of the modified solution is f (u) = f (s) +Δ(s,u) for some function
Δ(s,u) which is computationally cheaper to compute than f (u)), continuous opti-
mization problem usually exhibits many couplings and non-linearities that preclude
or at least limit such approaches. This affects the cost of the local search component
which in turn may influence the optimal balance between local and global search
in the algorithm. Some authors [115] have proposed to store the state of the local
search along with each solution it is applied to, so that further applications of the lo-
cal improvement routine resume from this state. We refer to [25] for a more detailed
discussion of design issues in MAs for continuous optimization.

9.3.3 Memetic Computing Approaches

Memes were introduced in Sect. 9.1 as units of imitation. In a computational context
(and more precisely with regard to memetic algorithms), they acquire a new mean-
ing though. In this sense, a first interpretation would be to use the notion of meme
as a high-level non-genetic pattern of information, that is, the carrier particle of in-
dividual learning. From the standpoint of classical MAs, this role is implemented
by local improvement procedures. Thus, the particular choice of a local search pro-
cedure (a simple heuristic rule, hill climbing, simulated annealing, etc.) plus the
corresponding parameterization can be regarded as the implicit definition of a fixed
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meme. However, earlier works already anticipated that these memes needed not be
static, but change dynamically during the search. Quoting [118]:

It may be possible that a future generation of MAs will work in at least two levels and two
timescales. In the short-timescale, a set of agents would be searching in the search space
associated to the problem while the long-time scale adapts the heuristics associated with the
agents.

The first steps in this direction were taken in [96, 168] by including an explicit rep-
resentation of memes alongside solutions, and having them evolve. This has given
rise to the notion of memetic computing, which can be defined as a broad discipline
that focuses on the use of dynamic complex computational structures composed of
interacting modules (the memes) which are harmoniously coordinated to solve par-
ticular problems [132]; see also [19, 146].

There are obvious connections here with the notion of adaptive hyperheuristics
[16, 18, 35, 88], particularly in the context of Meta-Lamarckian learning [137, 145],
in which a collection of memes are available and some mechanism is used to decide
which one to apply and when (be it using information on the previous applications
of each meme or gathering population statistics [134]). Some other possibilities can
be used though. As mentioned above, memes can be explicitly represented (this can
range from a simple parameterization of a generic template—i.e., the neighborhood
definition of a local search procedure, the pivot rule, etc.—to the full definition of
the local improver using mechanisms akin to genetic programming) and self-adapt
during the execution of the algorithm, either as a part of solutions [97, 98, 140, 171]
or in a separate population [169]. Furthermore, it is possible to aggregate simple
memes into larger compounds or memeplexes [19] in order to attain synergistic co-
operation and improved search efficiency.

9.3.4 Self-� Memetic Algorithms

When some design guidelines were given in Sect. 9.2.6, the fact that these were
heuristics that ultimately relied on the available problem knowledge was stressed.
This is not a particular feature of MAs, but affects the field of metaheuristics as a
whole. Indeed, one of the keystones in practical metaheuristic problem-solving is
the necessity of customizing the solver for the problem at hand [30]. Therefore, it is
not surprising that attempts to transfer a part of this tuning effort to the metaheuristic
technique itself have been common. Such attempts can take place at different levels,
or can affect different components of the algorithm. The first—and more intuitive
one—is the parametric level involving the numerical values of parameters, such as
the operator application rates. Examples of this can be found in early EAs, see for
example [3, 12, 39, 167]. An overview of these approaches (actually broader in
scope, covering more advanced topics than parameter adaptation) can be found in
[170]. Focusing specifically on MAs, this kind of adaptation has been applied in
[8, 71, 113, 114, 147].
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The explicit processing of memes described in the previous section is actually a
further step in the direction of promoting the autonomous functioning of the algo-
rithm. Indeed, from a very general point of view this connects to the idea of auto-
nomic computing [73], that tries to transfer to the computing realm the idea of the
autonomic nervous system carrying essential functions without conscious control.
In this line, the umbrella term self-� properties [5] is used to describe the capacity
of self-management in complex computational systems [76]. Self-parameterization
attempts mentioned previously fall within the scope of self-� properties, and so does
the explicit handling of memes described in previous section, which can be consid-
ered a case of self-generating search strategies. As a matter of fact, both approaches
constitute examples of self-optimization [9], because they aim at improving the ca-
pabilities of the algorithm for carrying out its functions (which is in turn solving the
objective problem).

Self-� properties can encompass other advanced capabilities beyond self-
optimization such as self-scaling or self-healing. The former refers to the ability
of the system to react efficiently to changes in its scale parameters, be it related to
changes in the scale of the problem being solved, in the scale of the computational
resources available, or in other circumstance or combination of circumstances of the
computation. Such capability may involve some form of self-configuration in order
to accomplish the objective of the computation in the most effective way in light of
the change of scale. An example can be found in the domain of island-based MAs
[138] deployed in unstable distributed environments [32]: if the computational sub-
strate is composed of processing nodes whose availability fluctuate, the algorithm
may face uncontrollable reductions or increments of the computational resources
(i.e., some islands may appear, other islands may disappear). As a reaction, the algo-
rithm may attempt to resize the islands and balance them out, so that the population
size is affected as little as possible [141]. The second property, namely self-healing,
is also relevant in this context: it aims to maintain and restore system attributes that
may have been affected by internal or external actions, i.e., self-healing externally
infringed damage. In the volatile computational scenario depicted, such damage is
caused by the loss of information and the disruptions in connectivity caused by the
disappearance of islands [142]. To tackle these issues, the algorithm may use self-
sampling (using a probabilistic model of the population—much like it is done in
estimation of distribution algorithms [100, 151]—in order to enlarge it in a sensi-
ble way when required) and self-rewiring in order to create new connectivity links
and prevent the network from becoming disconnected. It must also be noted as an
aside that very traditional techniques commonly used when metaheuristic face con-
strained problems, namely using a repair function to restore the feasibility of solu-
tions [112], can also fall within the scope of self-repairing approaches.
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9.3.5 Memetic Algorithms and Complete Techniques

The combination of exact techniques with metaheuristics is an increasingly pop-
ular approach. Focusing on local search techniques, Dumitrescu and Stüztle [46]
have provided a classification of methods in which exact algorithms are used to
strengthen local search, i.e., to explore large neighborhoods, to solve exactly some
subproblems, to provide bounds and problem relaxations to guide the search, etc.
Some of these combinations can also be found in the literature on population-
based methods. For example, exact techniques—such as BnB [27] or dynamic pro-
gramming [54] among others—have been used to perform recombination (recall
Sect. 9.2.4), and approaches in which exact techniques solved some subproblems
provided by EAs date back to 1995 [28]; see also [47] for a large list of references
regarding local search/exact hybrids.

Puchinger and Raidl [155] have provided a classification of this kind of hybrid
techniques in which algorithmic combinations are either collaborative (sequential
or intertwined execution of the combined algorithms) or integrative (one technique
works inside the other one, as a subordinate). Some of the exact/metaheuristic hy-
brid approaches defined before are clearly integrative—i.e., using an exact technique
to explore neighborhoods. Further examples are the use of BnB in the decoding
process [156] of a genetic algorithm (i.e., exact method within a metaheuristic tech-
nique), or the use of evolutionary techniques for the strategic guidance of BnB [95]
(metaheuristic approach within an exact method).

With regard to collaborative combinations, a sequential approach in which the
execution of a MA is followed by a branch-and-cut method can be found in [90]. In-
tertwined approaches are also popular. For example, Denzinger and Offerman [43]
combine genetic algorithms and BnB within a parallel multi-agent system. These
two algorithms also cooperate in [28, 52], the exact technique providing partial
promising solutions, and the metaheuristic returning improved bound. A related ap-
proach involving beam search and full-fledged MAs can be found in [53, 55, 56];
see also [31] for a broader overview of this kind of combinations.

It must be noted that most hybrid algorithms defined so far that involve exact
techniques and metaheuristics are not complete, in the sense that they do not guaran-
tee an optimal solution (an exception is the proposal of French et al. [50], combining
an integer-programming BnB approach with GAs for MAX-SAT). Thus, the term
‘complete MA’ may be not fully appropriate. Nevertheless, many of these hybrids
can be readily adapted for completeness purposes, although obviously time and/or
space requirements will grow faster-than-polynomial in general.

9.4 Applications of Memetic Algorithms

Applications are the “raison d’être” of memetic algorithms. Their functioning phi-
losophy, namely incorporating and exploiting knowledge of the problem being
solved, presumes they are designed with a target problem in mind. This section will
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provide an overview of the numerous applications of MAs. The reader may actually
be convinced of the breadth of these applications by noting the existence of a num-
ber of domain-specific reviews of MAs. As a matter of fact, we have organized this
section as a meta-review of applications, providing pointers to these compilations
rather than to individual specific applications. This is done in Table 9.1.

Table 9.1 Application surveys of memetic algorithms

Domain References

General overviews [33, 69, 120–123, 132]

Bioinformatics [11, 122]
Combinatorial optimization [120–123]
Electronics and telecommunications [33, 34, 120, 122, 123]
Engineering [17, 33]
Machine learning and knowledge discovery [120, 122, 123]
Molecular optimization [120, 123]
Planning, scheduling, and timetabling [24, 122–124]

General overviews are also referenced with respect to the subdomains in which they are internally
structured

Any of the reviews mentioned are far from exhaustive since new applications are
being developed continuously. However, they are intended to illustrate the practical
impact of these optimization techniques, pointing out some selected compilations
from these well-known application areas. For further information about MA ap-
plications, we suggest querying bibliographical databases or web browsers for the
keywords ‘memetic algorithms’ and ‘hybrid genetic algorithms’.

9.5 Conclusions

We believe that the future looks good for MAs. This belief is based on the following.
First of all, MAs are showing a great record of efficient implementations, providing
very good results for practical problems, as the reader may have noted in Sect. 9.4.
We also have reasons to believe that we are close to some major leaps forward in
our theoretical understanding of these techniques, including for example the worst-
case and average-case computational complexity of recombination procedures. On
the other hand, the ubiquitous nature of distributed systems is likely to boost
the deployment of MAs on large-scale, computationally demanding optimization
problems.

We also see as a healthy sign the systematic development of other particular op-
timization strategies. If any of the simpler metaheuristics (SA, TS, VNS, GRASP,
etc.) performs the same as a more complex method (GAs, MAs, Ant Colonies, etc.),
an “elegance design” principle should prevail and we must either resort to the sim-
pler method, or to the one that has less free parameters, or to the one that is easier
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to implement. Such a fact should challenge us to adapt complex methodologies to
beat simpler heuristics, or to check if that is possible at all. An unhealthy sign of
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Fig. 9.1 Number of publications obtained by querying the Web of Science and Scopus with the
term “memetic algorithm” (1998–2016)

current research, however, are the attempts to encapsulate metaheuristics in sepa-
rate compartments. Fortunately, such attempts are becoming increasingly less fre-
quent. Indeed, combinations of MAs with other metaheuristics such as differential
evolution [133, 143, 163, 181], estimation of distribution algorithms [2, 139, 184],
particle swarm optimization [75, 101, 105–108, 148, 152, 172, 193], or ant-colony
optimization [103] are not unusual nowadays. Furthermore, there is a clear ascend-
ing trend in the number of publications related to MAs, as shown in Fig. 9.1. Thus,
as stated before, the future looks promising for MAs.
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