
Chapter 6
Greedy Randomized Adaptive Search
Procedures: Advances and Extensions

Mauricio G. C. Resende and Celso C. Ribeiro

Abstract A greedy randomized adaptive search procedure (GRASP) is a multi-start
metaheuristic for combinatorial optimization problems, in which each iteration con-
sists basically of two phases: construction and local search. The construction phase
builds a feasible solution whose neighborhood is investigated until a local mini-
mum is found during the local search phase. The best overall solution is kept as
the result. In this chapter, we first describe the basic components of GRASP. Suc-
cessful implementation techniques are discussed and illustrated by numerical re-
sults obtained for different applications. Enhanced or alternative solution construc-
tion mechanisms and techniques to speed up the search are also described: Alterna-
tive randomized greedy construction schemes, Reactive GRASP, cost perturbations,
bias functions, memory and learning, Lagrangean constructive heuristics and La-
grangean GRASP, local search on partially constructed solutions, hashing, and fil-
tering. We also discuss implementation strategies of memory-based intensification
and post-optimization techniques using path-relinking. Restart strategies to speedup
the search, hybridizations with other metaheuristics, and applications are also re-
viewed.

M. G. C. Resende (�)
Amazon.com, Seattle, WA, USA
University of Washington, Seattle, WA, USA
e-mail: mgcr@uw.edu

C. C. Ribeiro
Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
e-mail: celso@ic.uff.br

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_6

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_6&domain=pdf
mailto:mgcr@uw.edu
mailto:celso@ic.uff.br
https://doi.org/10.1007/978-3-319-91086-4_6

170 M. G. C. Resende and C. C. Ribeiro

6.1 Introduction

We consider in this chapter a combinatorial optimization problem, defined by a
finite ground set E = {1, . . . ,n}, a set of feasible solutions F ⊆ 2E , and an objective
function f : 2E →R. In its minimization version, we seek an optimal solution S∗ ∈F
such that f (S∗)≤ f (S), ∀S ∈ F . The ground set E, the cost function f , and the set of
feasible solutions F are defined for each specific problem. For instance, in the case
of the traveling salesman problem, the ground set E is that of all edges connecting
the cities to be visited, f (S) is the sum of the costs of all edges in S, and F is formed
by all edge subsets that determine a Hamiltonian cycle.

GRASP (Greedy Randomized Adaptive Search Procedure) [90, 91] is a multi-
start or iterative metaheuristic, in which each iteration consists of two phases: con-
struction and local search. The construction phase builds a solution using a greedy
randomized adaptive algorithm. If this solution is not feasible, then it is necessary
to apply a repair procedure to achieve feasibility or to make a new attempt to build
a feasible solution. Once a feasible solution is obtained, its neighborhood is investi-
gated until a local minimum is found during the local search phase. The best overall
solution is kept as the result.

Extensive literature surveys on greedy randomized adaptive search procedures
are presented in [98–100, 212, 213, 224]. A first book on GRASP was published in
2016 by Resende and Ribeiro [215].

The pseudo-code in Fig. 6.1 illustrates the main blocks of a GRASP procedure
for minimization, in which Max_Iterations iterations are performed and Seed
is used as the initial seed for the pseudo-random number generator.

procedure GRASP(Max Iterations,Seed)
1 Read Input();
2 for k = 1, . . . ,Max Iterations do
3 Solution ← Greedy Randomized Construction(Seed);
4 if Solution is not feasible then
5 Solution ← Repair(Solution);
6 end;
7 Solution ← Local Search(Solution);
8 Update Solution(Solution,Best Solution);
9 end;
10 return Best Solution;
end GRASP.

Fig. 6.1 Pseudo-code of the GRASP metaheuristic

Figure 6.2 illustrates the construction phase with its pseudo-code. At each iter-
ation of this phase, let the set of candidate elements be formed by all elements of
the ground set E that can be incorporated into the partial solution being built, with-
out impeding the construction of a feasible solution with the remaining ground set
elements. The selection of the next element for incorporation is determined by the

6 GRASP: Advances and Extensions 171

evaluation of all candidate elements according to a greedy evaluation function. This
greedy function usually represents the incremental increase in the cost function due
to the incorporation of this element into the solution under construction. The evalu-
ation of the elements by this function leads to the creation of a restricted candidate
list (RCL) formed by the best elements, i.e. those whose incorporation to the current
partial solution results in the smallest incremental costs (this is the greedy aspect of
the algorithm). The element to be incorporated into the partial solution is randomly
selected from those in the RCL (this is the probabilistic aspect of the heuristic).
Once the selected element is incorporated into the partial solution, the candidate list
is updated and the incremental costs are reevaluated (this is the adaptive aspect of
the heuristic). The above steps are repeated while there exists at least one candi-
date element. This strategy is similar to the semi-greedy heuristic proposed by Hart
and Shogan [122], which is also a multi-start approach based on greedy randomized
constructions, but without local search.

procedure Greedy Randomized Construction(Seed)
1 Solution ← ;0/
2 Initialize the set of candidate elements;
3 Evaluate the incremental costs of the candidate elements;
4 while there exists at least one candidate element do
5 Build the restricted candidate list (RCL);
6 Select an element s from the RCL at random;
7 Solution ← Solution∪{s};
8 Update the set of candidate elements;
9 Reevaluate the incremental costs;
10 end;
11 return Solution;
end Greedy Randomized Construction.

Fig. 6.2 Pseudo-code of the construction phase

A randomized greedy construction procedure is not always able to produce a
feasible solution. It may be necessary to apply a repair procedure to the solution to
achieve feasibility. Examples of repair procedures can be found in [80, 81, 169, 180].

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usu-
ally improves the constructed solution. A local search algorithm works in an iter-
ative fashion by successively replacing the current solution by a better solution in
its neighborhood. It terminates when no better solution is found in the neighbor-
hood. The pseudo-code of a basic local search algorithm starting from the solution
Solution constructed in the first phase (and possibly made feasible by the repair
heuristic) and using a neighborhood N is given in Fig. 6.3.

172 M. G. C. Resende and C. C. Ribeiro

procedure Local Search(Solution)
1 while Solution is not locally optimal do
2 Find s′ ∈ N(Solution) with f (s′)< f (Solution);
3 Solution ← s′;
4 end;
5 return Solution;
end Local Search.

Fig. 6.3 Pseudo-code of the local search phase

The speed and the effectiveness of a local search procedure depend on several
aspects, such as the neighborhood structure, the neighborhood search technique, the
strategy used for the evaluation of the cost function value at the neighbors, and the
starting solution itself. The construction phase plays a very important role with re-
spect to this last aspect, building high-quality starting solutions for the local search.
Simple neighborhoods are typically used. The neighborhood search can be imple-
mented using either a best-improving or a first-improving strategy. In the case of the
best-improving strategy, all neighbors are investigated and the current solution is
replaced by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution. In practice, we observed on many applications that quite
often both strategies lead to the same final solution, but in smaller computation
times when the first-improving strategy is used. We also observed that premature
convergence to a bad local minimum is more likely to occur with a best-improving
strategy.

6.2 Construction of the Restricted Candidate List

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned. Therefore, development can
focus on implementing appropriate data structures for efficient construction and lo-
cal search algorithms. GRASP has two main parameters: one related to the stopping
criterion and the other to the quality of the elements in the restricted candidate list.

The stopping criterion used in the pseudo-code described in Fig. 6.1 is deter-
mined by the number Max_Iterations of iterations. Although the probability
of finding a new solution improving the incumbent (current best solution) decreases
with the number of iterations, the quality of the incumbent does not worsen with the
number of iterations. Since the computation time does not vary much from iteration
to iteration, the total computation time is predictable and increases linearly with the
number of iterations. Consequently, the larger the number of iterations, the larger
will be the computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we consider, without loss
of generality, a minimization problem as the one formulated in Sect. 6.1. We denote

6 GRASP: Advances and Extensions 173

by c(e) the incremental cost associated with the incorporation of element e ∈ E
into the solution under construction. At any GRASP iteration, let cmin and cmax be,
respectively, the smallest and the largest incremental costs.

The restricted candidate list RCL is made up of the elements e ∈ E with the
best (i.e., the smallest) incremental costs c(e). This list can be limited either by
the number of elements (cardinality-based) or by their quality (value-based). In the
first case, it is made up of the p elements with the best incremental costs, where
p is a parameter. In this chapter, the RCL is associated with a threshold parameter
α ∈ [0,1]. The restricted candidate list is formed by all elements e ∈ E which can
be feasibly inserted into the partial solution under construction and whose quality
is superior to the threshold value, i.e., c(e) ∈ [cmin,cmin +α(cmax − cmin)]. The case
α = 0 corresponds to a pure greedy algorithm, while α = 1 is equivalent to a random
construction. The pseudo-code in Fig. 6.4 is a refinement of the greedy randomized
construction pseudo-code shown in Fig. 6.2. It shows that the parameter α controls
the amounts of greediness and randomness in the algorithm.

procedure Greedy Randomized Construction(,Seed)
1 Solution ← ;0/
2 Initialize the candidate set: C ← E;
3 Evaluate the incremental cost c(e) for all e ∈C;
4 whileC �= /0 do
5 cmin ← min{c(e) | e ∈C};
6 cmax ← max{c(e) | e ∈C};
7 RCL ← {e ∈C | c(e) ≤ cmin+ (cmax − cmin)};
8 Select an element s from the RCL at random;
9 Solution ← Solution∪{s};
10 Update the candidate setC;
11 Reevaluate the incremental cost c(e) for all e ∈C;
12 end;
13 return Solution;
end Greedy Randomized Construction.

a

a

Fig. 6.4 Refined pseudo-code of the construction phase

GRASP construction can be viewed as a repetitive sampling technique. Each
iteration produces a sample solution from an unknown distribution, whose mean
and variance are functions of the restrictive nature of the RCL. For example, if the
RCL is restricted to a single element, then the same solution will be produced at all
iterations. The variance of the distribution will be zero and the mean will be equal
to the value of the greedy solution. If the RCL is allowed to have more elements,
then many different solutions will be produced, implying a larger variance. Since
greediness plays a smaller role in this case, the average solution value should be
worse than that of the greedy solution. However, the value of the best solution found
outperforms the average value and can be near-optimal or even optimal. It is unlikely
that GRASP will find an optimal solution if the average solution value is high, even
if there is a large variance in the overall solution values. On the other hand, if there is

174 M. G. C. Resende and C. C. Ribeiro

little variance in the overall solution values, it is also unlikely that GRASP will find
an optimal solution, even if the average solution is low. What often leads to good
solutions are relatively low average solution values in the presence of a relatively
large variance, such as is the case for α = 0.2.

Another interesting observation is that the distances between the solutions ob-
tained at each iteration and the best solution found increase as the construction phase
moves from more greedy to more random. This causes the average time taken by the
local search to increase. Very often, many GRASP solutions may be generated in the
same amount of time required by the local search procedure to converge from a sin-
gle random start. In these cases, the time saved by starting the local search from
good initial solutions can be used to improve solution quality by performing more
GRASP iterations.

These results are illustrated in Table 6.1 and Fig. 6.5, for an instance of the
MAXSAT problem [219] where 1000 iterations were run. For each value of α rang-
ing from 0 (purely random construction for maximization problems) to 1 (purely
greedy construction for maximization problems), we give in Table 6.1 the average
Hamming distance between each solution built during the construction phase and
the corresponding local optimum obtained after local search, the average number of
moves from the former to the latter, the local search time in seconds, and the total
processing time in seconds. Figure 6.5 summarizes the values observed for the total
processing time and the local search time. We notice that both time measures consid-
erably decrease as α tends to 1, approaching the purely greedy choice. In particular,
we observe that the average local search time taken by α = 0 (purely random) is
approximately 2.5 times longer than the time taken by α = 0.9 (almost greedy). In
this example, two to three greedily constructed solutions can be investigated in the
same time needed to apply local search to one single randomly constructed solution.
The appropriate choice of the value of the RCL parameter α is clearly critical and
relevant to achieve a good balance between computation time and solution quality.

Table 6.1 Average number of moves and local search time as a function of the RCL parameter α
for a maximization problem

α Avg. distance Avg. moves Local search time (s) Total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941
1.0 2.733 2.733 5.118 6.235

6 GRASP: Advances and Extensions 175

Prais and Ribeiro [201] show that using a single fixed value for the RCL param-
eter α very often hinders finding a high-quality solution, which could be found if
another value is used. They propose an extension of the basic GRASP procedure,
which they call Reactive GRASP, in which the parameter α is self-tuned and its
value is periodically modified depending on the quality of the solutions obtained
along the search. In particular, computational experiments on the problem of traf-
fic assignment in communication satellites [202] show that Reactive GRASP finds
better solutions than the basic algorithm for many test instances. These results moti-
vated the study of the behavior of GRASP with different strategies for the variation
of the value of the RCL parameter α:

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

0 0.2 0.4 0.6 0.8 1

local search CPU time

total CPU time

tim
e

(s
ec

on
ds

)
fo

r
10

00
 it

er
at

io
ns

RCL parameter

Fig. 6.5 Total CPU time and local search CPU time as a function of the RCL parameter α for a
maximization problem (1000 repetitions for each value of α)

R: α self tuned with a Reactive GRASP procedure;
E: α randomly chosen from a uniform discrete probability distribution;
H: α randomly chosen from a decreasing non-uniform discrete probability distri-

bution;
F: α fixed, close to the purely greedy choice value.

We summarize the results obtained by the experiments reported in [200, 201].
These four strategies are incorporated into the GRASP procedures developed for
four different optimization problems: (P-1) matrix decomposition for traffic assign-
ment in communication satellites [202]; (P-2) set covering [90]; (P-3) weighted
MAX-SAT [219, 221]; and (P-4) graph planarization [210, 226]. Let

176 M. G. C. Resende and C. C. Ribeiro

Ψ = {α1, . . . ,αm}

be the set of possible values for the parameter α for the first three strategies. The
strategy for choosing and self-tuning the value of α in the case of the Reactive
GRASP procedure (R) is described later in Sect. 6.3. In the case of the strategy
(E) based on using the discrete uniform distribution, all choice probabilities are
equal to 1/m. The third case corresponds to the a hybrid strategy (H), in which
the authors considered p(α = 0.1) = 0.5, p(α = 0.2) = 0.25, p(α = 0.3) = 0.125,
p(α = 0.4) = 0.03, p(α = 0.5) = 0.03, p(α = 0.6) = 0.03, p(α = 0.7) = 0.01,
p(α = 0.8) = 0.01, p(α = 0.9) = 0.01, and p(α = 1.0) = 0.005. Finally, in the last
strategy (F), the value of α is fixed as recommended in the original references of
problems P-1 to P-4 cited above, where this parameter was tuned for each problem.
A subset of the literature instances was considered for each class of test problems.
The results reported in [201] are summarized in Table 6.2. For each problem, we
first list the number of instances considered. Next, for each strategy, we give the
number of times it found the best solution (hits), as well as the average CPU time
(in seconds) on an IBM 9672 model R34. The number of iterations was fixed at
10,000.

Table 6.2 Computational results for different strategies for the variation of parameter α
R E H F

Problem Instances Hits Time Hits Time Hits Time Hits Time
P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0

Total 124 91 85 78 59

Strategy (F) presented the shortest average computation times for three out the
four problem types. It was also the one with the least variability in the constructed
solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
The high number of hits observed for strategy (E) also illustrates the effectiveness
of strategies based on the variation of the RCL parameter.

6.3 Alternative Construction Mechanisms

A possible shortcoming of the standard GRASP framework is the independence of
its iterations, i.e., the fact that it does not learn from the search history or from
solutions found in previous iterations. This is so because the basic algorithm dis-
cards information about any solution previously encountered that does not improve

6 GRASP: Advances and Extensions 177

the incumbent. Information gathered from good solutions can be used to imple-
ment memory-based procedures to influence the construction phase, by modifying
the selection probabilities associated with each element of the RCL or by enforcing
specific choices. Another possible shortcoming of the greedy randomized construc-
tion is its complexity. At each step of the construction, each yet unselected candidate
element has to be evaluated by the greedy function. In cases where the difference
between the number of elements in the ground set and the number of elements that
appear in a solution is large, this may not be very efficient.

In this section, we consider enhancements and alternative techniques for the con-
struction phase of GRASP. They include random plus greedy, sampled greedy, Re-
active GRASP, cost perturbations, bias functions, memory and learning, local search
on partially constructed solutions, and Lagrangean GRASP heuristics.

6.3.1 Random Plus Greedy and Sampled Greedy Construction

In Sect. 6.2, we described the semi-greedy construction scheme used to build ran-
domized greedy solutions that serve as starting points for local search. Two other
randomized greedy approaches were proposed in [216], with smaller worst-case
complexities than the semi-greedy algorithm.

Instead of combining greediness and randomness at each step of the construction
procedure, the random plus greedy scheme applies randomness during the first p
construction steps to produce a random partial solution. Next, the algorithm com-
pletes the solution with one or more pure greedy construction steps. The resulting
solution is randomized greedy. One can control the balance between greediness and
randomness in the construction by changing the value of the parameter p. Larger
values of p are associated with solutions that are more random, while smaller val-
ues result in greedier solutions.

Similar to the random plus greedy procedure, the sampled greedy construction
also combines randomness and greediness but in a different way. This procedure is
also controlled by a parameter p. At each step of the construction process, the pro-
cedure builds a restricted candidate list by randomly sampling min{p, |C|} elements
of the candidate set C. Each element of the RCL is evaluated by the greedy function.
The element with the smallest greedy function value is added to the partial solution.
This two-step process is repeated until there are no more candidate elements. The
resulting solution is also randomized greedy. The balance between greediness and
randomness can be controlled by changing the value of the parameter p, i.e. the
number of candidate elements that are sampled. Small sample sizes lead to more
random solutions, while large sample sizes lead to greedier solutions.

178 M. G. C. Resende and C. C. Ribeiro

6.3.2 Reactive GRASP

The first strategy to incorporate a learning mechanism in the memoryless construc-
tion phase of the basic GRASP was the Reactive GRASP procedure introduced in
Sect. 6.2. In this case, the value of the RCL parameter α is not fixed, but instead
is randomly selected at each iteration from a discrete set of possible values. This
selection is guided by the solution values found along the previous iterations. One
way to accomplish this is to use the rule proposed in [202]. Let Ψ = {α1, . . . ,αm}
be a set of possible values for α . The probabilities associated with the choice of
each value are all initially made equal to pi = 1/m, for i = 1, . . . ,m. Furthermore,
let z∗ be the incumbent solution and let Ai be the average value of all solutions found
using α = αi, for i = 1, . . . ,m. The selection probabilities are periodically reevalu-
ated by taking pi = qi/∑m

j=1 q j, with qi = z∗/Ai for i = 1, . . . ,m. The value of qi

will be larger for values of α = αi leading to the best solutions on average. Larger
values of qi correspond to more suitable values for the parameter α . The probabil-
ities associated with the more appropriate values will then increase when they are
reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on
parameter tuning. In addition to the applications in [200–202], this approach has
been used in power system transmission network planning [46], job shop schedul-
ing [49], channel assignment in mobile phone networks [118], rural road network
development [249], capacitated location [71], strip-packing [15], and a combined
production-distribution problem [50].

6.3.3 Cost Perturbations

The idea of introducing some noise into the original costs is similar to that in the so-
called “noising” method of Charon and Hudry [57, 58]. It adds more flexibility into
the algorithm design and may be even more effective than the greedy randomized
construction of the basic GRASP procedure in circumstances where the construction
algorithms are not very sensitive to randomization. This is indeed the case for the
shortest-path heuristic of Takahashi and Matsuyama [259], used as one of the main
building blocks of the construction phase of the hybrid GRASP procedure proposed
by Ribeiro et al. [233] for the Steiner problem in graphs. Another situation where
cost perturbations can be very effective appears when no greedy algorithm is avail-
able for straightforward randomization. This happens to be the case of the hybrid
GRASP developed by Canuto et al. [54] for the prize-collecting Steiner tree prob-
lem, which makes use of the primal-dual algorithm of Goemans and Williamson
[117] to build initial solutions using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [54], a new solution is built at each iteration using node prizes updated by a pertur-
bation function, based on the structure of the current solution. Two different prize

6 GRASP: Advances and Extensions 179

perturbation schemes were used. In perturbation by eliminations, the primal-dual
algorithm used in the construction phase is driven to build a new solution without
some of the nodes that appeared in the solution constructed in the previous iteration.
In perturbation by prize changes, some noise is introduced into the node prizes to
change the objective function, similarly to what is proposed in [57, 58].

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [233] incorporate learning mechanisms associated with inten-
sification and diversification strategies. Three distinct weight randomization meth-
ods were applied. At a given GRASP iteration, the modified weight of each edge
is randomly selected from a uniform distribution over an interval which depends
on the selected weight randomization method applied at that iteration. The differ-
ent weight randomization methods use frequency information and may be used to
enforce intensification and diversification strategies. The experimental results re-
ported in [233] show that the strategy combining these three perturbation methods
is more robust than any of them used in isolation, leading to the best overall results
on a quite broad mix of test instances with different characteristics. The GRASP
heuristic using this cost perturbation strategy is among the most effective heuristics
currently available for the Steiner problem in graphs.

6.3.4 Bias Functions

In the construction procedure of the basic GRASP, the next element to be introduced
in the solution is chosen at random from the candidates in the RCL. The elements of
the RCL are assigned equal probabilities of being chosen. However, any probability
distribution can be used to bias the selection toward some particular candidates. An-
other construction mechanism was proposed by Bresina [51], where a family of such
probability distributions is introduced. They are based on the rank r(e) assigned to
each candidate element e ∈ C, according to its greedy function value. Several bias
functions were proposed, such as:

• random bias: bias(r) = 1;
• linear bias: bias(r) = 1/r;
• log bias: bias(r) = log−1(r+1);
• exponential bias: bias(r) = e−r; and
• polynomial bias of order n: bias(r) = r−n.

Let r(e) denote the rank of element e ∈ C and let bias(r(e)) be one of the bias
functions defined above. Once these values have been evaluated for all elements in
the candidate set C, the probability π(e) of selecting element e ∈C is

π(e) =
bias(r(e))

∑e′∈C bias(r(e′))
. (6.1)

180 M. G. C. Resende and C. C. Ribeiro

The evaluation of these bias functions may be restricted to the elements of the
RCL. Bresina’s selection procedure restricted to elements of the RCL was used in
[49]. The standard GRASP uses a random bias function.

6.3.5 Intelligent Construction: Memory and Learning

Fleurent and Glover [106] observed that the basic GRASP does not use a long-term
memory (information gathered in previous iterations) and proposed a long-term
memory scheme to address this issue in multi-start heuristics. Long-term memory
is one of the fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction
phase. To become an elite solution, a solution must be either better than the best
member of the pool, or better than its worst member and sufficiently different from
the other solutions in the pool. For example, one can count identical solution vector
components and set a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding the
objective or changing significantly other variables. A consistent variable is one that
receives a particular value in a large portion of the elite solution set. Let the intensity
function I(e) be a measure of the strong determination and consistency features of
a solution element e ∈ E. Then, I(e) becomes larger as e appears more often in the
pool of elite solutions. The intensity function is used in the construction phase as
follows. Recall that c(e) is the greedy function, i.e. the incremental cost associated
with the incorporation of element e ∈ E into the solution under construction. Let
K(e) = F(c(e), I(e)) be a function of the greedy and intensification functions. For
example, K(e) = λc(e)+ I(e). The intensification scheme biases selection from the
RCL to those elements e ∈ E with a high value of K(e) by setting its selection
probability to be p(e) = K(e)/∑s∈RCL K(s).

The function K(e) can vary with time by changing the value of λ . For example,
λ may be set to a large value that is decreased when diversification is called for.
Procedures for changing the value of λ are given by Fleurent and Glover [106] and
Binato et al. [49].

6.3.6 POP in Construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions
at one level are likely to be found ‘close to’ good solutions at an adjacent level”
[115]. Fleurent and Glover [106] provided a GRASP interpretation of this principle.
They suggested that imperfections introduced during steps of the GRASP construc-
tion can be “ironed-out” by applying local search during (and not only at the end of)
the GRASP construction phase.

6 GRASP: Advances and Extensions 181

Because of efficiency considerations, a practical implementation of POP to
GRASP consists in applying local search a few times during the construction phase,
but not at every construction iteration. Local search was applied by Binato et al. [49]
after 40% and 80% of the construction moves were performed, as well as at the end
of the construction phase.

6.3.7 Lagrangean GRASP Heuristics

Lagrangean relaxation [45, 105] is a mathematical programming technique that can
be used to provide lower bounds for minimization problems. Held and Karp [123,
124] were among the first to explore the use of the dual multipliers produced by
Lagrangean relaxation to derive lower bounds, applying this idea in the context of
the traveling salesman problem. Lagrangean heuristics further explore the use of
different dual multipliers to generate feasible solutions. Beasley [43, 44] described
a Lagrangean heuristic for set covering.

6.3.7.1 Lagrangean Relaxation and Subgradient Optimization

Lagrangean relaxation can be used to provide lower bounds for combinatorial op-
timization problems. However, the primal solutions produced by the algorithms
used to solve the Lagrangean dual problem are not necessarily feasible. Lagrangean
heuristics exploit dual multipliers to generate primal feasible solutions.

Given a mathematical programming problem P formulated as

f ∗ = min f (x) (6.2)

gi(x)≤ 0, i = 1, . . . ,m, (6.3)

x ∈ X , (6.4)

its Lagrangean relaxation is obtained by associating dual multipliers λi ∈ R+ with
each inequality (6.3), for i = 1, . . . ,m. This results in the following Lagrangean
relaxation problem LRP(λ)

min f ′(x) = f (x)+
m

∑
i=1

λi ·gi(x) (6.5)

x ∈ X , (6.4)

whose optimal solution x(λ) gives a lower bound f ′(x(λ)) to the optimal value of
the original problem P defined by (6.2)–(6.4). The best (dual) lower bound is given
by the solution of the Lagrangean dual problem D

fD = f ′(x(λ ∗)) = max
λ∈Rm

+

f ′(x(λ)). (6.6)

182 M. G. C. Resende and C. C. Ribeiro

Subgradient optimization is used to solve the dual problem D defined by (6.6).
Subgradient algorithms start from any feasible set of dual multipliers, such as λi = 0,
for i = 1, . . . ,m, and iteratively generate updated multipliers.

At any iteration q, let λ q be the current vector of multipliers and let x(λ q) be
an optimal solution to problem LRP(λ q), whose optimal value is f ′(x(λ q)). Fur-
thermore, let f̄ be a known upper bound to the optimal value of problem P . Ad-
ditionally, let gq ∈ R

m be a subgradient of f ′(x) at x = x(λ q), with gq
i = gi(x(λ q))

for i = 1, . . . ,m. To update the Lagrangean multipliers, the algorithm makes use of
a step size

dq =
η · (f̄ − f ′(x(λ q)))

∑m
i=1(g

q
i)

2
, (6.7)

where η ∈ (0,2]. Multipliers are then updated as

λ q+1
i = max{0;λ q

i −dq ·gq
i }, i = 1, . . . ,m, (6.8)

and the subgradient algorithm proceeds to iteration q+1.

6.3.7.2 A Template for Lagrangean Heuristics

We describe next a template for Lagrangean heuristics that make use of the dual
multipliers λ q and of the optimal solution x(λ q) to each problem LRP(λ q) to build
feasible solutions to the original problem P defined by (6.2)–(6.4). In the following,
we assume that the objective function and all constraints are linear functions, i.e.
f (x) = ∑n

i=1 c jx j and gi(x) = ∑n
j=1 di jx j − ei, for i = 1, . . . ,m.

Let H be a primal heuristic that builds a feasible solution x to P , starting from
the initial solution x0 = x(λ q) at every iteration q of the subgradient algorithm.
Heuristic H is first applied using the original costs c j, i.e. using the cost function
f (x). In any subsequent iteration q of the subgradient algorithm, H uses either the
Lagrangean reduced costs c′j = c j −∑m

i=1 λ q
i di j or the complementary costs c̄ j =

(1− x j(λ q)) · c j.
Let xH ,γ be the solution obtained by heuristic H , using a generic cost vector γ

corresponding to either one of the above modified cost schemes or to the original
cost vector. Its cost can be used to update the upper bound f̄ to the optimal value of
the original problem. This upper bound can be further improved by local search and
is used to adjust the step size defined by Eq. (6.7).

Figure 6.6 shows the pseudo-code of a Lagrangean heuristic. Lines 1–4 initialize
the upper and lower bounds, the iteration counter, and the dual multipliers. The iter-
ations of the subgradient algorithm are performed along the loop defined in lines 5–
24. The reduced costs are computed in line 6 and the Lagrangean relaxation problem
is solved in line 7. In the first iteration of the Lagrangean heuristic, the original cost
vector is assigned to γ in line 9, while in subsequent iterations a modified cost vector
is assigned to γ in line 11. Heuristic H is applied in line 13 at the first iteration and
after every H iterations thereafter (i.e., whenever the iteration counter q is a multi-
ple of the input parameter H) to produce a feasible solution xH ,γ to problem P . If

6 GRASP: Advances and Extensions 183

the cost of this solution is smaller than the current upper bound, then the best solu-
tion and its cost are updated in lines 14–18. If the lower bound f ′(x(λ q)) is greater
than the current lower bound fD , then fD is updated in line 19. Line 20 computes a
subgradient at x(λ q) and line 21 computes the step size. The dual multipliers are up-
dated in line 22 and the iteration counter is incremented in line 23. The best solution
found and its cost are returned in line 24.

The strategy proposed by Held et al. [125] is commonly used in the implementa-
tion of Lagrangean heuristics to update the dual multipliers from one iteration to the
next. Beasley [44] reported as computationally useful the adjustment of components
of the subgradients to zero whenever they do not effectively contribute to the update
of the multipliers, i.e., arbitrarily setting gq

i = 0 whenever gq
i > 0 and λ q

i = 0, for
i = 1, . . . ,m.

procedure Lagrangean Heuristic(H)
1 f̄ ← + ;
2 fD ← − ;
3 q ← 0;
4 q

i ← 0, i= 1, . . . ,m;
5 repeat
6 Compute reduced costs: c′

j ← c j − m
i=1

q
i di j, j = 1, . . . ,n;

7 Solve LRP(q) to obtain a solution x(q);
8 if q= 0 then
9 ← c;
10 else
11 Set to the modified cost vector c′ or c̄;
12 end-if;
13 if q is a multiple of H then apply heuristic H with cost vector to obtain xH , ;
14 if f (xH ,)< f̄
15 then do;
16 x∗ ← xH , ;
17 f̄ ← f (xH ,);
18 end-if;
19 if f ′(x(q))> fD then fD ← f ′(x(q));
20 Compute a subgradient: gqi ← gi(x(q)), i= 1, . . . ,m;
21 Compute the step size: dq ← · (f̄ − f ′(x(q)))/ m

i=1(g
q
i)

2;
22 Update the dual multipliers: q+1

i ← max{0, q
i −dqgqi }, i= 1, . . . ,m;

23 q ← q+1;
24 until stopping criterion satisfied;
25 return x∗, f (x∗);
end Lagrangean Heuristic.

l
l

h S

S
l

l

l
l

l
l

g

g

g

gg

g
g

l

l

Fig. 6.6 Pseudo-code of a template for a Lagrangean heuristic

Different choices for the initial solution x0, for the modified costs γ , and for the
primal heuristic H itself lead to different variants of the above algorithm. The in-
teger parameter H defines the frequency in which H is applied. The smaller the
value of H, the greater the number of times H is applied. Therefore, the computa-

184 M. G. C. Resende and C. C. Ribeiro

tion time increases as the value of H decreases. In particular, one should set H = 1
if the primal heuristic H is to be applied at every iteration.

6.3.7.3 Lagrangean GRASP

Pessoa et al. [195, 196] proposed the hybridization of GRASP and Lagrangean re-
laxation leading to the Lagrangean GRASP heuristic described below. Different
choices for the primal heuristic H in the template of the algorithm in Fig. 6.6
lead to distinct Lagrangean heuristics. We consider two variants: the first makes
use of a greedy algorithm with local search, while in the second a GRASP with
path-relinking (see Sect. 6.4) is used.

Greedy heuristic: This heuristic greedily repairs the solution x(λ q) produced in
line 7 of the Lagrangean heuristic described in Fig. 6.6 to make it feasible for prob-
lem P . It makes use of the modified costs (c′ or c̄). Local search can be applied to
the resulting solution, using the original cost vector c. We refer to this approach as
a greedy Lagrangean heuristic (GLH).

GRASP heuristic: Instead of simply performing one construction step followed
by local search, as GLH does, this variant applies a GRASP heuristic to repair the
solution x(λ q) produced in line 7 of the Lagrangean heuristic to make it feasible for
problem P .

Although the GRASP heuristic produces better solutions than the greedy heuris-
tic, the greedy heuristic is much faster. To appropriately address this trade-off, we
adapt line 10 of Fig. 6.6 to use the GRASP heuristic with probability β and the
greedy heuristic with probability 1−β , where β is a parameter of the algorithm.

We note that this strategy involves three main parameters: the number H of iter-
ations after which the basic heuristic is always applied, the number Q of iterations
performed by the GRASP heuristic when it is chosen as the primal heuristic, and
the probability β of choosing the GRASP heuristic as H . We shall refer to the
Lagrangean heuristic that uses this hybrid strategy as LAGRASP(β ,H,Q).

We next summarize computational results obtained for 135 instances of the set
k-covering problem. These instances have up to 400 constraints and 4000 binary
variables. The set k-covering, or set multi-covering, problem is an extension of the
classical set covering problem, in which each element is required to be covered
at least k times. The problem finds applications in the design of communication
networks and in computational biology.

The first experiment with the GRASP Lagrangean heuristic established the rela-
tionship between running times and solution quality for different parameter settings.
Parameter β , the probability of GRASP being applied as the heuristic H , was set to

6 GRASP: Advances and Extensions 185

0, 0.25, 0.50, 0.75, and 1. Parameter H, the number of iterations between successive
calls to the heuristic H , was set to 1, 5, 10, and 50. Parameter Q, the number of it-
erations carried out by the GRASP heuristic, was set to 1, 5, 10, and 50. By combin-
ing some of these parameter values, 68 variants of the hybrid LAGRASP(β ,H,Q)
heuristic were created. Each variant was applied eight times to a subset of 21 in-
stances, with different initial seeds being given to the random number generator.

The plot in Fig. 6.7 summarizes the results for all variants evaluated, display-
ing points whose coordinates are the values of the average deviation from the best
known solution value and the total time in seconds for processing the eight runs on
all instances, for each combination of parameter values. Eight variants of special in-
terest are identified and labeled with the corresponding parameters β , H, and Q, in
this order. These variants correspond to selected Pareto points in the plot in Fig. 6.7.
Setting β = 0 and H = 1 corresponds to the greedy Lagrangean heuristic (GLH) or,
equivalently, to LAGRASP(0,1,−), whose average deviation (in percentage) from
the best value amounts to 0.12% in 4859.16 s of total running time. Table 6.3 shows
the average deviation from the best known solution value and the total time for each
of the eight selected variants.

In another experiment, all 135 test instances were considered for the comparison
of the above selected eight variants of LAGRASP. Table 6.4 summarizes the results

100

1000

10000

100000

1e+06

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

T
im

e
(s

)

AvgDev (%)

(0,1,-)

(0,50,-)

(0.25,5,1)

(0.25,5,5)

(0.25,5,10)

(0.25,50,5)

(0.50,1,1)

(1,1,50)

Fig. 6.7 Average deviation from the best value and total running time for 68 different variants of
LAGRASP on a reduced set of 21 instances of the set k-covering problem: each point represents a
unique combination of parameters β , H, and Q

186 M. G. C. Resende and C. C. Ribeiro

Table 6.3 Summary of the numerical results obtained with the selected variants of the GRASP
Lagrangean heuristic on a reduced set of 21 instances of the set k-covering problem

Heuristic Average deviation Total time (s)
LAGRASP(1,1,50) 0.09% 399,101.14
LAGRASP(0.50,1,1) 0.11% 6198.46
LAGRASP(0,1,−) 0.12% 4859.16
LAGRASP(0.25,5,10) 0.24% 4373.56
LAGRASP(0.25,5,5) 0.25% 2589.79
LAGRASP(0.25,5,1) 0.26% 1101.64
LAGRASP(0.25,50,5) 0.47% 292.95
LAGRASP(0,50,−) 0.51% 124.26
These values correspond to the coordinates of the selected variants in Fig. 6.7. The total time is
given in seconds

obtained by the eight selected variants. It shows that LAGRASP(1,1,50) found the
best solutions, with an average deviation from the best values amounting to 0.079%.
It also found the best known solutions in 365 runs (each variant was run eight times
on each instance), again with the best performance when the eight variants are eval-
uated side by side, although its running times are the largest. On the other hand, the
smallest running times were observed for LAGRASP(0,50,−), which was over 3000
times faster than LAGRASP(1,1,50) but found the worst-quality solutions among
the eight variants considered.

Table 6.4 Summary of the numerical results obtained with the selected variants of the GRASP
Lagrangean heuristic on the full set of 135 instances of the set k-covering problem

Heuristic Average deviation Hits Total time (s)
LAGRASP(1,1,50) 0.079% 365 1,803,283.64
LAGRASP(0.50,1,1) 0.134% 242 30,489.17
LAGRASP(0,1,−) 0.135% 238 24,274.72
LAGRASP(0.25,5,10) 0.235% 168 22,475.54
LAGRASP(0.25,5,5) 0.247% 163 11,263.80
LAGRASP(0.25,5,1) 0.249% 164 5347.78
LAGRASP(0.25,50,5) 0.442% 100 1553.35
LAGRASP(0,50,−) 0.439% 97 569.30
The total time is given in seconds

Figure 6.8 illustrates the merit of the proposed approach for one of the test
instances. We first observe that all variants reach the same lower bounds, as ex-
pected, since they depend exclusively on the common subgradient algorithm. How-
ever, as the lower bound appears to stabilize, the upper bound obtained by GLH
(LAGRASP(0,1,−) also seems to freeze. On the other hand, the other variants con-
tinue to make improvements by discovering better upper bounds, since the random-
ized GRASP construction helps them to escape from locally optimal solutions and
find new, improved upper bounds.

6 GRASP: Advances and Extensions 187

10300

10400

10500

10600

10700

10800

10900

0 500 1000 1500 2000 2500

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

Iterations

LAGRASP(1,1,50) UB
LAGRASP(0.50,1,1) UB

LAGRASP(0,1,-) UB
LAGRASP(0.25,5,10) UB
LAGRASP(0.25,5,5) UB
LAGRASP(0.25,5,1) UB

LAGRASP(0.25,50,5) UB
LAGRASP(0,50,-) UB

Lower Bound

Fig. 6.8 Evolution of lower and upper bounds over the iterations for different variants of LA-
GRASP. The number of iterations taken by each LAGRASP variant depends on the step-size,
which in turn depends on the upper bounds produced by each heuristic

Finally, we provide a comparison between GRASP with backward path-relinking
and the LAGRASP variants on all 135 test instances when the same time limits are
used to stop all heuristics. Eight runs were performed for each heuristic and each in-
stance, using different initial seeds for the random number generator. Each heuristic
was run a total of (8×135 =) 1080 times. The results in Table 6.5 show that all vari-
ants of LAGRASP outperformed GRASP with backward path-relinking and were
able to find solutions whose costs are very close to or as good as the best known
solution values, while GRASP with backward path-relinking found solutions whose
costs are on average 4.05% larger than the best known solution values.

Table 6.5 Summary of results for the best variants of LAGRASP and GRASP

Heuristic Average deviation Hits
LAGRASP(1,1,50) 3.30% 0
LAGRASP(0.50,1,1) 0.35% 171
LAGRASP(0,1,−) 0.35% 173
LAGRASP(0.25,5,10) 0.45% 138
LAGRASP(0.25,5,5) 0.45% 143
LAGRASP(0.25,5,1) 0.46% 137
LAGRASP(0.25,50,5) 0.65% 97
LAGRASP(0,50,−) 0.65% 93
GRASP with backward path-relinking 4.05% 0

188 M. G. C. Resende and C. C. Ribeiro

Figure 6.9 displays for one test instance the typical behavior of these heuristics.
As opposed to the GRASP with path-relinking, the Lagrangean heuristics are able to
escape from local optima for longer and keep on improving the solutions to obtain
the best results.

We note that an important feature of Lagrangean heuristics is that they provide
not only a feasible solution (which gives an upper bound, in the case of a minimiza-
tion problem), but also a lower bound that may be used to give an estimate of the
optimality gap that may be considered as a stopping criterion.

6.4 Path-Relinking

The LAGRASP heuristics presented in Sect. 6.3.7.3 made use of path-relinking.
Path-relinking is another enhancement to the basic GRASP procedure, leading to
significant improvements in both solution quality and running times. This tech-
nique was originally proposed by Glover [112] as an intensification strategy to
explore trajectories connecting elite solutions obtained by tabu search or scatter
search [113, 115, 116].

We consider the undirected graph associated with the solution space G = (S,M),
where the nodes in S correspond to feasible solutions and the edges in M corre-
spond to moves in the neighborhood structure, i.e. (i, j) ∈ M if and only if i ∈ S,
j ∈ S, j ∈ N(i) and i ∈ N(j), where N(s) denotes the neighborhood of a node s ∈ S.
Path-relinking is usually carried out between two solutions: one is called the initial

10400

10450

10500

10550

10600

10650

10700

10750

10800

0 5 10 15 20 25 30

C
os

t

Time (s)

GPRb
LAGRASP(1,1,50)

LAGRASP(0.50,1,1)
LAGRASP(0,1,-)

LAGRASP(0.25,5,10)
LAGRASP(0.25,5,5)
LAGRASP(0.25,5,1)

LAGRASP(0.25,50,5)
LAGRASP(0,50,-)

Fig. 6.9 Evolution of solution costs with time for the best variants of LAGRASP and GRASP with
backward path-relinking (GPRb)

6 GRASP: Advances and Extensions 189

solution, while the other is the guiding solution. One or more paths in the solution
space graph connecting these solutions are explored in the search for better solu-
tions. Local search is applied to the best solution in each of these paths, since there
is no guarantee that the best solution is locally optimal.

Let s ∈ S be a node on the path between an initial solution and a guiding solution
g ∈ S. Not all solutions in the neighborhood N(s) are candidates to follow s on the
path from s to g. We restrict the choice only to those solutions that are more similar
to g than s. This is accomplished by selecting moves from s that introduce attributes
contained in the guiding solution g. Therefore, path-relinking may be viewed as a
strategy that seeks to incorporate attributes of high quality solutions (i.e. the guiding
elite solutions), by favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Martí [147]. It was followed by several extensions, improvements, and successful
applications [8, 9, 22, 54, 104, 183, 206, 212, 216, 217, 227, 233, 249]. A survey
of GRASP with path-relinking can be found in [213].

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Fig. 6.10 shows time-to-target plots [7, 10, 228,
235, 236] for GRASP and GRASP with path-relinking implementations for four dif-
ferent applications. These time-to-target plots show the empirical cumulative prob-
ability distributions of the time-to-target random variable when using pure GRASP
and GRASP with path-relinking, i.e., the time needed to find a solution at least as
good as a prespecified target value. For all problems, the plots show that GRASP
with path-relinking is able to find target solutions faster than GRASP.

GRASP with path-relinking makes use of an elite set to collect a diverse pool
of high-quality solutions found during the search. This pool is limited in size, i.e. it
can have at most Max_Elite solutions. Several schemes have been proposed for
the implementation of path-relinking, which may be applied as:

• an intensification strategy, between each local optimum obtained after the local
search phase and one or more elite solutions;

• a post-optimization step, between every pair of elite solutions;
• an intensification strategy, periodically (after a fixed number of GRASP iterations

since the last intensification phase) submitting the pool of elite solutions to an
evolutionary process (see Sect. 6.4.7);

• a post-optimization phase, submitting the pool of elite solutions to an evolution-
ary process; or

• any other combination of the above schemes.

The pool of elite solutions is initially empty. Each locally optimal solution ob-
tained by local search and each solution resulting from path-relinking is considered
as a candidate to be inserted into the pool. If the pool is not yet full, the candidate
is simply added to the pool. Otherwise, if the candidate is better than the incumbent
(best solution found so far), it replaces an element of the pool. In case the candidate
is better than the worst element of the pool but not better than the best element, then
it replaces some element of the pool if it is sufficiently different from every other so-
lution currently in the pool. To balance the impact on pool quality and diversity, the
element selected to be replaced is the one that is most similar to the entering solution
among those elite solutions of quality no better than the entering solution [216].

190 M. G. C. Resende and C. C. Ribeiro

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

 0 200 400 600 800 1000 1200 1400 1600

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

3 index assignment: Balas & Statzman 26.1

GRASP
GRASP+PR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350

cu
m

ul
at

iv
e

pr
ob

ab
ib

lit
y

time to target solution value (seconds)

MAX-SAT: jnh212

GRASP
GRASP+PR

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 100 200 300 400 500 600

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

Bandwidth packing: ATT

GRASP
GRASP+PR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

QAP: ste36b

GRASP
GRASP+PR

Fig. 6.10 Time to target plots comparing running times of pure GRASP and GRASP with path-
relinking on four instances of distinct problem types: three index assignment, maximum satisfia-
bility, bandwidth packing, and quadratic assignment

6 GRASP: Advances and Extensions 191

Given a local optimum s1 produced at the end of a GRASP iteration, we need
to select at random a solution s2 from the pool to apply path-relinking between s1

and s2. In principle, any pool solution could be selected. However, we may want
to avoid pool solutions that are too similar to s1, because relinking two solutions
that are similar limits the scope of the path-relinking search. If the solutions are
represented by 0–1 indicator vectors, we should favor pairs of solutions that are far
from each other, based on their Hamming distance (i.e., the number of components
that take on different values in each solution). A strategy introduced in Resende and
Werneck [216] is to select a pool element s2 at random with a probability propor-
tional to the Hamming distance between the pool element and the local optimum
s1. Since the number of paths between two solutions grows exponentially with their
Hamming distance, this strategy favors pool elements with a large number of paths
connecting them to and from s1.

After determining which solution (s1 or s2) will be designated the initial solution
i and which will be the guiding solution g, the algorithm starts by computing the
set Δ(i,g) of components in which i and g differ. This set corresponds to the moves
which should be applied to i to reach g. Starting from the initial solution, the best
move in Δ(i,g) still not performed is applied to the current solution, until the guid-
ing solution is reached. By best move, we mean the one that results in the highest
quality solution in the restricted neighborhood. The best solution found along this
trajectory is submitted to local search and returned as the solution produced by the
path-relinking algorithm.

procedure GRASP+PR(Seed);
1 Set pool of elite solutions ← ∅;
2 Set best solution value f ∗ ← ;
3 while stopping criterion not satisfied do
4 Solution ← Greedy Randomized Construction(Seed);
5 if Solution is not feasible then
6 Solution ← Repair(Solution);
7 end-if;
8 Solution ← Local Search(Solution);
9 if | | > 0 then
10 Select an elite solution Solution’ at random from ;
11 Solution ← PR(Solution,Solution′);
12 end-if;
13 if f (Solution)< f ∗ then
14 Best Solution ← Solution;
15 f ∗ ← f (S);
16 end-if;
17 Update the pool of elite solutions with Solution;
18 end-while;
19 return Best Solution;
end GRASP+PR.

Fig. 6.11 Pseudo-code of a template of a GRASP with path-relinking for a minimization problem

192 M. G. C. Resende and C. C. Ribeiro

The pseudo-code shown in Fig. 6.11 summarizes the steps of a GRASP with
path-relinking for a minimization problem. The pseudo-code follows the structure
of the basic GRASP algorithm in Fig. 6.1. Lines 1 and 2 initialize the pool of elite
solutions and the best solution value, respectively. Path-relinking is performed in
line 11 between the solution Solution obtained at the end of the local search
phase (line 8) and a solution Solution′ randomly selected from the pool of elite
solutions E (line 10). Procedure PR(Solution,Solution′) could make use, for
example, of any variant of a pure or combined path-relinking strategy. The best
overall solution found Best_Solution is returned in line 19 after the stopping
criterion is satisfied.

Several alternatives have been considered and combined in recent implementa-
tions of path-relinking. These include forward, backward, back and forward, mixed,
truncated, greedy randomized adaptive, evolutionary, and external path-relinking.
All these alternatives, which are described in the following, involve trade-offs be-
tween computation time and solution quality.

6.4.1 Forward Path-Relinking

In forward path-relinking, the GRASP local optimum is designated as the initial
solution and the pool solution is made the guiding solution. This is the original
scheme proposed by Laguna and Martí [147].

6.4.2 Backward Path-Relinking

In backward path-relinking, the pool solution is designated as the initial solution
and the GRASP local optimum is made the guiding one. This scheme was orig-
inally proposed in Aiex et al. [9] and Resende and Ribeiro [212]. The main ad-
vantage of this approach over forward path-relinking comes from the fact that, in
general, there are more high-quality solutions near pool elements than near GRASP
local optima. Backward path-relinking explores more thoroughly the neighborhood
around the pool solution, whereas forward path-relinking explores more the neigh-
borhood around the GRASP local optimum. Experiments in [9, 212] have shown
that backward path-relinking usually outperforms forward path-relinking.

6.4.3 Back and Forward Path-Relinking

Back and forward path-relinking combines forward and backward path-relinking.
As shown in [9, 212], it finds solutions at least as good as forward path-relinking
or backward path-relinking, but at the expense of taking about twice as long to

6 GRASP: Advances and Extensions 193

run. The reason that back and forward path-relinking often finds solutions of better
quality than simple backward or forward path-relinking stems from the fact that it
thoroughly explores the neighborhoods of both solutions s1 and s2.

6.4.4 Mixed Path-Relinking

Mixed path-relinking shares the benefits of back and forward path-relinking, i.e.
it thoroughly explores both neighborhoods, but does so in about the same time as
forward or backward path-relinking alone. This is achieved by interchanging the
roles of the initial and guiding solutions at each step of the path-relinking procedure.
Therefore, two paths are generated, one starting at s1 and the other at s2. The paths
evolve and eventually meet at some solution about half way between s1 and s2.
The joined path relinks these two solutions. Mixed path-relinking was suggested by
Glover [112] and was first implemented and tested by Ribeiro and Rosseti [227],
where it was shown to outperform forward, backward, and back and forward path-
relinking. Figure 6.12 shows a comparison of pure GRASP and four variants of
path-relinking: forward, backward, back and forward, and mixed. The time-to-target
plots show that GRASP with mixed path-relinking has the best running time profile
among the variants compared.

6.4.5 Truncated Path-Relinking

Since good-quality solutions tend to be near other good-quality solutions, one would
expect to find the best solutions with path-relinking near the initial or guiding so-
lution. Indeed, Resende et al. [222] showed that this is the case for instances of the
max-min diversity problem, as shown in Fig. 6.13. In that experiment, a back and
forward path-relinking scheme was tested. The figure shows the average number
of best solutions found by path-relinking taken over several instances and several
applications of path-relinking. The 0–10% range in this figure corresponds to sub-
paths near the initial solutions for the forward path-relinking phase as well as the
backward phase, while the 90–100% range are subpaths near the guiding solutions.
As the figure indicates, exploring the subpaths near the extremities may produce
solutions about as good as those found by exploring the entire path. There is a
higher concentration of better solutions close to the initial solutions explored by
path-relinking.

Truncated path-relinking can be applied to either forward, backward, backward
and forward, or mixed path-relinking. Instead of exploring the entire path, truncated
path-relinking only explores a fraction of the path and, consequently, takes a fraction
of the time to run. Truncated path-relinking has been applied in [22, 222].

194 M. G. C. Resende and C. C. Ribeiro

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASP+ mixed PR
GRASP+backward PR

GRASP+back-and-forward PR
GRASP+forward PR

GRASP (no PR)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASP+mixed PR
GRASP+backward PR

GRASP+back-and-forward PR
GRASP+forward PR

Fig. 6.12 Time-to-target plots for pure GRASP and four variants of GRASP with path-relinking
(forward, backward, back and forward, and mixed) on an instance of the 2-path network design
problem

6 GRASP: Advances and Extensions 195

6.4.6 Greedy Randomized Adaptive Path-Relinking

In path-relinking, the best not yet performed move in set Δ(i,g) is applied to the
current solution, until the guiding solution is reached. If ties are broken determin-
istically, this strategy will always produce the same path between the initial and
guiding solutions. Since the number of paths connecting i and g is exponential in
|Δ(i,g)|, exploring a single path can be somewhat limiting.

Greedy randomized adaptive path-relinking, introduced by Binato et al. [47], is
a semi-greedy version of path-relinking. Instead of taking the best move in Δ(i,g)
still not performed, a restricted candidate list of good moves still not performed is
set up and a randomly selected move from the latter is applied. By applying this
strategy several times between the initial and guiding solutions, several paths can be
explored. Greedy randomized adaptive path-relinking has been applied in [22, 86,
222].

0

10

20

30

40

50

60

70

80

90

100

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

A
ve

ra
ge

 n
um

be
r

of
 b

es
t s

ol
ut

io
ns

Percentage of path length

Fig. 6.13 Average number of best solutions found at different depths of the path from the initial
solution to the guiding solution on instances of the max-min diversity problem

196 M. G. C. Resende and C. C. Ribeiro

6.4.7 Evolutionary Path-Relinking

GRASP with path-relinking maintains a pool of elite solutions. Applying path-
relinking between pairs of pool solutions may result in an even better pool of solu-
tions. Aiex et al. [9] applied path-relinking between all pairs of elite solutions as an
intensification scheme to improve the quality of the pool and as a post-optimization
step. The application of path-relinking was repeated until no further improvement
was possible.

Resende and Werneck [216, 217] described an evolutionary path-relinking
scheme applied to pairs of elite solutions and used as a post-optimization step.
The pool resulting from the GRASP with path-relinking iterations is referred to as
population P0. At step k, all pairs of elite set solutions of population Pk are relinked
and the resulting solutions are made candidates for inclusion in population Pk+1 of
the next generation. The same rules for acceptance into the pool during GRASP
with path-relinking are used for acceptance into Pk+1. If the best solution in Pk+1 is
better than the best in Pk, then k is incremented by one and the process is repeated.
Resende et al. [222] describe another way to implement evolutionary path-relinking,
where a single population is maintained. Each pair of elite solutions is relinked and
the resulting solution is a candidate to enter the elite set. If accepted, it replaces an
existing elite solution. The process is continued while there are still pairs of elite
solutions that have not yet been relinked.

Fig. 6.14 An internal path (red arcs, red nodes) from solution S to solution T and two external
(blue arcs, blue nodes) paths, one emanating from solution S and the other from solution T . These
paths are produced by internal and external path-relinking

6 GRASP: Advances and Extensions 197

Andrade and Resende [21] used this evolutionary scheme as an intensification
process every 100 GRASP iterations. During the intensification phase, every solu-
tion in the pool is relinked with the two best ones. Since two elite solutions may
be relinked more than once in different calls to the intensification process, greedy
randomized adaptive path-relinking was used.

Resende et al. [222] showed that a variant of GRASP with evolutionary path-
relinking outperformed several other heuristics using GRASP with path-relinking,
simulated annealing, and tabu search for the max-min diversity problem.

6.4.8 External Path-Relinking and Diversification

So far in this section, we have considered variants of path-relinking in which a path
in the search space graph connects two feasible solutions by progressively introduc-
ing in one of them (the initial solution) attributes of the other (the guiding solution).
Since attributes common to both solutions are not changed and all solutions vis-
ited belong to a path between the two solutions, we may also refer to this type of
path-relinking as internal path-relinking.

External path-relinking extends any path connecting two feasible solutions S and
T beyond its extremities. To extend such a path beyond S, attributes not present in
either S or T are introduced in S. Symmetrically, to extend it beyond T , attributes
not present in either S or T are introduced in T . In its greedy variant, all moves are
evaluated and the solution chosen to be next in the path is one with best cost or, in
case they are all infeasible, the one with least infeasibility. In either direction, the
procedure stops when all attributes that do not appear in either S or T have been
tested for extending the path. Once both paths are complete, local search may be
applied to the best solution in each of them. The best of the two local minima is
returned as the solution produced by the external path-relinking procedure.

Figure 6.14 illustrates internal and external path-relinking. The path with red
nodes and edges is the one resulting from internal path-relinking applied with S as
the initial solution and T as the guiding solution. We observe that the orientation
introduced by the arcs in this path is due only to the choice of the initial and guiding
solutions. If the roles of solutions S and T were interchanged, it could have been
computed and generated in the reverse direction. The same figure also illustrates two
paths obtained by external path-relinking, one emanating from S and the other from
T , both represented with blue nodes and edges. The orientations of the arcs in each
of these paths indicate that they necessarily emanate from either solution S or T .

To conclude, we establish a parallel between internal and external path-relinking.
Since internal path-relinking works by fixing all attributes common to the initial and
guiding solutions and searches for paths between them satisfying this property, it is
clearly an intensification strategy. Contrarily, external path-relinking progressively
removes common attributes and replaces them by others that do not appear in either
one of the initial or guiding solution. Therefore, it can be seen as a diversification
strategy which produces solutions increasingly farther from both the initial and
the guiding solutions. External path-relinking becomes therefore a tool for search
diversification.

198 M. G. C. Resende and C. C. Ribeiro

External path-relinking was introduced by Glover [114] and first applied by
Duarte et al. [84] in a heuristic for differential dispersion minimization.

6.5 Restart Strategies

Figure 6.15 shows a typical iteration count distribution for a GRASP with path-
relinking. Observe in this example that for most of the independent runs whose
iteration counts make up the plot, the algorithm finds a target solution in relatively
few iterations: about 25% of the runs take at most 101 iterations; about 50% take at
most 192 iterations; and about 75% take at most 345. However, some runs take much
longer: 10% take over 1000 iterations; 5% over 2000; and 2% over 9715 iterations.
The longest run took 11,607 iterations to find a solution at least as good as the target.
These long tails contribute to a large average iteration count as well as to a high stan-
dard deviation. This section proposes strategies to reduce the tail of the distribution,
consequently reducing the average iteration count and its standard deviation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.9

 1

10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

(1982, 0.955)

(345, 0.745)

(192, 0.495)

(101, 0.245)

GRASP+PR (no restart)

Fig. 6.15 Typical iteration count distribution of GRASP with path-relinking

Consider again the distribution in Fig. 6.15. The distribution shows that each run
will take over 345 iterations with a probability of about 25%. Therefore, any time the
algorithm is restarted, the probability that the new run will take over 345 iterations
is also about 25%. By restarting the algorithm after 345 iterations, the new run will
take more than 345 iterations with probability of also about 25%. Therefore, the
probability that the algorithm will be still running after 345+ 345 = 690 iterations
is the probability that it takes more than 345 iterations multiplied by the probability
that it takes more than 690 iterations given that it took more than 345 iterations,
i.e., about (1/4)× (1/4) = (1/4)2. It follows by induction that the probability that

6 GRASP: Advances and Extensions 199

the algorithm will still be running after k periods of 345 iterations is 1/(4k). In this
example, the probability that the algorithm will be running after 1725 iterations will
be about 0.1%, i.e., much less than the 5% probability that the algorithm will take
over 2000 iterations without restart.

A restart strategy is defined as an infinite sequence of time intervals τ1,τ2,τ3, . . .
which define epochs τ1,τ1+τ2,τ1+τ2+τ3, . . . when the algorithm is restarted from
scratch. It can be shown that the optimal restart strategy uses τ1 = τ2 = · · · = τ∗,
where τ∗ is some (unknown) constant. Strategies for speeding up stochastic local
search algorithms using restarts were first proposed by Luby et al. [156], where
they proved the existence of an optimal restart strategy. Restart strategies in meta-
heuristics have been addressed in [67, 139, 182, 187, 250]. Further work on restart
strategies can be found in [251, 252].

Implementing the optimal strategy may be difficult in practice because it re-
quires the constant value τ∗. Runtimes can vary greatly for different combinations
of algorithm, instance, and solution quality sought. Since usually one has no prior
information about the runtime distribution of the stochastic search algorithm for the
optimization problem under consideration, one runs the risk of choosing a value of
τ∗ that is either too small or too large. On the one hand, a value that is too small
can cause the restart variant of the algorithm to take much longer to converge than
a no-restart variant. On the other hand, a value that is too large may never lead to
a restart, causing the restart-variant of the algorithm to take as long to converge as
the no-restart variant. Figure 6.16 illustrates the restart strategies with time-to-target

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0.9

 1

1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 to

 fi
nd

 ta
rg

et
 s

ol
ut

io
n

time to target solution (seconds)

Restart every:
6 seconds
9 seconds

12 seconds
18 seconds
24 seconds
30 seconds
42 seconds

no restart

Fig. 6.16 Time-to-target plot for target solution value of 554 for a GRASP with path-linking with
restart on the maximum cut instance G12 using different values of τ

200 M. G. C. Resende and C. C. Ribeiro

plots for the maximum cut instance G12 [126] on an 800-node graph with edge
density of 0.63% with target solution value 554 for τ = 6, 9, 12, 18, 24, 30, and
42 s. For each value of τ , 100 independent runs of a GRASP with path-relinking
with restarts were performed. The variant with τ = ∞ corresponds to the heuristic
without restart. The figure shows that, for some values of τ , the resulting heuristic
outperformed its counterpart with no restart by a large margin.

In GRASP with path-relinking, the number of iterations between improvements
of the incumbent solution tends to vary less than the runtimes for different combina-
tions of instance and solution quality sought. If one takes this into account, a simple
and effective restart strategy for GRASP with path-relinking is to keep track of the
last iteration when the incumbent solution was improved and restart the GRASP
with path-relinking if κ iterations have gone by without improvement. We shall call
such a strategy restart(κ). A restart consists in saving the incumbent and emptying
out the elite set.

procedure GRASP+PR+Restarts(Seed);
1 Set pool of elite solutions ← ∅;
2 Set best solution value f ∗ ← ;
3 LastImprov ← 0;
4 CurrentIter ← 0;
5 while stopping criterion not satisfied do
6 CurrentIter ← CurrentIter+1;
7 Solution ← Greedy Randomized Construction(Seed);
8 if Solution is not feasible then
9 Solution ← Repair(Solution);
10 end-if;
11 Solution ← Local Search(Solution);
12 if | | > 0 then
13 Select an elite solution Solution’ at random from ;
14 Solution ← forward-PR(Solution,Solution′);
15 end-if;
16 if f (Solution)< f ∗ then
17 Best Solution ← Solution;
18 f ∗ ← f (S);
19 LastImprov ← CurrentIter;
20 end-if;
21 if CurrentIter−LastImprov> then
22 ← ∅;
23 LastImprov ← CurrentIter;
24 else
25 Update the pool of elite solutions with Solution;
26 end-if;
27 end-while;
28 return Best Solution;
end GRASP+PR+Restarts.

Fig. 6.17 Pseudo-code of a template of a GRASP with path-relinking with restarts for a minimiza-
tion problem

6 GRASP: Advances and Extensions 201

The pseudo-code shown in Fig. 6.17 summarizes the steps of a GRASP with path-
relinking using the restart(κ) strategy for a minimization problem. The algorithm
keeps track of the current iteration (CurrentIter), as well as of the last iteration
when an improving solution was found (LastImprov). If an improving solution
is detected in line 16, then this solution and its cost are saved in lines 17 and 18,
respectively, and the iteration of the last improvement is set to the current iteration
in line 19. If, in line 21, it is determined that more than κ iterations have gone by
since the last improvement of the incumbent, then a restart is triggered, emptying
out the elite set in line 22 and resetting the iteration of the last improvement to the
current iteration in line 23. If restart is not triggered, then in line 25 the current
solution is tested for inclusion in the elite set and the set is updated if it is accepted.
The best overall solution found Best_Solution is returned in line 28 after the
stopping criterion is satisfied.

As an illustration of the use of the restart(κ) strategy within a GRASP with path-
relinking, consider the maximum cut instance G12. For the values κ = 50, 100, 200,
300, 500, 1000, 2000, and 5000, the heuristic was run independently 100 times, and
was stopped when a cut of weight 554 or higher was found. A strategy without
restarts was also implemented. Figures 6.18 and 6.19, as well as Table 6.6, sum-
marize these runs, showing the average time to target solution as a function of the
value of κ and the time-to-target plots for different values of κ . These figures il-
lustrate well the effect on running time of selecting a value of κ that is either too
small (κ = 50,100) or too large (κ = 2000,5000). They further show that there is
a wide range of κ values (κ = 200, 300, 500, 1000) that result in lower runtimes
when compared to the strategy without restarts.

20

40

60

80

100

120

140

160

180

10 100 1000 10000 100000

av
er

ag
e

tim
e

to
 ta

rg
et

 s
ol

ut
io

n

restart period (in iterations)

Fig. 6.18 Average time to target solution for maximum cut instance G12 using different values of
κ . All runs of all strategies have found a solution at least as good as the target value of 554

202 M. G. C. Resende and C. C. Ribeiro

Figure 6.20 further illustrates the behavior of the restart(100), restart(500), and
restart(1000) strategies for the previous example, when compared with the strategy
without restarts on the same maximum cut instance G12. However, in this figure,
for each strategy, we plot the number of iterations to the target solution value. It
is interesting to note that, as expected, each strategy restart(κ) behaves exactly like
the strategy without restarts for the κ first iterations, for κ = 100,500,1000. After
this point, each trajectory deviates from that of the strategy without restarts. Among
these strategies, restart(500) is the one with the best performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution (seconds)

Restart frequency:
5000 iterations
2000 iterations
1000 iterations

500 iterations
300 iterations
200 iterations
100 iterations

50 iterations
no restart

Fig. 6.19 Time-to-target plots for maximum cut instance G12 using different values of κ . The
figure also shows the time-to-target plot for the strategy without restarts. All runs of all strategies
found a solution at least as good as the target value of 554

We make some final observations about these experiments. The effect of the
restart strategies can be mainly observed in the column corresponding to the fourth
quartile of Table 6.6. Entries in this quartile correspond to those in the heavy tails
of the distributions. The restart strategies in general did not affect the other quartiles
of the distributions, which is a desirable characteristic. Compared to the no-restart
strategy, restart strategies restart(500) and restart(1000) were able to reduce the
maximum number of iterations, as well as the average and the standard deviation.
Strategy restart(100) did so, too, but not as much as restart(500) and restart(1000).
Restart strategies restart(500) and restart(1000) were clearly the best strategies of
those tested.

6 GRASP: Advances and Extensions 203

Table 6.6 Summary of computational results on maximum cut instance G12 with four strategies

Iterations in quartile
Strategy 1st 2nd 3rd 4th Average st.dev.
No restarts 326 550 1596 68,813 4525.1 11,927.0
restart(1000) 326 550 1423 5014 953.2 942.1
restart(500) 326 550 1152 4178 835.0 746.1
restart(100) 509 1243 3247 8382 2055.0 2005.9
For each strategy, 100 independent runs were executed, each stopped when a solution as good
as the target solution value 554 was found. For each strategy, the table shows the distribution of
the number of iterations by quartile. For each quartile, the table gives the maximum number of
iterations taken by all runs in that quartile, i.e., the slowest of the fastest 25% (1st), 50% (2nd),
75% (3rd), and 100% (4th) of the runs. The average number of iterations over the 100 runs and the
standard deviation (st.dev.) are also given for each strategy

0

0.1

0.2

 0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

no restart
restart(1000)

restart(500)
restart(100)

Fig. 6.20 Comparison of the iterations-to-target plots for maximum cut instance G12 using strate-
gies restart(100), restart(500), and restart(1000). The figure also shows the iterations-to-target plot
for the strategy without restarts. All runs of all strategies found a solution at least as good as the
target value of 554

The restart(κ) strategy for GRASP with path-relinking discussed in this section
was originally proposed by Resende and Ribeiro [214]. Besides the experiments
presented in this chapter for the maximum cut instance G12, that paper also con-
sidered five other instances of maximum cut, maximum weighted satisfiability, and
bandwidth packing. Interian and Ribeiro [136] implemented restart strategies for
GRASP with path-relinking for the Steiner traveling salesman problem.

204 M. G. C. Resende and C. C. Ribeiro

6.6 Extensions

In this section, we comment on some extensions, implementation strategies, and
hybridizations of GRASP.

The use of hash tables to avoid cycling in conjunction with tabu search was pro-
posed by Woodruff and Zemel [266]. A similar approach was later explored by
Ribeiro et al. [232] in their tabu search algorithm for query optimization in rela-
tional databases. In the context of GRASP implementations, hash tables were first
used by Martins et al. [168] in their multi-neighborhood heuristic for the Steiner
problem in graphs, to avoid the application of local search to solutions already vis-
ited in previous iterations.

Filtering strategies are used to speed up the iterations of GRASP, see e.g. [93,
168, 202]. With filtering, local search is not applied to all solutions obtained at the
end of the construction phase, but only to some more promising unvisited solutions,
defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and
Mladenović [121, 172], rely almost entirely on the randomization of the local search
to escape from local optima. With respect to randomization, GRASP and variable
neighborhood strategies can be considered complementary and potentially capable
of leading to effective hybrid methods. A first attempt in this direction was made
by Martins et al. [168] where the construction phase of a hybrid heuristic for the
Steiner problem in graphs follows the greedy randomized strategy of GRASP, while
the local search phase makes use of two different neighborhood structures, like the
VND (variable neighborhood descent) procedure [121, 172]. That heuristic was later
improved by Ribeiro et al. [233], where one of the key components of the new algo-
rithm was another strategy for the exploration of different neighborhoods. Ribeiro
and Souza [229] also combined GRASP with VND in a hybrid heuristic for the
degree-constrained minimum spanning tree problem. Festa et al. [102] studied dif-
ferent variants and combinations of GRASP and VNS for the maximum cut prob-
lem, finding and improving the best known solutions for some open instances from
the literature.

GRASP has also been used in conjunction with genetic algorithms. The greedy
randomized strategy used in the construction phase of a GRASP heuristic is applied
to generate the initial population for a genetic algorithm. As an example, consider
the genetic algorithm of Ahuja et al. [4] for the quadratic assignment problem. It
makes use of the GRASP heuristic proposed by Li et al. [150] to create the initial
population of solutions. A similar approach was used by Armony et al. [31], with
the initial population made up of both randomly generated solutions and those built
by a GRASP heuristic.

The hybridization of GRASP with tabu search was first studied by Laguna and
González-Velarde [146]. Delmaire et al. [71] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reac-

6 GRASP: Advances and Extensions 205

tive GRASP algorithm presented in Sect. 6.3.2, in which the local search phase is
strengthened by tabu search. Results reported for the capacitated location problem
show that the hybrid approaches perform better than the isolated methods previously
used. Two two-stage heuristics are proposed in [1] for solving the multi-floor facil-
ity layout problem. GRASP/TS applies a GRASP to find the initial layout and tabu
search to refine it.

Iterated Local Search (ILS) iteratively builds a sequence of solutions generated
by the repeated application of local search and perturbation of the local optima
found by local search [42]. Lourenço et al. [155] point out that ILS has been re-
discovered many times and is also known as iterated descent [40, 41], large step
Markov chains [165], iterated Lin-Kernighan [137], and chained local optimization
[164]. A GRASP/ILS hybrid can be obtained by replacing the standard local search
of GRASP by ILS. The GRASP construction produces a solution which is passed to
the ILS procedure. Ribeiro and Urrutia [230] presented a hybrid GRASP with ILS
for the mirrored traveling tournament problem, in which perturbations are achieved
by randomly generating solutions in the game rotation ejection chain [110, 111]
neighborhood.

6.7 Applications

The first application of GRASP was described in the literature in 1989 [90]. In that
paper, GRASP was applied to difficult set covering problems Since then, GRASP
has been applied to a wide range of problems. The main applications areas are sum-
marized below with links to specific references:

• Assignment problems [4, 9, 89, 106, 150, 153, 154, 169, 170, 177, 178, 183, 188,
190, 198, 202, 204, 218, 241]

• Biology [23, 64, 68, 76, 97, 108, 231]
• Computer vision [53, 132, 246, 247]
• Covering, packing, and partitioning [13, 15, 16, 28, 29, 72, 77, 90, 109, 119, 192,

195, 196, 223, 239, 244, 245]
• Diversity and dispersion [79, 84, 163, 222]
• Finance [19, 127]
• Graph and map drawing [66, 96, 147, 159, 160, 162, 184, 210, 226]
• Location and layout [1, 60, 66, 71, 120, 133, 141, 171, 181, 185, 253, 255, 260,

261]
• Logic [75, 104, 189, 208, 219, 221]
• Minimum Steiner tree [54, 166–168, 233]
• Optimization in graphs [2, 3, 5, 12, 32, 56, 73, 82, 83, 93, 101, 103, 134, 148,

149, 157, 160, 161, 168, 179, 191, 193, 207, 210, 220, 226, 233, 248, 257]
• Power systems [25, 46, 48, 86, 203, 263]
• Robotics [144, 240]
• Routing [30, 33, 38, 52, 55, 63, 136, 143, 145, 151, 176, 181, 206, 262, 264, 265]
• Software engineering [158]

206 M. G. C. Resende and C. C. Ribeiro

• Sports [26, 140, 225, 230]
• Telecommunications [2, 17, 18, 20, 22, 31, 62, 107, 141, 153, 174, 175, 194, 197,

199, 202, 207, 209, 212, 234, 258]
• Timetabling, scheduling, and manufacturing [8, 11, 14, 20, 22, 24, 35–37, 39,

49, 50, 59, 61, 65, 69, 70, 74, 78, 85, 87, 88, 92, 94, 95, 138, 142, 146, 152, 173,
180, 186, 205, 230, 237, 238, 242, 243, 267, 268]

• Transportation [30, 34, 87, 89, 256]
• VLSI design [27, 28]

The reader is referred to Festa and Resende [100] and the book by Resende and
Ribeiro [215] for extended annotated bibliographies of GRASP applications.

6.8 Concluding Remarks

The results described in this chapter reflect successful applications of GRASP to a
large number of classical combinatorial optimization problems, as well as to prob-
lems that arise in real-world situations in different areas of business, science, and
technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks (solution construction procedures and local search methods)
that are often readily available. Contrary to what occurs with most other metaheuris-
tics, such as tabu search or genetic algorithms, that make use of a large number of
parameters in their implementations, the basic variant of GRASP requires the ad-
justment of a single parameter, i.e. the restricted candidate list (RCL) parameter α .

Recent developments, presented in this chapter, show that different extensions of
the basic procedure allow further improvements in the solutions found by GRASP.
Among these, we highlight reactive GRASP, which automates the adjustment of
the restricted candidate list parameter; variable neighborhoods, which permit accel-
erated and intensified local search; path-relinking, which beyond allowing the im-
plementation of intensification strategies based on the memory of elite solutions,
opens the way for the development of very effective cooperative parallel strate-
gies [6, 8, 9, 227]; and restart strategies to speedup the search.

These and other extensions make up a set of tools that can be added to sim-
pler heuristics to find better-quality solutions. To illustrate the effect of additional
extensions on solution quality, Fig. 6.21 shows some results obtained for the prize-
collecting Steiner tree problem (PCSTP), as discussed by Canuto et al. in [54]. The
figure shows results for 11 different levels of solution accuracy (varying from op-
timal to 10% from optimal) on 40 PCSTP instances. For each level of solution ac-
curacy, the figure shows the number of instances for which each component found
solutions within the accuracy level. The components are the primal-dual construc-
tive algorithm (GW) of Goemans and Williamson [117], GW followed by local
search (GW+LS), corresponding to the first GRASP iteration, 500 iterations of
GRASP with path-relinking (GRASP+PR), and the complete algorithm, using vari-
able neighborhood search as a post-optimization procedure (GRASP+PR+VNS).

6 GRASP: Advances and Extensions 207

We observe that the number of optimal solutions found goes from six, using only
the constructive algorithm, to a total of 36, using the complete algorithm described
in [54]. The largest relative deviation with respect to the optimal value decreases
from 36.4% in the first case, to only 1.1% for the complete algorithm. It is easy to
notice the contribution made by each additional extension.

Fig. 6.21 Performance of GW approximation algorithm, a single GRASP iteration (GW followed
by local search), 500 iterations of GRASP with path-relinking, and 500 iterations of GRASP with
path-relinking followed by VNS for series C prize-collecting Steiner tree problems

The structure of GRASP makes it very amenable to straightforward, efficient
parallel implementations that benefit from the computer architecture. Parallel im-
plementations of GRASP [6, 8, 9, 227] are quite robust and lead to linear speedups
both in independent and cooperative strategies. Cooperative strategies are based on
the collaboration between processors through path-relinking and a global pool of
elite solutions. This allows the use of more processors to find better solutions in less
computation time. Many parallel implementations of GRASP have been reported in
the literature, see e.g. [166, 168, 178, 188, 189]. In many of these papers, a common
observation was made: the speedups in the measured running times were propor-
tional to the number of processors. This observation can be explained if the random
variable time-to-target-solution-value is exponentially distributed. Aiex et al. [7]
developed a graphical methodology based on runtime distributions to empirically
show that the running times of GRASP heuristics fit exponential distributions, as
summarized below.

208 M. G. C. Resende and C. C. Ribeiro

Runtime distributions or time-to-target plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given tar-
get value within a given running time, shown on the abscissa axis. They provide a
very useful tool to characterize the running times of stochastic algorithms for com-
binatorial optimization problems and to compare different algorithms or strategies
for solving a given problem. Time-to-target plots were first used by Feo et al. [93]
and have been widely used as a tool for algorithm design and comparison. Run-
time distributions have also been advocated by Hoos and Stützle [135] as a way
to characterize the running times of stochastic local search algorithms for combi-
natorial optimization. In particular, they have been largely applied to evaluate and
compare the efficiency of different strategies of sequential and parallel implemen-
tations of GRASP with (and without) path-relinking heuristics. Aiex et al. [7] used
time-to-target plots to show experimentally that the running times of GRASP heuris-
tics fit shifted (or two-parameter) exponential distributions, reporting computational
results for 2400 runs of GRASP heuristics for each of five different problems: max-
imum stable set, quadratic assignment, graph planarization [210, 211, 226], maxi-
mum weighted satisfiability, and maximum covering. Aiex et al. [10] developed a
Perl program to create time-to-target plots for measured times that are assumed to
fit a shifted exponential distribution, following closely the work in [7]. Ribeiro et
al. [235] developed a closed form result to compare two exponential algorithms and
an iterative procedure to compare two algorithms following generic runtime distri-
butions. This work was extended by Ribeiro et al. [236] and was also applied in
the comparison of parallel heuristics. Ribeiro and Rosseti [228] developed a code to
compare runtime distributions of randomized algorithms.

To conclude, this chapter provides the reader with the tools to build a basic
GRASP to find optimal or near-optimal solutions to a combinatorial optimization
problem. The chapter also provides the means to add more advanced features to this
basic GRASP, like path-relinking and restart strategies, that enable better perfor-
mance, both with respect to solution quality and solution run time. Left out of this
chapter is the use of GRASP for solving continuous optimization problems. The in-
terested reader is pointed to [128–131, 215, 254] for an introduction to C-GRASP,
or Continuous GRASP, as well as to some software and applications of C-GRASP.

References

1. S. Abdinnour-Helm, S.W. Hadley, Tabu search based heuristics for multi-floor facility layout.
Int. J. Prod. Res. 38, 365–383 (2000)

2. J. Abello, P.M. Pardalos, M.G.C. Resende, On maximum clique problems in very large
graphs, in External Memory Algorithms and Visualization, ed. by J. Abello, J. Vitter. DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 50 (Ameri-
can Mathematical Society, Providence, 1999), pp. 199–130

3. J. Abello, M.G.C. Resende, S. Sudarsky, Massive quasi-clique detection, in LATIN 2002:
Theoretical Informatics, ed. by S. Rajsbaum. Lecture Notes in Computer Science, vol. 2286
(Springer, Berlin, 2002), pp. 598–612

6 GRASP: Advances and Extensions 209

4. R.K. Ahuja, J.B. Orlin, A. Tiwari, A greedy genetic algorithm for the quadratic assignment
problem. Comput. Oper. Res. 27, 917–934 (2000)

5. R.K. Ahuja, J.B. Orlin, D. Sharma, Multi-exchange neighborhood structures for the capaci-
tated minimum spanning tree problem. Math. Program. 91, 71–97 (2001)

6. R.M. Aiex, M.G.C. Resende, Parallel strategies for GRASP with path-relinking, in Meta-
heuristics: Progress as Real Problem Solvers, ed. by T. Ibaraki, K. Nonobe, M. Yagiura
(Springer, New York, 2005), pp. 301–331

7. R.M. Aiex, M.G.C. Resende, C.C. Ribeiro, Probability distribution of solution time in
GRASP: an experimental investigation. J. Heuristics 8, 343–373 (2002)

8. R.M. Aiex, S. Binato, M.G.C. Resende, Parallel GRASP with path-relinking for job shop
scheduling. Parallel Comput. 29, 393–430 (2003)

9. R.M. Aiex, P.M. Pardalos, M.G.C. Resende, G. Toraldo, GRASP with path-relinking for
three-index assignment. INFORMS J. Comput. 17, 224–247 (2005)

10. R.M. Aiex, M.G.C. Resende, C.C. Ribeiro, TTTPLOTS: a perl program to create time-to-
target plots. Optim Lett. 1, 355–366 (2007)

11. E. Alekseeva, M. Mezmaz, D. Tuyttens, N. Melab, Parallel multi-core hyper-heuristic
GRASP to solve permutation flow-shop problem. Concurrency Comput. Pract. Exp. 29,
e3835 (2017)

12. D. Aloise, C.C. Ribeiro, Adaptive memory in multistart heuristics for multicommodity net-
work design. J. Heuristics 17, 153–179 (2011)

13. R. Álvarez-Valdés, F. Parreno, J.M. Tamarit, A GRASP algorithm for constrained two-
dimensional non-guillotine cutting problems. J. Oper. Res. Soc. 56, 414–425 (2005)

14. R. Álvarez-Valdés, E. Crespo, J.M. Tamarit, F. Villa, GRASP and path relinking for project
scheduling under partially renewable resources. Eur. J. Oper. Res. 189, 1153–1170 (2008)

15. R. Alvarez-Valdesa, F. Parreno, J.M. Tamarit, Reactive GRASP for the strip-packing prob-
lem. Comput. Oper. Res. 35, 1065–1083 (2008)

16. R. Alvarez-Valdes, F. Parreño, J.M. Tamarit, A GRASP/path relinking algorithm for two- and
three-dimensional multiple bin-size bin packing problems. Comput. Oper. Res. 40, 3081–
3090 (2013)

17. E. Amaldi, A. Capone, F. Malucelli, Planning UMTS base station location: optimization
models with power control and algorithms. IEEE Trans. Wirel. Commun. 2, 939–952 (2003)

18. E. Amaldi, A. Capone, F. Malucelli, F. Signori, Optimization models and algorithms for
downlink UMTS radio planning, in Proceedings of Wireless Communications and Network-
ing, vol. 2 (2003), pp. 827–831

19. K.P. Anagnostopoulos, P.D. Chatzoglou, S. Katsavounis, A reactive greedy randomized adap-
tive search procedure for a mixed integer portfolio optimization problem. Manag. Financ. 36,
1057–1065 (2010)

20. D.V. Andrade, M.G.C. Resende, A GRASP for PBX telephone migration scheduling, in Pro-
ceedings of the Eighth INFORMS Telecommunications Conference (2006)

21. D.V. Andrade, M.G.C. Resende, GRASP with evolutionary path-relinking. Technical Report
TD-6XPTS7, AT&T Labs Research, Florham Park, 2007

22. D.V. Andrade, M.G.C. Resende, GRASP with path-relinking for network migration schedul-
ing, in Proceedings of the International Network Optimization Conference (2007)

23. A.A. Andreatta, C.C. Ribeiro, Heuristics for the phylogeny problem. J. Heuristics 8, 429–447
(2002)

24. C. Andrés, C. Miralles, R. Pastor, Balancing and scheduling tasks in assembly lines with
sequence-dependent setup times. Eur. J. Oper. Res. 187, 1212–1223 (2008)

25. C.H. Antunes, E. Oliveira, P. Lima, A multi-objective GRASP procedure for reactive power
compensation planning. Optim. Eng. 15, 199–215 (2014)

26. A.P.F. Araújo, C. Boeres, V.E.F. Rebello, C.C. Ribeiro, S. Urrutia, Exploring grid imple-
mentations of parallel cooperative metaheuristics: a case study for the mirrored traveling
tournament problem, in Metaheuristics: Progress in Complex Systems Optimization, ed. by
K.F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R.F. Hartl, M. Reimann (Springer,
New York, 2007), pp. 297–322

210 M. G. C. Resende and C. C. Ribeiro

27. S.M. Areibi, GRASP: an effective constructive technique for VLSI circuit partitioning, in
Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering,
Edmonton, pp. 462–467 (1999)

28. S. Areibi, A. Vannelli, A GRASP clustering technique for circuit partitioning, in Satisfia-
bility Problems, ed. by J. Gu, P.M. Pardalos. DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, vol. 35 (American Mathematical Society, Providence, 1997),
pp. 711–724

29. M.F. Argüello, T.A. Feo, O. Goldschmidt, Randomized methods for the number partitioning
problem. Comput. Oper. Res. 23, 103–111 (1996)

30. M.F. Argüello, J.F. Bard, G. Yu, A GRASP for aircraft routing in response to groundings and
delays. J. Comb. Optim. 1, 211–228 (1997)

31. M. Armony, J.C. Klincewicz, H. Luss, M.B. Rosenwein, Design of stacked self-healing rings
using a genetic algorithm. J. Heuristics 6, 85–105 (2000)

32. J.E.C. Arroyo, P.S. Vieira, D.S. Vianna, A GRASP algorithm for the multi-criteria minimum
spanning tree problem. Ann. Oper. Res. 159, 125–133 (2008)

33. J.B. Atkinson, A greedy randomised search heuristic for time-constrained vehicle scheduling
and the incorporation of a learning strategy. J. Oper. Res. Soc. 49, 700–708 (1998)

34. J.F. Bard, An analysis of a rail car unloading area for a consumer products manufacturer. J.
Oper. Res. Soc. 48, 873–883 (1997)

35. J.F. Bard, T.A. Feo, Operations sequencing in discrete parts manufacturing. Manage. Sci. 35,
249–255 (1989)

36. J.F. Bard, T.A. Feo, An algorithm for the manufacturing equipment selection problem. IIE
Trans. 23, 83–92 (1991)

37. J.F. Bard, T.A. Feo, S. Holland, A GRASP for scheduling printed wiring board assembly. IIE
Trans. 28, 155–165 (1996)

38. J.F. Bard, L. Huang, P. Jaillet, M. Dror, A decomposition approach to the inventory routing
problem with satellite facilities. Transp. Sci. 32, 189–203 (1998)

39. J.F. Bard, Y. Shao, A.I. Jarrah, A sequential GRASP for the therapist routing and scheduling
problem. J. Scheduling 17, 109–133 (2014)

40. E.B. Baum, Iterated descent: a better algorithm for local search in combinatorial optimization
problems. Technical Report, California Institute of Technology, 1986

41. E.B. Baum, Towards practical ‘neural’ computation for combinatorial optimization prob-
lems, in AIP Conference Proceedings 151 on Neural Networks for Computing (American
Institute of Physics Inc., Woodbury, 1987), pp. 53–58

42. J. Baxter, Local optima avoidance in depot location. J. Oper. Res. Soc. 32, 815–819 (1981)
43. J.E. Beasley, An algorithm for set-covering problems. Eur. J. Oper. Res. 31, 85–93 (1987)
44. J.E. Beasley, A Lagrangian heuristic for set-covering problems. Nav. Res. Logist. 37, 151–

164 (1990)
45. J.E. Beasley, Lagrangean relaxation, in Modern Heuristic Techniques for Combinatorial

Problems, ed. by C.R. Reeves (Blackwell Scientific Publications, Oxford, 1993), pp. 243–
303

46. S. Binato, G.C. Oliveira, A reactive GRASP for transmission network expansion planning,
in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic
Publishers, Boston, 2002), pp. 81–100

47. S. Binato, H. Faria Jr., M.G.C. Resende, Greedy randomized adaptive path relinking, in Pro-
ceedings of the IV Metaheuristics International Conference, ed. by J.P. Sousa, pp. 393–397
(2001)

48. S. Binato, G.C. Oliveira, J.L. Araújo, A greedy randomized adaptive search procedure for
transmission expansion planning. IEEE Trans. Power Syst. 16, 247–253 (2001)

49. S. Binato, W.J. Hery, D. Loewenstern, M.G.C. Resende, A GRASP for job shop scheduling,
in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic
Publishers, Boston, 2002), pp. 59–79

50. M. Boudia, M.A.O. Louly, C. Prins, A reactive GRASP and path relinking for a combined
production-distribution problem. Comput. Oper. Res. 34, 3402–3419 (2007)

6 GRASP: Advances and Extensions 211

51. J.L. Bresina, Heuristic-biased stochastic sampling, in Proceedings of the Thirteenth National
Conference on Artificial Intelligence, Portland, pp. 271–278 (1996)

52. A.M. Campbell, B.W. Thomas, Probabilistic traveling salesman problem with deadlines.
Transp. Sci. 42, 1–21 (2008)

53. R.G. Cano, G. Kunigami, C.C. de Souza, P.J. de Rezende, A hybrid GRASP heuristic to
construct effective drawings of proportional symbol maps. Comput. Oper. Res. 40, 1435–
1447 (2013)

54. S.A. Canuto, M.G.C. Resende, C.C. Ribeiro, Local search with perturbations for the prize-
collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)

55. C. Carreto, B. Baker, A GRASP interactive approach to the vehicle routing problem with
backhauls, in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer
Academic Publishers, Boston, 2002), pp. 185–199

56. W.A. Chaovalitwongse, C.A.S Oliveira, B. Chiarini, P.M. Pardalos, M.G.C. Resende, Re-
vised GRASP with path-relinking for the linear ordering problem. J. Comb. Optim. 22, 572–
593 (2011)

57. I. Charon, O. Hudry, The noising method: a new method for combinatorial optimization.
Oper. Res. Lett. 14, 133–137 (1993)

58. I. Charon, O. Hudry, The noising methods: a survey, in Essays and Surveys in Metaheuristics,
ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers, Boston, 2002), pp. 245–261

59. M. Chica, O. Cordón, S. Damas, J. Bautista, A multiobjective GRASP for the 1/3 variant of
the time and space assembly line balancing problem, in Trends in Applied Intelligent Systems,
ed. by N. García-Pedrajas, F. Herrera, C. Fyfe, J. Benítez, M. Ali. Lecture Notes in Computer
Science, vol. 6098 (Springer, Berlin, 2010), pp. 656–665

60. R. Colomé, D. Serra, Consumer choice in competitive location models: formulations and
heuristics. Pap. Reg. Sci. 80, 439–464 (2001)

61. C.W. Commander, S.I. Butenko, P.M. Pardalos, C.A.S. Oliveira, Reactive GRASP with path
relinking for the broadcast scheduling problem, in Proceedings of the 40th Annual Interna-
tional Telemetry Conference, pp. 792–800 (2004)

62. C. Commander, C.A.S. Oliveira, P.M. Pardalos, M.G.C. Resende, A GRASP heuristic for
the cooperative communication problem in ad hoc networks, in Proceedings of the VI Meta-
heuristics International Conference, pp. 225–330 (2005)

63. A. Corberán, R. Martí, J.M. Sanchís, A GRASP heuristic for the mixed Chinese postman
problem. Eur. J. Oper. Res. 142, 70–80 (2002)

64. R. Cordone, G. Lulli, A GRASP metaheuristic for microarray data analysis. Comput. Oper.
Res. 40, 3108–3120 (2013)

65. J.F. Correcher, M.T. Alonso, F. Parre no, R. Alvarez-Valdes, Solving a large multicontainer
loading problem in the car manufacturing industry. Comput. Oper. Res. 82, 139–152 (2017)

66. G.L. Cravo, G.M. Ribeiro, L.A. Nogueira Lorena, A greedy randomized adaptive search
procedure for the point-feature cartographic label placement. Comput. Geosci. 34, 373–386
(2008)

67. M.M. D’Apuzzo, A. Migdalas, P.M. Pardalos, G. Toraldo, Parallel computing in global op-
timization, in Handbook of Parallel Computing and Statistics, ed. by E. Kontoghiorghes
(Chapman & Hall/CRC, Boca Raton, 2006)

68. S. Das, S.M. Idicula, Application of reactive GRASP to the biclustering of gene expression
data, in Proceedings of the International Symposium on Biocomputing (ACM, Calicut, 2010),
p. 14

69. P. De, J.B. Ghosj, C.E. Wells, Solving a generalized model for con due date assignment and
sequencing. Int. J. Prod. Econ. 34, 179–185 (1994)

70. R. De Leone, P. Festa, E. Marchitto, Solving a bus driver scheduling problem with random-
ized multistart heuristics. Int. Trans. Oper. Res. 18, 707–727 (2011)

71. H. Delmaire, J.A. Díaz, E. Fernández, M. Ortega, Reactive GRASP and Tabu Search based
heuristics for the single source capacitated plant location problem. INFOR 37, 194–225
(1999)

72. X. Delorme, X. Gandibleux, F. Degoutin, Evolutionary, constructive and hybrid procedures
for the bi-objective set packing problem. Eur. J. Oper. Res. 204, 206–217 (2010)

212 M. G. C. Resende and C. C. Ribeiro

73. Y. Deng, J.F. Bard, A reactive GRASP with path relinking for capacitated clustering. J.
Heuristics 17, 119–152 (2011)

74. Y. Deng, J.F. Bard, G.R. Chacon, J. Stuber, Scheduling back-end operations in semiconductor
manufacturing. IEEE Trans. Semicond. Manuf. 23, 210–220 (2010)

75. A.S. Deshpande, E. Triantaphyllou, A greedy randomized adaptive search procedure
(GRASP) for inferring logical clauses from examples in polynomial time and some exten-
sions. Math. Comput. Model. 27, 75–99 (1998)

76. S. Dharan, A.S. Nair, Biclustering of gene expression data using reactive greedy randomized
adaptive search procedure. BMC Bioinf. 10(Suppl 1), S27 (2009)

77. J.A. Díaz, D.E. Luna, J.-F. Camacho-Vallejo, M.-S. Casas-Ramírez, GRASP and hybrid
GRASP-Tabu heuristics to solve a maximal covering location problem with customer pref-
erence ordering. Expert Syst. Appl. 82, 67–76 (2017)

78. A. Drexl, F. Salewski, Distribution requirements and compactness constraints in school
timetabling. Eur. J. Oper. Res. 102, 193–214 (1997)

79. A. Duarte, R. Martí, Tabu search and GRASP for the maximum diversity problem. Eur. J.
Oper. Res. 178, 71–84 (2007)

80. A. Duarte, C.C. Ribeiro, S. Urrutia, A hybrid ILS heuristic to the referee assignment problem
with an embedded MIP strategy. Lect. Notes Comput. Sci. 4771, 82–95 (2007)

81. A.R. Duarte, C.C. Ribeiro, S. Urrutia, E.H. Haeusler, Referee assignment in sports leagues.
Lect. Notes Comput. Sci. 3867, 158–173 (2007)

82. A. Duarte, R. Martí, M.G.C. Resende, R.M.A. Silva, GRASP with path relinking heuristics
for the antibandwidth problem. Networks 58, 171–189 (2011)

83. A. Duarte, R. Martí, A. Álvarez, F. Ángel-Bello, Metaheuristics for the linear ordering prob-
lem with cumulative costs. Eur. J. Oper. Res. 216, 270–277 (2012)

84. A. Duarte, J. Sánchez-Oro, M.G.C. Resende, F. Glover, R. Martí, GRASP with exterior path
relinking for differential dispersion minimization. Inform. Sci. 296, 46–60 (2015)

85. M. Essafi, X. Delorme, A. Dolgui, Balancing lines with CNC machines: a multi-start and
based heuristic. CIRP J. Manuf. Sci. Technol. 2, 176–182 (2010)

86. H. Faria Jr., S. Binato, M.G.C. Resende, D.J. Falcão, Transmission network design by a
greedy randomized adaptive path relinking approach. IEEE Trans. Power Syst. 20, 43–49
(2005)

87. T.A. Feo, J.F. Bard, Flight scheduling and maintenance base planning. Manag. Sci. 35, 1415–
1432 (1989)

88. T.A. Feo, J.F. Bard, The cutting path and tool selection problem in computer-aided process
planning. J. Manufact. Syst. 8, 17–26 (1989)

89. T.A. Feo, J.L. González-Velarde, The intermodal trailer assignment problem: Models, algo-
rithms, and heuristics. Transp. Sci. 29, 330–341 (1995)

90. T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set cov-
ering problem. Oper. Res. Lett. 8, 67–71 (1989)

91. T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim.
6, 109–133 (1995)

92. T.A. Feo, K. Venkatraman, J.F. Bard, A GRASP for a difficult single machine scheduling
problem. Comput. Oper. Res. 18, 635–643 (1991)

93. T.A. Feo, M.G.C. Resende, S.H. Smith, A greedy randomized adaptive search procedure for
maximum independent set. Oper. Res. 42, 860–878 (1994)

94. T.A. Feo, J.F. Bard, S. Holland, Facility-wide planning and scheduling of printed wiring
board assembly. Oper. Res. 43, 219–230 (1995)

95. T.A. Feo, K. Sarathy, J. McGahan, A GRASP for single machine scheduling with sequence
dependent setup costs and linear delay penalties. Comput. Oper. Res. 23, 881–895 (1996)

96. E. Fernández, R. Martí, GRASP for seam drawing in mosaicking of aerial photographic
maps. J. Heuristics 5, 181–197 (1999)

97. P. Festa, On some optimization problems in molecular biology. Math. Biosci. 207, 219–234
(2007)

6 GRASP: Advances and Extensions 213

98. P. Festa, M.G.C. Resende, GRASP: An annotated bibliography, in Essays and Surveys in
Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers, Boston, 2002),
pp. 325–367

99. P. Festa, M.G.C. Resende, An annotated bibliography of GRASP, part I: algorithms. Int.
Trans. Oper. Res. 16, 1–24 (2009)

100. P. Festa, M.G.C. Resende, An annotated bibliography of GRASP, part II: applications. Int.
Trans. Oper. Res. 16, 131–172 (2009)

101. P. Festa, P.M. Pardalos, M.G.C. Resende, Algorithm 815: FORTRAN subroutines for com-
puting approximate solution to feedback set problems using GRASP. ACM Trans. Math.
Softw. 27, 456–464 (2001)

102. P. Festa, M.G.C. Resende, P. Pardalos, C.C. Ribeiro, GRASP and VNS for Max-Cut, in
Extended Abstracts of the Fourth Metaheuristics International Conference, Porto, pp. 371–
376 (2001)

103. P. Festa, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro, Randomized heuristics for the MAX-
CUT problem. Optim. Methods Softw. 7, 1033–1058 (2002)

104. P. Festa, P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, GRASP with path-relinking for the
weighted MAXSAT problem. ACM J. Exp. Algorithmics 11, 1–16 (2006)

105. M.L. Fisher, The Lagrangian relaxation method for solving integer programming problems.
Manag. Sci. 50, 1861–1871 (2004)

106. C. Fleurent, F. Glover, Improved constructive multistart strategies for the quadratic assign-
ment problem using adaptive memory. INFORMS J. Comput. 11, 198–204 (1999)

107. E. Fonseca, R. Fuchsuber, L.F.M. Santos, A. Plastino, S.L. Martins, Exploring the hybrid
metaheuristic DM-GRASP for efficient server replication for reliable multicast, in Interna-
tional Conference on Metaheuristics and Nature Inspired Computing, Hammamet (2008)

108. R.D. Frinhani, R.M. Silva, G.R. Mateus, P. Festa, M.G.C. Resende, GRASP with path-
relinking for data clustering: a case study for biological data, in Experimental Algorithms, ed.
by P.M. Pardalos, S. Rebennack. Lecture Notes in Computer Science, vol. 6630 (Springer,
Berlin, 2011), pp. 410–420

109. J.B. Ghosh, Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19,
175–181 (1996)

110. F. Glover, New ejection chain and alternating path methods for traveling salesman problems,
in Computer Science and Operations Research: New Developments in Their Interfaces, ed.
by O. Balci, R. Sharda, S. Zenios (Elsevier, Amsterdam, 1992), pp. 449–509

111. F. Glover, Ejection chains, reference structures and alternating path methods for traveling
salesman problems. Discret. Appl. Math. 65, 223–254 (1996)

112. F. Glover, Tabu search and adaptive memory programing – advances, applications and chal-
lenges, in Interfaces in Computer Science and Operations Research, ed. by R.S. Barr, R.V.
Helgason, J.L. Kennington (Kluwer Academic Publishers, Boston, 1996), pp. 1–75

113. F. Glover, Multi-start and strategic oscillation methods – principles to exploit adaptive mem-
ory, in Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer
Science and Operations Research, ed. by M. Laguna, J.L. Gonzáles-Velarde (Kluwer Aca-
demic Publishers, Boston, 2000), pp. 1–24

114. F. Glover, Exterior path relinking for zero-one optimization. Int. J. Appl. Metaheuristic Com-
put. 5, 1–8 (2014)

115. F. Glover, M. Laguna, Tabu Search (Kluwer Academic Publishers, Boston, 1997)
116. F. Glover, M. Laguna, R. Martí, Fundamentals of scatter search and path relinking. Control

Cybern. 39, 653–684 (2000)
117. M.X. Goemans, D.P. Williamson, The primal dual method for approximation algorithms

and its application to network design problems, in Approximation Algorithms for NP-Hard
Problems, ed. by D. Hochbaum (PWS Publishing Co., Boston, 1996), pp. 144–191

118. F.C. Gomes, C.S. Oliveira, P.M. Pardalos, M.G.C. Resende, Reactive GRASP with path re-
linking for channel assignment in mobile phone networks, in Proceedings of the 5th Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile Computing and Communi-
cations (ACM Press, New York, 2001), pp. 60–67

214 M. G. C. Resende and C. C. Ribeiro

119. P.L. Hammer, D.J. Rader Jr., Maximally disjoint solutions of the set covering problem. J.
Heuristics 7, 131–144 (2001)

120. B.T. Han, V.T. Raja, A GRASP heuristic for solving an extended capacitated concentrator
location problem. Int. J. Inf. Technol. Decis. Mak. 2, 597–617 (2003)

121. P. Hansen, N. Mladenović, Developments of variable neighborhood search, in Essays and
Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers,
Boston, 2002), pp. 415–439

122. J.P. Hart, A.W. Shogan, Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6, 107–
114 (1987)

123. M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees. Oper.
Res. 18, 1138–1162 (1970)

124. M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees: part II.
Math. Program. 1, 6–25 (1971)

125. M. Held, P. Wolfe, H.P. Crowder, Validation of subgradient optimization. Math. Program. 6,
62–88 (1974)

126. C. Helmberg, F. Rendl, A spectral bundle method for semidefinite programming. SIAM J.
Optim. 10, 673–696 (2000)

127. A.J. Higgins, S. Hajkowicz, E. Bui, A multi-objective model for environmental investment
decision making. Comput. Oper. Res. 35, 253–266 (2008)

128. M.J. Hirsch, GRASP-based heuristics for continuous global optimization problems. Ph.D.
thesis, Department of Industrial and Systems Engineering, University of Florida, Gainesville,
2006

129. M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.G.C. Resende, Global optimization by contin-
uous GRASP. Optim. Lett. 1, 201–212 (2007)

130. M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Solving systems of nonlinear equations with
continuous GRASP. Nonlinear Anal. Real World Appl. 10, 2000–2006 (2009)

131. M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Speeding up continuous GRASP. Eur. J. Oper.
Res. 205, 507–521 (2010)

132. M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Correspondence of projected 3D points and
lines using a continuous GRASP. Int. Trans. Oper. Res. 18, 493–511 (2011)

133. K. Holmqvist, A. Migdalas, P.M. Pardalos, Greedy randomized adaptive search for a lo-
cation problem with economies of scale, in Developments in Global Optimization, ed. by
I.M. Bomze et al. (Kluwer Academic Publishers, Dordrecht, 1997), pp. 301–313

134. K. Holmqvist, A. Migdalas, P.M. Pardalos, A GRASP algorithm for the single source un-
capacitated minimum concave-cost network flow problem, in Network Design: Connectiv-
ity and Facilities Location, ed. by P.M. Pardalos, D.-Z. Du. DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, vol. 40 (American Mathematical Society,
Providence, 1998), pp. 131–142

135. H.H. Hoos, T. Stützle, Evaluation of Las Vegas algorithms - Pitfalls and remedies, in Pro-
ceedings of the 14th Conference on Uncertainty in Artificial Intelligence, ed. by G. Cooper,
S. Moral (Morgan Kaufmann, Madison, 1998), pp. 238–245

136. R. Interian, C.C. Ribeiro, A GRASP heuristic using path-relinking and restarts for the Steiner
traveling salesman problem. Int. Trans. Oper. Res. 24, 1307–1323 (2017)

137. D.S. Johnson, Local optimization and the traveling salesman problem, in Proceedings of the
17th Colloquium on Automata. LNCS, vol. 443 (Springer, Berlin, 1990), pp. 446–461

138. E.H. Kampke, J.E.C. Arroyo, A.G. Santos, Reactive GRASP with path relinking for solving
parallel machines scheduling problem with resource-assignable sequence dependent setup
times, in Proceedings of the World Congress on Nature and Biologically Inspired Computing,
Coimbatore (IEEE, New York, 2009), pp. 924–929

139. H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, B. Selman, Dynamic restart policies, in Proceed-
ings of the Eighteenth National Conference on Artificial Intelligence (American Association
for Artificial Intelligence, Edmonton, 2002), pp. 674–681

140. G. Kendall, S. Knust, C.C. Ribeiro, S. Urrutia, Scheduling in sports: an annotated bibliogra-
phy. Comput. Oper. Res. 37, 1–19 (2010)

6 GRASP: Advances and Extensions 215

141. J.G. Klincewicz, Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Ann. Oper. Res. 40, 283–302 (1992)

142. J.G. Klincewicz, A. Rajan, Using GRASP to solve the component grouping problem. Nav.
Res. Log. 41, 893–912 (1994)

143. G. Kontoravdis, J.F. Bard, A GRASP for the vehicle routing problem with time windows.
ORSA J. Comput. 7, 10–23 (1995)

144. M. Kulich, J.J. Miranda-Bront, L. Preucil, A meta-heuristic based goal-selection strategy for
mobile robot search in an unknown environment. Comput. Oper. Res. 84, 178–187 (2017)

145. N. Labadi, C. Prins, M. Reghioui, GRASP with path relinking for the capacitated arc routing
problem with time windows, in Advances in Computational Intelligence in Transport, Lo-
gistics, and Supply Chain Management, ed. by A. Fink, F. Rothlauf (Springer, Berlin, 2008),
pp. 111–135

146. M. Laguna, J.L. González-Velarde, A search heuristic for just-in-time scheduling in parallel
machines. J. Intell. Manuf. 2, 253–260 (1991)

147. M. Laguna, R. Martí, GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11, 44–52 (1999)

148. M. Laguna, R. Martí, A GRASP for coloring sparse graphs. Comput. Optim. Appl. 19,
165–178 (2001)

149. M. Laguna, T.A. Feo, H.C. Elrod, A greedy randomized adaptive search procedure for the
two-partition problem. Oper. Res. 42, 677–687 (1994)

150. Y. Li, P.M. Pardalos, M.G.C. Resende, A greedy randomized adaptive search procedure
for the quadratic assignment problem, in Quadratic Assignment and Related Problems,
ed. by P.M. Pardalos, H. Wolkowicz. DIMACS Series on Discrete Mathematics and The-
oretical Computer Science, vol. 16 (American Mathematical Society, Providence, 1994),
pp. 237–261

151. A. Lim, F. Wang, A smoothed dynamic tabu search embedded GRASP for m-VRPTW, in
Proceedings of ICTAI 2004, pp. 704–708 (2004)

152. A. Lim, B. Rodrigues, C. Wang, Two-machine flow shop problems with a single server. J.
Sched. 9, 515–543 (2006)

153. X. Liu, P.M. Pardalos, S. Rajasekaran, M.G.C. Resende, A GRASP for frequency assignment
in mobile radio networks, in Mobile Networks and Computing, ed. by B.R. Badrinath, F. Hsu,
P.M. Pardalos, S. Rajasejaran. DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, vol. 52 (American Mathematical Society, Providence, 2000), pp. 195–
201

154. H.R. Lourenço, D. Serra, Adaptive approach heuristics for the generalized assignment prob-
lem. Mathw. Soft Comput. 9, 209–234 (2002)

155. H.R. Lourenço, O.C. Martin, T. Stützle, Iterated local search, in Handbook of Metaheuristics,
ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Boston, 2003), pp. 321–
353

156. M. Luby, A. Sinclair, D. Zuckerman, Optimal speedup of Las Vegas algorithms. Inf. Process.
Lett. 47, 173–180 (1993)

157. M. Luis, S. Salhi, G. Nagy, A guided reactive GRASP for the capacitated multi-source Weber
problem. Comput. Oper. Res. 38, 1014–1024 (2011)

158. C.L.B. Maia, R.A.F. Carmo, F.G. Freitas, G.A.L. Campos, J.T. Souza, Automated test case
prioritization with reactive GRASP. Adv. Softw. Eng. 2010, Article ID 428521 (2010)

159. R. Martí, Arc crossing minimization in graphs with GRASP. IEE Trans. 33, 913–919 (2001)
160. R. Martí, Arc crossing minimization in graphs with GRASP. IEEE Trans. 33, 913–919 (2002)
161. R. Martí, V. Estruch, Incremental bipartite drawing problem. Comput. Oper. Res. 28, 1287–

1298 (2001)
162. R. Martí, M. Laguna, Heuristics and meta-heuristics for 2-layer straight line crossing mini-

mization. Discret. Appl. Math. 127, 665–678 (2003)
163. R. Martí, F. Sandoya, GRASP and path relinking for the equitable dispersion problem. Com-

put. Oper. Res. 40, 3091–3099 (2013)
164. O. Martin, S.W. Otto, Combining simulated annealing with local search heuristics. Ann.

Oper. Res. 63, 57–75 (1996)

216 M. G. C. Resende and C. C. Ribeiro

165. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman
problem. Complex Syst. 5, 299–326 (1991)

166. S.L. Martins, C.C. Ribeiro, M.C. Souza, A parallel GRASP for the Steiner problem in graphs,
in Proceedings of IRREGULAR’98 – 5th International Symposium on Solving Irregularly
Structured Problems in Parallel, ed. by A. Ferreira, J. Rolim. Lecture Notes in Computer
Science, vol. 1457 (Springer, Berlin, 1998), pp. 285–297

167. S.L. Martins, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro, Greedy randomized adaptive
search procedures for the steiner problem in graphs, in Randomization Methods in Algorith-
mic Design, P.M. Pardalos, S. Rajasejaran, J. Rolim. DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, vol. 43 (American Mathematical Society, Providence,
1999), pp. 133–145

168. S.L. Martins, M.G.C. Resende, C.C. Ribeiro, P.M. Pardalos, A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy. J. Glob. Optim. 17, 267–
283 (2000)

169. G.R. Mateus, M.G.C. Resende, R.M.A. Silva, GRASP with path-relinking for the generalized
quadratic assignment problem. J. Heuristics 17, 527–565 (2011)

170. T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A GRASP for the biquadratic
assignment problem. Eur. J. Oper. Res. 105, 613–621 (1998)

171. M. Mestria, L.S. Ochi, S.L. Martins, GRASP with path relinking for the symmetric Euclidean
clustered traveling salesman problem. Comput. Oper. Res. 40, 3218–3229 (2013)

172. N. Mladenović, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24, 1097–
1100 (1997)

173. S.K. Monkman, D.J. Morrice, J.F. Bard, A production scheduling heuristic for an electronics
manufacturer with sequence-dependent setup costs. Eur. J. Oper. Res. 187, 1100–1114 (2008)

174. R.E.N. Moraes, C.C. Ribeiro, Power optimization in ad hoc wireless network topology con-
trol with biconnectivity requirements. Comput. Oper. Res. 40, 3188–3196 (2013)

175. L.F. Morán-Mirabal, J.L. González-Velarde, M.G.C. Resende, R.M.A. Silva, Randomized
heuristics for handover minimization in mobility networks. J. Heuristics 19, 845–880 (2013)

176. L.F. Morán-Mirabal, J.L. González-Velarde, M.G.C. Resende, Randomized heuristics for the
family traveling salesperson problem. Int. Trans. Oper. Res. 21, 41–57 (2014)

177. R.A. Murphey, P.M. Pardalos, L.S. Pitsoulis, A greedy randomized adaptive search proce-
dure for the multitarget multisensor tracking problem, in Network Design: Connectivity and
Facilities Location, ed. by P.M. Pardalos, D.-Z. Du. DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, vol. 40 (American Mathematical Society, Providence,
1998), pp. 277–301

178. R.A. Murphey, P.M. Pardalos, L.S. Pitsoulis, A parallel GRASP for the data association
multidimensional assignment problem, in Parallel Processing of Discrete Problems, ed. by
P.M. Pardalos. The IMA Volumes in Mathematics and Its Applications, vol. 106 (Springer,
New York, 1998), pp. 159–180

179. M.C.V. Nascimento, L. Pitsoulis, Community detection by modularity maximization using
GRASP with path relinking. Comput. Oper. Res. 40, 3121–3131 (2013)

180. M.C.V. Nascimento, M.G.C. Resende, F.M.B. Toledo, GRASP heuristic with path-relinking
for the multi-plant capacitated lot sizing problem. Eur. J. Oper. Res. 200, 747–754 (2010)

181. V.-P. Nguyen, C. Prins, C. Prodhon, Solving the two-echelon location routing problem by a
GRASP reinforced by a learning process and path relinking. Eur. J. Oper. Res. 216, 113–126
(2012)

182. E. Nowicki, C. Smutnicki, An advanced tabu search algorithm for the job shop problem. J.
Sched. 8, 145–159 (2005)

183. C.A. Oliveira, P.M. Pardalos, M.G.C. Resende, GRASP with path-relinking for the quadratic
assignment problem, in Proceedings of III Workshop on Efficient and Experimental Algo-
rithms, vol. 3059, ed. by C.C. Ribeiro, S.L. Martins (Springer, New York, 2004), pp. 356–
368

184. I.H. Osman, B. Al-Ayoubi, M. Barake, A greedy random adaptive search procedure for the
weighted maximal planar graph problem. Comput. Ind. Eng. 45, 635–651 (2003)

6 GRASP: Advances and Extensions 217

185. J.A. Pacheco, S. Casado, Solving two location models with few facilities by using a hybrid
heuristic: a real health resources case. Comput. Oper. Res. 32, 3075–3091 (2005)

186. A.V.F. Pacheco, G.M. Ribeiro, G.R. Mauri, A GRASP with path-relinking for the workover
rig scheduling problem. Int. J. Nat. Comput. Res. 1, 1–14 (2010)

187. G. Palubeckis, Multistart tabu search strategies for the unconstrained binary quadratic opti-
mization problem. Ann. Oper. Res. 131, 259–282 (2004)

188. P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A parallel GRASP implementation for the
quadratic assignment problem, in Parallel Algorithms for Irregularly Structured Problems –
Irregular’94, ed. by A. Ferreira, J. Rolim (Kluwer Academic Publishers, Dordrecht, 1995),
pp. 115–133

189. P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A parallel GRASP for MAX-SAT problems.
Lect. Notes Comput. Sci. 1184, 575–585 (1996)

190. P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, Algorithm 769: Fortran subroutines for ap-
proximate solution of sparse quadratic assignment problems using GRASP. ACM Trans.
Math. Softw. 23, 196–208 (1997)

191. P.M. Pardalos, T. Qian, M.G.C. Resende, A greedy randomized adaptive search procedure
for the feedback vertex set problem. J. Comb. Optim. 2, 399–412 (1999)

192. F. Parreño, R. Alvarez-Valdes, J.M. Tamarit, J.F. Oliveira, A maximal-space algorithm for
the container loading problem. INFORMS J. Comput. 20, 412–422 (2008)

193. R.A. Patterson, H. Pirkul, E. Rolland, A memory adaptive reasoning technique for solving
the capacitated minimum spanning tree problem. J. Heuristics 5, 159–180 (1999)

194. O. Pedrola, M. Ruiz, L. Velasco, D. Careglio, O. González de Dios, J. Comellas, A GRASP
with path-relinking heuristic for the survivable IP/MPLS-over-WSON multi-layer network
optimization problem. Comput. Oper. Res. 40, 3174–3187 (2013)

195. L.S. Pessoa, M.G.C. Resende, C.C. Ribeiro, Experiments with the LAGRASP heuristic for
set k-covering. Optim. Lett. 5, 407–419 (2011)

196. L.S. Pessoa, M.G.C. Resende, C.C. Ribeiro, A hybrid Lagrangean heuristic with GRASP and
path-relinking for set k-covering. Comput. Oper. Res. 40, 3132–3146 (2013)

197. E. Pinana, I. Plana, V. Campos, R. Martí, GRASP and path relinking for the matrix bandwidth
minimization. Eur. J. Oper. Res. 153, 200–210 (2004)

198. L.S. Pitsoulis, P.M. Pardalos, D.W. Hearn, Approximate solutions to the turbine balancing
problem. Eur. J. Oper. Res. 130, 147–155 (2001)

199. F. Poppe, M. Pickavet, P. Arijs, P. Demeester, Design techniques for SDH mesh-restorable
networks, in Proceedings of the European Conference on Networks and Optical Communi-
cations, Volume 2: Core and ATM Networks, pp. 94–101, (1997)

200. M. Prais, C.C. Ribeiro, Parameter variation in GRASP implementations, in Extended Ab-
stracts of the Third Metaheuristics International Conference, Angra dos Reis, pp. 375–380
(1999)

201. M. Prais, C.C. Ribeiro, Parameter variation in GRASP procedures. Investigación Operativa
9, 1–20 (2000)

202. M. Prais, C.C. Ribeiro, Reactive GRASP: an application to a matrix decomposition problem
in TDMA traffic assignment. INFORMS J. Comput. 12, 164–176 (2000)

203. M. Rahmani, M. Rashidinejad, E.M. Carreno, R.A. Romero, Evolutionary multi-move path-
relinking for transmission network expansion planning, in 2010 IEEE Power and Energy
Society General Meeting, Minneapolis (IEEE, New York, 2010), pp. 1–6

204. M.C. Rangel, N.M.M. Abreu, P.O. Boaventura Netto, GRASP in the QAP: an acceptance
bound for initial solutions. Pesquisa Operacional 20, 45–58 (2000)

205. M.G. Ravetti, F.G. Nakamura, C.N. Meneses, M.G.C. Resende, G.R. Mateus, P.M. Pardalos,
Hybrid heuristics for the permutation flow shop problem. Technical Report, AT&T Labs
Research Technical Report, Florham Park, 2006

206. M. Reghioui, C. Prins, N. Labadi, GRASP with path relinking for the capacitated arc routing
problem with time windows, in Applications of Evolutionary Computing, ed. by M. Giacobini
et al. Lecture Notes in Computer Science, vol. 4448 (Springer, Berlin, 2007), pp. 722–731

207. M.G.C. Resende, Computing approximate solutions of the maximum covering problem using
GRASP. J. Heuristics 4, 161–171 (1998)

218 M. G. C. Resende and C. C. Ribeiro

208. M.G.C. Resende, T.A. Feo, A GRASP for satisfiability, in Cliques, Coloring, and Satisfi-
ability: The Second DIMACS Implementation Challenge, ed. by D.S. Johnson, M.A. Trick.
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 26 (Amer-
ican Mathematical Society, Providence, 1996), pp. 499–520

209. L.I.P. Resende, M.G.C. Resende, A GRASP for frame relay permanent virtual circuit rout-
ing, in Extended Abstracts of the III Metaheuristics International Conference, ed. by C.C.
Ribeiro, P. Hansen, Angra dos Reis, pp. 397–401 (1999)

210. M.G.C. Resende, C.C. Ribeiro, A GRASP for graph planarization. Networks 29, 173–189
(1997)

211. M.G.C. Resende, C.C. Ribeiro, Graph planarization, in Encyclopedia of Optimization, vol. 2,
ed. by C. Floudas, P.M. Pardalos (Kluwer Academic Publishers, Boston, 2001), pp. 368–373

212. M.G.C. Resende, C.C. Ribeiro, A GRASP with path-relinking for private virtual circuit rout-
ing. Networks 41, 104–114 (2003)

213. M.G.C. Resende, C.C. Ribeiro, GRASP with path-relinking: recent advances and applica-
tions, in Metaheuristics: Progress as Real Problem Solvers, ed. by T. Ibaraki, K. Nonobe,
M. Yagiura (Springer, Boston, 2005), pp. 29–63

214. M.G.C. Resende, C.C. Ribeiro, Restart strategies for GRASP with path-relinking heuristics.
Optim. Lett. 5, 467–478 (2011)

215. M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP: Greedy Randomized Adaptive
Search Procedures (Springer, New York, 2016)

216. M.G.C. Resende, R.F. Werneck, A hybrid heuristic for the p-median problem. J. Heuristics
10, 59–88 (2004)

217. M.G.C. Resende, R.F. Werneck, A hybrid multistart heuristic for the uncapacitated facility
location problem. Eur. J. Oper. Res. 174, 54–68 (2006)

218. M.G.C. Resende, P.M. Pardalos, Y. Li, Algorithm 754: Fortran subroutines for approximate
solution of dense quadratic assignment problems using GRASP. ACM Trans. Math. Softw.
22, 104–118 (1996)

219. M.G.C. Resende, L.S. Pitsoulis, P.M. Pardalos, Approximate solution of weighted MAX-
SAT problems using GRASP, in Satisfiability Problems, ed. by J. Gu, P.M. Pardalos. DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 35 (Ameri-
can Mathematical Society, Providence, 1997), pp. 393–405

220. M.G.C. Resende, T.A. Feo, S.H. Smith, Algorithm 787: Fortran subroutines for approximate
solution of maximum independent set problems using GRASP. ACM Trans. Math. Softw.
24, 386–394 (1998)

221. M.G.C. Resende, L.S. Pitsoulis, P.M. Pardalos, Fortran subroutines for computing approx-
imate solutions of MAX-SAT problems using GRASP. Discret. Appl. Math. 100, 95–113
(2000)

222. M.G.C. Resende, R. Martí, M. Gallego, A. Duarte, GRASP and path relinking for the max-
min diversity problem. Comput. Oper. Res. 37, 498–508 (2010)

223. A.P. Reynolds, B. de la Iglesia, A multi-objective GRASP for partial classification. Soft
Comput. 13, 227–243 (2009)

224. C.C. Ribeiro, GRASP: Une métaheuristique gloutone et probabiliste, in Optimisation Ap-
prochée en Recherche Opérationnelle, ed. by J. Teghem, M. Pirlot (Hermès, Paris, 2002),
pp. 153–176

225. C.C. Ribeiro, Sports scheduling: problems and applications. Int. Trans. Oper. Res. 19, 201–
226 (2012)

226. C.C. Ribeiro, M.G.C. Resende, Algorithm 797: Fortran subroutines for approximate solu-
tion of graph planarization problems using GRASP. ACM Trans. Math. Softw. 25, 342–352
(1999)

227. C.C. Ribeiro, I. Rosseti, Efficient parallel cooperative implementations of GRASP heuristics.
Parallel Comput. 33, 21–35 (2007)

228. C.C. Ribeiro, I. Rosseti, tttplots-compare: A perl program to compare time-to-target plots or
general runtime distributions of randomized algorithms. Optim. Lett. 9, 601–614 (2015)

229. C.C. Ribeiro, M.C. Souza, Variable neighborhood search for the degree constrained mini-
mum spanning tree problem. Discret. Appl. Math. 118, 43–54 (2002)

6 GRASP: Advances and Extensions 219

230. C.C. Ribeiro, S. Urrutia, Heuristics for the mirrored traveling tournament problem. Eur. J.
Oper. Res. 179, 775–787 (2007)

231. C.C. Ribeiro, D.S. Vianna, A GRASP/VND heuristic for the phylogeny problem using a new
neighborhood structure. Int. Trans. Oper. Res. 12, 325–338 (2005)

232. C.C. Ribeiro, C.D. Ribeiro, R.S. Lanzelotte, Query optimization in distributed relational
databases. J. Heuristics 3, 5–23 (1997)

233. C.C. Ribeiro, E. Uchoa, R.F. Werneck, A hybrid GRASP with perturbations for the Steiner
problem in graphs. INFORMS J. Comput. 14, 228–246 (2002)

234. C.C. Ribeiro, S.L. Martins, I. Rosseti, Metaheuristics for optimization problems in computer
communications. Comput. Comuun. 30, 656–669 (2007)

235. C.C. Ribeiro, I. Rosseti, R. Vallejos, On the use of run time distributions to evaluate and com-
pare stochastic local search algorithms, in Engineering Stochastic Local Search Algorithms,
ed. by T. Sttzle, M. Biratari, and H.H. Hoos. Lecture Notes in Computer Science, vol. 5752
(Springer, Berlin, 2009), pp. 16–30

236. C.C. Ribeiro, I. Rosseti, R. Vallejos, Exploiting run time distributions to compare sequential
and parallel stochastic local search algorithms. J. Glob. Optim. 54, 405–429 (2012)

237. R.Z. Ríos-Mercado, J.F. Bard, Heuristics for the flow line problem with setup costs. Eur. J.
Oper. Res. 110, 76–98 (1998)

238. R.Z. Ríos-Mercado, J.F. Bard, An enhanced TSP-based heuristic for makespan minimization
in a flow shop with setup costs. J. Heuristics 5, 57–74 (1999)

239. R.Z. Ríos-Mercado, E. Fernández. A reactive GRASP for a commercial territory design prob-
lem with multiple balancing requirements. Comput. Oper. Res. 36, 755–776 (2009)

240. A. Riva, F. Amigoni, A GRASP metaheuristic for the coverage of grid environments with
limited-footprint tools, in Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’17, Richland, SC, pp. 484–491. International Foundation for
Autonomous Agents and Multiagent Systems (2017)

241. A.J. Robertson, A set of greedy randomized adaptive local search procedure (GRASP) imple-
mentations for the multidimensional assignment problem. Comput. Optim. Appl. 19, 145–
164 (2001)

242. P.L. Rocha, M.G. Ravetti, G.R. Mateus, The metaheuristic GRASP as an upper bound for a
branch and bound algorithm in a scheduling problem with non-related parallel machines and
sequence-dependent setup times, in Proceedings of the 4th EU/ME Workshop: Design and
Evaluation of Advanced Hybrid Meta-Heuristics, vol. 1 (2004), pp. 62–67

243. F.J. Rodriguez, C. Blum, C. García-Martínez, M. Lozano, GRASP with path-relinking for
the non-identical parallel machine scheduling problem with minimising total weighted com-
pletion times. Ann. Oper. Res. 201, 383–401 (2012)

244. F.J. Rodriguez, F. Glover, C. García-Martínez, R. Martí, M. Lozano, Grasp with exterior path-
relinking and restricted local search for the multidimensional two-way number partitioning
problem. Comput. Oper. Res. 78, 243–254 (2017)

245. M.A. Salazar-Aguilar, R.Z. Ríos-Mercado, J.L. González-Velarde, GRASP strategies for a
bi-objective commercial territory design problem. J. Heuristics 19, 179–200 (2013)

246. J. Santamaría, O. Cordón, S. Damas, R. Martí, R.J. Palma, GRASP & evolutionary path
relinking for medical image registration based on point matching, in 2010 IEEE Congress on
Evolutionary Computation (IEEE, New York, 2010), pp. 1–8

247. J. Santamaría, O. Cordón, S. Damas, R. Martí, R.J. Palma, GRASP and path relinking hy-
bridizations for the point matching-based image registration problem. J. Heuristics 18, 169–
192 (2012)

248. D. Santos, A. de Sousa, F. Alvelos, A hybrid column generation with GRASP and path
relinking for the network load balancing problem. Comput. Oper. Res. 40, 3147–3158 (2013)

249. M. Scaparra, R. Church, A GRASP and path relinking heuristic for rural road network de-
velopment. J. Heuristics 11, 89–108 (2005)

250. I.V. Sergienko, V.P. Shilo, V.A. Roshchin, Optimization parallelizing for discrete program-
ming problems. Cybern. Syst. Anal. 40, 184–189 (2004)

251. O.V. Shylo, T. Middelkoop, P.M. Pardalos, Restart strategies in optimization: parallel and
serial cases. Parallel Comput. 37, 60–68 (2011)

252. O.V. Shylo, O.A. Prokopyev, J. Rajgopal, On algorithm portfolios and restart strategies. Oper.
Res. Lett. 39, 49–52 (2011)

220 M. G. C. Resende and C. C. Ribeiro

253. F. Silva, D. Serra, Locating emergency services with different priorities: the priority queuing
covering location problem. J. Oper. Res. Soc. 59, 1229–1238 (2007)

254. R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, M.J. Hirsch, A Python/C library for bound-
constrained global optimization with continuous GRASP. Optim. Lett. 7, 967–984 (2013)

255. R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, G.R. Mateus, G. de Tomi, GRASP with path-
relinking for facility layout, in Models, Algorithms, and Technologies for Network Analysis,
ed. by B.I. Goldengorin, V.A. Kalyagin, P.M. Pardalos. Springer Proceedings in Mathematics
and Statistics, vol. 59 (Springer, Berlin, 2013), pp. 175–190

256. D. Sosnowska, Optimization of a simplified fleet assignment problem with metaheuristics:
simulated annealing and GRASP, in Approximation and Complexity in Numerical Optimiza-
tion, ed. by P.M. Pardalos (Kluwer Academic Publishers, Dordrecht, 2000)

257. M.C. Souza, C. Duhamel, C.C. Ribeiro, A GRASP heuristic for the capacitated minimum
spanning tree problem using a memory-based local search strategy, in Metaheuristics: Com-
puter Decision-Making, ed. by M.G.C. Resende, J. Souza (Kluwer Academic Publisher, Dor-
drecht, 2004), pp. 627–658

258. A. Srinivasan, K.G. Ramakrishnan, K. Kumaram, M. Aravamudam, S. Naqvi, Optimal de-
sign of signaling networks for Internet telephony, in IEEE INFOCOM 2000, vol. 2 (2000),
pp. 707–716

259. H. Takahashi, A. Matsuyama, An approximate solution for the Steiner problem in graphs.
Math. Jpn. 24, 573–577 (1980)

260. T.L. Urban, Solution procedures for the dynamic facility layout problem. Ann. Oper. Res.
76, 323–342 (1998)

261. T.L. Urban, W.-C. Chiang, R.A. Russel, The integrated machine allocation and layout prob-
lem. Int. J. Prod. Res. 38, 2913–2930 (2000)

262. F.L. Usberti, P.M. França, A.L.M. França, GRASP with evolutionary path-relinking for the
capacitated arc routing problem. Comput. Oper. Res. 40, 3206–3217 (2013)

263. J.X. Vianna Neto, D.L.A. Bernert, L.S. Coelho, Continuous GRASP algorithm applied to
economic dispatch problem of thermal units, in Proceedings of the 13th Brazilian Congress
of Thermal Sciences and Engineering, Uberlandia (2010)

264. J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, N. Velasco, GRASP/VND and multi-
start evolutionary local search for the single truck and trailer routing problem with satellite
depots. Eng. Appl. Artif. Intelli. 23, 780–794 (2010)

265. J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, N. Velasco, A GRASP with evolutionary
path relinking for the truck and trailer routing problem. Comput. Oper. Res. 38, 1319–1334
(2011)

266. D.L. Woodruff, E. Zemel, Hashing vectors for tabu search. Ann. Oper. Res. 41, 123–137
(1993)

267. J.Y. Xu, S.Y. Chiu, Effective heuristic procedure for a field technician scheduling problem.
J. Heuristics 7, 495–509 (2001)

268. J. Yen, M. Carlsson, M. Chang, J.M. Garcia, H. Nguyen, Constraint solving for inkjet print
mask design. J. Imaging Sci. Technol. 44, 391–397 (2000)

	6 Greedy Randomized Adaptive Search Procedures: Advances and Extensions
	6.1 Introduction
	6.2 Construction of the Restricted Candidate List
	6.3 Alternative Construction Mechanisms
	6.3.1 Random Plus Greedy and Sampled Greedy Construction
	6.3.2 Reactive GRASP
	6.3.3 Cost Perturbations
	6.3.4 Bias Functions
	6.3.5 Intelligent Construction: Memory and Learning
	6.3.6 POP in Construction
	6.3.7 Lagrangean GRASP Heuristics
	6.3.7.1 Lagrangean Relaxation and Subgradient Optimization
	6.3.7.2 A Template for Lagrangean Heuristics
	6.3.7.3 Lagrangean GRASP

	6.4 Path-Relinking
	6.4.1 Forward Path-Relinking
	6.4.2 Backward Path-Relinking
	6.4.3 Back and Forward Path-Relinking
	6.4.4 Mixed Path-Relinking
	6.4.5 Truncated Path-Relinking
	6.4.6 Greedy Randomized Adaptive Path-Relinking
	6.4.7 Evolutionary Path-Relinking
	6.4.8 External Path-Relinking and Diversification

	6.5 Restart Strategies
	6.6 Extensions
	6.7 Applications
	6.8 Concluding Remarks
	References

