
Chapter 3
Variable Neighborhood Search

Pierre Hansen, Nenad Mladenović, Jack Brimberg, and José A. Moreno Pérez

Abstract Variable neighborhood search (VNS) is a metaheuristic for solving
combinatorial and global optimization problems whose basic idea is a system-
atic change of neighborhood both within a descent phase to find a local optimum
and in a perturbation phase to get out of the corresponding valley. In this chapter
we present the basic schemes of VNS and some of its extensions. We then describe
recent developments, i.e., formulation space search and variable formulation search.
We then present some families of applications in which VNS has proven to be very
successful: (1) exact solution of large scale location problems by primal-dual VNS;
(2) generation of solutions to large mixed integer linear programs, by hybridization
of VNS and local branching; (3) generation of solutions to very large mixed inte-
ger programs using VNS decomposition and exact solvers (4) generation of good
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feasible solutions to continuous nonlinear programs; (5) adaptation of VNS for
solving automatic programming problems from the Artificial Intelligence field and
(6) exploration of graph theory to find conjectures, refutations and proofs or ideas
of proofs.

3.1 Introduction

Optimization tools have greatly improved during the last two decades. This is due to
several factors: (1) progress in mathematical programming theory and algorithmic
design; (2) rapid improvement in computer performances; (3) better communica-
tion of new ideas and integration in widely used complex softwares. Consequently,
many problems long viewed as out of reach are currently solved, sometimes in very
moderate computing times. This success, however, has led researchers and prac-
titioners to address much larger instances and more difficult classes of problems.
Many of these may again only be solved heuristically. Therefore thousands of pa-
pers describing, evaluating and comparing new heuristics appear each year. Keeping
abreast of such a large literature is a challenge. Metaheuristics, or general frame-
works for building heuristics, are therefore needed in order to organize the study of
heuristics. As evidenced by the Handbook, there are many of them. Some desirable
properties of metaheuristics [58, 59, 68] are listed in the concluding section of this
chapter.

Variable neighborhood search (VNS) is a metaheuristic proposed by some of the
present authors some 20 years ago [80]. Earlier work that motivated this approach
can be found in [25, 36, 44, 78]. It is based upon the idea of a systematic change of
neighborhood both in a descent phase to find a local optimum and in a perturbation
phase to get out of the corresponding valley. Originally designed for approximate
solution of combinatorial optimization problems, it was extended to address mixed
integer programs, nonlinear programs, and recently mixed integer nonlinear pro-
grams. In addition VNS has been used as a tool for automated or computer assisted
graph theory. This led to the discovery of over 1500 conjectures in that field and the
automated proof of more than half of them. This is to be compared with the unas-
sisted proof of about 400 of these conjectures by many different mathematicians.

Applications are rapidly increasing in number and pertain to many fields: loca-
tion theory, cluster analysis, scheduling, vehicle routing, network design, lot-sizing,
artificial intelligence, engineering, pooling problems, biology, phylogeny, reliabil-
ity, geometry, telecommunication design, etc. References are too numerous to be
listed here, but many of them can be found in [69] and special issues of IMA Jour-
nal of Management Mathematics [76], European Journal of Operational Research
[68] and Journal of Heuristics [87] that are devoted to VNS.

This chapter is organized as follows. In the next section we present the ba-
sic schemes of VNS, i.e., variable neighborhood descent (VND), reduced VNS
(RVNS), basic VNS (BVNS) and general VNS (GVNS). Two important extensions
are presented in Sect. 3.3: Skewed VNS and Variable neighborhood decomposition
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search (VNDS). A further recent development called Formulation Space Search
(FSS) is discussed in Sect. 3.4. The remainder of the paper describes applications
of VNS to several classes of large scale and complex optimization problems for
which it has proven to be particularly successful. Section 3.5 is devoted to primal
dual VNS (PD-VNS) and its application to location and clustering problems. Find-
ing feasible solutions to large mixed integer linear programs with VNS is discussed
in Sect. 3.6. Section 3.7 addresses ways to apply VNS in continuous global opti-
mization. The more difficult case of solving mixed integer nonlinear programming
by VNS is considered in Sect. 3.8. Applying VNS to graph theory per se (and not
just to particular optimization problems defined on graphs) is discussed in Sect. 3.9.
Brief conclusions are drawn in Sect. 3.10.

3.2 Basic Schemes

A deterministic optimization problem may be formulated as

min{ f (x)|x ∈ X ,X ⊆S }, (3.1)

where S ,X ,x and f denote the solution space, the feasible set, a feasible solution
and a real-valued objective function, respectively. If S is a finite but large set, a
combinatorial optimization problem is defined. If S = R

n, we refer to continuous
optimization. A solution x∗ ∈ X is optimal if

f (x∗)≤ f (x), ∀x ∈ X .

An exact algorithm for problem (3.1), if one exists, finds an optimal solution x∗,
together with the proof of its optimality, or shows that there is no feasible solution,
i.e., X = /0, or the solution is unbounded. Moreover, in practice, the time needed to do
so should be finite (and not too long). For continuous optimization, it is reasonable
to allow for some degree of tolerance, i.e., to stop when sufficient convergence is
detected.

Let us denote Nk, (k = 1, . . . ,kmax), a finite set of pre-selected neighborhood
structures, and Nk(x) the set of solutions in the kth neighborhood of x. Most local
search heuristics use only one neighborhood structure, i.e., kmax = 1. Often succes-
sive neighborhoods Nk are nested and may be induced from one or more metric
(or quasi-metric) functions introduced into a solution space S . An optimal solution
xopt (or global minimum) is a feasible solution where a minimum is reached. We
call x′ ∈ X a local minimum of (3.1) with respect to Nk (w.r.t. Nk for short), if there
is no solution x ∈Nk(x′)⊆ X such that f (x)< f (x′). Metaheuristics (based on local
search procedures) try to continue the search by other means after finding the first
local minimum. VNS is based on three simple facts:
Fact 1 A local minimum w.r.t. one neighborhood structure is not necessarily so for
another;
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Fact 2 A global minimum is a local minimum w.r.t. all possible neighborhood struc-
tures;
Fact 3 For many problems, local minima w.r.t. one or several Nk are relatively
close to each other.

This last observation, which is empirical, implies that a local optimum often pro-
vides some information about the global one. For instance, there may be several
variables sharing the same values in both solutions. Since these variables usually
cannot be identified in advance, one should conduct an organized study of the neigh-
borhoods of a local optimum until a better solution is found.

In order to solve (1) by using several neighborhoods, facts 1–3 can be used in
three different ways: (1) deterministic; (2) stochastic; (3) both deterministic and
stochastic.

We first examine in Algorithm 1 the solution move and neighborhood change
function that will be used within a VNS framework. Function Neighborhood-
Change() compares the incumbent value f (x) with the new value f (x′) obtained
from the kth neighborhood (line 1). If an improvement is obtained, the incumbent
is updated (line 2) and k is returned to its initial value (line 3). Otherwise, the next
neighborhood is considered (line 4).

Function NeighborhoodChange (x,x′,k)
if f (x′)< f (x) then1

x ← x′ // Make a move2
k ← 1 // Initial neighborhood3

else
k ← k+1 // Next neighborhood4

return x,k

Algorithm 1: Neighborhood change

Below we discuss Variable Neighborhood Descent and Reduced Variable Neigh-
borhood Search and then build upon this to construct the framework for Basic and
General Variable Neighborhood Search.
(i) The Variable Neighborhood Descent (VND) method (Algorithm 2) performs a
change of neighborhoods in a deterministic way. These neighborhoods are denoted
as Nk,k = 1, . . . ,kmax.

Most local search heuristics use one or sometimes two neighborhoods for im-
proving the current solution (i.e., kmax ≤ 2). Note that the final solution should be
a local minimum w.r.t. all kmax neighborhoods, and thus, a global optimum is more
likely to be reached than with a single structure. Beside this sequential order of
neighborhood structures in VND, one can develop a nested strategy. Assume, for
example, that kmax = 3; then a possible nested strategy is: perform VND with Algo-
rithm 2 for the first two neighborhoods from each point x′ that belongs to the third
one (x′ ∈ N3(x)). Such an approach is successfully applied in [22, 26, 57].
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Function VND (x,kmax)
k ← 11
repeat2

x′ ← argminy∈Nk(x) f (y) // Find the best neighbor in Nk(x)3

x,k ← NeighborhoodChange (x,x′,k) // Change neighborhood4

until k = kmax
return x

Algorithm 2: Variable neighborhood descent

(ii) The Reduced VNS (RVNS) method is obtained when a random point is selected
from Nk(x) and no descent is attempted from this point. Rather, the value of the new
point is compared with that of the incumbent and an update takes place in the case
of improvement. We also assume that a stopping condition has been chosen such as
the maximum CPU time allowed tmax, or the maximum number of iterations between
two improvements. To simplify the description of the algorithms, we always use tmax

below. Therefore, RVNS (Algorithm 3) uses two parameters: tmax and kmax.

Function RVNS(x,kmax, tmax)
repeat1

k ← 12
repeat3

x′ ← Shake(x,k)4
x,k ← NeighborhoodChange (x,x′,k)5

until k = kmax

t ← CpuTime()6

until t > tmax
return x

Algorithm 3: Reduced VNS

The function Shake in line 4 generates a point x′ at random from the kth neigh-
borhood of x, i.e., x′ ∈ Nk(x). It is given in Algorithm 4, where it is assumed that
the points from Nk(x) are numbered as {x1, . . . ,x|Nk(x)|}. Note that a different nota-
tion is used for the neighborhood structures in the shake operation, since these are
generally different than the ones used in VND.

Function Shake(x,k)
w ← 	1+Rand(0,1)×|Nk(x)|
1
x′ ← xw2

return x′

Algorithm 4: Shaking function

RVNS is useful for very large instances for which local search is costly. It can be
used as well for finding initial solutions for large problems before decomposition.
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It has been observed that the best value for the parameter kmax is often 2 or 3. In
addition, a maximum number of iterations between two improvements is typically
used as the stopping condition. RVNS is akin to a Monte-Carlo method, but is more
systematic (see, e.g., [81] where results obtained by RVNS were 30% better than
those of the Monte-Carlo method in solving a continuous min-max problem). When
applied to the p-Median problem, RVNS gave equally good solutions as the Fast
Interchange heuristic of [102] while being 20 to 40 times faster [63].
(iii) The Basic VNS (BVNS) method [80] combines deterministic and stochastic
changes of neighborhood. The deterministic part is represented by a local search
heuristic. It consists in (1) choosing an initial solution x, (2) finding a direction
of descent from x (within a neighborhood N(x)) and (3) moving to the minimum of
f (x) within N(x) along that direction. If there is no direction of descent, the heuristic
stops; otherwise it is iterated. Usually the steepest descent direction, also referred to
as best improvement, is used. Also see Algorithm 2, where the best improvement is
used in each neighborhood of the VND. This is summarized in Algorithm 5, where
we assume that an initial solution x is given. The output consists of a local minimum,
also denoted by x, and its value.

Function BestImprovement(x)
repeat1

x′ ← x2
x ← argminy∈N(x′) f (y)3

until ( f (x)≥ f (x′))
return x

Algorithm 5: Best improvement (steepest descent) heuristic

As Steepest descent may be time-consuming, an alternative is to use a first de-
scent (or first improvement) heuristic. Points xi ∈ N(x) are then enumerated sys-
tematically and a move is made as soon as a direction for descent is found. This is
summarized in Algorithm 6.

Function FirstImprovement(x)
repeat1

x′ ← x; i ← 02
repeat3

i ← i+14

x ← argmin{ f (x), f (xi)}, xi ∈ N(x)5

until ( f (x)< f (x′) or i = |N(x)|)
until ( f (x)≥ f (x′))

return x
Algorithm 6: First improvement (first descent) heuristic

The stochastic phase of BVNS (see Algorithm 7) is represented by the random
selection of a point x′ from the kth neighborhood of the shake operation. Note that
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point x′ is generated at random in Step 5 in order to avoid cycling, which might
occur with a deterministic rule.

Function BVNS(x,kmax, tmax)
t ← 01
while t < tmax do2

k ← 13
repeat4

x′ ← Shake(x,k) // Shaking5
x′′ ← BestImprovement(x′) // Local search6
x,k ← NeighborhoodChange(x,x′′,k) // Change neighborhood7

until k = kmax

t ← CpuTime()8

return x
Algorithm 7: Basic VNS

Example. We illustrate the basic steps on a minimum k-cardinality tree instance
taken from [72], see Fig. 3.1. The minimum k-cardinality tree problem on graph G
(k-card for short) consists of finding a subtree of G with exactly k edges whose sum
of weights is minimum.
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Fig. 3.1 4-Cardinality tree problem

The steps of BVNS for solving the 4-card problem are illustrated in Fig. 3.2. In
Step 0 the objective function value, i.e., the sum of edge weights, is equal to 40;
it is indicated in the right bottom corner of the figure. That first solution is a local
minimum with respect to the edge-exchange neighborhood structure (one edge in,
one out). After shaking, the objective function is 60, and after another local search,
we are back to the same solution. Then, in Step 3, we take out 2 edges and add
another 2 at random, and after a local search, an improved solution is obtained with
a value of 39. Continuing in that way, the optimal solution with an objective function
value equal to 36 is obtained in Step 8.
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Fig. 3.2 Steps of the Basic VNS for solving 4-card tree problem

(iv) General VNS. Note that the local search step (line 6 in BVNS, Algorithm 7)
may also be replaced by VND (Algorithm 2). This General VNS (VNS/VND) ap-
proach has led to some of the most successful applications reported in the literature
(see, e.g., [1, 26–29, 31, 32, 39, 57, 66, 92, 93]). General VNS (GVNS) is outlined
in Algorithm 8 below. Note that neighborhoods N1, . . . ,Nlmax are used in the VND
step, while a different series of neighborhoods N1, . . . ,Nkmax apply to the Shake step.

Function GVNS (x, �max,kmax, tmax)
repeat1

k ← 12
repeat3

x′ ← Shake(x,k)4
x′′ ← VND(x′, �max)5
x,k ← NeighborhoodChange(x,x′′,k)6

until k = kmax

t ← CpuTime()7

until t > tmax
return x

Algorithm 8: General VNS
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3.3 Some Extensions

(i) The Skewed VNS (SVNS) method [62] addresses the problem of exploring val-
leys far from the incumbent solution. Indeed, once the best solution in a large region
has been found it is necessary to go quite far to obtain an improved one. Solutions
drawn at random in far-away neighborhoods may differ substantially from the in-
cumbent, and VNS may then degenerate, to some extent, into a Multistart heuristic
(where descents are made iteratively from solutions generated at random, and which
is known to be inefficient). So some compensation for distance from the incum-
bent must be made, and a scheme called Skewed VNS (SVNS) is proposed for that
purpose. Its steps are presented in Algorithms 9, 10 and 11. The KeepBest(x,x′)
function (Algorithm 9) in SVNS simply keeps the best of solutions x and x′ The
NeighborhoodChangeS function (Algorithm 10) performs the move and neigh-
borhood change for the SVNS.

Function KeepBest(x,x′)
if f (x′)< f (x) then1

x ← x′2

return x
Algorithm 9: Keep best solution

Function NeighborhoodChangeS(x,x′,k,α)
if f (x′)−αρ(x,x′)< f (x) then1

x ← x′; k ← 12

else
k ← k+13

return x,k

Algorithm 10: Neighborhood change for Skewed VNS

SVNS makes use of a function ρ(x,x′′) to measure the distance between the cur-
rent solution x and the local optimum x′′. The distance function used to define Nk

could also be used for this purpose. The parameter α must be chosen to allow move-
ment to valleys far away from x when f (x′′) is larger than f (x) but not too much
larger (otherwise one will always leave x). A good value for α is found experimen-
tally in each case. Moreover, in order to avoid frequent moves from x to a close
solution, one may take a smaller value for α when ρ(x,x′′) is small. More sophis-
ticated choices for selecting a function of αρ(x,x′′) could be made through some
learning process.



66 P. Hansen et al.

Function SVNS (x,kmax, tmax,α)
xbest ← x1
repeat2

k ← 13
repeat4

x′ ← Shake(x,k)5
x′′ ← FirstImprovement(x′)6
x,k ← NeighborhoodChangeS(x,x′′,k,α)7
xbest ← KeepBest (xbest ,x)8

until k = kmax

x ← xbest9
t ← CpuTime()10

until t > tmax
return x

Algorithm 11: Skewed VNS

(ii) The Variable neighborhood decomposition search (VNDS) method [63] ex-
tends the basic VNS into a two-level VNS scheme based upon decomposition of
the problem. It is presented in Algorithm 12, where td is an additional parameter
that represents the running time allowed for solving decomposed (smaller-sized)
problems by Basic VNS (line 5).

Function VNDS (x,kmax1, tmax, td)
repeat1

k ← 12
repeat3

x′ ← Shake (x,k); y ← x′ \ x4
y′ ← BVNS(y,kmax2, td); x′′ = (x′ \ y)∪ y′5
x′′′ ← FirstImprovement(x′′)6
x,k ← NeighborhoodChange(x,x′′′,k)7

until k = kmax1

until t > tmax
return x

Algorithm 12: Variable neighborhood decomposition search

For ease of presentation, but without loss of generality, we assume that the so-
lution x represents a set of attributes. In Step 4 we denote by y a set of k solution
attributes present in x′ but not in x (y = x′ \ x). In Step 5 we find the local optimum
y′ in the space of y; then we denote with x′′ the corresponding solution in the whole
space X (x′′ = (x′ \y)∪y′). We notice that exploiting some boundary effects in a new
solution can significantly improve solution quality. That is why, in Step 6, the local
optimum x′′′ is found in the whole space X using x′′ as an initial solution. If this is
time consuming, then at least a few local search iterations should be performed.

VNDS can be viewed as embedding the classical successive approximation
scheme (which has been used in combinatorial optimization at least since the six-
ties, see, e.g., [48]) in the VNS framework. Let us mention here a few applications
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of VNDS: p-median problem [63]; simple plant location problem [67]; k-cardinality
tree problem [100]; 0-1 mixed integer programming problem [51, 74]; design of
MBA student teams [37], etc.

3.4 Changing Formulation Within VNS

A traditional approach to tackle an optimization problem is to consider a given for-
mulation and search in some way through its feasible set X . Given that the same
problem can often be formulated in different ways, it is possible to extend search
paradigms to include jumps from one formulation to another. Each formulation
should lend itself to some traditional search method, its ‘local search’ that works
totally within this formulation, and yields a final solution when started from some
initial solution. Any solution found in one formulation should easily be translat-
able to its equivalent solution in any other formulation. We may then move from
one formulation to another by using the solution resulting from the local search of
the former as an initial solution for the local search of the latter. Such a strategy
will of course only be useful when local searches in different formulations behave
differently. Here we discuss two such possibilities.

3.4.1 Variable Neighborhood-Based Formulation Space Search

The idea of changing the formulation of a problem was investigated in [82, 83] us-
ing an approach that systematically alternates between different formulations for
solving various Circle Packing Problems (CPP). It is shown there that a stationary
point for a nonlinear programming formulation of CPP in Cartesian coordinates is
not necessarily a stationary point in polar coordinates. A method called Reformu-
lation Descent (RD) that alternates between these two formulations until the final
solution is stationary with respect to both formulations is suggested. Results ob-
tained were comparable with the best known values, but were achieved about 150
times faster than with an alternative single formulation approach. In this paper, the
idea suggested above of Formulation Space Search (FSS) is also introduced, using
more than two formulations. Some research in that direction has also been reported
in [70, 79, 90]. One methodology that uses the variable neighborhood idea when
searching through the formulation space is given in Algorithms 13 and 14. Here φ
(φ ′) denotes a formulation from a given space F , x (x′) denotes a solution in the
feasible set defined with that formulation, and �≤ �max is the formulation neighbor-
hood index. Note that Algorithm 14 uses a reduced VNS strategy in the formulation
space F . Note also that the ShakeFormulation() function must provide a
search through the solution space S ′ (associated with formulation φ ′) in order to
get a new solution x′. Any appropriate method can be used for this purpose.
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Function FormulationChange(x,x′,φ ,φ ′, �)
if f (φ ′,x′)< f (φ ,x) then1

φ ← φ ′2
x ← x′3
�← 14

else
�← �+15

return x,φ , �6

Algorithm 13: Formulation change

Function VNFSS(x,φ , �max)
repeat1

�← 1 // Initialize formulation in F2
while �≤ �max do3

x′,φ ′, �← ShakeFormulation(x,x′,φ ,φ ′,�) // (φ ′,x′)∈(N�(φ),N (x)) random4
x,φ , �← FormulationChange(x,x′,φ ,φ ′,�) // Change formulation5

until some stopping condition is met
return x6

Algorithm 14: Reduced variable neighborhood FSS

3.4.2 Variable Formulation Search

Many optimization problems in the literature, e.g., min-max problems, demonstrate
a flat landscape. It means that, given a formulation of the problem, many neighbors
of a solution have the same objective function value. When this happens, it is dif-
ficult to determine which neighborhood solution is more promising to continue the
search. To address this drawback, the use of alternative formulations of the problem
within VNS is proposed in [85, 86, 89]. In [89] it is named Variable Formulation
Search (VFS). It combines a change of neighborhood within the VNS framework,
with the use of alternative formulations.

Let us assume that, beside the original formulation and the corresponding objec-
tive function f0(x), there are p other formulations denoted as f1(x), .., fp(x),x ∈ X .
Note that two formulations are defined as equivalent if the optimal solution of one
is the optimal solution of the other, and vice versa. For simplification purposes, we
will denote different formulations as different objectives fi(x), i = 1, .., p. The idea
of VFS is to add the procedure Accept(x,x′, p), given in Algorithm 15, in all three
basic steps of BVNS: Shaking, LocalSearch and NeighborhoodChange.
Clearly, if a better solution is not obtained by any of the p+ 1 formulations, the
move is rejected. The next iteration in the loop of Algorithm 15 will take place only
if the objective function values according to all previous formulations are equal.
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Logical Function Accept (x,x′, p)
for i = 0 to p do1

if ( fi(x′)< fi(x)) then return TRUE2
if ( fi(x′)> fi(x)) then return FALSE3

return FALSE4

Algorithm 15: Accept procedure with p secondary formulations

If Accept (x,x′, p) is included in the LocalSearch subroutine of BVNS,
then it will not stop the first time a non improved solution is found. In order to
stop LocalSearch and thus claim that x′ is a local minimum, x′ should not be im-
proved by any among the p different formulations. Thus, for any particular problem,
one needs to design different formulations of the problem considered and decide the
order in which they will be used in the Accept subroutine. Answers to those two
questions are problem specific and sometimes not easy. The Accept (x,x′, p) sub-
routine can obviously be added to the NeighborhoodChange and Shaking
steps of BVNS from Algorithm 7 as well.

In [85], three evaluation functions, or acceptance criteria, within the Neighborhood
Change step are used in solving the Bandwidth Minimization Problem. This min-
max problem consists of finding permutations of rows and columns of a given
square matrix to minimize the maximal distance of the nonzero elements from
the main diagonal in the corresponding rows. Solution x may be represented as a
labeling of a graph and the move from x to x′ as x → x′. Three criteria are used:

1. the bandwidth length f0(x) ( f0(x′)< f0(x));
2. the total number of critical vertices f1(x) ( f1(x′)< f1(x)), if f0(x′) = f0(x);
3. f3(x,x′) = ρ(x,x′)− α , if f0(x′) = f0(x) and f1(x′) = f1(x). Here, we want

f3(x,x′) > 0, because we assume that x and x′ are sufficiently far from one
another when ρ(x,x′) > α , where α is an additional parameter. The idea for a
move to an even worse solution, if it is very far, is used within Skewed VNS.
However, a move to a solution with the same value is only performed in [85] if
its Hamming distance from the incumbent is greater than α .

In [86] a different mathematical programming formulation of the original prob-
lem is used as a secondary objective within the Neighborhood Change func-
tion of VNS. There, two combinatorial optimization problems on a graph are consid-
ered: the Metric Dimension Problem and Minimal Doubly Resolving Set Problem.

A more general VFS approach is given in [89], where the Cutwidth Graph Min-
imization Problem (CWP) is considered. CWP also belongs to the min-max prob-
lem family. For a given graph, one needs to find a sequence of nodes such that the
maximum cutwidth is minimum. The cutwidth of a graph should be clear from the
example provided in Fig. 3.3 for the graph with six vertices and nine edges shown
in (a).
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Fig. 3.3 Cutwidth minimization example as in [89]

Figure 3.3b shows an ordering x of the vertices of the graph in (a) with the
corresponding cutwidth CW values of each vertex. It is clear that the CW repre-
sents the number of cut edges between two consecutive nodes in the solution x.
The cutwidth value f0(x) =CW (x) of the ordering x = (A,B,C,D,E,F) is equal to
f0(x) = max{4,5,6,4,2}= 6. Thus, one needs to find an order x that minimizes the
maximum cut-width value over all vertices.

Beside minimizing the bandwidth f0, two additional formulations, denoted f1

and f2 , are used in [89], and implemented within a VND local search. Results are
compared among themselves (Table 3.1) and with a few heuristics from the literature
(Table 3.1), using the following usual data set:

• “Grid”: This data set consists of 81 matrices constructed as the Cartesian prod-
uct of two paths. They were originally introduced by Rolim et al. [94]. For this
set of instances, the vertices are arranged on a grid of dimension width × height
where width and height are selected from the set {3, 6, 9, 12, 15, 18, 21, 24,
27}.

• “Harwell-Boeing” (HB): This data set is a subset of the public-domain Ma-
trix Market library.1 This collection consists of a set of standard test matrices
M = (Mi j) arising from problems in linear systems, least squares, and eigen-
value calculations from a wide variety of scientific and engineering disciplines.
Graphs were derived from these matrices by considering an edge (i, j) for ev-
ery element Mi j �= 0. The data set is formed by the selection of the 87 instances
were n ≤ 700. Their number of vertices ranges from 30 to 700 and the number
of edges from 46 to 41,686.

1 Available at http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/.

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/
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Table 3.1 presents the results obtained with four different VFS variants, after
executing them for 30 s over each instance. The column ‘BVNS’ of Table 3.1 repre-
sents a heuristic based on BVNS which makes use only of the original formulation
f0 of the CWP. VFS1 denotes a BVNS heuristic that uses only one secondary crite-
rion, i.e., f0 and f1. VFS2 is equivalent to the previous one with the difference that
now f2 is considered (instead of f1). Finally, the fourth column of the table, denoted
as VFS3, combines the original formulation of the CWP with the two alternative
ones, in the way presented in Algorithm 15. All algorithms were configured with
kmax = 0.1n and start from the same random solution.

Table 3.1 Comparison of alternative formulations within 30 s for each test, by average objective
values and % deviation from the best known solution

BVNS VFS1 VFS2 VFS3

Avg. 137.31 93.56 91.56 90.75
Dev. (%) 192.44 60.40 49.23 48.22

Test are performed on “Grid” and “HB” data sets that contain 81 and 86 instances, respectively

It appears that significant improvements in solution quality are obtained when at
least one secondary formulation is used in case of ties (compare e.g., 192.44% and
60.40% deviations from the best known solutions obtained by BVNS and VFS1,
respectively). An additional improvement is obtained when all three formulations
are used in VFS3.

Comparison of VFS3 and state-of-the-art heuristics are given in Table 3.2. There,
the stopping condition is increased from 30 s to 300 and 600 s for the first and the
second set of instances, respectively. Besides average values and % deviation, the
methods are compared based on the number of wins (the third row) and the total
cpu time in seconds. Overall, the best quality results are obtained by VFS in less
computing time.

Table 3.2 Comparison of VFS with the state-of-the-art heuristics over the “Grid” and “HB” data
sets, within 300 and 600 s respectively

81 ‘grid’ test instances 86 HB instances
GPR [2] SA [34] SS [88] VFS [89] GPR [2] SA [34] SS [88] VFS [89]

Avg. 38.44 16.14 13.00 12.23 364.83 346.21 315.22 314.39
Dev. (%) 201.81 25.42 7.76 3.25 95.13 53.30 3.40 1.77
#Opt. 2 37 44 59 2 8 47 61
CPU t (s) 235.16 216.14 210.07 90.34 557.49 435.40 430.57 128.12

3.5 Primal-Dual VNS

For most modern heuristics, the difference in value between the optimal solution
and the obtained approximate solution is not precisely known. Guaranteed perfor-
mance of the primal heuristic may be determined if a lower bound on the objective
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function value can be found. To this end, the standard approach is to relax the in-
tegrality condition on the primal variables, based on a mathematical programming
formulation of the problem. However, when the dimension of the problem is large,
even the relaxed problem may be impossible to solve exactly by standard commer-
cial solvers. Therefore, it seems to be a good idea to solve dual relaxed problems
heuristically as well. In this way we get guaranteed bounds on the primal heuristic
performance. The next difficulty arises if we want to get an exact solution within
a branch-and-bound framework since having the approximate value of the relaxed
dual does not allow us to branch in an easy way, for example by exploiting com-
plementary slackness conditions. Thus, the exact value of the dual is necessary. A
general approach to get both guaranteed bounds and an exact solution is proposed
in [67], and referred as Primal-Dual VNS (PD-VNS). It is given in Algorithm 16.

Function PD-VNS (x,kmax, tmax)
BVNS (x,kmax, tmax) // Solve primal by VNS1
DualFeasible(x,y) // Find (infeasible) dual such that fP = fD2
DualVNS(y) // Use VNS do decrease infeasibility3
DualExact(y) // Find exact (relaxed) dual4
BandB(x,y) // Apply branch-and-bound method5

Algorithm 16: Basic PD-VNS

In the first stage, a heuristic procedure based on VNS is used to obtain a near op-
timal solution. In [67] it is shown that VNS with decomposition is a very powerful
technique for large-scale simple plant location problems (SPLP) with up to 15,000
facilities and 15,000 users. In the second phase, the objective is to find an exact so-
lution of the relaxed dual problem. Solving the relaxed dual is accomplished in three
stages: (1) find an initial dual solution (generally infeasible) using the primal heuris-
tic solution and complementary slackness conditions; (2) find a feasible solution by
applying VNS to the unconstrained nonlinear form of the dual; (3) solve the dual
exactly starting with the found initial feasible solution using a customized “sliding
simplex” algorithm that applies “windows” on the dual variables, thus substantially
reducing the problem size. On all problems tested, including instances much larger
than those previously reported in the literature, the procedure was able to find the ex-
act dual solution in reasonable computing time. In the third and final phase, armed
with tight upper and lower bounds obtained from the heuristic primal solution in
phase one and the exact dual solution in phase two, respectively, a standard branch-
and-bound algorithm is applied to find an optimal solution of the original problem.
The lower bounds are updated with the dual sliding simplex method and the upper
bounds whenever new integer solutions are obtained at the nodes of the branching
tree. In this way it was possible to solve exactly problem instances of sizes up to
7000 facilities ×7000 users, for uniform fixed costs, and 15,000 facilities ×15,000
users, otherwise.
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3.6 VNS for Mixed Integer Linear Programming

The Mixed Integer Linear Programming (MILP) problem consists of maximizing
or minimizing a linear function, subject to equality or inequality constraints and
integrality restrictions on some of the variables. The mixed integer programming
problem (MILP) can be expressed as:

(MILP)

⎡
⎢⎢⎢⎢⎣

min ∑n
j=1 c jx j

s.t. ∑n
j=1 ai jx j ≥ bi ∀i ∈ M = {1,2, . . . ,m}

x j ∈ {0,1} ∀ j ∈B
x j ≥ 0,integer ∀ j ∈ G
x j ≥ 0 ∀ j ∈ C

where the set of indices N = {1,2, . . . ,n} is partitioned into three subsets B,G and
C , corresponding to binary, general integer and continuous variables, respectively.

Numerous combinatorial optimization problems, including a wide range of prac-
tical problems in business, engineering and science, can be modeled as MILPs. Sev-
eral special cases, such as knapsack, set packing, cutting and packing, network de-
sign, protein alignment, traveling salesman and other routing problems, are known
to be NP-hard [46].

Many commercial solvers such as CPLEX [71] are available for solving MILPs.
Methods included in such software packages are usually of the branch-and-bound
(B&B) or of branch-and-cut (B&C) types. Basically, those methods enumerate all
possible integer values in some order, and prune the search space for the cases where
such enumeration cannot improve the current best solution.

3.6.1 Variable Neighborhood Branching

The connection between local search based heuristics and exact solvers may be
established by introducing the so called local branching constraints [43]. By adding
just one constraint into (MILP), as explained below, the kth neighborhood of (MILP)
is defined. This allows the use of all local search based metaheuristics, such as Tabu
search, Simulating annealing, VNS etc. More precisely, given two solutions x and y
of (MILP), the distance between x and y is defined as:

δ (x,y) = ∑
j∈B

| x j − y j |.
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Let X be the solution space of (MILP). The neighborhood structures {Nk | k =
1, . . . ,kmax} can be defined, knowing the distance δ (x,y) between any two solutions
x,y ∈ X . The set of all solutions in the kth neighborhood of y ∈ X is denoted as
Nk(y) where

Nk(y) = {x ∈ X | δ (x,y) ≤ k}.
For the pure 0-1 MILP given above (i.e., (MILP) with G = /0), δ (., .) represents the
Hamming distance and Nk(y) may be expressed by the following local branching
constraint

δ (x,y) = ∑
j∈S

(1− x j)+ ∑
j∈B\S

x j ≤ k, (3.2)

where S = { j ∈B | y j = 1}.
In [66] a general VNS procedure for solving 0-1 MILPs is presented (see Algo-

rithm 17). An exact MILP solver (MIPSOLVE() within CPLEX) is used as a black
box for finding the best solution in the neighborhood, based on the given formula-
tion (MILP) plus the added local branching constraints. Shaking is performed using
the Hamming distance defined above. A detailed description of this VNS branch-
ing method is provided in Algorithm 17. The variables and constants used in the
algorithm are defined as follows [66]:

• UB—input variable for the CPLEX solver which represents the current upper
bound.

• f irst—logical input variable for CPLEX solver which is true if the first so-
lution lower than UB is asked for in the output; if f irst = false, CPLEX
returns the best solution found so far.

• TL—maximum time allowed for running CPLEX.
• rhs—right hand side of the local branching constraint; it defines the size of the

neighborhood within the inner or VND loop.
• cont—logical variable which indicates if the inner loop continues (true) or

not (false).
• x_opt and f _opt—incumbent solution and corresponding objective function

value.
• x_cur, f _cur, k_cur—current solution, objective function value and neighbor-

hood from where the VND local search starts (lines 6–20).
• x_next and f _next—solution and corresponding objective function value ob-

tained by CPLEX in the inner loop.
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Function VnsBra(total_time_limit, node_time_limit, k_step,
x_opt)
TL := total_time_limit; UB := ∞; first := true1

stat := MIPSOLVE(TL, UB, first, x_opt, f _opt)2

x_cur:=x_opt; f_cur:=f_opt3

while (elapsedtime < total_time_limit) do4

cont := true; rhs := 1; first := false5

while (cont or elapsedtime < total_time_limit) do6

TL = min(node_time_limit, total_time_limit-7

elapsedtime)
add local br. constr. δ (x,x_cur)≤ rhs; UB := f_cur8

stat := MIPSOLVE(TL, UB, first, x_next, f_next)9

switch stat do10

case "opt_sol_found":11

reverse last local br. const. into δ (x,x_cur)≥ rhs+112

x_cur := x_next; f_cur := f_next; rhs := 1;13

case "feasible_sol_found":14

reverse last local br. constr. into δ (x,x_cur)≥ 115

x_cur := x_next; f_cur := f_next; rhs := 1;16

case "proven_infeasible":17

remove last local br. constr.; rhs := rhs+1;18

case "no_feasible_sol_found":19

cont := false20

if f _cur < f _opt then21

x_opt := x_cur; f _opt := f_cur; k_cur := k_step;22

else
k_cur := k_cur+k_step;23

remove all added constraints; cont := true24

while cont and (elapsedtime < total_time_limit) do25

add constraints k_cur ≤ δ (x,x_opt) and26

δ (x,x_opt)< k_cur+k_step
TL := total_time_limit-elapsedtime; UB := ∞; first := true27

stat := MIPSOLVE(TL, UB, first, x_cur, f_cur)28

remove last two added constraints; cont =false29

if stat = "proven_infeasible" or30

"no_feasible_sol_found" then
cont :=true; k_cur := k_cur+k_step31

Algorithm 17: VNS branching

In line 2, a commercial MIP solver is run to get an initial feasible solution, i.e.,
logical variable ‘first’ is set to value true. The outer loop starts from line 4. VND
based local search is performed in the inner loop that starts from line 6 and finishes
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at line 24. There are four different outputs from subroutine MIPSOLVE provided
by variable stat. They are coded in lines 11–20. The shaking step also uses the MIP
solver. It is presented in the loop that starts at line 25.

3.6.2 VNDS Based Heuristics for MILP

It is well known that heuristics and relaxations are useful for providing upper and
lower bounds on the optimal value of large and difficult optimization problems. A
hybrid approach for solving 0-1 MILPs is presented in this section. A more detailed
description may be found in [51]. It combines variable neighborhood decomposition
search (VNDS) [63] and a generic MILP solver for upper bounding purposes, and
a generic linear programming solver for lower bounding. VNDS is used to define
a variable fixing scheme for generating a sequence of smaller subproblems, which
are normally easier to solve than the original problem. Different heuristics are de-
rived by choosing different strategies for updating lower and upper bounds, and thus
defining different schemes for generating a series of subproblems. We also present
in this section a two-level decomposition scheme, in which subproblems created
according to the VNDS rules are further divided into smaller subproblems using
another criterion, derived from the mathematical formulation of the problem.

3.6.2.1 VNDS for 0-1 MILPs with Pseudo-Cuts

Variable neighborhood decomposition search is a two-level variable neighborhood
search scheme for solving optimization problems, based upon the decomposition of
the problem (see Algorithm 12). We discuss here an algorithm which solves exactly
a sequence of reduced problems obtained from a sequence of linear programming
relaxations. The set of reduced problems for each LP relaxation is generated by
fixing a certain number of variables according to VNDS rules. That way, two se-
quences of upper and lower bounds are generated, until an optimal solution of the
problem is obtained. Also, after each reduced problem is solved, a pseudo-cut is
added to guarantee that this subproblem is not revisited. Furthermore, whenever an
improvement in the objective function value occurs, a local search procedure is ap-
plied in the whole solution space to attempt a further improvement (the so-called
boundary effect within VNDS). This procedure is referred to as VNDS-PC, since it
employs VNDS to solve 0-1 MILPs, while incorporating pseudo-cuts to reduce the
search space [51].

If J ⊆ B, we define the partial distance between x and y, relative to J, as
δ (J,x,y) = ∑ j∈J | x j − y j |. Obviously we have δ (B,x,y) = δ (x,y)). More gener-
ally, let x̄ be an optimal solution of LP(P), the LP relaxation of the problem P
considered (not necessarily MIP feasible), and J ⊆ B(x̄) = { j ∈ N | x̄ j ∈ {0,1}}
an arbitrary subset of indices. The partial distance δ (J,x,x) can be linearized as
follows:

δ (J,x,x) = ∑
j∈J

[x j(1− x j)+ x j(1− x j)].

Let X be the solution space of problem P. The neighborhood structures {Nk | k =
kmin, . . . ,kmax}, 1 ≤ kmin ≤ kmax ≤ p, can be defined knowing the distance δ (B,x,y)
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between any two solutions x,y ∈ X . The set of all solutions in the kth neighborhood
of x ∈ X is denoted as Nk(x), where

Nk(x) = {y ∈ X | δ (B,x,y) ≤ k}.

From the definition of Nk(x), it follows that Nk(x) ⊂ Nk+1(x), for any
k ∈ {kmin,kmin +1, . . . ,kmax −1}, since δ (B,x,y) ≤ k implies δ (B,x,y) ≤ k+1.
It is trivial that, if we completely explore neighborhood Nk+1(x), it is not necessary
to explore neighborhood Nk(x).
Ordering variables w.r.t LP–relaxation. The first variant of VNDS-PC, denoted
as VNDS-PC1, is considered here for the maximization case. See Algorithm 18 for
the pseudo-code of this algorithm which can be easily adjusted for minimization
problems. Input parameters for the algorithm are an instance P of the 0-1 MIP prob-
lem, a parameter d which defines the number of variables to be released in each
iteration and an initial feasible solution x∗ of P. The algorithm returns the best solu-
tion found until the stopping criterion defined by the variable proceed1 is met.

Function VNDS-PC1(P,d,x∗)
Choose stopping criteria (set proceed1 = proceed2 = true)1
Add objective cut: LB = cTx∗; P = (P | cTx > LB)2
while proceed1 do3

Find an optimal solution x of LP(P)4
set UB = cTx5
if B(x) =B then6

break
Set δ j =| x∗j − x j |, j ∈B7

Index x j so that δ j ≤ δ j+1, j = 1, . . . , p−1, p = |B|8
Set q =| { j ∈B | δ j �= 0} |9
Set kmin = p−q, kstep = 	q/d
, kmax = p− kstep, k = kmax10
while proceed2 and k ≥ 0 do11

Jk = {1, . . . ,k}; x′ = MIPSOLVE(P(x∗,Jk),x∗)12
P = (P | δ (Jk,x∗,x)≥ 1)13
if (cTx′ > cTx∗) then14

x∗ = LocalSearch(P,x′); LB = cTx∗15
Update objective cut: P = (P | cTx > LB); break16

else
if (k− kstep < kmin) then17

kstep = max{	k/2
,1}
Set k = k− kstep18

Update proceed219

Update proceed120

return LB, UB, x∗.

Algorithm 18: VNDS for MIPs with pseudo-cuts
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This variant of VNDS-PC is based on the following choices. Variables are or-
dered according to their distances from the corresponding LP relaxation solution
values (see lines 4, 6 and 7 in Algorithm 18). More precisely, we compute distances
δ j =| x j −x j | for j ∈B, where x j is a variable value of the current incumbent (fea-
sible) solution and x j a variable value of the LP-relaxation. We then index variables
x j, j ∈B, so that δ1 ≤ δ2 ≤ . . .≤ δp, p =|B |. Parameters kmin, kstep and kmax (see
line 9 in Algorithm 18) are determined in the following way. Let q be the number
of binary variables which have different values in the LP relaxation solution and in
the incumbent solution (q =| { j ∈ B | δ j �= 0} |), and let d be a given parameter
(whose value is experimentally found) which controls the neighborhood size. Then
we set kmin = p−q, kstep = 	q/d
 and kmax = p−kstep. We also allow the value of k
to be less then kmin (see lines 17 and 18 in Algorithm 18). In other words, we allow
the variables which have the same integer value in the incumbent and LP-relaxation
solutions to be freed anyway. When k < kmin, kstep is set to (approximately) half the
number of the remaining fixed variables. Note that the maximum value of parameter
k (which is kmax) indicates the maximum possible number of fixed variables, which
implies the minimum number of free variables and therefore the minimum possible
neighborhood size in the VNDS scheme.

If an improvement occurs after solving the subproblem P(x∗,Jk), where x∗ is the
current incumbent solution (see line 12 in Algorithm 18), we perform a local search
on the complete solution, starting from x′ (see line 14 in Algorithm 18). The local
search applied at this stage is the variable neighborhood descent for 0-1 MILPs, as
described in [66]. Note that, in Algorithm 18 and in the pseudo-codes that follow,
the statement y = MILPSOLVE(P,x) denotes a call to a generic MILP solver, for
a given 0-1 MILP problem P, starting from a given solution x and returning a new
solution y (if P is infeasible, then the value of y remains the same as the one before
the call to the MILP solver).

In practice, when used as a heuristic with a time limit as the stopping criterion,
VNDS-PC1 has a good performance. One can observe that, if pseudo-cuts (line 13 in
Algorithm 18) and objective cuts (lines 2 and 16) are not added, the algorithm from
[74] is obtained, which is a special case of VNDS-PC with a fixed LP relaxation
reference solution.
Ordering variables w.r.t. the minimum and maximum distances from the
incumbent solution.
In the VNDS variant above, the variables in the incumbent integer solution are or-
dered according to the distances of their values to the values of the current lin-
ear relaxation solution. However, it is possible to employ different ordering strate-
gies. For example, in the case of maximization of cT x, consider the following two
problems:
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(LP−
x∗ )

⎡
⎢⎢⎢⎢⎣

minδ (x∗,x)
s.t.: Ax ≤ b

cTx ≥ LB+1
x j ∈ [0,1] , j ∈B
x j ≥ 0, j ∈ N

(LP+
x∗ )

⎡
⎢⎢⎢⎢⎣

maxδ (x∗,x)
s.t.: Ax ≤ b

cTx ≥ LB+1
x j ∈ [0,1] , j ∈B
x j ≥ 0, j ∈ N

where x∗ is the best known integer feasible solution and LB is the best lower bound
found so far (i.e., LB = cTx∗). Of course, in case of solving mincT x, the inequality
cT x ≥ LB+1 from models (LP−

x∗ ) and (LP+
x∗ ), should be replaced with cT x ≤UB−1,

where the upper bound UB = cT x∗. If x− and x+ are optimal solutions of the LP-
relaxation problems LP−

x∗ and LP+
x∗ , respectively, then components of x∗ could be

ordered in ascending order of values |x−j − x+j |, j ∈B. Since both solution vectors
x− and x+ are real-valued (i.e., from R

n), this ordering technique is expected to be
more sensitive than the standard one, i.e., the number of pairs ( j, j′), j, j′ ∈ N, j �=
j′ for which |x−j − x+j | �= |x−j′ − x+j′ | is expected to be greater than the number of
pairs (h,h′), h,h′ ∈ N,h �= h′ for which |x∗h − xh| �= |x∗h′ − xh′ |, where x is an optimal
solution of the LP relaxation LP(P).

Also, according to the definition of x− and x+, it is intuitively more likely for
the variables x j, j ∈ N, for which x−j = x+j , to have that same value x−j in the final
solution, than it is for variables x j, j ∈ N, for which x∗j = x j (and x−j �= x+j ), to
have the final value x∗j . In practice, if x−j = x+j , j ∈ N, then usually x∗j = x−j , which
justifies the ordering of components of x∗ in the described way. However, if we want
to keep the number of iterations in one pass of VNDS approximately the same as in
the standard ordering, i.e., if we want to use the same value for parameter d, then
the subproblems examined will be larger than with the standard ordering, since the
value of q will be smaller (see line 8 in Algorithm 19). The pseudo-code of this
variant of VNDS-PC, denoted as VNDS-PC2, is provided in Algorithm 19.

3.6.2.2 A Double Decomposition Scheme

In this section we propose the use of a second level decomposition scheme within
VNDS for the 0-1 MILP. The 0-1 MILP is tackled by decomposing the problem into
several subproblems, where the number of binary variables with value 1 is fixed
at a given integer value. Fixing the number of variables with value 1 to a given
value h ∈ N∪{0} can be achieved by adding the constraint x1 + x2 + . . .+ xp = h,
or, equivalently, eTx = h, where e is the vector of ones. Solving the 0-1 MILP by
tackling separately each of the subproblems Ph for h∈N appears to be an interesting
approach for the case of the multidimensional knapsack problem [101], especially
because the additional constraint eTx = h provides tighter upper bounds than the
classical LP-relaxation.
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Function VNDS-PC2(P,d,x∗)
Choose stopping criteria (set proceed1=proceed2=true)1
Add objective cut: LB = cTx∗; P = (P | cTx > LB)2
while proceed1 do3

Find an optimal solution x of LP(P); set UB = cTx4
if (B(x) =B) then5

break
Find optimal solutions x− of LP−

x∗ and x+ of LP+
x∗6

δ j =| x−j − x+j |, j = 1, ..., p ; index x j so that δ j ≤ δ j+1, j = 1, ..., p−17

Set q =| { j ∈B | δ j �= 0} |, kstep = 	q/d
, k = p− kstep8
while proceed2 and k ≥ 0 do9

Jk = {1, . . . ,k}; x′ = MIPSOLVE(P(x∗,Jk),x∗);10
if (cTx′ > cTx∗) then11

Update objective cut: LB = cTx′; P = (P | cTx > LB);12
x∗ = LocalSearch(P,x′); LB = cTx∗; break13

else
if (k− kstep > p−q) then14

kstep = max{	k/2
,1}
Set k = k− kstep15

Update proceed216

x′ = MIPSOLVE(P(x,B(x)),x∗); LB = max{LB,cTx′};17
Add pseudo-cut to P : P = (P | δ (B(x),x,x)≥ 1);18
x′ = MIPSOLVE(P(x−,B(x−)),x∗); LB = max{LB,cTx′};19
Add pseudo-cut to P : P = (P | δ (B(x−),x,x−)≥ 1);20
x′ = MIPSOLVE(P(x+,B(x+)),x∗); LB = max{LB,cTx′};21
Add pseudo-cut to P : P = (P | δ (B(x+),x,x+)≥ 1);22
Update proceed1;23

return LB, UB, x∗.24

Algorithm 19: VNDS for MIPs with pseudo-cuts and another ordering strategy

Formally, let Ph be the subproblem obtained from the original problem by adding
the hyperplane constraint eTx = h for h ∈ N, and enriched by an objective cut:

(Ph)

⎡
⎢⎢⎢⎢⎣

max cTx
s.t.: Ax ≤ b

cTx ≥ LB+1
eTx = h
x ∈ {0,1}p ×R

n−p
+

Let hmin and hmax denote lower and upper bounds on the number of variables
with value 1 in an optimal solution of the problem. Then it is obvious that ν(P) =
max{ν(Ph) | hmin ≤ h ≤ hmax}. Bounds hmin =

⌈
ν(LP−

0 )
⌉

and hmax =
⌊
ν(LP+

0 )
⌋

can
be computed by solving the following two problems:
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(LP−
0 )

⎡
⎢⎢⎣

min eTx
s.t.: Ax ≤ b

cTx ≥ LB+1
x ∈ [0,1]p ×R

n−p
+

(LP+
0 )

⎡
⎢⎢⎣

max eTx
s.t.: Ax ≤ b

cTx ≥ LB+1
x ∈ [0,1]p ×R

n−p
+

We define the order of the hyperplanes at the beginning of the algorithm, and
then we explore them one by one, in that order. The ordering can be done ac-
cording to the objective values of the linear programming relaxations LP(Ph),
h ∈ H = {hmin, . . . ,hmax}. In each hyperplane, VNDS-PC1 is applied and if there
is no improvement, the next hyperplane is explored. We refer to this method as
VNDDS (short for Variable Neighborhood Double Decomposition Search), which
corresponds to the pseudo-code in Algorithm 20. This idea is inspired by the ap-
proach proposed in [91], where the ordering of the neighborhood structures in Vari-
able Neighborhood Descent is determined dynamically, by solving relaxations of
the problems. Problems differ in one constraint that defines the Hamming distance
h (h ∈ H = {hmin, ..,hmax}).

Function VNDDS(P,x∗,d)
Solve the LP-relaxation problems LP−

0 and LP+
0 ;1

Set hmin =
⌈
ν(LP−

0 )
⌉

and hmax =
⌊
ν(LP+

0 )
⌋
;

Sort the set of subproblems {Phmin , . . . ,Phmax} so that2
ν(LP(Ph))≤ ν(LP(Ph+1)), hmin ≤ h < hmax;
Find initial integer feasible solution x∗;3
for (h = hmin;h ≤ hmax;h++) do4

x′ = VNDS-PC1(Ph,d,x∗)5
if (cTx′ > cTx∗) then6

x∗ = x′

return x∗.
Algorithm 20: Two levels of decomposition with hyperplanes ordering

It is important to note that the exact variant of VNDDS, i.e., without any limita-
tions regarding the running time or the number of iterations, converges to an optimal
solution in a finite number of steps [51].

3.6.2.3 Comparison

For comparison purposes, five algorithms are ranked according to their objective
values for the MIP benchmark instances in MIPLIB [77] and the benchmark in-
stances for the Maximum Knapsack Problem (MKP) in [21]. Tables 3.3 and 3.4
report the average differences between the ranks of every pair of algorithms for the
MIPLIP and MKP test sets, respectively.
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Table 3.3 Objective value average rank differences on the MIPLIB set

ALGORITHM
(average rank)

CPLEX
(2.14)

VNDS-MIP
(1.95)

VNDS-PC1
(2.64)

VNDS-PC2
(3.64)

VNDDS
(4.64)

CPLEX (2.14) 0.00 0.18 −0.50 −1.50 −2.50
VNDS-MIP
(1.95)

−0.18 0.00 −0.68 −1.68 −2.68

VNDS-PC1
(2.64)

0.50 0.68 0.00 −1.00 −2.00

VNDS-PC2
(3.64)

1.50 1.68 1.00 0.00 −1.00

VNDDS (4.64) 2.50 2.68 2.00 1.00 0.00

Table 3.4 Objective value average rank differences on the MKP set

ALGORITHM
(average rank)

CPLEX
(2.86)

VNDS-MIP
(3.09)

VNDS-PC1
(2.09)

VNDS-PC2
(3.23)

VNDDS
(3.72)

CPLEX (2.86) 0.00 −0.23 0.77 −0.36 −0.86
VNDS-MIP
(3.09)

0.23 0.00 1.00 −0.14 −0.64

VNDS-PC1
(2.09)

−0.77 −1.00 0.00 −1.14 −1.64

VNDS-PC2
(3.23)

0.36 0.14 1.14 0.00 −0.50

VNDDS (3.72) 0.86 0.64 1.64 0.50 0.00

It appears that VNDS-MIP outperforms the other four methods on MIPLIB
instances, while for the MKP set, the best performance is obtained with the
VNDS-PC1 heuristic.

3.7 Variable Neighborhood Search for Continuous Global
Optimization

The general form of the continuous constrained nonlinear global optimization prob-
lem (GOP) is given as follows:

(GOP)

⎡
⎢⎢⎣

min f (x)
s.t. gi(x)≤ 0 ∀i ∈ {1,2, . . . ,m}

hi(x) = 0 ∀i ∈ {1,2, . . . ,r}
a j ≤ x j ≤ b j ∀ j ∈ {1,2, . . . ,n}

where x ∈ Rn, f : Rn → R, gi : Rn → R, i = 1,2, . . . ,m, and hi : Rn → R, i = 1,2, . . . ,r,
are possibly nonlinear continuous functions, and a,b∈Rn are the variable bounds. A
box constraint GOP is defined when only the variable bound constraints are present
in the model.



3 Variable Neighborhood Search 83

GOPs naturally arise in many applications, e.g. in advanced engineering design,
data analysis, financial planning, risk management, scientific modeling, etc. Most
cases of practical interest are characterized by multiple local optima and, therefore,
a search effort of global scope is needed to find the globally optimal solution.

If the feasible set X is convex and objective function f is convex, then (GOP)
is relatively easy to solve, i.e., the Karush-Kuhn-Tucker conditions can be applied.
However, if X is not a convex set or f is not a convex function, we can have many lo-
cal optima and the problem may not be solved with classical techniques. For solving
(GOP), VNS has been used in two different ways: (1) with neighborhoods induced
by using a �p norm; (2) without using a �p norm.
(i) VNS with �p norm neighborhoods [40, 75, 81, 84]. A natural approach in ap-
plying VNS for solving GOPs is to induce neighborhood structures Nk(x) from the
�p metric given as:

ρ(x,y) =

(
n

∑
i=1

|xi − yi|p
)1/p

, p ∈ [1,∞) (3.3)

and
ρ(x,y) = max

1≤i≤n
|xi − yi|, p → ∞. (3.4)

The neighborhood Nk(x) denotes the set of solutions in the k-th neighborhood of x
based on the metric ρ . It is defined as

Nk(x) = {y ∈ X | ρ(x,y)≤ ρk}, (3.5)

or
Nk(x) = {y ∈ X | ρk−1 < ρ(x,y)≤ ρk}, (3.6)

where ρk, known as the radius of Nk(x), is monotonically increasing with k (k ≥ 2).
For solving box constraint GOPs, both [40] and [75] use the neighborhoods as

defined in (3.6). The basic differences between the two algorithms reported there
are as follows: (1) in the procedure suggested in [75] the �∞ norm is used, while
in [40] the choice of metric is either left to the analyst, or changed automatically
in some predefined order; (2) the commercial solver SNOPT [47] is used as a local
search procedure within VNS in [75], while in [40], the analyst may choose one out
of six different convex minimizers. A VNS based heuristic for solving the generally
constrained GOP is suggested in [84]. There, the problem is first transformed into a
sequence of box constrained problems within the well known exterior point method:

min
a≤x≤b

Fμ ,q(x) = f (x)+
1
μ

m

∑
i=1

(max{0,gi(x)})q +
r

∑
i=1

|hi(x)|q, (3.7)

where μ and q ≥ 1 are a positive penalty parameter and penalty exponent, respec-
tively. Algorithm 21 outlines the steps for solving the box constraint subproblem as
proposed in [84].
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Function Glob-VNS (x∗,kmax, tmax)
Select the set of neighborhood structures Nk, k = 1, . . . ,kmax1
Select the array of random distributions types and an initial point x∗ ∈ X2
x ← x∗, f ∗ ← f (x), t ← 03
while t < tmax do4

k ← 15
repeat6

for all distribution types do7
y ← Shake(x∗,k) // Get y ∈Nk(x∗) at random8
y′ ← BestImprovment(y) // Apply LS to obtain a local minimum y′9
if f (y′)< f ∗ then10

x∗ ← y′, f ∗ ← f (y′), go to line 511

k ← k+112

until k = kmax
t ← CpuTime()13

Algorithm 21: VNS using a �p norm

The Glob-VNS procedure from Algorithm 21 contains the following parameters
in addition to kmax and tmax: (1) Values of radii ρk, k = 1, . . . ,kmax, which may be
defined by the user or calculated automatically in the minimizing process; (2) Geom-
etry of neighborhood structures Nk, defined by the choice of metric. Usual choices
are the �1, �2, and �∞ norms; (3) Distribution types used for obtaining random points
y from Nk in the Shaking step. A uniform distribution in Nk is the obvious choice,
but other distributions may lead to much better performance on some problems.
Different choices of neighborhood structures and random point distributions lead to
different VNS-based heuristics.
(ii) VNS without using �p norm neighborhoods. Two different neighborhoods,
N1(x) and N2(x), are used in the VNS based heuristic suggested in [99]. In N1(x),
r (a parameter) random directions from the current point x are generated and a one
dimensional search along each direction is performed. The best point (out of r)
is selected as a new starting solution for the next iteration, if it is better than the
current one. If not, as in VND, the search is continued within the next neighborhood
N2(x). The new point in N2(x) is obtained as follows. The current solution is moved
for each x j ( j = 1, . . . ,n) by a value Δ j, taken at random from the interval (−α,α);

i.e., x(new)
j = x j +Δ j or x(new)

j = x j −Δ j. Points obtained by the plus or minus sign
for each variable define the neighborhood N2(x). If a relative increase of 1% in the

value of x(new)
j produces a better solution than x(new), the + sign is chosen; otherwise

the − sign is chosen.
Neighborhoods N1(x) and N2(x) are used for designing two algorithms. The first,

called VND, iterates over these neighborhoods until there is no improvement in the
solution value. In the second variant, a local search is performed with N2 and kmax

is set to 2 for the shaking step.
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It is interesting to note that computational results reported by all VNS based
heuristics were very promising. They usually outperformed other recent approaches
from the literature.

3.8 Variable Neighborhood Programming (VNP): VNS for
Automatic Programming

Building an intelligent machine is an old dream that, thanks to computers, begins to
take shape. Automatic programming is an efficient technique that has led to impor-
tant developments in the field of artificial intelligence. Genetic programming (GP)
[73], inspired by the genetic algorithm (GA), is among the few evolutionary algo-
rithms used to evolve a population of programs. The main difference between GP
and GA is the representation of a solution. An individual in GA can be a string,
while in GP, the individuals are programs. A tree is the usual way to represent a
program in GP. For example, assume that the current solution of a problem is the
following function:

f (x1, . . . ,x5) =
x1

x2 + x3
+ x4 − x5.

Then the code (tree) that calculates f using GP may be represented as in Fig. 3.4a.
Elleuch et al. [41, 42] recently adapted VNS rules for solving automatic pro-

gramming problems. They first suggested an extended solution representation by
adding coefficients to variables. Each terminal node was attached to its own param-
eter value. These parameters give a weight for each terminal node, with values from
the interval [0, 1]. This type of representation allows VNP to examine parameter val-
ues and the tree structure in the same iteration, increasing the probability for finding
a good solution faster. Let G = {α1,α2, . . . ,αn} denote a parameter set. In Fig. 3.4b
an example of a solution representation in VNP is illustrated.
(i) Neighborhood structures. Nine different neighborhood structures are proposed
in [42] based on a tree representation. To save space, we will just mention some of
them:

• N1(T )—Changing a node value operator. This neighborhood preserves the
tree structure and changes only the values of a functional or a terminal node.
Each node has a set of allowed values from which one can be chosen. Let xi be
the current solution; then a neighbor xi+1 differs from xi by just a single node.
A move within this neighborhood is shown in Fig. 3.5.
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Fig. 3.4 Current solution representation in automatic programming problem: (a) x1
x2+x3

+ x4 − x5;

(b) α1x1
α2x2+α3x3

+α4x4 −α5x5

Fig. 3.5 Neighborhood N1: changing a node value

• N2(T )-Swap operator. Here, a subtree from the current tree is randomly se-
lected and a new random subtree is generated as shown in Fig. 3.6a1 and a2.
Then the new subtree replaces the current one (see Fig. 3.6b). In this move, any
constraint related to the maximum tree size should be respected.
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Fig. 3.6 Neighborhood N2: swap operator. (a1) The current solution. (a2) New generated subtree.
(b) The new solution

• N3(T )—Changing parameter values. In the two previous neighborhoods, the
tree structure and the node values were considered. In the N3(T ) neighborhood,
attention is paid to the parameters. So, the position and value of nodes are kept
in order to search the neighbors in the parameter space. Figure 3.7 illustrates
the procedure where the change from one value to another is performed at
random.

Fig. 3.7 Neighborhood N3: change parameters

These neighborhoods may be used in both the local search step (N�, � ∈ [1, �max])
and in the shaking step (Nk,k ∈ [1,kmax]) of the VNP.
(ii) VNP shaking. The shaking step allows diversification in the search space. The
proposed VNP algorithm does not use exactly the same neighborhood structures N�

than the local search. Thus, we denote the neighborhoods used in the shaking phase
as Nk(T ),k = 1, . . . ,kmax. Nk(T ) may be constructed by repeating k times one or
more moves from the set {N�(T ), |�= 1, . . . , �max}. Consider, for example, the swap
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operator N2(T ). Let m denote the maximum number of nodes in the tree represen-
tation of the solution. We can get a solution from the kth neighborhood of T using
the swap operator, where k represents the number of nodes of the new generated
sub-tree. If n denotes the number of nodes in the original tree after deleting the old
sub-tree, than n+ k ≤ m. The objective of the shaking phase is to provide a good
starting point for the local search.
(iii) VNP objective function. The evaluation consists of defining a fitness (or ob-
jective) function to assess a solution. This function depends on the problem consid-
ered. After running each solution (program) on a training data set, the fitness may
be measured by counting the training cases where the returned solution is correct or
close to the exact solution.
(iv) An example: Time series forecasting (TSF) problem. Two widely used
benchmark data sets of the TSF problem are considered in [42] to study the VNP
capabilities: the Mackey-Glass series and the Box-Jenkins set. The parameters for
the VNP implementation that were chosen after some preliminary testing are given
in Table 3.5.

Table 3.5 VNP parameters adjustment for the forecasting problem

Parameters Values

The functional set F = {+,∗, , pow}
The terminal sets {(xi,c), i ∈ [1, . . . ,m],m = number of inputs, c ∈ R}
Neighborhood structures {N1,N2,N3}
Minimum tree length 20 nodes
Maximum tree length 200 nodes
Maximum number of iterations 50,000

The root mean square error (RMSE) is used as the fitness function, as it is nor-
mally done in the literature:

f (T ) =

√
1
n

n

∑
j=1

(y j
t − y j

out)
2

where n is the total number of samples, and y j
out and y j

t are the output of the VNP
model and the desired output for sample j, respectively. Next we illustrate with a
comparison on a single Box-Jenkins instance.

The gas furnace data for this instance were collected from a combustion process
of a methane air mixture [20]. This time series has found a widespread application
as a benchmark example for testing prediction algorithms. The data set contains
296 pairs of input-output values. The input u(t) corresponds to the gas flow, and the
output y(t) is the CO2 concentration in the outlet gas. The inputs are u(t − 4), and
y(t − 1), and the output is y(t). In this work, 200 samples are used in the training
phase and the remaining samples are used for the testing phase. The performance
of the evolved VNP model is evaluated by comparing it with existing approaches.
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The RMSE achieved by the VNP output model is (0.00038), which is better than
the RMSE obtained by other approaches, as shown in Table 3.6.

Table 3.6 Comparison of testing error on Box-Jenkins dataset

Method Prediction error RMSE
ODE [98] 0.5132
HHMDDE [38] 0.3745
FBBFNT [24] 0.0047
VNP [42] 0.0038

3.9 Discovery Science

In all the above applications, VNS is used as an optimization tool. It can also lead
to results in “discovery science”, i.e., for the development of new theories. This has
been done for graph theory in a long series of papers with the common title “Vari-
able neighborhood search for extremal graphs” that report on the development and
applications of the AutoGraphiX (AGX) system [10, 28, 29]. This system addresses
the following problems:

• Find a graph satisfying given constraints.
• Find optimal or near optimal graphs for an invariant subject to constraints.
• Refute a conjecture.
• Suggest a conjecture (or repair or sharpen one).
• Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea then is to address all of these problems as parametric combinatorial
optimization problems on the infinite set of all graphs (or in practice some smaller
subset) using a generic heuristic to explore the solution space. This is being accom-
plished using VNS to find extremal graphs with a given number n of vertices (and
possibly also a given number of edges). Extremal graphs may be viewed as a family
of graphs that maximize some invariant such as the independence number or chro-
matic number, possibly subject to constraints. We may also be interested in finding
lower and upper bounds on some invariant for a given family of graphs. Once an
extremal graph is obtained, VND with many neighborhoods may be used to build
other such graphs. Those neighborhoods are defined by modifications of the graphs
such as the removal or addition of an edge, rotation of an edge, and so forth. Once
a set of extremal graphs, parameterized by their order, is found, their properties are
explored with various data mining techniques, leading to conjectures, refutations
and simple proofs or ideas of proof.
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More recent applications include [31, 32, 45, 50, 55] in chemistry, [8, 29] for
finding conjectures, [16, 35] for largest eigenvalues, [23, 56, 64] for extremal values
in graphs, independence [17, 18], specialty indexes [11, 15, 19, 61] and others [13,
60, 95, 96]. See [9] for a survey with many further references.

The current list of references in the series “VNS for extremal graphs” corre-
sponds to [3, 8, 10–19, 23, 28, 29, 31, 32, 35, 45, 50, 55, 56, 60, 61, 64, 95, 96]. An-
other list of papers, not included in this series, is [4–7, 9, 30, 33, 49, 52–54, 65, 97].
Papers in these two lists cover a variety of topics:

1. Principles of the approach [28, 29] and its implementation [10];
2. Applications to spectral graph theory, e.g., bounds on the index for

various families of graphs, graphs maximizing the index subject to some
conditions [16, 19, 23, 35, 65];

3. Studies of classical graph parameters, e.g., independence, chromatic
number, clique number, average distance [3, 9, 12, 17, 18, 95, 96];

4. Studies of little known or new parameters of graphs, e.g., irregular-
ity, proximity and remoteness [4, 56];

5. New families of graphs discovered by AGX, e.g., bags, which are ob-
tained from complete graphs by replacing an edge by a path, and bugs,
which are obtained by cutting the paths of a bag [14, 60];

6. Applications to mathematical chemistry, e.g., study of chemical graph
energy, and of the Randić index [11, 15, 32, 45, 49, 50, 52, 53, 55];

7. Results of a systematic study of 20 graph invariants, which led to al-
most 1500 new conjectures, more than half of which were proved by
AGX and over 300 by various mathematicians [13];

8. Refutation or strengthening of conjectures from the literature [8, 30,
53];

9. Surveys and discussions about various discovery systems in graph
theory, assessment of the state-of-the-art and the forms of interesting
conjectures together with proposals for the design of more powerful
systems [33, 54].

3.10 Conclusions

The general schemes of variable neighborhood search have been presented and dis-
cussed. In order to evaluate research development related to VNS, one needs a list
of the desirable properties of metaheuristics.

1. Simplicity: the metaheuristic should be based on a simple and clear prin-
ciple, which should be widely applicable;
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2. Precision: the steps of the metaheuristic should be formulated in pre-
cise mathematical terms, independent of possible physical or biological
analogies which may have been the initial source of inspiration;

3. Coherence: all steps of heuristics developed for solving a particular prob-
lem should follow naturally from the metaheuristic principles;

4. Effectiveness: heuristics for particular problems should provide optimal
or near-optimal solutions for all known or at least the most realistic in-
stances. Preferably, they should find optimal solutions for most bench-
mark problems for which such solutions are known;

5. Efficiency: heuristics for particular problems should take a moderate
computing time to provide optimal or near-optimal solutions, or com-
parable or better solutions than the state-of-the-art;

6. Robustness: the performance of the metaheuristic should be consistent
over a variety of instances, i.e., not merely fine-tuned to some training
set and not so good elsewhere;

7. User-friendliness: the metaheuristic should be clearly expressed, easy to
understand and, most importantly, easy to use. This implies it should have
as few parameters as possible, ideally none;

8. Innovation: the principle of the metaheuristic and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of
application.

9. Generality: the metaheuristic should lead to good results for a wide vari-
ety of problems;

10. Interactivity: the metaheuristic should allow the user to incorporate his
knowledge to improve the resolution process;

11. Multiplicity: the metaheuristic should be able to produce several near op-
timal solutions from which the user can choose.

We have tried to show here that VNS possesses to a great extent, all of the above
properties. This framework has led to heuristics which are among the very best ones
for many problems. Interest in VNS is growing quickly. This is evidenced by the
increasing number of papers published each year on this topic. 20 years ago, only a
few; 15 years ago, about a dozen; 10 years ago, about 50, and more than 250 papers
in 2016.

Figure 3.8 shows the parallel increase of the number of papers on VNS and on the
other best known metaheuristics. Data are obtained by using the Scopus search tool,
looking for the terms “Variable Neighborhood Search” (VNS) and “Metaheuristics”
(MH). Figure 3.8 shows the number of times the terms appeared in the abstract of
papers in this database. The years used are from 2000 to 2017 but in 2017 only the
first 6 months (from January to June) are included. For comparison purposes, the
number of papers with MH is divided by 4.
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Fig. 3.8 VNS versus MH

Figure 3.9 shows the parallel increase of number of papers on VNS and on other
most known Metaheuristics. Data are collected again from the Scopus search tool to
look for the terms Variable Neighborhood Search (VNS), Tabu Search (TS), Genetic
Algorithms (GA) and Simulated Annealing (SA). For better illustration, the number
of appearances of TS, GA and SA are divided by 3, 50 and 10, respectively.

From the last figure, one can easily see that the relative increase in the number of
papers with VNS is larger than the one of other major metaheuristics, especially in
the last 5 years.

In addition, the 18th EURO Mini conference held in Tenerife in November 2005
was entirely devoted to VNS. It led to special issues of the IMA Journal of Man-
agement Mathematics in 2007 [76], European Journal of Operational Research
[68] and Journal of Heuristics [87] in 2008. After that, VNS conferences took
place in Herceg Novi—Montenegro (2012), Djerba—Tunis (2014), Málaga—Spain
(2016) and in Ouro Preto—Brazil (2017). Each meeting was covered with before-
conference Proceedings (in Electronic notes of Discrete Mathematics) and with at
least one post-conference special issue in leading OR journals: Computers and OR,
Journal of Global Optimization, IMA JMM, International Transactions of OR.
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75. L. Liberti, M. Dražić, Variable neighbourhood search for the global optimization of con-

strained NLPs, in Proceedings of GO Workshop, Almeria, 2005
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79. N. Mladenović, Formulation space search – a new approach to optimization (plenary talk), in

Proceedings of XXXII SYMOPIS’05, ed. by J. Vuleta (Vrnjacka Banja, Serbia, 2005)
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