
Chapter 18
Computational Comparison of
Metaheuristics

John Silberholz, Bruce Golden, Swati Gupta, and Xingyin Wang

Abstract Metaheuristics are truly diverse in nature—under the overarching theme of
performing operations to escape local optima, algorithms as different as ant colony
optimization, tabu search, harmony search, and genetic algorithms have emerged.
Due to the unique functionality of each type of metaheuristic, the computational
comparison of metaheuristics is in many ways more difficult than other algorithmic
comparisons. In this chapter, we discuss techniques for the meaningful computa-
tional comparison of metaheuristics. We discuss how to create and classify instances
in a new testbed and how to make sure other researchers have access to these test
instances for future metaheuristic comparisons. In addition, we discuss the disad-
vantages of large parameter sets and how to measure complicated parameter inter-
actions in a metaheuristic’s parameter space. Finally, we explain how to compare
metaheuristics in terms of both solution quality and runtime and how to compare
parallel metaheuristics.

J. Silberholz
Ross School of Business, University of Michigan, Ann Arbor, MI, USA
e-mail: josilber@umich.edu

B. Golden (�)
R. H. Smith School of Business, University of Maryland, College Park, MD, USA
e-mail: bgolden@rhsmith.umd.edu

S. Gupta
Simons Institute for the Theory of Computing, UC Berkeley, CA, USA
e-mail: swatig@alum.mit.edu

X. Wang
Engineering Systems and Design, Singapore University of Technology and Design, Singapore,
Singapore
e-mail: xingyin_wang@sutd.edu.sg

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_18

581

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_18&domain=pdf
mailto:josilber@umich.edu
mailto:bgolden@rhsmith.umd.edu
mailto:swatig@alum.mit.edu
mailto:xingyin_wang@sutd.edu.sg
https://doi.org/10.1007/978-3-319-91086-4_18


582 J. Silberholz et al.

18.1 Introduction

Metaheuristics are truly diverse in nature—under the overarching theme of perform-
ing operations to escape local optima (we assume minima in this chapter without
loss of generality), algorithms as different as ant colony optimization, tabu search,
harmony search, and genetic algorithms have emerged. Due to the unique function-
ality of each type of metaheuristic, the computational comparison of metaheuristics
is in many ways more difficult than other algorithmic comparisons. For example, if
we compare two exact solution procedures, we can focus solely on runtime. With
metaheuristics, we must compare with respect to both solution quality and runtime;
these measures are influenced by the selected parameter values. It is also the case
that, unlike simple heuristics, metaheuristics may be difficult to replicate by another
researcher.

In this chapter, we discuss techniques for the meaningful computational compar-
ison of metaheuristics. In Sect. 18.2, we discuss how to create and classify instances
(e.g., based on source (real-world vs. artificial), size (large vs. small), difficulty (hard
vs. easy), and specific instance features (such as the distribution of item weights in
bin packing) in a new testbed and how to make sure other researchers have access to
these test instances for future metaheuristic comparisons. In Sect. 18.3, we discuss
the disadvantages of large parameter sets and how to measure complicated param-
eter interactions in a metaheuristic’s parameter space. In Sects. 18.4 and 18.5, we
discuss how to compare metaheuristics in terms of both solution quality and run-
time. Finally, in Sect. 18.6, we discuss how to compare parallel metaheuristics.

We point out that we do not discuss multi-objective metaheuristics (MOMHs) in
this chapter, although many of the ideas presented here are applicable to MOMHs.
We refer the interested reader to articles [11, 29, 32, 61].

18.2 The Testbed

One of the most important components of a meaningful comparison among meta-
heuristics is the set of test instances or the testbed. The heterogeneity of test in-
stances is key to identifying instance spaces where one metaheuristic might out-
perform the other. In this section, we will highlight the nuances of using existing
testbeds, augmenting them with diverse new test instances, and using instance char-
acteristics to systematically compare metaheuristics.

18.2.1 Using Existing Testbeds

When comparing a new metaheuristic to existing ones, it is advantageous to test on
the problem instances already tested by previous papers. Then, results will be com-
parable on a by-instance basis, allowing relative gap calculations between the two



18 Computational Comparison of Metaheuristics 583

heuristics. Additionally, the trends in the performance of the new metaheuristic on
existing testbeds can help in providing insights to the behavior of the metaheuristic.

18.2.2 Developing New Testbeds

While ideally testing on an existing testbed should be sufficient, there are many
cases when this is either not possible or not sufficient. For instance, when writing
a metaheuristic for a new problem, there will be no testbed for that problem, so a
new one will need to be developed. In addition, even on existing problems where
heuristic solutions were tested on non-published, often randomly generated problem
instances, such as those presented in [23] and [44], a different testbed will need to
be used. Last, if the existing testbed is insufficient (often due to containing instances
that are too simple or too homogeneous) to effectively test a heuristic, a new one will
need to be developed. Given the increases in available computing power observed
through time, it is often the case that a difficult instance from 10 years ago may be
simple today, necessitating the development of more challenging instances.

18.2.2.1 Goals in Creating the Testbed

The goals of a problem suite include mimicking real-world problem instances while
providing test cases that are of various types and difficulty levels. Further, if one
metaheuristic outperforms all others on the testbed then it is important to add new
test instances, as one would expect that no metaheuristic can be best on all instances
by the no free lunch theorems [67]. As an example of the value of a broad testbed,
the authors of [19] show that for the NP-hard Max-Cut and Quadratic Unconstrained
Binary Optimization problems, 23 heuristics out of the 37 heuristics they tested were
not the best heuristic for any instance in the standard testbed but outperformed all the
other heuristics on at least one instance when the standard testbed was expanded to
include a more heterogeneous set of instances. Thus, the testbed used for evaluating
and comparing heuristics or more sophisticated metaheuristics must be heteroge-
neous so that the performance over the testbed reflects the weaknesses and strengths
of metaheuristics.

In order to generate heterogenous test instances, it is common to define a set of
instance features and to cover the feasible feature space. For graph-related problems,
common practice in the literature includes using various random graph generators
like the machine-independent generator Rudy [51], the Python NetworkX library
[25], and the Culberson random graph generators [15]. These random graph genera-
tors can be sampled appropriately such that the constructed instances have a desired
range of various feature values, like average degree, connectivity, etc. To estimate
which types of instances should be included in a testbed, one can either visualize the
instance space projected down to a two-dimensional plane across the most predictive
features [55] to check for instance types that are underrepresented or estimate the



584 J. Silberholz et al.

coverage of normalized features (in [0,1]) as the fraction of the interval covered by
the testbed[19]. The missing feature values can then be included in the testbed us-
ing appropriately parameterized random graph generation. In a recent line of work,
genetic algorithms have also been used to evolve random instances until they have
features in the desired range [55].

Another key requirement of the testbed that is especially important in the testing
of metaheuristics is that large problem instances must be tested. For small instances,
optimal solution techniques often run in reasonable runtimes and they generate a
guaranteed optimal solution. It is, therefore, critical that metaheuristic testing oc-
curs on the large problems for which optimal solutions cannot be calculated in rea-
sonable runtimes using known techniques. As discussed in [28], it is not enough to
test on small problem instances and extrapolate the results for larger instances; algo-
rithms can perform differently in both runtime and solution quality on large problem
instances.

While it is desirable that the new testbed be based on problem instances found
in industrial applications of the problem being tested (like the TSPLib [50]), it is
typically time intensive to do this sort of data collection. Often real-world data is
proprietary and, therefore, difficult to obtain and potentially not publishable [45].
Still, capturing real aspects of a problem is important in developing a new testbed.
For example, in the problem instances found in [21], the clustering algorithm placed
nodes in close proximity to each other in the same cluster, capturing real-life char-
acteristics of this problem.

It is more common to create a testbed based on existing well-known problem in-
stances than it is to create one from scratch. For example, many testbeds have been
successfully made using instances from the TSPLib [50]. Recent examples include
testbeds both for variants of the Traveling Salesman Problem (TSP) like the Prize-
Collecting TSP with a Budget Constraint [46] or the TSP with Time-Dependent
Service Windows [62] as well as a wide variety of other problems like the Hamilto-
nian p-median problem [20] and the graph search problem [36]. It is also beneficial
to use well-studied reductions of NP-hard problems [33] to combine test instances
of various interesting problems. For example, the SATLIB benchmark library for
the Satisfiability Problem contains SAT-encoded benchmark instances for the Graph
Coloring Problem [31], which is also NP-hard.

18.2.2.2 Accessibility of New Test Instances

When creating a new testbed, the focus should be on providing others access to
the problem instances. This will allow other researchers to more easily make com-
parisons, ensuring the problem instances are widely used. One way to ensure this
would be to create a simple generating function for the problem instances. For ex-
ample, the clustering algorithm proposed in [21] that converted TSPLib instances
into clustered instances for the Generalized Traveling Salesman Problem was sim-
ple, making it easy for others to create identical problem instances. Additionally,



18 Computational Comparison of Metaheuristics 585

publishing problem instances in the paper [40] or on the Internet [19, 45] are other
common ways to make problem instances accessible.

18.2.2.3 Problem Instances with Known Optimal Solutions

One problem in the analysis of metaheuristics, as discussed in more detail in
Sect. 18.4, is finding optimality gaps for the procedures. Even when using advanced
techniques, it is typically difficult to determine optimal solutions for large problem
instances; indeed, this motivates the use of metaheuristics. A way to minimize the
difficulty in this step is to construct instances where optimal or near-optimal solu-
tions are known, often via geometric construction techniques or reduction from an-
other optimization problem. This removes the burden on a metaheuristics designer
to also implement an exact approach, relaxation results, or a tight lower bound. In-
stead, the designer can use the specially designed problem instances and provide a
good estimate of the error of each metaheuristic tested.

A number of papers in the literature have used this approach. For instance, in
[8], problem instances for the split delivery vehicle routing problem were generated
with customers in concentric circles around the depot, making estimation of optimal
solutions possible visually. Other examples of this approach are found in [7, 18, 37–
39].

18.2.3 Problem Instance Classification

Apart from identifying instance types that are underrepresented in the testbed, prob-
lem instance classification is critical to the proper analysis of metaheuristics. It is
first important to identify features or metrics that might correlate well with the al-
gorithmic performance, and then extensively test and report performance over in-
stances that have a wide spread across these metrics (see Sect. 18.2.2.1 for expand-
ing the testbed). The choice of the features depends on the problem domain; for in-
stance, for graph problems one can consider the number of nodes, density of edges,
spectral analysis of the adjacency matrix [10], eigenvalues of the Laplacian, or pla-
narity [56]. Another technique is to use predictive features in the study of phase
transitions to identify hard instances for various NP-hard problems. For example,
the k-colorability problem has been shown to undergo a phase-transition on regular
random graphs with finite connectivity dependent on the average degree of the ver-
tices [35]. Typically, heuristics are known to take a long time on instances that are
closer to the phase transitions (thus providing a proxy for hard instances). Recently,
the solutions from fast heuristics for a related NP-hard problem have been used to
predict heuristic performance on a different problem [19].

A thorough comparison of performance of heuristics over a broad heterogenous
testbed opens up many possibilities for further analysis. Machine learning tech-
niques like classification and regression trees can be used to interpret heuristic per-



586 J. Silberholz et al.

formance for different instance types [19]. Especially in testbeds based on real-
world data, this classification of problem instances and subsequent analysis could
help algorithm writers in industry with a certain type of dataset determine which
method will work the best for them.

18.3 Parameters

One way to compare two heuristics is to compare their complexity; if two algo-
rithms produce similar results but one is significantly simpler than the other, then
the simpler of the two could be considered superior. Algorithms with a low degree
of complexity have a number of advantages, including being simple to implement in
an industrial setting, being simple to reimplement by researchers, and being simpler
to explain.

A number of measures of simplicity exist. Reasonable metrics include the num-
ber of steps of pseudocode needed to describe the algorithm or the number of lines
of code needed to implement the algorithm. However, these metrics are not particu-
larly useful, since they vary based on programming language and style in the case of
the lines of code metric and pseudocode level of detail in the case of the pseudocode
length metric. A more meaningful metric for metaheuristic complexity is the num-
ber of parameters used in the metaheuristic, as a larger number of parameters makes
it harder to analyze the method.

Parameters are the configurable components of an algorithm that can be changed
to alter the performance of that algorithm. Parameters can either be set statically
(for example, creating a genetic algorithm with a population size of 50) or based on
the problem instance (for example, creating a genetic algorithm with a population
size of 5

√
n, where n is the number of nodes in the problem instance). In either of

these cases, the constant value of the parameter or the function of problem instance
attributes used to generate the parameter must be set to run the procedure.

Different classes of metaheuristics have a number of parameters that must be
set before algorithm execution. Consider Table 18.1, which lists basic parameters
required for major types of metaheuristics. Though these are guidelines for the min-
imum number of parameters typical in different types of algorithms, in practice,
most metaheuristics have more parameters. For instance, a basic tabu search proce-
dure can have just one parameter, the tabu list length. However, some procedures
have many more than that one parameter. The tabu search for the vehicle routing
problem presented in [69] uses 32 parameters. Likewise, algorithms can have fewer
than the “minimum” number of parameters by combining parameters with the same
value. For instance, the genetic algorithm for the minimum label spanning tree prob-
lem in [68] uses just one parameter, which functions to both control the population
size and to serve as a termination criterion.



18 Computational Comparison of Metaheuristics 587

Table 18.1 Popular metaheuristics and their standard parameters

Name Parameters

Ant colony optimization Pheromone evaporation parameter
Pheromone weighting parameter

Genetic algorithm Crossover probability
Mutation probability
Population size

Harmony search Distance bandwidth
Memory size
Pitch adjustment rate
Rate of choosing from memory

Simulated annealing Annealing rate
Initial temperature

Tabu search Tabu list length

Variable neighborhood search Maximum neighborhood size

All metaheuristics also must include a termination criterion

18.3.1 Parameter Space Visualization and Tuning

The effort needed to tune or understand a metaheuristic’s parameters increases as
the number of parameters increases. A brute-force technique for parameter tuning
involves testing m parameter values for each of the n parameters, a procedure that
should test mn configurations over a subset of the problem instances. Assuming we
choose to test just 3 values for each parameter, we must test 9 configurations for an
algorithm with 2 parameters and 2187 values for an algorithm with 7 parameters.
While this number of configurations is likely quite reasonable, the number needed
for a 32-parameter algorithm, 1,853,020,188,851,841, is clearly not reasonable. The
size of the parameter space for an algorithm with a large number of parameters
expands in an exponential manner, making the search for a good set of parame-
ters much more difficult as the number of parameters increases. While, of course,
there are far better ways to search for good parameter combinations than brute-force
search, such as automatic parameter tuning packages like irace [41], the size of
the search space still increases exponentially with the number of parameters, mean-
ing a large number of parameters makes this search much more difficult.

A large number of parameters also makes the parameter space much harder to
visualize or understand. As a motivating example, consider the relative ease with
which the parameter space of an algorithm with two parameters can be analyzed. For
example, we applied the two-parameter metaheuristic in [54] for solving the Gen-
eralized Orienteering Problem on a few random problems from the TSPLib-based
large-scale Orienteering Problem dataset considered in that paper. To analyze this



588 J. Silberholz et al.

3600

3900

4200

4500

4800

5100

5400

3 4 5

Parameter i

P
ar

am
et

er
 t

4

5

6

Error (%)

Fig. 18.1 Depiction of solution quality of a metaheuristic for the Generalized Orienteering Prob-
lem over its two-dimensional parameter space. The x-axis is the parameter i at three separate values
and the y-axis is the parameter t over a large range of values. The colors in the figure represent the
optimality gap of the metaheuristic at the indicated parameter setting

algorithm, we chose a number of parameter configurations in which each parameter
value was close to the parameter values used in that paper. For each parameter set,
the algorithm was run 20 times on each of five randomly selected problem instances
with known optima from all the TSPLib-based instances used.

The resulting image, shown in Fig. 18.1, is a testament to the simplicity of anal-
ysis of an algorithm with just two parameters. In this figure, different values of
the parameter i are shown on the x-axis, while different values of the parameter t
are shown on the y-axis. Parameter i is an integral parameter with small values, so
results are plotted in three columns representing the three values tested for that pa-
rameter: 3, 4, and 5. For each parameter set (a pair of i and t), a rectangle is plotted
with a color indicating the average optimality gap of the algorithm over the 20 runs



18 Computational Comparison of Metaheuristics 589

for each of the five problem instances tested. It is immediately clear that the two
lower values tested for i, 3 and 4, are superior to the higher value of 5 on the prob-
lem instances tested. Further, it appears that higher values of t are preferred over
lower ones for all of the values of i tested. This sort of simplistic visual analysis
becomes more difficult as the dimensionality of the parameter space increases.

18.3.2 Parameter Interactions

Parameter space visualization and tuning are not the only downside of metaheuris-
tics with a large number of parameters. It is also difficult to analyze parameter inter-
actions in metaheuristics with a large set of parameters. These complex interactions
might lead to, for instance, multiple locally optimal solutions in the parameter space
in terms of solution quality. In a more practical optimization sense, this concept of
parameter interaction implies that optimizing parameters individually or in small
groups will become increasingly ineffective as the total number of parameters in-
creases.

Parameter interaction is a topic that has been documented in a variety of works.
For instance, in [16] the authors observe non-trivial parameter interactions in genetic
algorithms with just three parameters. These authors note that the effectiveness of a
given parameter mix is often highly based on the set of problem instances consid-
ered and the function being optimized, further noting the interdependent nature of
the parameters. To a certain extent, it is often very difficult to avoid parameter inter-
actions such as these. In the case of genetic algorithms, for instance, a population
size parameter, crossover probability parameter, and mutation probability parame-
ter are typically used, meaning these algorithms will often have at least the three
parameters considered in [16]. However, there have been genetic algorithms devel-
oped that operate using only one parameter [68] or none [52, 53], eliminating the
possibility of parameter interactions.

Given three or more parameters, an effective and efficient design of experiments
method is the Plackett-Burman method [48], which tests a number of configurations
that is linear in the number of parameters considered. Though this method is lim-
ited in that it can only show second-order parameter interactions (the interactions
between pairs of parameters), this is not an enormous concern as most parameter
interactions are of the second-order variety [43].

18.3.3 Fair Testing Involving Parameters

Though the effect of parameters on algorithmic simplicity is an important considera-
tion, it is not the only area of interest in parameters while comparing metaheuristics.
The other major concern is one of fairness in parameter tuning—if one algorithm is
tuned very carefully to the particular set of problem instances on which it is tested,



590 J. Silberholz et al.

this can make comparisons on those instances unfair. Instead of tuning parameters
on all the problem instances used for testing, a fairer methodology for parameter
setting involves choosing a representative subset of the problem instances to train
parameters on, to avoid overtraining the data. A full description of one such method-
ology can be found in [14]. To ensure reproducibility of results, the resultant param-
eters, which are used to solve the test instances, must also be published along with
the running time and the quality of solutions obtained.

18.4 Solution Quality Comparisons

While it is important to gather a meaningful testbed and to compare the metaheuris-
tics in terms of simplicity by considering their number of parameters, one of the
most important comparisons involves solution quality. Metaheuristics are designed
to give solutions of good quality in runtimes better than those of exact approaches.
To be meaningful, a metaheuristic must give acceptable solutions, for some defini-
tion of acceptable.

Depending on the application, the amount of permissible deviation from the op-
timal solution varies. For instance, in many long-term planning applications or ap-
plications critical to a company’s business plan, the amount of permissible error is
much lower than in optimization problems used for short-term planning or for which
the solution is tangential to a company’s business plan. Even for the same problem,
the amount of permissible error can differ dramatically. For instance, a parcel com-
pany planning its daily routes to be used for the next year using the capacitated ve-
hicle routing problem would likely have much less error tolerance than a planning
committee using the capacitated vehicle routing problem to plan the distribution of
voting materials in the week leading up to Election Day.

As a result, determining a target solution quality for a combinatorial optimization
problem is often difficult or impossible. Therefore, when comparing metaheuristics
it is not sufficient to determine if each heuristic meets a required solution quality
threshold; comparison among the heuristics is necessary.

18.4.1 Solution Quality Metrics

To compare two algorithms in terms of solution quality, a metric to represent the so-
lution quality is needed. In this discussion of the potential metrics to be selected, we
assume that solution quality comparisons are being made over the same problem in-
stances. Comparisons over different instances are generally weaker, as the instances
being compared often have different structures and almost certainly have different
optimal values and difficulties.

Of course, the best metric to use in solution quality comparison is the deviation
of the solutions returned by the algorithms from optimality. Finding the average
percentage error over all problems is common practice, because this strategy gives



18 Computational Comparison of Metaheuristics 591

equal weight to each problem instance (instead of, for instance, giving preference to
problem instances with larger optimal solution values).

However, using this metric requires knowledge of the optimal solution for ev-
ery problem instance tested. This is an assumption that likely cannot always be
made except in the case of instances constructed with known optima, as described in
Sect. 18.2.2.3. If exact algorithms can compute optimal solutions for every problem
instance tested in reasonable runtimes, then the problem instances being considered
are likely not large enough.

This introduces the need for new metrics that can provide meaningful informa-
tion without access to the optimal solution for all (or potentially any) problem in-
stances. Two popular metrics that fit this description are deviation from best-known
solutions for a problem and deviation between the algorithms being compared.

Deviation from best-known solution or tightest lower bound can be used on prob-
lems for which an optimal solution was sought using an exact approach, but optimal
solutions were not obtained for some problem instances within a predetermined time
limit. In these cases, deviation from best-known solution or tightest relaxation is
meaningful because for most problem instances the best-known solution or tightest
relaxation will be a near-optimal solution. An example of the successful application
of this approach can be found in [22]. In this paper, the authors implement three
approaches for solving the multilevel capacitated minimum spanning tree problem.
One of these approaches is a metaheuristic, another uses mixed integer program-
ming, and the third is a linear programming relaxation. Though the optimal solution
was not provably computed for the largest problem instances due to the excessive
runtime required, the low average deviation of the metaheuristic from the optimal
solution on smaller problem instances (0.3%) and the moderate average deviations
from the relaxed solutions over all problem instances (6.1%) conveyed a notion of
the solution quality achieved by the metaheuristic.

The deviation from best-known solution could be used for problems for which
no optimal solution has been published, though the resulting deviations are less
meaningful. It is unclear in this case how well the metaheuristic performs without
an understanding of how close the best-known solutions are to optimal solutions.
One way to construct such a bound is to consider a relaxation PR of the original
problem P. Typically PR is much easier to solve than P, and the optimal solution of
PR provides a lower (upper) bound to the minimization (maximization) problem P.
The gap from optimality of any solution to P can then be bounded using the gap
from the optimal solutions to the relaxed problem PR. We refer the reader to [64] for
an introduction to such techniques.

Though the metric of deviation between the metaheuristics being compared
also addresses the issue of not having access to optimal solutions, it operates
differently—any evaluation of solution quality is done in relation to the other meta-
heuristic(s) being considered. This method has the advantage of making the compar-
ison between the metaheuristics very explicit—all evaluations, in fact, compare the
two or more procedures. However, these comparisons lack any sense of the actual
error of solutions. Regardless of how a metaheuristic fares against another meta-
heuristic, its actual error as compared to the optimal solution is unavailable using
this metric. Therefore, using a metric of deviation from another algorithm loses



592 J. Silberholz et al.

much of its meaningfulness unless accompanied by additional information, such as
optimal solutions for some of the problem instances, relaxation results for the prob-
lem instances, or deviation from tight lower bounds (to give a sense of the global
optimality of the algorithms).

When comparing two stochastic metaheuristics, whenever possible one should
generate a number of replicates (say 10) for each instance. For each metaheuristic,
one should record the average, worst, and best solutions, as well as the standard
deviation. Furthermore, one should try to compare the distribution of solutions ob-
tained from each metaheuristic. Statistical tests might be applied to compare the
average or minimum solution values. See [8] for an interesting comparison based
on the binomial distribution and [49] for more on statistical analysis.

18.4.2 Comparative Performance on Different Types of Problem
Instances

When comparing the performance of a portfolio of heuristics, it is often useful to
identify instance types where one heuristic outperforms all the others. As noted ear-
lier, such a comparison does not require the knowledge of the optimal solutions for
hard problems and the comparison can be made with respect to the best solution
attained by any heuristic in the portfolio. A comparative analysis highlighting the
weaknesses and strengths of heuristics in the instance space is known as an algorith-
mic footprint [13]. Instances are represented as points in a high dimensional feature
space, and these points can be colored on a continuous scale (e.g., a gradation from
red to blue where red depicts worst performance and blue depicts best performance)
in order to reveal heuristic performance. It helps to visualize the instance space
on a 2-dimensional plane, by performing a principal component analysis [58] or
self-organizing maps [57]. Important insights into the effectiveness of various algo-
rithmic techniques can be gained by analyzing the footprints of classes of heuristics,
for instance, evolutionary, tabu search, simulated annealing approaches, etc.

Interpretable machine learning models like regression trees can also be used
to identify problem instances where a given heuristic performs better or worse,
using instance features or metrics that are the most predictive of performance (see
Sect. 18.2.3 for details). Such heuristic-specific models make it harder to directly
compare the footprints of different heuristics, since the most significant features
used in each model might be different across heuristics. However, the results of such
an analysis remain interpretable without losing much information due to dimension
reduction [19].

18.5 Runtime Comparisons

One can find examples in the metaheuristics literature where a metaheuristic A out-
performs another metaheuristic B in terms of solution quality using the metrics de-
scribed in Sect. 18.4 but was also run for a substantially longer time before termina-



18 Computational Comparison of Metaheuristics 593

tion. This makes it challenging to interpret the comparison of A and B because most
metaheuristics will continue making progress toward optimality if they are allowed
to run for longer; the reader cannot determine if the solution quality difference is due
to the additional computational resources given to A or due to superior algorithmic
performance.

To address this concern, researchers must allocate the same amount of compu-
tational resources when comparing heuristics. One way to do this is to limit the
heuristics to the same fixed runtime, an approach that we describe in Sects. 18.5.1
and 18.5.2. Runtime growth rate is discussed in Sect. 18.5.3. Alternatives to runtime-
based limits are described in Sect. 18.5.4.

18.5.1 Runtime Limits Using the Same Hardware

When making a comparison between metaheuristics A and B using a fixed runtime
limit for each problem instance, the best approach is to get the source code for each
algorithm, compile them with the same compilation flags, and run both algorithms
on the same computer. Since the hardware and software environments are the same
for both metaheuristics, one can argue that the runtime limit gives each the same
computational resources, enabling us to focus on solution quality differences when
comparing A and B. However, this technique for imposing runtime limits is often
not possible.

One case in which it is not possible is if the algorithms were programmed in dif-
ferent languages. This implies that their runtimes are not necessarily directly com-
parable. Though attempts have been made to benchmark programming languages
in terms of speed (see, for instance, [6]), these benchmarks are susceptible to the
types of programs being run, again rendering any precise comparison difficult. Fur-
ther invariants in these comparisons include compiler optimizations. The popular C
compiler gcc has over 100 optimization flags that can be set to fine-tune the perfor-
mance of a C program. While the technique of obtaining a scalar multiplier between
programming languages will allow comparisons to be more accurate within an order
of magnitude between algorithms coded in different programming languages, these
methods cannot provide precise comparisons.

It is sometimes not possible to obtain the source code for the algorithm being
compared to. The source code may have been lost (especially in the case of older
projects) or the authors may be unwilling to share their source code. Another way
to proceed when comparing heuristics with a runtime limit is to reimplement the
other code in the same language as your code and run it on the same computer on
the same problem instances. However, this approach suffers from two major weak-
nesses. First, the exposition of some algorithms is not clear on certain details of the
approach, making an exact reimplementation difficult. Second, there is no guarantee
that the approach used to reimplement another researcher’s code is really similar to
their original code. For instance, the other researcher may have used a clever data
structure or algorithm to optimize a critical part of the code, yielding better runtime
efficiency. As there is little incentive for a researcher to perform the hard work of



594 J. Silberholz et al.

optimizing the code to compare against, but much incentive to optimize one’s own
code, at times reimplementations tend to overstate the runtime performance of a
new algorithm over an existing one (see [5] for a humorous view of issues such as
these). One way to address these concerns is to make the implementations of pre-
viously published heuristics open source, so that an active research community can
optimize implementations as required.

18.5.2 Runtime Limits Using Different Hardware

As indicated previously, it can be challenging to compare two heuristics using a
runtime-based termination criterion without access to source code or reimplemen-
tation. One approach is to compare the performance of a metaheuristic A to the
published results of another metaheuristic B on the publicly available problem in-
stances reported in B’s publication. While the instances being tested are the same
and the algorithms being compared are the algorithms as implemented by their de-
velopers, the computer used to test these instances is different, and the compiler and
compiler flags used are likely also not the same. This approach has the advantage of
ease and simplicity for the researcher—no reimplementation of other algorithms is
needed. Further, the implementations of each algorithm are the implementations of
their authors, meaning there are no questions about implementation as there were in
the reimplementation approach.

However, the problem then remains to provide a meaningful comparison between
the two runtimes. Researchers typically solve this issue by using computer runtime
comparison tables such as the one found in [17] to derive approximate runtime mul-
tipliers between the two computers. These comparison tables are built by running
a benchmarking algorithm (in the case of [17], this algorithm is a system of linear
equations solved using LINPACK) and comparing the time to completion for the
algorithm. However, it is well known that these sorts of comparisons are impre-
cise and highly dependent on the program being benchmarked, and the very first
paragraph of the benchmarking paper mentions the limitations of this sort of bench-
marking: “The timing information presented here should in no way be used to judge
the overall performance of a computer system. The results only reflect one problem
area: solving dense systems of equations.” In fact, [30] argues that new and more
relevant benchmark codes in the field of combinatorial optimization (perhaps based
on metaheuristics for the Traveling Salesman Problem) would be quite useful. Be-
yond limitations of the code being benchmarked, these scaling factors do not take
into account RAM, operating system, compiler and its optimization level, and other
factors known to impact the runtime of metaheuristics. Hence, the multipliers gath-
ered in this way can only provide a rough idea of runtime performance, clearly a
downside of the approach. In situations where the systems used for testing seem
roughly comparable, there may be no benefit to performing runtime scaling in this
way, and indeed the scaling may only introduce noise to the comparison.



18 Computational Comparison of Metaheuristics 595

18.5.3 Runtime Growth Rate

Regardless of the comparison method used to compare algorithms’ runtimes, the
runtime growth rate can be used as a universal language for the comparison of run-
time behaviors of two algorithms. While upper bounds on runtime growth play an
important role in the discussion of heuristic runtimes, metaheuristic analysis often
does not benefit from these sorts of metrics. Consider, for instance, a genetic algo-
rithm that terminates after a fixed number of iterations without improvement in the
solution quality of the best solution to date. No meaningful worst-case analysis can
be performed, as there could be many intermediate best solutions encountered dur-
ing the metaheuristic’s execution. (For example, the nearest neighbor heuristic for
the TSP is a simple heuristic with an unambiguous stopping point. It has a running
time that grows with n2 in the worst case, where n is the number of nodes. For meta-
heuristics such as tabu search, simulated annealing, genetic algorithms, etc., there is
no unambiguous stopping point.)

An alternative approach to asymptotic runtime analysis for metaheuristics is fit-
ting a curve to the runtimes measured for each of the algorithms across a range of
problem instance sizes. These results help indicate how an algorithm might perform
as the problem size increases. Though there is no guarantee that trends will continue
past the endpoint of the sampling (motivating testing on large problem instances) or
on problem instances with different structural properties than the ones used for the
analysis, runtime trends are key to runtime analyses. Even if one algorithm runs
slower than another on small- or medium-sized problem instances, a favorable run-
time trend suggests the algorithm may well perform better on large-sized problem
instances, where metaheuristics are most helpful. Curve-fitting for runtime analysis
has been recommended or used in a number of metaheuristics articles [9, 12, 66].

18.5.4 Alternatives to Runtime Limits

The focus thus far has been on using runtime limits to control the computational re-
sources allocated to each metaheuristic. This sounds like a fair comparison, but, as
[30] points out, the results are not reproducible. Another researcher, using a slightly
different computing environment, might obtain distinctly different results. Instead of
controlling computational resources with runtime limits, codes might be designed
to count easy-to-measure basic combinatorial operations, such as the number of
neighborhoods searched or the number of branching steps. Then, solution quality
and running time can be reported after a stopping rule of at most k basic combinato-
rial operations, as recommended in [1, 30]. A number of studies compare heuristic
runtimes using representative operation counts or give all heuristics the same budget
of these operations [2, 3, 47].

Beyond improved reproducibility, there are several clear advantages to this ap-
proach over runtime comparisons. As described in [1], it removes the invariants of
compiler choice, programmer skill, and power of computation platform. However,
this approach suffers from the fact that it is often difficult to identify good oper-



596 J. Silberholz et al.

ations that each algorithm being compared will implement. Also, some operations
may take longer than others. The only function sure to be implemented by every pro-
cedure is the evaluation of the function being optimized. As a result, comparisons of
this type often only compare on the optimization function, losing information about
other operations, which could potentially be more expensive or more frequently
used. As a result, in the context of metaheuristic comparison, this technique is best
if used along with more traditional runtime comparisons.

A related approach is to predetermine a percentage or several percentages above
a well-established tight lower bound (e.g., the Held and Karp TSP lower bound)
and compare metaheuristics based on how long each one takes to reach these targets
(see [26, 27] for details). A maximum runtime is typically specified. Of course,
these tight lower bounds are often difficult to obtain. We point out that this notion of
setting a level of solution quality and comparing runtimes is used in the definition of
speedup for parallel algorithms (e.g., see Fig. 18.2 in Sect. 18.6.1). It has also been
used with MOMHs [29].

18.6 Parallel Algorithms

Until 15 or so years ago, the use of parallel computers was largely restricted to com-
puter scientists at major research universities or national laboratories; they were the
only ones with access to these resources. More recently, parallel computing has be-
come a very practical tool in the computational sciences (and in industry). In this
section, we devote our attention to the use of parallel computing in metaheuristic
optimization and, in particular, to the theme of assessing the relative performance
of metaheuristic algorithms. For example, suppose we have a serial (or sequential)
metaheuristic (called A), a parallel metaheuristic (called B) designed to run on m
processors, and another parallel metaheuristic (called C) designed to run on n pro-
cessors. How should we compare the performance of these three metaheuristics?
What are the right metrics to look at and report? Accuracy, runtime, and cost of
computation are measures that come to mind, but some of these issues are more
subtle than they may seem at first glance.

Furthermore, there are at least two key scenarios to consider. In the first, we have
access to the three codes (A, B, and C) and we can fully control the computational
experiments. That is, we can select the benchmark instances and the experimental
environment (computer, network protocol, operating system, etc.). In the second, we
have access to the literature but not the codes themselves. The three codes were run
on three different machines and in different experimental environments at different
times. How should we perform a computational comparison that is fair, revealing,
and informative?

This topic will be the focus of this section. Although we will offer some detailed
suggestions, we point out that our recommendations are tentative. This is a topic of
discussion that has not been widely covered in the literature. Two recent exceptions
deal specifically with parallel genetic algorithms [4, 42].



18 Computational Comparison of Metaheuristics 597

18.6.1 Evaluating Parallel Metaheuristics

Although parallel algorithms have been proposed and analyzed with respect to ge-
netic algorithms, the operations research community has been slow to take advan-
tage of this readily available technology. This is somewhat surprising, since most
modern desktop computers already have CPUs with at least four cores, and the num-
ber of cores will surely increase over the next few years. In addition, new research
from M.I.T. by [59] seeks to make it easier to write parallel computer programs.

The motivation behind parallel computing is to reduce the elapsed or wall-clock
time needed to solve a particular problem or problem instance. In other words, we
want to solve larger problems in minutes or hours, rather than weeks or months.
For some applications, parallel computing may be the only way to solve a problem.
For example, nearly 400 computers were used to create the 2017 NFL schedule
[34]; the elapsed time to solve the problem on a single machine would have been
prohibitively long.

Given the importance of elapsed time, speedup is a key metric in evaluating par-
allel algorithms. A standard speedup metric is given by

Sn =
E(T1)

E(Tn)

where E(Tn) is the mean parallel execution time of a given task using n proces-
sors and E(T1) is the mean serial execution time of the same task. Numerous other
measures of speedup are discussed in Chapter 2 of [42] and in [60].

20

19

18

17

16

15

O
b

je
ct

iv
e 

va
lu

e

14

13

12

11

10
0 100 200 300 400

Time (s)
500 600

8 processors
16 processors
32 processors
64 processors

700 800

Fig. 18.2 Average solution trajectories

We will illustrate the notion of speedup in Fig. 18.2 where four trajectories are
shown for an algorithm running with four different numbers of processors (8, 16,
32, and 64). Each trajectory (solution value improvement over time) represents an



598 J. Silberholz et al.

average over 20 runs of a stochastic metaheuristic. This figure is an adaptation of
several figures in [24]. For example, we observe that the trajectories for 64 proces-
sors and 16 processors can obtain the same low objective value of about 11.0. The
latter requires 400 s vs. 100 s for the former. This reduction in elapsed or wall-clock
time is the key motivation behind parallel computing.

18.6.2 Comparison When Competing Approaches Can Be Run

We first consider the computational comparison of a parallel metaheuristic against
other metaheuristics (either serial or parallel) when we are able to run all the relevant
procedures. As in Sect. 18.5, this is the ideal scenario for computational compari-
son, because we can test all the procedures on a wide range of test instances and
using the same computing environment. We can see how well each code performs
with respect to quality of solution as we increase a predetermined limit on elapsed
runtime. In addition, we are better able to specify most of the key characteristics
of each metaheuristic. However, in practice, such a comparison might not be pos-
sible due to unavailability of the source code for competing approaches or due to
difficulties in getting that code to work in one’s own computing environment.

In comparing two parallel metaheuristics, ideally each metaheuristic would be
run with the same number of processors and the same limit on elapsed runtime.
Then, solution qualities could be directly compared. However, parallel algorithms
are often designed for a specific computer environment with a pre-determined num-
ber of processors, so it may not be possible to run them with the exact same number
of processors. In some parallel algorithms, all the processors essentially perform the
same task. In more heterogeneous parallel algorithms, different processors play dif-
ferent roles. For example, in [24] some processors perform local search, while others
solve set-covering problems. In addition, there is a master processor responsible for
controlling the flow and timing of communication. It also coordinates the search for
the best set of vehicle routes and tries to ensure that bottlenecks are avoided or min-
imized. The relative numbers of the three types of processors are determined in the
algorithm design process; the goal is to maximize the performance of the parallel al-
gorithm. An algorithm designed to run on 129 processors may not make sense on 29
processors. Even if it does run, it is likely to be a substantially different algorithm.
In such scenarios, it may only be possible to run the two parallel metaheuristics with
a similar number of processors.

Now suppose we want to compare a serial (stochastic) metaheuristic and a par-
allel metaheuristic that runs on n processors. While we could simply run each pro-
cedure for the same elapsed time, this provides an unfair advantage to the parallel
metaheuristic, which uses more processors. To perform a more evenhanded compar-
ison, we could instead build a simple parallel algorithm on n processors for the serial
metaheuristic, simply running the procedure with a different random seed on each of
the n processors and then taking the best of the n solutions produced. Furthermore,
we could give each of the two (now) parallel algorithms t units of elapsed time



18 Computational Comparison of Metaheuristics 599

and compare the resulting solution values. This approach can be implemented using
software such as the SNOW package in R (see [63] for details). Equivalently (from
a conceptual point of view), we could run the serial code n times in succession, ide-
ally allowing t units of time per run. Next, we would record the best of the n solution
values. Of course, if the serial metaheuristic is deterministic, this will not work.

18.6.3 Comparison When Competing Approaches Cannot Be Run

Given that source code is often unavailable for heuristics published in the literature,
it is often the case that a new parallel metaheuristic must be compared against pro-
cedures that cannot be further tested. In this case, the comparison must be based on
published information about the competing metaheuristics.

First, consider the comparison of a new parallel metaheuristic (A) against a par-
allel metaheuristic (B) published in the literature. Assume B was tested using n
processors and that information was published about average elapsed runtimes and
solution qualities on a testbed of problem instances. Following our approach from
Sect. 18.6.2, we would ideally like to test A on the same instances for the same
elapsed runtime using n processors and the same hardware configuration. However,
it is very unlikely that we have access to the same hardware that was used in the pub-
lished study. Instead, we might scale the elapsed runtimes of the procedures based
on the hardware used, as described in Sect. 18.5.2. Such scaling should be done with
a good deal of caution—in addition to the limitations described in Sect. 18.5.2, the
scaling also does not control for details of the communication network connecting
the processors, which can also have a significant impact on the performance of a
parallel algorithm. As discussed in Sect. 18.6.2, additional complications may arise
if metaheuristic A cannot be run on exactly n processors; in such cases, it may only
be possible to test on approximately the same number of processors.

Next, consider the comparison of a new stochastic serial metaheuristic (A)
against a parallel metaheuristic (B) published in the literature. Again, assume that
B was tested using n processors and that information was published about average
elapsed runtimes and solution qualities on a testbed of problem instances. Follow-
ing our approach from Sect. 18.6.2, we “parallelize” A by running it with different
random seeds on n different processors and returning the best result from the n in-
dependent runs. Ideally, we would perform our comparison by running each of the
n copies of A for the elapsed time that was reported by B, using the same hardware.
As before, the same hardware is likely unavailable, so some form of elapsed time
scaling might be warranted.

We think this approach is more equitable than comparing the solution of B to
the solution obtained by running A once with elapsed time equal to the total CPU
time (elapsed runtime summed across all processors) of B. Under this alternative ap-
proach to comparing metaheuristics, both metaheuristics have the same total CPU
time but A is given more elapsed time than B. Having a larger elapsed time than B
might be especially beneficial to metaheuristic A if it is an evolutionary procedure



600 J. Silberholz et al.

that slowly evolves toward high-quality solution spaces, as such procedures might
not find good solutions if run many times for a short runtime, but might find better
solutions if run once for an extended period of time. Meanwhile, we would expect
little difference between the two evaluation approaches if metaheuristic A is a proce-
dure that makes frequent random restarts, e.g., an iterated local search metaheuristic
with random restarts.

It is also unfair, by extension, to ignore elapsed runtime and only consider to-
tal CPU time when comparing serial and parallel metaheuristics published in the
literature, a comparison approach that has been used previously (see, e.g., [65]). Af-
ter all, the objective of parallelization is to minimize elapsed runtime. Therefore,
parallel metaheuristics should be judged, in large part, by the elapsed runtimes as-
sociated with them. It is perfectly reasonable, however, to parallelize a stochastic
serial metaheuristic A in order to compare it to a parallel metaheuristic B given a
predetermined elapsed runtime of t units.

Finally, consider the comparison of a new parallel metaheuristic (A) against a
stochastic serial metaheuristic (B) published in the literature. Assume that B was
tested with n replicates per problem instance to test its variability to seed, and as-
sume that for each problem instance the publication provides the maximum and/or
average elapsed runtime and best solution quality across the n replicates. Following
our approach from Sect. 18.6.2, the n experiments to test variability to seed represent
a “parallelized” version of B, so we would ideally perform a comparison between A
and B by running A on n processors of the same hardware, with elapsed time equal
to the maximum runtime of the n replicates of B (or the average elapsed time, if the
maximum is not reported). As before, the same hardware is likely unavailable, so
some form of elapsed time scaling might be warranted. Naturally, this approach can
only be used if variability to seed is assessed for metaheuristic B.

Though in this section we have provided some guidance on how to compare
parallel metaheuristics with other metaheuristics, it should be clear that there are
additional challenges that were not present when all approaches being compared
were serial. We leave several unanswered questions, such as how to compare par-
allel metaheuristics when they cannot be run on the same number of processors,
and how to compare a new parallel metaheuristic to a serial metaheuristic from the
literature when the serial heuristic’s code is not available and no variability to seed
information is reported. Clearly, much more work remains on the topic of computa-
tional comparisons with parallel metaheuristics.

In light of the challenges in comparisons involving parallel metaheuristics, we
conclude with the recommendation to report as many details as possible about the
comparison being performed, to give readers as much context as possible. Details
that could be helpful to the reader include: computing environment (including de-
tails of the network linking parallel processors), programming language used and
compiler flags, number of processors, final solution quality, elapsed runtime, test
datasets (real-world, standard, random), number of parameters (fewer is preferred),
whether stochastic or deterministic, if stochastic then the number of repetitions used
in testing, speed of convergence to an attractive solution, speed of convergence to
the final solution, stopping rules (based on time or solution quality), and lastly, for
a parallel algorithm a notion of speedup.



18 Computational Comparison of Metaheuristics 601

18.7 Conclusion

We believe following the procedures described in this chapter will increase the qual-
ity of metaheuristic comparisons. In particular, choosing an appropriate testbed and
distributing it so other researchers can access it will result in more high-quality com-
parisons of metaheuristics, as researchers will test on the same problem instances.
Further, expanding the practice of creating geometric problem instances with easy-
to-visualize optimal or near-optimal solutions will increase understanding of the
optimality gap of metaheuristic solutions.

Furthermore, it is important to recognize that the number of algorithm param-
eters has a direct effect on the complexity of the algorithm and on the number of
parameter interactions, which complicates analysis. If the number of parameters is
considered in the analysis of metaheuristics, this will encourage simpler, easier-to-
analyze procedures.

Finally, good techniques in solution quality and runtime comparisons will ensure
fair and meaningful comparisons are carried out between metaheuristics, producing
the most meaningful and unbiased results possible. Since parallel metaheuristics
have become much more widespread in the recent research literature than before, it
is important to establish fair and straightforward guidelines for comparing parallel
and serial metaheuristics with respect to computational effort. In this chapter, we
have taken a number of steps toward reaching this goal.

References

1. R. Ahuja, J. Orlin, Use of representative operation counts in computational testing of algo-
rithms.INFORMS J. Comput. 8(3), 318–330 (1996)

2. R.K. Ahuja, M. Kodialam, A.K. Mishra, J.B. Orlin, Computational investigations of maximum
flow algorithms. Eur. J. Oper. Res. 97(3), 509–542 (1997)

3. T. Akhtar, C.A. Shoemaker, Multi objective optimization of computationally expensive multi-
modal functions with RBF surrogates and multi-rule selection. J. Glob. Optim. 64(1), 17–32
(2016)

4. E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: recent advances and new trends.
Int. Trans. Oper. Res. 20(1), 1–48 (2013)

5. D. Bailey, Twelve ways to fool the masses when giving performance results on parallel com-
puters. Supercomput. Rev. 4(8), 54–55 (1991)

6. M. Bull, L. Smith, L. Pottage, R. Freeman, Benchmarking Java against C and Fortran for
scientific applications, in ACM 2001 Java Grande/ISCOPE Conference (2001), pp. 97–105

7. I.-M. Chao, Algorithms and solutions to multi-level vehicle routing problems. PhD thesis,
University of Maryland, College Park, MD, 1993

8. S. Chen, B. Golden, E. Wasil, The split delivery vehicle routing problem: applications, algo-
rithms, test problems, and computational results. Networks 49(4), 318–329 (2007)

9. P. Chen, B. Golden, X. Wang, E. Wasil, A novel approach to solve the split delivery vehicle
routing problem. Int. Trans. Oper. Res. 24(1–2), 27–41 (2017)

10. F.R.K. Chung, Spectral Graph Theory, vol. 92 (American Mathematical Society, Providence,
1997)

11. C. Coello, Evolutionary multi-objective optimization: a historical view of the field. IEEE
Comput. Intell. Mag. 1(1), 28–36 (2006)



602 J. Silberholz et al.

12. M. Coffin, M.J. Saltzman, Statistical analysis of computational tests of algorithms and heuris-
tics. INFORMS J. Comput. 12(1), 24–44 (2000)

13. D.W. Corne, A.P. Reynolds, Optimisation and generalisation: footprints in instance space, in
International Conference on Parallel Problem Solving from Nature (Springer, Berlin, 2010),
pp. 22–31

14. S. Coy, B. Golden, G. Runger, E. Wasil, Using experimental design to find effective parameter
settings for heuristics. J. Heuristics 7(1), 77–97 (2001)

15. J. Culberson, A. Beacham, D. Papp, Hiding our colors, in CP95 Workshop on Studying and
Solving Really Hard Problems (1995), pp. 31–42

16. K. Deb, S. Agarwal, Understanding interactions among genetic algorithm parameters, in Foun-
dations of Genetic Algorithms (Morgan Kauffman, San Mateo, 1998), pp. 265–286

17. J. Dongarra, Performance of various computers using standard linear equations software.
Technical Report CS-89-85, University of Tennessee, 2014

18. M.M. Drugan, Generating QAP instances with known optimum solution and additively de-
composable cost function. J. Comb. Optim. 30(4), 1138–1172 (2015)

19. I. Dunning, S. Gupta, J. Silberholz, What works best when? A systematic evaluation of heuris-
tics for Max-Cut and QUBO. INFORMS J. Comput. (2018, to appear)

20. G. Erdoğan, G. Laporte, A.M. Rodríguez Chía, Exact and heuristic algorithms for the Hamil-
tonian p-median problem. Eur. J. Oper. Res. 253(1), 280–289 (2016)

21. M. Fischetti, J.J. Salazar González, P. Toth, A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997)

22. I. Gamvros, B. Golden, S. Raghavan, The multilevel capacitated minimum spanning tree prob-
lem. INFORMS J. Comput. 18(3), 348–365 (2006)

23. M. Gendreau, G. Laporte, F. Semet, A tabu search heuristic for the undirected selective trav-
elling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)

24. C. Groër, B. Golden, E. Wasil, A parallel algorithm for the vehicle routing problem.
INFORMS J. Comput. 23(2), 315–330 (2011)

25. A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring network structure, dynamics, and function
using NetworkX, in Proceedings of the 7th Python in Science Conference, Pasadena, 2008,
pp. 11–15

26. M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees. Oper.
Res. 18(6), 1138–1162 (1970)

27. M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees: Part II.
Math. Program. 1(1), 6–25 (1971)

28. R. Jans, Z. Degraeve, Meta-heuristics for dynamic lot sizing: a review and comparison of
solution approaches. Eur. J. Oper. Res. 177(3), 1855–1875 (2007)

29. A. Jaszkiewicz, Do multi-objective metaheuristics deliver on their promises? A computational
experiment on the set-covering problem. IEEE Trans. Evol. Comput. 7(2), 133–143 (2003)

30. D.S. Johnson, A theoretician’s guide to experimental analysis of algorithms, in Data Struc-
tures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementa-
tion Challenges, Providence, 2002, ed. by M.H. Goldwasser, D.S. Johnson, C.C. McGeoch,
pp. 215–250

31. D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon, Optimization by simulated anneal-
ing: an experimental evaluation: part II, graph coloring and number partitioning. Oper. Res.
37(6), 865–892 (1989)

32. D.F. Jones, S.K. Mirrazavi, M. Tamiz, Multi-objective meta-heuristics: an overview of the
current state-of-the-art. Eur. J. Oper. Res. 137(1), 1–9 (2002)

33. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations (Springer, Berlin, 1972), pp. 85–103

34. P. King, How the NFL schedule was made, 2017. Retrieved from https://www.si.com/mmqb/
2017/04/21/nfl-2017-schedule-howard-katz-roger-goodell

35. F. Krzkakała, A. Pagnani, M. Weigt, Threshold values, stability analysis, and high-q asymp-
totics for the coloring problem on random graphs. Phys. Rev. E 70(4), 046705 (2004)

36. M. Kulich, J.J. Miranda-Bront, L. Pr̆euc̆il, A meta-heuristic based goal-selection strategy for
mobile robot search in an unknown environment. Comput. Oper. Res. 84, 178–187 (2017)

https://www.si.com/mmqb/2017/04/21/nfl-2017-schedule-howard-katz-roger-goodell
https://www.si.com/mmqb/2017/04/21/nfl-2017-schedule-howard-katz-roger-goodell


18 Computational Comparison of Metaheuristics 603

37. F. Li, B. Golden, E. Wasil, Very large-scale vehicle routing: new test problems, algorithms,
and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

38. F. Li, B. Golden, E. Wasil, The open vehicle routing problem: algorithms, large-scale test
problems, and computational results. Comput. Oper. Res. 34(10), 2918–2930 (2007)

39. F. Li, B. Golden, E. Wasil, A record-to-record travel algorithm for solving the heterogeneous
fleet vehicle routing problem. Comput. Oper. Res. 34(9), 2734–2742 (2007)

40. J. Liu, D. Wang, K. He, Y. Xue, Combining Wang-Landau sampling algorithm and heuristics
for solving the unequal-area dynamic facility layout problem. Eur. J. Oper. Res. 262(3), 1052–
1063 (2017)

41. M. López-Ibánez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, T. Stützle, The irace
package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58
(2016)

42. G. Luque, E. Alba, Parallel Genetic Algorithms: Theory and Real World Applications
(Springer, Berlin, 2011)

43. D. Montgomery, Design and Analysis of Experiments (Wiley, New York, 2006)
44. J. Nummela, B. Julstrom, An effective genetic algorithm for the minimum-label spanning tree

problem, in Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation (ACM, New York, 2006), pp. 553–557

45. Y.W. Park, Y. Jiang, D. Klabjan, L. Williams, Algorithms for generalized clusterwise linear
regression. INFORMS J. Comput. 29(2), 301–317 (2017)

46. A. Paul, D. Freund, A. Ferber, D.B. Shmoys, D.P. Williamson, Prize-collecting TSP with
a budget constraint, in 25th Annual European Symposium on Algorithms (ESA 2017), ed.
by K. Pruhs, C. Sohler. Leibniz International Proceedings in Informatics (LIPIcs), vol. 87
(Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2017), pp. 62:1–62:14

47. N. Pholdee, S. Bureerat, Comparative performance of meta-heuristic algorithms for mass min-
imisation of trusses with dynamic constraints. Adv. Eng. Softw. 75(1), 1–13 (2014)

48. R. Plackett, J. Burman, The design of optimum multifactorial experiments. Biometrika 33,
305–325 (1946)

49. R.L. Rardin, R. Uzsoy, Experimental evaluation of heuristic optimization algorithms: a tuto-
rial. J. Heuristics 7(3), 261–304 (2001)

50. G. Reinelt, TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384
(1991)

51. G. Rinaldi, RUDY: a generator for random graphs (1996). http://web.stanford.edu/~yyye/
yyye/Gset/rudy.c. Accessed 30 Sept 2014

52. K.L. Sadowski, D. Thierens, P.A.N. Bosman, GAMBIT: a parameterless model-based evolu-
tionary algorithm for mixed-integer problems. Evol. Comput. (2018, to appear)

53. H. Sawai, S. Kizu, Parameter-free genetic algorithm inspired by “disparity theory of evolu-
tion”, in Parallel Problem Solving from Nature – PPSN V, ed. by A. Eiben, T. Bäck, M. Schoe-
nauer, H.-P. Schwefel. LNCS, vol. 1498 (Springer, Berlin, 1998), pp. 702–711

54. J. Silberholz, B. Golden, The effective application of a new approach to the generalized ori-
enteering problem. J. Heuristics 16(3), 393–415 (2010)

55. K. Smith-Miles, S. Bowly, Generating new test instances by evolving in instance space. Com-
put. Oper. Res. 63, 102–113 (2015)

56. K. Smith-Miles, L. Lopes, Measuring instance difficulty for combinatorial optimization prob-
lems. Comput. Oper. Res. 39(5), 875–889 (2012)

57. K. Smith-Miles, J. van Hemert, Discovering the suitability of optimisation algorithms by
learning from evolved instances. Ann. Math. Artif. Intell. 61(2), 87–104 (2011)

58. K. Smith-Miles, D. Baatar, B. Wreford, R. Lewis, Towards objective measures of algorithm
performance across instance space. Comput. Oper. Res. 45, 12–24 (2014)

59. S. Subramanian, M.C. Jeffrey, M. Abeydeera, H.R. Lee, V.A. Ying, J. Emer, D. Sanchez,
Fractal: an execution model for fine-grain nested speculative parallelism, in Proceedings of
the 44th Annual International Symposium on Computer Architecture, ISCA ’17 (ACM, New
York, 2017), pp. 587–599

60. D. Sudholt, Parallel evolutionary algorithms, in Springer Handbook of Computational Intelli-
gence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin, 2015), pp. 929–959

http://web.stanford.edu/~yyye/yyye/Gset/rudy.c
http://web.stanford.edu/~yyye/yyye/Gset/rudy.c


604 J. Silberholz et al.

61. E.-G. Talbi, M. Basseur, A.J. Nebro, E. Alba, Multi-objective optimization using metaheuris-
tics: non-standard algorithms. Int. Trans. Oper. Res. 19(1–2), 283–305 (2012)

62. D. Taş, M. Gendreau, O. Jabali, G. Laporte, The traveling salesman problem with time-
dependent service times. Eur. J. Oper. Res. 248(2), 372–383 (2016)

63. L. Tierney, A.J. Rossini, N. Li, H. Sevcikova, Simple network of workstations (Package
‘snow’), 2016. https://cran.r-project.org/web/packages/snow/snow.pdf

64. V.V. Vazirani, Approximation Algorithms (Springer, Berlin, 2013)
65. T. Vidal, T.G. Crainic, M. Gendreau, C. Prins, Heuristics for multi-attribute vehicle routing

problems: a survey and synthesis. Eur. J. Oper. Res. 231(1), 1–21 (2013)
66. X. Wang, B. Golden, E. Wasil, The min-max multi-depot vehicle routing problem: heuristics

and computational results. J. Oper. Res. Soc. 66(9), 1430–1441 (2015)
67. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1(1), 67–82 (1997)
68. Y. Xiong, B. Golden, E. Wasil, A one-parameter genetic algorithm for the minimum labeling

spanning tree problem. IEEE Trans. Evol. Comput. 9(1), 55–60 (2005)
69. J. Xu, J. Kelly, A network flow-based tabu search heuristic for the vehicle routing problem.

Transp. Sci. 30(4), 379–393 (1996)

https://cran.r-project.org/web/packages/snow/snow.pdf

	18 Computational Comparison of Metaheuristics
	18.1 Introduction
	18.2 The Testbed
	18.2.1 Using Existing Testbeds
	18.2.2 Developing New Testbeds
	18.2.2.1 Goals in Creating the Testbed
	18.2.2.2 Accessibility of New Test Instances
	18.2.2.3 Problem Instances with Known Optimal Solutions

	18.2.3 Problem Instance Classification

	18.3 Parameters
	18.3.1 Parameter Space Visualization and Tuning
	18.3.2 Parameter Interactions
	18.3.3 Fair Testing Involving Parameters

	18.4 Solution Quality Comparisons
	18.4.1 Solution Quality Metrics
	18.4.2 Comparative Performance on Different Types of Problem Instances

	18.5 Runtime Comparisons
	18.5.1 Runtime Limits Using the Same Hardware
	18.5.2 Runtime Limits Using Different Hardware
	18.5.3 Runtime Growth Rate
	18.5.4 Alternatives to Runtime Limits

	18.6 Parallel Algorithms
	18.6.1 Evaluating Parallel Metaheuristics
	18.6.2 Comparison When Competing Approaches Can Be Run
	18.6.3 Comparison When Competing Approaches Cannot Be Run

	18.7 Conclusion
	References


