
Chapter 16
Stochastic Search in Metaheuristics

Walter J. Gutjahr and Roberto Montemanni

Abstract Stochastic search is a key mechanism underlying many metaheuristics.
The chapter starts with the presentation of a general framework algorithm in the
form of a stochastic search process that contains a large variety of familiar meta-
heuristic techniques as special cases. Based on this unified view, questions concern-
ing convergence and runtime are discussed at the level of a theoretical analysis. Con-
crete examples from diverse metaheuristic fields are given. In connection with run-
time results, important topics such as instance difficulty, phase transitions, param-
eter choice, No-Free-Lunch theorems or fitness landscape analysis are addressed.
Furthermore, a short sketch of the theory of black-box optimization is given, and
generalizations of results to stochastic search under noise and to robust optimiza-
tion are outlined.

16.1 Introduction

The aim of this chapter is to present a unified view of stochastic search which is
used as a core mechanism in many metaheuristics. Not every metaheuristic applies
a probabilistic mechanism to organize the exploration of the search space; there are,
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e.g., deterministic versions of Tabu Search. Interestingly enough, however, the in-
corporation of “random” (or more precisely: pseudo-random) steps into the algorith-
mic design is rather the usual than the exceptional case in the field of metaheuristics.
Thus, it makes sense to have a closer look at this feature.

One would expect that all metaheuristics that perform stochastic search have
some properties in common. Admittedly, at the moment, we are still far away from
a general theory containing every stochastic metaheuristic as a special case. Never-
theless, some observations are available that are not restricted to a particular meta-
heuristic algorithm, but have been made, possibly in different appearance, for sev-
eral seemingly unrelated algorithms.

The emphasis of this chapter is on results that lead to a deeper understanding
of principles and properties common to more than one stochastic metaheuristic.
Because of this goal, we concentrate on theoretical results, which can be rigorous
or (at least) precise, where “rigorous” is understood in a mathematical sense, and
“precise” means that some form of analytic derivation (although not necessarily a
rigorous one) is used for predicting numerical experimental outcomes. It is clear that
experimental results are at least as important—presumably even more important.
However, they usually contribute to a smaller degree to a unifying understanding,
so we shall not focus on them here.

The chapter is organized as follows: In Sect. 16.2, we develop a common for-
mal framework capturing the essential features of most stochastic metaheuristics,
and we shortly address the motivation for applying stochastic search in metaheuris-
tic algorithms. Sections 16.3 and 16.4 are devoted to convergence results and to
results dealing with required optimization time, respectively. The practically impor-
tant issue of parameter choice in metaheuristics is briefly outlined in Sect. 16.5. Sec-
tion 16.6 discusses “No-Free-Lunch” theorems and their implications for stochastic
search, in particular the desirability of a problem-specific fitness landscape analysis.
Some techniques for the latter are outlined in Sect. 16.7. The purest form of stochas-
tic search algorithms are (stochastic) black-box optimizers, which are discussed in
Sect. 16.8. Section 16.9 outlines an important special application area of metaheuris-
tics, namely optimization under uncertainty or noise. Section 16.10 addresses robust
optimization approaches, and Sect. 16.11 concludes the chapter.

16.2 General Framework

The aim of the stochastic search algorithms investigated in this chapter is the exact
or approximative solution of combinatorial optimization (CO) problems of the form

min f (x) such that x ∈ S, (16.1)

where S is a finite search space, f is a real-valued function called objective function,
and “min” can be replaced by “max”. The function f is also called cost function
(if to be minimized) or fitness function (if to be maximized). We consider iterative
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algorithms A of the following general type: In iteration t, algorithm A uses a memory
Mt and a list Lt of solutions xi ∈ S. The list Lt contains new “trial points” for the
optimization. The algorithm proceeds as follows:

1. Initialize M1 according to some rule.
2. In iteration t = 1,2, . . ., until some stopping criterion is satisfied,

a. determine the list Lt as a function g(Mt ,zt) of Mt and of a random influence
zt ;

b. determine the objective function values f (xi) of all xi ∈ Lt , and form a list
L+

t containing the pairs (xi, f (xi));
c. determine the new memory content Mt+1 as a function h(Mt ,L

+
t ,z

′
t) of the

current Mt , of the list of solution-value pairs L+
t , and of a random influence

z′t .

The currently proposed (approximate) solution xcurr
t in iteration t results as some

function of (Mt ,L
+
t ) specified by A. Also the stopping criterion defined by A depends

on (Mt ,L
+
t ).

In this formalism, one can imagine zt and z′t as vectors of (pseudo-)random num-
bers that are used by the stochastic algorithm. The function g(Mt ,zt) specifies, for
a given memory Mt , a probability distribution for the list of new search points; the
function h(Mt ,L

+
t ,z

′
t) specifies, given memory Mt and current list L+

t of solution-
value pairs, a probability distribution for the new content of the memory. If the
functions g and h are independent of zt resp. z′t , we obtain the special case of a
deterministic search algorithm.

The generic algorithm above, which is an extension of the generic black-box opti-
mizer presented in [21] (discussed in Sect. 16.8), covers most—if not all—stochastic
metaheuristics. We shall outline this by giving two special examples:

• Simulated Annealing (SA): A neighborhood structure on S is used. Mt consists of
a single element, the current search point x. Also Lt consists of a single element,
the currently investigated neighbor solution y to x. To determine Lt from Mt ,
choose a random neighbor y to the element x in Mt . To update Mt to Mt+1, decide
by the stochastic acceptance rule used in SA whether y is accepted or not. If yes,
Mt+1 contains y, otherwise it contains x.

• Canonical Genetic Algorithm (GA): Mt consists of k solutions, and Lt also con-
sists of k solutions. To determine Lt from Mt , apply the operators mutation and
crossover to the solutions in Mt . This yields Lt . To update Mt to Mt+1, apply
fitness-proportional selection to the population contained in Lt , using the corre-
sponding objective function values. The result gives Mt+1.

In principle, the functions g and h may use any information on the problem in-
stance. The important special case where g and h are only allowed to use the knowl-
edge of the search space S and of the problem type, but not of the specific problem
instance, is denoted as black-box optimization and will be dealt with in Sect. 16.8.
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An important observation is that by construction, the “states” (Mt ,L
+
t ) visited

during the execution of the algorithm form a Markov process in discrete time1: The
distribution of the next state (Mt+1,L

+
t+1) only depends on the current state (Mt ,L

+
t ).

Considering the objective function f as given, (Mt) (t = 1,2, . . .) can already be
seen as a Markov process, since the distribution of Mt+1 only depends on Mt (via
L+

t , which results from Mt ). This allows the application of Markov process theory
to the analysis of stochastic search algorithms.

We may use the described algorithmic framework for giving a rough classifica-
tion of several stochastic metaheuristics:

1. Stochastic Local Search Algorithms: Examples are Iterated Local Search (ILS),
Simulated Annealing (SA), Generalized Hillclimbers (GHCs), or Variable
Neighborhood Search (VNS). Mt contains a small, fixed number of solutions
(e.g., incumbent solution, current search point, current neighbor) derived by
using a neighborhood structure on S.

2. Population-Based Stochastic Search Algorithms: Examples are GAs and basic
forms of Estimation-of-Distribution Algorithms (EDAs). Mt contains a “popu-
lation” of solutions. The size of this population is a parameter of the algorithm.

3. Model-Based Stochastic Search Algorithms: The concept of model-based
search has been introduced by Zlochin et al. [114]. This group of metaheuris-
tics contains Ant Colony Optimization (ACO), some more elaborated forms
of EDAs, or Cross-Entropy Optimization. Here, Mt consists of a vector of
real-valued parameters, e.g., a pheromone vector in ACO, sometimes also of
additional information.

Although metaheuristics as Particle Swarm Optimization (PSO) or some variants of
Evolution Strategies (ES) do not deal with CO problems, but rather with continuous
search spaces S instead, these metaheuristics can be used for CO problems as well
by means of suitable problem encodings. For example, the Binary PSO algorithm
proposed by Kennedy and Eberhart [67] maintains vectors interpreted as positions,
best positions and velocities of “particles”, from which discrete solutions can be
derived by a probabilistic mechanism. In the classification above, this leads us to
the model-based class with Mt containing a list of vectors of real numbers.

We close this section with the question of the general motivation for introduc-
ing stochastic elements (the random variables zt and z′t above) into a metaheuristic.
Perhaps the simplest reason is that care must be taken to prevent a search algorithm
from cycling through a small portion of the search space. Let us look at a simple
example. Suppose we perform a search in the set S = {0,1}n of binary strings of
length n, with some cost function f on S. For simplicity, let us suppose that all oc-
curring cost values are different from each other. Our algorithm always stores the
current solution x as well as the solution w visited just before x, and it iteratively
moves from the current x to the lowest-cost neighbor solution y of x different from
w, where x and y are called neighbors if they differ exactly in one bit position. This
deterministic search algorithm is able to quickly find a locally optimal solution (i.e.,

1 Since g and h do not depend on the iteration counter t, the Markov process is homogeneous.
Dependence on t can easily be modeled by adding t as a component to the memory Mt .
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a solution that does not have a neighbor with lower cost), but neither is it able to
stop at a local optimum xloc, nor does it typically leave the neighborhood of some
suboptimal xloc in order to continue the search for the global optimum. Of course,
this undesirable behavior can be avoided by increasing our “tabu list” (consisting
only of w in the naive algorithm above), but this comes at the price of increased
computational cost. An alternative way to give the search process the freedom to
leave local optima is to allow random moves from a solution point to a neighbor.
Whenever we choose this alternative, it is much easier to ensure that no point in the
solution space is excluded from the search in advance.

16.3 Convergence Results

The search process (Mt ,L
+
t ) is only helpful if it leads us to an optimal solution

of (16.1) or, at least, to a good approximation. Ideally, the current solution xcurr
t de-

rived from the state at time t becomes an element of the set S∗ of optimal solutions
in some iteration t1 and remains unchanged in subsequent iterations. This behav-
ior is denoted as convergence to the optimum. Since we consider stochastic search
algorithms, the definition of convergence has to be modified. In probability theory,
there are several different notions for the convergence of a stochastic process. One
of the most natural in our context is convergence in probability: A stochastic search
algorithm A converges to the optimum in probability, if the probability of the event
xcurr

t ∈ S∗ converges (in the mathematical sense of the word) to unity as t → ∞.
Convergence to the optimum in probability can be achieved easily even by simple

stochastic search algorithms: Consider the (usually very inefficient) random search
algorithm, where, in each iteration, Lt consists of a single solution xt that is chosen at
random from S according to some fixed distribution independently of Mt (and hence
of the previous iterations). Let Mt contain the best-so-far solution xbs f

t encountered
up to iteration t − 1: The variable xbs f

t is initialized arbitrarily for t = 1 and is set
to xt in each iteration where f (xt) turns out to be better than f (xbs f

t ). If for each
iteration t, we choose the currently proposed solution xcurr

t as the best-so-far solution
xbs f

t , random search converges to the optimum in probability. However, the runtime
until hitting an optimal solution may be huge.

Interestingly, some more efficient algorithms (from a practical point of view) do
not share the mentioned convergence property. For example, Rudolph [88] showed
that the canonical GA, as described in the previous section, with xcurr

t defined as the
best element of the current generation, never converges to the optimum in probabil-
ity; this is simply due to the fact that by possible mutations, the probability of the
event that the current population does not contain an element from S∗ has always
a strictly positive lower bound. By adding the “elite” solution xbs f

t as an additional
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component to the memory Mt , the algorithm can be made convergent to the optimum
in probability.2

For a stochastic search algorithm A, it would be desirable that not only the prob-
ability of xcurr

t ∈ S∗ converges to one, but that exploitation of the search history
increases the average fitness of the sample points, i.e., of the elements of Lt , which
is not the case for random search. If for an algorithm A, the part of the memory Mt

responsible for the generation of the list Lt of sample points converges to some state
supporting only optimal (or at least good) solutions, one can expect that the quality
of the sample points will improve during the process. Thus, the search algorithm
will arrive at the optimum faster than random search.

Convergence results of the last kind are harder to show (and require stricter con-
ditions on algorithms and parameter choices), but there exist such results in the
literature for several metaheuristics. The first ones were derived for SA. In the case
of SA with a logarithmic cooling scheme, Hajek [51] gave necessary and sufficient
conditions for the current search point xt (the solution contained in Mt) to converge
in probability to S∗. Contrary to the best-so-far solution xbs f

t which does not in-
fluence the process itself, the current search point xt defines the next sample point
candidates and thus determines the distribution of Lt . If xt gradually focuses more
and more on promising regions of the search space instead of doing “blind” random
search (as in the first, high-temperature phase of SA), the chance of detecting the
global optimum is increased compared to the random search algorithm. Therefore,
convergence of xt is more meaningful than convergence of xbs f

t only.
In the ACO case, the “sample-generating” part of the memory Mt consists of

the vector τt of pheromone values that determine the distribution of the solutions to
be sampled in the current iteration. For algorithms of the MAX-MIN-Ant-System
type developed by Stützle and Hoos [95] using “elitism” (i.e., incorporating also
xbs f

t into Mt ), conditions are given in [40, 92] to ensure not only that xbs f
t converges

to the optimum, but also that τt converges to a limiting vector that only allows the
generation of an optimal solution. A related result for Cross-Entropy Optimization
was shown by Margolin [70].

What have these results for different metaheuristics in common? Typically, when
proving a “strong” form of convergence for a stochastic search algorithm in the just-
mentioned sense, the parametrization of the algorithm has to be chosen in such a
way that a proper balance between exploration and exploitation is preserved: When
the emphasis is too much on the exploration pole, random-search-type behavior
results, and the sample-generating part of the memory Mt does not converge at all.
On the other hand, when exploitation is emphasized too much, one does obtain
convergence, but it is usually “premature” convergence to a suboptimal solution.
By keeping the balance, convergence is still ensured, but slowed down to allow the
detection of a global optimum. The specific form of the exploration-exploitation
tradeoff depends on the algorithm under consideration. For example, for SA, high
values of the temperature parameter favor exploration, low values favor exploitation.

2 Elitism as a mechanism ensuring convergence of a GA has already been analyzed in [52], which
appears to be the first paper on GA convergence.
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In some stochastic metaheuristics, the question of convergence is conveniently
addressed via a system dynamics approach. For example, Trelea [101] identifies
attractors, i.e., stable fixed points of a dynamic process concretizing our generic
(Mt ,L

+
t ) dynamics in the context of PSO. In the case of convergence, only attrac-

tors can be limiting points. In [101], the exploration-exploitation tradeoff and its
connection to parameter choice is also explicitly addressed.

A very small selection of convergence results for stochastic metaheuristics have
been mentioned in this section. For some other results, see, e.g., [64, 102] (GHCs),
[37, 38] (EDAs), [39, 96] (ACO), or [50] (VNS).

16.4 Runtime Results

From the viewpoint of applications, the question of whether and in which sense a
stochastic search algorithm A converges is less relevant than the question of what
amount of computation times A requires for finding an optimal or a sufficiently
good solution. Nevertheless, theoretical investigations must start with the conver-
gence issue, since important performance measures are undefined or infinite if A
has a nonzero probability of never arriving at an optimum, as, e.g., in the case of
premature convergence.3

Typical performance measures in the runtime analysis of stochastic search algo-
rithms are (among others):

• The probability μt = Pr{xcurr
t ∈ S∗} that the current solution in iteration t is

optimal. He and Yu [57] (cf. also [111]) call 1−μt the convergence rate.
• The expected value or the distribution of the first hitting time (FHT) T1, defined

by T1 = min{t ≥ 1 : xcurr
t ∈ S∗}.

• The expected value or the distribution of the time until a solution with a relative
cost deviation from the optimum less than some ε has been found.

The measures above relate to a single given problem instance, say, a fixed distance
matrix in the case of a TSP. In order to obtain more general information, one is
usually rather interested in the behavior of A for a class of problem instances. In
complexity analysis, all instances of a given problem of a certain size n are con-
sidered (say, all [n× n] distance matrices in the case of a TSP), where a suitable
measure for instance size is applied. Then, the dependence of a fixed performance
measure on n is studied. Since algorithm A has a different expected first hitting time
for each instance of size n, some sort of aggregation is necessary. The two most
important options for aggregation are to consider either the worst case performance

3 To ask, say, for the expected time until an optimal solution is first hit without being sure that the
optimum will be reached, is as meaningless as to ask: “How much training time would it take on
average for a randomly selected person to win an olympic gold medal?” Also by being satisfied
with an approximate solution of a certain minimum quality (call it the “silver medal”) instead of
the optimal solution, one does not escape this difficulty.
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over all instances of size n, or the average case performance, given some probability
distribution on the set of instances of size n.

16.4.1 Some Methods for Runtime Analysis

Each metaheuristic field has developed some specific techniques for analyzing com-
putation times on selected optimization problems. However, a few general methods
that turned out to be successful for more than one metaheuristic algorithm can be
identified. Below, we shortly outline four of these methods. The reader is also re-
ferred to [5, 44, 81] for more details.

(1) Markov Chain Theory As noted in Sect. 16.2, the process (Mt) is a Markov
process. In cases where the memory content Mt can only take finitely many val-
ues, the state space for this process is finite, i.e., (Mt) is a (homogeneous) Markov
chain. An example are GAs, where Mt contains a population of solutions x ∈ S. In
the probabilistic literature, much is known about Markov chains, and some results
can be exploited for the analysis of the corresponding stochastic search algorithms.
Following He and Yao [55], let us suppose, e.g., that by construction of A, states
of Mt containing an optimal solution are never left again during the process (they
are “absorbing states”), whereas other states have a probability larger than zero of
being left in the next iteration (they are “transient states”). Let A and T denote the
set of absorbing states and transient states, respectively, and let j = |A| and k = |T|.
Giving the j states in A the lowest and the k states in T the highest indices, the
probability transition matrix P of the Markov chain (Mt) can be decomposed in the
form

P =

[
I j 0
R T

]
,

where I j is the [ j× j] identity matrix, 0 is the [ j×k] matrix with all elements equal to
zero, and R and T are [k× j] and [k×k] matrices, respectively. He and Yao [55] show
by direct application of a classical Markov chain result that the vector m whose ith
component is the expected first hitting time mi of the set of absorbing (i.e., optimal)
states when starting from transient state i, is given by

m = (Ik −T )−1(1, . . . ,1)t ,

where Ik is the [k×k] identity matrix. In principle, this would allow the computation
of expected first hitting times, but the matrix Ik − T is usually difficult to invert.
Thus, the result can only be applied in cases where P has some special form (see,
e.g., [81]). For other examples of the application of Markov chain theory, see, e.g.,
[22, 113]. In the last years, Markov chain approaches are often combined with drift
analysis (see below).

(2) Level Sets This method evolved in papers on the analysis of evolutionary algo-
rithms (EAs) such as [13] or [20]. It tries to circumvent the state-space explosion
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for growing n, unavoidable in the direct application of the Markov chain approach,
by grouping solutions into classes, where the fitness values are used as a natural
criterion for defining the classes. Certain ranges of the fitness function (“levels”)
correspond to certain subsets (“level sets”) of the search space S. The level sets have
to be ordered in such a way that if x ∈ A j and y ∈ Ak for two level sets A j and Ak

with j < k, it must always hold that f (x)< f (y). In the easiest cases to analyze, the
stochastic search algorithm A never returns to a level set corresponding to a lower
fitness value after it has already visited a level set corresponding to a higher fitness
value. For example, this monotonicity property is satisfied if A relies on the best-so-
far solution xbs f

t for the update from (Mt ,L
+
t ) to (Mt+1,L

+
t+1), since xbs f can never

decrease for increasing t. Now, if it is possible to determine a lower bound on the
probability that the process jumps from some level j to a higher level k > j, an up-
per bound for the expected staying time in level j can be derived, and from those
bounds, one can obtain an upper bound for the time until the highest (i.e., optimal)
level is reached.

This idea has turned out to be fruitful for runtime analysis purposes not only in
the field of EAs, but also in the ACO field (see, e.g., [44, 45, 49]). In the PSO field,
the level-set method has been applied by Sudholt and Witt [98]. For an extension of
the method using the concept of potential functions, see [108].

(3) Drift Analysis Drift analysis derives from martingale theory and has been ap-
plied for the analysis of SA (see [89]) and later for EAs (see, e.g., [54, 56]). Consider
again the Markov process (Mt) and suppose that xcurr

t can be derived directly from
Mt , i.e., xcurr

t = xcurr(Mt). (If the information in L+
t is also required for getting xcurr

t ,
the process (Mt ,L

+
t ) must be considered instead of (Mt).) Based on xcurr

t , a distance
V (M) between state M and the set of states supporting optimal solutions may be
defined. For example, one may set V (M) = | f (xcurr(M))− f ∗|, where f ∗ is the ob-
jective function value of the optimal solution. The one-step mean drift in state M is
defined as the conditional expectation

E(V (Mt)−V (Mt+1) |Mt = M) =V (M)−∑
M′

P(M,M′)V (M′),

where P(M,M′) is the transition probability from state M to state M′. If the mean
drift is always zero, the process V (Mt) is a martingale, which means that an optimal
solution can only be found by chance. Hopefully, however, the drift generated by a
stochastic search algorithm is positive, such that there is a tendency of the process
to approach the set of optimal solutions.

He and Yao [54] show that from a lower bound on the mean drift, an upper
bound on the expected first hitting time can be derived: If the mean drift in state M
is larger than or equal to some constant clow > 0 for any M with V (M)> 0, then the
expected first hitting time after start in state M1 satisfies E(T1 |M1) ≤ V (M1)/clow.
With the help of this and similar lemmas, the behavior of some EAs on simple test
functions has been successfully analyzed. The generality of the formalism shows
that drift analysis should be applicable in principle to every type of stochastic search
algorithms.
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In the last years, the application of drift analysis for obtaining runtime results
has been considerably refined. For example, Oliveto and Witt [80] recently com-
bined drift analysis, potential functions and the theory of submartingales in an in-
vestigation of the so-called Simple Genetic Algorithm, showing that already for the
OneMax fitness function (discussed in Sect. 16.4.3 below), this algorithm requires
exponential optimization time with overwhelming probability.

(4) Stochastic Approximation In some cases, where the process (Mt) itself appears
too difficult for a mathematical analysis, one may try to obtain asymptotic approx-
imations to this process for limiting cases concerning special parameter values. An
example is given in [43, 45], where the behavior of the Ant System variant of ACO,
developed by Dorigo et al. [18], is analyzed on simple test problems for a small
learning rate ρ for the pheromone update (ρ is usually called “evaporation rate”
in the ACO literature). In Ant System, the solution quality achieved in iteration t
can also decrease compared to iteration t −1. Therefore, the level-set method is not
applicable to this algorithm, contrary to some variants of MAX-MIN-Ant-System.
However, letting ρ become small allows the application of the theory of slow learn-
ing that has been developed early in the learning literature (see [79]). As stated in
Sect. 16.2, the memory Mt in ACO contains a vector of pheromone values. In the
limiting case ρ → 0, the dynamics of this vector becomes deterministic and can
be described by a system of differential equations. Similar approaches have been
pursued by Purkayastha and Baras [86] and by Paul and Mukhopdahyay [84].

Stochastic approximation techniques of this type may also be helpful for the
analysis of other stochastic search algorithms where the memory content Mt lies in
a continuous state space, e.g., EDAs or PSO. Indeed, in one of the first articles using
an approach of this type, Gonzales et al. [37] refer to the analysis of PBIL, which is
a special EDA.

16.4.2 Instance Difficulty and Phase Transitions

The methods presented in Sect. 16.4.1 analyze a stochastic metaheuristic A for a
special problem instance (S, f ). As noted at the beginning of Sect. 16.4, the topic
of interest is typically not the behavior of A for a single instance, but for a class of
instances, say the instances of size n of a given CO problem. The class may contain
instances with completely different properties. Thus, the concepts of worst-case and
of average-case analysis come into play.

In the case of some simple problems such as Generalized OneMax, which will
be described in Sect. 16.4.3, the degree of difficulty is the same for all instances
of size n. This is not true anymore for most CO problems found in applications.
However, it seems that the degree of difficulty is usually not completely “scattered”
among the instances, but often depends on some characteristic parameters of in-
stances which are called control parameters or order parameters. The seminal pa-
per by Cheesman et al. [15] has shown experimentally that for some fundamental



16 Stochastic Search in Metaheuristics 523

NP-hard combinatorial decision problems like k-SAT, Hamilton Circuits or Graph
Coloring, different regions of the set of instances, such as “underconstrained” or
“overconstrained” regions, must be distinguished; their boundary is defined by a
critical value αc of a control parameter, and the probability of the existence of a
solution with the required properties changes abruptly from near zero to near one
when crossing the boundary. The larger the instance size n, the sharper is the tran-
sition. By analogy to phenomena in physics like the melting of ice, this behavior
is called phase transition. The computation time required for solving the problem
is typically high near the phase transition and low for control parameter values far
from αc (“easy–hard–easy pattern”); sometimes, also “easy–hard” or “hard–easy”
patterns are found.

Similar phase transition phenomena have also been observed in NP-hard combi-
natorial optimization problems, e.g., number partitioning [35], resource-constrained
project scheduling problems [58], TSPs [112], independent-set problems [6], Max
k-SAT [1], vertex-cover problems [53], and others—problems that form the natural
range of application for stochastic search algorithms.

Whereas Cheesman et al. [15] use computational experiments for investigating
the phase transition phenomenon in CO, essential progress in the theoretical under-
standing of this phenomenon has been achieved during the last decade in the physics
literature, especially by applying concepts from statistical mechanics to CO. Martin
et al. [71] and Monasson [75] give an introduction to this field. Statistical-mechanics
investigations of CO problems usually start with the Boltzmann distribution4 on the
search space S, which is given by p(x) = (1/ZT )exp(− f (x)/T ), where x ∈ S is
a solution, p(x) is the probability of x, f is the cost function (called energy in the
physics literature), the parameter T ≥ 0 is called temperature, and the normalization
factor ZT = ∑y∈S exp(− f (y)/T ) is called the partition function. The two boundary
cases T = ∞ and T = 0 produce a uniform distribution on S, resp. a distribution that
is concentrated on the set of global optima, the so-called ground states. The crucial
idea is that by letting T tend toward zero and by investigating the partition function
ZT at this asymptotic limit, information on global optima is obtained, in particular
information on the optimal cost function value f ∗ (“ground-state energy”) or on the
number of global optima.

In order to get from single problem instances to instance classes, the quantities
derived from the partition function are averaged over the distribution of instances
within the class of interest. As an example, consider the Number Partitioning Prob-
lem (NPP) with n items, the weights of which are represented by b-bit integers. A
solution x consists in a partition of the set of given items into two subsets, and the
cost function is the absolute difference between the total weights of the two sub-
sets. Here, the ratio b/n turns out as the relevant control parameter. The statistical-
mechanics approach predicts a phase transition around b/n ∼ 1, with an exponen-
tially growing search cost for b large compared to n, and polynomially growing cost
for b small compared to n (see, e.g., [73]). This is in good agreement with exper-

4 The relevance of this distribution in the field of stochastic search is also underlined by the fact
that one of the oldest general-purpose stochastic search techniques, namely SA, approximates at
each fixed temperature level T the corresponding Boltzmann distribution.
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imental results. Recent work has focused on obtaining empirical insights into the
changes in some properties such as number of local optima, plateaus or basin sizes
when going through a phase transition. For the above-mentioned example of the
NPP, e.g., Alyahya and Rowe [4] have presented such results.

From a practical point of view, the results on phase transitions indicate that for
testing or tuning a metaheuristic algorithm, a suitable choice of the instance dis-
tribution is very important. In particular, it does not make too much sense to mix
instances from the “easy” and “hard” regions, since the last will dominate the aver-
age behavior, which may mask the information that can be obtained for the easier
instances.

16.4.3 Some Notes on Special Runtime Results

For reasons that will be discussed in Sect. 16.6, it is rather unlikely that for a stochas-
tic search algorithm, universal positive runtime results (i.e., results valid for all CO
problems predicting computation times of practical interest) can be obtained. There-
fore, the promising way is to investigate different problems separately from each
other, starting with very simple ones in order to develop useful analytical techniques,
and successively progressing toward the hard CO problems found in applications.

Due to the necessity of studying runtime issues separately for single problems,
the literature on analytical runtime results for stochastic search heuristics is rather
dispersed. An overview would be beyond the scope of this chapter. Therefore, we
focus on a few key issues. Classical results are recalled in the survey [81], which
addresses the evolutionary algorithms field excluding the swarm-intelligence meta-
heuristics ACO and PSO, and the survey concerning ACO provided in [44]; some
more recent results can be found in [5].

Typical simple problems investigated in the literature consist of artificially con-
structed test functions, usually pseudo-Boolean functions, i.e., functions mapping
the set S = {0,1}n of binary strings x = (x1, . . . ,xn) of length n into the reals. Ex-
amples are the OneMax fitness function f (x) = ∑n

i=1 xi, the LeadingOnes fitness
function f (x) = ∑n

i=1 ∏i
j=1 x j, or the Needle-in-a-Haystack (NIAH) fitness function

f (x) = ∏n
j=1 x j. These three functions (instances) can be generalized to problems

(classes of instances). For example, the Generalized OneMax problem contains the
fitness functions n−dH(x,x∗), with dH denoting the Hamming distance and x∗ ∈ S
being an arbitrary fixed solution. (The OneMax function is the special case where
x∗ = (1, . . . ,1).) Also more general classes have been successfully analyzed in the
literature. Droste et al. [20] have shown that for all linear pseudo-boolean functions,
the expected first hitting time E(T1) of the simple (1+ 1) EA grows as θ(n logn)
in the instance size n. In [104], some results on quadratic pseudo-boolean functions
have been derived; this class already contains NP-hard optimization problems. Also
for more complex EAs and for other stochastic metaheuristics, results concerning
pseudo-boolean functions have been proved in the meantime (see the cited surveys).
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Part of the literature analyzes the behavior of stochastic search algorithms on
practically relevant problems from the complexity class P, i.e., problems for which
polynomial-time solution algorithms exist. Such problems are good benchmarks for
testing a metaheuristic algorithm which should be able to solve them by requiring
only a low computational overhead compared to a problem-specific algorithm. In
particular, sorting problems (e.g., [90]), maximum matching problems (e.g., [36]),
and minimum spanning tree problems (e.g., [76, 78]) have been analyzed in an EA
or ACO context. As expected, the investigated metaheuristics perform worse than
the respective “tailored” algorithms, but they usually remain efficient in the sense
that only polynomially growing runtime is required.

Very few works exist that analyze stochastic metaheuristics on NP-hard prob-
lems. Witt [107] investigates the behavior of the (1+1) EA on a variant of the NPP
(see Sect. 16.4.2) for which a fully polynomial approximation scheme exists. Within
O(n2) steps, the (1+ 1) EA finds a solution that is at least (4/3)-approximate. For
the maximum clique problem on random planar graphs, Storch [94] proves that SA
with constant temperature finds an optimal solution in linear time with overwhelm-
ing probability, while the (1+1) EA needs θ(n6) iterations. Also Wei and Dinneen
[105] investigate the clique problem, comparing two fitness function choices. For
the vertex cover problem, Friedrich et al. [29] show that the (1+ 1) EA can pro-
duce arbitrarily poor solutions, whereas the evolutionary multi-objective optimizer
SEMO performs sufficiently well. The poor performance of the (1+1) EA can also
be remedied by applying multistarts, as Oliveto et al. [82] demonstrate.

The issue of the possible advantage of random multistart also raises another in-
teresting question. Whether or not random multistart is beneficial depends on the
distribution of the first hitting time T1. Therefore, results that do not only deter-
mine the expected value E(T1), but the entire distribution of the random variable T1,
would be very useful. Only a few results of this type seem to exist. We give two
examples. Garnier et al. [32] show that for the first hitting time T1(n) of (1+1) EA
on a OneMax instance of size n, the re-normalized value (T1(n)− en logn)/n con-
verges in distribution to −e logZ+C as n → ∞, where Z is exponentially distributed
with parameter λ = 1, and C is a constant. Ladret [69] proves that for the first hit-
ting time T1(n) of the (1+ 1) EA on a LeadingOnes instance, the re-normalized
value (T1(n)−mn2)/n3/2 with m = (e−1)/2 converges in distribution to a normal
distribution with mean 0 and variance 3(e2 −1)/8.

Runtime complexity results are not an end in itself; ideally, they should guide the
development of new and more efficient algorithms. In [17], Doerr et al. use runtime
analysis to design a new crossover-based genetic algorithm that is asymptotically
faster on OneMax than all previously known EAs.

16.5 Parameter Choice

One of the most important questions for the application of a metaheuristic algorithm
is how its parameters should be chosen in order to obtain a good algorithmic per-
formance for the application case at hand. Considering the functions g and h of the
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generic algorithm of Sect. 16.2, we may distinguish between sampling parameters
contained in g (they govern the distribution of the sample points in Lt ), and learn-
ing parameters contained in h (they determine the type and amount of influence of
the fitness values observed in the sampled trial points on the new memory content
Mt+1). Examples of sampling parameters are mutation rate and crossover rate in
GAs. Examples of learning parameters are temperature in SA or the learning rates
used in ACO and in some EDAs, respectively.

A first question in this context is whether it is better to keep parameters constant
during the optimization run or whether they should be changed dynamically. There
are good empirical and theoretical arguments for the second alternative. Conver-
gence results for more than one stochastic search algorithm are based on dynamic
parameter schemes. For example, the classical convergence results [51] for SA re-
quire that the temperature parameter T is gradually decreased. Similarly, in [40], one
of two indicated options for obtaining convergence of an ACO algorithm consists in
gradually reducing the learning rate ρ . It seems that such a dynamic management of
a central parameter of a stochastic search algorithm is a key instrument for achieving
an exploration-exploitation balance.

Despite this intuitive consideration, it is surprisingly hard to verify the benefits
of a dynamic parameter scheme through a rigorous demonstration that performance
measures, such as the expected first hitting time, can be improved if the parame-
ter values are not kept constant. For example, in the SA literature there has been
a long discussion about the question “to cool or not to cool?”: Is it really advan-
tageous to decrease T during the optimization process, as theoretical convergence
results suggest, or can the same performance be achieved by applying the so-called
Metropolis algorithm which preserves a fixed, constant temperature T ? At least for
some practically occurring optimization problems, the former seems to be the case:
Wegener [103] showed that for the minimum spanning tree problem, SA outper-
forms Metropolis.

In cases where there is no reason suggesting that a gradual reduction of the ba-
sic parameter of a stochastic search algorithm may be beneficial, we may still be
interested in knowing whether it is better to keep the parameter at a fixed value,
or to let it oscillate in some way in order to give the process a higher degree of
variability. Jansen and Wegener [65] investigate this question analytically for the
(1+1) EA, applied to simple test functions such as OneMax and LeadingOnes (see
Sect. 16.4.3). It turns out that the static variant where the parameter under consider-
ation, the mutation probability p of the (1+ 1) EA, is fixed to a constant, is better
for some test functions than the dynamic variant where p is cyclically changed, and
worse for some other test functions. The choice between the static and the dynamic
scheme for a specific test function can make the difference between polynomial and
exponential runtime.

Doerr and Doerr [16] analyze a certain dynamic rule for step size adaptation of
a specific GA and show its superiority over any static version of this GA as well as
its asymptotic optimality among adaptive parameter choices.

Apart from the question of whether or not parameters should be changed dynami-
cally during the process, implementers of metaheuristics are always confronted with
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the question of how the parameter values should be adapted to properties of specific
problem instances, in particular the instance size n.

Let us give an example from the ACO domain showing how analytical results can
help to get insight into this issue (for details, cf. [44]). The first investigations about
the runtime of certain ACO variants [45, 77] seemed to indicate that for the Gen-
eralized OneMax problem, one has to apply relatively high values of the learning
rate ρ to obtain the favorable expected first hitting time of order θ(n logn) which is
already known for the (1+1) EA. In [49], it is demonstrated that a natural ACO al-
gorithm of the MAX-MIN-Ant-System type can solve Generalized OneMax within
expected time of order θ(n logn) also for a small value of ρ independent of the prob-
lem size n. Similar results are obtained for the LeadingOnes problem. More than
that: As soon as one goes from a fitness function giving “guidance” to the search
process, as it is provided by OneMax or LeadingOnes, to a fitness function where
parts of the optimal solution have to be identified by trial-and-error rather than by
the guidance provided by the neighborhood structure, it becomes essential for the
efficiency of the search process to choose ρ small enough. Consider, e.g., a combi-
nation of the functions OneMax and NIAH presented in Sect. 16.4.3 and defined by
f (x) =

(
∏k

i=1 xi
) · (∑n

i=k+1 xi +1
)
. For the maximization of this function, the cor-

rect bits on the first part of length k of the string must be found by trial-and-error
(this is the NIAH part), and the remaining n− k bits are optimized as for a OneMax
problem. It is shown in [49] that this problem can only be solved efficiently if the
learning rate ρ is decreased with increasing problem size n, but not too fast: For
k = log2 n, a scheme of order θ(n−3) is suitable to obtain polynomial expected first
hitting time. On the other hand, both (1+ 1) EA and ACO with constant ρ require
exponential expected time.

Another example is the following. In [98], Sudholt and Witt show that for the
Binary PSO algorithm, keeping the (usually applied) bound vmax on the velocity of
the particles fixed when increasing the instance size n leads to an extreme decline
in performance. Scaling vmax to n by the function vmax = ln(n− 1) considerably
improves the runtime behavior on the considered test functions.

16.6 No-Free-Lunch Theorems

Looking at the co-existence of a considerable number of stochastic metaheuristics, a
natural question would be to ask which is the “best” of them. In more specific terms:
Can we derive a universal result stating that for all CO problems, some stochastic
search algorithm A1 always performs better than some other stochastic search al-
gorithm A2? Results of this type would be extremely valuable by simplifying the
complex landscape of metaheuristics, but this hope broke down when Wolpert ad
Macready [109] published their famous No-Free-Lunch (NFL) theorems for opti-
mization. Basically, they state that when averaging over all possible fitness func-
tions, no black-box search algorithm (may it be deterministic or stochastic) can be
better than straightforward random search.
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Before discussing this surprising result in more detail, we have to formulate the
setting for which it holds in precise terms. It is not an essential restriction to assume
that in our formulation (16.1) of a CO problem, the range of the function f is some
finite subset Y of the set of reals: we may simply restrict the range to the image
of the finite set S under f . Clearly, for fixed S and Y , there exist |Y ||X | different
mappings (fitness functions) f : S → Y . Assume that each of them has the same
probability. Furthermore, let us restrict ourselves to search algorithms A (they can
be deterministic or stochastic, i.e., the functions g and h introduced in Sect. 16.2
can depend on the random influences z and z′ or not) with the property that the
list Lt always contains only sample points x ∈ S that have not yet been visited in
previous iterations—in other words, with the property that the sets Lt are disjoint
for t = 1,2, . . . , tmax, where tmax is the iteration in which algorithm A terminates. (Of
course, this is a strong assumption, since it assumes that A stores information on
already visited sample points in the memory Mt ; its consequences, especially for
stochastic search, where memory is saved to some extent by re-sampling, have not
been fully investigated up to now.)

It is rather clear that under these circumstances, the fitness values of the sample
points in S that have already been visited before some iteration t do not give any
information on the fitness values of the sample points in S that have not yet been
visited. Let us denote the set

⋃{Lu|u < t} of already visited points (solutions) by
Sv(t), so that S \ Sv(t) is the set of yet unvisited points. As we assumed a uniform
distribution on the set of all possible fitness functions f , the function values f (x)
for x ∈ S\Sv(t) are independent from the (observed) values for x ∈ Sv(t). Therefore,
no matter which rule algorithm A applies to determine Lt , information on the fitness
values in Sv(t) gathered in iterations u = 1, . . . , t−1 does not provide any hint about
the way to explore the yet completely unknown domain S\Sv(t). As a consequence,
every rule is equally efficient on average; in particular, it is neither more efficient nor
less efficient than random search. To each fitness function f for which A performs
better than random search, there is another fitness function for which it performs
worse.5

Of course, this result does not imply that on a special given problem, every
stochastic search algorithm has the same performance. However, it seems that the
NFL theorems force us to investigate search algorithms separately for each problem,
because if A1 dominates A2 on some problem P1, there must be another problem P2

where A2 dominates A1. (For a recent discussion on the NFL theorems and their
consequences for metaheuristics, see [61].)

5 There seem to be close relations between NFL theorems and the well-known philosophical in-
duction problem which also plays a role in AI approaches to inductive reasoning. Suppose that the
evaluation of f (x) for solution x ∈ S is not done by an algorithmic computation, but rather by the
observation of some real-world system (say, x is a control vector for a chemical plant, and f (x) is
the observed value of an outcome variable). Then the “NFL insight” that there is no logical argu-
ment for the observations f (x1), . . . , f (xt−1) of some sample solutions x1, . . . ,xt−1 to provide any
information on f (xt) for the sample solution xt /∈ {x1, . . . ,xt−1}, basically amounts to the intriguing
claim by David Hume that we do not have any logical justification for the step called “inductive
conclusion”, although this step is essential in science as in everyday life.
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Some researchers have drawn rather radical implications from the NFL theorems,
questioning the field of metaheuristics as a whole. For example, Whitley and Wat-
son [106] report that one extreme reaction is to conclude that there are no effective
general-purpose search methods at all. Early on, there has already been a resistance
against such over-interpretations, and authors have begun to investigate the limita-
tions of the NFL theorems. Their arguments proceed mainly along two lines:

1. Complexity Issues. Whereas the NFL theorems hold for the set of all possible
fitness functions, this set is usually not encountered in practice when solving op-
timization problems. Instead, the objective functions in classical CO problems
have comparably low Kolmogorov complexity (KC). Droste et al. [19] show
with an example that NFL theorems do not need to hold in classes of functions
with restricted complexity, and that “intelligent” search algorithms are able in
this context to outperform random search. English [23, 24] demonstrates that
for search spaces S of medium to large size, almost all functions f : S → Y are
“random” (in the sense of having a high KC), and he argues that random func-
tions do not pose practical problems for heuristic optimization, because sim-
ple optimizers already discover good solutions quickly for them. On the other
hand, “hard” problems are rare and therefore not represented adequately by the
average-case consideration of the NFL theorems. Further results on the relation
between KC and NFL theorems are presented, e.g., in [11].

2. Influence of Fitness Landscape Properties. Igel and Toussaint [62, 63] prove a
sharpened NFL theorem giving a sufficient and necessary condition (closedness
of the set of fitness functions under permutation) for the NFL theorem to hold.
Under this condition, they show that if a non-trivial neighborhood structure on
S has an influence on the fitness, the NFL theorem does not hold. In particular, a
set of fitness functions satisfying certain steepness constraints entail that the as-
sumptions of the NFL theorem are not satisfied. (Suitable steepness constraints
may, e.g., exclude a case where by moving from a solution to an immediate
neighbor solution, the cost function jumps from a global maximum to a global
minimum.) Therefore, most practical applications do not fall under the NFL
verdict. A similar conclusion is drawn in [68].

One may be relieved about the fact that NFL results do not have the consequence
that developing efficient metaheuristics is a futile goal, but one should not miss the
message: Since complexity properties are hard to deal with in applications (KC is
not computable!), it seems that only the structure of the fitness landscape may “give
us a free lunch” when applying general-purpose search algorithms. This leads us to
the topic of fitness landscape analysis.

16.7 Fitness Landscape Analysis

A fitness landscape is formally defined as a triple (S,d, f ), where S and f are the
search space and fitness function, respectively, and d is a distance function on S
assigning to each pair (x,x′) of solutions x,x′ ∈ S a nonnegative integer distance
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[74, 91]. (If a neighborhood structure on S—as used by ILS, SA or VNS—is given,
d is derived in a natural way as the shortest distance in the neighborhood graph.
Conversely, given d, solutions x,x′ with d(x,x′) = 1 are considered as neighbors.)
In the literature, several quantities characterizing properties of the fitness landscape
that are relevant for search algorithms have been defined (see, e.g., [74, 85, 87]). For
the sake of shortness, let us restrict ourselves to two examples:

• The fitness distance correlation (FDC) is defined as

ρ( f ,dopt) = cov( f ,dopt)/ [σ( f )σ(dopt)],

where dopt is the distance of a solution to the nearest optimal solution, while cov
and σ denote covariance and standard deviation, respectively. For a maximization
problem, a value of ρ( f ,dopt) near the minimum possible value of −1 indicates
that the fitness is ideally correlated with the distance to the optimum solution;
such landscapes are easy for stochastic local search algorithms or GAs. On the
other hand, a value of ρ( f ,dopt) around 0 makes the problem harder, and a value
near 1 indicates that the problem is “deceptive”.

• The random walk correlation function is defined as the average of

r(s) =
1

σ2( f )(m− s)

m−s

∑
t=1

( f (xt)− f̄ )( f (xt+s)− f̄ ),

where x1, . . . ,xm is a sampled random walk on the neighborhood graph of S,
σ2( f ) denotes the variance of the fitness, and f̄ is the mean fitness.

Experimentally, a considerable effect of fitness landscape measures as those above
on the efficiency of stochastic search algorithms has been observed. This effect has
been exploited to improve algorithms, e.g., in [26, 59].

One of the most interesting parameters in fitness landscape analysis, and also
a crucial parameter for the performance of stochastic local search algorithms, is
the number Nloc of local optima. Fitness landscapes with a large number of local
optima are “rugged” and hard for optimization. Reidys and Stadler [87] give a “cor-
relation length conjecture” for the estimation of Nloc from the so-called correlation
length �=−[ln(|r(1)|)]−1, where r is the random walk correlation function defined
above. Empirical evidence supports this conjecture. Garnier and Kallel [31] describe
a general technique for estimating Nloc by performing repeated local search with M
random start solutions and by recording the number of times the found local optima
are covered. Moreover, the methodology provides bounds on the search complexity
for detecting all local optima. Eremeev and Reeves [25] are even able to determine
confidence intervals for Nloc.

For some problems, the number of local optima can also be estimated an-
alytically. For example, through the statistical-mechanics approach outlined in
Sect. 16.4.2, Ferreira and Fontani [27] derive the expression Nloc ∼ 2.764 ·2n n−3/2

for the average number of local optima of the NPP problem (see Sect. 16.4.2) under
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a uniform distribution model, which is in good agreement with simulation results.
Considering that an NPP instance of size n has 2n feasible solutions, we see that a
simple ILS implementation will presumably not be very efficient in this case, com-
pared to complete enumeration, except if one single local search run takes distinctly
less than O(n3/2) time.

16.8 Black-Box Optimization

The basic forms of most stochastic metaheuristics do not exploit any information
about the specific problem instance (say, the distance matrix in a TSP), but only use
information on the search space, including the neighborhood structure, as well as
information on the specific problem type under consideration. In our generic frame-
work, this scenario is defined by the condition that the functions g and h do not
depend on the problem instance. Then, one may imagine that the algorithm A re-
peatedly calls a “black-box” procedure returning fitness values of given solutions x,
but A does not “know” how these fitness values are determined. In this case, A is
called a black-box optimizer.

From the viewpoint of a unified theory of stochastic search, it is interesting to
investigate the potential of black-box optimizers independently from their specific
algorithmic mechanisms. Recently, some articles have studied this issue. In [21],
Droste et al. investigate upper and lower bounds for the expected first hitting times of
stochastic black-box optimizers. The authors introduce a generic stochastic search
algorithm “Black-Box Algorithm 1” which is essentially the generic algorithm of
Sect. 16.2 with Lt restricted to a single element and Mt consisting of the entire search
history, i.e., the sequence (x1, f (x1), . . . ,xt−1, f (xt−1)) of solutions visited before
iteration t, together with their fitness values. In “Black-Box Algorithm 2”, the size
of the memory Mt is restricted by a bound s(n) depending on the instance size n
(which can be seen as a property of S; therefore, it does not violate the black-box
restriction). The measure of performance is the expected optimization time in the
worst case over all instances of size n.

For obtaining lower bounds on E(T1), the authors apply Yao’s minimax prin-
ciple [110], which can be stated as follows: The expected optimization time of a
stochastic search algorithm A in the worst case over all instances is lower bounded
by the expected value of the optimization time of an optimal deterministic search
algorithm, where the expected value is taken with respect to an arbitrary instance
distribution.

Droste et al. investigate sorting problems, for which they obtain linear lower
bounds (and, depending on the fitness function used to evaluate the quality of a sort,
linear or slightly super-linear upper bounds), on classes of simple functions such
as the linear pseudo-boolean functions, and some more complex pseudo-boolean
functions as well as special classes of unimodal functions. To give the flavor of
the type of results, let us consider the Generalized OneMax example, for which
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the lower bound n/ log(2n+ 1)− 1 is derived in [21].6 It is intuitively clear why
we obtain a lower bound of order O(n/ logn) here: Since there are n+ 1 different
fitness function values, each call of the black-box procedure for determining the
fitness of a solution x gives us log2(n+ 1) bits of information. On the other hand,
since there are 2n alternatives for the optimal solution x∗, a total information of n bits
is needed to identify x∗. Thus, an optimally designed search procedure will require
about n/ log2(n) black-box calls.

Teytaud and Gelly [99] present lower bounds for black-box optimizers on prob-
lems with continuous search space and consider the scenario where only pairwise
comparisons between fitness values are allowed to govern the search process instead
of the overall information contained in the fitness value.

Another interesting perspective is presented by Borenstein and Poli [11, 12];
it relates NFL theorems, fitness landscape analysis and black-box optimization to
each other. The authors argue that it is not sufficient to analyze the fitness landscape
for itself; it is only by relating the latter to the operators used during the search that
this information becomes relevant. A “proper” black-box optimizer should not have
any a-priori preference for any regions of the search space, but rather select new
sample points (in our notation: the elements of Lt ) on the basis of their distance
from already visited points. This requires that the applied search operators are in
some sense consistent with the metric structure on S, which is described in [11] in
algebraic terms.

Finally, let us mention that several practically applied variants of stochastic meta-
heuristics are not black-box optimizers, because they use information on the prob-
lem instance in addition to a black-box-type core mechanism. An example is the use
of problem-specific heuristic values in ACO. We may call such algorithms grey-box
optimizers, distinguishing them also from the “white-box” optimization techniques
of mathematical programming (MP). Some metaheuristics, such as GRASP or Ex-
treme Optimization, are inherently “grey-box”. A special form of grey-box optimiz-
ers are hybrids between metaheuristics and MP approaches such as Local Branching
[28], which have been termed matheuristic algorithms [14].

16.9 Stochastic Search Under Noise

In applications, it often happens that decisions are made under uncertainty, where
certain parameters of an optimization problem are not deterministically known in
advance. Often, it is possible to represent these parameters as random variables, by
using an appropriate stochastic model. This leads to stochastic optimization prob-
lems where the objective function and sometimes also the constraints are disturbed

6 Note that both EAs and ACO algorithms typically solve this problem in O(n logn) time [20, 49],
which differs from the lower bound by a factor of order O((logn)2). This overhead may partly be
explained by the effort for re-sampling already visited solutions.
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by “noise”. In this section, we restrict ourselves to stochastic combinatorial opti-
mization (SCO) problems of the following frequently occurring form, which is a
natural extension of the deterministic CO problem (16.1):

min E( f (x,ω)) such that x ∈ S. (16.2)

Therein, E denotes the expectation operator, and ω is a random influence with a dis-
tribution given by the stochastic model of the problem (ω is not to be confounded
with the random variables z and z′ used by the stochastic search algorithm, see
Sect. 16.2). As in the deterministic case, “min” can be replaced by “max”. For ex-
ample, consider the stochastic total tardiness problem, where a set of jobs 1, . . . ,n
together with their due dates d1, . . . ,dn are given. Each job has a processing time
Yi which is a random variable with known distribution. The objective is to find a
sequential arrangement x of the n jobs such that the expected value of the sum of
their tardiness values is minimized, where the tardiness of job i is (Ci − di)

+, with
Ci denoting the completion time of job i. Note that Ci = Ci(x,Y ) depends both on
the solution x and on the vector Y of random processing times. Here, ω can be
considered as identical to Y , and f (x,ω) = ∑n

i=1(Ci(x,ω)−di)
+.

In the literature on stochastic optimization, several methods have been developed
to solve problems of the form (16.2). In particular, metaheuristic algorithms have
also been applied in this field; surveys are given in [9, 46, 60]. A survey focusing on
EAs can also be found in [66].

Basically, three different approaches followed by metaheuristic search algo-
rithms under the black-box optimization paradigm7 can be distinguished: (1) If
possible, a procedure for the numerical computation of the expectation in (16.2) is
implemented, and the problem is solved in the same manner as a deterministic CO
problem, performing black-box calls of the numerical procedure to obtain fitness
evaluations. Often, this requires a large amount of computation time or is even in-
feasible. (2) A sample of random instances for the uncertain parameters, distributed
according to the given stochastic model, is generated as an approximation of the
exact distribution; after that, large-scale optimization averaging over this sample is
done. This is called a fixed-sample approach. (3) In a variable-sample approach,
sampling and optimization are not two successive phases, but rather alternate over
the iterations of the search algorithm. This allows the use of smaller sample sizes.

Note that a combination of these different approaches can be convenient
for particular problems where the (small) error intrinsically affecting sam-
pling methods is amplified by the characteristics of the problem: Consider
a stochastic scheduling problem with the same settings than the total tar-
diness problem mentioned earlier, but with an objective function given by
f (x,ω) = [Pr(Ci(x,ω) ≤ di)qi − (1 − Pr(Ci(x,ω) ≤ di))ei], where Pr(γ)
is the probability for event γ to happen, according to the given distribution, qi is a
reward gained if job i is expected to be completed before the deadline di, and ei is
a penalty paid in case the deadline di is not respected for job i. For such a problem,

7 For approaches using “white-box” mathematical programming techniques such as the Integer
L-Shaped Method, see, e.g., [34].
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even small errors caused by sampling approaches may produce grossly distorted
estimates of the objective function, due to jobs for which |Ci − di| is close to 0: re-
wards or penalties can be erroneously attributed in such circumstances. A natural
solution is to make a trade off between precision and computational speed by using
sampling approaches when |Ci−di| is greater than a safety threshold, and numerical
approximation otherwise, for critical jobs. Notice that more complex strategies can
also be devised [83].

General-purpose variable-sample SCO algorithms have been derived from cer-
tain metaheuristics such as SA [3, 33, 48], ACO [10, 41, 42] or VNS [50]. The
structure of these algorithms is an extension of our generic scheme of Sect. 16.2.
We only have to replace in step 2b of the generic algorithm the evaluation of the
objective function values f (xi) by sample average estimates F̃(xi) = ∑N

ν=1 f (xi,ων)
approximating F(xi) = E( f (xi,ω)), where the ων form a random sample for the un-
certain parameter ω according to the given distribution. The sample size N does not
need to be fixed over the iterations, but can be chosen as a function of Mt . Typically,
N is gradually increased to improve the accuracy of the estimate.

Using this approach and using a suitable scheme for N = N(Mt), convergence
results for the previously mentioned modifications of SA, ACO or VNS are reported
in [41, 48, 50] by generalizing known convergence results for the corresponding
basic metaheuristics. Furthermore, work on runtime analysis of such algorithms has
recently started [2, 30, 47, 97].

16.10 Stochastic Search and Robustness

Sometimes it is not possible to come out with a probability distribution for the pa-
rameters of a problem under uncertainty, as previously assumed in Sect. 16.9. This
can happen either because the uncertain phenomena cannot be captured by a math-
ematical distribution, or because there is not enough data to identify a distribution.
In such cases, one may rely on robust optimization (RO) [93], using, e.g., the so
called interval data model [8]. An input information for a problem parameter af-
fected by uncertainty corresponds to an interval defined by a lower and an upper
bound. All values within such an interval are possible, but the underlying distribu-
tion of the values is considered unknown. Such a model is less precise than those
based on stochastic information, but is much easier to handle from a computational
viewpoint, and has proven to provide results of great interest for practitioners [7].

The first robust optimization approaches [93] were protecting the decision maker
against the worst possible scenarios by taking the worst possible values for all un-
certain parameters, from the decision maker point of view. Later, compromise so-
lutions, which are less conservative and typically more practical, were considered.
One of the most prominent approaches of this kind was proposed in Bertsimas and
Sim [8] who presented robust optimization models where the decision maker can
configure the degree of conservatism according to her/his needs. The corresponding
robust optimization techniques, based on mathematical programming, provide op-
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timal solutions to the model, but are often not suitable for real-life problems, due
to their long running time on medium/large instances. Therefore, general-purpose
robust heuristic algorithms have been derived as an extension of our generic scheme
described in Sect. 16.2. The main idea is to plug a new objective function evalua-
tor inside an algorithm that, given a solution, returns its robustness cost, taking into
account both uncertainty and the degree of conservatism chosen by the decision
maker. Such an evaluation is typically obtained by solving a small linear program-
ming model, as originally described in [8]. It has been observed that the robust
version of a metaheuristic algorithm typically takes about twice the time of a de-
terministic version to carry out the same number of iterations [100]. Although the
SA [7] and ACO [100] metaheuristics have been presented in the OR domain, to the
best of our knowledge, no formal convergence results are available at present for
these algorithms.

16.11 Conclusions

In the past, metaheuristics have evolved in different scientific sub-communities, sep-
arated from each other to a certain extent. Although a strong tendency towards
cross-linking can be observed between these sub-communities (see [72]), already
resulting in considerable synergy effects as well as in the establishment of a joint
experimental methodology, a common theoretical framework enabling an immedi-
ate exploitation of progress in one of the metaheuristic subfields by other subfields
seems still to be lacking. Much work still has to be done for achieving a unified
understanding of metaheuristic algorithms.

One of the key elements around which a holistic view of the different meta-
heuristic techniques may be organized is the role of stochastic search in most of
them. The results cited in this chapter may indicate possible starting points for a
process leading to a general theory of stochastic search, but this process still has
to take place. Anyway, the many successes of particular metaheuristics in solving
real-world problems should not lead the community astray from attempting to con-
sider the “big picture” by looking at what single metaheuristic paradigms have in
common.

As discussed in Sect. 16.6, it is not likely that one single metaheuristic will turn
out as “superior” to the others and throw them out from the application fields.
Rather, it may be anticipated that the current co-existence of different metaheuris-
tics will prevail. This is desirable if we want to increase our understanding of the
benefits of each metaheuristic through a common framework that will allow them to
be compared.

Many important topics have been excluded in this chapter, such as stochastic
search in (non-linear) continuous, multi-objective, or dynamic optimization. Other
issues, like runtime analysis, are even less developed in these areas than in single-
objective static CO, and many related open problems represent a challenge for future
research.
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