
Chapter 13
Parallel Metaheuristics and Cooperative
Search

Teodor Gabriel Crainic

Abstract The chapter presents a general view of parallel metaheuristics for op-
timization. It recalls the main concepts and strategies in designing parallel meta-
heuristics and identifies trends and promising research directions. The focus is on
cooperation-based strategies, which display remarkable performances, in particular
strategies based on asynchronous exchanges and the creation of new information
out of exchanged data to enhance the global guidance of the search.

13.1 Introduction

The development of metaheuristics that take advantage of parallel computing aims
for two major goals. The first is common to all parallel computing development
efforts: solve larger problem instances, faster. That is, address larger problem in-
stances than what is achievable by sequential methods, and do this in reasonable
computing times. The second is proper to approximate solution methods, e.g., sim-
ple heuristics, metaheuristics, and matheuristics, and it concerns the method’s so-
called robustness, that is, its capability to offer a consistently high level of perfor-
mance over a wide variety of problem settings and instance characteristics. In ap-
propriate settings, e.g., the cooperative multi-search strategies (Sect. 13.6), parallel
metaheuristics proved to be much more robust than sequential versions. Moreover,
they also generally require less extensive, and expensive, parameter-calibration ef-
forts.

T. G. Crainic (�)
CIRRELT - Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation,
Montréal, QC, Canada

School of Management, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_13

419

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_13&domain=pdf
mailto:TeodorGabriel.Crainic@cirrelt.net
https://doi.org/10.1007/978-3-319-91086-4_13


420 T. G. Crainic

The objective of this chapter is to present an overview of the parallel metaheuris-
tics field in a unified manner. It thus recalls the main concepts and general strategies
for the design of parallel metaheuristics, including the main approaches to instan-
tiate them for neighborhood- and population-based metaheuristics. Note that the
chapter focuses on the design of the new class of algorithms parallel metaheuristics
create, and, thus, not on their implementation on particular computing architectures.
We do, however, identify new trends, challenges, and opportunities that some of the
new computing-platform developments bring to the field. We complete the chapter
with a number of major open questions and research challenges.

As the chapter follows and updates a previous publication [27], it focuses on
more recent developments (typically, from 2005 to 2017) and, in particular, on
cooperation-based strategies, which display remarkable performances for a broad
range of optimization problems. In addition to the references provided in the fol-
lowing sections, the reader may consult a number of surveys, taxonomies, and syn-
theses, e.g., [1, 2, 19, 20, 23, 27, 35, 71, 80, 95].

The chapter is organized as follows. Section 13.2 is dedicated to a general dis-
cussion of the potential for parallel computing in metaheuristics, a brief descrip-
tion of performance indicators for parallel metaheuristics, and the taxonomy used to
structure the presentation. Section 13.3 addresses strategies focusing on accelerating
computing-intensive tasks without modifying the basic algorithmic design. Methods
based on the explicit separation of the search space are treated in Sect. 13.4, while
strategies based on the simultaneous exploration of the search space by several in-
dependent metaheuristics constitutes the topic of Sect. 13.5. Cooperation principles
and strategies are discussed in Sect. 13.6 and are detailed in Sects. 13.6.1, 13.6.2,
and 13.7. We conclude in Sect. 13.8.

13.2 Metaheuristics and Parallelism

This section is dedicated to a brief overview of the main potential sources for parallel
computing in metaheuristics, followed by a discussion of performance indicators for
parallel metaheuristics. The section concludes with the criteria used in this paper to
describe and classify parallelization strategies for metaheuristics.

13.2.1 Sources of Parallelism

Parallel/distributed/concurrent computing means that several processes work simul-
taneously on several processors addressing a given problem instance and aiming to
identify the best (or a) solution for that instance. Parallelism thus follows from a
decomposition of the total computational load and the distribution of the resulting
tasks to available processors. According to how “small” or “large” the tasks are in
terms of algorithm work or search space, the parallelization is called fine- or coarse-
grained, respectively.



13 Parallel Metaheuristics and Cooperative Search 421

The decomposition may concern the algorithm, the search space, or the problem
structure. Functional parallelism (Sect. 13.3) corresponds to the first case, according
to which computing-intensive parts of the algorithm are decomposed into a number
of tasks (processes), working on the same data or on dedicated parts of the data,
are allocated to different processors and run in parallel, possibly exchanging infor-
mation. The concurrent execution of the innermost loop iterations, e.g., evaluating
neighbors, computing the fitness of individuals, or having ants forage concurrently,
provides the main source of functional parallelism for metaheuristics This is often
also the only source of readily available parallelism in metaheuristics, the execution
of most other steps in the algorithm depending on the status of the search, e.g., what
has been performed so far and the values of the decision variables, which requires ei-
ther the computation of the previous steps to be completed, or the synchronization of
computations; and synchronization generally yields significant delays, which may
make such parallel computation non relevant. Traditionally, functional parallelism
was therefore interesting as a low-level component of hierarchical parallelization
strategies, or when addressing problem settings requiring a significant part of the
computing effort to be spent in inner-loop algorithmic components. The rapid de-
velopment in the utilization of the graphical processing units (GPU), ubiquitous
within most computers, is changing this statement as very impressive reductions in
computing times may be obtained (Sect. 13.3).

Search space separation, constitutes a second major class of parallel strategies.
We find under this umbrella the two other cases mentioned above, i.e., the search
space and the problem structure. The general idea is to decompose the problem do-
main, or the associated search space (for brevity reasons and without loss of general-
ity, the latter term is used in this chapter), and to address the problem on each of the
resulting components using a particular solution methodology. Indeed, there are no
data dependencies between the evaluation functions of different solutions and, thus,
these may be computed in parallel. Moreover, theoretically, the parallelism in the
solution or search space is as large as the space itself when a processor is assigned
to each solution. Obviously, the latter strategy is not practical and the search space
is separated into subspaces assigned to different processors. Such a separation still
leaves a search space for each processor too large for explicit enumeration, however,
and, thus, an exact or heuristic search method is required to implicitly explore it.

Space separation is exploited in many of the strategies described in this chapter,
but raises a number of issues with respect to an overall metaheuristic search strat-
egy, e.g., how to separate; how to control an overall search conducted separately
on several components of the original space; how to create a complete solution out
of the ones obtained on each component; how to allocate resources for an efficient
exploration avoiding, for example, regions with poor-quality solutions. The answers
to these questions yield several classes of algorithms described in the following sec-
tions. These may be grouped, however, into two main approaches: domain decompo-
sition and multi search. The former explicitly separates the space yielding a number
of subproblems to be addressed simultaneously, their solutions being then combined
into solutions to the original problem, while the latter performs the separation im-
plicitly, through concurrent explorations by several methods, named solvers in the
following, which may exchange information or not.



422 T. G. Crainic

The metaheuristic or exact solvers involved in a multi-search metaheuristic may
address either the complete problem at hand, or explore partial problems defined by
decomposing the initial problem through mathematical programming or attribute-
based heuristic approaches. In the former case, the decomposition method implic-
itly defines how a complete solution is built out of partial ones. In the latter case,
some processors work on the partial problems corresponding to the particular sets
of attributes defined in the decomposition, while others combine the resulting par-
tial solutions into complete solutions to the original problem. Multi-search strate-
gies, particularly those based on cooperation principles, are at the core of the most
successful developments in parallel metaheuristics and are the object of the later
sections of this chapter.

13.2.2 Performance Measures

The traditional goal when designing parallel solution methods is to reduce the
time required to “solve”, exactly or heuristically, given problem instances or to ad-
dress larger instances without increasing the computational effort. For exact solution
methods that run until the optimal solution is obtained, this translates into the well-
known speedup performance measure, computed as the ratio between the wall-clock
time required to solve the problem instance in parallel with p processors and the cor-
responding solution time of the best-known sequential algorithm. A somewhat less
restrictive measure replaces the latter with the time of the parallel algorithm run on a
single processor. See [5] for a detailed discussion of this issue, including additional
performance measures.

Speedup measures are more difficult to define when the optimal solution is not
guaranteed or the exact method is stopped before optimality is reached, which is
obviously also the case for metaheuristics. Moreover, most strategies to build par-
allel metaheuristics yield solutions that are different in value, composition, or both
from those of the sequential versions (when they exist). Hence, an equally important
objective for parallel metaheuristics is to what extend they outperform their sequen-
tial counterparts in terms of solution quality and, ideally, computational efficiency.
In other words, the parallel method should not require a higher overall computa-
tion effort than the sequential method or should justify the effort by higher quality
solutions.

Search robustness is another characteristic increasingly expected of parallel
heuristics. Robustness with respect to a problem setting is meant in the sense of
providing “equally” good solutions to a large and varied set of problem instances,
without excessive calibration, neither during initial development, nor when address-
ing new instances. Multi-search methods, particularly those based on cooperation,
generally display a behavior different from those of the sequential methods involved,



13 Parallel Metaheuristics and Cooperative Search 423

offering enhanced performances compared to sequential methods and other paral-
lelization strategies in terms of solution quality and method robustness (see [24, 25]
for a discussion of these issues). They are thus generally acknowledged as proper
metaheuristics [1].

13.2.3 Parallel Metaheuristics Strategies

We adopt the classification of [23], generalizing that of [29], to describe the different
parallel strategies for metaheuristics. This classification is sufficiently general to
encompass the principal parallel metaheuristic classes, while avoiding a level of
detail incompatible with the scope and dimension limits of the chapter.

The three dimensions of the classification define how the global problem-solving
process is controlled, how information is exchanged among processes and how,
eventually, new information is created, and the diversity of searches involved, re-
spectively. Table 13.1 synthesizes the dimensions and categories of the classifica-
tion, which are now detailed.

The first dimension, Search Control Cardinality, specifies whether the global
search is controlled by a single process or by several processes that may collabo-
rate or not. The two categories are identified as 1-control (1C) and p-control (pC),
respectively.

The second dimension, relative to the type of Search Control and Communi-
cations, addresses the issue of information exchanges and the utilization of the
exchanged information to control or guide the search. In parallel computing, one
generally refers to synchronous and asynchronous communications. In the former
case, all concerned processes stop and engage in some form of communication and
information exchange at moments (number of iterations, time intervals, specified
algorithmic stages, etc.) exogenously determined, either hard-coded or imposed by
a control (master) process. In the latter case, each process is in charge of its own
search, as well as of establishing communications with other processes, and the
global search terminates once all individual searches stop. Four categories are de-
fined to reflect the quantity and quality of the information exchanged and shared,
as well as the additional knowledge derived from these exchanges (if any); two for
synchronous settings, Rigid (RS) and Knowledge Synchronization (KS), and, sym-
metrically, two for asynchronous strategies, Collegial (C) and Knowledge Collegial
(KC).

Table 13.1 The parallel metaheuristics taxonomy

Dimension Categories

Control Cardinality 1C pC

Control and Communications RS KS C KC

Differentiation SPSS SPDS MPSS MPDS



424 T. G. Crainic

More than one solution method or variant (e.g., with different parameter set-
tings) may be involved in a parallel metaheuristic and such solvers may be
(meta-)heuristics or exact solution methods. The third dimension thus indicates
the Search Differentiation or diversity: do solvers start from the same or dif-
ferent solutions, and are they the same or not? Note that one characterizes two
solvers as “different” even when based on the same methodology (e.g., two tabu
searches or genetic algorithms) if they use different search strategies in terms of
components (e.g., neighborhoods or selection mechanism) or parameter values.
The four classes are: SPSS, Same initial Point/Population, Same search Strat-
egy; SPDS, Same initial Point/Population, Different search Strategies; MPSS,
Multiple initial Points/Populations, Same search Strategies; MPDS, Multiple
initial Points/Populations, Different search Strategies, where “point” relates to
neighborhood-based, single-solution methods, while “population” is used for
population-based ones.

13.3 Low-Level Parallelization Strategies

Functional-parallelism-based strategies, exploiting the potential for task decompo-
sition within the inner-loop computations of metaheuristics, aim to accelerate the
search, without modifying the algorithmic logic, the search space and behavior of
the sequential metaheuristic. Hence the label “low level” often associated with such
strategies. Typically, the exploration is initialized from a single solution or popula-
tion, and proceeds according to the sequential metaheuristic logic, while a number
of intensive-computation steps are decomposed and simultaneously performed by
several processors.

Most low-level parallel strategies belong to the 1C/RS/SPSS class and are usually
implemented according to the classical master-slave parallel programming model.
A “master” program executes the (1-control) sequential metaheuristic, separating
and dispatching computation-intensive tasks to be executed in parallel by “slave”
programs. Slaves perform the tasks and return the results to the master which, once
all the results are in, resumes the normal logic of the sequential metaheuristic. The
master thus has complete control on the algorithm execution; it decides the work al-
location for all other processors and initiates communications. No communications
take place among slave programs.

The neighborhood-evaluation procedure of the local search heuristics, used alone
or as component of neighborhood- or population-based metaheuristics (implement-
ing advanced “schooling” for offspring in the latter case) is generally targeted in
1C/RS/SPSS designs. The master groups the neighbors into tasks and sends them to
slaves. Each slave then executes the exploration/evaluation procedure on its respec-
tive part of the neighborhood, and sends back the best, or first improving, neigh-
bor found. The master waits for all slaves to terminate their computations, selects
the best move and proceeds with the search. The appropriate granularity of the de-
composition, that is, the size of the tasks, depends upon the particular problem and



13 Parallel Metaheuristics and Cooperative Search 425

computer architecture, but is generally computationally sensitive to inter-processor
communication times and work-load balancing. Thus, for example, [38] discusses
several decomposition policies for the permutation-based local search neighbor-
hood applied to the scheduling of dependent tasks on homogeneous processors, and
shows that the uniform partition usually called upon in the literature is not appro-
priate in this context characterized by neighborhoods of different sizes. The authors
also show that a fixed coarse-grained non-uniform decomposition, while offering
superior results, requires calibration each time the problem size or the number of
processors varies. The best performing strategy, called dynamic fine-grained by the
authors, defines each neighbor evaluation as a single task, the master dynamically
dispatching these on a first-available, first-served basis to slave processors as they
complete their tasks. The strategy partitions the neighborhood into a number of
components equal to the number of available processors, but of unequal size with
a content dynamically determined at each iteration. The dynamic fine-grained strat-
egy provides maximum flexibility and good load balancing, particularly when the
evaluation of neighbors is of uneven length. The uniform distribution appears more
appropriate when the neighbor evaluations are sensibly the same, or when the over-
head cost of the dynamic strategy for creating and exchanging tasks appears too
high.

Similar observations may be made regarding population-based metaheuristics.
In theory, all genetic-algorithm operators may be addressed through a 1C/RS/SPSS
design, and the degree of possible parallelism is equal to the population size. In
practice, the computations associated to most operators are not sufficiently heavy
to warrant parallelizing, while overhead costs may significantly reduce the degree
of parallelism and increase the granularity of the tasks. Consequently, the fitness
evaluation is often the target of 1C/RS/SPSS parallelism for genetic-evolutionary
methods, usually implemented using the master-slave model.

The 1C/RS/SPSS parallelism for ant-colony and, generally, swarm-based meth-
ods lies at the level of the individual ants. Ants share information indirectly through
the pheromone matrix, which is updated once all solutions have been constructed.
There are no modifications of the pheromone matrix during a construction cycle
and, thus, each individual ant performs its solution-construction procedure with-
out data dependencies on the progress of the other ants. Many parallel ant-colony
methods proposed in the literature implement some form of 1C/RS/SPSS strategy
according to the master-slave model (e.g., [41] and references herein). The master
builds tasks consisting of small colonies of one or a few ants, and distributes them
to the available processors. Slaves perform their construction heuristic and return
their solution(s) to the master, which updates the pheromone matrix, returns it to
the slaves, and so on. To further speed up computation, the pheromone update can
be partially computed at the slave level, each slave computing the update associated
to its solutions. This fine-grained version with central matrix update outperformed
the sequential version of the algorithm in most cases. It is acknowledged, however,
that it does not scale when implemented on “traditional” processors (i.e., exploiting
the central processing units—CPUs), and that, similarly to other metaheuristics, it
is outperformed by more advanced multi-search methods.



426 T. G. Crainic

Scatter search and path relinking implement different evolution strategies, where
a restricted number of elite solutions are combined, the result being enhanced
through a local search or a full-fledged metaheuristic, usually neighborhood-based.
Consequently, the 1C/RS/SPSS strategies discussed above apply straightforwardly
as in [46–48] for the p-median and the feature-selection problems. A different
1C/RS/SPSS strategy for scatter search may be obtained by running concurrently
the combination and improvement operators on several subsets of the reference set.
Here, the master generates tasks by extracting a number of solution subsets, which
are sent to slaves. Each slave then combines and improves its solutions, returning
its results to the master for the global update of the reference set. Each subset sent
to a slave may contain the exact number of solutions required by the combination
operator or a higher number. In the former case, the slave performs an “iteration”
of the scatter search algorithm [46–48]. In the latter case, several combination-
improvement sequences could be executed and solutions could be returned to the
master as they are found or all together at the end of all sequences. Load-balancing
capabilities should be added to the master to avoid differences in work quantity and
computing times between slaves.

To conclude, low level, 1-control parallel strategies are particularly attractive
when neighborhoods or populations are large, or the neighbor or individual eval-
uation is costly. Computing time gains may then be obtained, as illustrated by many
early contributions discussed in the surveys indicated in the Introduction. Even more
impressive gains may be obtained by taking advantage of the current computing
platforms integrating multi-core central processing units (CPUs—the “traditional”
processor) and graphical processing units (GPUs) enhanced with data streaming,
i.e., hardware data parallelism providing the means for each processor to perform
the same task on different parts of the distributed data (e.g., [10, 11]). This hard-
ware technology offers the possibility of extensive very low-level parallelization
reminiscent of the work performed for the massively parallel computers of the late
eighties. The neighborhood evaluation in local search heuristics, the fitness eval-
uation of evolutionary methods, and the evolution of individuals in swarms may
clearly benefit from such a hardware-oriented parallelization, spectacular speedups
having been observed (e.g., [10, 11, 14, 39, 72, 97, 107]). A number of remarks
are in order, however. First, the utilization of this technology is not straightforward,
and work must be dedicated to its conceptual, technical and experimental aspects.
Second, there is also the need to examine the sequential and parallel metaheuristic
designs to identify and valuate where this technology would bring the most benefits,
besides those already identified. The work of [84] is a step on this research path. Fi-
nally, as discussed in the following sections, more advanced multi-search strategies
outperform low-level strategies in most cases, in particular with respect to solution
quality. Consequently, hierarchical settings combining multi-search strategies and
1C/RS/SPSS evaluation procedures, all on CPU-based architectures, are generally
used currently. More research is needed in this area to account for the massively
parallel possibilities of GPUs.



13 Parallel Metaheuristics and Cooperative Search 427

13.4 Domain Decomposition

We group under this title the strategies that separate the search space explicitly.
The basic idea is intuitively simple and appealing: separate the search space into
smaller subspaces, address the resulting subproblems by applying the sequential
metaheuristic on each subspace, collect the respective partial solutions, and recon-
struct an entire solution out of the partial ones. This apparently simple idea may take
several forms, however, according to the type of separation performed, the permit-
ted links among the resulting subproblems, the possible iterative modification of the
separation and the type of control of the parallel metaheuristic.

Regarding the separation type, the resulting subspaces may constitute a parti-
tion of the complete space (disjoint subspaces, their union being the full space),
or a cover allowing a certain amount of overlap among the subspaces. Note that
covers may be defined implicitly by allowing the search within a given subspace to
reach out to some part of one or several other subspaces through, e.g., neighborhood
moves or individual crossovers.

The separation may be obtained by identifying a subset of variables, and corre-
sponding constraints, eventually, and by discarding or fixing the other variables and
constraints, the goal being to obtain smaller, easier to address subproblems. Note
that it is not always possible, even desirable, to discard. Thus, if one may easily
discard the customers in a Vehicle Routing Problem (VRP) that do not belong to
a given subspace (the depot must be included in each subspace) and solve the re-
sulting partial VRPs separately, doing the same is much more difficult to implement
when considering the commodities and arcs of a Multicommodity Capacitated Net-
work Design problem (MCND). Separation by variable fixing (and projection of the
corresponding constraints) appears more flexible as one still works on smaller sub-
problems, but considering the complete vector of decision variables, some of which
are fixed. It is also a more general approach, as we find it in advanced cooperative
search methods, e.g., [64].

Strict partitioning restricts the solvers to their subspaces, resulting in part of the
search space being unreachable and the loss of exploration quality for the paral-
lel metaheuristic. Covers, through explicit or implicit overlapping, partially address
this issue; indeed, to guarantee that all potential solutions are reachable, one must
make overlapping cover the entire search space, which would negate the benefits of
decomposition. To avoid these drawbacks, one can change the separation and start
again. This idea translates into a strategy encountered quite frequently in strict par-
titioning, where the separation is modified periodically, and the search is restarted
using the new decomposition. A complete-solution reconstruction feature is almost
always part of the procedure. Note that this approach provides also the opportu-
nity to define non-exhaustive separations, i.e., where the union of the subspaces is
smaller than the complete search space.

This strategy is naturally implemented using master-slave 1C/RS schemes, with
MPSS or MPDS search differentiation. The master process determines the sepa-
ration and sends partial subsets (or information to define them out of the initial
space—this reduces the communication overhead) to slaves, synchronizes them and



428 T. G. Crainic

collects their solutions, reconstructs complete solutions, modifies the separation,
and determines when stopping conditions are met. Slaves concurrently and inde-
pendently perform the search on their assigned subsets. Most implementations ad-
dressed problem settings for which a large number of iterations can be performed
in a relatively short time and restarting the method with a new decomposition does
not require an unreasonable computational effort (e.g., [52] for real-time ambulance
fleet management), a full-fledged metaheuristic being generally used on each sub-
space.

Explicit space separation may also be performed in a pC, collegial decision-
making, framework with MPSS or MPDS search-differentiation. The separation in
a pC/KS strategy is collegially decided and modified through information-exchange
phases (e.g., round-robin or many-to-many exchanges) activated at given synchro-
nization points. The KS label comes from exchanging not only the best solutions in
each subspace (e.g., routes in a VRP), but also from the so-called context informa-
tion (e.g., un-serviced customers and empty vehicles in a VRP [91]) that is used to
modify the separation. In the initial proposition by [91] for the VRP (simulated on a
sequential machine), the customer set was partitioned, vehicles were allocated to the
resulting regions, each subproblem was solved by an independent tabu search, syn-
chronization occurred after a number of iterations that varied according to the total
number of iterations already performed, and exchanges took place between adjacent
processors (corresponding to neighboring regions). The method allowed at the time
to address successfully a number of problem instances, but the synchronization in-
herent in the design of the strategy hindered its performance. A parallel ant-colony
approach for the VRP based on this idea was presented in [41] with good speedup
results when the number of customer increased.

Domain decomposition methods induce different search behavior and solution
quality compared to those of the sequential metaheuristic. Such methods appear
increasingly needed as the dimensions of the contemplated problem instances con-
tinue to grow. Given the increased complexity of the problem settings, work is also
required on how to best combine search-space separation and the other paralleliza-
tion strategies, cooperation in particular. The Integrative Cooperative Search [64] is
a step in this direction (see Sect. 13.7).

13.5 Independent Multi-Search

We dedicate a section to the Independent multi-search as it was among the first
parallelization strategies proposed in the literature, and is also the most simple and
straightforward p-control parallelization strategy, generally offering an interesting
performance.

Independent multi-search seeks to accelerate the exploration of the search space
toward a better solution (compared to sequential search) by initiating simultaneous
solvers from different initial points (with or without different search strategies). It
thus parallelizes the classical multi-start strategy by performing several searches



13 Parallel Metaheuristics and Cooperative Search 429

simultaneously on the entire search space, starting from the same or from different
initial solutions, and selecting at the end the best among the best solutions obtained
by all searches. Independent multi-search methods thus belong to the pC/RS class of
the taxonomy. No attempt is made to take advantage of the multiple solvers running
in parallel other than to identify the best overall solution at the final synchronization
step.

The efficiency of independent multi-search follows from the sheer quantity of
computing power it allows one to apply to a given problem [7, 90, 92, 98]. The sur-
veys identified in the Introduction describe numerous contributions of applying the
pC/RS independent multi-search strategy to a variety of combinatorial optimization
problems.

Independent multi-search offers an easy access to parallel metaheuristic compu-
tation, offering a tool when looking for a “good” solution without investment in
methodological development or coding. Such methods are generally outperformed
by cooperative strategies, however, through mechanisms enabling the independent
solvers to share, during the search, the information their exploration generates. As
explained in the following sections, this sharing and the eventual creation of new in-
formation out of the shared one, yields in most cases a collective output of superior
solutions compared to independent and sequential search.

13.6 Cooperative Search

Cooperative multi-search has emerged as one of the most successful metaheuristic
methodologies to address hard optimization problems (e.g., [1, 18, 19, 23, 26, 27,
94, 96]). While independent multi-search strategies seek to accelerate, compared to
sequential search, the exploration toward a better solution by initiating simultane-
ous searches from different initial points, cooperative search strategies go further
and integrate cooperation mechanisms to share, while the search is in progress, the
information obtained from this diversified exploration of the same problem instance.
The sharing and, eventually, creation of new information out of the exchanged data
(Sect. 13.7), yields in many cases a collective output with better solutions than a
parallel independent search.

Cooperative-search strategies are thus defined by the solver components en-
gaged in cooperation, their interaction mechanism, and the nature of the information
shared. The solvers define trajectories in the search space from possibly different ini-
tial points or populations, by using possibly different search strategies (including,
possibly exact methods). The information-sharing cooperation mechanism speci-
fies how these independent solvers interact, how the exchanged information is used
globally (if at all), and how each solver acts on the received information, using it
within its own search and, thus, transforming it before passing it to other solvers.

The information-sharing cooperation mechanism specifies how these indepen-
dent solvers interact, the global search behavior of the cooperative parallel meta-
heuristic emerging from the local interactions among them, which makes it a “new”



430 T. G. Crainic

metaheuristic in its own right [26]. The similarity between this behavior and that
of systems where decisions emerge from interactions among autonomous and equal
“colleagues” has inspired the name collegial control associated with cooperative-
search strategies in the taxonomy used in this chapter. The various cooperation
mechanisms proposed in the literature are described in the next sections.

Exchanged information must be meaningful and exchanges must be timely. The
goals are (1) to improve the performance of the receiving solvers, and (2) to cre-
ate as much as possible a global, “complete” image of the status of the cooperative
search to enable guiding it, through its participating solvers, toward a better per-
formance in terms of solution quality and computational efficiency than the simple
concatenation of results obtained by non-cooperating solvers. A list of questions
related to addressing this challenge was proposed in [100]. The list is still relevant
when designing cooperative parallel strategies: What information is exchanged? Be-
tween what processes is it exchanged? When is information exchanged? How is it
exchanged? How is the imported data used? Implicit in their taxonomy and explic-
itly stated in later papers, the issue of whether the information is modified during
exchanges or whether new information is created completes this list.

“Good” solutions are the most often exchanged type of information, usually tak-
ing the form of the overall best solution or the current-best solution of a solver being
sent to the others. It was observed, however, that sending out all current-best solu-
tions a solver identifies is often counter productive, particularly when the solver per-
forms a series of improving moves or generations, as solutions are generally “sim-
ilar” (particularly for neighborhood-based procedures), and the receiving solvers
have no chance to act on the in-coming information (unless special receiving mech-
anisms are embedded in all solvers) before receiving a new solution, or may embark
on explorations similar to that of the sending solver. It was also observed that al-
ways sending the overall best solution to all cooperating solvers is generally bad as
it rapidly decreases the diversity of the search, increasing the amount of worthless
computational work (many solvers will search in the same region) and bringing an
early “convergence” to a not-so-good solution. Sending out the local optima after
a series of improving moves, exchanging groups of solutions, and implementing
random selection procedures for the solutions to send out, the latter generally bi-
ased toward good or good-and-different solutions, are among the strategies aimed at
addressing these issues.

Context information may also be shared profitably when embedded in the mech-
anisms used to guide the search. Context information refers to data collected by a
solver during its own exploration, such as the statistical information relative to the
presence of particular solution elements in improving solutions (e.g., the medium
and long-term memories of tabu search), the impact of particular moves on the
search trajectory (e.g., the scores of the moves of large adaptive neighborhood
search), population diversity measures, individual resilience across generations, etc.
A limited number of studies indicate the interest of context-information exchanges
(see Sect. 13.7), but more research is needed on this topic.

Cooperating solvers may exchange information directly or indirectly. Direct ex-
changes of information occur either when the concerned solvers agree on a meeting



13 Parallel Metaheuristics and Cooperative Search 431

point in time to share information, or when a solver broadcasts its information to
one or several other solvers without prior mutual agreement. The latter case is to
be avoided as it requires solvers to include capabilities to store received informa-
tion without disturbing their own search trajectories until they are ready to consider
it. Failure to implement such mechanisms generally results in bad performances,
as observed for strategies combining uncontrolled broadcasting of information and
immediate acceptance of received data.

Indirect exchanges of information are performed through independent data struc-
tures that become shared resources of data solvers may access asynchronously and
according to their own internal logic to post and retrieve information. Such data
structures are called blackboard in the computer-science and artificial-intelligence
vocabulary, while memory, pool, and data warehouse (reference and elite set are
also sometimes used) are equivalent terms found in the parallel metaheuristic liter-
ature. The term memory is used in this chapter.

Centralized-memory mechanisms have been used in most parallel metaheuris-
tic contributions. They receive, eventually process, and post information received
from all cooperating solvers, which, in turn, may retrieve this information indepen-
dently. Distributed memory mechanisms may be contemplated, where a number of
memories are inter-connected, each servicing a number of solvers. Such hierarchi-
cal structures, with several layers of solvers and memories, appear interesting when
a large number of processors is involved, when computations are to take place on
grids or loosely coupled distributed systems, and for integrative cooperation strate-
gies. Issues related to data availability, redundancy, and integrity must then be ad-
dressed, as well as questions relative to the balancing of workloads and the volume
of information exchanged. More research is needed on this topic.

Communications proceed according to an interaction topology represented by a
communication graph specifying the processes that may engage in direct exchanges
and, thus, directing the flow of information within the cooperative search. Each
node of the graph represents a solver or a memory. Edges define pairs of solvers or
a solver-memory pair. The projection of this graph on the physical interconnection
topology of the parallel computer executing the parallel program is generally part
of the implementation design.

When and how information is shared specifies the frequency of cooperation ac-
tivities, who initiates them and when, and whether the concerned solvers must syn-
chronize, i.e., each stopping its activities and waiting for all others to be ready, or
not. These two cases are identified as synchronous and asynchronous communica-
tions, respectively, and are discussed in the following sections. A general observa-
tion for both cases, however, is that exchanges should not be too frequent to avoid
excessive communication overheads as well as premature “convergence” to local
optima [101, 102, 104, 105].

Two observations to conclude this general discussion about cooperation. First,
it is worth noticing that cooperation is somewhat biased toward intensifying the
search in regions of the space that have already been explored and where interest-
ing solutions have been identified. This is particularly true for “simple” cooperation
mechanisms based on synchronization or that exchange current-best solutions only.



432 T. G. Crainic

It is thus important to equip the cooperation mechanisms with diversification ca-
pabilities, e.g., probabilistic or diversity-driven selection of exchanged solutions as
proposed in [108], or creation of new solutions and guidance information [64].

Second, the main principles of cooperative parallelization are the same for
neighborhood- and population-based metaheuristics, even though denominations
and implementation approaches may differ. We thus structure the presentation that
follows based on these principles and general strategies, rather than by metaheuristic
class. The next two subsections discuss the classic synchronous and asynchronous
strategies, while the advanced methods based on creation of new information out of
the shared one are the topic of Sect. 13.7.

13.6.1 pC/KS Synchronous Cooperative Strategies

Synchronous cooperation follows a p-control (pC), knowledge synchronous (pC/K)
strategy, with any of the SPDS, MPSS or MPDS search differentiation approaches.
All participating solvers stop their activities at particular moments and engage in an
information-exchange phase, which must be completed before any solver can restart
its exploration from that synchronization point. Synchronization moments may be
determined by conditions imposed exogeneously to all solvers (e.g., number of it-
erations from the last synchronization point), or detected by an a priori designated
solver.

The goal of synchronous cooperative strategies is to re-create a state of complete
knowledge at particular points in the global search and, thus, to hopefully guide
it into a coordinated evolution toward the problem solution. This goal is generally
only partially attained, however, even though these strategies have generally outper-
formed the sequential versions as well as simpler parallelization strategies. More-
over, synchronization results in significant time inefficiencies as communications
are initiated only when the slowest search thread is ready to start. Asynchronous
information sharing thus intuitively appears more promising and, indeed, coopera-
tion based on asynchronous exchanges, described in the following sections, gener-
ally outperformed synchronous methods. Consequently, few contributions relying
on synchronous cooperation were proposed in recent years.

We therefore restrict this section to recalling the main concepts used in syn-
chronous cooperation, some of which found their way into more advanced strate-
gies, encouraging interested readers to consult the surveys indicated in the Intro-
duction for details and references.

Synchronization may use a complete communication graph or a more restricted,
less densely connected communication topology (e.g., ring, torus, and grid graph).
Global exchanges of information among all solvers take place in the former case,
while information follows a diffusion process through direct, local, exchanges
among neighboring processes in the latter.

In a restricted view of the concept, a number of proposed pC/KS cooperative
search metaheuristics based on global exchanges use a designated communication



13 Parallel Metaheuristics and Cooperative Search 433

master process, which may or not include one of the participating solvers. The com-
munication master manages the synchronization mechanism in a master-slave im-
plementation. It initiates the global search starting the solvers, stops all solvers at
synchronization points, gathers the information, updates the global data, verifies the
termination criteria of the search and, either effectively terminates it or distributes
the shared information (a good solution, generally, the overall best solution in many
cases) and sends a signal to the solvers to continue the search (e.g., [45, 82]). For
coarse-grained island implementations of cooperating genetic methods, synchro-
nization means the communication master initiates the migration operator to ex-
change among the independent populations the best or a small group of some of the
best individuals in each [36, 89]. For ant-colony systems, this strategy divides the
colony into several sub-colonies individually assigned to solvers, the master updat-
ing the pheromone matrix, and starting a new search phase, based on the received
solver results [42]. A more sophisticated approach was proposed in [76], where the
master dynamically adjusted the search parameters of cooperating tabu searches ac-
cording to the results each had obtained so far. The method performed well on the
0-1 Multi-dimensional Knapsack Problem, which is encouraging, as the idea of dy-
namic adjustment of the search parameters may be generalized to more sophisticated
cooperation mechanisms.

A truer global pC/KS cooperative scheme empowers solvers to initiate synchro-
nization. Once it reaches a pre-determined status, a solver thus sends the stopping
signal, broadcasts its data (current best solution or group of solutions, in most cases),
followed by similar broadcasts performed by the other solvers. Once all informa-
tion is shared, each solver performs its own import procedures on the received
data and proceeds with its exploration of the search space until the next synchro-
nization event. Most synchronous coarse-grained island parallelizations of genetic-
based evolutionary methods fall under this category, where migration operators are
applied at regular intervals [44, 59] ([59] implementing a hierarchical method with
the fitness computation performed at the second level through a master-slave imple-
mentation; the overhead due to the parallelization of the fitness became significant
for larger numbers of processors). For ant-colony application, where each colony
evolves its own pheromone matrix, global synchronization means that, after a fixed
number of iterations, colonies exchange elite solutions that are used to update the
pheromone matrix of the receiving colony [73, 74].

Synchronization based on global exchanges of information assumes that making
available to all solvers the entire information shared will result in superior perfor-
mances. Other than the often excessive communication overhead, the main draw-
back is that solvers relying heavily on the same information end up by exploring the
same regions of the search space, resulting in loss of diversity and efficiency. Two
approaches have been proposed to overcome this drawback.

First, do not share and use uniquely the local best solutions, as shown in the
pC/RS/MPDS iterated tabu search proposed for the VRP in [16]. In this work,
solvers synchronized after a number of consecutive iterations without improvement
within the individual improvement phases. Synchronization involved the exchange
of the good solutions obtained by the solvers and, then, each individual solver built



434 T. G. Crainic

a new starting solution by selecting routes probabilistically among those received
and its own. Computational results showed this method to be flexible and efficient
for several classes of routing settings with several depots, periodicity of demands,
and time windows.

The second approach is based on diffusion. In such strategies, direct communica-
tions at synchronization points are possible only with neighboring solvers, i.e., with
nodes adjacent in the sparse communication graph. The quantity of information each
solver processes and relies upon is thus significantly reduced. Information is still
shared between non-adjacent solvers but at the reduced diffusion speed of chains
of local exchanges and data modification by the intervening solvers. This idea was
less explored compared to the global-exchange strategy, even though synchronous
cooperative mechanisms based on local exchanges and diffusion have a less nega-
tive impact on the diversity of the search-space exploration and have yielded good
results (e.g., [74, 99]).

13.6.2 pC/C Asynchronous Cooperative Strategies

Historically, independent and synchronous cooperative methods were the first multi-
search approaches to be developed. The focus has shifted, however, to asynchronous
cooperation strategies, which may be considered as defining the “state-of-the-art” in
parallel multi-search metaheuristics.

A cooperation strategy is asynchronous when programs initiate cooperation ac-
tivities according to their own internal logic, without coordination with other solvers
or memories. Thus, e.g., a solver may make available its current best solution by
posting it on a memory, or may ask for an external solution when it failed to im-
prove the quality of its best solution for a certain number of iterations.

Asynchronous communications provide the means to build cooperation and in-
formation sharing among search threads without incurring the overheads associated
with synchronization. They also bring adaptability to cooperation strategies, to the
extent that the parallel cooperative metaheuristic may more easily react and dynam-
ically adapt to the exploration of the search space than independent or synchronous
search. These benefits come with potential issues one must care for. For example,
the information related to the global search that is available when a solver must
take an action may be less “complete” than in a synchronous environment. On the
other hand, too frequent data exchanges, combined with simple acceptance rules
for incoming information, may induce an erratic solver behavior, the corresponding
search trajectories becoming similar to random walks. Hence the interest for apply-
ing information-sharing based on quality, meaningfulness, and parsimony principles
[28, 29, 100].

Asynchronous cooperative strategies follow either pC/C or pC/KC collegial prin-
ciples, the main difference between the two being that in the latter “new” knowledge
is inferred on the basis of the information exchanged between solvers; pC/KC strate-
gies are addressed in the next section.



13 Parallel Metaheuristics and Cooperative Search 435

In most pC/C asynchronous strategies in the literature, the shared information
corresponds to a locally improving solution or individual(s), the most successful
contributions sharing local optima only. The principles mentioned above also re-
sulted in mechanisms to diversify the shared information [28]. Thus, always select-
ing the best available solution out of an elite set of good solutions, sent by potentially
different solvers, proved less efficient in terms of quality of the final solution than a
strategy that selected randomly, but biased by quality, among the same elite set.

When to initiate and perform cooperation activities, as well as how to use the
incoming information is particular to each type of metaheuristic. Most strategies
proposed in the literature follow the same idea, however, to send and request infor-
mation jointly. There is no need to do this, however, even though it can decrease
the amount of communication. It may thus be interesting for neighborhood-based
methods to make available right away their newly found local optima or improved
overall solutions, and not wait for the algorithmic step where examining external
information is appropriate. Similarly, population-based methods could migrate a
number of individuals when a significant improvement is observed in the quality
and diversity of their elite group of individuals. Regarding the request of external
information, it may be based on a pre-fixed number of iterations, but this approach
should be restricted to metaheuristics without search-diversification steps, e.g., tabu
search based on continuous diversification. In most other cases, the principle of par-
simonious communications implies selecting moments when the status of the search
changes significantly, e.g., when the best solution or the elite subpopulation did
not improve for a number of iterations. At such moments, solvers generally engage
into some form of search-diversification phase, e.g., diversification in tabu search,
change of neighborhood in variable neighborhood search, and complete or partial
re-generation of population in population-based metaheuristics, which involves the
choice or modification of the current solution to initiate a new phase. External infor-
mation, which generally includes at least one good solution, may prove particularity
interesting at that moment. How it is to be used depends on the particular logic of
the receiving solver; in may be used to initiate a diversification phase, to modify the
search trajectory through a combination with a “local” solution, or to modify the
solver behavior in the long run through an insertion in an elite set or population.
As already mentioned, however, one tries to avoid frequent imports followed by a
replacement of the current solution or population, which will result in a random
search.

Direct and indirect exchange pC/C strategies may be used with any metaheuris-
tic. Historically, however, most genetic-based evolutionary asynchronous coop-
erative metaheuristics relied on direct communications over complete communi-
cation graphs [12]. These methods generally implement a coarse-grained island
model, migration being triggered by conditions within individual populations, se-
lected migrant individuals being directed toward either all other populations or a
dynamically-selected subset. The work in [106] illustrates this approach, where mi-
gration is initiated by an island that identified a new best solution, which it sends to
all other islands. The migrant individual is accepted by the solver of another island
only when different from the local population and better than the worst individual in



436 T. G. Crainic

that population. We also mention the work of [60] who introduced genetic solvers
with different strategies, which was a novelty in the GA-island field (previously, all
island populations were evolved by the same algorithm), and observed significant
improvements compared to more traditional island-based pC/C models. The paral-
lelization of ant-colony methods may use the same approach, where partitions of the
initial colony play the role of islands. The contribution of [70] is interesting in this
context for a novel way of selecting the receiving subcolony (island). Here, a solver
initiates an exchange when the evolution of its colony becomes stagnant (no longer
improving) by selecting an exchange partner probabilistically based on the relative
distance (the most different best solution) and fitness (of the best solution); it then
requests the current best solution from the selected partner, and, upon reception,
updates its pheromone matrix and continues the search.

Notice that complete communication graphs are not compulsory. Indeed, one
could use particular graphs and information-diffusion processes tailored to the prob-
lem at hand. Yet, despite encouraging results, e.g., [88] proposing VNS pC/C strate-
gies over uni and bidirectional ring topologies, too few experiments have been re-
ported yet.

Historically, the sharing of information in most asynchronous cooperative search
strategies outside the genetic-evolutionary community is based on some form of
indirect communications through a centralized device—data repository/processor -,
often called central memory [18, 28, 29]. A solver involved in such a cooperation de-
posits good solutions, local optima generally, into the central memory, from where,
when needed, it also retrieves information sent by the other cooperating solvers.
Classical retrieval mechanisms are based on random selection, which may be uni-
form or biased to favor solutions with high rankings based on solution value and
diversity. The central memory accepts incoming solutions for as long as it is not
full, acceptance becoming conditional to the relative interest of the incoming solu-
tion compared to the “worst” solution in the memory, otherwise. Diversity criteria
are increasingly considered, a slightly worse solution being preferred if it increases
the diversity of solutions in the central memory. Population culling may also be
performed (deleting, e.g., the worst half of the solutions in memory).

Central-memory-based cooperative search strategies are described in the litera-
ture for most metaheuristic classes. To the best of our knowledge, the authors in [28]
were the first to propose a central-memory approach for asynchronous tabu search
in their comparative study for a multi-commodity location problem with balanc-
ing requirements. Their method, where individual tabu searches sent to the memory
their local-best solutions when improved, and imported a solution selected proba-
bilistically biased by rank before engaging in a diversification phase, outperformed
in terms of solution quality the sequential version as well as several synchronous
and broadcast-based asynchronous cooperative strategies. The same approach was
applied to the fixed cost, capacitated, multicommodity network design problem with
similar results [22].

pC/C with some form of central memory were proposed for a variety of problems,
including cutting [8], container loading [9], labor-constrained scheduling [13], and
VRP with time windows (VRPTW) [66]. On the other hand, several studies focused



13 Parallel Metaheuristics and Cooperative Search 437

on pC/C strategies with some form of central memory for particular classes of meta-
heuristics like simulated annealing (e.g., [4, 68, 86], the latter for multi-objective
problem settings), VNS (e.g., [30, 81], the latter proposing a self-adapting mech-
anism for the main search parameters based on recent performance, and solution
selection out of the ten best present in memory), GRASP with cooperation based on
applying path relinking to solutions from memory [83], and tabu search with mem-
ory hosting a reference set and long-term global memories built on short-term local
memories sent by solvers [61].

Notice that cooperating solvers need not belong to the same metaheuristic class.
The next section will show several examples where different metaheuristics collab-
orate within pC/KC strategies. We find, in the classical pC/C case, contributions
following the same broad strategy described above when calling sequentially on
metaheuristics belonging to different types. The two-phase approach of [49] for the
VRPTW is a typical example of such a method, where each solver first applies an
evolution strategy to reduce the number of vehicles, followed by a tabu search to
minimize the total distance traveled. A somewhat different two-phase pC/C paral-
lel strategy was proposed in [6] for the Steiner problem, where each phase, using
reactive tabu search and path relinking, respectively, implemented the pC/C asyn-
chronous central memory strategy, all processes switching from the first to the sec-
ond phase simultaneously.

Multi-level cooperative search proposes a different pC/C asynchronous coopera-
tive strategy based on controlled diffusion of information [103]. Solvers are arrayed
in a linear, conceptually vertical, communication graph and a local memory is as-
sociated with each. Each solver works on the original problem but at a different
level of aggregation or “coarsening”, the first-level solver working on the complete
original problem. It communicates exclusively with the two solvers directly above
and below, that is, at higher and lower aggregation levels, respectively. The local
memory is used to receive the information coming from the immediate neighbors
and to access it at moments dynamically determined according to the internal logic
of the solver. In the original implementation, solvers were exchanging improved so-
lutions, incoming solutions not being transmitted further until modified locally for
a number of iterations to enforce the controlled diffusion of information. Excellent
results have been obtained for various problem settings including graph and hyper-
graph partitioning [78, 79], network design [32], feature selection in biomedical data
[77], and covering design [37]. It is noteworthy that one can implement multi-level
cooperative search using a central memory by adequately defining the communica-
tion protocols. Although not yet fully defined and tested, this idea is interesting as it
opens the possibility of richer exchange mechanisms combining controlled diffusion
and general availability of global information.

The central-memory pC/C asynchronous cooperation strategy is generally of-
fering very good results, yielding high-quality solutions. It is also computationally
efficient as no overhead is incurred for synchronization. No broadcasting is taking
place and there is no need for complex mechanisms to select the solvers that will
receive or send information and to control the cooperation. It has also proved ef-
ficient in handling the issue of premature “convergence” in cooperative search, by



438 T. G. Crainic

diversifying the information received by the solvers through probabilistic selection
from the memory and by a somewhat large and diverse population of solutions in
the central memory; solvers may thus import different solutions even when their co-
operation activities are taking place within a short time span. The central memory
is thus an efficient algorithmic device that allows for a strict asynchronous mode
of exchange, with no predetermined connection pattern, where no solver is inter-
rupted by another for communication purposes, but where any solver may access at
all times the data previously sent out by the other solvers.

The performance of central-memory cooperation and the availability of ex-
changed information (kept in the memory) has brought the question of whether one
could design more advanced cooperation mechanisms taking advantage of the in-
formation exchanged among cooperating solvers. The pC/KC strategies described
in the next section are the result of this area of research.

13.7 pC/KC Cooperation Strategies: Creating New Knowledge

Cooperation, particularly in the central-memory asynchronous form, offers many
possibilities for algorithm development. Particularly noteworthy are the flexibility
in terms of the different metaheuristic and exact methods that can be combined, and
the population of elite solutions being hosted in the central memory and continu-
ously enhanced by the cooperating solvers. One can thus select cooperating methods
that complement each other, some of which heuristically construct new solutions,
execute neighborhood-based improving metaheuristics, evolve populations of solu-
tions, or perform post-optimization procedures on solutions in memory.

The study reported in [21] illustrates the interest of these ideas. The authors com-
bined a genetic solver and several solvers executing the pC/C tabu search for the
multicommodity location-allocation problem with balancing requirements of [28].
The tabu searches were aggressively exploring the search space, building the elite
solution set in the central memory, while the genetic method contributed toward
increasing the diversity, and hopefully the quality, of the solutions in the central
memory, which the cooperating tabu search methods would then import. The ge-
netic method was launched once a certain number of elite solutions identified by
the tabu searches were recorded in the central memory, using this memory as initial
population. Asynchronous migration subsequently transferred the best solution of
the genetic pool to the central memory, as well as solutions of the central memory
toward the genetic population. This strategy did perform well, especially on larger
instances. It also yielded an interesting observation: while the best overall solution
was never found by the genetic solver, its inclusion allowed the tabu search solvers
to find better solutions, more diversity among solutions in memory translating into
a more effective diversification of the global search.

Several studies, including [21], showed that it is beneficial not only to include
solvers of different types in the cooperation, but also to use the elite population built
by these solvers in memory to construct an approximate image of the status of the



13 Parallel Metaheuristics and Cooperative Search 439

global search, e.g., to learn about the parts of the search space already explored,
the relations between the values of certain decision variables (e.g., arcs in a VRP
or design solution) and the value of the corresponding solution, the performance
of the cooperating solvers on the particular instance given the information they re-
ceive from the central memory, etc. This information may then be used to create
new knowledge, new and diverse solutions, solution components, “ideal” target so-
lutions, etc., and guide the search. Population-based metaheuristics are particularly
appropriate to generate solutions that add quality and diversity to an elite set.

Cooperative strategies including mechanisms to create new information and solu-
tions based on the solutions exchanged belong to the p-control knowledge collegial
(pC/KC) class. Most contributions to this field have solvers work on the complete
problem and make the bulk of the section. We conclude the pC/KC section with a
discussion on recent developments targeting multi-attribute problem settings where
the problem at hand is decomposed and solvers work on particular parts of the prob-
lem or on integrating the resulting partial solutions into complete ones.

Historically, two main classes of pC/KC cooperative mechanisms are found in
the literature, both based on the idea of exploiting a set of elite solutions, and their
attributes, exchanged by cooperating solvers working on the complete problem, but
differing in the information kept in memory. Adaptive-memory methods [85] store
and score partial elements of good solutions and combine them to create new com-
plete solutions that are then improved by the cooperating solvers. Central-memory
methods exchange complete elite solutions among neighborhood and population-
based metaheuristics and use them to create new solutions and knowledge to guide
the cooperating solvers [18, 25, 28]. The latter method generalizes the former and,
the vocabulary used in the various papers not withstanding, the two approaches are
becoming increasingly unified.

The adaptive-memory terminology was coined in [85] proposing tabu search-
based heuristics for the VRP and the VRPTW that are still among the most effective
ones for both problems (see [3, 55, 93] for more on adaptive-memory concepts).
The main idea is to keep in memory the individual components (vehicle routes in
VRP) making up the elite solutions found by the cooperating solvers, together with
memories counting for each component its frequency of inclusion in the best so-
lutions encountered so far, as well as its score, and rank among the population in
memory, computed from the attribute values, in particular the objective value, of
its respective solutions. Solvers construct solutions out of probabilistically selected
(biased by rank) solution components in memory, enhance it (tabu search in the
initial contribution), and deposit their best solutions in the adaptive memory The
probabilistic selection yields, in almost all cases, a new solution made up of com-
ponents (routes) from different elite solutions, thus inducing a diversification effect.
A number of early developments provided insights into algorithmic design. Worth
mentioning are [87] for the VRPTW, where a set-covering heuristic is proposed to
select the solution components in memory used to generate the new initial solu-
tion of a cooperating solver, and [51], for real-time vehicle routing and dispatching,
actually implementing a hierarchical, two-level parallel scheme: a pC/KC/MPSS



440 T. G. Crainic

cooperating adaptive memory metaheuristic at the first level, while each individual
tabu-search solver implemented the route decomposition of [91] with the help of
several slave processors on the second level.

Generalizing the pC/C and adaptive-memory strategies, pC/KC central-memory
mechanisms keep full solutions, as well as attributes and context information
sent by the solvers involved in cooperation. Solvers, which indirectly exchange
complete elite solutions and context information though the central memory, may
perform constructive, improving and post-optimization heuristics [64, 66, 67],
neighborhood-based methods like tabu search [40, 62–64], population-based meth-
ods like genetic algorithms [40, 64, 66, 67] and path relinking [31], as well as exact
solution methods [58] on possibly restricted versions of the problem.

The particular solvers to include in cooperation depend on the application. They
should be efficient for the problem at hand, of course. Additionally, they should also
aim to cover different regions of the search space in such a way that they contribute
not only to the quality but also to the diversity of the elite population being built in
the central memory.

Other than the information received from the cooperating solvers, the central
memory keeps newly created information out of these exchanged data. Statistics-
building, information-extraction and learning, and new solution-creation mecha-
nisms provide this new “knowledge”. Memories recording the performance of in-
dividual solutions, solution components, and solvers may be added to the central
memory, and guidance mechanisms based on this knowledge may be gradually built.

Central-memory mechanisms thus perform two main tasks: data-warehousing
and communications with solvers, on the one hand, and information-creation and
search-guiding, on the other hand. To distinguish between the two, we single out
the latter as the Search Coordinator (SC). The simplest SC mechanism was used
in the pC/C strategies of the previous section, where solutions in memory were or-
dered and rank-biased randomly extracted to answer solver requests. The functions
of the SC in pC/KC methods include creating new solutions, extracting appropriate
solution elements, building statistics on the presence and performance of solutions,
solution elements, and solvers (these belong to the family of memories, well-known
in the metaheuristic community), creating the information to return when answering
solver requests, the latter being part of the so-called guidance mechanisms.

The cooperative metaheuristic proposed in [66] for the VRPTW used a simple
pC/KC mechanism, involving four solvers, two simple genetic algorithms with or-
der and edge recombination crossovers, respectively, and two tabu search methods
that perform well sequentially, Unified Tabu Search [17] and TABUROUTE [50]. The
cooperating solvers shared their respective best solutions identified so far. The SC
in central memory performed post-optimization (2-opt, 3-opt, Or-opt, and ejection-
chain procedures to reduce the number of vehicles and the total traveled distance) on
the received solutions before making them available for sharing. Solvers requested
solutions from the central memory when needed, i.e., the genetic algorithms for
crossover operations, the Unified Tabu at regular intervals, and TABUROUTE at di-
versification time. This algorithm, without any calibration or tailoring, proved to be
competitive with the best metaheuristics of its day in linear speedups.



13 Parallel Metaheuristics and Cooperative Search 441

A SC enhanced with an innovative learning and guidance mechanism was pro-
posed in [67]. The authors aimed for a mechanism that, not only returned mean-
ingful information to solvers, but was also independent of particular problem char-
acteristics, e.g., routes in their VRPTW application, and could be broadly applied
to network-based problem settings. The SC mechanism is thus based on an atomic
element in network optimization, the arc. Starting from the classical memory con-
cepts pioneered for tabu search [53, 54, 56], the authors combined two ideas: first,
that an arc appearing often in good solutions and less frequently in bad solutions
may be worthy of consideration for inclusion in a tentative solution, and vice versa,
and, second, that this worthiness increases when the behavior appear stable in time.
The authors thus considered the evolution of the frequency of inclusion of arcs in
solutions of different quality, that is, in the elite (e.g., the 10% best), average (be-
tween the 10% and 90% best), and worst (the last 10%) groups of solutions in the
central memory. Patterns of arcs were then defined representing subsets of arcs (not
necessarily adjacent) with similar frequencies of inclusion in particular population
groups. Guidance was obtained by transmitting arc patterns to the individual solvers
indicating whether the arcs in the pattern should be “fixed” or “prohibited” to inten-
sify or diversify the search, respectively. The solvers accounted for these instructions
by using the patterns to bias the selection of arcs for move or reproduction opera-
tions. A four-phase fixed schedule (two phases of diversification at the beginning
to broaden the search, followed by two intensification phases to focus the search
around promising regions) was used with excellent results in terms of solution qual-
ity and computing efficiency compared to the best-performing methods of the day
(see [65] for a dynamic version of this mechanism).

The pC/KC/MPDS method proposed in [58] for the VRP illustrates how spe-
cialized solvers may address different issues in a cooperative metaheuristic, includ-
ing the generation of new knowledge. Two types of solvers were defined. The so-
called heuristic solvers improved solutions received from the SC associated with
the central memory (called master in [58]), through a record-to-record metaheuris-
tic [15, 57, 69]. On completing the task, the solvers returned the 50 best solutions
found and the corresponding routes (a post-optimization procedure was first run
on each route). Simultaneously, exact solvers aimed to identify new solutions by
solving series of set covering problems starting from a limited set of routes. Each
time a set covering problem was solved, the solution was returned to the central
memory and the set of the current 10 best solutions was retrieved for the next run.
Set-covering solvers had also access to the ordered list of best routes in memory and
they selected within to complete their problems. The number of routes selected to
set up a set covering problem was dynamically modified during the search to con-
trol the corresponding computational effort. The method performed very well, both
in terms of solution quality and computational effort (an almost-linear speedup was
observed).

A different SC mechanism for a pC/KC metaheuristic with tabu search solvers
was proposed in [63] for the VRP. Data sharing was relatively simple; solvers pe-
riodically (after a number of iterations or when the solution did not improve for a
number of iterations) sent best solutions to the central memory, and received a so-



442 T. G. Crainic

lution back from it, the search being resumed from the received solution. The SC
mechanism aimed to identify and extract information from the solutions in memory
to guide solvers toward intensification and diversification phases. This was obtained
by dynamically (on reception) clustering solutions according to the number of edges
in common. Thus, solutions in a given cluster share a certain number of edges, this
cluster of edges and solutions being assumed to represent a region of the search
space. Search history indicators were associated with clusters giving the number of
solutions in the cluster and the quality of the solutions. This information was used to
infer how thoroughly the corresponding region had been explored and how promis-
ing it appeared. Clusters were sorted according to the average solution value of their
feasible solutions, and the cluster with the lowest value, that is, with the largest num-
ber of very good solutions, was selected for intensification, while the solution with
the lowest number of good solutions was selected for diversification. A solution was
then selected in the corresponding cluster and it was sent to the requesting solver.
Excellent results were obtained in terms of solution quality and computation effort
(an almost linear speedup was observed with up to 240 processors) compared to the
state-of-the-art methods of the day.

We complete this section by addressing recent developments targeting multi-
attribute, “rich”, problem settings where the problems at hand display a large num-
ber of attributes characterizing their feasibility and optimality structures. Tradition-
ally, such problems were simplified, or sequentially solved through a series of par-
ticular cases, where part of the overall problem was fixed or ignored, or both. The
general idea of the new generation of pC/KC metaheuristics is to decompose the
problem formulation along sets of decision variables, which is called decision-set
attribute decomposition in [64]. The goal of this decomposition is to obtain simpler
but meaningful problem settings, in the sense that efficient solvers, can be “easily”
obtained for the partial problems either by opportunistically using existing high-
performing methods or by developing new ones. The central-memory asynchronous
cooperative search framework then brings together these partial problems and their
associated solvers, together with integration mechanisms, reconstructing complete
solutions, and search-guidance mechanisms.

According to our best knowledge, the authors in [31] (see also [40]) were
the first to propose such a methodology in the context of designing wireless
networks, where seven attributes were considered simultaneously. The proposed
pC/KC/MPDS metaheuristic had tabu search solvers working on limited subsets
of attributes, the others being fixed, and a genetic method combining the partial so-
lutions generated by the tabu search procedures into complete solutions to the initial
problem.

The general method, called Integrative Cooperative Search ICS), was introduced
in [64] (see [33, 34] for initial developments) and illustrated through an applica-
tion to the multi-depot periodic vehicle routing problem (MDPVRP) [75, 108]. The
main components of ICS, to be instantiated for each application, are (1) the decom-
position rule; (2) the Partial Solver Groups (PSGs) addressing the partial problems
resulting from the decomposition; (3) the Integrators selecting partial solutions from
PSGs, combining them, and sending the resulting complete solutions to the Com-



13 Parallel Metaheuristics and Cooperative Search 443

plete Solver Group (CSG); and (4) the CSG, providing the central memory function-
alities of ICS. Notice that, in order to facilitate the cooperation, a unique solution
representation, obtained by fixing rather than eliminating variables when defining
partial problems, is used throughout ICS.

The selection of the decision-sets for decomposition is specific to each applica-
tion case, decision variables being clustered to yield known or identifiable optimiza-
tion problem settings. Thus, an opportunistic rule decomposed the MDPVRP along
the depot and period decision sets to create two partial problems, a periodic VRP
(PVRP) and a multi-depot VRP (MDVRP), high-quality solvers being available in
the literature for both problems.

The PSG may contain one or several solvers targeting particular subsets of at-
tributes. Thus, two PSGs were defined in [64], one for the PVRP and the other for
the MDVRP. Each PSG was organized according to the pC/KC paradigm and was
thus composed of a set of Partial Solvers, a central memory where elite solutions
were kept, and a Local Search Coordinator (LSC) managing the local central mem-
ory and interfacing with the Global Search Coordinator. Two algorithms were used
as partial solvers, the hybrid genetic algorithm HGSADC [108] and GUTS, a gen-
eralized version of the Unified Tabu Search [17].

Integrators build complete solutions by mixing partial solutions with promising
features obtained within the PSGs. Integrators aim for solution quality, the trans-
mission of critical features extracted from the partial solutions, and computational
efficiency. The simplest Integrator consists of selecting high-quality partial solu-
tions (with respect to solution value or the inclusion of particular decision combi-
nations) and passing them directly to the Complete Solver Group. Population-based
metaheuristics make natural integrators, as well as solvers of optimization formula-
tions combining solutions or solution elements (e.g., set covering for VRP) to yield
complete solutions to the problem at hand. The work of [43] belongs to the lat-
ter category, proposing particular optimization models for rich VRP settings, which
preserve desired critical variables (desired attributes), present in partial solutions,
when selecting and combining routes.

Several Integrators can be involved in an ICS metaheuristic, increasing the di-
versity of the population of complete solutions. Four Integrators were thus included
in the MDPVRP application, the simple one passing good solutions to the CSG,
the crossover and individual education (enhancement) operators of HGSADC, and
two of the methods proposed in [43], the first transmitting the attributes for which
there was “consensus” in the input solutions, while the second “promoted” them
only through penalties added to the objective function. The last three integrators
started from pairs of partial solutions randomly selected among the best 25% of the
solutions in the central memories of the two PSGs.

The Complete Solver Group includes the central memory, where the complete
solutions are stored, together with the context information and the guiding solutions
built by the Global Search Coordinator (GSC). Complete solutions are received from
Integrators and, when solvers are present in the CSG, these solutions are further en-
hanced. The GSC (1) builds the contextual information (e.g., the frequency of ap-
pearance of each (customer, depot, pattern) triplet in the complete solution set for



444 T. G. Crainic

the MDPVRP, together with the cost of the best solution containing it), (2) generates
new guiding solutions to orient the search toward promising features, and (3) mon-
itors the status of the solver groups, sending guiding instructions (solutions) when
necessary.

Monitoring is performed by following the evolution of the PSGs (e.g., the number
of improving solutions generated during a certain time period) to detect undesired
situations, such as loss of diversity in the partial or complete populations, stagnation
in improving the quality of the current best solution, awareness that some zones of
the solution space—defined by particular values for particular decision sets—have
been scarcely explored, etc. Whenever one of these situations is detected, the GSC
sends guidance “instructions” to the particular PSG. The particular type of guidance
is application specific, but one may inject new solutions or elements, modify the
values of the fixed attributes for the PSG to orient its search toward a different
area, change the attribute subset under investigation (i.e., change the decomposition
of the decision-set attributes), or modify/replace the solution method in a Partial
Solver or Integrator. The last two should not occur too frequently. In [64], guidance
took the form of three solutions, which were either randomly selected from the
complete solution set, or were built by the GSC out of promising solution elements
with respect to the search history.

The authors in [64] reported very good results even when compared to the state-
of-the-art metaheuristic. The experimental results also indicated that (1) one should
use solvers with similar time performances in order to have them contributing rea-
sonably equally to the cooperation; (2) when using genetic solvers in a PSG it is
preferable for long runs to define a local population for each such solver, while us-
ing the central memory as population for all cooperating genetic solvers appears
better for short runs; and (3) embedding good solvers in the CSG enhances slightly
the already excellent performance of the ICS parallel metaheuristic.

13.8 Conclusions

This chapter presented an overview and state-of-the-art survey of the main par-
allel metaheuristic ideas, discussing general concepts and algorithm design prin-
ciples and strategies. Four main classes of parallel metaheuristics strategies were
described: low-level decomposition of computing-intensive tasks with no modifi-
cation to the original algorithm, decomposition of the search space, independent
multi-search, and cooperative multi-search, the latter encompassing synchronous,
asynchronous collegial and knowledge-creating asynchronous collegial strategies.
It is noteworthy that this series also reflects the historical sequence of the develop-
ment of parallel metaheuristics, which are now acknowledged, cooperative search
strategies in particular, as making up their own class of metaheuristics.

It must be emphasized that each of these strategy classes fulfills a particular type
of task and all are needed at some time. Thus, the idea that everything seems to
be known regarding low-level parallelization strategies is not true. Most studies on



13 Parallel Metaheuristics and Cooperative Search 445

accelerating computing-intensive tasks targeted the evaluation of a population or
neighborhood in classic metaheuristic frameworks but, as a number of more recent
studies show, the best strategy to accelerate a local-search procedure may prove less
effective when the local search is embedded into a full metaheuristics or hierarchi-
cal solution method. On the other hand, the evolution of computing infrastructure, in
particular, the integration of graphical processing units within computing platforms,
opens up interesting but challenging perspectives. In both cases, more research is
needed to understand their behavior and identify the most appropriate combination
of strategies, particularly low-level and cooperative search, for various metaheuris-
tics, problem settings, and computing platforms.

Search-space decomposition also seems to have been thoroughly studied, and has
been overlooked in the last years, maybe due to the rapid and phenomenal increase
in the memory available and the speed of access. Let us not forget, however, that
most optimization problems of interest are complex and that the dimensions of the
instances one faces in practice keep increasing. Research challenges exist in dy-
namic search-space decomposition and the combination of cooperative search and
search-space decomposition. The Integrative Cooperative Search is a first answer in
this direction, but more research is needed.

Asynchronous cooperation, particularly when relying on memories as commu-
nication mechanisms, provides a powerful, flexible and adaptable framework for
parallel metaheuristics that consistently achieved good results in terms of comput-
ing efficiency and solution quality for many metaheuristic and problem classes. A
number of challenging research issues are worth investigating.

A first issue concerns the exchange and utilization of context data locally gener-
ated by the cooperating solvers, to infer an image of the status of the global search
and generate appropriate guiding instructions. Thus, contrasting the various local
context data may be used to identify regions of the search space that were neglected
or over explored. The information could also be used to evaluate the relative per-
formance of the solvers conducting, eventually, to adjust the search parameters of
particular solvers or even change the search strategy. So-called “strategic” decision
variables or parameters could thus be more easily identified, which could prove very
profitable in terms of search guidance.

A related issue concerns the learning processes and the creation of new infor-
mation out of the shared data. Important questions concern the identification of in-
formation that may be derived from the exchanged solutions and its usefulness in
inferring the status of the global search, and determining the appropriate guiding
information to be sent to solvers. Research in this direction is still at the very begin-
ning but has already proved its worth, in particular in the context of the integrative
cooperative methods.

A third broad issue concerns the cooperation of different types of metaheuris-
tics, as well as the cooperation of metaheuristics with exact solution methods.
The so-called hybrid and matheuristic methods, representing the former and lat-
ter types of method combination, respectively, are trendy in the sequential opti-
mization field. Very few studies explicitly target parallel methods, however. How
different methods behave when involved in cooperative search and how the latter



446 T. G. Crainic

behaves given various combinations of methods is an important issue that should
yield valuable insights into the design of parallel metaheuristic algorithms, coop-
erative ones in particular. A particularly challenging but fascinating direction for
cooperative search and ICS is represented by the multi-scenario representation of
stochastic optimization formulations, for which almost nothing beyond low-level
scenario-decomposition has been proposed yet. Transversal studies comparing the
behavior and performance of particular parallel metaheuristic strategies over differ-
ent problem classes, and of different parallel strategies and implementations for the
same problem class, would be very valuable in this context, as in the broader field
of parallel metaheuristics.

Acknowledgements The author wishes to acknowledge the contributions of colleagues and stu-
dents, in particular Professors Michel Gendreau, Université de Montréal, Canada, and Michel
Toulouse, the Vietnamese-German University, Vietnam, who collaborated over the years to the
work on parallel metaheuristics for combinatorial optimization. All errors are, however, solely and
entirely due to the author.

Partial funding for this project has been provided by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), through its Discovery Grant and the Discovery Accelerator
Supplements programs, and the Strategic Clusters program of the Fonds de Recherche Québé-
cois Nature et Technologies (FRQNT). The author thanks the two institutions for supporting this
research.

References

1. E. Alba (ed.), Parallel Metaheuristics: A New Class of Algorithms (Wiley, Hoboken, 2005)
2. E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: recent advances and new trends.

Int. Trans. Oper. Res. 20(1), 1–48 (2013)
3. P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, É.D. Taillard, A parallel tabu search heuris-

tic for the vehicle routing problem with time windows. Transp. Res. C: Emerg. Technol. 5(2),
109–122 (1997)

4. R. Banos, J. Ortega, C. Gil, A. Fernandez, F. de Toro, A simulated annealing-based parallel
multi-objective approach to vehicle routing problems with time windows. Exp. Syst. Appl.
40(5), 1696–1707 (2013)

5. R.S. Barr, B.L. Hickman, Reporting computational experiments with parallel algorithms:
issues, measures, and experts opinions. ORSA J. Comput. 5(1), 2–18 (1993)

6. M.P. Bastos, C.C. Ribeiro, Reactive tabu search with path-relinking for the steiner problem
in graphs, in Meta-Heuristics 98: Theory & Applications, ed. by S. Voß, S. Martello, C. Rou-
cairol, I.H. Osman (Kluwer Academic Publishers, Norwell, 1999), pp. 31–36

7. R. Battiti, G. Tecchiolli, Parallel based search for combinatorial optimization: genetic algo-
rithms and TABU. Microprocess. Microsyst. 16(7), 351–367 (1992)

8. J. Blazewicz, A. Moret-Salvador, R. Walkowiak, Parallel tabu search approaches for two-
dimensional cutting. Parallel Process. Lett. 14(1), 23–32 (2004)

9. A. Bortfeldt, H. Gehring, D. Mack, A parallel tabu search algorithm for solving the container
loading problem. Parallel Comput. 29(5), 641–662 (2003)

10. A.R. Brodtkorb, T.R. Hagen, C. Schulz, G. Hasle, GPU computing in discrete optimization.
Part I: introduction to the GPU. EURO J. Transp. Logist. 2(1–2), 129–157 (2013)

11. A.R. Brodtkorb, T.R. Hagen, C. Schulz, G. Hasle, GPU computing in discrete optimization.
Part II: survey focussed on routing problems. EURO J. Transp. Logist. 2(1–2), 159–186
(2013)



13 Parallel Metaheuristics and Cooperative Search 447

12. E. Cantú-Paz, Theory of parallel genetic algorithms, in Parallel Metaheuristics: A New Class
of Algorithms, ed. by E. Alba (Wiley, Hoboken, 2005), pp. 425–445

13. C.B.C. Cavalcante, V.F. Cavalcante, C.C. Ribeiro, M.C. Souza, Parallel cooperative ap-
proaches for the labor constrained scheduling problem, in Essays and Surveys in Meta-
heuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers, Norwell, 2002),
pp. 201–225

14. J.M. Cecilia, J.M. Garciá, A. Nisbet, M. Amos, M. Ujaldón, Enhancing data parallelism for
ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 42–51 (2013)

15. I.M. Chao, B.L. Golden, E.A. Wasil, An improved heuristic for the period vehicle routing
problem. Networks 26(1), 25–44 (1995)

16. J.-F. Cordeau, M. Maischberger, A parallel iterated tabu search heuristic for vehicle routing
problems. Comput. Oper. Res. 39(9), 2033–2050 (2012)

17. J.-F. Cordeau, G. Laporte, A. Mercier, A unified tabu search heuristic for vehicle routing
problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001)

18. T.G. Crainic, Parallel computation, co-operation, tabu search, in Metaheuristic Optimization
Via Memory and Evolution: Tabu Search and Scatter Search, ed. by C. Rego, B. Alidaee
(Kluwer Academic Publishers, Norwell, 2005), pp. 283–302

19. T.G. Crainic, Parallel solution methods for vehicle routing problems, in The Vehicle Routing
Problem: Latest Advances and New Challenges, ed. by B.L. Golden, S. Raghavan, E.A. Wasil
(Springer, New York, 2008), pp. 171–198

20. T.G. Crainic, Parallel meta-heuristic search, in Handbook of Heuristics, ed. by R. Marti, P.M.
Pardalos, M.G.C. Resende (Springer, New York, 2017)

21. T.G. Crainic, M. Gendreau, Towards an evolutionary method - cooperating multi-thread
parallel tabu search hybrid, in Meta-Heuristics 98: Theory & Applications, ed. by S. Voß,
S. Martello, C. Roucairol, I.H. Osman (Kluwer Academic Publishers, Norwell, 1999), pp.
331–344

22. T.G. Crainic, M. Gendreau, Cooperative parallel tabu search for capacitated network design.
J. Heuristics 8(6), 601–627 (2002)

23. T.G. Crainic, N. Hail, Parallel meta-heuristics applications, in Parallel Metaheuristics: A
New Class of Algorithms, ed. by E. Alba (Wiley, Hoboken, 2005), pp. 447–494

24. T.G. Crainic, M. Toulouse, Parallel metaheuristics, in Fleet Management and Logistics, ed.
by T.G. Crainic, G. Laporte (Kluwer Academic Publishers, Norwell, 1998), pp. 205–251

25. T.G. Crainic, M. Toulouse, Parallel strategies for meta-heuristics, in Handbook in Meta-
heuristics, ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Norwell, 2003),
pp. 475–513

26. T.G. Crainic, M. Toulouse, Explicit and emergent cooperation schemes for search algorithms,
in Learning and Intelligent Optimization, ed. by V. Maniezzo, R. Battiti, J.-P. Watson. Lec-
ture Notes in Computer Science, vol. 5315 (Springer, Berlin, 2008), pp. 95–109

27. T.G. Crainic, M. Toulouse, Parallel meta-heuristics, in Handbook of Metaheuristics, ed. by
M. Gendreau, J.-Y. Potvin, 2nd edn. (Springer, Berlin, 2010), pp. 497–541

28. T.G. Crainic, M. Toulouse, M. Gendreau, Parallel asynchronous tabu search for multicom-
modity location-allocation with balancing requirements. Ann. Oper. Res. 63, 277–299 (1996)

29. T.G. Crainic, M. Toulouse, M. Gendreau, Towards a taxonomy of parallel tabu search algo-
rithms. INFORMS J. Comput. 9(1), 61–72 (1997)

30. T.G. Crainic, M. Gendreau, P. Hansen, N. Mladenović, Cooperative parallel variable neigh-
borhood search for the p-median. J. Heuristics 10(3), 293–314 (2004)

31. T.G. Crainic, B. Di Chiara, M. Nonato, L. Tarricone, Tackling electrosmog in completely
configured 3G networks by parallel cooperative meta-heuristics. IEEE Wireless Commun.
13(6), 34–41 (2006)

32. T.G. Crainic, Y. Li, M. Toulouse, A first multilevel cooperative algorithm for the capacitated
multicommodity network design. Comput. Oper. Res. 33(9), 2602–2622 (2006)

33. T.G. Crainic, G.C. Crisan, M. Gendreau, N. Lahrichi, W. Rei, A concurrent evolutionary ap-
proach for cooperative rich combinatorial optimization, in Genetic and Evolutionary Com-
putation Conference - GECCO 2009, July 8–12, Montréal, Canada (ACM, New York, 2009).
CD-ROM



448 T. G. Crainic

34. T.G. Crainic, G.C. Crisan, M. Gendreau, N. Lahrichi, W. Rei, Multi-thread integrative coop-
erative optimization for rich combinatorial problems, in The 12th International Workshop on
Nature Inspired Distributed Computing - IDISC’09, 25–29 May, Rome (2009). CD-ROM

35. T.G. Crainic, T. Davidović, D. Ramljak, Designing parallel meta-heuristic methods, in
High Performance and Cloud Computing in Scientific Research and Education, ed. by M.
Despotovic-Zrakic, V. Milutinovic, A. Belic (IGI Global, Hershey, 2014), pp. 260–280

36. Z.J. Czech, A parallel genetic algorithm for the set partitioning problem, in 8th Euromicro
Workshop on Parallel and Distributed Processing (2000), pp. 343–350

37. C. Dai, B. Li, M. Toulouse, A multilevel cooperative tabu search algorithm for the covering
design problem. J. Comb. Math. Comb. Comput. 68, 35–65 (2009)

38. T. Davidović, T.G. Crainic, Parallel local search to schedule communicating tasks on identi-
cal processors. Parallel Comput. 48, 1–14 (2015)

39. A. Delévacq, P. Delisle, M. Gravel, M. Krajecki, Parallel ant colony optimization on graphics
processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)

40. B. Di Chiara, Optimum planning of 3G cellular systems: radio propagation models and co-
operative parallel meta-heuristics. Ph.D. thesis, Dipartimento di ingegneria dell’innovatione,
Universitá degli Studi di Lecce, Lecce, 2006

41. K.F. Doerner, R.F. Hartl, S. Benkner, M. Lucka, Cooperative savings based ant colony op-
timization - multiple search and decomposition approaches. Parallel Process. Lett. 16(3),
351–369 (2006)

42. H. Drias, A. Ibri, Parallel ACS for weighted MAX-SAT, in Artificial Neural Nets Problem
Solving Methods - Proceedings of the 7th International Work-Conference on Artificial and
Natural Neural Networks, ed. by J. Mira, J. Álvarez. Lecture Notes in Computer Science,
vol. 2686 (Springer, Heidelberg, 2003), pp. 414–421

43. N. El Hachemi, T.G. Crainic, N. Lahrichi, W. Rei, T. Vidal, Solution integration in com-
binatorial optimization with applications to cooperative search and rich vehicle routing. J.
Heuristics 21(5), 663–685 (2015)

44. C.D. Flores, B.B. Cegla, D.B. Caceres, Telecommunication network design with parallel
multi-objective evolutionary algorithms, in Proceedings of the 2003 IFIP/ACM Latin Amer-
ica Networking Conference - Towards a Latin American Agenda for Network Research
(ACM, New York, 2003), pp. 1–11

45. F. García-López, B. Melián-Batista, J.A. Moreno-Pérez, J.M. Moreno-Vega, The parallel
variable neighborhood search for the p-median problem. J. Heuristics 8(3), 375–388 (2002)

46. F. García-López, B. Melián-Batista, J.A. Moreno-Pérez, J.M. Moreno-Vega, Parallelization
of the scatter search for the p-median problem. Parallel Comput. 29, 575–589 (2003)

47. F. García-López, M. García Torres, B. Melián-Batista, J.A. Moreno-Pérez, J.M. Moreno-
Vega, Parallel scatter search, in Parallel Metaheuristics: A New Class of Metaheuristics (Wi-
ley, Hoboken, 2005), pp. 223–246

48. F. García-López, M. García Torres, B. Melián-Batista, J.A. Moreno-Pérez, J.M. Moreno-
Vega, Solving feature subset selection problem by a parallel scatter search. Eur. J. Oper. Res.
169(2), 477–489 (2006)

49. H. Gehring, J. Homberger, Parallelization of a two-phase metaheuristic for routing problems
with time windows. J. Heuristics 8(3), 251–276 (2002)

50. M. Gendreau, A. Hertz, G. Laporte, A tabu search heuristic for the vehicle routing problem.
Manag. Sci. 40(10), 1276–1290 (1994)

51. M. Gendreau, F. Guertin, J.-Y. Potvin, É.D. Taillard, Tabu search for real-time vehicle routing
and dispatching. Transp. Sci. 33(4), 381–390 (1999)

52. M. Gendreau, G. Laporte, F. Semet, A dynamic model and parallel tabu search heuristic for
real-time ambulance relocation. Parallel Comput. 27(12), 1641–1653 (2001)

53. F. Glover, Tabu search – Part I. ORSA J. Comput. 1(3), 190–206 (1989)
54. F. Glover, Tabu search – Part II. ORSA J. Comput. 2(1), 4–32 (1990)
55. F. Glover, Tabu search and adaptive memory programming – advances, applications and

challenges, in Interfaces in Computer Science and Operations Research, ed. by R.S. Barr,
R.V. Helgason, J. Kennington (Kluwer Academic Publishers, Norwell, 1996), pp. 1–75



13 Parallel Metaheuristics and Cooperative Search 449

56. F. Glover, M. Laguna, Tabu Search (Kluwer Academic Publishers, Norwell, 1997)
57. B.L. Golden, E.A. Wasil, J.P. Kelly, I.M. Chao, Metaheuristics in vehicle routing, in Fleet

Management and Logistics, ed. by T.G. Crainic, G. Laporte (Kluwer Academic Publishers,
Norwell, 1998), pp. 33–56

58. C. Groër, B. Golden, A parallel algorithm for the vehicle routing problem. INFORMS J.
Comput. 23(2), 315–330 (2011)

59. J.I. Hidalgo, M. Prieto, J. Lanchares, R. Baraglia, F. Tirado, O. Garnica, Hybrid paralleliza-
tion of a compact genetic algorithm, in Proceedings of the 11th Uromicro Conference on
Parallel, Distributed and Network-Based Processing (2003), pp. 449–455

60. D. Izzo, M. Rucinski, C. Ampatzis, Parallel global optimisation meta-heuristics using an
asynchronous island-model, in CEC’09 - IEEE Congress on Evolutionary Computation
(IEEE, Piscataway, 2009), pp. 2301–2308

61. T. James, C. Rego, F. Glover, A cooperative parallel tabu search algorithm for the quadratic
assignment problem. Eur. J. Oper. Res. 195(3), 810–826 (2009)

62. J. Jin, T.G. Crainic, A. Løkketangen, A parallel multi-neighborhood cooperative tabu search
for capacitated vehicle routing problems. Eur. J. Oper. Res. 222(3), 441–451 (2012)

63. J. Jin, T.G. Crainic, A. Løkketangen, A cooperative parallel metaheuristic for the capacitated
vehicle routing problem. Comput. Oper. Res. 44, 33–41 (2014)

64. N. Lahrichi, T.G. Crainic, M. Gendreau, W. Rei, C.C. Crisan, T. Vidal, An integrative co-
operative search framework for multi-decision-attribute combinatorial optimization. Eur. J.
Oper. Res. 246(2), 400–412 (2015)

65. A. Le Bouthillier, Recherches coopératives pour la résolution de problèmes d’optimisation
combinatoire. Ph.D. thesis, Département d’informatique et de recherche opérationnelle, Uni-
versité de Montréal, Montréal, 2007

66. A. Le Bouthillier, T.G. Crainic, A cooperative parallel meta-heuristic for the vehicle routing
problem with time windows. Comput. Oper. Res. 32(7), 1685–1708 (2005)

67. A. Le Bouthillier, T.G. Crainic, P. Kropf, A guided cooperative search for the vehicle routing
problem with time windows. IEEE Intell. Syst. 20(4), 36–42 (2005)

68. S.Y. Lee, K.G. Lee, Synchronous and asynchronous parallel simulated annealing with mul-
tiple Markov chains. IEEE Trans. Parallel Distrib. Syst. 7(10), 993–1007 (1996)

69. F. Li, B.L. Golden, E.A. Wasil, Very large-scale vehicle routing: new test problems, algo-
rithms, and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

70. C. Ling, S. Hai-Ying, W. Shu, A parallel ant colony algorithm on massively parallel proces-
sors and its convergence analysis for the travelling salesman problem. Inf. Sci. 199, 31–42
(2012)

71. N. Melab, E.-G. Talbi, S. Cahon, E. Alba, G. Luque, Parallel metaheuristics: models and
frameworks, in Parallel Combinatorial Optimization, ed. by E.-G. Talbi (Wiley, New York,
2006), pp. 149–162

72. N. Melab, T.-V. Luong, K. Boufaras, E.-G. Talbi, Towards paradisEO-MO-GPU: a frame-
work for gpu-based local search metaheuristics, in Advances in Computational Intelligence.
Lecture Notes in Computer Science, vol. 6691, ed. by J. Cabestany, I. Rojas, G. Joya
(Springer, Berlin, 2011), pp. 401–408

73. R. Michels, M. Middendorf, An ant system for the shortest common supersequence problem,
in New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw-Hill, New
York, 1999), pp. 51–61

74. M. Middendorf, F. Reischle, H. Schmeck, Multi colony ant algorithms. J. Heuristics 8(3),
305–320 (2002)

75. A. Mingozzi, The multi-depot periodic vehicle routing problem, in Abstraction, Reformula-
tion and Approximation, ed. by J.-D. Zucker, L. Saitta. Lecture Notes in Computer Science,
vol. 3607 (Springer, Berlin, 2005), pp. 347–350

76. S. Niar, A. Fréville, A parallel tabu search algorithm for the 0–1 multidimensional knapsack
problem, in 11th International Parallel Processing Symposium (IPPS ’97), Geneva (IEEE,
Piscataway, 1997), pp. 512–516



450 T. G. Crainic

77. I.O. Oduntan, M. Toulouse, R. Baumgartner, C. Bowman, R. Somorjai, T.G. Crainic, A multi-
level tabu search algorithm for the feature selection problem in biomedical data sets. Comput.
Math. Appl. 55(5), 1019–1033 (2008)

78. M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, J.S. Deogun, Multi-level cooperative
search: application to the netlist/hypergraph partitioning problem, in Proceedings of Interna-
tional Symposium on Physical Design (ACM Press, New York, 2000), pp. 192–198

79. M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, J.S. Deogun, Multilevel cooperative
search for the circuit/hypergraph partitioning problem. IEEE Trans. Comput. Aided Des.
21(6), 685–693 (2002)

80. M. Pedemonte, S. Nesmachnow, H. Cancela, A survey of parallel ant colony optimization.
Appl. Soft Comput. 11(8), 5181–5197 (2011)

81. M. Polacek, S. Benkner, K.F. Doerner, R.F. Hartl, A cooperative and adaptive variable neigh-
borhood search for the multi depot vehicle routing problem with time windows. Bus. Res.
1(2), 207–218 (2008)

82. C. Rego, Node ejection chains for the vehicle routing problem: sequential and parallel algo-
rithms. Parallel Comput. 27(3), 201–222 (2001)

83. C.C. Ribeiro, I. Rosseti, Efficient parallel cooperative implementations of GRASP heuristics.
Parallel Comput. 33(1), 21–35 (2007)

84. E. Rios, L.S. Ochi, C. Bœres, V.N. Cœlho, I.M. Cœlho, R. Faria, Exploring parallel multi-
GPU local search strategies in a metaheuristic framework. J. Parallel Distrib. Comput. (2017).
https://doi.org/10.1016/j.jpdc.2017.06.011

85. Y. Rochat, É.D. Taillard, Probabilistic diversification and intensification in local search for
vehicle routing. J. Heuristics 1(1), 147–167 (1995)

86. H. Sanvicente-Sánchez, J. Frausto-Solís, MPSA: a methodology to parallelize simulated an-
nealing and its application to the traveling salesman problem, in MICAI 2002: Advances in
Artificial Intelligence, ed. by C.A. Coello Coello, A. de Albornoz, L.E. Sucar, O.C. Battis-
tutti. Lecture Notes in Computer Science, vol. 2313 (Springer, Heidelberg, 2002), pp. 89–97

87. J. Schulze, T. Fahle, A parallel algorithm for the vehicle routing problem with time window
constraints. Ann. Oper. Res. 86, 585–607 (1999)

88. M. Sevkli, M.E. Aydin, Parallel variable neighbourhood search algorithms for job shop
scheduling problems. IMA J. Manag. Math. 18(2), 117–133 (2007)

89. M. Solar, V. Parada, R. Urrutia, A parallel genetic algorithm to solve the set-covering prob-
lem. Comput. Oper. Res. 29(9), 1221–1235 (2002)

90. T. Stutzle, Parallelization strategies for ant colony optimization, in Proceedings of Parallel
Problem Solving from Nature V, ed. by A.E. Eiben, T. Back, M. Schoenauer, H.-P. Schwefel.
Lecture Notes in Computer Science, vol. 1498 (Springer, Heidelberg, 1998), pp. 722–731

91. É.D. Taillard, Parallel iterative search methods for vehicle routing problems. Networks 23(8),
661–673 (1993)

92. É.D. Taillard, Parallel taboo search techniques for the job shop scheduling problem. ORSA
J. Comput. 6(2), 108–117 (1994)

93. É.D. Taillard, L.M. Gambardella, M. Gendreau, J.-Y. Potvin, Adaptive memory program-
ming: a unified view of metaheuristics. Eur. J. Oper. Res. 135(1), 1–10 (1997)

94. E.-G. Talbi (ed.), Parallel Combinatorial Optimization (Wiley, Hoboken, 2006)
95. E.-G. Talbi (ed.), Metaheuristics: From Design to Implementation (Wiley, Hoboken, 2009)
96. S. Talukdar, S. Murthy, R. Akkiraju, Asynchronous teams, in Handbook in Metaheuristics,

ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Norwell, 2003)
97. Y. Tan, K. Ding, A survey on GPU-based implementation of swarm intelligence algorithms.

IEEE Trans. Cybern. 46(9), 2168–2267 (2016)
98. H.M.M. ten Eikelder, B.J.L. Aarts, M.G.A. Verhoeven, E.H.L. Aarts, Sequential and parallel

local search for job shop scheduling, in Meta-Heuristics 98: Theory & Applications, ed.
by S. Voß, S. Martello, C. Roucairol, I.H. Osman (Kluwer Academic Publishers, Norwell,
1999), pp. 359–371

99. G. Tongcheng, M. Chundi, Radio network using coarse-grained parallel genetic algorithms
with different neighbor topology, in Proceedings of the 4th World Congress on Intelligent
Control and Automation, vol. 3 (2002), pp. 1840–1843

https://doi.org/10.1016/j.jpdc.2017.06.011


13 Parallel Metaheuristics and Cooperative Search 451

100. M. Toulouse, T.G. Crainic, M. Gendreau, Communication issues in designing coopera-
tive multi thread parallel searches, in Meta-Heuristics: Theory & Applications, ed. by
I.H. Osman, J.P. Kelly (Kluwer Academic Publishers, Norwell, 1996), pp. 501–522

101. M. Toulouse, T.G. Crainic, B. Sansó, K. Thulasiraman, Self-organization in cooperative
search algorithms, in Proceedings of the 1998 IEEE International Conference on Systems,
Man, and Cybernetics (Omnipress, Madison, 1998), pp. 2379–2385

102. M. Toulouse, T.G. Crainic, B. Sansó, An experimental study of systemic behavior of co-
operative search algorithms, in Meta-Heuristics 98: Theory & Applications, ed. by S. Voß,
S. Martello, C. Roucairol, I.H. Osman (Kluwer Academic Publishers, Norwell, 1999), pp.
373–392

103. M. Toulouse, K. Thulasiraman, F. Glover, Multi-level cooperative search: a new paradigm
for combinatorial optimization and an application to graph partitioning, in 5th International
Euro-Par Parallel Processing Conference, ed. by P. Amestoy, P. Berger, M. Daydé, I. Duff,
V. Frayssé, L. Giraud, D. Ruiz. Lecture Notes in Computer Science, vol. 1685 (Springer,
Heidelberg, 1999), pp. 533–542

104. M. Toulouse, T.G. Crainic, K. Thulasiraman, Global optimization properties of parallel co-
operative search algorithms: a simulation study. Parallel Comput. 26(1), 91–112 (2000)

105. M. Toulouse, T.G. Crainic, B. Sansó, Systemic behavior of cooperative search algorithms.
Parallel Comput. 30(1), 57–79 (2004)

106. E. Vallada, R. Ruiz, A cooperative metaheuristics for the permutation flowshop scheduling
problem. Eur. J. Oper. Res. 193(2), 365–376 (2009)

107. T. Van Luong, N. Melab, E.-G. Talbi, GPU computing for parallel local search metaheuristic
algorithms. IEEE Trans. Comput. 62(1), 173–185 (2013)

108. T. Vidal, T.G. Crainic, M. Gendreau, N. Lahrichi, W. Rei, A hybrid genetic algorithm for
multi-depot and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)


	13 Parallel Metaheuristics and Cooperative Search
	13.1 Introduction
	13.2 Metaheuristics and Parallelism
	13.2.1 Sources of Parallelism
	13.2.2 Performance Measures
	13.2.3 Parallel Metaheuristics Strategies

	13.3 Low-Level Parallelization Strategies
	13.4 Domain Decomposition
	13.5 Independent Multi-Search
	13.6 Cooperative Search
	13.6.1 pC/KS Synchronous Cooperative Strategies
	13.6.2 pC/C Asynchronous Cooperative Strategies

	13.7 pC/KC Cooperation Strategies: Creating New Knowledge
	13.8 Conclusions
	References


