
Chapter 11
Swarm Intelligence

Xiaodong Li and Maurice Clerc

Abstract Swarm Intelligence (SI) is an Artificial Intelligence (AI) discipline that
studies the collective behaviours of artificial and natural systems such as those of
insects or animals. SI is seen as a new concept of AI and is becoming increasingly
accepted in the literature. SI techniques are typically inspired by natural phenomena,
and they have exhibited remarkable capabilities in solving problems that are often
perceived to be challenging to conventional computational techniques. Although an
SI system lacks a centralized control, the system at the swarm (or population) level
reveals remarkable complex and self-organizing behaviours, often as the result of
local interactions among individuals in the swarm as well as individuals with the
environment, based on very simple interaction rules.

11.1 Introduction

Swarm Intelligence refers to a family of modern Artificial Intelligence techniques
that are inspired by the collective behaviours exhibited by social insects and ani-
mals, as well as human societies. Many such phenomena can be observed in na-
ture, such as ant foraging behaviours, bird flocking, fish schooling, animal herding,
and many more. Even though individual ants are simple insects and do not exhibit

The original version of this chapter was revised: Acknowledgements section has been revised. The
correction to this chapter is available at https://doi.org/10.1007/978-3-319-91086-4_19

X. Li (�)
School of Science (Computer Science), RMIT University, Melbourne, VIC, Australia
e-mail: xiaodong.li@rmit.edu.au

M. Clerc
Independent Consultant, Groisy, France
e-mail: maurice.clerc@writeme.com

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_11

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_11&domain=pdf
mailto:https://doi.org/10.1007/978-3-319-91086-4_19
mailto:xiaodong.li@rmit.edu.au
mailto:maurice.clerc@writeme.com
https://doi.org/10.1007/978-3-319-91086-4_11

354 X. Li and M. Clerc

sophisticated behaviour, many ants working together can achieve fairly complex
tasks. An SI system typically consists of a population of individuals. These indi-
viduals are usually very simple agents that on their own do not exhibit complex
behaviours. However, complex global patterns may emerge from interactions be-
tween these agents and the agents with the environment. An intriguing property of
an SI system is its ability to behave in a complex and self-organized way without
any specific individual taking control of everything. In other words, even without
any teleological principle, a common goal may nevertheless be reached.

One definition on Swarm Intelligence provided by Kennedy [44], the inventor of
Particle Swarm Optimization (PSO), captures very nicely the essence of SI:

“Swarm intelligence refers to a kind of problem-solving ability that emerges
in the interactions of simple information processing units. The concept of a
swarm suggests multiplicity, stochasticity, randomness, and messiness, and
the concept of intelligence suggests that the problem-solving method is some-
how successful. The information processing units that compose a swarm can
be animate, mechanical, computational, or mathematical; they can be insects,
birds, or human beings; they can be array elements, robots, or standalone
workstations; they can be real or imaginary. Their coupling can have a wide
range of characteristics, but there must be interaction among the units.”

SI techniques are problem solving techniques emulating this sort of social be-
haviours that are observed in nature. In essence, the problem solving ability of an SI
technique is derived from the interactions among many simple information process-
ing units (or agents). Given the distributed nature of the system, SI techniques tend
to be more robust and scalable than conventional techniques. The term of Swarm
Intelligence was first coined by Beni and Wang [1] in the context of cellular robotic
systems. Since then, this term has been adopted in much broader research areas
[9, 10].

The purpose of this chapter is to provide an introduction to SI and how it comple-
ments the traditional definition of Artificial Intelligence. Several biological exam-
ples as inspirations for SI techniques will be presented, as well as the SI metaphor of
the human society. The application of SI principles to optimization is in particular
prevalent among its many application areas. This chapter will focus on providing
a detailed account on one of the most popular SI techniques, Particle Swarm Op-
timization (PSO). In particular, the chapter will present the canonical PSO and its
variants, and provide an illustration of swarm dynamics through a simplified PSO.
The chapter will also discuss several popular PSO application areas and its recent
theoretical developments.

Traditionally intelligence has been considered as a trait of an individual. Kennedy
et al. remarked [46]:

11 Swarm Intelligence 355

“The early AI researchers had made an important assumption, so fundamen-
tal that it was never stated explicitly nor consciously acknowledged. They
assumed that cognition is something inside an individuals head. An AI pro-
gram was modeled on the vision of a single disconnected person, processing
information inside his or her brain, turning the problem this way and that,
rationally and coolly.”

Fig. 11.1 The double-bridge experiment: ants find the shorter path of the two between the nest and
the food source; (a) at the start, (b) after some period, more ants choose the shorter path

Fig. 11.2 Biological examples: flock of birds in flight (top left); fish schools (top right); domes
built by termites (bottom left); and honey bees (bottom right)

356 X. Li and M. Clerc

SI can be regarded as a broader concept of intelligence since it emphasizes the
fact that intelligence should be modeled in a social context, as a result of interaction
with one another. Intelligence should be seen as a collective entity rather than a
single isolated one.

11.2 Biological Examples

There is an abundance of social behaviour examples among insects and animals in
nature that exhibit emergent intelligent properties [9]. A few examples include:

Ants exhibit interesting path-finding behaviours as they go out searching for
food. A well known biological example is the double-bridge experiment, where two
bridges of different lengths are placed between the ant nest and the food source
(Fig. 11.1). The ants are set out to reach the food source and bring the food back to
the nest. Since ants leave pheromone trails as they move around, the path with more
ants crossing it will have a higher intensity level of pheromone than the other one.
Although at the start of foraging, there is no pheromone on the two paths and there
is a probability of 50% of going along either of the two bridges (Fig. 11.1a), after
a certain period of time, as more ants come back via the shorter path, the intensity
level of pheromone on the shorter path increases. Because ants tend to follow the
path with a higher intensity level of pheromone, there will be more and more ants
choosing the shorter path to reach the food source. Eventually almost all ants would
converge onto the shorter path (Fig. 11.1b). It is remarkable that though no single
ant knows about how to find the shorter path, many ants working together manage
to achieve the task.

Birds fly in flocks to increase their chance of survival, finding food sources,
and avoiding predators. By staying in a flock (Fig. 11.2 top left), birds gain several
benefits. One major benefit is the so called “safety-in-numbers”, since if a predator
approaches the flock, it is more likely to be seen by at least some of the birds in the
flock than if a bird is just on its own. The alarm message can be quickly passed onto
other birds in the vicinity, and soon to the entire flock. Staying in a flock also serves
as a distraction, as the predator may struggle to single out any specific bird. Birds in
a flock are more efficient in foraging—if any bird spots the food location and dive
towards it, this information can be passed onto others quickly, thus the whole flock
benefits. Flying in a flock following a certain pattern also improves the efficiency of
the flight, due to better aerodynamics.

Many species of fish swim in schools so as to minimize their energy con-
sumption and to escape from predators’ attack. Fish schooling (Fig. 11.2 top
right) often refers to the fact that fish swim in groups in a highly coordinated man-
ner, e.g., in the same direction. A fish school may appear to have a life of its own,
as they move in unison like one single entity. It is amazing to see the direction or
speed of hundreds of fish change almost at the same exact instant. By staying in a
school, each individual fish can look out for one another, helping them to avoid a

11 Swarm Intelligence 357

predator’s attack. By swimming in a certain formation following one another, fish
can reduce their body friction with the water thereby keeping energy consumption
at a very low level.

Termites build sophisticated domed structures as a result of decentralized
control. Individual termites participate in building a dome by following some very
simple rules (Fig. 11.2 bottom left). For example, termites carry dirt in their mouths,
and move in the direction of the strongest pheromone intensity, and then deposit the
dirt where the smell is the strongest. Initially termites move randomly and only a
number of small pillars are built. These pillars also happen to be the places visited
by a larger number of termites, thereby the pheromone intensity is higher there. As
more termites deposit their loads in a place, the more attractive this place is to other
termites, resulting in a positive feedback loop. Since the deposit tends to be made on
the inner side of the pillars, more and more build-up is formed on the inward facing
side, eventually resulting in an arch.

Honey bees perform waggle dances to inform other bees about the good sites
of food sources. Honey bees use dance as a mechanism to convey information about
the direction and distance of the food source (Fig. 11.2 bottom right). Dancing honey
bees adjust both the duration and vigor of the dance to inform other bees about good
sites of the food sources. The duration of the dance is measured by the number of
waggle phases, while the vigor is measured by the time interval between waggle
phases. The larger number of waggle phases, the more profitable the food source is,
hence more bees will be attracted to it.

In human society we learn from each other. SI can be also observed in the
human society. People learn from each other. Knowledge spreads from person to
person. Culture emerges from populations. Human society has this remarkable abil-
ity to self-organize and adapt. A city like New York has several hundreds of bakeries
to supply bread on a daily basis. No one dictates where exactly these bakeries should
be located. Yet, these bakeries manage to do a good job of catering to the people liv-
ing there. As a psychologist, Kennedy et al. [46] mention that the human society
operates at three different levels, from individuals, to groups, and to cultures: (1) In-
dividuals learn locally from their neighbours. People interact with their neighbours
and share insights with each other; (2) Group-level processes emerge as a result of
the spread of knowledge through social learning. Regularities in beliefs, attitudes
and behaviours across populations can be observed. A society is a self-organizing
entity, and its global properties cannot be predicted from its constituent individu-
als; (3) Culture optimizes cognition. Locally formed insights and innovations are
transported by culture to faraway individuals. Combinations of various knowledge
results in even more innovations.

SI principles have been applied to a wide range of problems, among which the
most prominent one is probably optimization, SI has been the inspiration for devel-
oping many new optimization algorithms [8], including the two most representative
examples, Particle Swarm Optimization [46] and Ant Colony Optimization [29].
The application of SI principles goes beyond just optimization though, e.g., in data
mining [58] and swarm robotics [72]. As a new research field inspired by SI, swarm
robotics studies physical robots which are designed in such a way that they can

358 X. Li and M. Clerc

collaboratively achieve tasks that are beyond the capability of any individual robot.
This chapter will mainly focus on Particle Swarm Optimization (PSO), perhaps one
of most well-known nature-inspired SI optimization technique. In addition, we will
also briefly describe SI applications in data mining and swarm robotics. Readers in-
terested in further more general SI techniques can find a wealth of information from
some classic readings on the topic [9, 10, 46].

11.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was originally proposed by Kennedy and Eber-
hart [45]. PSO is a meta-heuristic technique inspired by the social behaviours ob-
served in animals, insects and humans. Since its inception, PSO has enjoyed a
widespread acceptance among researchers and practitioners as a robust and effi-
cient technique for solving various optimization problems. PSO was also based on
a key insight into human social behaviours and cognition, as remarked by Kennedy:
“people learn to make sense of the world by talking with other people about it”
[44]. This simple observation allowed Kennedy and Eberhart to go on to design a
computer program that encodes a population of candidate solutions that iteratively
improve through interactions, that is, by sharing information with their neighbours
and by making appropriate adjustments.

In PSO, each individual particle of a swarm represents a potential solution, which
moves through the problem space, seeking to improve its own position by taking
advantage of information collected by itself and its neighbours. The fact that, on
the whole, the swarm often converges to an optimal solution (though not always)
which is an emergent consequence of the interaction among particles. Basically the
particles broadcast their current positions to neighbouring particles. Through some
random perturbation, each particle adjusts its position according to its velocity (i.e.,
rate of change) and the difference between its current position and the best position
found so far by its neighbours, as well as the best position found so far by the
particle itself. As the PSO model iterates, the swarm converges towards an area of
the search space containing high-quality solutions. The swarm as a whole mimics a
flock of birds collectively searching for food. As time goes on, the flock gradually
converges onto the food location. Locating a good solution in the search space is
achieved by the collective effort of many particles interacting with each other.

Each particle’s velocity is updated iteratively through its personal best position
(i.e., the best position found so far by the particle) and the best position found by the
particles in its neighbourhood. As a result, each particle searches around a region
defined by its personal best position and the best position in its neighbourhood.
If we use vector vi to denote the velocity of the i-th particle in the swarm, xi its
position, pi its personal best position, and pg the best position found by particles in
its neighbourhood (or the entire swarm), vi and xi in the original PSO algorithm are
updated according to the following two equations [45]:

11 Swarm Intelligence 359

vNEW
i ← vi +ϕ1 ⊗ (pi −xi)+ϕ2 ⊗ (pg −xi), (11.1)

xNEW
i ← xi +vNEW

i , (11.2)

where ϕ1 = c1R1 and ϕ2 = c2R2. R1 and R2 are two separate functions, each re-
turning a vector of random values uniformly generated in the range [0, 1]. c1 and c2

are acceleration coefficients. The symbol ⊗ denotes component-wise vector multi-
plication. Equation (11.1) shows that the velocity term vi of a particle is determined
by three components, the “momentum”, “cognitive” and “social” parts. The “mo-

Fig. 11.3 Neighbourhood topologies: fully-connected, ring, and star (from left to right)

Algorithm 1 The PSO algorithm, assuming maximization
Randomly generate an initial population
REPEAT

FOR each particle i
IF f (xi)> f (pi) THEN pi ← xi;
pg ← max(pneighbors);
Update velocity (Eq. (11.1));
Update position (Eq. (11.2));

END
UNTIL termination criterion is met;

mentum” term vi, represents the previous velocity term which is used to carry the
particle in the direction it has travelled so far; the “cognitive” part, ϕ1 ⊗ (pi − xi),
represents the tendency of the particle to return to the best position it has found
so far; and finally the “social” part, ϕ2 ⊗ (pg − xi), represents the tendency of the
particle to be attracted towards the best position found by the entire swarm.

In practice, randomness is obtained with a Random Number Generator (RNG),
but the same algorithm may perform differently depending on the chosen RNG.
Furthermore, the best performance is not always obtained using the “best” generator.
A detailed discussion and how to cope with this issue can be found in [24].

Neighbourhood topologies used in the “social” component can be exploited to
control the speed of information propagation among particles. Representative ex-
amples of neighbourhood topologies include ring, star, and von Neumann (see
Fig. 11.3). Restricted information propagation as a result of using small neighbour-

360 X. Li and M. Clerc

hood topologies, such as von Neumann usually works better on complex multi-
modal problems, whereas larger neighbourhoods would perform better on simpler
unimodal problems [59]. A PSO algorithm choosing its pg from within a restricted
local neighbourhood is usually called a lbest PSO, whereas a PSO choosing pg

without any restriction (hence from the entire swarm) is commonly referred to as
a gbest PSO. Algorithm 1 summarizes a basic PSO algorithm, where f (.) refers to
the fitness function, and function max(pneighbors) returns the best position among all
the personal bests in the i-th particle’s neighbourhood.

Note that the Algorithm 1 is a classical asynchronous model, usually the most
efficient one. However, synchronous updates are also possible. In the case of parallel

Fig. 11.4 The next movement of particle xi is determined by three components, i.e., its previous
velocity, its “cognitive” component, and the “social” component

computation, for example, one may use synchronous updates, in which all pi are
saved first, before updating pg, and then updating all particles’ velocity and position
values.

Figure 11.4 shows that particle position xi is updated to its next position x′i (de-
noted by a dashed circle), based on three components: the “momentum” term, i.e.,
the previous vi scaled by the inertia weight w, the “cognitive” and “social” compo-
nents. It is apparent that the new position x′i is generated by a linear combination of
these three vectors. The particle is shown to have moved to a position somewhere
in the vicinity of the mean of the cognitive component pi and social component
pg. Note that due to the random coefficient used for each dimension, the “cogni-
tive” and “social” components in Eq. (11.4) may be weighted differently for each
dimension. This is indicated by the shaded areas in the figure. Note also that the
inertia coefficient w is used to scale the previous velocity term, normally to reduce
the “momentum” of the particle. More discussion on w will be provided in the next
section.

11 Swarm Intelligence 361

Earlier studies showed that the velocity as defined in Eq. (11.1) has a tendency
to diverge to a large value, resulting in particles flying past the boundaries of the
search space, i.e., violating the boundary constraints. This is more likely to happen
when a particle is far from its pg or pi. To overcome this problem, a velocity clamp-
ing method can be adopted to clamp the maximum velocity value to Vmax in each
dimension of vi. This method does not necessarily prevent particles from leaving the
search space, nor to converge. However, it does limit the particle step size, therefore
restricting particles from further divergence.

Note there are many ways to take boundary constraints into account [22, 37].
When a particle tends to leave the search space, we can force it to go back, randomly
or not, or to stop it at the boundary. We can even let it fly, but without re-evaluating
its position outside the search space. As its memorised previous best position pi is
inside it, we are sure that it will be back, sooner or later [13].

11.3.1 Inertia Weighted and Constricted PSOs

The two most widely-used PSO models are probably the inertia weighted PSO and
the constricted PSO, both representing a further refinement of the original PSO de-
scribed in the previous section. Note that the pi and pg in Eq. (11.1) can be collapsed
into a single term p without losing any information:

vNEW
i ← vi +ϕ ⊗ (p−xi), (11.3)

where p =
ϕ1⊗pi+ϕ2⊗pg

ϕ1+ϕ2
, and ϕ = ϕ1 + ϕ2. Note that the division operator is a

component-wise operator here. The vector p represents the stochastically weighted
average of pi and pg. Each particle oscillates around the point p as a result of
Eq. (11.3), when its velocity vi is adjusted at each iteration. As the particle gets
farther away from p, vi becomes smaller until it reverses its direction (since vi is
iteratively reduced, and then increased in magnitude but in the opposite direction),
and the particle then heads in the opposite direction. Note that the movement of the
particle does not strictly follow a cyclic pattern, given that p is a stochastic average.
This sort of stochasticity provides the needed variations that allow the particle to
find new and better points.

The coefficient vector ϕ1 = c1R1 (or ϕ2 = c2R2) is a vector of randomly gener-
ated numbers in the range [0, c1]. Thus, if a coefficient is equal to 0, the associated
p (or pg) has no effect. If both coefficients are equal to 0, the velocity vi will not
change from its previous value. When both coefficients are close to 1, then vi is
likely to be greatly affected.

From Eq. (11.1) it can be seen that the previous velocity term vi tends to keep the
particle moving in the same direction. A coefficient inertia weight, w, can be used
to control this influence on the new velocity. The velocity update in Eq. (11.1) can
now be revised as:

vNEW
i ← wvi +ϕ1 ⊗ (pi −xi)+ϕ2 ⊗ (pg −xi) (11.4)

362 X. Li and M. Clerc

This so-called inertia weighted PSO can converge under certain conditions even
without using Vmax [25]. For w > 1, velocities increase over time causing particles
to eventually diverge beyond the boundaries of the search space. For 0 < w < 1,
velocities decrease over time eventually reaching 0, thus resulting in convergence.
Eberhart and Shi suggested to use a time-varying inertia weight that gradually de-
creases from 0.9 to 0.4 (with ϕ = 4.0) [30].

A more general PSO model employing a constriction coefficient χ was intro-
duced by Clerc and Kennedy [25]. Several variants were suggested, among which
Constriction Type 1 PSO is shown to be algebraically equivalent to the inertia-
weighted PSO. In Constriction Type 1 PSO, the velocity update in Eq. (11.4) can
be rewritten as:

vNEW
i ← χ(vi +ϕ1 ⊗ (pi −xi)+ϕ2 ⊗ (pg −xi)), (11.5)

where χ = 2∣
∣
∣2−ϕ ′−

√
ϕ ′2−4ϕ ′

∣
∣
∣

, and ϕ ′ = c1 + c2,ϕ ′ > 4 (note that ϕ ′ is a scaler). If ϕ ′

is set to 4.1, and c1 = c2 = 2.05, then the constriction coefficient χ will be 0.7298.
Applying χ in Eq. (11.5) results in the previous velocity to be scaled by 0.7298 and
the “cognitive” and “social” parts multiplied by 1.496 (i.e., 0.7298 multiplied by
2.05). Both theoretical and empirical results suggest that the above configuration
using a constriction coefficient χ = 0.7298 ensures convergent behaviour [30] with-
out using Vmax. However, early empirical studies by Eberhart and Shi suggested that
it may still be a good idea to use velocity clamping together with the constriction
coefficient, which showed improved performance on certain problems.

11.3.2 Memory-Swarm vs. Explorer-Swarm

In PSO, interactions among particles have a significant impact on the particles’ be-
haviour. A distinct feature of PSO, which sets it apart from a typical evolutionary
algorithm, is that each particle has its own memory, i.e., its personal best pi. As re-
marked by Clerc [23], a swarm can be viewed as comprising two sub-swarms with
different functionalities. The first group, explorer-swarm, is composed of particles
moving around in large step sizes and more frequently, each strongly influenced
by its velocity and its previous position (see Eqs. (11.2) and (11.1)). The explorer-
swarm explores the search space more broadly. The second group, memory-swarm,
consists of the personal bests of all particles. This memory-swarm is more stable
than the explorer-swarm because personal bests represent the best positions found
so far by individual particles. The memory-swarm is more effective in retaining the
best positions found so far by the swarm as a whole. Meanwhile, each of these
positions can be further improved by the more exploratory particles in the explorer-
swarm.

11 Swarm Intelligence 363

We can use a “graph of influence” to illustrate the sender and receiver of in-
fluence for each particle in a swarm. A swarm of seven particles following a ring
neighbourhood topology is shown in Fig. 11.5. Here, a particle that informs another
particle is called an “informant”. The explorer-swarm consists of particles labeled
from 1 to 7, and the memory-swarm consists of particles labeled from m1 to m7,
which are the personal bests of particles 1–7. Each particle has three informants: the
memories of two neighbouring particles and its own memory. The memory of each
particle has also three informants: the two neighbouring particles and the particle
itself.

Fig. 11.5 Graphs of influence for a swarm of seven particles on a ring topology [23]; (a) each
particle interacting directly with its immediate left and right-sided neighbours plus itself; (b) still
the same swarm as in (a), but showing both the explorer-swarm (not shaded) and the memory
swarm (shaded)

11.3.3 Particle Dynamics Through a Simplified Example

It is worth noting that the interactions among particles have a huge impact on the
performance of the PSO model. To gain a better understanding of the consequences
of such interactions, we study a simplified PSO in this section, where a swarm is
reduced to only one or two particles, with just one dimension. We then examine the
dynamics of this simplified PSO. Although it is a very simple model, we hope to
provide a glimpse of how and why PSO works. We use an example based on [23] to
demonstrate the dynamics of such a simplified PSO.

In this simplified PSO, we assume that there is no stochastic component, only
one dimension, and the initial position and velocity are pre-specified. With these

364 X. Li and M. Clerc

assumptions, Eqs. (11.4) and (11.2) can be simplified as follows:

vNEW
i ← wvi + c1(pi − xi)+ c2(pg − xi), (11.6)

xNEW
i ← xi + vNEW

i . (11.7)

Note that the subscript i can also be removed in the above equations when there is
only one particle. In the following case studies, we also set w, c1 and c2 to 0.7 for
simplification purposes.

100

150

200

250

300

350

400

450

-25 -20 -15 -10 -5 0

fit
ne

ss

x

(a)

0

2

4

6

8

-4 -3 -2 -1 0 1 2 3 4

fit
ne

ss

x

(b)

Fig. 11.6 The dynamics of the system is different depending on the initial x and v values: (a) when
x =−20 and v = 3.2, the particle prematurely converges to one point, which is not the minimum;
(b) when x = −2 and v = 6.4, the particle oscillates around the minimum several times before
converging to it

11.3.3.1 One Particle

Let us first assume that there is only a single particle in the swarm. Note that even
when there is only one particle, we actually know the information about two posi-
tions, its current position x and its personal best position p (since there is only one
particle, pg is the same as p). Let us now consider a simple minimization problem
using the one-dimensional Parabola function: f (x) = x2, where x ∈ [−20,20]. If the
initial x and v values are provided, then the future x values can be computed de-
terministically by iteratively calling Eqs. (11.6) and (11.7). There are two possible
scenarios:

• Case 1: the initial x and v positions are on the same side of the minimum, e.g.,
when x =−20, v = 3.2 (see Fig. 11.6a);

• Case 2: The initial x and v positions are on both sides of the minimum, e.g.,
x =−2, v = 6.4 (see Fig. 11.6b).

Figure 11.6 shows two startling different dynamics depending on the initial x and
v values. In Fig. 11.6a, it can be noted that p is always equal to x, essentially turning
Eq. (11.6) into v ← wv. Since w=0.7, v gradually approaches 0 over iterations. As a

11 Swarm Intelligence 365

result, with increasingly small step sizes, x prematurely converges to a point which
is insufficient to reach the minimum. In contrast, Fig. 11.6b shows that when the
particle oscillates around the minimum, it manages to converge very closely to the
minimum. This time, the iteratively updated p is not always equal to x, resulting in
a much better convergence behaviour.

The better convergence behaviour of the particle can be further illustrated in
Fig. 11.7 in the phase spaces of v and x. Figure 11.7b shows that the particle os-
cillates around the minimum with several changes in the direction of velocity v,
before the particle converges to the minimum following a spiral trajectory. In con-
trast, Fig. 11.7a shows that the prematurely converged particle never manages to
change the direction of its velocity v.

0

0.5

1

1.5

2

2.5

3

3.5

-25 -20 -15 -10 -5

ve
lo

ci
ty

x

(a)

-4

-2

0

2

4

6

8

-4 -3 -2 -1 0 1 2 3 4

ve
lo

ci
ty

x

(b)

Fig. 11.7 Phase spaces for the two examples used in Fig. 11.6: (a) velocity v approaches 0 from
a positive number; (b) velocity v takes both positive and negative values, approaching 0 through a
spiral trajectory

0

50

100

150

200

250

300

350

400

-25 -20 -15 -10 -5 0 5 10

fit
ne

ss

x

(a)

0

1

2

3

4

5

6

7

8

9

-4 -3 -2 -1 0 1 2 3

fit
ne

ss

x

(b)

Fig. 11.8 A swarm of two particles based on two different cases: x = −20, v = 3.2 and x = −2,
v = 6.4. Now the two particles interact with each other: (a) particle 1’s convergence benefits from
the information provided by particle 2; (b) particle 2’s convergence behaviour is unaffected, since
no useful information comes from particle 1

366 X. Li and M. Clerc

11.3.3.2 Two Particles

Now, let us consider a swarm of two particles. In this case, we know four positions:
the two particles’ current positions and their two personal bests (i.e., memories).
Here, each particle informs only its memory, but gets informed by both its own
memory and the other particle’s memory.

Figure 11.8 shows the convergence behaviours of the two interacting particles in
a swarm. In this example, m2 is always better than m1, hence particle 2 does not
benefit from the presence of particle 1. The convergence behaviour of particle 2 as
shown in Fig. 11.8b is unaffected and is identical to the case illustrated in Fig. 11.6b.
On the other hand, the trajectory of particle 1 in Fig. 11.8a shows that it benefits
from the presence of particle 2. Since m2 is better than m1, this information is used
to improve the convergence behaviour of particle 1 towards the minimum.

0

5

10

15

20

25

30

35

40

-8 -6 -4 -2 0 2 4

fit
ne

ss

x

(a)

0

5

10

15

20

25

-6 -4 -2 0 2 4

fit
ne

ss

x

(b)

Fig. 11.9 A swarm of two particles both benefiting from interaction with each other. (a) particle
1’s convergence trajectory; (b) particle 2’s convergence trajectory

Figure 11.9 shows a more general case where each particle is influenced by the
memory of the other. Both particles benefit from receiving the memory to the other
particle. Improved convergence for each particle is evident.

11.4 PSO Variants

Apart from the canonical PSO models such as the inertia weighted and constric-
tion based PSO, a few other PSO variants have been increasingly accepted in the
optimization research community.

11 Swarm Intelligence 367

11.4.1 Fully Informed PSO

It can be noted that Eq. (11.3) suggests that a particle tends to converge towards a
point determined by p =

ϕ1⊗pi+ϕ2⊗pg
ϕ1+ϕ2

, where ϕ = ϕ1 +ϕ2. In the Fully Informed
Particle Swarm (FIPS) proposed by Mendes et al. [59], p can be further generalized
to any number of terms:

p =
∑k∈Ni

R[0, cmax
|Ni|]⊗pk

∑k∈Ni
ϕk

, (11.8)

where pk denotes the best position found by the k-th particle in Ni, which is a set of
neighbours that includes the particle i, and cmax denotes the acceleration coefficient
which is usually shared among all |Ni| neighbours. R[0, cmax

|Ni|] is a function returning
a vector of numbers randomly and is uniformly generated in the range [0, cmax

|Ni|]. Note
again that the division is a component-wise operator.

If we set k = 2 and p1 = pi, and p2 = pg, with both pi,pg ∈ Ni, then the Constric-
tion Type 1 PSO is just a special case of the more general PSO— FIPS defined in
Eq. (11.8). A significant implication of Eq. (11.8) is that it allows us to think more
freely about other terms of influence than just pi and pg [43, 59].

11.4.2 Bare-Bones PSO

Kennedy proposed a PSO variant which does not use the velocity term vi, so called
bare-bones PSO [42]. Each dimension d = 1, . . . ,D of the new position of a particle
is randomly selected from a Gaussian distribution, with a mean defined by the av-
erage of pi,d and pg,d and a standard deviation set to the distance between pi,d and
pg,d :

xi,d ← N(
pi,d + pg,d

2
, ||pi,d − pg,d ||). (11.9)

Note that no velocity term is used in Eq. (11.9). The new particle position is sim-
ply generated via the Gaussian distribution. Other sampling distributions may also
be employed [23, 70]. For example, Richer and Blackwell [70] employed a Lévy
distribution instead of the Gaussian. The Lévy distribution is also bell-shaped like
the Gaussian but with fatter tails. A parameter α can be tuned to obtain a series of
different shapes between the Cauchy and Gaussian distributions. Richer and Black-
well found that the bare-bones PSO using the Lévy distribution with α = 1.4 was
able to reproduce the performance of the canonical PSO [70].

368 X. Li and M. Clerc

11.4.3 Binary PSO

Although the canonical PSO was designed for continuous optimization, it can be
extended to operate on binary search spaces. Kennedy et al. [46] developed a simple
binary PSO by using a sigmoid function s(.) to transform the velocity term in the
canonical PSO into a probability threshold to determine if the d-th element of a
binary string representing xi should be 0 or 1:

s(vid) =
1

1+ exp(−vid)
, (11.10)

and

xid =

{

1 if R ≤ s(vid)

0 otherwise
. (11.11)

That is, if a uniformly drawn random number R from [0, 1] is smaller than s(vid),
then xid is set to 1, otherwise it is set to 0. Equation (11.10) is iterated over each
dimension for each particle to see if xid results in a better fitness than pid , and if so,
pid is updated.

Fig. 11.10 The points x′i and x′′i are chosen at random inside two hyper-parallelepipeds parallel to
the coordinate axes

11.4.4 Discrete PSO

PSO can also be extended to solve discrete or mixed (continuous and discrete) opti-
mization problems such as knapsack, quadratic assignment, and traveling salesman
problems. PSO can be adapted to work with discrete variables by simply discretiz-
ing the values obtained after computing the velocity and position update equations,
or using combinatorial methods (what is usually done for knapsack, quadratic as-

11 Swarm Intelligence 369

signment, and traveling salesman problems) [21, 23]. In the latter case, designing
a domain specific velocity operator following the general PSO principle is critical,
i.e., each particle has a velocity, has knowledge of the best position visited so far,
and the best position in the swarm (Fig. 11.4). For example, Goldbarg et al. [34] used
customized local search operators (e.g., swap operator) and the path-relinking pro-
cedure for effectively solving the traveling salesman problem. An empirical study
on several such discrete PSOs on the traveling salesman problem [57] shows that
they can be competitive with ACO algorithms.

11.4.5 SPSO-2011

A major shortcoming of both inertia weighted and constricted PSO is that they are
not “rotation invariant” [74, 75], meaning that their performances depend on the ori-
entation of the coordinate axes. Note that it is rarely the case in real-world situations
that we need to rotate the search space of a problem. But, the appeal of such a “rota-
tion invariant” algorithm is that its behaviour does not depend on the orientation of
the search space, hence it is more likely to perform more consistently. The rotation
of the search space here merely introduces variable interaction, often making the
problem more difficult to handle.

Figure 11.10 provides an example to illustrate this issue with the canonical PSO.
Here, the cognitive and social components of PSO (c.f., either Eq. (11.4) or (11.5))
can be seen as parts of the following two hyper-parallelepipeds (each is the Eu-
clidean product of D real intervals):

x′i =
D
⊗

d=1

[xi,d ,xi,d + c(pi,d − xi,d)], (11.12)

x′′i =
D
⊗

d=1

[xi,d ,xi,d + c(li,d − xi,d)], (11.13)

where li,d denotes the neighbourhood best for the i-th particle. Its new position at
the next iteration will then be:

xNEW
i ← wvi +(x′i −xi)+(x′′i −xi). (11.14)

As can be seen in Fig. 11.10, both x′i and x′′i are sampled uniformly from the two
hyper-parallelepipeds with their sides parallel to the coordinate axes. It shows that
the newly generated position xNEW

i depends on the orientation of the coordinate
axes. If we consider the distribution of all possible next positions (DNPP), its sup-
port is a D-rectangle whose density is not uniform (denser near the center). A more
complete analysis of this phenomenon is given in [75].

To address this problem, Clerc proposed SPSO-2011 [20], where the velocity
term is modified in a “geometrical” way that does not depend on the system of
coordinates. The key idea is to define the center of gravity Gi from three existing

370 X. Li and M. Clerc

points: the current position xi, a point a bit beyond the best personal best position
p′

i, and a point a bit beyond the best local neighbourhood point l′i, as follows:

Gi =
xi +p′

i + l′i
3

, (11.15)

where p′
i = xi + c1ϕ1 ⊗ (pi −xi) and l′i = xi + c1ϕ1 ⊗ (li −xi).

A random point x′i can then be selected (may be according to a uniform distribu-
tion) in the hypersphere Hi(Gi, ||Gi−xi||) of center Gi with a radius ||Gi−xi||. The
velocity update equation is now:

vNEW
i ← wvi +x′i −xi, (11.16)

and the position update equation is:

xNEW
i ← wvNEW

i +x′i (11.17)

Figure 11.11 shows how such a new point x′i is selected from the hypersphere Hi,
which is now rotation invariant.

Fig. 11.11 The points x′i is chosen at random inside the hypersphere Hi(Gi, ||Gi − xi||)

SPSO-2011 also adopts an adaptive random topology (which was previously de-
fined in SPSO-2006 [23]). It means that at the beginning, and after each unsuccessful
iteration (no improvement of the best known fitness value), the graph of influence is
modified: each particle informs at random K particles, including itself. The parame-
ter K is usually set to 3, but may follow some distribution to allow occasionally the
selection of a larger number of particles. Thus, on average, each particle is informed
by K other particles, but may be informed by a much larger number of particles
(possibly the entire swarm) with a small probability.

11 Swarm Intelligence 371

SPSO-2011 represents a major enhancement to PSO. The incorporation of these
two features, i.e., adaptive random topology and rotational invariance, has resulted
in competitive performances against other state-of-the-art meta-heuristic algorithms
on the CEC’2013 real-parameter optimization test function suite [84].

11.4.6 Other PSO Variants

Many PSO variants have been developed since it was first introduced. In particu-
lar, to tackle the problem of premature convergence often encountered when using
the canonical PSO, several PSO variants incorporate some diversity maintenance
mechanisms. For example, ARPSO (attractive and repulsive PSO) uses a diversity
measure to trigger alternating phases of attraction and repulsion [71]; a PSO with
self-organized criticality was also developed [56]; another PSO variant based on
fitness-distance-ratio (FDR-PSO) was developed to encourage interactions among
particles with high fitness and close to each other [80]. This FDR-PSO can be seen
as using a dynamically defined neighbourhood topology. Various neighbourhood
topologies have been adopted to restrict particle interactions. In particular, the von
Neumann neighbourhood topology has been shown to provide good performance
across a range of test functions [59, 76]. In [40], a H-PSO (Hierarchical PSO) was
proposed, where a hierarchical tree structure is adopted to restrict the interactions
among particles. Each particle is influenced only by its own personal best position
and by the best position of the particle that is directly above it in the hierarchy.
Another highly successful PSO variant is CLPSO (Comprehensive Learning PSO)
[55], where more historical information about particles’ personal best is harnessed
through a learning method to better preserve swarm diversity. The Gaussian distri-
bution was employed as a mutation operator to create more diversity in a hybrid
PSO variant [38]. A cooperative PSO, similar to coevolutionary algorithms, was
also proposed in [78]. It should be noted that many more PSO variants can be found
in the literature.

11.5 PSO Applications

One of the earliest PSO applications was the optimization of neural network struc-
tures [46], where PSO replaced the traditional back-propagation learning algorithm
in a multilayer Perceptron. Due to the fast convergence property of PSO, using it to
train a neural network can potentially save a considerable amount of computational
time as compared to other optimization methods. There are numerous examples of
PSO applications for a wide range of optimization problems, from classical prob-
lems such as scheduling, traveling salesman problem, neural network training, to
highly specialized problem domains such as reactive power and voltage control [83],
biomedical image registration [81], and even music composition [4]. PSO is also a

372 X. Li and M. Clerc

popular choice for multiobjective optimization [69] dynamic optimization [63], and
multimodal optimization problems [49], which will be described in more detail in
the subsequent sections.

11.5.1 Multiobjective Optimization

Multiobjective optimization problems represent an important class of real-world
problems. Typically such problems involve trade-offs. For example, a car manufac-
turer wants to maximize its profit, but at the same time wants to minimize its pro-
duction cost. These objectives are usually conflicting with each other, e.g., a higher
profit would increase the production cost. Generally speaking, there is no single op-
timal solution. Often the manufacturer needs to consider many possible “trade-off”
solutions before choosing the one that suits its need. The curve or surface (for more
than two objectives) describing the optimal trade-off solutions between objectives
is known as the Pareto front. A multiobjective optimization algorithm is required to
locate solutions as closely as possible to the Pareto front, and at the same time main-
taining a good spread of these solutions along the Pareto front. Several questions
must first be answered before one can apply PSO to multiobjective optimization:

• How to choose pg (i.e., a swarm leader) for each particle? The PSO model needs
to favor non-dominated particles over dominated ones, and propels the swarm to
spread towards different parts of the Pareto front, not just towards a single point.
This would require particles to be led by different swarm leaders.

• How to identify non-dominated particles with respect to all particles’ current
positions and personal best positions? and how to retain these solutions during
the search? One strategy is to combine all particles’ personal best positions (pi)
and current positions (xi), and then extract the non-dominated solutions from this
combined population.

• How to maintain particle diversity so that a set of well-distributed solutions can
be found along the Pareto front? Some classic niching methods (e.g., crowding
[27] or sharing [33]) can be adopted for this purpose.

The earliest work on PSO for solving multiobjective optimization was proposed
by Moore and Chapman [60], where an lbest PSO was used, and pg was chosen
from a local neighbourhood using a ring topology. All personal best positions were
kept in an archive. At each particle update, the current position is compared with
solutions in this archive to see if the current position can be considered as a non-
dominated solution. Then the archive is subsequently updated (at each iteration) to
ensure it retains only non-dominated solutions.

It was not until 2002 that the next research work on multiobjective PSO
appeared—Coello and Lechuga [26] proposed MOPSO (Multiobjective PSO) which

11 Swarm Intelligence 373

also uses an external archive to store non-dominated solutions. The diversity of so-
lutions is maintained by keeping only one solution within each hypercube specified
by the user in the objective space. Parsopoulos and Vrahatis adopted the classical
weighted-sum approach in [65]. By using a set of gradually changing weights, their
approach was able to find a diverse set of solutions along the Pareto front. In [32],
Fieldsend and Singh proposed a PSO using a dominated tree structure to store
non-dominated solutions. The selection of leaders was also based on this structure.
To maintain a better diversity, a turbulence operator was adopted to function as a
‘mutation’ operator in order to perturb the velocity value of a particle. To make
effective extraction of non-dominated solutions from a PSO population, NSPSO
(Non-dominated Sorting PSO) was proposed in [47], which follows the main idea
of the well-known genetic algorithm NSGA II [28]. In NSPSO, instead of com-
paring solely a particle’s personal best with its new position, all particles’ personal
bests and their new positions are first combined to form a temporary population.
The dominance comparisons are performed over all individuals in this temporary
population. This strategy allows more non-dominated solutions to be discovered
and in a much faster way than early multiobjective PSO algorithms.

Many more multiobjective PSO algorithms have been proposed over the years.
A survey in 2006 showed that there were 25 different PSO variants at that time for
handling multiobjective optimization problems [69]. Multiobjective PSO has also
been combined with classic MCDM (Multi-Criteria Decision Making) user prefer-

1.0

0.5f1

0.0
0.0 0.5

δ = 0.05

δ = 0.1

δ = 0.05

δ = 0.01

(0.5, 0.5)

(0.2, 0.9)

f0 f1

(a) (b)

1.0

0.0

0.5

1.0

f0

f2

0.5

RP

RP

1.00.0

AP

0.5
1.0

Fig. 11.12 Particles of a multiobjective PSO model have converged only around the preferred
regions (of the Pareto front), as indicated by the reference points supplied by a decision maker,
e.g., points (0.2, 0.9) and (0.5, 0.5) in the 2-objective space, as shown in (a); and AP (Aspiration
Point) and RP (Reservation Point) in the 3-objective space, as shown in (b). Note that δ denotes a
control parameter specifying the coverage of the preferred region

ences based techniques to allow a decision maker to specify a preferred region of
convergence before running the algorithm. By using this preference information,

374 X. Li and M. Clerc

a multiobjective PSO can focus its search effort more effectively on the preferred
region in the objective space [82]. This could save a substantial amount of com-
putational time especially when the number of objectives is large. An example of
convergence to a preferred region of the Pareto-front by this multiobjective PSO
is presented in Fig. 11.12. This multiobjective PSO has also been shown to be an
efficient optimizer for a practical aerodynamic design problem [17, 18].

11.5.2 Optimization in Dynamic Environments

Many real-world optimization problems are dynamic by nature, and require opti-
mization algorithms to adapt to the changing optima over time. For example, traffic
conditions in a city change dynamically and continuously. What might be regarded
as an optimal route at one time might not be optimal a bit later. In contrast to opti-
mization towards a static optimum, the goal in a dynamic environment is to track as
closely as possible the dynamically changing optima.

A defining characteristic of PSO is its fast convergent behaviour and inherent
adaptability. Particles can adaptively adjust their positions based on their dynamic
interactions with other particles in the population. This makes PSO especially ap-
pealing as a potential solution to dynamic optimization problems. Several studies
showed that the canonical PSO must be adapted to meet the additional challenges
of dynamic optimization problems [5, 6, 15, 16, 31, 39, 51, 63]. In particular, the
following questions need to be answered: (1) How do we detect that a change has
actually occurred? (2) Which response strategies are appropriate once a change is
detected? (3) How do we handle the issue of “out-of-date” memory as particles per-
sonal best positions become invalid once the environment has changed? (4) How do
we handle the trade-off issue between convergence (in order to locate optima) and
diversity (in order to relocate changed optima)?

An early work on the application of PSO for dynamic optimization was carried
out by Eberhart and Shi [31], where an inertia-weighted PSO was used to track
the optimum of a unimodal parabolic function whose maxima changed at regular
interval. It was found that, under certain circumstances, the performance of PSO
was comparable to or even better than that of evolutionary algorithms.

To detect changes, one could use a randomly chosen sentry particle at each it-
eration [15]. The sentry particle can be evaluated before each iteration, comparing
its fitness with its previous fitness value. If the two values are different, suggesting
that the environment has changed, then the whole swarm gets alerted and several
possible responses can then be triggered. Another simple strategy is to re-evaluate
pg and a second-best particle to detect if a change has occurred [39].

Various response strategies have been proposed. To deal with the issue of “out-
of-date” memory as the environment changes, we can periodically replace all per-
sonal best positions by their corresponding current positions when a change has
been detected [16]. This allows particles to forget their past experience and use only
up-to-date knowledge about the new environment. Re-randomizing different propor-

11 Swarm Intelligence 375

tions of the swarm was also suggested in order to maintain some degree of diversity
and better track the optima after a change [39]. However, this approach suffers from
possible information loss since the re-randomized portion of the population does not
retain any, potentially useful, information from the past iterations. Another idea is
to introduce the so called “charged swarms” [3], where mutually repelling charged
particles orbit around the nucleus of neutral particles (conventional PSO particles)
[6, 53]. Whereas charged particles allow the swarm to better adapt to changes in the
environment, neutral particles are used to converge towards the optimum.

A multi-population based approach can be promising if used with charged parti-
cles. The multi-swarm PSO [53] aims at maintaining multiple swarms on different
peaks. These swarms are prevented from converging to the same optimum by ran-
domizing the worse of two swarms that come too close. The multi-swarm PSO also
replaces the charged particles with quantum particles, whose positions are solely
based on a probability function centered around the swarm attractor. This multi-
swarm approach is particularly attractive because of its improved adaptability in a
more complex multimodal dynamic environment where multiple peaks exist and
need to be tracked. Along this line of research, a species-based PSO was also devel-
oped to locate and track multiple peaks in a dynamic environment [48, 63], where
a speciation algorithm [66] was incorporated into PSO and a local “species seed”
was used to provide the local pg to particles whose positions are within a user-
specified radius of the seed. This encourages swarms to converge toward multiple
local optima instead of a single global optimum, hence performing search with mul-

200

(a) (b)

1

0.5

0

-0.5

-1
10

108
86

64
42 2

100

0

-100

-200

-300
10

105
50

0-5 -5
-10 -10

Fig. 11.13 Two multi-modal test functions from the CEC 2013 multi-modal optimization bench-
mark test function suite [54]: (a) Shubert 2D function and (b) Vincent 2D function

tiple swarms in parallel. It was also demonstrated in [7] that the quantum particle
model can be integrated into the species-based PSO to improve its optima-tracking
performance for the moving peaks problem [12].

376 X. Li and M. Clerc

11.5.3 Multimodal Optimization

The two canonical PSOs, inertia weighted PSO and constricted PSO, were designed
for locating a single global solution. The swarm typically converges to one final so-
lution by the end of an optimization run. However, many real-world problems are
“multimodal” by nature, that is, multiple satisfactory solutions exist. For such an op-
timization problem, it may be desirable to locate all global optima and/or some local
optima which are considered to be sufficiently good. Figure 11.13 shows the fit-
ness landscapes of two multi-modal test functions, each with multiple global peaks
(or solutions). In the early development of genetic algorithms during the 1970s
and 1980s, several techniques have been designed specifically for locating multi-
ple optima (global or local), which are commonly referred to as “niching” methods.
The most well-known niching methods include fitness sharing [33] and crowding
[27]. Subsequently, other niching methods were also developed, including restricted
tournament selection [36], clearing [66], and speciation [52]. Since PSO is also
population-based, a niching method can be easily incorporated into PSO, to promote
formation of multiple subpopulations within a swarm, allowing multiple optima to
be found in the search space.

One early PSO niching model was based on a “stretching method” proposed by
Parsopoulos and Vrahatis [64], where a potentially good solution is isolated once
it is found. Then, the fitness landscape is “stretched” to keep other particles away
from this area of the search space. The isolated particle is checked to see if it is
a global optimum, and if it is below the desired threshold, a small population is
generated around this particle to allow a finer search in this area. The main swarm
continues its search in the rest of the search space for other potential global optima.
Another early PSO niching method NichePSO was proposed by Brits et al. [14]. It
uses multiple subswarms produced from a main swarm to locate multiple optimal
solutions. Subswarms can merge together, or absorb particles from the main swarm.
NichePSO monitors the fitness of a particle by tracking its variance over a number of
iterations. If there is little change in a particle’s fitness over a number of iterations,
a subswarm is created with the particle’s closest neighbour.

A speciation-based PSO (SPSO) model based on the notion of species was de-
veloped in [48]. Here, the definition of species depends on a parameter rs, which
denotes the radius measured in Euclidean distance from the center of a species to its
boundary. The center of a species, the so-called species seed, is always the best-fit
individual in the species. All particles that fall within distance rs from the species
seed are classified as the same species. A procedure for determining species seeds
can be applied at each iteration step. As a result, different species seeds are identified
for multiple species, with each seed adopted as the pg (similar to a neighbourhood
best in an lbest PSO) of a different species. In SPSO, a niche radius must be spec-
ified in order to define the size of a niche (or species). Since this knowledge may
not always be available a priori, it may be difficult to apply this algorithm to some
real-world problems. To tackle this problem, population statistics or a time-based
convergence measure could also be used for adaptively determining the niching pa-
rameters during a run [2].

11 Swarm Intelligence 377

A simple ring neighbourhood topology could be also used for designing a PSO
niching method [49]. This PSO niching method (which belongs to the class of lbest
PSOs) makes use of the inherent characteristics of PSO and does not require pre-
specification of the niching parameters, hence may offer advantages over previous
methods. The ring topology-based niching PSO algorithm makes use of its individ-
ual particles’ local memories (i.e., the memory-swarm) to form a stable network
retaining the best positions found so far, while still allowing these particles to ex-
plore the search space more broadly. Given a reasonably large population uniformly
distributed in the search space, the ring topology-based niching PSO is able to form
stable niches across different local neighbourhoods, eventually locating multiple
global/local optima. Of course, the neighbourhood is not necessarily defined only in
the topological space. For example, LIPS (Locally Informed PSO) induces a nich-
ing effect by using information on the nearest neighbours to each particle’s personal
best, as measured in the decision space [68].

It is noteworthy here that the intrinsic properties of PSO can be harnessed to de-
sign highly competitive niching algorithms. In particular, local memory and slow
communication topology seem to be two key components for constructing a com-
petent PSO niching method. Further information on PSO niching methods can be
found in [50].

11.6 PSO Theoretical Works

Since PSO was first introduced by Kennedy and Eberhart [45], several studies have
been carried out on understanding the convergence properties of PSO. Although
particles in isolation and the update rules are simple, the dynamics of the whole
swarm of multiple interacting particles can be rather complex. A direct analysis of
the convergence behavior of a swarm would be a very challenging task. As a result,
many of these works focused on studying the convergence behavior of a simplified
PSO system.

Kennedy [41] provided the first analysis of a simplified particle behavior, where
particle trajectories for a range of variable choices were given. Ozcan and Mohan
[61] showed that the behaviour of one particle in a one-dimensional PSO system,
with its pi, pg, ϕ1 and ϕ2 kept constant, follows the path of a sinusoidal wave, where
the amplitude and frequency of the wave are randomly generated.

A formal theoretical analysis of the convergence properties of a simplified PSO
was provided by Clerc and Kennedy [25], by assuming that the system consists of
only one particle, which is one-dimensional, with the best positions being stagnant,
and deterministic. The PSO was represented as a dynamic system in state-space
form. By simplifying the PSO to a deterministic dynamic system (i.e., removing
all its stochastic components), its convergence can be shown based on the eigenval-
ues of the state transition matrix. If the eigenvalue is less than 1, the particle will
converge to equilibrium. Through this study, Clerc and Kennedy were able to de-
rive a general PSO model which employs a constriction coefficient (see Eq. (11.5)).

378 X. Li and M. Clerc

The original PSO and the inertia weighted PSO can be treated as special cases of
this general PSO model. This study also led to suggestions of PSO parameter set-
tings that would guarantee convergence. A similar work was also carried out by van
den Bergh [77] where regions of the parameter space that guarantee convergence
are identified. The conditions for convergence derived from both studies [25, 77]
are: w < 1 and w > 1

2 (c1 + c2)− 1. In another work by van den Bergh and Engel-
brecht [79], the above analysis was generalized by including the inertia weight w. A
more formal convergence proof of particles was provided using this representation.
Furthermore, the particle trajectory was examined with a relaxed assumption that al-
lowed stochastic values for ϕ1 and ϕ2. They demonstrated that a particle can exhibit
a combination of convergent and divergent behaviors with different probabilities
when different values of ϕ1 and ϕ2 are used.

In another important theoretical work, Poli [67] suggested a method to build
Markov chain models of stochastic optimizers and approximate them on continu-
ous problems to any degree of precision. By using discretization, it allows an easy
computation of the transition matrix and represents more precisely the behaviour of
PSO at each iteration. Poli [67] was able to overcome the limitations of previous
theoretical PSO studies and model the bare-bones PSO without any simplification,
that is, the stochastic elements as well as the dynamics of a population of particles
are included in the model.

It is worth noting that many analyses are still based on a stagnation assumption,
i.e., the best positions are not supposed to move. Although one recent work does
not make this assumption [11], the best positions in this case move according to a
probabilistic distribution whose expectation is known, which is not more realistic
than stagnation (it depends on the problem and may not even exist, e.g., when Lévy
flights are used). Hence, although of theoretical interest, this approach cannot yet
derive better parameter guidelines than the previous work. Nevertheless, along with
a theoretical analysis, recent works also suggest a useful empirical approach [19].

11.7 Other SI Applications

There are many SI applications apart from just optimization. Below we provide two
such examples.

11.7.1 Swarm Robotics

Swarm robotics is a new emerging SI research area concerned with the design, con-
trol and coordination of multi-robot systems, especially when the number of robots
is large. The focus is on the physical embodiment of SI individuals and their interac-
tions with each others and with the environment in a realistic setting. A more formal
definition of swarm robotics is provided below [72]:

11 Swarm Intelligence 379

“Swarm robotics is the study of how a large number of relatively simple phys-
ically embodied agents can be designed such that a desired collective behavior
emerges from the local interactions among agents and between the agents and
the environment.”

A swarm robotic system should exhibit the following three functional proper-
ties observed in nature: robustness, flexibility, and scalability. Robustness refers to
the system still being able to function despite disturbances from the environment
or some individuals being malfunctional; flexibility means that individuals of the
swarm can coordinate their behaviours to tackle various tasks; finally scalability
means that the swarm is able to operate under different group sizes and with a large
number of individuals.

One successful demonstration of the above characteristics of a swarm robotic
system is provided in a swarm-bot study [35], where a swarm-bot consists of multi-
ple mobile robots capable of self-assembling into task-oriented teams to accomplish
tasks that individual robots would not be able to achieve independently. These team-
oriented tasks include “crossing a hole”, “object transport”, and “navigation over a
hill” [35]. Readers are referred to [73] for further information on swarm robotics
and many application examples.

11.7.2 Swarm Intelligence in Data Mining

Apart from being used as optimization methods, SI techniques can be also used for
typical data mining tasks. Data instances in the feature space can be checked and
sorted by swarms so that similar data instances are grouped into suitable clusters.

Popular SI techniques such as ACO (Ant Colony Optimization) and PSO have
been extensively studied for their capabilities to do data mining tasks. A survey
by Martens et al. [58] shows that ACO has been used for both supervised learning
such as classification tasks as well as unsupervised learning such as clustering. One
most notable example is AntMiner [62], which is an ant-colony-based data miner
capable of extracting classification rules from data. In AntMiner, a directed graph
is constructed to allow each variable to have multiple paths, each leading to one
node associated with one possible value for that variable. Multiple variables in se-
quence form the entire directed graph. Ants build their paths by sequencing the vari-
ables, and by doing so they implicitly construct a rule. Compared with GA-based
approaches, rules produced by AntMiner are simpler and can be better understood
than other machine learning methods such as neural networks or support vector ma-
chines.

380 X. Li and M. Clerc

11.8 Conclusion

This chapter provides an introduction to Swarm Intelligence (SI), a research
paradigm that has shown tremendous growth and popularity in the past decade.
SI techniques have been successfully applied to many application domains. In par-
ticular, many SI techniques have been developed for solving optimization problems
which are challenging for conventional computational and mathematical tech-
niques. Two representative examples are Particle Swarm Optimization (PSO) and
Ant Colony Optimization (ACO). This chapter focused on the canonical PSOs,
their variants, and their common application areas. There is a growing list of new
real-world applications based on SI techniques. Nevertheless, SI is still a relatively
young field as compared with classic Artificial Intelligence techniques. There is
still a huge potential for developing better and more efficient SI algorithms. Many
open research questions still remain. Clerc’s PSO book [23] provides many pointers
to hot research topics on PSO. Blum and Merkle’s edited book [9] provides some
interesting examples of SI applications. Readers are encouraged to look at the refer-
ences listed in the bibliography section to gain more in-depth understanding of this
fast growing research field.

Acknowledgements This chapter is a further extension to an early EOLSS online article by the
first author (Li, X. “Swarm intelligence” Computational Intelligence (6.44.40-50 UNESCO Ency-
clopedia of Life Support Systems), EOLSS Publishers, Oxford, UK, Vol. II, pp. 87–112, 2015),
with new sections and references included to reflect the more recent developments on this topic.
The authors would also like to thank Prof. Jean-Yves Potvin for his valuable feedback, which has
substantially improved the quality of this chapter.

References

1. G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in Robots and Biological
Systems: Towards a New Bionics? ed. by P. Dario, G. Sandini, P. Aebischer (Springer, Berlin,
1993), pp. 703–712

2. S. Bird, X. Li, Adaptively choosing niching parameters in a PSO, in Proceedings of Genetic
and Evolutionary Computation Conference, July 2006, ed. by M. Cattolico (ACM Press, New
York, 2006), pp. 3–10

3. T.M. Blackwell, P. Bentley, Dynamic search with charged swarms, in Proceedings of Work-
shop on Evolutionary Algorithms Dynamic Optimization Problems (2002), pp. 19–26

4. T.M. Blackwell, P.J. Bentley, Improvised music with swarms, in Proceedings of Congress on
Evolutionary Computation, ed. by D.B. Fogel, M.A. El-Sharkawi, X. Yao, G. Greenwood,
H. Iba, P. Marrow, M. Shackleton (IEEE Press, Piscataway, 2002), pp. 1462–1467

5. T.M. Blackwell, J. Branke, Multi-swarm optimization in dynamic environments, in Applica-
tions of Evolutionary Computing, LNCS 3005 (Springer, Berlin, 2004), pp. 489–500

6. T.M. Blackwell, J. Branke, Multi-swarms, exclusion and anti-convergence in dynamic envi-
ronments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

7. T.M. Blackwell, J. Branke, X. Li, Particle swarms for dynamic optimization problems, in
Swarm Intelligence: Introduction and Applications, ed. by C. Blum, D.D. Merkle (Springer,
Berlin, 2008), pp. 193–217

11 Swarm Intelligence 381

8. C. Blum, X. Li, Swarm intelligence in optimization, in Swarm Intelligence: Introduction and
Applications, ed. by C. Blum, D. Merkle (Springer, Berlin, 2008), pp. 43–85

9. C. Blum, D. Merkle, Swarm Intelligence: Introduction and Applications. Natural Computing
Series (Springer, Berlin, 2008)

10. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Sys-
tems (Oxford University Press, New York, 1999)

11. M.R. Bonyadi, Z. Michalewicz, Stability analysis of the particle swarm optimization without
stagnation assumption. IEEE Trans. Evol. Comput. 20(5), 814–819 (2016)

12. J. Branke, Evolutionary Optimization in Dynamic Environments (Kluwer Academic, Norwell,
2002)

13. D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in IEEE Swarm
Intelligence Symposium (June 2007), pp. 120–127

14. R. Brits, A.P. Engelbrecht, F. van den Bergh, A niching particle swarm optimizer, in Proceed-
ings of 4th Asia-Pacific Conference on Simulated Evolution and Learning (2002), pp. 692–696

15. A. Carlisle, G. Dozier, Adapting particle swarm optimization to dynamic environments, in
Proceedings of International Conference on Artificial Intelligence, Las Vegas, NV (2000), pp.
429–434

16. A. Carlisle, G. Dozier, Tracking changing extrema with adaptive particle swarm optimizer, in
Proceedings of World Automation Congress, Orlando, FL (2002), pp. 265–270

17. R. Carrese, X. Li, Preference-based multiobjective particle swarm optimization for airfoil de-
sign, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz
(Springer, Berlin, 2015), pp. 1311–1331

18. R. Carrese, A. Sobester, H. Winarto, X. Li, Swarm heuristic for identifying preferred solu-
tions in surrogate-based multi-objective engineering design. Am. Inst. Aeronaut. Astronaut. J.
49(7), 1437–1449 (2011)

19. C.W. Cleghorn, Particle Swarm Optimization: Empirical and Theoretical Stability Analysis,
Ph.D. thesis, University of Pretoria, 2017

20. M. Clerc, Standard particle swarm optimisation. 15 pages (2012)
21. M. Clerc, Discrete particle swarm optimization, illustrated by the traveling salesman problem,

in New Optimization Techniques in Engineering (Springer, Heidelberg, 2004), pp. 219–239
22. M. Clerc, Confinements and biases in particle swarm optimisation, Technical report, Open

archive HAL (2006). http://hal.archives-ouvertes.fr/, ref. hal-00122799
23. M. Clerc, Particle Swarm Optimization (ISTE Ltd, Washington, DC, 2006)
24. M. Clerc, Guided Randomness in Optimization (ISTE (International Scientific and Technical

Encyclopedia)/Wiley, Washington, DC/Hoboken, 2015)
25. M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidi-

mensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
26. C.A.C. Coello, M. Salazar Lechuga, MOPSO: a proposal for multiple objective particle swarm

optimization, in Proceedings of Congress on Evolutionary Computation, Piscataway, NJ, May
2002, vol. 2, pp. 1051–1056

27. K.A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D.
thesis, University of Michigan, 1975

28. K. Deb, A. Pratap, S. Agrawal, T. Meyarivan, A fast and elitist multiobjective genetic algo-
rithm: NSGA II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

29. M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating
agents. Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

30. R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm
optimization, in Proceedings of IEEE International Conference Evolutionary Computation
(2000), pp. 84–88

31. R.C. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms, in
Proceedings of Congress on Evolutionary Computation (IEEE Press, 2001), pp. 94–100

32. J.E. Fieldsend, S. Singh, A multi-objective algorithm based upon particle swarm optimisation,
an efficient data structure and turbulence, in Proceedings of U.K. Workshop on Computational
Intelligence, Birmingham, September 2002, pp. 37–44

http://hal.archives-ouvertes.fr/

382 X. Li and M. Clerc

33. D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function opti-
mization, in Proceedings of Second International Conference on Genetic Algorithms, ed. by
J.J. Grefenstette, pp. 41–49 (1987)

34. E.F.G. Goldbarg, G.R. De Souza, M.C. Goldbarg, Particle swarm for the traveling salesman
problem, in Evolutionary Computation in Combinatorial Optimization: Proceedings of the
6th European Conference, EvoCOP 2006, ed. by J. Gottlieb, G. Raidl, R. Günther. LNCS,
vol. 3906 (Springer, Berlin, 2006), pp. 99–110

35. R. Groß, M. Bonani, F. Mondada, M. Dorigo, Autonomous self-assembly in swarm-bots. IEEE
Trans. Robot. 22(6), 1115–1130 (2006)

36. G.R. Harik, Finding multimodal solutions using restricted tournament selection, in Proceed-
ings of Sixth International Conference on Genetic Algorithms, ed. by L. Eshelman (Morgan
Kaufmann, San Francisco, 1995), pp. 24–31

37. S. Helwig, R. Wanka, Particle swarm optimization in high-dimensional bounded search
spaces, in Proceedings of IEEE Swarm Intelligence Symposium, April 2007 (IEEE Press, Hon-
olulu, 2007), pp. 198–205

38. N. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation, in Proceedings of
IEEE Swarm Intelligence Symposium (2003), pp. 72–79

39. X. Hu, R.C. Eberhart, Adaptive particle swarm optimisation: detection and response to dy-
namic systems, in Proceedings of Congress on Evolutionary Computation (2002), pp. 1666–
1670

40. S. Janson, M. Middendorf, A hierarchical particle swarm optimizer and its adaptive variant.
IEEE Trans. Syst. Man Cybern. B 35(6), 1272–1282 (2005)

41. J. Kennedy, The behaviour of particle, in Proceedings of 7th Annual Conference Evolutionary
Programming, San Diego, CA (1998), pp. 581–589

42. J. Kennedy, Bare bones particle swarms, in Proceedings of IEEE Swarm Intelligence Sympo-
sium, Indianapolis, IN (2003), pp. 80–87

43. J. Kennedy, In search of the essential particle swarm, in Proceedings of IEEE Congress on
Evolutionary Computation (IEEE Press, 2006), pp. 6158–6165

44. J. Kennedy, Swarm intelligence, in Handbook of Nature-Inspired and Innovative Computing:
Integrating Classical Models with Emerging Technologies, ed. by A.Y. Zomaya (Springer,
Boston, 2006), pp. 187–219

45. J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International
Conference on Neural Networks, vol. 4 (IEEE Press, Piscataway, 1995), pp. 1942–1948

46. J. Kennedy, R.C. Eberhart, Y. Shi, Swarm Intelligence (Morgan Kaufmann, San Francisco,
2001)

47. X. Li, A non-dominated sorting particle swarm optimizer for multiobjective optimization,
in Proceedings of Genetic and Evolutionary Computation Conference, Part I, ed. by Erick
Cantú-Paz et al. LNCS, vol. 2723 (Springer, Berlin, 2003), pp. 37–48

48. X. Li, Adaptively choosing neighbourhood bests using species in a particle swarm optimizer
for multimodal function optimization, in Proceedings of Genetic and Evolutionary Computa-
tion Conference, ed. by K. Deb. LNCS, vol. 3102 (2004), pp. 105–116

49. X. Li, Niching without niching parameters: particle swarm optimization using a ring topology.
IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)

50. X. Li, Developing niching algorithms in particle swarm optimization, in Handbook of Swarm
Intelligence ed. by B. Panigrahi, Y. Shi, M.-H. Lim. Adaptation, Learning, and Optimization,
vol. 8 (Springer, Berlin, 2011), pp. 67–88

51. X. Li, K.H. Dam, Comparing particle swarms for tracking extrema in dynamic environments,
in Proceedings of Congress on Evolutionary Computation (2003), pp. 1772–1779

52. J.P. Li, M.E. Balazs, G.T. Parks, P.J. Clarkson, A species conserving genetic algorithm for
multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

53. X. Li, J. Branke, T. Blackwell, Particle swarm with speciation and adaptation in a dynamic
environment, in Proceedings of Genetic and Evolutionary Computation Conference, ed. by
M. Cattolico (ACM Press, New York, 2006), pp. 51–58

11 Swarm Intelligence 383

54. X. Li, A. Engelbrecht, M.G. Epitropakis, Benchmark functions for CEC’2013 special session
and competition on niching methods for multimodal function optimization, Technical report,
Evolutionary Computation and Machine Learning Group, RMIT University, 2013

55. J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm op-
timizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3),
281–295 (2006)

56. M. Lovbjerg, T. Krink, Extending particle swarm optimizers with self-organized criticality, in
Proceedings of Congress on Evolutionary Computation (IEEE Press, 2002), pp. 1588–1593

57. A. Mah, S.I. Hossain, S. Akter, A comparative study of prominent particle swarm optimization
based methods to solve traveling salesman problem. Int. J. Swarm Intell. Evol. Comput. 5(3),
1–10 (2016)

58. D. Martens, B. Baesens, T. Fawcett, Editorial survey: swarm intelligence for data mining.
Mach. Learn. 82(1), 1–42 (2011)

59. R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better.
IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

60. J. Moore, R. Chapman, Application of Particle Swarm to Multiobjective Optimization (De-
partment of Computer Science and Software Engineering, Auburn University, 1999)

61. E. Ozcan, C.K. Mohan, Analysis of a simple particle swarm optimization system, in Intelligent
Engineering Systems through Artificial Neural Networks (1998), pp. 253–258

62. R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony optimization algo-
rithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)

63. D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a particle swarm model
using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

64. K. Parsopoulos, M. Vrahatis, Modification of the particle swarm optimizer for locating all
the global minima, in Artificial Neural Networks and Genetic Algorithms, ed. by V. Kurkova,
N. Steele, R. Neruda, M. Karny (Springer, Berlin, 2001), pp. 324–327

65. K. Parsopoulos, M. Vrahatis, Particle swarm optimization method in multiobjective problems,
in Proceedings of ACM Symposium on Applied Computing, Madrid (ACM Press, New York,
2002), pp. 603–607

66. A. Pétrowski, A clearing procedure as a niching method for genetic algorithms, in Proceedings
of 3rd IEEE International Conference on Evolutionary Computation (1996), pp. 798–803

67. R. Poli, Mean and variance of the sampling distribution of particle swarm optimizers during
stagnation. IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)

68. B.Y. Qu, P.N. Suganthan, S. Das, A distance-based locally informed particle swarm model for
multimodal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)

69. M. Reyes-Sierra, C.A.C. Coello, Multi-objective particle swarm optimizers: a survey of the
state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

70. T. Richer, T. Blackwell, The Lévy particle swarm, in Proceedings of Congress on Evolutionary
Computation (2006), pp. 808– 815

71. J. Riget, J. Vesterstroem, A diversity-guided particle swarm optimizer - the ARPSO, Technical
Report 2002-02, Department of Computer Science, University of Aarhus, 2002

72. E. Şahin, Swarm robotics: from sources of inspiration to domains of application, in Swarm
Robotics: SAB 2004 International Workshop (Revised Selected Papers), ed. by E. Şahin, W.M.
Spears (Springer, Berlin, 2005), pp. 10–20

73. E. Şahin, S. Girgin, L. Bayindir, A.E. Turgut, Swarm robotics, in Swarm Intelligence: Intro-
duction and Applications, ed. by C. Blum, D. Merkle (Springer, Berlin, 2008), pp. 87–100

74. R. Salomon, Re-evaluating genetic algorithm performance under coordinate rotation of bench-
mark functions - a survey of some theoretical and practical aspects of genetic algorithms.
Biosystems 39(3), 263–278 (1996)

75. W.M. Spears, D.T. Green, D.F. Spears, Biases in particle swarm optimization. Int. J. Swarm.
Intell. Res. 1(2), 34–57 (2010)

76. P.N. Suganthan, Particle swarm optimiser with neighbourhood operator, in Congress on Evo-
lutionary Computation (CEC 1999), Washington (1999), pp. 1958–1962

77. F. van den Bergh, Analysis of Particle Swarm Optimizers, Ph.D. thesis, Department of Com-
puter Science, University of Pretoria, Pretoria, 2002

384 X. Li and M. Clerc

78. F. van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization.
IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

79. F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajecto-
ries. Inform. Sci. 176, 937–971 (2006)

80. K. Veeramachaneni, T. Peram, C. Mohan, L. Osadciw, Optimization using particle swarm
with near neighbor interactions, in Proceedings of Genetic and Evolutionary Computation
Conference, Chicago, IL (2003), pp. 110 – 121

81. M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, A. Elmaghraby, An approach to multi-
modal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol.
Comput. 8(3), 289–301 (2004)

82. U.K. Wickramasinghe, X. Li, Using a distance metric to guide PSO algorithms for many-
objective optimization, in Proceedings of Genetic and Evolutionary Computation Conference
(ACM Press, New York, 2009), pp. 667–674

83. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm opti-
mization for reactive power and voltage control considering voltage security assessment. IEEE
Trans. Power Syst. 15(4), 1232–1239 (2001)

84. M. Zambrano-Bigiarini, M. Clerc, R. Rojas, Standard particle swarm optimisation 2011 at
CEC-2013: a baseline for future PSO improvements, in Proceedings of Congress on Evolu-
tionary Computation (2013), pp. 2337–2344

	11 Swarm Intelligence
	11.1 Introduction
	11.2 Biological Examples
	11.3 Particle Swarm Optimization
	11.3.1 Inertia Weighted and Constricted PSOs
	11.3.2 Memory-Swarm vs. Explorer-Swarm
	11.3.3 Particle Dynamics Through a Simplified Example
	11.3.3.1 One Particle
	11.3.3.2 Two Particles

	11.4 PSO Variants
	11.4.1 Fully Informed PSO
	11.4.2 Bare-Bones PSO
	11.4.3 Binary PSO
	11.4.4 Discrete PSO
	11.4.5 SPSO-2011
	11.4.6 Other PSO Variants

	11.5 PSO Applications
	11.5.1 Multiobjective Optimization
	11.5.2 Optimization in Dynamic Environments
	11.5.3 Multimodal Optimization

	11.6 PSO Theoretical Works
	11.7 Other SI Applications
	11.7.1 Swarm Robotics
	11.7.2 Swarm Intelligence in Data Mining

	11.8 Conclusion
	References

