International Series in
Operations Research & Management Science

Michel Gendreau - Jean-Yves Potvin
Editors

book of
etaheuristics

Third Edition

@ Springer

International Series in Operations Research
& Management Science

Volume 272

Series Editor

Camille C. Price
Stephen F. Austin State University, TX, USA

Associate Series Editor

Joe Zhu
Worcester Polytechnic Institute, MA, USA

Founding Series Editor

Frederick S. Hillier
Stanford University, CA, USA

More information about this series at http://www.springer.com/series/6161

http://www.springer.com/series/6161

Michel Gendreau - Jean-Yves Potvin
Editors

Handbook of Metaheuristics

Third Edition

@ Springer

Editors

Michel Gendreau Jean-Yves Potvin

Department of Mathematics Département d’informatique et de
and Industrial Engineering recherche opérationnelle
Polytechnique Montréal Université de Montréal

Montreal, QC, Canada Montreal, QC, Canada

ISSN 0884-8289 ISSN 2214-7934 (electronic)

International Series in Operations Research & Management Science

ISBN 978-3-319-91085-7 ISBN 978-3-319-91086-4 (eBook)

https://doi.org/10.1007/978-3-319-91086-4
Library of Congress Control Number: 2018953159

2nd edition: © Springer Science+Business Media LLC 2010

3rd edition: © Springer International Publishing AG, part of Springer Nature 2019, corrected publication
2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-91086-4

A nos épouses Johanne et Lynne et a nos
enfants Catherine, Laurent, Gabrielle,
Stéphanie et Simon.

Preface to the Third Edition

The first edition of the Handbook of Metaheuristics was published in 2003 under
the editorship of Fred Glover and Gary A. Kochenberger. In 2010, given numerous
developments observed in the field of metaheuristics since 2003, it was felt that the
time was ripe for a second edition of the Handbook. At that time, Fred and Gary
were unable to accept Springer’s invitation to prepare this second edition and they
suggested that we should take over the editorship responsibility of the Handbook.
We still feel deeply honored and grateful for their trust.

The field of metaheuristics has continued to evolve since the publication of the
second edition of the Handbook. It is thus time to take a fresh look at the most
important topics in the area.

As stated in the first edition, metaheuristics are “solution methods that orchestrate
an interaction between local improvement procedures and higher level strategies to
create a process capable of escaping from local optima and performing a robust
search of a solution space”. Although this broad characterization still holds today,
many new and exciting developments and extensions have been observed in the last
15 years. We think in particular to hybrids, which take advantage of the strengths
of each of their individual metaheuristic components to better explore the solution
space. Hybrids of metaheuristics with other optimization techniques, like branch
and bound or mathematical programming have also proved quite successful. On the
front of applications, metaheuristics are now used to find high-quality solutions to
an ever-growing number of complex, ill-defined real-world problems, in particular
combinatorial ones.

This third edition of the Handbook of Metaheuristics, through its 18 chapters, is
designed to provide a broad coverage of the concepts, implementations and applica-
tions in this important field of optimization. We were glad to get a positive response
from renowned experts for each chapter. They either accepted to revise and update
their chapter from the second edition or to write brand new ones. The Handbook
now includes updated chapters on the best known metaheuristics, including sim-
ulated annealing, tabu search, variable neighborhood search, large neighborhood
search, iterated local search, greedy randomized adaptive search procedure, multi-

vii

viii Preface to the Third Edition

start methods, genetic algorithms, memetic algorithms, ant colony optimization, hy-
brid metaheuristics, parallel metaheuristics and hyper-heuristics. It also contains a
new chapter on swarm intelligence methods. The last four chapters are devoted to
more general issues related to the field of metaheuristics, namely reactive search,
stochastic search, automated design of metaheuristics and computational compari-
son of metaheuristics. A few chapters from the second edition were discarded, as
they appear to be less relevant.

We think that this Handbook will be a great reference for researchers and grad-
uate students, as well as practitioners. Each presentation, although exhibiting in-
evitable stylistic differences, adheres to some common principles which results in
stand-alone chapters that can be read individually.

We are grateful to all authors for taking the time to write the chapters that appear
in this Handbook. We are also very grateful to Matthew Amboy and Faith Su of
Springer for their encouragements, support and patience at the different stages of
production of this book.

Montreal, QC, Canada Michel Gendreau
Montreal, QC, Canada Jean-Yves Potvin
March 2018

Preface to the Second Edition

The first edition of the Handbook of Metaheuristics was published in 2003 under
the editorship of Fred Glover and Gary A. Kochenberger. Given the numerous de-
velopments observed in the field of metaheuristics in recent years, it appeared that
the time was ripe for a second edition of the Handbook. For different reasons, Fred
and Gary were unable to accept Springer’s invitation to prepare this second edi-
tion, and they suggested that we should take over the editorship responsibility of the
Handbook. We are deeply honored and grateful for their trust.

As stated in the first edition, metaheuristics are “solution methods that orches-
trate an interaction between local improvement procedures and higher level strate-
gies to create a process capable of escaping from local optima and performing a
robust search of a solution space.” Although this broad characterization still holds
today, many new and exciting developments and extensions have been observed in
the last few years. We think in particular to hybrids, which take advantage of the
strengths of each of their individual metaheuristic components to better explore the
solution space. Hybrids of metaheuristics with other optimization techniques, like
branch and bound, mathematical programming, or constraint programming, are also
increasingly popular. On the front of applications, metaheuristics are now used to
find high-quality solutions to an ever-growing number of complex, ill-defined real-
world problems, in particular combinatorial ones.

This second edition of the Handbook of Metaheuristics, through its 21 chapters,
is designed to provide a broad coverage of the concepts, implementations, and ap-
plications in this important field of optimization. We were glad to get a positive re-
sponse from renowned experts for each chapter. They either accepted to revise and
update their chapter from the first edition or to write brand new ones. The Hand-
book now includes updated chapters on the best known metaheuristics, including
simulated annealing, tabu search, variable neighborhood search, scatter search and
path relinking, genetic algorithms, memetic algorithms, genetic programming, ant
colony optimization, multi-start methods, greedy randomized adaptive search proce-
dure, guided local search, hyper-heuristics, and parallel metaheuristics. It also con-
tains three new chapters on large neighborhood search, artificial immune systems,

ix

X Preface to the Second Edition

and hybrid metaheuristics. The last four chapters are devoted to more general issues
related to the field of metaheuristics, namely, reactive search, stochastic search, fit-
ness landscape analysis, and performance comparison. A few chapters from the first
edition were discarded, as they appear to be less relevant.

We think that this Handbook will be a great reference for researchers and grad-
uate students, as well as practitioners. Each presentation, although exhibiting in-
evitable stylistic differences, adheres to some common principles which results in
stand-alone chapters that can be read individually.

We are grateful to all authors for taking the time to write the chapters that ap-
pear in this Handbook. We are also very grateful to Fred Hillier, Neil Levine, and
Matthew Amboy of Springer for their encouragements, support, and patience at the
different stages of production of this book.

Montreal, QC, Canada Michel Gendreau
Montreal, QC, Canada Jean-Yves Potvin
March 2010

Preface to the First Edition

Metaheuristics, in their original definition, are solution methods that orchestrate an
interaction between local improvement procedures and higher level strategies to cre-
ate a process capable of escaping from local optima and performing a robust search
of a solution space. Over time, these methods have also come to include any proce-
dures that employ strategies for overcoming the trap of local optimality in complex
solution spaces, especially those procedures that utilize one or more neighborhood
structures as a means of defining admissible moves to transition from one solution
to another, or to build or destroy solutions in constructive and destructive processes.

The degree to which neighborhoods are exploited varies according to the type
of procedure. In the case of certain population-based procedures, such as genetic
algorithms, neighborhoods are implicitly (and somewhat restrictively) defined by
reference to replacing components of one solution with those of another, by vari-
ously chosen rules of exchange popularly given the name of “crossover.” In other
population-based methods, based on the notion of path relinking, neighborhood
structures are used in their full generality, including constructive and destructive
neighborhoods as well as those for transitioning between (complete) solutions. Cer-
tain hybrids of classical evolutionary approaches, which link them with local search,
also use neighborhood structures more fully, though apart from the combination
process itself. Meanwhile, “single thread” solution approaches, which do not un-
dertake to manipulate multiple solutions simultaneously, run a wide gamut that not
only manipulate diverse neighborhoods but incorporate numerous forms of strate-
gies ranging from thoroughly randomized to thoroughly deterministic, depending on
the elements such as the phase of search or (in the case of memory-based methods)
the history of the solution process.'

1 Methods based on incorporating collections of memory-based strategies, invoking forms of mem-
ory more flexible and varied than those used in approaches such as tree search and branch and
bound, are sometimes grouped under the name adaptive memory programming. This term, which
originated in the tabu search literature where such adaptive memory strategies were first introduced
and continue to be the primary focus, is also sometimes used to encompass other methods that have
more recently adopted memory-based elements.

xi

xii Preface to the First Edition

A number of the tools and mechanisms that have emerged from the creation
of metaheuristic methods have proved to be remarkably effective, so much so that
metaheuristics have moved into the spotlight in recent years as the preferred line
of attack for solving many types of complex problems, particularly those of a com-
binatorial nature. While metaheuristics are not able to certify the optimality of the
solutions they find, exact procedures (which theoretically can provide such a cer-
tification, if allowed to run long enough)’ have often proved incapable of finding
solutions whose quality is close to that obtained by the leading metaheuristics—
particularly for real-world problems, which often attain notably high levels of com-
plexity. In addition, some of the more successful applications of exact methods
have come about by incorporating metaheuristic strategies within them. These out-
comes have motivated additional research and application of new and improved
metaheuristic methodologies.

This handbook is designed to provide the reader with a broad coverage of the
concepts, themes, and instrumentalities of this important and evolving area of opti-
mization. In doing so, we hope to encourage an even wider adoption of metaheuristic
methods for assisting in problem-solving and to stimulate research that may lead to
additional innovations in metaheuristic procedures.

This handbook consists of 19 chapters. Topics covered include scatter search,
tabu search, genetic algorithms, genetic programming, memetic algorithms, variable
neighborhood search, guided local search, GRASP, ant colony optimization, simu-
lated annealing, iterated local search, multi-start methods, constraint programming,
constraint satisfaction, neural network methods for optimization, hyper-heuristics,
parallel strategies for metaheuristics, metaheuristic class libraries, and A-teams.
This family of metaheuristic chapters, while not exhaustive of the many approaches
that have sprung into existence in recent years, encompasses the critical strategic
elements and their underlying ideas that represent the state of the art of modern
metaheuristics.

This book is intended to provide the communities of both researchers and prac-
titioners with a broadly applicable, up-to-date coverage of metaheuristic method-
ologies that have proven to be successful in a wide variety of problem settings and
that hold particular promise for success in the future. The various chapters serve as
stand-alone presentations giving both the necessary underpinnings as well as prac-
tical guides for implementation. The nature of metaheuristics invites an analyst to
modify basic methods in response to problem characteristics, past experiences, and
personal preferences, and the chapters in this handbook are designed to facilitate
this process as well.

2 Some types of problems seem quite amenable to exact methods, particularly to some of the
methods embodied in the leading commercial software packages for mixed integer programming.
Yet even by these approaches, the “length of time” required to solve many problems exactly appears
to exceed all reasonable measure, including in some cases measures of astronomical scale. It has
been conjectured that metaheuristics succeed where exact methods fail because of their ability to
use strategies of greater flexibility than permitted to assure that convergence will inevitably be
obtained.

Preface to the First Edition xiii

The authors who have contributed to this volume represent leading figures from
the metaheuristic community and are responsible for pioneering contributions to the
fields they write about. Their collective work has significantly enriched the field of
optimization in general and combinatorial optimization in particular. We are espe-
cially grateful to them for agreeing to provide the first-rate chapters that appear in
this handbook. We would also like to thank our graduate students, Gyung Yung and
Rahul Patil, for their assistance. Finally, we would like to thank Gary Folven and
Carolyn Ford of the Kluwer Academic Publishers for their unwavering support and
patience throughout this project.

Boulder, CO, U.S.A. Fred Glover
Denver, CO, U.S.A. Gary A. Kochenberger

Contents

10

Simulated Annealing: From Basics to Applications

Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau

Tabu Search

Michel Gendreau and Jean-Yves Potvin

Variable Neighborhood Search

Pierre Hansen, Nenad Mladenovié, Jack Brimberg,
and José A. Moreno Pérez

Large Neighborhood Search

David Pisinger and Stefan Ropke

Iterated Local Search: Framework and Applications

Helena Ramalhinho Lourengo, Olivier C. Martin, and Thomas Stiitzle

Greedy Randomized Adaptive Search Procedures: Advances

and EXtensions.

Mauricio G. C. Resende and Celso C. Ribeiro

Intelligent Multi-Start Methods

Rafael Marti, Ricardo Aceves, Maria Teresa Ledn,
Jose M. Moreno-Vega, and Abraham Duarte

Next Generation Genetic Algorithms: A User’s

Guide and Tutorial

Darrell Whitley

An Accelerated Introduction to Memetic Algorithms.............

Pablo Moscato and Carlos Cotta

Ant Colony Optimization: Overview and Recent Advances.

Marco Dorigo and Thomas Stiitzle

XV

XVi

11

12

13

14

15

16

17

18

Contents

Swarm Intelligence i
Xiaodong Li and Maurice Clerc

Metaheuristic Hybrids
Giinther R. Raidl, Jakob Puchinger, and Christian Blum

Parallel Metaheuristics and Cooperative Search
Teodor Gabriel Crainic

A Classification of Hyper-Heuristic Approaches: Revisited
Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa,
Ender Ozcan, and John R. Woodward

Reactive Search Optimization: Learning While Optimizing
Roberto Battiti, Mauro Brunato, and Andrea Mariello

Stochastic Search in Metaheuristics
Walter J. Gutjahr and Roberto Montemanni

Automated Design of Metaheuristic Algorithms
Thomas Stiitzle and Manuel Lépez-Ibéiez

Computational Comparison of Metaheuristics
John Silberholz, Bruce Golden, Swati Gupta, and Xingyin Wang

Correction to: Swarm Intelligence

Contributors

Ricardo Aceves
Universidad Nacional Auténoma de México, Mexico City, Mexico

Roberto Battiti
University of Trento, Trento, Italy

Christian Blum
Artificial Intelligence Research Institute, Bellaterra, Spain

Jack Brimberg
Royal Military College of Canada, Kingston, ON, Canada

Mauro Brunato
University of Trento, Trento, Italy

Edmund K. Burke
University of Leicester, Leicester, UK

Supatcha Chaimatanan
Geo-Informatics and Space Technology Development Agency, Siracha, Thailand

Maurice Clerc
Independent Consultant, Groisy, France

Carlos Cotta
Universidad de Malaga, Mdlaga, Spain

Teodor Gabriel Crainic
Ecole des Sciences de la Gestion, Université du Québec a Montréal, Montréal, QC,
Canada

CIRRELT, Montréal, QC, Canada

Xvii

XViii Contributors

Daniel Delahaye
Ecole Nationale de I’ Aviation Civile, Toulouse, France

Marco Dorigo
Université Libre de Bruxelles, Brussels, Belgium

Abraham Duarte
Universidad Rey Juan Carlos, Madrid, Spain

Michel Gendreau
Polytechnique Montréal, Montréal, QC, Canada
CIRRELT, Montréal, QC, Canada

Bruce Golden
R.H. Smith School of Business, University of Maryland, College Park, MD, USA

Swati Gupta
Simons Institute for the Theory of Computing, University of California, Berkeley,
CA, USA

Walter J. Gutjahr
University of Vienna, Vienna, Austria

Pierre Hansen
Ecole des Hautes Etudes Commerciales, Montréal, QC, Canada
GERAD, Montréal, QC, Canada

Matthew R. Hyde
University of Nottingham, Nottingham, UK

Graham Kendall
University of Nottingham Malaysia Campus, Semenyih, Malaysia

Maria Teresa Ledn
Universidad de Valencia, Valencia, Spain

Xiaodong Li
RMIT University, Melbourne, VIC, Australia

Manuel Lépez-Ibaiiez
Alliance Manchester Business School, University of Manchester, Manchester, UK

Helena Ramalhinho Lourenco
Universitat Pompeu Fabra, Barcelona, Spain

Andrea Mariello
University of Trento, Trento, Italy

Rafael Marti
Universidad de Valencia, Valencia, Spain

Olivier C. Martin
Université Paris-Sud, Orsay, France

Contributors Xix

Nenad Mladenovié¢
Mathematical Institute, SANU, Belgrade, Serbia

Marcel Mongeau
Ecole Nationale de 1’ Aviation Civile, Toulouse, France

Roberto Montemanni
Dalle Molle Institute for Artificial Intelligence, University of Applied Sciences of
Southern Switzerland, Manno, Switzerland

Jose M. Moreno-Vega
Universidad de La Laguna, San Cristébal de La Laguna, Spain

Pablo Moscato
The University of Newcastle, Newcastle, NSW, Australia

Gabriela Ochoa
University of Stirling, Stirling, UK

Ender Ozcan
University of Nottingham, Nottingham, UK

José A. Moreno Pérez

Universidad de La Laguna, San Cristébal de La Laguna, Spain
David Pisinger

Technical University of Denmark, Lyngby, Denmark
Jean-Yves Potvin

Université de Montréal, Montréal, QC, Canada

CIRRELT, Montréal, QC, Canada

Jakob Puchinger
CentraleSupélec, Gif-sur-Yvette, France

Giinther R. Raidl
Institute of Logic and Computation, TU Wien, Vienna, Austria

Mauricio G. C. Resende
Amazon.com, Seattle, WA, USA
University of Washington, Seattle, WA, USA

Celso C. Ribeiro
Universidade Federal Fluminense, Niteroi, Brazil

Stefan Ropke
Technical University of Denmark, Lyngby, Denmark

John Silberholz
Ross School of Business, University of Michigan, Ann Arbor, MI, USA

Thomas Stiitzle
Université Libre de Bruxelles, Brussels, Belgium

XX Contributors
Xingyin Wang
Singapore University of Technology and Design, Singapore, Singapore

Darrell Whitley
Colorado State University, Fort Collins, CO, USA

John R. Woodward
Queen Mary University of London, London, UK

Chapter 1)

Simulated Annealing: From Basics e
to Applications

Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau

Abstract Simulated Annealing (SA) is one of the simplest and best-known meta-
heuristic method for addressing difficult black box global optimization problems
whose objective function is not explicitly given and can only be evaluated via some
costly computer simulation. It is massively used in real-life applications. The main
advantage of SA is its simplicity. SA is based on an analogy with the physical an-
nealing of materials that avoids the drawback of the Monte-Carlo approach (which
can be trapped in local minima), thanks to an efficient Metropolis acceptance cri-
terion. When the evaluation of the objective-function results from complex simula-
tion processes that manipulate a large-dimension state space involving much mem-
ory, population-based algorithms are not applicable and SA is the right answer to
address such issues. This chapter is an introduction to the subject. It presents the
principles of local search optimization algorithms, of which simulated annealing is
an extension, and the Metropolis algorithm, a basic component of SA. The basic
SA algorithm for optimization is described together with two theoretical properties
that are fundamental to SA: statistical equilibrium (inspired from elementary sta-
tistical physics) and asymptotic convergence (based on Markov chain theory). The
chapter surveys the following practical issues of interest to the user who wishes to
implement the SA algorithm for its particular application: finite-time approxima-
tion of the theoretical SA, polynomial-time cooling, Markov-chain length, stopping
criteria, and simulation-based evaluations. To illustrate these concepts, this chapter
presents the straightforward application of SA to two classical and simple classi-
cal NP-hard combinatorial optimization problems: the knapsack problem and the

D. Delahaye (><) - M. Mongeau
Ecole Nationale de 1’ Aviation Civile, Toulouse, France
e-mail: daniel.delahaye @enac.fr; marcel.mongeau @enac.fr

S. Chaimatanan
Geo-Informatics and Space Technology Development Agency, Siracha, Thailand
e-mail: supatcha@gistda.or.th

© Springer International Publishing AG, part of Springer Nature 2019 1
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_1&domain=pdf
mailto:daniel.delahaye@enac.fr
mailto:marcel.mongeau@enac.fr
mailto:supatcha@gistda.or.th
https://doi.org/10.1007/978-3-319-91086-4_1

2 D. Delahaye et al.

traveling salesman problem. The overall SA methodology is then deployed in detail
on a real-life application: a large-scale aircraft trajectory planning problem involv-
ing nearly 30,000 flights at the European continental scale. This exemplifies how to
tackle nowadays complex problems using the simple scheme of SA by exploiting
particular features of the problem, by integrating astute computer implementation
within the algorithm, and by setting user-defined parameters empirically, inspired
by the SA basic theory presented in this chapter.

1.1 Introduction

Simulated Annealing (SA) is one of the simplest and best-known metaheuristic
methods for addressing difficult black box global optimization problems, whose ob-
jective function is not explicitly given and can only be evaluated via some costly
computer simulation. It is massively used in real-life applications. The expression
“simulated annealing” yields over one million hits when searching through the
Google Scholar web search engine dedicated to the scholarly literature.

This chapter is an introduction to the subject. It is organized as follows. The first
section introduces the reader to the basics of the simulated annealing algorithm.
Section 1.2 deals with two theoretical properties of SA: statistical equilibrium and
asymptotic convergence. Practical issues of interest when implementing SA are dis-
cussed in Sect. 1.3: finite-time approximation, polynomial-time cooling, Markov-
chain length, stopping criteria and simulation-based evaluations. Section 1.4 illus-
trates the application of SA to two classical NP-hard combinatorial optimization
problems: the knapsack problem and the traveling salesman problem. A real-life
application, large-scale aircraft trajectory planning problem, is finally tackled in
Sect. 1.5 in order to illustrate how the particular knowledge of an application and
astute computer implementation must be integrated within SA in order to tackle
nowadays complex problems using the simple scheme of SA.

1.2 Basics

In the early 1980s three IBM researchers, Kirkpatrick et al. [11], introduced the
concepts of annealing in combinatorial optimization. These concepts are based on a
strong analogy with the physical annealing of materials. This process involves bring-
ing a solid to a low energy state after raising its temperature. It can be summarized
by the following two steps (see Fig. 1.1):

e Bring the solid to a very high temperature until “melting” of the structure;
e Cool the solid according to a very particular temperature decreasing scheme in
order to reach a solid state of minimum energy.

1 Simulated Annealing: From Basics to Applications 3

In the liquid phase, the particles are distributed randomly. It is shown that the
minimum-energy state is reached provided that the initial temperature is sufficiently
high and the cooling time is sufficiently long. If this is not the case, the solid will be
found in a metastable state with non-minimal energy; this is referred to as hardening,
which consists in the sudden cooling of a solid.

Liquid State Solid State : Metastable

o o0 © T Hardenin;
® o, ® g
o o

Liquid State Solid State : Crystal

——)>
——>

Minimum Energy

Fig. 1.1 When the temperature is high, the material is in a liquid state (left). For a hardening
process, the material reaches a solid state with non-minimal energy (metastable state; top right). In
this case, the structure of the atoms has no symmetry. During a slow annealing process, the material
reaches also a solid state but for which atoms are organized with symmetry (crystal; bottom right)

Before describing the simulated annealing algorithm for optimization, we need to
introduce the principles of local search optimization algorithms, of which simulated
annealing is an extension.

1.2.1 Local Search (or Monte Carlo) Algorithms

These algorithms optimize the cost function by exploring the neighborhood of the
current point in the solution space.

In the next definitions, we consider (S, f) an instantiation of a combinatorial
optimization problem (S: set of feasible solutions, f: objective function to be mini-
mized).

Definition 1 Let .4 be an application that defines for each solution i € S a subset
S; C S of solutions “close” (to be defined by the user according to the problem of
interest) to the solution i. The subset S; is called the neighborhood of solution i.

In the next definitions, we consider that .4 is a neighborhood structure associ-
ated with (S, f).

Definition 2 A generating mechanism is a mean for selecting a solution j in any
neighborhood S; of a given solution i.

4 D. Delahaye et al.

A local search algorithm is an iterative algorithm that begins its search from a fea-
sible point, randomly drawn in the state space. A generation mechanism is then
successively applied in order to find a better solution (in terms of the objective func-
tion value), by exploring the neighborhood of the current solution. If such a solution
is found, it becomes the current solution. The algorithm ends when no improvement
can be found, and the current solution is considered as the approximate solution
of the optimization problem. One can summarize the algorithm by the following
pseudo-code for a minimization problem:

Local Search

. Draw an initial solution i;

Generate a solution j from the neighborhood S; of the current solution i;
. If f(j) < f(i) then j becomes the current solution;

. If () > f(i) for all j € S; then END;

. Go to step 2;

N b W=

Definition 3 A solution i* € S is called a local optimum with respect to N for (S, f)

if £(i*) < f(j) for all j € Sp.

Definition 4 The neighborhood structure A is said to be exact if, for every local
optimum with respect to N, i* € S, i* is also a global optimum of (S, f).

Thus, by definition, local search algorithms converge to local optima unless one
has an exact neighborhood structure. This notion of exact neighborhood is theoreti-
cal because it generally leads, in practice, to resort to a complete enumeration of the
search space.

Intuitively, if the current solution “falls” in a subdomain over which the objective
function is convex, the algorithm remains trapped in this subdomain, unless the
neighborhood structure associated with the generation mechanism can reach points
outside this subdomain.

In order to avoid being trapped in local minima, it is then necessary to define a
process likely to accept current state transitions that momentarily reduce the perfor-
mance (in terms of objective) of the current solution: this is the main principle of
simulated annealing.

Before describing this algorithm, it is necessary to introduce the Metropolis al-
gorithm [15] which is a basic component of SA.

1.2.2 Metropolis Algorithm

In 1953, three American researchers [15] developed an algorithm to simulate the
physical annealing process, as described in Sect. 1.2. Their aim was to reproduce
faithfully the evolution of the physical structure of a material undergoing annealing.

1 Simulated Annealing: From Basics to Applications 5

This algorithm is based on Monte Carlo techniques which consist in generating a
sequence of states of the solid in the following way.

Starting from an initial state i of energy E;, a new state j of energy E; is generated
by modifying the position of one particle.

If the energy difference, E; — E;, is positive (the new state features lower en-
ergy), the state j becomes the new current state. If the energy difference is less than
or equal to zero, then the probability that the state j becomes the current state is
given by:

()
Pr{Current state = j} = e\ "

)

where T represents the temperature of the solid and kg is the Boltzmann constant
(kg = 1.38 x 10723 J/K).

The acceptance criterion of the new state is called the Metropolis criterion. If the
cooling is carried out sufficiently slowly, the solid reaches a state of equilibrium at
each given temperature 7. In the Metropolis algorithm, this equilibrium is achieved
by generating a large number of transitions at each temperature. The thermal equi-
librium is characterized by the Boltzmann statistical distribution. This distribution
gives the probability that the solid is in the state i of energy E; at the temperature 7'

~(5f)

z(1)° ’

PriX =i} =

where X is a random variable associated with the current state of the solid and Z(T')
is a normalization coefficient, defined as:

Z2(T)=Ye (’%> .

jes

1.2.3 Simulated Annealing (SA) Algorithm

In the SA algorithm, the Metropolis algorithm is applied to generate a sequence of
solutions in the state space S. To do this, an analogy is made between a multi-particle
system and our optimization problem by using the following equivalences:

o The state-space points (solutions) represent the possible states of the solid;
e The function to be minimized represents the energy of the solid.

A control parameter c, acting as a temperature, is then introduced. This parameter
is expressed with the same units as the objective that is optimized.

It is also assumed that the user provides for each point of the state space, a neigh-
borhood and a mechanism for generating a solution in this neighborhood. We then
define the acceptance principle:

6 D. Delahaye et al.

Definition 5 Let (S, f) be an instantiation of a combinatorial minimization prob-
lem, and i, j two points of the state space. The acceptance criterion for accepting
solution j from the current solution i is given by the following probability:

1 oo)
Pr{ accept j} = { (foz i 1() < f(0)
e

¢) else.

By analogy, the principle of generation of a neighbor corresponds to the per-
turbation mechanism of the Metropolis algorithm, and the principle of acceptance
represents the Metropolis criterion.

Definition 6 A transition represents the replacement of the current solution by a
neighboring solution. This operation is carried out in two stages: generation and
acceptance.

In the sequel, let ¢; be the value of the temperature parameter, and L; be the
number of transitions generated at some iteration k. The principle of SA can be
summarized as follows:

Simulated Annealing

o

. Inmitialization (i := iz4r, k := 0, ci = ¢, Ly := Lo)3
. Repeat
3. For/=0to L; do

[}

o Generate a solution j from the neighborhood S; of the current solution

L5
o If f(j) < f(i) then i := j (j becomes the current solution);
FO-1()
o Else, j becomes the current solution with probability e(U > H
4. k:i=k+1;
. Compute(Ly, cy);
6. Until ¢; ~ 0.

wn

One of the main features of simulated annealing is its ability to accept transitions
that degrade the objective function.

At the beginning of the process, the value of the temperature c; is high, which
makes it possible to accept transitions with high objective degradation, and thereby
to explore the state space thoroughly. As c; decreases, only the transitions improving
the objective, or with a low objective deterioration, are accepted. Finally, when cj
tends to zero, no deterioration of the objective is accepted, and the SA algorithm
behaves like a Monte Carlo algorithm.

1 Simulated Annealing: From Basics to Applications 7

1.3 Theory

This section addresses two theoretical properties that are fundamental to SA: statis-
tical equilibrium and asymptotic convergence. More details and proofs of the theo-
rems cited in this section can be found in the books [1, 13].

1.3.1 Statistical Equilibrium

Based on the ergodicity hypothesis that a particle system can be considered as a
set having observable statistical properties, a number of useful quantities can be
deduced from the equilibrium statistical system: mean energy, energy distribution,
entropy. Moreover, if this particle set is stationary, which is the case when the statis-
tical equilibrium is reached, the probability density associated with the states in the
equilibrium phase depends on the energy of the system. Indeed, in the equilibrium
phase, the probability that the system is in a given state { with an energy E; is given
by the Boltzmann law:

Theorem 1 After a sufficient number of transitions with a fixed control parameter
¢ and using the following probability of acceptance:

1 ; . .
P{accept j|Si} = { (f(,) f(/)) i 10) < 1)
e else

the simulated annealing algorithm will find a given solution i € S with the
probability:
Px =iy =g = L)
C{ =1 _qlc _NO(C)e)
where X is the random variable representing the current state of the annealing algo-
rithm, and Ny(c) is the normalization coefficient:

1))

)= 3l

JjES

Definition 7 Let A and B be two sets such that B C A. We define the characteristic
Junction of B, noted Kp), to be the function such that:

1 ifaeB
KB) (a) = {O else.

Corollary 1 For any given solution i, we have:

1
lim P{X =i} = lim gi(c) =¢q] =

= i
c—0t c—0t |Sopt| SOP[()

where S, represents the set of global optima.

8 D. Delahaye et al.

This result guarantees the asymptotic convergence of the simulated annealing al-
gorithm towards an element of the set of global optima, provided that the stationary
distribution g;(c), i € S, is reached at each value of c. For a discrete state space, such
distributions are discrete and one can compute the probability to reach one particular
point x; in the state space with an objective value y;:

The expected value of the function f to optimize at equilibrium for any positive
value of ¢ is denoted (f). and the variance is denoted (f2)..

At a very high temperature c, the SA algorithm moves randomly in the state
space. With each point x; generated by this process, is associated an objective value
yi by the mapping y¢ = f(x;). If we consider this process for a long period, it is
possible to build the distribution of the objective function values y{, (i=1,2,...,N)
generated by the SA process. This distribution depends on the temperature ¢ and
will be denoted ¢(c). For large values of ¢, this distribution is equal to the objective
distribution. Figure 1.2 gives an example of such a distribution. The figure shows
a one-dimensional objective function for which the circles represent the samples of
the SA algorithm at some high temperature c;. The dashed horizontal line shows
the mean of this distribution (< f(c1) >), and on the left-hand side the associated
distribution is represented by the dashed graph (¢(c1)). For a lower temperature ¢,
some transitions in the SA process are not accepted, meaning that the associated
distribution g(c,) is shifted to the lower levels (squares in the objective function on
the right and solid graph on the left) with a lower expected value.

Definition 8 The entropy at equilibrium is

H = Zq,)n(gi(c

ieS
Corollary 2 One has:
Hf)e _ oF
dc ?
aHL’ p— 6[,’
dec — 3

These last two expressions play an important role in statistical mechanics. We
also deduce the following expressions:

1 Simulated Annealing: From Basics to Applications 9

y=f(x)

\
\
\
\

\

i

1
i

Fig. 1.2 Distribution of the objective function values at some high temperature ¢; and at a lower
temperature ¢,

q(c2)

Corollary 3
limcﬂw<f>c = <f>°° = ﬁZieSf(i) limcﬁ0<f>c = <f>0 = fOpt;
lime . 07 = 03 = ﬁzl'es(f(i) —(f)=)? limes007 = 0§ =0,

lim, 0o He = Hoo = In(]S]) lim¢_,0 H. = Ho = In(|Sop!),

where fo,s denotes the optimal value of f. This last formula represents the third law
in thermodynamics (assuming that there is only one state of minimum energy, we
then obtain: So = In(1) = 0).

In physics, the entropy measures the level of disorder associated with the sys-
tem: a high entropy value indicates a chaotic structure, while a low value reflects
organization.

In the context of optimization, the entropy is related to a measure of the degree of
optimality achieved. During the successive SA iterations, the mathematical expec-
tation of the objective function value and of the entropy only decrease and converge
respectively towards fo,; and In(|Sop|).

The derivative of the distribution g;(c¢) with the temperature ¢ is given by the
following expression:

dqi(c) _ qi(c)

Jc) [<f>c_f(l)]

Since (f). < (f), one can exhibit three regimes in the simulated annealing pro-
cess. More precisely, one can show the following:

Corollary 4 Let (S, f) be an instantiation of a combinatorial optimization prob-
lem with Sop; # S, and let g;(c) be the stationary distribution associated with the
annealing process. We then have:

10 D. Delahaye et al.

(i) Vi € Som 241 < 0

(ii) Vi & Sopt such that £(i) > (f)e: 24 > 0;
(i) Vi & Sops such that f(i) < (f)e, 3¢ > 0 satisfying:

aq’(>0ifc<¢
aq’g =0ifc=¢;
(<0ifc>¢.

This corollary indicates that the probability of finding an optimal solution in-
creases monotonically when ¢ decreases. Moreover, for any non-optimal solution,
there exists a positive value ¢; such that for ¢ < ¢, the probability of finding this
solution decreases as ¢ decreases.

Definition 9 The acceptance rate associated with the simulated annealing algo-
rithm is defined by:

Number of accepted transitions

x(c)=

Number of proposed transitions’

As a general rule, when ¢ has a high value, all transitions are accepted and y/(c)
is close to 1. Then, when ¢ decreases, y(c) decreases slowly until reaching 0, indi-
cating that no transitions are accepted.

By observing the evolution of (f). and 67 as a function of ¢, we note that there
exists a critical value called the transition threshold (denoted ¢;), that delimits two
distinct regions of the distribution at equilibrium. This threshold is the value ¢, such
that

<f> (< f°°>+f0pt)

I\JM—‘

and
o’ ~o? ifc>c,
<ol ife<c.

For any given value of ¢, the search space S can therefore be partitioned into two
regions:

1. Region R;: where 63 remains roughly constant (close to 02) when ¢ decreases.
2. Region R,: where 6 decreases when ¢ decreases.

When ¢ approaches the value of ¢;, the acceptance rate is about 0.5 (i.e., x(¢/) =
0.5). Furthermore, one can show:

e In Ry, for large values of ¢, (f). is linear in ¢! and 03 is roughly constant.

e In R,, for small values of ¢, (f). is proportional to ¢, and O'CZ is proportional to

2.

1 Simulated Annealing: From Basics to Applications 11

One can then propose the following approximation models for {f). and 63 :

<f>c§f< :fOpt+]\]t (<f>°°_f0pt_%3°) 1_CYC ifCSCt

e fo=(fle—Sife>c

2 2 2 <2 :
O; :G<:Nt Gm(]f)/c) lfCSC[

ol=02=02ifc>¢

with

202 1—yc,
= —=—and N, = —~
G <f>°°7f0pt a ! c

where, roughly speaking, ¥ is the first-order approximation of {f).. Finally, let us
introduce the specific heat, noted H(c) which is given by the following formula:

_d{f)e _ (i — (e

dc kpc?

A large value of H(c) indicates that the material starts to become solid: in this case,
the decreasing rate of the temperature has to be reduced.

1.3.2 Asymptotic Convergence

The simulated annealing algorithm possesses the property of stochastic convergence
towards a global optimum as long as it provides an infinitely-long temperature decay
diagram with infinitely-small decay steps. This decay scheme is purely theoretical
and one will try in practice to get closer to this ideal while remaining within reason-
able times of execution.

Definition 10 A Markov chain is a sequence of states, where the probability of
reaching a given state depends only on the previous state. Let X (k) be the state
reached at the kth iteration. Then, the probability of transition at the kth iteration
for each state pair i, j is given by P,j(k) = Pr{X (k) = j|X(k—1) = i}. The associ-
ated matrix [P;j(k)| is called the transition matrix.

12 D. Delahaye et al.

In the simulated annealing context, a Markov-chain transition corresponds to a
move in the state space (generation plus acceptance).

Definition 11 The transition probabilities of the SA algorithm are given by:

: Gij(ewAij(cr) i j
Vi,jeSPi(k)=P(c) = Y Y s 1.1

/ i (k) = Bjle) {1—21#1’1'1(%) ifi=j, (D
where Gjj(cx) denotes the probability of generating state j from state i; and A;;(cx)
is the probability of accepting the state j generated from the state i. For all i, j € S,
Ajj(ck) is given by:
_ ()=fan*)

k

Aij(er) = €<

..+ Jaifa>0
witha™ = {Oelse.

Theorem 2 Let the transition probability associated with the SA algorithm be de-
fined by (1). Suppose that the following condition is satisfied:

Vi,jeS3p>1,3y,l,...,1, €S,

with ly = i,lp =/, andle’lkH >0,k=0,1,...,p— L

Then, the Markov chain has a stationary distribution, denoted q(c) which is the
distribution of the solutions visited by the SA algorithm at temperature c, whose
components are given by:

1 £(0)

= 6(77) i
No(d) ,VieS

gi(c)

where Ny(c) is the normalization coefficient.

Furthermore,
limg(c) =¢q",
c—0
with ¢ * = \sol,,,\ K(Sypr) () 51 € S.
Finally,
lim lim Pr{X; = i}q(c)=¢q",
c—0k—roo0
and

lim lim Pr{X; € So;u} =1,

c—0k—reo

where X;” denotes the kth iterate obtained at temperature c. This result indicates the
convergence of the simulated annealing algorithm to one of the optimal solutions.

1 Simulated Annealing: From Basics to Applications 13

Generalization:

Theorem 3 Assume that the probabilities of generation and acceptance satisfy the
following assumptions:

(G1)VYer >0, Vi, jeS3Ip>1, 3, L,....0, €S :
lo=il,=jand Gy, (cx) >0k=0,1,...,p—1;

(Gz) VC](>0, Vi7j cs: G,’j(Ck) = Gj,'(Ck);

] Ayl =1, i) = £
(A1) Ve >0, Vi jk €5 {Aij(cwk 01, () < £0)

(A2) Ver >0, Vi, j,k € Swith f(i) < f(j) < f(k), Aulck) = Aij(c)Aji(ck)
(A3) Vi, j € Swith f(i)) < £(j), lime, o+ Aj(ci) =0

Then, at any iteration k there exists a stationary distribution q(c) whose compo-
nents are given by:

AiOpti(ck)
qi\Ck) = <~
iex) Y jesAiopi(cr)

Moreover, for any iop: € Sopr, we have:

Vi € Sand iOpl € SOpt-

. 1 .
i ai(ck) = 75 k(5o (-

In practice, it is very hard to find acceptance distributions, other than exponential
distributions, that satisfy Aj,A,,A3.

The theoretical results presented above are not directly applicable to a practical
SA algorithm since they assume an infinite number of iterations for each value of
¢k, which moreover decreases continuously towards zero.

In the case where the number of iterations at each temperature step is finite, the
simulated annealing can be modeled using a Markovian inhomogeneous model for
which similar results can be established.

The simulated annealing algorithm converges towards an optimal solution of the
optimization problem but it reaches this optimum only for an infinite number of
transitions. The approximation of the asymptotic behavior requires a number of iter-
ations whose order of magnitude is equal to the cardinality of the state space, which
is unrealistic in the context of NP-hard problems. It is therefore necessary to see the
annealing as a mechanism for approaching the global solution of a combinatorial
optimization problem, to which it will be necessary to add a local search method
allowing an optimum to be reached exactly. In other words, the simulated annealing
makes it possible to move in the right attraction basin, and a local method com-

14 D. Delahaye et al.

pletes the optimization process by determining a local optimum within this basin of
attraction corresponding to a global optimum of the problem.

1.4 Practical Issues

This section surveys the following practical issues of interest to the user who
wishes to implement the SA algorithm for its particular application: finite-time ap-
proximation, polynomial-time cooling, Markov-chain length, stopping criteria, and
simulatation-based evaluations.

1.4.1 Finite-Time Approximation

In practice, the convergence conditions will be approximated by choosing, at every
iteration k, relatively small steps of decay of the parameter ¢ and a sufficiently large
number, L, of transitions at this temperature. Intuitively, the greater the decrement,
the greater the length of the stabilization steps to achieve a quasi-equilibrium (de-
fined below). There is therefore a trade-off to find between “large decrement” and
“length” L.

A finite-time implementation of a simulated annealing algorithm can be achieved
by generating homogeneous Markov chains of finite length for a finite decreasing
sequence of values of the control parameter c.

Definition 12 A cooling process is defined by:
1. A finite sequence of values of the control parameter c, that is to say:
e An initial value cy;

o A decay function of parameter c;
e A final value for c.

2. A finite number of transitions for each value of the control parameter; i.e. a finite
length of the associated Markov chain.

Definition 13 Let € be a sufficiently small positive value, k a given iteration num-
ber, Ly the length of the kth Markov chain and c; the value of the control parameter.
We say that we have a quasi-equilibrium if the probability distribution of the solu-
tions after Ly iterations of the Markov chain (distribution denoted by a(Ly,cy)) is
sufficiently close to the stationary distribution q(cy):

1 _f@)
No(ck)

e % YieSs,
V)]
No(Ck) = Ze k.
JES

qgi(cx) =

1 Simulated Annealing: From Basics to Applications 15

That is:
lla(Ly,cr) —qler)l| < e.

The cooling process using the quasi-equilibrium principle is based on the fol-
lowing observation. When the parameter ¢ tends to oo, the stationary distribution is
given by a uniform law on the set of possible solutions S:

. 1
c}(lz)nm('I(Ck) - |S| 17
where 1 is the vector of dimension |S| whose components are all one.

Thus, for ¢, sufficiently large, each point of the search space is visited with the
same probability and a state of quasi-equilibrium is directly reached whatever the
value of L;. Then, the cooling process consists in determining the value (Ly, cy) that
will lead to a quasi-equilibrium at the end of each Markov chain.

There are many possible cooling processes but the two most common ones are
the geometric process proposed by Kirkpatrick [11, 12] and the polynomial-time
cooling proposed by Aarts and Van Laarhoven [2, 3].

1.4.2 Geometric Cooling

o Initial temperature cy: A prior heating is performed so that we can find a value
of ¢ large enough so that nearly all transitions are accepted at the first iterations.
In order to find such a value, one starts with a small value c¢g. Then, this value
is progressively multiplied by a number greater than 1 until the acceptance rate
x(co) is close to 1.

e Decay of the control parameter: c;. | := o.c; where typically 0.8 < o0 < 0.99.
Stopping criterion: One decides that the algorithm is terminated when the cur-
rent solution does not change any longer from one iteration to the next during a
sufficiently large number of iterations.

e Length of the chain: In theory, it is necessary to allow each chain to reach a state
of quasi-equilibrium. To this end, a sufficient number of acceptable transitions
must be performed, which generally depends on the problem. Since the number
of accepted transitions decrease over time with respect to the number of proposed
transitions Ly, the latter must be lower bounded.

1.4.3 Cooling in Polynomial Time

Let us explain how the initial value of the temperature parameter can be set and how
it should then be iteratively decreased.

16 D. Delahaye et al.

1.4.3.1 Initial Temperature cg

Let m; be the total number of transitions proposed that improves strictly the value
of objective function, and let m; be the number of other (increasing) proposed tran-

sitions. Moreover, let A f(+) be the average of the cost differences over all the in-
creasing transitions. Then, the acceptance rate can be approximated by:

(")
my +mpe ‘

my+myp

x(c)

which yields
A‘f(+)

The proposed initial value of ¢ is then defined as follows:

Initially cg is set to zero. Thereafter, a sequence of my transitions is generated
for which the values of m; and m; are computed. The initial value of c(is then
calculated from Eq. (1.2), where the value of the acceptance rate, y(c), is defined by
the user. The final value of ¢y is then taken as the initial value in the cooling process.

(1.2)

c~

1.4.3.2 Decay of the Control Parameter

The quasi-equilibrium condition is replaced by:
Vk = 0|lq(k) —q(k+1)|| <&,

Thus, for two successive values ¢, and cg4; of the control parameter, it is desired
for the stationary distributions to be close. This can be quantified by the following
formula:

. 1 gi(ck)
VieS — <
1+6 qgi(crsr)

where 0 is some small positive number a priori given. The following theorem pro-
vides a necessary condition for satisfying Eq. (1.3).

<1439, (1.3)

Theorem 4 Let g(cy) be the stationary distribution of the Markov chain associated
with the simulated annealing process at iteration k, and let ¢ and cpy1 be two
successive values of the control parameter with cyy| < cy, then (1.3) is satisfied if:

S S
vies AMlan4) <146, (1.4)

where A; = f(i) — fop

1 Simulated Annealing: From Basics to Applications 17

The necessary condition (1.4) can be rewritten as:

Ck

Vies Ck+1 > m (15)
f<i>7f()pt
One can show that the latter condition (1.5) can be approximated by:
. Ck
ViesS Ck+1 > W, (16)
30¢;

where o, is the standard deviation of g(cy) at temperature c.

The decrement of the temperature parameter ¢ is then determined by the user-
defined parameter 8. A large value of § induces large decrements of ¢, and small
value of 0 produces small decrements.

1.4.3.3 Length of Markov Chains

In the SA cooling process, the length of the Markov chains must allow a signifi-
cant percentage of the neighborhood S; of a given solution i € § to be visited. The
following theorem is used to quantify this percentage:

Theorem 5 Let S be a set of cardinality |S|. Then, the average number of elements
of S visited during a random walk with N iterations is given by:

18] {1—6*%}

for large N and large |S|.

Thus, if no transition is accepted and if N = |S;|, the percentage of solutions
visited in the neighborhood S; of a solution iis: 1 —e~! ~2/3.

A good choice for the number of iterations of the inner loop (at temperature cy)
at iteration k is given by Ly = |S;| where, obviously, |S;| is problem dependent and
has to be designed by the user.

1.4.3.4 Stopping Criterion

Let A(f)c, = (f)e, — fopr- Then, the execution of the algorithm should terminate
when A(f),, is “sufficiently” small with respect to (f),. For sufficiently high val-
ues of cp, we have < f; > (f)e

Moreover, for ¢; << 1:

ey

A<f>0k 2Ck ack

18 D. Delahaye et al.

The end of the algorithm is then fixed by the following condition:

Ck a<f>q
(flee dex

with some small tolerance &; to be set by the user.

< g forcp << 1

1.4.3.5 Summary

The cooling process in polynomial time is thus parameterized by:

e The initial rate of acceptance: y(cg)

e The distance between successive stationary distributions controlled by the pa-
rameter 6

e The stopping criterion, controlled by the parameter &

The number of iterations of this cooling process is bounded and can be charac-
terized by the following theorem:

Theorem 6 Let the decrement function be given by:

Ck
Cip] = ———,
A 1+ oycy
where
In(1+49)
O = ——,
3o,

and let K be the first integer for which the stopping criterion is satisfied. Then, we
have K = O(In(|S])).

Consequently, if /n(|S|) is polynomial on the size of the problem (which is the
case for many combinatorial optimization problems), then this type of cooling in-
duces a polynomial execution of the algorithm.

There is an optimal annealing scheme for each problem and it is up to the user
to define which one is the most suitable for his application. When one has no prior
information about the optimal annealing scheme, which is generally the case, one
should rely on a standard geometrical scheme for which the parameter c; evolves
as follows: cxi1 := ogcy, and tune empirically the parameters o4 and L; on some
representative instances of the class of problem of interest.

This geometric approach is not optimal for all problems but has the advantage
of being robust and ensures convergence towards an approximate solution, even
though it requires more time to converge than it would do with an optimal annealing
scheme.

1 Simulated Annealing: From Basics to Applications 19

1.4.4 Simulation-Based Evaluation

In many optimization applications, the objective function is evaluated thanks to a
computer simulation process which requires a simulation environment. In such a
case, the optimization algorithm controls the vector of decision variables, X, which
are used by the simulation process in order to compute the performance (quality), y,
of such decisions, as shown in Fig. 1.3.

Data

|

Simulation
Environment

Optimization

Fig. 1.3 Objective function evaluation based on a simulation process

In this situation, population-based algorithms may not be adapted to address such
problems, mainly when the simulation environment requires huge amount of mem-
ory space as is often the case in nowadays real-life complex systems. As a matter
of fact, in the case of a population-based approach, the simulation environment has
to be duplicated for each individual of the population of solutions, which may re-
quire an excessive amount of memory. In order to avoid this drawback, one may
think about having only one simulation environment which could be used each time
a point in the population has to be evaluated. One first consider the first individ-
ual for which the simulation environment is initiated and the simulation associated
with this first individual is run. The associated performance is then transferred to the
optimization algorithm. After that, the second individual is evaluated, but the simu-
lation environment must first be cleared from the events of the first simulation. The
simulation is then run for the second individual, and so on until the last individual of
the population is evaluated. In this case the memory space is not an issue anymore,
but the evaluation time may be excessive and the overall process too slow, due to
the fact that the simulation environment is reset at each evaluation.

In the standard simulated annealing algorithm, a copy of a state space point is
requested for each proposed transition. In fact, a point X is generated from the
current point X; through a copy in the memory of the computer. In the case of state
spaces of large dimension, the simple process of implementing such a copy may
be inefficient and may reduce drastically the performance of simulated annealing.

20 D. Delahaye et al.

In such a case, it is much more efficient to consider a come back operator, which
cancels the effect of a generation. Let G be the generation operator which transforms
a point from X; to X:
G
X =+ X j

The comeback operator is the inverse G~! of the generation operator.

Usually, such a generation modifies only one component of the current solution.
In this case, the vector X; can be modified without being duplicated. Depending on
the value obtained when evaluating this new point, two options may be considered:

1. the new solution is accepted and, in this case, only the current objective function
value is updated.

2. else, the come back operator G~ is applied to the new position in order to come
back to the previous solution, again without any duplication in the memory.

This process is summarized in Fig. 1.4.

[fafaja] [| Jaf [[]] [
!
(ool [| Jaf [[] [[4f
Gome3AcK>
[farfafas] [| [af [[| [[

Fig. 1.4 Optimization of the generation process. In this figure, the state space is built with a de-
cision vector for which the generation process consist of changing only one decision (d;) in the
current solution. If this modification is not accepted, this component of the solution recovers its
former value. The only information to be stored is the integer i and the real number d;.

The come back operator has to be used carefully because it can easily generate
undesired distortions in the way the algorithm searches the state space. For example,
if some secondary evaluation variables are used and modified for computing the
overall evaluation, such variables must also recover their initial value, and the come
back operator must therefore ensure the coherence of the state space.

1.5 Illustrative Applications

In this section, we will see how simulated annealing can be applied to two classi-
cal NP-hard combinatorial optimization problems: the knapsack problem and the
traveling salesman problem.

1 Simulated Annealing: From Basics to Applications 21

1.5.1 Knapsack Problem

The knapsack problem can be defined as follows. Given a set of n item types, each
with a weight and a value, and given a weight limit, determine the number of each
item to include in a collection so that the associated total weight is less than or equal
to the weight limit, and so that the total value is as large as possible. The knapsack
problem derives its name from the problem faced by someone who is constrained
by a fixed-size knapsack and must fill it with the most valuable items.

This problem often arises as a subproblem in resource allocation applications
where there are financial constraints, such as:

e (Cargo loading (truck, boat, cargo aircraft)
o Satellite channel assignment
e Portfolio optimization

In the following, we will consider the binary version of the problem, where there
is only one item of each type. Thus, we have n items, each with value v; and weight
w; , i=1,...,n. We must decide whether each item should be put (or not) in a
knapsack of weight limit P, so as to maximize its total value. Before presenting the
application of simulated annealing to such a problem, we first present a mathemati-
cal model for this optimization problem.

1.5.1.1 Mathematical Modeling

As for any real optimization problem to be solved, the modeling step is critical and
has to be done carefully. It models the state space by defining the decision variables,
and it expresses the objective function and the constraint functions in terms of the
decision variables and the given data.

In the binary knapsack problem, we have a vector of binary decision variables
x = (x1,x2,... ,xn)T , where x; = 0 if item i is left out of the knapsack and x; = 1
if item i is put in the knapsack. For a given vector x, the objective function value,
which represents the total value of the items in the knapsack, is:

flx)= va.
i=1

We want this value to be maximized. If there was no weight limit, there would be no
optimization problem in the sense that all items would fit in the knapsack (i.e., the
optimal decision vector would be x = (1,1,...1)T). Thus, the weight limit makes
the problem combinatorial. This weight limit is the main constraint of this problem
and is modeled by the following inequality:

n
z wi.X;. S P.
i=1

22 D. Delahaye et al.
Then, one must add the binary constraints:
x; €{0,1}, fori=1,2,...,n.

The overall model is then

max f(x) = iv,x,-
S.t. =
ipixi <P
X € {Oi:ll},i: 1,2,...,n.

This problem is easy to formulate but hard to solve due to the associated com-
binatorics. For n items, the number of potential solutions to consider is 2" which
grows very rapidly with n:

10 [1.024%x10°
20 | 1.048x10°
30 | 1.073%x10°
40 [1.099x10'2
50 [1.125%x 101
60 [1.152x 108
70 [1.180x 10%!
80 [1.208x 1024
90 [1.237x10%
100[1.267x 103

For large instances of the knapsack problem, one can consider applying meta-
heuristics like simulated annealing.

1.5.1.2 Simulated Annealing Implementation

For the knapsack problem, each solution is encoded as a binary vector X. From a
point X;, we generate a neighbor X; by randomly flipping one component of X;, as
shown in Fig. 1.5 where the kth component is chosen.

In the unconstrained optimization context of SA, a classical relaxation can be
considered to take into account the weight limit constraint. Basically, a term is added
in the objective function to penalize the violation of this constraint. Here, we com-
pute the weight excess A when the weight of the items in the knapsack exceeds its
weight limit:

A =min(0, () wix;) — P).
i=1

1 Simulated Annealing: From Basics to Applications 23

and the objective function value is then penalized by subtracting from it /,L%, where
U is a penalty parameter to be set by the user.

lk

1|1|1|{1[0|O0O|2T|O0O(|1]|0O X

|
1
1
|
|
v

11|11 0| 1|10 (|1]|0 Xj

Fig. 1.5 In this example, with n = 10, the sixth position has been randomly selected in order to
include the sixth object in the bag

In order to test the simulated annealing algorithm on this problem, we first build
an instance of the problem by randomly generating 100 items for which the weights
have also been selected randomly between 1 and 100 with a uniform probability
density function. For this instance, the weight limit of the bag is set to P = 2000.
We choose tt =1 for the penalty parameter and we apply the basic SA algorithm
with the initial temperature set to a value of co such that y(c) = 0.8, a geometric
cooling schedule with o¢ = 0.995, and L; = 1000 for every iteration k. The algorithm
is stopped when the temperature reaches 1525 .

We propose as initial solution a uniformly-distributed random binary vector. The
evolution of the penalized objective function with the number of iterations is shown
in Fig. 1.6, and the associated evolution of the total weight and the value of the
knapsack is shown in Fig. 1.7. At the beginning of the optimization process, the
SA explores the solution space by accepting solutions that yield low value of the
penalized objective function. This leads to high excess weight and high total value.
The value of the penalized objective function increases as the algorithm converges to
the optimal solution. Since the excess weight is high at the beginning, the solution is
improved mainly by removing weight from the knapsack, therefore the total weight
and total value decrease. As the excess weight reaches zero (feasible solution) the
solution must be improved by increasing the value (while keeping the weight under
the weight limit). Therefore, the total value increases until it reaches the maximum
value.

1.5.2 Traveling Salesman Problem

The traveling salesman problem (TSP) asks the following question: “Given a list of
n cities, among which an origin city, and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once and returns to
the origin city?” This is again an important NP-hard combinatorial optimization

24 D. Delahaye et al.

problem, particularly in the fields of operations research and theoretical computer
science. The problem was first formulated in 1930 and is one of the most intensively-
studied problems in discrete optimization.

Penalized objective function
20000 :

Ot Penelized objective ——
-20000 1
-40000
-60000

> -80000
-100000

-120000

-140000
-160000

-180000 S S —
0 200 400 600 800 1000 1200 1400 1600 1800 2000

iterations

Fig. 1.6 Evolution of the penalized objective function with iterations

Weight and Value Evolution
22000 ‘ ‘ T ‘ T : :

20000
18000
16000 |
14000 |
12000
10000 |
8000
6000
4000
2000

Weight ——
Value ——

Weight and Value

0 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
iterations

Fig. 1.7 Evolution of the total weight and value with iterations

As for the knapsack problem, we first present the mathematical modeling.

1 Simulated Annealing: From Basics to Applications 25

1.5.2.1 Mathematical Modeling

Let us consider a set of n cities where each city i has coordinates (x;,y;),i =
1,2,...,n. In this case, each point X of the state space, has to represent a poten-
tial permutation in the order we visit the n cities. For simplicity, we consider the
following initial solution using the lexicographic order:

o = (123w

The objective function evaluation consists in computing the length f of the tour
corresponding to any vector X:

n—1
F(X) =" d(Xi, Xip1) +d(Xn. X1),
=1

1

where, X; is the ith element of X. If X; = k and X;,; = [, the inter-city distance is:

d(Xi, Xit1) = \/(xl —x1)% 4 (v —y)*

Note that the last term, d(Xy,X), in the above definition of f represents the last
segment of the tour to come back to the origin city.

The complexity associated with the traveling salesman problem is known to be
much higher than that of the knapsack problem. For a problem with r cities, the
number of potential tours to be considered is n!, which grows with n much faster
than 2":

n 2" n!

10
20
30
40
50
60
70
80
90
100

1.024x10°
1.048x 10°
1.073%x10°
1.099x 102
1.125x 101
1.152x10'8
1.180x 10%!
1.208x10%*
1.237x10%7
1.267x10%

3.628 x 10°

2.432x10'8
2.652x1032
8.159x10%
3.041x 10
8.320x 108!
1.197x 10190
7.156x 10118
1.485% 10138
9.332x10"7

Just to give an idea of the complexity of the problem, if one evaluation of the
objective function requests 10~ s, then a naive enumeration algorithm evaluating
every possible solution would require the following CPU time:

26 D. Delahaye et al.

n 2" n! ratiog—fl
10 1us 3.6ms 3.6x10°
20 1 ms 77 years 2.3x10?
30 ls 8.4 x 10" years |2.47x10%

40 18 min 2.5 x10*! years | 7.4x10%
50 13days | 9.6 x10*7 years | 2.7x10%
60| 36years |2.6 x10% years | 7.2x10%
70 | 37 x 103 years | 3.8 x10% years | 1x107°

80 | 38 x10° years [2.2 x10'9? years| 5.9x10%*
90 |39 x10° years [4.7 x10'2! years|1.2x10'!!
100[40 x10'? years|2.9 x10'#! years|7.3x10'?’

Even if the computer power is likely to double in the next 18 months, no need to say
that it would not make such a naive algorithm practical.

1.5.2.2 Simulated Annealing Implementation

One of the simplest neighborhood operator for this problem consists of randomly
exchanging two positions in the current solution vector X (see Fig. 1.8). This way of
manipulating points of the state space ensures that the produced neighbor remains
a permutation i.e. a tour of the n cities. Implementing such an operator within the
SA algorithm yields acceptable results, but the performance of the SA can really be
improved by using a neighborhood operator that exchanges all the positions between
two randomly chosen indices (m,n), as shown in Fig. 1.9.

ml ln

1|2 |3 (4]5]6/|7]|8]|9 |10 X4

i i
1|27 |4]5|6|3|8]09[10] X

Fig. 1.8 A first neighborhood operator: randomly swapping two positions

Let us consider an instance with n = 1000 cities randomly generated in a square
subset of the plane. The straightforward SA algorithm is implemented, again, with
initial temperature c¢¢ such that y(X) = 0.8, a geometric cooling schedule with
o =0.995, and L; = 1000 for every iteration. The algorithm is stopped when the
temperature reaches %, and based on the second neighborhood operator (Fig. 1.9).
The initial solution considered is the tour of total distance 1.16857164 x 108 shown
in Fig. 1.10.

1 Simulated Annealing: From Basics to Applications 27

1 (2 7|6 |5 |43]8|9) 10 Xj

Fig. 1.9 A second neighborhood operator: swapping all positions between two randomly chosen
positions (m, n)

Fig. 1.10 Initial tour of the TSP with n = 1000 cities

After application of the simulated annealing algorithm on this problem, one ob-
tains the tour displayed in Fig. 1.11. One minute of computation on a Unix platform
with a 2.4 GHz processor and 8 GB of RAM was needed to get the final tour of total
distance 360,482.

This is clearly not an optimal solution for this instance (there are some subop-
timal crossings) but this solution is very easily obtained via a direct application of
SA.

Simulated annealing has also been applied to many combinatorial problems com-
ing from the industry and real-world operations. To mention just a few:

Airline Crew Scheduling [8]

Railway Crew Scheduling [9]

Traveling Salesman Problem [4]

Vehicle Routing Problem [14]
Layout-Routing of Electronic Circuits [17]

28 D. Delahaye et al.

-
sy

n
Y
L
3‘)57 \
77 11 ’*5/
I &
N
'
L
\J‘:ﬁm.g\/

Fig. 1.11 Final tour of the TSP with n = 1000 cities

Large Scale Aircraft Trajectory Planning [5, 10]
Complex portfolio problem [7]

Graph coloring problem [6]

High-dimensionality minimization problems [16]

1.6 Large-Scale Aircraft Trajectory Planning

In this section, we present a methodology using SA to address a strategic planning of
aircraft trajectories at the European continental scale, which involves nearly 30,000
flights per day. The goal is to separate the given set of 4D aircraft trajectories (three-
dimension space plus time) by allocating an alternative route in the three-dimension
space and an alternative departure time to each flight.

1.6.1 Mathematical Modeling

Our strategic trajectory planning problem considers a set of flight plans (origin,
destination, departure time) for a given day. We rely on route or departure-time allo-
cation to separate aircraft trajectories. In other words, for each flight, we can delay
departure and/or impose an alternative route instead of the initially-planned direct
route between the origin and the destination. This can be formulated as an optimiza-
tion problem aimed at minimizing the number of inferactions between trajectories,

1 Simulated Annealing: From Basics to Applications 29

where we count one interaction whenever two flights are in conflict i.e., separated at
some point by less than 5 NM (nautical miles) horizontally or 1000 feet vertically.
Given Data. A problem instance is given by:

e A set of N initial (nominal) discretized 4D (direct-route) trajectories;
e For each flight i, fori=1,2,...,N:

The initial planned departure time: #; o;

— The maximum allowed advance departure time shift: 5; <0;

— The maximum allowed delay departure time shift: 55 > 0;

— The maximum allowed route length extension coefficient: 0 < d; < 1.
— M: the number of allowed virtual waypoints to modify the route.

Decision Variables. In the time domain, one can use a departure-time shift, &;,
associated with each flight i (i = 1,2,...,N). Therefore, the resulting departure time
of flight i is given by ; = t; ¢ + &;, In the 3D space, one can rely on a vector, w;, of
virtual waypoint locations through which flight i must go (using straight-line seg-

ments), w; := (w},wiz, e wﬁ”), i=1,...,N. Let us set the compact vector notation:
6 :=1(81,8,...,0n), and w := (wy,wy,...,wy). Therefore, the decision variables
of our route / departure-time allocation problem can be represented by the vector:
u:=(6,w).

Constraints. The above optimization variables must satisfy the following con-
straints:

o Allowed departure time shift. Since it is not reasonable to delay or to advance
departure times for too long, the departure time shift, d;, is limited to lie in the
interval [0}, 6;]. Common practice in airports led us to discretize this time inter-
val. Given the (user-defined) time-shift step size &, this yields N! := %‘” possible
advance slots, and N é = g—‘: possible delay slots for flight i. Therefore, we define
the discrete set, A;, of all possible departure time shifts for flight i by

Ai = {*N;SQ,*(N; - 1)6X7 "376S707 5S,' . 7(Né - I)SV,NQSY} (17)

o Maximal route length extension. The alternative trajectory to be chosen in-
creases the route length, which leads to an increase in fuel consumption and
flight time. Therefore, the alternative choice should be limited for the new trajec-
tory if it is to be accepted by the airline. Consequently, the alternative trajectory
for flight i must satisfy:

Li(w;) < (1+dy), (1.8)

where L;(w;) denotes the normalized length (i.e., assuming that the direct-flight
path length is 1) of the alternative trajectory determined by the waypoint vector
Wwi.

o Allowed waypoint locations. To reduce the search space, prevent undesirable
sharp turns, and restrain the route length extension, we bound the possible lo-
cation of each virtual waypoint. Let W;)' and W' be the 2D sets of all possi-
ble normalized longitudinal and lateral locations, respectively, of the mth virtual

30 D. Delahaye et al.

waypoint for trajectory i. The (normalized) longitudinal component, w/;, must lie
in the interval:

m m
‘/Vl;n = |:<1—H‘4bl>,<1ﬂw+bl):|,m—l,2,7M, (19)

where 0 < b; < 1 is a (user-defined) model parameter. The normalized lateral
component, w;-’;, is restricted to lie in the interval:

Wy = [—ai,ail, (1.10)
where 0 < a; < 1 is a (user-defined) model parameter chosen a priori so as to

satisfy (1.8). This yields a rectangular shape for the possible locations of the
virtual waypoint w" (see Figure 1.12).

13 23

— — — . initial en-route segment

alternative en-route segment

A virtual waypoint

Fig. 1.12 Rectangular-shape sets of the possible locations of M = 2 virtual waypoints, for
trajectory i

Objective Function

The objective is to minimize the number of interactions between trajectories,
which correspond, roughly speaking, to situations that occur in the flight planning
phase, when more than one trajectory compete for the same space at the same period
of time. Consider for example the trajectories A, B and C in Fig. 1.13.

We define an interaction at a trajectory point P, x(u;) to be the sum of all the
conflicts associated with point P, ;(u;), where u; the ith component of u. We further
define the interaction, ®;, associated with trajectory i, as: ®;(u) := ZkK‘: L Dik(u)
where K; is the number of trajectory points obtained through some discretization of
the trajectory of the ith flight. Figure 1.13 illustrates the case of trajectory i = B at
the trajectory point Pp 4. Finally, interaction between trajectories, @, for a whole
traffic situation is simply defined as:

1 Simulated Annealing: From Basics to Applications 31
protection volume

trajectory A
8

trajectory B

,7
trajectory C

Dgy=2

N
) = 2 (le(u)

N

Dy (1) := Z D;(u

i=1 i=lk=1

(1.11)

The interaction minimization problem can be formulated as a mixed-integer op-
timization problem, as follows:

i Q()
ui?énw) ! [(H)

subject to
S €A, foralli=1,2,...,N (P1)
wieWwr, foralli=1,2,....Nnm=12,....M
wiy € Wl, foralli=1,2,....Nom=1,2,....M,

iy

where the set A; is defined in (1.7), and W}’ and Wg‘ are defined in (1.9) and (1.10),
respectively.

In order to evaluate the objective function of a candidate solution, (w,d), one
needs to compute the interaction, @, between the N aircraft trajectories. To

. N(N—-1) . . o . D o
avoid the —=— time-consuming pair-wise comparisons, which is prohibitive in
our large-scale application context, we propose a 4D grid-based conflict detection
scheme as illustrated in Fig. 1.14 (see [5, 10] for further details). First, we define a
four-dimensional (3D space + time) grid (see Fig. 1.14). The size of each cell in the
x,Y, and z directions is defined by the minimum separation requirements, N, = 5 NM
and N, = 1000 ft. The size of the cell in the time domain is set according to some
given discretization step size, t;. To detect conflicts, the idea is to successively put
each trajectory in this grid, and then check for conflicts only in the cells surrounding
the current trajectory.

In the SA optimization process, the computation of the objective function,
@y (1), is repeated many times. Therefore it must be computed as efficiently as
possible. To avoid checking interactions over all the N trajectories even when only a
subset of trajectories are modified in a new proposed solution, the interaction count
is updated in a differential manner. More precisely, we proceed as follows. First,
the 4D grid is initialized with every cell empty. Then, the initial N trajectories, cor-
responding to the initial value of the decision vector, u (with all its components at
zero, i.e., direct flight), are placed in the 4D grid and the current interaction, @;., as-
sociated with each trajectory, i, and the current total interaction between trajectories,
Dy 1., are computed.

32 D. Delahaye et al.

X X X X time
Y, % Y/ AR\ z

t t, t, . t

Fig. 1.14 Four dimension (space-time) grid

We assume now that during the optimization process, the decision variables of [
flights are to be modified. Let [,,,,4i¢ be a list of length / containing the flight indices
of the / flights. To update the value of total interaction, we first remove all the / cor-
responding trajectories from the 4D grid. Therefore, the interaction associated with
each trajectory in I,,,,4;/ is set to an intermediate value @; jurer(u) =0, Vi € Lyoais-
It should be noted that the interaction measurement is symmetrical: if @/ (u) de-
notes the contribution of trajectory i to the interaction associated with trajectory
j» then @Y (u) = ®J'(u). Let .4 be a set of trajectories currently interacting with
trajectory i. The interaction associated with trajectory j € .4; over all trajectories
[€ Inodif, is set to an intermediate value @jiner(1) = @j(u) = X,/ DV (u).
Thereafter, the modified trajectories corresponding to the new decision variable val-
ues, uj, i € Lyodif, are placed in the 4D grid and the interaction detection procedure is
performed over all trajectories i € I,,,04;7. Then, the interaction, @;, associated with
each trajectory i € Iyqif, is computed. Again, the interaction associated with each
trajectory, j, interacting with the set of modified trajectories is updated as follows:
Dj(u) = Djinter(u) + Lict,, g, @'/ (u). Finally, the total interaction between trajec-
tories is simply computed as @y, (u) = 2?1:1 ®;(u). This interaction computation
method allows us to update the value of the objective function when some trajec-
tories are modified within a very short computation time, since we do not need to
compute the change of interaction for decisions that are not modified at the current
optimization iteration.

1.6.2 Computational Experiments with SA

The proposed methodology is tested with a continent-size air traffic instance for
a full day of air-traffic over the European airspace, consisting of N = 29,852 en-
route trajectories. The trajectories are sampled with a discretization step of #; =
20s. The initial trajectory set involves @;,, = 142,144 total interactions between
trajectories. Figure 1.15 illustrates the initial trajectory points (blue dots), and the
locations where the initial interactions occur (red dots).

1 Simulated Annealing: From Basics to Applications 33

x 108
3_

-3 I L L L L)
4 3 2 A 0 1 2 3 4

x 10°

Fig. 1.15 Initial (direct-route) trajectory set involving 1-day en-route air traffic over the European
airspace (29,852 flights) sampled with #; = 20 s with initial location of interactions displayed as red
color dots

The initial temperature is computed by first generating 100 deteriorating trans-
formations at random and then by evaluating the average variations, A @, of the

objective function values. The initial temperature, co, is then deduced from the re-
A®ayg

lation: ¢co = e T , where 1y is the initial acceptance rate of degrading solutions
(which will be empirically set). In order to reach an equilibrium, a sufficient num-
ber of iterations, denoted Ly, have to be performed at each temperature step k. In
our case, we assume for simplicity purposes that the number of iterations, Ly, is
constant and empirically set. The temperature is decreased following the geometri-
cal law, c;41 = oy, where 0 < a < 1 is a pre-defined constant value.

To generate a solution in the neighborhood, we set a user-defined threshold value
of interaction, denoted @, such that the trajectory of a randomly chosen flight i will
be modified only if @;(u) > @, where u is the current solution. Then, for a chosen
flight, i, we introduce another user-defined parameter, P,, < 1, to control the proba-
bility of modifying the value of the ith trajectory waypoint location decision vector,
w;. The probability to modify instead the departure time is thus 1 — P,,. The algo-
rithm terminates when the final temperature, cy, is reached, or when an interaction-
free solution is found. The parameter values chosen to specify the instance consid-
ered, and the empirically set parameters defining the overall SA problem-solving
methodology are given in Table 1.1.

The SA adapted to solve the strategic trajectory planning problem is implemented
in Java. We address this problem instance with an AMD Opteron 2 GHz processor
with 128 Gb RAM. Numerical results obtained from the simulation are reported
in Table 1.2. This SA implementation yields an interaction-free solution for this
continent-scale problem instance after around 76 min of computation time. This is
compatible with strategic (several days in advance) planning application require-
ments in the setting of regular airline schedules.

34 D. Delahaye et al.

Table 1.1 Chosen (user-defined) parameter values defining the problem and the empirically-set
(user-defined) parameter values of the resolution methodology

Parameters defining the | Parameters defining the
problem SA

Parameter Value Parameter Value
—0,=0} 60 min Ly 3500

O 20s T 0.3

d; 0.12 (12%) B 0.99

M 2 Ty (1/500).Ty

a; 0.126 P, 0.5

b; 0.067 D, 0.5 @,y

Table 1.2 Numerical results for continent-size problem instance solved by SA (averages are com-
puted over 10 runs)

Numerical results Value
Number of iterations 497,000
Avg. computation time (minutes) 76.19
Avg. proportion of delayed/advanced flights | 71.29%
Avg. proportion of extended flights 46.23%
Avg. departure time shifts (minutes) 30.14
Avg. route length extensions 1.95%

1.7 Conclusion

This chapter introduced the reader to simulated annealing (SA), a global optimiza-
tion metaheuristic. The main advantage of SA is its simplicity. SA is based on
an analogy with the physical annealing of materials that avoids the drawback of
the Monte-Carlo approach (which can be trapped in local minima), thanks to an
efficient Metropolis acceptance criterion. When the objective function evaluations
require a lot of memory space, for example when it results from complex simula-
tion processes that manipulate large-dimension state space involving much memory,
population-based algorithms are not applicable and simulated annealing is the right
answer to address such issues. An illustration was provided in section 1.6 where
a large-scale complex aircraft trajectory planning problem involving nearly 30,000
flights over Europe was addressed by exploiting particular features of the problem
and, in particular, by integrating clever implementation techniques within the al-
gorithm, and by setting user-defined parameters empirically, along the lines of the
basic SA theory.

1 Simulated Annealing: From Basics to Applications 35

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing (Wiley, New York, 1989)

E. Aarts, P. Van Laarhoven, A new polynomial time cooling schedule, in Proceedings of the
IEEE International Conference on Computer-Aided Design, Santa Clara (1985), pp. 206-208
E. Aarts, P. Van Laarhoven, Statistical cooling: a general approach to combinatorial problems.
Philips J. Res. 40, 193-226 (1985)

H. Bayram, R. Sahin, A new simulated annealing approach for travelling salesman problem.
Math. Comput. Appl. 18(3), 313-322 (2013)

S. Chaimatanan, D. Delahaye, M. Mongeau, A hybrid metaheuristic optimization algorithm
for strategic planning of 4D aircraft trajectories at the continental scale. IEEE Comput. Intell.
Mag. 9(4), 46-61 (2014)

M. Chams, A. Hertz, D. de Werra, Some experiments with simulated annealing for coloring
graphs. Eur. J. Oper. Res. 32(2), 260-266 (1987)

Y. Crama, M. Schyns, Simulated annealing for complex portfolio selection problems. Eur. J.
Oper. Res. 150(3), 546-571 (2003)

T. Emden-Weiner, M. Proksch, Best practice simulated annealing for the airline crew schedul-
ing problem. J. Heuristics 5(4), 419—436 (1999)

R. Hanafi, E. Kozan, A hybrid constructive heuristic and simulated annealing for railway crew
scheduling. Comput. Ind. Eng. 70, 11-19 (2014)

A. Islami, S. Chaimatanan, D. Delahaye, Large-scale 4D trajectory planning, in Air Traffic
Management and Systems II, ed. by Electronic Navigation Research Institute. Lecture Notes
in Electrical Engineering, vol. 420 (Springer, Tokyo, 2017), pp. 27-47

S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. IBM Research
Report RC 9355, Acts of PTRC Summer Annual Meeting (1982)

S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science
220(4598), 671 (1983)

P. Laarhoven, E. Aarts (eds.), Simulated Annealing: Theory and Applications (Kluwer,
Norwell, 1987)

W.E. Mahmudy, Improved simulated annealing for optimization of vehicle routing problem
with time windows (VRPTW). Kursor J. 7(3), 109-116 (2014)

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calcula-
tion by fast computing machines. J. Chem. Phys. 21(6), 1087-1092 (1953)

P. Siarry, G. Berthiau, F. Durdin, J. Haussy, Enhanced simulated annealing for globally min-
imizing functions of many continuous variables. ACM Trans. Math. Softw. 23(2), 209-228
(1997)

D.F. Wong, HW. Leong, C.L. Liu, Simulated Annealing for VLSI Design (Kluwer Academic,
Boston, 1988)

Chapter 2)
Tabu Search Check o

Michel Gendreau and Jean-Yves Potvin

Abstract This chapter presents the fundamental concepts of Tabu Search (TS) in a
tutorial fashion. Special emphasis is put on showing the relationships with classical
local search methods and on the basic elements of any TS heuristic, namely, the
definition of the search space, the neighborhood structure, and the search memory.
Other sections cover other important concepts such as search intensification and
diversification and provide references to significant work on TS. Recent advances
in TS are also briefly discussed.

2.1 Introduction

Over the last 30 years, hundreds of papers presenting applications of Tabu Search
(TS), a heuristic method originally proposed by Glover in 1986 [30], to various
combinatorial problems have appeared in the operations research literature. In sev-
eral cases, the methods described provide solutions very close to optimality and are

M. Gendreau
Département de mathématiques et de génie industriel, Polytechnique Montréal, Montreal, QC,
Canada

Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport,
Montreal, QC, Canada
e-mail: michel.gendreau @cirrelt.net

J.-Y. Potvin ()
Département d’informatique et de recherche opérationnelle, Université de Montréal, Montreal, QC,
Canada

Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport,
Montreal, QC, Canada
e-mail: potvin@iro.umontreal.ca

© Springer International Publishing AG, part of Springer Nature 2019 37
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_2&domain=pdf
mailto:michel.gendreau@cirrelt.net
mailto:potvin@iro.umontreal.ca
https://doi.org/10.1007/978-3-319-91086-4_2

38 M. Gendreau and J.-Y. Potvin

among the most effective, if not the best, to tackle the difficult problems at hand.
These successes have made TS extremely popular among those interested in finding
good solutions to the large combinatorial problems encountered in many practical
settings. Several papers, book chapters, special issues and books have surveyed the
rich TS literature (a list of some of the most important references is provided in a
later section). In spite of this abundant literature, there still seem to be many re-
searchers who, while they are eager to apply TS to new problem settings, find it
difficult to properly grasp the fundamental concepts of the method, its strengths
and its limitations, and to come up with effective implementations. The purpose
of this chapter is to address this situation by providing an introduction in the form
of a tutorial focusing on the fundamental concepts of TS. Throughout the chap-
ter, a relatively straightforward, yet challenging and relevant, problem will be used
to illustrate these concepts: the Classical Vehicle Routing Problem (CVRP). This
problem will be introduced in the following section. The remainder of the chapter
is organized as follows. The basic concepts of TS, like the search space, neighbor-
hood structure, and short-term tabu lists, are described and illustrated in Sect.2.3.
Intermediate, yet critical, concepts, such as intensification and diversification, are
described in Sect.2.4. This is followed in Sect.2.5 by a brief discussion of ad-
vanced topics in TS, and in Sect.2.6 by a short list of key references on TS and
its applications. Section 2.7 provides practical tips for newcomers struggling with
unforeseen problems as they first try to apply TS to their favorite problem. Sec-
tion 2.8 concludes the chapter with some general advice on the application of TS to
combinatorial problems.

2.2 The Classical Vehicle Routing Problem

Vehicle Routing Problems have very important applications in the area of distribu-
tion management. As a consequence, they have become some of the most studied
problems in the combinatorial optimization literature and a large number of papers
and books (see [65], for example) deal with the numerous procedures that have been
proposed to solve them. These include several TS implementations that currently
rank among the most effective. The Classical Vehicle Routing Problem (CVRP) is
the basic variant in that class of problems. It can formally be defined as follows.
Let G = (V, A) be a graph where V is the vertex set and A is the arc set. One of the
vertices represents the depot at which a fleet of m identical vehicles of capacity Q
is based, and the other vertices represent customers that need to be serviced. With
each customer vertex v; are associated a demand ¢; and a service time #;. With each
arc (v;,v;) of A are associated a cost ¢;; and a travel time 7;;. The CVRP consists in
finding a set of routes such that:

e FEach route begins and ends at the depot;
e Each customer is visited exactly once by exactly one route;
e The total demand of the customers assigned to each route does not exceed Q;

2 Tabu Search 39

e The total duration of each route (including travel and service times) does not
exceed a specified value L;
e The total cost of the routes is minimized.

A feasible solution for the problem thus consists in a partition of the customers
into m groups, each of total demand no larger than Q, that are sequenced to yield
routes (starting and ending at the depot) of duration no larger than L. This problem
will be used in the following to illustrate how various TS concepts can be applied in
practice.

2.3 Basic Concepts

Before introducing the basic concepts of TS, the next subsection first goes back
in time to try to better understand the genesis of the method and how it relates to
previous work.

2.3.1 Historical Background

Heuristics, i.e., approximate solution techniques, have been used since the begin-
nings of operations research to tackle difficult combinatorial problems. With the
development of complexity theory in the early 70s, it became clear that, since most
of these problems were NP-hard, there was little hope of ever finding efficient exact
solution procedures for them. This realization emphasized the role of heuristics for
solving the combinatorial problems that were encountered in real-life applications
and that needed to be tackled, whether or not they were NP-hard. While many dif-
ferent approaches were proposed and experimented with, the most popular one was
based on Local Search (LS) improvement techniques. LS can be roughly summa-
rized as an iterative search procedure that, starting from an initial feasible solution,
progressively improves it by applying a series of local modifications (or moves).
At each iteration, the search moves to an improving feasible solution that differs
only slightly from the current one (in fact, the difference between the previous and
the new solutions amounts to one of the local modifications mentioned above). The
search terminates when it encounters a local optimum with respect to the trans-
formations that it considers, an important limitation of the method: unless one is
extremely lucky, this local optimum is often a fairly mediocre solution. In LS, the
quality of the solution obtained and computing times are usually highly dependent
upon the richness of the set of transformations (moves) considered at each iteration
of the heuristic.

In 1983, the world of combinatorial optimization was shattered by the appearance
of a paper [82] where it was shown that a new heuristic approach called Simulated
Annealing (SA) could converge to an optimal solution of a combinatorial problem,
albeit in infinite computing time. Based on an analogy with statistical mechanics, SA

40 M. Gendreau and J.-Y. Potvin

can be interpreted as a form of controlled random walk in the space of feasible so-
lutions. The emergence of SA indicated that one could look for other ways to tackle
combinatorial optimization problems and spurred the interest of the research com-
munity. In the following years, many other new approaches were proposed, mostly
based on analogies with natural phenomena (like TS, Ant Colony Optimization, Par-
ticle Swarm Optimization, Artificial Immune Systems) which, together with some
older ones, such as Genetic Algorithms [38], gained an increasing popularity. Now
collectively known under the name of metaheuristics (a term originally coined by
Glover in [30]), these methods have become over the last 20 years the leading edge
of heuristic approaches for solving combinatorial optimization problems.

2.3.2 Tabu Search

Building upon some of his previous work, Fred Glover proposed a new approach,
which he called Tabu Search, to allow local search methods to overcome local op-
tima [30]. In fact, many elements of this first TS proposal, and some elements of
later TS elaborations, were introduced in [29], including short term memory to pre-
vent the reversal of recent moves, and longer term frequency memory to reinforce
attractive components. The basic principle of TS is to pursue LS whenever it en-
counters a local optimum by allowing non-improving moves; cycling back to pre-
viously visited solutions is prevented by the use of memories, called tabu lists, that
record the recent history of the search, a key idea that can be linked to artificial
intelligence concepts. It is also important to remark that Glover did not see TS as
a proper heuristic, but rather as a metaheuristic, i.e., a general strategy for guiding
and controlling inner heuristics specifically tailored to the problems at hand.

2.3.3 Search Space and Neighborhood Structure

As we just mentioned, TS is an extension of classical LS methods. In fact, a basic TS
can be seen as simply the combination of LS with short-term memories. It follows
that the two first basic elements of any TS heuristic are the definition of its search
space and its neighborhood structure.

The search space of an LS or TS heuristic is simply the space of all possible so-
lutions that can be considered (visited) during the search. For instance, in the CVRP
example described in Sect. 2.2, the search space could simply be the set of feasi-
ble solutions to the problem, where each point in the search space corresponds to a
set of vehicles routes satisfying all the specified constraints. While in that case the
definition of the search space seems quite natural, it is not always so. In the Capaci-
tated Plant Location Problem (CPLP), for instance, customers must be served from
plants located in a subset of potential sites. In this context, one could use the full
feasible search space made of binary location variables (a site is open or closed) and

2 Tabu Search 41

continuous flow variables. A more attractive search space, though, is obtained by re-
stricting the search space to the binary location variables, from which the complete
solution can be obtained by solving the associated transportation problem to get the
optimal flow variables. One could also decide to search for the extreme points of the
set of feasible flow variable vectors, retrieving the associated location variables by
noting that a plant must be open whenever some flow is allocated to it [17]. It is also
important to note that it is not always a good idea to restrict the search space to fea-
sible solutions; in many cases, allowing the search to move to infeasible solutions is
desirable, and sometimes necessary (see Sect. 2.4.3 for further details).

Closely linked to the definition of the search space is that of the neighborhood
structure. At each iteration of LS or TS, the local transformations that can be ap-
plied to the current solution, denoted S, define a set of neighboring solutions in
the search space, denoted N(S) (the neighborhood of S). Formally, N(S) is a sub-
set of the search space made of all solutions obtained by applying a single local
transformation to S. In general, for any specific problem at hand, there are many
more possible (and even, attractive) neighborhood structures than search space defi-
nitions. This follows from the fact that there may be several plausible neighborhood
structures for a given definition of the search space. This is easily illustrated on our
CVRP example that has been the object of several TS implementations. To simplify
the discussion, we suppose in the following that the search space is the feasible
space. Simple neighborhood structures for the CVRP involve moving at each itera-
tion a single customer from its current route; the selected customer is inserted in the
same route or in another route with sufficient residual capacity. An important fea-
ture of these neighborhood structures is the way in which insertions are performed:
one could use random insertion or insertion at the best position in the target route;
alternately, one could use more complex insertion schemes that involve a partial re-
optimization of the target route, such as GENI insertions [25]. Before proceeding
any further it is important to stress that while we say that these neighborhood struc-
tures involve moving a single customer, the neighborhoods they define contain all
the feasible route configurations that can be obtained from the current solution by
moving any customer and inserting it in the stated fashion. Examining the neighbor-
hood can thus be fairly demanding.

More complex neighborhood structures for the CVRP, such as the A-interchange
[50], are obtained by allowing simultaneously the movement of customers to dif-
ferent routes and the swapping of customers between routes. In [54], moves are de-
fined by ejection chains that are sequences of coordinated movements of customers
from one route to another; for instance, an ejection chain of length 3 would involve
moving a customer v; from route R; to route Ry, a customer v, from R to route
R3 and a customer v3 from R3 to route R4. Other neighborhood structures involve
the swapping of sequences of several customers between routes, as in the Cross-
exchange [63]. These types of neighborhoods have seldom been used for the CVRP,
but are common in TS heuristics for its time-windows extension, where customers
must be visited within a pre-specified time interval. We refer the interested reader
to [9, 27] for a more detailed discussion of TS implementations for the CVRP and
the Vehicle Routing Problem with Time Windows.

42 M. Gendreau and J.-Y. Potvin

When different definitions of the search space are considered for a given prob-
lem, neighborhood structures will inevitably differ to a considerable degree. In the
case of the CPLP, alluded to above, if the search space corresponds to the location
variables only, one could use operators to change the status of these variables (from
open to closed and conversely). If, however, the search space is made of the extreme
points of the set of feasible flow variable vectors, one could instead consider moves
defined by the application of pivots to the linear programming formulation of the
transportation problem to move the current solution to an adjacent extreme point.
Thus, choosing a search space and a neighborhood structure is by far the most crit-
ical step in the design of any TS heuristic. It is at this step that one must make the
best use of the understanding and knowledge he/she has of the problem at hand.

2.3.4 Tabus

Tabus are one of the distinctive elements of TS when compared to LS. As we already
mentioned, tabus are used to prevent cycling when moving away from local optima
through non-improving moves. The key realization here is that when this situation
occurs, something needs to be done to prevent the search from tracing back its steps
to where it came from. This is achieved by declaring tabu (disallowing) moves that
reverse the effect of recent moves. For instance, in the CVRP example, if customer
v1 has just been moved from route R; to route R, one could declare tabu moving
back v; from R, to R; for some number of iterations (this number is called the
tabu tenure of the move). Tabus are also useful to help the search move away from
previously visited portions of the search space and thus perform more extensive
exploration.

Tabus are stored in a short-term memory of the search (the tabu list) and usually
only a fixed and fairly limited quantity of information is recorded. In any given
context, there are several possibilities regarding the specific information that is
recorded. One could record complete solutions, but this requires a lot of storage
and makes it expensive to check whether a potential move is tabu or not; it is there-
fore seldom used. The most commonly used tabus involve recording the last few
transformations performed on the current solution and prohibiting reverse transfor-
mations (as in the example above); others are based on key characteristics of the
solutions themselves or of the moves.

To better understand how tabus work, let us go back to our reference problem. In
the CVRP, one could define tabus in several ways. To continue our example where
customer v; has just been moved from route R; to route R,, one could declare tabu
specifically moving back v; from R; to R and record this in the short-term memory
as the triplet (vi,R,R;). Note that this type of tabu will not constrain the search
much and that cycling may occur if v; is then moved to another route R3 and then
from R3 to R;. A stronger tabu would involve prohibiting moving back v; to Ry,
without consideration for its current route, and be recorded as (vi,R;). An even

2 Tabu Search 43

stronger tabu would be to disallow moving v; to any other route and would simply
be noted as (vi).

Multiple tabu lists can be used simultaneously and are sometimes advisable. For
example, when different types of moves are used to generate the neighborhood,
it might be a good idea to keep a separate tabu list for each type. Standard tabu
lists are usually implemented as circular lists of fixed length. It has been shown,
however, that fixed-length tabus cannot always prevent cycling, and some authors
have proposed varying the tabu list length during the search [31, 32, 58, 60, 61].
Another solution is to randomly generate the tabu tenure of each move within some
specified interval; using this approach requires a somewhat different scheme for
recording tabus that are then usually stored as tags in an array (the entries in this
array will usually record the iteration number until which a move is tabu; see [25],
for more details).

2.3.5 Aspiration Criteria

While central to TS, tabus are sometimes too powerful: they may prohibit attrac-
tive moves, even when there is no danger of cycling, or they may lead to an overall
stagnation of the searching process. It is thus necessary to use algorithmic devices
that will allow one to revoke (cancel) tabus. These are called aspiration criteria. The
simplest and most commonly used aspiration criterion, which is found in almost all
TS implementations, consists in allowing a move, even if it is tabu, if it results in
a solution with an objective value better than that of the current best-known solu-
tion (since the new solution has obviously not been previously visited). Much more
complicated aspiration criteria have been proposed and successfully implemented
(see, for instance [19, 37]), but they are rarely used. The key rule in this respect is
that if cycling cannot occur, tabus can be disregarded.

2.3.6 A Template for Simple Tabu Search

We are now in the position to give a general template for TS, integrating the elements
we have seen so far. We suppose that we are trying to minimize a function f(S) over
some domain and we apply the so-called best improvement version of TS, i.e., the
version in which one chooses at each iteration the best available move (this is the
most commonly used version of TS).

Notation

e S, the current solution,
e 5 the best-known solution,

44 M. Gendreau and J.-Y. Potvin

f*, the value of S*,

N(S), the neighborhood of S,

N(S), the admissible subset of N(S) (i.e., non-tabu or allowed by aspiration),
T, the tabu list.

Initialization

Choose (construct) an initial solution Sy.
Set S < So, f* < f(So), S* < So, T + 0.

Search

While termination criterion not satisfied do:

select S in argming s [f(S")];
if f(S) < f*, then set f* < f(S), S* «+ S;
record tabu for the current move in 7' (delete oldest entry if necessary).

2.3.7 Termination Criteria

One may have noticed that we have not specified in our template above a termination
criterion. In theory, the search could go on forever, unless the optimal value of the
problem at hand is known beforehand. In practice, obviously, the search has to be
stopped at some point. The most commonly used stopping criteria in TS are:

e after a fixed number of iterations (or a fixed amount of CPU time);

e after some number of iterations without an improvement in the objective function
value (the criterion used in most implementations);

e when the objective reaches a pre-specified threshold value.

In complex tabu schemes, the search is usually stopped after completing a se-
quence of phases, the duration of each phase being determined by one of the above
criteria.

2.3.8 Probabilistic TS and Candidate Lists

In regular TS, one must evaluate the objective for every element of the neighborhood
N(S) of the current solution. This can prove extremely expensive from the computa-
tional standpoint. An alternative is to instead consider only a random sample N'(S)
of N(S), thus reducing significantly the computational burden. Another attractive

2 Tabu Search 45

feature of this alternative is that the added randomness can act as an anti-cycling
mechanism; this allows one to use shorter tabu lists than would be necessary if a
full exploration of the neighborhood was performed. On the negative side, it must
be noted that, in that case, one may miss excellent solutions (more on this topic in
Sect. 2.7.3). Probabilities may also be applied to activating tabu criteria.

Another way to control the number of moves examined is by means of candi-
date list strategies, which provide more strategic ways of generating a useful subset
N'(S) of N(S) (the probabilistic approach can be considered to be one instance of a
candidate list strategy, and may also be used to modify such a strategy). Failure to
adequately address the issues involved in creating effective candidate lists is one of
the more conspicuous shortcomings that differentiates a naive TS implementation
from one that is more solidly grounded. Relevant designs for candidate list strate-
gies are discussed in [35]. We also discuss a useful type of candidate generation
approach in Sect. 2.4.4. Another interesting approach for the CVRP is the granular
TS [66], where only arcs that are likely to be found in good solutions (i.e., short
ones) are considered, thus reducing the size of the underlying graph.

2.4 Intermediate Concepts

Simple TS as described above can sometimes successfully solve difficult problems,
but in most cases, additional elements have to be included in the search strategy to
make it fully effective. We now briefly review the most important of these.

2.4.1 Intensification

The idea behind the concept of search intensification is that, as an intelligent human
being would probably do, one should explore more thoroughly the portions of the
search space that seem promising to make sure that the best solutions in these ar-
eas are indeed found. From time to time, one would thus stop the normal searching
process to perform an intensification phase. In general, intensification is based on
some intermediate-term memory, such as a recency memory, in which one records
the number of consecutive iterations that various solution components have been
present in the current solution without interruption. For instance, in a CVRP ap-
plication, one could record how long an arc has been used. A typical approach to
intensification is to restart the search from the best currently known solution and to
fix the components that seem more attractive. To continue the CVRP example, one
could fix the arcs that have been used for the largest number of iterations and per-
form a restricted search on the remaining arcs. Another technique that is often used
consists in changing the neighborhood structure to one allowing more powerful or

46 M. Gendreau and J.-Y. Potvin

more diverse moves. In the CVRP example, one could therefore allow more com-
plex insertion moves or switch to an ejection chain neighborhood structure [33]. In
probabilistic TS, one could increase the sample size or switch to searching without
sampling.

Intensification is used in many TS implementations, but it is not always neces-
sary. This is because there are many situations where the search performed by the
normal process is thorough enough. There is thus no need to spend time exploring
more carefully the portions of the search space that have already been visited, and
this time can be used more effectively as we shall see right now.

2.4.2 Diversification

One of the main problems of all methods based on local search approaches, and
this includes TS in spite of the beneficial impact of tabus, is that they tend to be
too local (as their name implies), i.e., they tend to spend most, if not all, of their
time in a restricted portion of the search space. The negative consequence of this
fact is that, although good solutions may be obtained, one may fail to explore the
most interesting parts of the search space and thus end up with solutions that are
still pretty far from the optimal ones. Diversification is an algorithmic mechanism
that tries to alleviate this problem by forcing the search into previously unexplored
areas of the search space. It is usually based on some form of long-term memory of
the search, such as a frequency memory, in which one records the total number of
iterations (since the beginning of the search) that various solution components have
been present in the current solution or have been involved in the selected moves. For
instance, in the CVRP application, one could note how many times each customer
has been moved from its current route. In cases where it is possible to identify
useful regions of the search space, the frequency memory can be refined to track the
number of iterations spent in these different regions.

There are two major diversification techniques. The first, called restart diversifi-
cation, involves forcing a few rarely used components in the current solution (or the
best known solution) and restarting the search from this point. In a CVRP heuristic,
customers that have not yet been moved frequently could be forced into new routes.
The second diversification method, continuous diversification, integrates diversifi-
cation considerations directly into the regular searching process. This is achieved
by biasing the evaluation of possible moves by adding to the objective a small term
related to component frequencies (see [59] for an extensive discussion on these two
techniques). A third way of achieving diversification is strategic oscillation as we
will see in the next subsection.

Before closing this subsection, we would like to stress that ensuring proper search
diversification is possibly the most critical issue in the design of TS heuristics. It
should be addressed with extreme care fairly early in the design phase and revisited
if the results obtained are not up to expectations.

2 Tabu Search 47

2.4.3 Allowing Infeasible Solutions

Accounting for all problem constraints in the definition of the search space often
restricts the searching process too much and can lead to mediocre solutions. This
occurs, for example, in CVRP instances where the route capacity or duration con-
straints are too tight to allow moving customers effectively between routes. In such
cases, constraint relaxation is an attractive strategy, since it creates a larger search
space that can be explored with simpler neighborhood structures. Constraint relax-
ation is easily implemented by dropping selected constraints from the search space
definition and adding to the objective weighted penalties for constraint violations.
This, however, raises the issue of finding correct weights for constraint violations.
An interesting way of circumventing this problem is to use self-adjusting penalties,
i.e., weights are adjusted dynamically on the basis of the recent history of the search:
weights are increased if only infeasible solutions were encountered in the last few
iterations, and decreased if all recent solutions were feasible (see, for instance, [25]
for further details). Penalty weights can also be modified systematically to drive the
search to cross the feasibility boundary of the search space and thus induce diversi-
fication. This technique, known as strategic oscillation, was introduced as early as
1977 in [29] and used since in several successful TS procedures (an important early
variant oscillates among different types of moves, hence neighborhood structures,
while another oscillates around a selected value for a critical function).

2.4.4 Surrogate and Auxiliary Objectives

There are many problems for which the true objective function is quite costly to
evaluate. When this occurs, the evaluation of moves may become prohibitive, even if
sampling is used. An effective approach to handle this issue is to evaluate neighbors
using a surrogate objective, i.e., a function that is correlated to the true objective, but
is less computationally demanding, in order to identify a (small) set of promising
candidates (potential solutions achieving the best values for the surrogate). The true
objective is then computed for this small set of candidate moves and the best one
selected to become the new current solution; an example of this approach is found
in [16].

Another frequently encountered difficulty is that the objective function may not
provide enough information to effectively drive the search to more interesting areas
of the search space. A typical illustration of this situation is the variant of the CVRP
in which the fleet size is not fixed, but is rather the primary objective (i.e., one is
looking for the minimal fleet size allowing a feasible solution). In this problem,
except for solutions where a route has only one or a few customers assigned to it,
most neighborhood structures will lead to the situation where all elements in the
neighborhood score equally with respect to the primary objective (i.e., all allowable
moves produce solutions with the same number of vehicles). In such a case, it is
absolutely necessary to define an auxiliary objective function to orient the search.

48 M. Gendreau and J.-Y. Potvin

Such a function must measure in some way the desirable attributes of solutions. In
our example, one could, for instance, use a function that would favor solutions with
routes having just a few customers, thus increasing the likelihood that a route can be
totally emptied in a subsequent iteration. It should be noted that coming up with an
effective auxiliary objective is not always easy and may require a lengthy trial and
error process. In some other cases, fortunately, the auxiliary objective is obvious for
anyone familiar with the problem at hand (see [24], for an illustration).

2.5 Advanced Concepts

The concepts and techniques described in the previous sections are sufficient to de-
sign effective TS heuristics for many combinatorial problems. Early TS implementa-
tions, several of which were extremely successful, relied indeed almost exclusively
on these algorithmic components. Modern TS implementations, however, exploit
more advanced concepts and techniques. While it is clearly beyond the scope of an
introductory tutorial, such as this one, to review this type of advanced material, we
would like to give readers some insight into it (readers who wish to learn more about
this topic should consider the key references provided in the next section).

Various techniques have been devised for making the search more effective.
These include methods for exploiting better the information that becomes available
during search and creating better starting points, as well as more powerful neigh-
borhood operators and parallel search strategies (on this last topic, see the advances
reported in [3] and the chapter on parallel metaheuristics in this Handbook; for spe-
cific implementation examples of TS on CPU-based parallel platforms, see [13, 42],
and for GPU-based platforms, see [46, 67]). The numerous techniques for making
better use of the information are of particular significance since they can lead to
dramatic performance improvements. Many of these rely on elite solutions (the best
solutions previously encountered) or on parts of these to create new solutions, the
rationale being that fragments or elements of excellent solutions are often identi-
fied quite early in the searching process, but that the challenge is to complete these
fragments or to recombine them [33, 35, 39, 53, 55, 64]. Other methods, such as
the Reactive TS [6, 48], attempt to find ways of making the search move away from
local optima that have already been visited. An important issue is the general ap-
proach for exploiting the search framework provided by TS. Some favor simplicity,
that is, a search strategy with only a few parameters and based on simple neigh-
borhood operators, as illustrated by the Unified TS [14, 15, 22]. Others propose
complex neighborhood operators, thus leading to large or very large neighborhood
searches [1, 2].

Another important research area in TS (this is, in fact, pervasive in the whole
metaheuristics field) is hybridization, i.e., using TS in conjunction with other so-
lution approaches such as adaptive large neighborhood search [69], genetic algo-
rithms [41, 45, 47, 49], constraint programming [8, 10, 18, 52] or integer program-
ming techniques (there is a whole chapter on this topic in [35]).

2 Tabu Search 49

TS has also been successful in domains outside its traditional ones (graph the-
ory problems, scheduling, vehicle routing), for example: continuous optimization [7,
11, 12,21, 40, 68], multi-criteria optimization [36, 40], stochastic programming [5],
mixed integer programming [51, 57], dynamic decision problems [26, 28, 56], etc.
These domains confront researchers with challenges that ask for innovative exten-
sions of the method.

2.6 Key References

Readers who wish to read other introductory papers on TS can choose among sev-
eral ones [23, 31, 34, 37, 62]. The book by Glover and Laguna [35] is the ultimate
reference on TS: apart from the fundamental concepts of the method, it presents
a considerable amount of advanced material, as well as a variety of applications.
It is interesting to note that this book contains several ideas applicable to TS that
yet remain to be fully exploited. Also valuable are the books and special issues
made up from selected papers presented at the recent Metaheuristics International
Conferences (MIC) in 2011 [20], 2013 [44] and 2015 [4]. The last MIC confer-
ence was held in Barcelona in 2017 and the conference web site can be accessed at
mic2017.upf.edu.

2.7 Tricks of the Trade

Newcomers to TS trying to apply the method to a problem that they wish to solve
are often confused about what they need to do to come up with a successful imple-
mentation. This section is aimed at providing some help in this regard.

2.7.1 Getting Started

The following step-by-step procedure should provide a useful framework for getting
started.
A step-by-step procedure

1. Read one or two good introductory papers to gain some knowledge of the con-
cepts and of the vocabulary.

2. Read several papers describing in detail applications in various areas to see how
the concepts have been actually implemented by other researchers.

3. Think a lot about the problem at hand, focusing on the definition of the search
space and the neighborhood structure.

4. Implement a simple version based on this search space definition and this neigh-
borhood structure.

50

S.

M. Gendreau and J.-Y. Potvin

Collect statistics on the performance of this simple heuristic. It is usually useful
at this point to introduce a variety of memories, such as frequency and recency
memories, to really track down what the heuristic does.

Analyze results and adjust the procedure accordingly. It is at this point that
one should eventually introduce mechanisms for search intensification and di-
versification or other intermediate features. Special attention should be paid to
diversification, since this is often where simple TS procedures fail.

2.7.2 More Tips

It is not unusual that, in spite of following carefully the preceding procedure, one
ends up with a heuristic that nonetheless produces mediocre results. If this occurs,
the following tips may prove useful:

1.

et

If there are constraints, consider penalizing them. Letting the search move to
infeasible solutions is often necessary in highly constrained problems to allow
for a meaningful exploration of the search space (see Sect. 2.4).

Reconsider the neighborhood structure and change it if necessary. Many TS
implementations fail because the neighborhood structure is too simple. In par-
ticular, one should make sure that the chosen neighborhood structure allows for
a purposeful evaluation of possible moves (i.e., the moves that seem intuitively
to move the search in the right direction should be the ones that are likely to
be selected); it might also be a good idea to introduce a surrogate objective to
achieve this (see Sect. 2.4).

Collect more statistics.

Follow the execution of the algorithm step-by-step on some reasonably sized
instances.

Reconsider diversification. As mentioned earlier, this is a critical feature in most
TS implementations.

Experiment with parameter settings. Many TS procedures are extremely sensi-
tive to parameter settings; it is not unusual to see the performance of a procedure
dramatically improve after changing the value of one or two key parameters (un-
fortunately, it is not always obvious to determine which parameters are the key
ones in a given procedure).

2.7.3 Additional Tips for Probabilistic TS

While it is an effective way of tackling many problems, probabilistic TS creates
problems of its own that need to be carefully addressed. The most important of these
is the fact that, more often than not, the best solutions returned by probabilistic TS
will not be local optima with respect to the neighborhood structure being used. This

2 Tabu Search 51

is particularly annoying since, in that case, better solutions can be easily obtained,
sometimes even manually. An easy way to come around this is to simply perform
a local improvement phase (using the same neighborhood operator) from the best
found solution at the end of the TS itself. One could alternately switch to TS without
sampling (again from the best found solution) for a short duration before completing
the algorithm. A possibly more effective technique is to add throughout the search
an intensification step without sampling; in this fashion, the best solutions available
in the various regions of the search space explored by the method will be found and
recorded (similar special aspiration criteria for allowing the search to reach local
optima at useful junctures are proposed in [34]).

2.7.4 Parameter Calibration and Computational Testing

Parameter calibration and computational experiments are key steps in the develop-
ment of any algorithm. This is particularly true in the case of TS, since the number
of parameters required by most implementations is fairly large and since the perfor-
mance of a given procedure can vary quite significantly when parameter values are
modified. The first step in any serious computational experimentation is to select a
good set of benchmark instances (either by obtaining them from other researchers
or by constructing them), preferably with some reasonable measure of their diffi-
culty and with a wide range of size and difficulty. This set should be split into two
subsets, the first one being used at the algorithmic design and parameter calibration
steps, and the second reserved for performing the final computational tests that will
be reported in the paper(s) describing the heuristic under development. The reason
for doing so is quite simple: when calibrating parameters, one always run the risk of
overfitting, i.e., finding parameter values that are excellent for the instances at hand,
but poor in general, because these values provide too good a fit (from the algorith-
mic standpoint) to these instances. Methods with several parameters should thus be
calibrated on much larger sets of instances than ones with few parameters to ensure
a reasonable degree of robustness. The calibration process itself should proceed in
several stages:

1. Perform exploratory testing to find good ranges of parameters. This can be done
by running the heuristic with a variety of parameter settings.

2. Fix the value of parameters that appear to be robust, i.e., which do not seem to
have a significant impact on the performance of the procedure.

3. Perform systematic testing for the other parameters. It is usually more efficient
to test values for only a single parameter at a time, the others being fixed at what
appear to be reasonable values. One must be careful, however, for cross effects
between parameters. Where such effects exist, it can be important to jointly test
pairs or triplets of parameters, which can be an extremely time-consuming task.

The work in [16] provides a detailed description of the calibration process for a
fairly complex TS procedure and can be used as a guideline for this purpose.

52 M. Gendreau and J.-Y. Potvin

2.8 Conclusion

Tabu Search is a powerful algorithmic approach that has been applied with great
success to many difficult combinatorial problems. A particularly nice feature of TS
is that, like all approaches based on local search, it can quite easily handle compli-
cating constraints that are typically found in real-life applications. It is thus a really
practical approach. It is not, however, a panacea: every reviewer or editor of a scien-
tific journal has seen more than his/her share of failed TS heuristics. These failures
stem from two major causes: an insufficient understanding of fundamental concepts
of the method (and we hope that this tutorial will help in alleviating this shortcom-
ing), but also, more often than not, a crippling lack of understanding of the problem
at hand. One cannot develop a good TS heuristic for a problem that he/she does not
know well! This is because significant problem knowledge is absolutely required to
perform the most basic steps of the development of any TS procedure, namely the
choice of a search space and of an effective neighborhood structure. If the search
space and/or the neighborhood structure are inadequate, no amount of TS expertise
will be sufficient to save the day. A last word of caution: to be successful, all meta-
heuristics need to achieve both depth and breadth in their searching process; depth
is usually not a problem for TS, which is quite aggressive in this respect (TS heuris-
tics generally find pretty good solutions very early in the search), but breadth can
be a critical issue. To handle this, it is extremely important to develop an effective
diversification scheme.

References

1. S. Abdullah, S. Ahmadi, E.K. Burke, B. Dror, A. McCollum, Tabu-based large neighbourhood
search methodology for the capacitated examination timetabling problem. J. Oper. Res. Soc.
58, 1494-1502 (2007)

2. R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen, A survey of very large-scale neighborhood
search techniques. Discrete Appl. Math. 123, 75-102 (2002)

3. E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: recent advances and new trends.
Int. Trans. Oper. Res. 20, 1-48 (2013)

4. L. Amodeo, E.-G., Talbi, F. Yalaoui (eds.), Recent Developments in Metaheuristics (Springer
International Publishing, Cham, 2018)

5. R. Aringhieri, Solving chance-constrained programs combining tabu search and simulation.
Lect. Notes Comput. Sci. 3059, 3041 (2004)

6. R. Battiti, G. Tecchiolli, The reactive tabu search. ORSA J. Comput. 6, 126-140 (1994)

7. R. Battiti, G. Tecchiolli, The continuous reactive tabu search: blending combinatorial opti-
mization and stochastic search for global optimization. Ann. Oper. Res. 63, 151-188 (1996)

8. G. Berbeglia, J.-F. Cordeau, G. Laporte, A hybrid tabu search and constraint programming
algorithm for the dynamic dial-a-ride problem. INFORMS J. Comput. 24, 343-355 (2012)

9. O. Briysy, M. Gendreau, Tabu search heuristics for the vehicle routing problem with time
windows. TOP 10, 211-237 (2002)

10. Y. Caseau, F. Laburthe, C. Le Pape, B. Rottembourg, Combining local and global search in a
constraint programming environment. Knowl. Eng. Rev. 16, 41-68 (2001)

11. R. Chelouah, P. Siarry, Tabu Search applied to global optimization. Eur. J. Oper. Res. 123,
256-270 (2000)

2 Tabu Search 53

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.
31.
32.
33.
34.
35.
36.

37.

R. Chelouah, P. Siarry, A hybrid method combining continuous tabu search and Nelder-Mead
simplex algorithms for the global optimization of multiminima functions. Eur. J. Oper. Res.
161, 636-654 (2005)

J.-F. Cordeau, M. Maischberger, A parallel iterated tabu search heuristic for vehicle routing
problems. Comput. Oper. Res. 39, 2033-2050 (2012)

J.-F. Cordeau, M. Gendreau, G. Laporte, A tabu search heuristic for periodic and multi-depot
vehicle routing problems. Networks 30, 105-119 (1997)

J.-FE. Cordeau, G. Laporte, A. Mercier, A unified tabu search heuristic for vehicle routing
problems with time windows. J. Oper. Res. Soc. 52, 928-936 (2001)

T.G. Crainic, M. Gendreau, P. Soriano, M. Toulouse, A tabu search procedure for multicom-
modity location/allocation with balancing requirements. Ann. Oper. Res. 41, 359-383 (1993)
T.G. Crainic, M. Gendreau, J.M. Farvolden, Simplex-based tabu search for the multicom-
modity capacitated fixed charge network design problem. INFORMS J. Comput. 12, 223-236
(2000)

B. de Backer, V. Furnon, P. Shaw, P. Kilby, P. Prosser, Solving vehicle routing problems using
constraint programming and metaheuristics. J. Heuristics 6, 501-523 (2000)

D. de Werra, A. Hertz, Tabu search techniques: a tutorial and an application to neural networks.
OR Spektrum 11, 131-141 (1989)

L. Di Gaspero, A. Schaerf, T. Stiitzle (eds.), Advances in Metaheuristics (Springer, New York,
2013)

A. Duarte, R. Marti, F. Glover, F. Gortazar, Hybrid scatter tabu search for unconstrained global
optimization. Ann. Oper. Res. 183, 95-123 (2011)

Z.Fu, R. Eglese, L.Y.O. Li, A unified tabu search algorithm for vehicle routing problems with
soft time windows. J. Oper. Res. Soc. 59, 663-673 (2008)

M. Gendreau, J.-Y. Potvin, Tabu search, in Search Methodologies - Introductory Tutorials in
Optimization and Decision Support Techniques, ed. by E.K. Burke, G. Kendall (Springer, New
York, 2014), pp. 243-263

M. Gendreau, P. Soriano, L. Salvail, Solving the maximum clique problem using a tabu search
approach. Ann. Oper. Res. 41, 385-403 (1993)

M. Gendreau, A. Hertz, G. Laporte, A tabu search heuristic for the vehicle routing problem.
Manag. Sci. 40, 1276-1290 (1994)

M. Gendreau, F. Guertin, J.-Y. Potvin, E.D. Taillard, Parallel tabu search for real-time vehicle
routing and dispatching. Transp. Sci. 33, 381-390 (1999)

M. Gendreau, G. Laporte, J.-Y. Potvin, Metaheuristics for the capacitated VRP, in The Vehicle
Routing Problem, ed. by P. Toth, D. Vigo. SIAM Monographs on Discrete Mathematics and
Applications (SIAM, Philadelphia, 2002), pp. 129-154

M. Gendreau, F. Guertin, J.-Y. Potvin, R. Séguin, Neighborhood search heuristics for a dy-
namic vehicle dispatching problem with pick-ups and deliveries. Transp. Res. C Emerg. Tech-
nol. 14, 157-174 (2006)

F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156—
166 (1977)

F. Glover, Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13, 533-549 (1986)

F. Glover, Tabu search - Part I. ORSA J. Comput. 1, 190-206 (1989)

F. Glover, Tabu search - Part II. ORSA J. Comput. 2, 4-32 (1990)

F. Glover, Ejection chains, reference structures and alternating path methods for traveling
salesman problems. Discrete Appl. Math. 65, 223-253 (1996)

F. Glover, M. Laguna, Tabu search, in Modern Heuristic Techniques for Combinatorial Prob-
lems, ed. by C.R. Reeves (Blackwell Scientific, Oxford, 1993), pp. 70-150

F. Glover, M. Laguna, Tabu Search (Kluwer Academic, Boston, 1997)

M.P. Hansen, Tabu search in multiobjective optimisation: MOTS, in Proceedings of the 13th
International Conference on Multiple Criteria Decision Making, Cape Town (1997), pp. 574—
586

A. Hertz, D. de Werra, The tabu search metaheuristic: how we used it. Ann. Math. Artif. Intell.
1, 111-121 (1991)

54

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

M. Gendreau and J.-Y. Potvin

J.H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press,
Ann Arbor, 1975)

L.M. Hvattum, A. Lokketangen, F. Glover, Comparisons of commercial MIP solvers and an
adaptive memory (tabu search) procedure for a class of 0-1 integer programming problems.
Algorithm. Oper. Res. 7, 13-20 (2012)

D.M. Jaeggi, G.T. Parks, T. Kipouros, P.J. Clarkson, The development of a multi-objective
tabu search algorithm for continuous optimisation problems. Eur. J. Oper. Res. 185, 1192—
1212 (2008)

S.N. Jat, S. Yang, A hybrid genetic algorithm and tabu search approach for post enrolment
course timetabling. J. Sched. 14, 617-637 (2011)

J. Jin, T.G. Crainic, A. Lokketangen, A parallel multi-neighborhood cooperative tabu search
for capacitated vehicle routing problems. Eur. J. Oper. Res. 222, 441-451 (2012)

S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science
220, 671-680 (1983)

H.C. Lau, G.R. Raidl, P. Van Hentenryck (eds.), New developments in metaheuristics and their
applications. Special issue. J. Heuristics 22(4), 359-664 (2016)

X. Li, L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job shop
scheduling problem. Int. J. Prod. Econ. 174, 93-110 (2016)

T.V. Luong, L. Loukil, N. Melab, E.-G. Talbi, A GPU-based iterated tabu search for solv-
ing the quadratic 3-dimensional assignment problem, in ACS/IEEE International Conference
on Computer Systems and Applications, Hammamet (2010). https://doi.org/10.1109/AICCSA.
2010.5587019

T. Lust, J. Teghem, MEMOTS: a memetic algorithm integrating tabu search for combinatorial
multiobjective optimization. RAIRO—Oper. Res. 42, 3-33 (2008)

F. Mascia, P. Pellegrini, M. Birattari, T. Stiitzle, An analysis of parameter adaptation in reactive
tabu search. Int. Trans. Oper. Res. 21, 127-152 (2014)

S. Meeran, M.S. Morshed, A hybrid genetic tabu search algorithm for solving job shop
scheduling problems: a case study. J. Intell. Manuf. 23, 1063-1078 (2012)

I.H. Osman, Metastrategy simulated annealing and tabu search algorithms for the vehicle rout-
ing problem. Ann. Oper. Res. 41, 421-451 (1993)

J.P. Pedroso, Tabu search for mixed integer programming, in Metaheuristic Optimization
via Memory and Evolution, ed. by C. Rego, B. Alidaee (Kluwer Academic, Boston, 2005),
pp. 247-261

G. Pesant, M. Gendreau, A constraint programming framework for local search methods. J.
Heuristics 5, 255-280 (1999)

C. Rego, B. Alidaee (eds.), Metaheuristic Optimization via Memory and Evolution: Tabu
Search and Scatter Search (Kluwer Academic, Boston, 2005)

C. Rego, C. Roucairol, A parallel tabu search algorithm using ejection chains for the vehicle
routing problem, in Meta-Heuristics: Theory and Applications, ed. by L.H. Osman, J.P. Kelly
(Kluwer Academic, Boston, 1996), pp. 661-675

Y. Rochat, E.D. Taillard, Probabilistic diversification and intensification in local search for
vehicle routing. J. Heuristics 1, 147-167 (1995)

A.G. Roesener, J.W. Barnes, An advanced tabu search approach to the dynamic airlift loading
problem. Log. Res. 9, 12:1-12:18 (2016)

L.H. Sacchi, V.A. Armentano, A computational study of parametric tabu search for 0-1 mixed
integer program. Comput. Oper. Res. 38, 464-473 (2011)

J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem. ORSA J. Comput.
2, 33-45 (1990)

P. Soriano, M. Gendreau, Diversification strategies in tabu search algorithms for the maximum
clique problem. Ann. Oper. Res. 63, 189-207 (1996)

E.D. Taillard, Some efficient heuristic methods for the flow shop sequencing problem. Eur. J.
Oper. Res. 47, 65-74 (1990)

E.D. Taillard, Robust taboo search for the quadratic assignment problem. Parallel Comput. 17,
443-455 (1991)

https://doi.org/10.1109/AICCSA.2010.5587019
https://doi.org/10.1109/AICCSA.2010.5587019

2 Tabu Search 55

62.

63.

64.

65.

66.

67.

68.

69.

E. Taillard, Tabu search, in Metaheuristics, ed. by P. Siarry (Springer International Publishing,
Cham, 2016), pp. 51-76

E.D. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, A tabu search heuristic for the
vehicle routing problem with soft time windows. Transp. Sci. 31, 170-186 (1997)

C.D. Tarantilis, C.T. Kiranoudis, BoneRoute - an adaptive memory-based method for effective
fleet management. Ann. Oper. Res. 115, 227-241 (2002)

P. Toth, D. Vigo (eds.), The Vehicle Routing Problem. SIAM Monographs on Discrete Mathe-
matics and Applications (SIAM, Philadelphia, 2002)

P. Toth, D. Vigo, The granular tabu search and its application to the vehicle routing problem.
INFORMS J. Comput. 15, 333-346 (2003)

C. Tsotskas, T. Kipouros, A.M. Savill, The design and implementation of a GPU-enabled
multi-objective tabu-search intended for real world and high-dimensional applications. Proce-
dia Comput. Sci. 29, 2152-2161 (2014)

G. Waligoéra, Simulated annealing and tabu search for discrete-continuous project scheduling
with discounted cash flows. RAIRO—Oper. Res. 48, 1-24 (2014)

I. Zulj, S. Kramer, M. Schneider, A hybrid of adaptive large neighborhood search and tabu
search for the order-batching problem. Eur. J. Oper. Res. 264, 653-664 (2018)

Chapter 3)
Variable Neighborhood Search Skt

Pierre Hansen, Nenad Mladenovié, Jack Brimberg, and José A. Moreno Pérez

Abstract Variable neighborhood search (VNS) is a metaheuristic for solving
combinatorial and global optimization problems whose basic idea is a system-
atic change of neighborhood both within a descent phase to find a local optimum
and in a perturbation phase to get out of the corresponding valley. In this chapter
we present the basic schemes of VNS and some of its extensions. We then describe
recent developments, i.e., formulation space search and variable formulation search.
We then present some families of applications in which VNS has proven to be very
successful: (1) exact solution of large scale location problems by primal-dual VNS;
(2) generation of solutions to large mixed integer linear programs, by hybridization
of VNS and local branching; (3) generation of solutions to very large mixed inte-
ger programs using VNS decomposition and exact solvers (4) generation of good

P. Hansen
Ecole des Hautes Etudes Commerciales, Montréal, QC, Canada

GERAD, Montréal, QC, Canada
e-mail: pierre.hansen@gerad.ca

N. Mladenovi¢ (2<)
Mathematical Institute, SANU, Belgrade, Serbia
e-mail: nenad @mi.sanu.ac.rs

J. Brimberg

Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston,
ON, Canada

e-mail: jack.brimberg @rmc.ca

J. A. M. Pérez

IUDR and Department of Informatics and Systems Engineering, Universidad de La Laguna,
Tenerife, Spain

e-mail: jamoreno@ull.es

© Springer International Publishing AG, part of Springer Nature 2019 57
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_3&domain=pdf
mailto:pierre.hansen@gerad.ca
mailto:nenad@mi.sanu.ac.rs
mailto:jack.brimberg@rmc.ca
mailto:jamoreno@ull.es
https://doi.org/10.1007/978-3-319-91086-4_3

58 P. Hansen et al.

feasible solutions to continuous nonlinear programs; (5) adaptation of VNS for
solving automatic programming problems from the Artificial Intelligence field and
(6) exploration of graph theory to find conjectures, refutations and proofs or ideas
of proofs.

3.1 Introduction

Optimization tools have greatly improved during the last two decades. This is due to
several factors: (1) progress in mathematical programming theory and algorithmic
design; (2) rapid improvement in computer performances; (3) better communica-
tion of new ideas and integration in widely used complex softwares. Consequently,
many problems long viewed as out of reach are currently solved, sometimes in very
moderate computing times. This success, however, has led researchers and prac-
titioners to address much larger instances and more difficult classes of problems.
Many of these may again only be solved heuristically. Therefore thousands of pa-
pers describing, evaluating and comparing new heuristics appear each year. Keeping
abreast of such a large literature is a challenge. Metaheuristics, or general frame-
works for building heuristics, are therefore needed in order to organize the study of
heuristics. As evidenced by the Handbook, there are many of them. Some desirable
properties of metaheuristics [58, 59, 68] are listed in the concluding section of this
chapter.

Variable neighborhood search (VNS) is a metaheuristic proposed by some of the
present authors some 20 years ago [80]. Earlier work that motivated this approach
can be found in [25, 36, 44, 78]. It is based upon the idea of a systematic change of
neighborhood both in a descent phase to find a local optimum and in a perturbation
phase to get out of the corresponding valley. Originally designed for approximate
solution of combinatorial optimization problems, it was extended to address mixed
integer programs, nonlinear programs, and recently mixed integer nonlinear pro-
grams. In addition VNS has been used as a tool for automated or computer assisted
graph theory. This led to the discovery of over 1500 conjectures in that field and the
automated proof of more than half of them. This is to be compared with the unas-
sisted proof of about 400 of these conjectures by many different mathematicians.

Applications are rapidly increasing in number and pertain to many fields: loca-
tion theory, cluster analysis, scheduling, vehicle routing, network design, lot-sizing,
artificial intelligence, engineering, pooling problems, biology, phylogeny, reliabil-
ity, geometry, telecommunication design, etc. References are too numerous to be
listed here, but many of them can be found in [69] and special issues of IMA Jour-
nal of Management Mathematics [76], European Journal of Operational Research
[68] and Journal of Heuristics [87] that are devoted to VNS.

This chapter is organized as follows. In the next section we present the ba-
sic schemes of VNS, i.e., variable neighborhood descent (VND), reduced VNS
(RVNS), basic VNS (BVNS) and general VNS (GVNS). Two important extensions
are presented in Sect. 3.3: Skewed VNS and Variable neighborhood decomposition

3 Variable Neighborhood Search 59

search (VNDS). A further recent development called Formulation Space Search
(FSS) is discussed in Sect. 3.4. The remainder of the paper describes applications
of VNS to several classes of large scale and complex optimization problems for
which it has proven to be particularly successful. Section 3.5 is devoted to primal
dual VNS (PD-VNS) and its application to location and clustering problems. Find-
ing feasible solutions to large mixed integer linear programs with VNS is discussed
in Sect. 3.6. Section 3.7 addresses ways to apply VNS in continuous global opti-
mization. The more difficult case of solving mixed integer nonlinear programming
by VNS is considered in Sect. 3.8. Applying VNS to graph theory per se (and not
just to particular optimization problems defined on graphs) is discussed in Sect. 3.9.
Brief conclusions are drawn in Sect. 3.10.

3.2 Basic Schemes

A deterministic optimization problem may be formulated as
min{f(x)|x € X,X C .7}, (3.1)

where ., X, x and f denote the solution space, the feasible set, a feasible solution
and a real-valued objective function, respectively. If .% is a finite but large set, a
combinatorial optimization problem is defined. If . = R", we refer to continuous
optimization. A solution x* € X is optimal if

FOx*) < flx), ¥x € X.

An exact algorithm for problem (3.1), if one exists, finds an optimal solution x*,
together with the proof of its optimality, or shows that there is no feasible solution,
i.e., X =0, or the solution is unbounded. Moreover, in practice, the time needed to do
so should be finite (and not too long). For continuous optimization, it is reasonable
to allow for some degree of tolerance, i.e., to stop when sufficient convergence is
detected.

Let us denote A%, (k= 1,...,kpnqy), a finite set of pre-selected neighborhood
structures, and .4z (x) the set of solutions in the kth neighborhood of x. Most local
search heuristics use only one neighborhood structure, i.e., k;,,.x = 1. Often succes-
sive neighborhoods .#; are nested and may be induced from one or more metric
(or quasi-metric) functions introduced into a solution space .. An optimal solution
Xopr (or global minimum) is a feasible solution where a minimum is reached. We
call X' € X a local minimum of (3.1) with respect to .4#; (w.r.t. .44 for short), if there
is no solution x € A (x") C X such that f(x) < f(x"). Metaheuristics (based on local
search procedures) try to continue the search by other means after finding the first
local minimum. VNS is based on three simple facts:

Fact 1 A local minimum w.r.t. one neighborhood structure is not necessarily so for
another;

60 P. Hansen et al.

Fact 2 A global minimum is a local minimum w.r.t. all possible neighborhood struc-
tures;

Fact 3 For many problems, local minima w.rt. one or several N are relatively
close to each other.

This last observation, which is empirical, implies that a local optimum often pro-
vides some information about the global one. For instance, there may be several
variables sharing the same values in both solutions. Since these variables usually
cannot be identified in advance, one should conduct an organized study of the neigh-
borhoods of a local optimum until a better solution is found.

In order to solve (1) by using several neighborhoods, facts 1-3 can be used in
three different ways: (1) deterministic; (2) stochastic; (3) both deterministic and
stochastic.

We first examine in Algorithm 1 the solution move and neighborhood change
function that will be used within a VNS framework. Function Neighborhood-
Change () compares the incumbent value f(x) with the new value f(x) obtained
from the kth neighborhood (line 1). If an improvement is obtained, the incumbent
is updated (line 2) and k is returned to its initial value (line 3). Otherwise, the next
neighborhood is considered (line 4).

Function NeighborhoodChange (x,x, k)
1 if f(x') < f(x) then
2 x < x' // Make a move
3 k <— 1 // Initial neighborhood
else
4 | k< k-+1//Next neighborhood

return x, k

Algorithm 1: Neighborhood change

Below we discuss Variable Neighborhood Descent and Reduced Variable Neigh-
borhood Search and then build upon this to construct the framework for Basic and
General Variable Neighborhood Search.

(i) The Variable Neighborhood Descent (VND) method (Algorithm 2) performs a
change of neighborhoods in a deterministic way. These neighborhoods are denoted
as Ni,k=1,... kyax.

Most local search heuristics use one or sometimes two neighborhoods for im-
proving the current solution (i.e., k;;qx < 2). Note that the final solution should be
a local minimum w.r.t. all k,,,, neighborhoods, and thus, a global optimum is more
likely to be reached than with a single structure. Beside this sequential order of
neighborhood structures in VND, one can develop a nested strategy. Assume, for
example, that k., = 3; then a possible nested strategy is: perform VND with Algo-
rithm 2 for the first two neighborhoods from each point x” that belongs to the third
one (X' € N3(x)). Such an approach is successfully applied in [22, 26, 57].

3 Variable Neighborhood Search 61

Function VND (x, k1)
k<1
repeat
¥’ = argminyey, () f(y) // Find the best neighbor in N (x)
x,k < NeighborhoodChange (x,x’, k) // Change neighborhood
until £ = k.4«
return x

B W N -

Algorithm 2: Variable neighborhood descent

(ii) The Reduced VNS (RVNS) method is obtained when a random point is selected
from .44 (x) and no descent is attempted from this point. Rather, the value of the new
point is compared with that of the incumbent and an update takes place in the case
of improvement. We also assume that a stopping condition has been chosen such as
the maximum CPU time allowed t,,,,,, or the maximum number of iterations between
two improvements. To simplify the description of the algorithms, we always use f,,,,x
below. Therefore, RVNS (Algorithm 3) uses two parameters: t,,,4x and ky;qx-

Function RVNS(x, kyaxs bmax)
1 repeat
2 k+1
3 repeat
4 x' < Shake(x, k)
5 X,k < NeighborhoodChange (x,x, k)
until k = kg
6 t < CpuTime ()
until 7 > t,,,,
return x

Algorithm 3: Reduced VNS

The function Shake in line 4 generates a point x’ at random from the kth neigh-
borhood of x, i.e., X' € A4 (x). It is given in Algorithm 4, where it is assumed that
the points from .4 (x) are numbered as {x!, ..., ")}, Note that a different nota-
tion is used for the neighborhood structures in the shake operation, since these are
generally different than the ones used in VND.

Function Shake(x, k)
1 w< [14+Rand(0,1) x | Az (x)]]
2 X —x"

return x’

Algorithm 4: Shaking function

RVNS is useful for very large instances for which local search is costly. It can be
used as well for finding initial solutions for large problems before decomposition.

62 P. Hansen et al.

It has been observed that the best value for the parameter k,,,, is often 2 or 3. In
addition, a maximum number of iterations between two improvements is typically
used as the stopping condition. RVNS is akin to a Monte-Carlo method, but is more
systematic (see, e.g., [81] where results obtained by RVNS were 30% better than
those of the Monte-Carlo method in solving a continuous min-max problem). When
applied to the p-Median problem, RVNS gave equally good solutions as the Fast
Interchange heuristic of [102] while being 20 to 40 times faster [63].

(iii) The Basic VNS (BVNS) method [80] combines deterministic and stochastic
changes of neighborhood. The deterministic part is represented by a local search
heuristic. It consists in (1) choosing an initial solution x, (2) finding a direction
of descent from x (within a neighborhood N(x)) and (3) moving to the minimum of
f(x) within N(x) along that direction. If there is no direction of descent, the heuristic
stops; otherwise it is iterated. Usually the steepest descent direction, also referred to
as best improvement, is used. Also see Algorithm 2, where the best improvement is
used in each neighborhood of the VND. This is summarized in Algorithm 5, where
we assume that an initial solution x is given. The output consists of a local minimum,
also denoted by x, and its value.

Function Best Improvement(x)
1 repeat
2 X —x
3 X 4= argmingen () f()
until (f(x) > f(x'))
return x
Algorithm 5: Best improvement (steepest descent) heuristic

As Steepest descent may be time-consuming, an alternative is to use a first de-
scent (or first improvement) heuristic. Points x' € N(x) are then enumerated sys-
tematically and a move is made as soon as a direction for descent is found. This is
summarized in Algorithm 6.

Function First Improvement (x)
1 repeat
2 X —x; i<0
3 repeat
4 ii+1
5 x + argmin{f(x), f(x))}, x € N(x)
until (f(x) < f(x') or i=I|N(x)|)
until (f(x) = f(x'))

return x

Algorithm 6: First improvement (first descent) heuristic

The stochastic phase of BVNS (see Algorithm 7) is represented by the random
selection of a point x’ from the kth neighborhood of the shake operation. Note that

3 Variable Neighborhood Search 63

point x’ is generated at random in Step 5 in order to avoid cycling, which might
occur with a deterministic rule.

Function BVNS(X, kax, fmax)

1t+0
2 whilet < t,,,,c do
3 k1
4 repeat
5 x' < Shake (x,k) // Shaking
6 X'+ BestImprovement (¥) // Local search
7 x,k + NeighborhoodChange (x,x”,k) // Change neighborhood
until £ = k.
8 t < CpuTime ()
return x

Algorithm 7: Basic VNS

Example. We illustrate the basic steps on a minimum k-cardinality tree instance
taken from [72], see Fig. 3.1. The minimum k-cardinality tree problem on graph G
(k-card for short) consists of finding a subtree of G with exactly k edges whose sum
of weights is minimum.

Fig. 3.1 4-Cardinality tree problem

The steps of BVNS for solving the 4-card problem are illustrated in Fig.3.2. In
Step O the objective function value, i.e., the sum of edge weights, is equal to 40;
it is indicated in the right bottom corner of the figure. That first solution is a local
minimum with respect to the edge-exchange neighborhood structure (one edge in,
one out). After shaking, the objective function is 60, and after another local search,
we are back to the same solution. Then, in Step 3, we take out 2 edges and add
another 2 at random, and after a local search, an improved solution is obtained with
a value of 39. Continuing in that way, the optimal solution with an objective function
value equal to 36 is obtained in Step 8.

64

P. Hansen et al.

LS 26 Shake-1 LS
O O @) @) @) o O O
1 1 1
o O O O O O O
25 a\ /6 25 8 258 5
O O O O o O
0 40| 1 60 40
Shake-2 LS Shake-1
O @) O O O O (@] O O O
1 18
O o O (@) 16 @) o O (@)
6\16 8\ /6\% 6\%
O (@) @)
3 47| 4 39 49
LS Shake-2 LS
O O O @) O O O O O O
9 9
@) 16 @) O O O
8\ /6\/9 (69 9 /9
@) ®) 9 (@) 9
6 39| 7 43 36

Fig. 3.2 Steps of the Basic VNS for solving 4-card tree problem

(iv) General VNS. Note that the local search step (line 6 in BVNS, Algorithm 7)
may also be replaced by VND (Algorithm 2). This General VNS (VNS/VND) ap-
proach has led to some of the most successful applications reported in the literature
(see, e.g., [1, 26-29, 31, 32, 39, 57, 66, 92, 93]). General VNS (GVNS) is outlined
in Algorithm 8 below. Note that neighborhoods Ny, ...,N,, are used in the VND
step, while a different series of neighborhoods Ny,..., Ny, apply to the Shake step.

Function GVNS (x, £ax s kmax s tnax)

1
2

3
4
5
6

7

repeat
k<1
repeat

X' < Shake(x,k)
X" <= VND, pax)
X,k < NeighborhoodChange(x,x”, k)
until £ = k,;.4x
t < CpuTime ()

until 7 > 1,

return x

Algorithm 8: General VNS

3 Variable Neighborhood Search 65

3.3 Some Extensions

(i) The Skewed VNS (SVNS) method [62] addresses the problem of exploring val-
leys far from the incumbent solution. Indeed, once the best solution in a large region
has been found it is necessary to go quite far to obtain an improved one. Solutions
drawn at random in far-away neighborhoods may differ substantially from the in-
cumbent, and VNS may then degenerate, to some extent, into a Multistart heuristic
(where descents are made iteratively from solutions generated at random, and which
is known to be inefficient). So some compensation for distance from the incum-
bent must be made, and a scheme called Skewed VNS (SVNS) is proposed for that
purpose. Its steps are presented in Algorithms 9, 10 and 11. The KeepBest(x,x’)
function (Algorithm 9) in SVNS simply keeps the best of solutions x and x’ The
NeighborhoodChanges function (Algorithm 10) performs the move and neigh-
borhood change for the SVNS.

Function KeepBest(x,x')
1 if f(x') < f(x) then
2 L x—x

return x

Algorithm 9: Keep best solution

Function NeighborhoodChangeS(x,x', k, o)
1 if f(x') — op(x,x') < f(x) then
2 ‘ x—x k1
else
3| kek+1
return x,k

Algorithm 10: Neighborhood change for Skewed VNS

SVNS makes use of a function p(x,x”) to measure the distance between the cur-
rent solution x and the local optimum x”. The distance function used to define .4
could also be used for this purpose. The parameter o must be chosen to allow move-
ment to valleys far away from x when f(x”) is larger than f(x) but not too much
larger (otherwise one will always leave x). A good value for is found experimen-
tally in each case. Moreover, in order to avoid frequent moves from x to a close
solution, one may take a smaller value for & when p(x,x”) is small. More sophis-
ticated choices for selecting a function of ap(x,x”) could be made through some
learning process.

66 P. Hansen et al.

Function SVNS (x, kjnax, tnax,)

1 Xpest <= X
2 repeat
3 k+1
4 repeat
5 x' < Shake(x, k)
6 X" ¢ FirstImprovement(x')
7 X,k < NeighborhoodChangeS(x,x", k, &)
8 Xpest — KeepBest (Xpesr,X)
until k = k4
9 X < Xpest
10 t < CpuTime()
until 7 > 1,
return x

Algorithm 11: Skewed VNS

(ii) The Variable neighborhood decomposition search (VNDS) method [63] ex-
tends the basic VNS into a two-level VNS scheme based upon decomposition of
the problem. It is presented in Algorithm 12, where #; is an additional parameter
that represents the running time allowed for solving decomposed (smaller-sized)
problems by Basic VNS (line 5).

Function VNDS (x, ka1 > tnaxstd)

1 repeat

2 k1

3 repeat

4 X'+ Shake (x,k); y < x'\x

5 y/<_ BVNS(y, kmax214); ¥ = (x’\y)Uy’

6 X" < FirstImprovement(x”)

7 X,k + NeighborhoodChange(x,x"” k)

until £ = k001
until 7 > t,,,,
return x
Algorithm 12: Variable neighborhood decomposition search

For ease of presentation, but without loss of generality, we assume that the so-
lution x represents a set of attributes. In Step 4 we denote by y a set of k solution
attributes present in x’ but not in x (y = x’ \ x). In Step 5 we find the local optimum
y' in the space of y; then we denote with x” the corresponding solution in the whole
space X (x" = (x'\ y) Uy'). We notice that exploiting some boundary effects in a new
solution can significantly improve solution quality. That is why, in Step 6, the local
optimum x” is found in the whole space X using x” as an initial solution. If this is
time consuming, then at least a few local search iterations should be performed.

VNDS can be viewed as embedding the classical successive approximation
scheme (which has been used in combinatorial optimization at least since the six-
ties, see, e.g., [48]) in the VNS framework. Let us mention here a few applications

3 Variable Neighborhood Search 67

of VNDS: p-median problem [63]; simple plant location problem [67]; k-cardinality
tree problem [100]; 0-1 mixed integer programming problem [51, 74]; design of
MBA student teams [37], etc.

3.4 Changing Formulation Within VNS

A traditional approach to tackle an optimization problem is to consider a given for-
mulation and search in some way through its feasible set X. Given that the same
problem can often be formulated in different ways, it is possible to extend search
paradigms to include jumps from one formulation to another. Each formulation
should lend itself to some traditional search method, its ‘local search’ that works
totally within this formulation, and yields a final solution when started from some
initial solution. Any solution found in one formulation should easily be translat-
able to its equivalent solution in any other formulation. We may then move from
one formulation to another by using the solution resulting from the local search of
the former as an initial solution for the local search of the latter. Such a strategy
will of course only be useful when local searches in different formulations behave
differently. Here we discuss two such possibilities.

3.4.1 Variable Neighborhood-Based Formulation Space Search

The idea of changing the formulation of a problem was investigated in [82, 83] us-
ing an approach that systematically alternates between different formulations for
solving various Circle Packing Problems (CPP). It is shown there that a stationary
point for a nonlinear programming formulation of CPP in Cartesian coordinates is
not necessarily a stationary point in polar coordinates. A method called Reformu-
lation Descent (RD) that alternates between these two formulations until the final
solution is stationary with respect to both formulations is suggested. Results ob-
tained were comparable with the best known values, but were achieved about 150
times faster than with an alternative single formulation approach. In this paper, the
idea suggested above of Formulation Space Search (FSS) is also introduced, using
more than two formulations. Some research in that direction has also been reported
in [70, 79, 90]. One methodology that uses the variable neighborhood idea when
searching through the formulation space is given in Algorithms 13 and 14. Here ¢
(¢") denotes a formulation from a given space .%, x (x') denotes a solution in the
feasible set defined with that formulation, and ¢ < ¢,,,,, is the formulation neighbor-
hood index. Note that Algorithm 14 uses a reduced VNS strategy in the formulation
space .#. Note also that the ShakeFormulation () function must provide a
search through the solution space .’ (associated with formulation ¢’) in order to
get a new solution x’. Any appropriate method can be used for this purpose.

68 P. Hansen et al.

Function FormulationChange(x,x',¢,¢’,¢)

1if £(¢',x) < f(9,x) then

2 o<« ¢

3 x<x

4 {1
else

5 | Lt

6 return x, ¢,/

Algorithm 13: Formulation change

Function VNFSS(x, @, {ax)

1 repeat

2 {1 // Initialize formulation in .%

3 while ¢/ < /,,,, do

4 x',9',0 + ShakeFormulation(x.x,¢,¢’.0) // (¢ x')€(Ni(¢),/ (x)) random
5 L x,¢,{ < FormulationChange(xx',¢,¢’ () // Change formulation

until some stopping condition is met
6 return x

Algorithm 14: Reduced variable neighborhood FSS

3.4.2 Variable Formulation Search

Many optimization problems in the literature, e.g., min-max problems, demonstrate
a flat landscape. It means that, given a formulation of the problem, many neighbors
of a solution have the same objective function value. When this happens, it is dif-
ficult to determine which neighborhood solution is more promising to continue the
search. To address this drawback, the use of alternative formulations of the problem
within VNS is proposed in [85, 86, 89]. In [89] it is named Variable Formulation
Search (VFS). It combines a change of neighborhood within the VNS framework,
with the use of alternative formulations.

Let us assume that, beside the original formulation and the corresponding objec-
tive function fy(x), there are p other formulations denoted as fi(x),.., f,(x),x € X.
Note that two formulations are defined as equivalent if the optimal solution of one
is the optimal solution of the other, and vice versa. For simplification purposes, we
will denote different formulations as different objectives fj(x),i = 1,.., p. The idea
of VFS is to add the procedure Accept(x,x’, p), given in Algorithm 15, in all three
basic steps of BVNS: Shaking, LocalSearch and NeighborhoodChange.
Clearly, if a better solution is not obtained by any of the p 4 1 formulations, the
move is rejected. The next iteration in the loop of Algorithm 15 will take place only
if the objective function values according to all previous formulations are equal.

3 Variable Neighborhood Search 69

Logical Function Accept (x,x/, p)
fori=0¢to p do
if (fi(x') < fi(x)) then return TRUE
L if (fi(x’) > fi(x)) then return FALSE

W N =

return FALSE

Algorithm 15: Accept procedure with p secondary formulations

If Accept (x,x/,p) is included in the LocalSearch subroutine of BVNS,
then it will not stop the first time a non improved solution is found. In order to
stop LocalSearch and thus claim that x’ is a local minimum, x’ should not be im-
proved by any among the p different formulations. Thus, for any particular problem,
one needs to design different formulations of the problem considered and decide the
order in which they will be used in the Accept subroutine. Answers to those two
questions are problem specific and sometimes not easy. The Accept (x,x', p) sub-
routine can obviously be added to the NeighborhoodChange and Shaking
steps of BVNS from Algorithm 7 as well.

In [85], three evaluation functions, or acceptance criteria, within the Neighborhood
Change step are used in solving the Bandwidth Minimization Problem. This min-
max problem consists of finding permutations of rows and columns of a given
square matrix to minimize the maximal distance of the nonzero elements from
the main diagonal in the corresponding rows. Solution x may be represented as a
labeling of a graph and the move from x to x’ as x — x’. Three criteria are used:

1. the bandwidth length fy(x) (fo(x') < fo(x));

2. the total number of critical vertices fi(x) (f1(x') < f1(x)), if fo(x') = fo(x);

3. fa3(x,x') = p(x,x') — o, if fo(x') = fo(x) and fi(x') = fi(x). Here, we want
f3(x,x") > 0, because we assume that x and x’ are sufficiently far from one
another when p(x,x’) > a, where « is an additional parameter. The idea for a
move to an even worse solution, if it is very far, is used within Skewed VNS.
However, a move to a solution with the same value is only performed in [85] if
its Hamming distance from the incumbent is greater than o.

In [86] a different mathematical programming formulation of the original prob-
lem is used as a secondary objective within the Neighborhood Change func-
tion of VNS. There, two combinatorial optimization problems on a graph are consid-
ered: the Metric Dimension Problem and Minimal Doubly Resolving Set Problem.

A more general VFS approach is given in [89], where the Cutwidth Graph Min-
imization Problem (CWP) is considered. CWP also belongs to the min-max prob-
lem family. For a given graph, one needs to find a sequence of nodes such that the
maximum cutwidth is minimum. The cutwidth of a graph should be clear from the
example provided in Fig. 3.3 for the graph with six vertices and nine edges shown
in (a).

70 P. Hansen et al.

f:
CWiA)=4 CWiB)=5 CWiC)=6 CW{D)=4 CWi(E)=2
(a) (b)

Fig. 3.3 Cutwidth minimization example as in [8§9]

Figure 3.3b shows an ordering x of the vertices of the graph in (a) with the
corresponding cutwidth CW values of each vertex. It is clear that the CW repre-
sents the number of cut edges between two consecutive nodes in the solution x.
The cutwidth value fy(x) = CW(x) of the ordering x = (A,B,C,D,E F) is equal to
fo(x) =max{4,5,6,4,2} = 6. Thus, one needs to find an order x that minimizes the
maximum cut-width value over all vertices.

Beside minimizing the bandwidth fj, two additional formulations, denoted f;
and f, , are used in [89], and implemented within a VND local search. Results are
compared among themselves (Table 3.1) and with a few heuristics from the literature
(Table 3.1), using the following usual data set:

e “Grid”: This data set consists of 81 matrices constructed as the Cartesian prod-
uct of two paths. They were originally introduced by Rolim et al. [94]. For this
set of instances, the vertices are arranged on a grid of dimension width x height
where width and height are selected from the set {3, 6, 9, 12, 15, 18, 21, 24,
27}.

e “Harwell-Boeing” (HB): This data set is a subset of the public-domain Ma-
trix Market library." This collection consists of a set of standard test matrices
M = (M;;) arising from problems in linear systems, least squares, and eigen-
value calculations from a wide variety of scientific and engineering disciplines.
Graphs were derived from these matrices by considering an edge (i, j) for ev-
ery element M;; # 0. The data set is formed by the selection of the 87 instances
were n < 700. Their number of vertices ranges from 30 to 700 and the number
of edges from 46 to 41,686.

! Available at http://math.nist.gov/MatrixMarket/data/Harwell- Boeing/.

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/

3 Variable Neighborhood Search 71

Table 3.1 presents the results obtained with four different VES variants, after
executing them for 30 s over each instance. The column ‘BVNS’ of Table 3.1 repre-
sents a heuristic based on BVNS which makes use only of the original formulation
fo of the CWP. VFS; denotes a BVNS heuristic that uses only one secondary crite-
rion, i.e., fy and fi. VFS, is equivalent to the previous one with the difference that
now f> is considered (instead of f}). Finally, the fourth column of the table, denoted
as VFS3, combines the original formulation of the CWP with the two alternative
ones, in the way presented in Algorithm 15. All algorithms were configured with
kmax = 0.1n and start from the same random solution.

Table 3.1 Comparison of alternative formulations within 30 s for each test, by average objective
values and % deviation from the best known solution

BVNS VFES; VFS, VFS3

Avg. 137.31 93.56 91.56 90.75

Dev. (%)|192.44 60.40 49.23 48.22

Test are performed on “Grid” and “HB” data sets that contain 81 and 86 instances, respectively

It appears that significant improvements in solution quality are obtained when at
least one secondary formulation is used in case of ties (compare e.g., 192.44% and
60.40% deviations from the best known solutions obtained by BVNS and VFSy,
respectively). An additional improvement is obtained when all three formulations
are used in VFS3.

Comparison of VFS3 and state-of-the-art heuristics are given in Table 3.2. There,
the stopping condition is increased from 30 s to 300 and 600 s for the first and the
second set of instances, respectively. Besides average values and % deviation, the
methods are compared based on the number of wins (the third row) and the total
cpu time in seconds. Overall, the best quality results are obtained by VFES in less
computing time.

Table 3.2 Comparison of VES with the state-of-the-art heuristics over the “Grid” and “HB” data
sets, within 300 and 600 s respectively

81 ‘grid’ test instances 86 HB instances
GPR [2] SA[34] SS[88] VES|[89]|GPR [2] SA[34] SS[88] VES[89]
Avg. 3844 16.14 13.00 12.23 | 364.83 34621 31522 314.39
Dev. (%) | 201.81 2542 7.76 3.25 95.13 53.30 3.40 1.77
#Opt. 2 37 44 59 2 8 47 61
CPUt(s)| 23516 216.14 210.07 90.34 | 557.49 43540 430.57 128.12

3.5 Primal-Dual VNS

For most modern heuristics, the difference in value between the optimal solution
and the obtained approximate solution is not precisely known. Guaranteed perfor-
mance of the primal heuristic may be determined if a lower bound on the objective

72 P. Hansen et al.

function value can be found. To this end, the standard approach is to relax the in-
tegrality condition on the primal variables, based on a mathematical programming
formulation of the problem. However, when the dimension of the problem is large,
even the relaxed problem may be impossible to solve exactly by standard commer-
cial solvers. Therefore, it seems to be a good idea to solve dual relaxed problems
heuristically as well. In this way we get guaranteed bounds on the primal heuristic
performance. The next difficulty arises if we want to get an exact solution within
a branch-and-bound framework since having the approximate value of the relaxed
dual does not allow us to branch in an easy way, for example by exploiting com-
plementary slackness conditions. Thus, the exact value of the dual is necessary. A
general approach to get both guaranteed bounds and an exact solution is proposed
in [67], and referred as Primal-Dual VNS (PD-VNS). It is given in Algorithm 16.

Function PD-VNS (x, kyax, tmax)
1 BVNS (X, kmax,tmax) // Solve primal by VNS

2 DualFeasible(x,y) // Find (infeasible) dual such that fp = fp
3 DualVNS(y) /I Use VNS do decrease infeasibility

4 DualExact(y) // Find exact (relaxed) dual

5 BandB(x,y) /I Apply branch-and-bound method

Algorithm 16: Basic PD-VNS

In the first stage, a heuristic procedure based on VNS is used to obtain a near op-
timal solution. In [67] it is shown that VNS with decomposition is a very powerful
technique for large-scale simple plant location problems (SPLP) with up to 15,000
facilities and 15,000 users. In the second phase, the objective is to find an exact so-
lution of the relaxed dual problem. Solving the relaxed dual is accomplished in three
stages: (1) find an initial dual solution (generally infeasible) using the primal heuris-
tic solution and complementary slackness conditions; (2) find a feasible solution by
applying VNS to the unconstrained nonlinear form of the dual; (3) solve the dual
exactly starting with the found initial feasible solution using a customized “sliding
simplex” algorithm that applies “windows” on the dual variables, thus substantially
reducing the problem size. On all problems tested, including instances much larger
than those previously reported in the literature, the procedure was able to find the ex-
act dual solution in reasonable computing time. In the third and final phase, armed
with tight upper and lower bounds obtained from the heuristic primal solution in
phase one and the exact dual solution in phase two, respectively, a standard branch-
and-bound algorithm is applied to find an optimal solution of the original problem.
The lower bounds are updated with the dual sliding simplex method and the upper
bounds whenever new integer solutions are obtained at the nodes of the branching
tree. In this way it was possible to solve exactly problem instances of sizes up to
7000 facilities x 7000 users, for uniform fixed costs, and 15,000 facilities x 15,000
users, otherwise.

3 Variable Neighborhood Search 73

3.6 VNS for Mixed Integer Linear Programming

The Mixed Integer Linear Programming (MILP) problem consists of maximizing
or minimizing a linear function, subject to equality or inequality constraints and
integrality restrictions on some of the variables. The mixed integer programming
problem (MILP) can be expressed as:

min 2']-:16‘])6]'
S.t. Zyzlaijijbi VieM=1{1,2,...,m}

(MILP) x;€{0,1} Vje®
xj > 0,integer Vj € ¢4
x; >0 Vjie®

where the set of indices N = {1,2,...,n} is partitioned into three subsets #,¥ and
%, corresponding to binary, general integer and continuous variables, respectively.

Numerous combinatorial optimization problems, including a wide range of prac-
tical problems in business, engineering and science, can be modeled as MILPs. Sev-
eral special cases, such as knapsack, set packing, cutting and packing, network de-
sign, protein alignment, traveling salesman and other routing problems, are known
to be NP-hard [46].

Many commercial solvers such as CPLEX [71] are available for solving MILPs.
Methods included in such software packages are usually of the branch-and-bound
(B&B) or of branch-and-cut (B&C) types. Basically, those methods enumerate all
possible integer values in some order, and prune the search space for the cases where
such enumeration cannot improve the current best solution.

3.6.1 Variable Neighborhood Branching

The connection between local search based heuristics and exact solvers may be
established by introducing the so called local branching constraints [43]. By adding
just one constraint into (MILP), as explained below, the kth neighborhood of (MILP)
is defined. This allows the use of all local search based metaheuristics, such as Tabu
search, Simulating annealing, VNS etc. More precisely, given two solutions x and y
of (MILP), the distance between x and y is defined as:

3(xy) = 2 [=l

jes

74 P. Hansen et al.

Let X be the solution space of (MILP). The neighborhood structures { 4% | k =
1,...,kmax } can be defined, knowing the distance 0 (x,y) between any two solutions
x,y € X. The set of all solutions in the kth neighborhood of y € X is denoted as
4 (y) where

M) ={xeX[8(x,y) < k}.

For the pure 0-1 MILP given above (i.e., (MILP) with ¥ = 0), §(.,.) represents the
Hamming distance and .#;(y) may be expressed by the following local branching
constraint
5(x,y)=2(1—xj)+ 2 x; <k, (3.2)
jes JEB\S
where S={je€ %A |y;=1}.

In [66] a general VNS procedure for solving 0-1 MILPs is presented (see Algo-
rithm 17). An exact MILP solver (MIPSOLVE () within CPLEX) is used as a black
box for finding the best solution in the neighborhood, based on the given formula-
tion (MILP) plus the added local branching constraints. Shaking is performed using
the Hamming distance defined above. A detailed description of this VNS branch-
ing method is provided in Algorithm 17. The variables and constants used in the
algorithm are defined as follows [66]:

e UB—input variable for the CPLEX solver which represents the current upper
bound.

e first—Ilogical input variable for CPLEX solver which is true if the first so-
lution lower than UB is asked for in the output; if first = false, CPLEX
returns the best solution found so far.

TL—maximum time allowed for running CPLEX.
rhs—right hand side of the local branching constraint; it defines the size of the
neighborhood within the inner or VND loop.

e cont—Ilogical variable which indicates if the inner loop continues (true) or
not (false).

e x_opt and f_opt—incumbent solution and corresponding objective function
value.

e x_cur, f_cur, k_cur—current solution, objective function value and neighbor-
hood from where the VND local search starts (lines 6-20).

e x_next and f_next—solution and corresponding objective function value ob-
tained by CPLEX in the inner loop.

3 Variable Neighborhood Search 75

Function VvnsBra(total time limit,node time limit,k step,
X_opt)
1 TL:=total time limit; UB :=co;first:=true
2 stat :== MIPSOLVE(TL, UB, first, x_opt, f_opt)
3 x_cur:=x_opt; f_cur:=f_opt
4 while (elapsedtime < total time limit)do

5 cont := true; rhs :=1; first := false

6 while (cont or elapsedtime < total time limit)do

7 TL =min(node time limit, total time limit-
elapsedtime)

8 add local br. constr. 6 (x,x_cur) < rhs; UB :=f cur

9 stat .= MIPSOLVE(TL, UB, first, x_next, f_next)

10 switch stat do

11 case "opt_sol found”:

12 L reverse last local br. const. into & (x,x_cur) > rhs+ 1

13 Xx_cur :=x_next; f_cur :=f_next; rhs ;= 1;

14 case "feasible sol found™

15 L reverse last local br. constr. into & (x,x_cur) > 1

16 x_cur = x_next, f_cur :=f_next; rhs := 1;

17 case 'proven_infeasible":

18 L remove last local br. constr.; rhs := rhs+1;

19 case 'no_feasible sol found":

20 | cont :=false

21 if f_cur < f_opt then

22 ‘ x_opt :=x_cur; f_opt :=f_cur; k_cur :=k_step;
else
23 L k_cur :==k_cur+k_step;
24 remove all added constraints; cont := true
25 while cont and (elapsedtime < total time limit)do
26 add constraints k_cur < §(x,x_opt) and
O(x,x_opt) < k_cur+k_step
27 TL :=total time limit-elapsedtime; UB := oo; first := true
28 stat := MIPSOLVE(TL, UB, first, x_cur, f_cur)
29 remove last two added constraints; cont =false
30 if stat = "proven_infeasible”or
'no_feasible sol found”then
31 L cont :=true; k_cur:=k _cur+k_step

Algorithm 17: VNS branching

In line 2, a commercial MIP solver is run to get an initial feasible solution, i.e.,
logical variable ‘first’ is set to value t rue. The outer loop starts from line 4. VND
based local search is performed in the inner loop that starts from line 6 and finishes

76 P. Hansen et al.

at line 24. There are four different outputs from subroutine MIPSOLVE provided
by variable stat. They are coded in lines 11-20. The shaking step also uses the MIP
solver. It is presented in the loop that starts at line 25.

3.6.2 VNDS Based Heuristics for MILP

It is well known that heuristics and relaxations are useful for providing upper and
lower bounds on the optimal value of large and difficult optimization problems. A
hybrid approach for solving 0-1 MILPs is presented in this section. A more detailed
description may be found in [51]. It combines variable neighborhood decomposition
search (VNDS) [63] and a generic MILP solver for upper bounding purposes, and
a generic linear programming solver for lower bounding. VNDS is used to define
a variable fixing scheme for generating a sequence of smaller subproblems, which
are normally easier to solve than the original problem. Different heuristics are de-
rived by choosing different strategies for updating lower and upper bounds, and thus
defining different schemes for generating a series of subproblems. We also present
in this section a two-level decomposition scheme, in which subproblems created
according to the VNDS rules are further divided into smaller subproblems using
another criterion, derived from the mathematical formulation of the problem.

3.6.2.1 VNDS for 0-1 MILPs with Pseudo-Cuts

Variable neighborhood decomposition search is a two-level variable neighborhood
search scheme for solving optimization problems, based upon the decomposition of
the problem (see Algorithm 12). We discuss here an algorithm which solves exactly
a sequence of reduced problems obtained from a sequence of linear programming
relaxations. The set of reduced problems for each LP relaxation is generated by
fixing a certain number of variables according to VNDS rules. That way, two se-
quences of upper and lower bounds are generated, until an optimal solution of the
problem is obtained. Also, after each reduced problem is solved, a pseudo-cut is
added to guarantee that this subproblem is not revisited. Furthermore, whenever an
improvement in the objective function value occurs, a local search procedure is ap-
plied in the whole solution space to attempt a further improvement (the so-called
boundary effect within VNDS). This procedure is referred to as VNDS-PC, since it
employs VNDS to solve 0-1 MILPs, while incorporating pseudo-cuts to reduce the
search space [51].

If J C A, we define the partial distance between x and y, relative to J, as
0(J,x,y) = Xjes| xj —yj|. Obviously we have 6(%,x,y) = &(x,y)). More gener-
ally, let ¥ be an optimal solution of LP(P), the LP relaxation of the problem P
considered (not necessarily MIP feasible), and J C B(x) = {j € N | x; € {0,1}}
an arbitrary subset of indices. The partial distance 6(J,x,X) can be linearized as

follows:
8(J,x,3%) = X[y (1=%)) +3;(1 —x;)].
jeJ
Let X be the solution space of problem P. The neighborhood structures {4 | k =
kmins « « - ykmax }» 1 < kmin < kinax < p, can be defined knowing the distance (%, x,y)

3 Variable Neighborhood Search 77

between any two solutions x,y € X. The set of all solutions in the kth neighborhood
of x € X is denoted as .#;(x), where

Mi(x) ={yeX[6(#,x,y) < k}.

From the definition of %(x), it follows that A%(x) C A%y (x), for any
k € {kmin, kmin + 1, ... kmax — 1}, since 8(£,x,y) < kimplies 6(A,x,y) < k+ 1.
It is trivial that, if we completely explore neighborhood .4} 1(x), it is not necessary
to explore neighborhood 4% (x).

Ordering variables w.r.t LP-relaxation. The first variant of VNDS-PC, denoted
as VNDS - PC1, is considered here for the maximization case. See Algorithm 18 for
the pseudo-code of this algorithm which can be easily adjusted for minimization
problems. Input parameters for the algorithm are an instance P of the 0-1 MIP prob-
lem, a parameter d which defines the number of variables to be released in each
iteration and an initial feasible solution x* of P. The algorithm returns the best solu-
tion found until the stopping criterion defined by the variable proceed] is met.

Function VNDS-PC1(P,d,x*)
1 Choose stopping criteria (set proceedl = proceed2 = true)
2 Add objective cut: LB = ¢"x*; P= (P | ¢"x > LB)
3 while proceedl do
4 Find an optimal solution X of LP(P)
5 setUB=c"x
6 if B(X) = % then
L break
Set 6/' =|X7*Xj l,jeRB
Index x; so that §; < 8j41, j=1,...,p—1, p=|%|
9 | Setq=|{jc#|5+0}]
10 Set kypin = pP—4q, k,\'tep = I_Q/dJ » Kimax = 2 kstepa k = Kmax

o« 2

11 while proceed2 and k > 0 do
12 Je={1,...,k}; ¥ = MIPSOLVE(P(x*,J;),x*)
13 P=(P| &g, x",x) >1)
14 if ("X’ > ¢"x*) then
15 x* = LocalSearch(P,x); LB = c"x*
16 Update objective cut: P = (P | ¢"x > LB); break
else
17 if (k — kyrep < kmin) then
| Kstep = max{[k/2],1}
18 Setk =k — kgep
19 Update proceed?

20 | Update proceed]
return LB, UB, x*.
Algorithm 18: VNDS for MIPs with pseudo-cuts

78 P. Hansen et al.

This variant of VNDS-PC is based on the following choices. Variables are or-
dered according to their distances from the corresponding LP relaxation solution
values (see lines 4, 6 and 7 in Algorithm 18). More precisely, we compute distances
0j =|xj—X; | for j € A, where x; is a variable value of the current incumbent (fea-
sible) solution and X; a variable value of the LP-relaxation. We then index variables
Xj,j € A, sothat 6y < & < ... < Op, p=| A |. Parameters kyin, kyrep and kypqy (see
line 9 in Algorithm 18) are determined in the following way. Let g be the number
of binary variables which have different values in the LP relaxation solution and in
the incumbent solution (¢ =| {j € & | 6; # 0} |), and let d be a given parameter
(whose value is experimentally found) which controls the neighborhood size. Then
we set kyin = P — ¢, ksiep = |q/d| and kyax = p — ksrep. We also allow the value of k
to be less then k;;,, (see lines 17 and 18 in Algorithm 18). In other words, we allow
the variables which have the same integer value in the incumbent and LP-relaxation
solutions to be freed anyway. When k < kyin, ksrep i set to (approximately) half the
number of the remaining fixed variables. Note that the maximum value of parameter
k (which is k,,y,) indicates the maximum possible number of fixed variables, which
implies the minimum number of free variables and therefore the minimum possible
neighborhood size in the VNDS scheme.

If an improvement occurs after solving the subproblem P(x*,J;), where x* is the
current incumbent solution (see line 12 in Algorithm 18), we perform a local search
on the complete solution, starting from x’ (see line 14 in Algorithm 18). The local
search applied at this stage is the variable neighborhood descent for 0-1 MILPs, as
described in [66]. Note that, in Algorithm 18 and in the pseudo-codes that follow,
the statement y = MILPSOLVE(P,x) denotes a call to a generic MILP solver, for
a given 0-1 MILP problem P, starting from a given solution x and returning a new
solution y (if P is infeasible, then the value of y remains the same as the one before
the call to the MILP solver).

In practice, when used as a heuristic with a time limit as the stopping criterion,
VNDS - PC1 has a good performance. One can observe that, if pseudo-cuts (line 13 in
Algorithm 18) and objective cuts (lines 2 and 16) are not added, the algorithm from
[74] is obtained, which is a special case of VNDS-PC with a fixed LP relaxation
reference solution.

Ordering variables w.r.t. the minimum and maximum distances from the
incumbent solution.

In the VNDS variant above, the variables in the incumbent integer solution are or-
dered according to the distances of their values to the values of the current lin-
ear relaxation solution. However, it is possible to employ different ordering strate-
gies. For example, in the case of maximization of ¢’ x, consider the following two
problems:

3 Variable Neighborhood Search 79

min & (x*,x) max 0 (x*,x)
st Ax<b s.t.. Ax<b
(LP.) c"x>LB+1 (LPY) c"x>LB+1
xjel0,1],jeA xjel0,1],je A
szO,jeN)CjZO,jGN

where x* is the best known integer feasible solution and LB is the best lower bound
found so far (i.e., LB = ¢"x*). Of course, in case of solving min cT'x, the inequality
¢’x> LB+ 1 from models (LP,.) and (LP,), should be replaced with ¢’ x <UB—1,
where the upper bound UB = ¢”x*. If ¥~ and X are optimal solutions of the LP-
relaxation problems LP_. and Lth , respectively, then components of x* could be
ordered in ascending order of values |X; - Xjﬂ, J € A. Since both solution vectors
X~ and X are real-valued (i.e., from R"), this ordering technique is expected to be
more sensitive than the standard one, i.e., the number of pairs (j, '), j,j/ € N, j#
J' for which [¥; —X['| # |, —X}| is expected to be greater than the number of
pairs (h,h'), h,h' € N,h # I’ for which |x; —X;| # |x}, —Xp|, where X is an optimal
solution of the LP relaxation LP(P).

Also, according to the definition of ¥~ and X", it is intuitively more likely for

the variables x;, j € N, for which)7; = X}r, to have that same value X; in the final

solution, than it is for variables x;, j € N, for which x}f =X; (and X #* X}), to
have the final value x;f. In practice, if)’cjf = f}', J € N, then usually xj =)’c;, which
justifies the ordering of components of x* in the described way. However, if we want
to keep the number of iterations in one pass of VNDS approximately the same as in
the standard ordering, i.e., if we want to use the same value for parameter d, then
the subproblems examined will be larger than with the standard ordering, since the
value of g will be smaller (see line 8 in Algorithm 19). The pseudo-code of this

variant of VNDS-PC, denoted as VNDS-PC2, is provided in Algorithm 19.

3.6.2.2 A Double Decomposition Scheme

In this section we propose the use of a second level decomposition scheme within
VNDS for the 0-1 MILP. The 0-1 MILP is tackled by decomposing the problem into
several subproblems, where the number of binary variables with value 1 is fixed
at a given integer value. Fixing the number of variables with value 1 to a given
value 1 € NU {0} can be achieved by adding the constraint x| +x+ ... +x, =h,
or, equivalently, e"x = h, where e is the vector of ones. Solving the 0-1 MILP by
tackling separately each of the subproblems P, for & € N appears to be an interesting
approach for the case of the multidimensional knapsack problem [101], especially
because the additional constraint e™x = h provides tighter upper bounds than the
classical LP-relaxation.

80 P. Hansen et al.

Function VNDS-PC2(P,d,x*)
1 Choose stopping criteria (set proceedl=proceed2=true)
2 Add objective cut: LB = ¢"x*; P= (P | ¢"x > LB)
3 while proceedl do
4 Find an optimal solution x of LP(P); set UB = ¢"x
5 if (B(X) = #) then
L break

6 Find optimal solutions X~ of LP. and X" of Lth

7 7|x —x ...,p;index xj sothat §; < §;41, j=1,...,p—1

8 Setq{{]éﬂ\(s #0}|7k.ytep:I_q/djak:p_kstep

9 while proceed?2 and k > 0 do
10 Jo={1,...,k}; ¥ = MIPSOLVE(P(x*,Ji),x*);
11 if (c"x' > c"x*) then
12 Update objective cut: LB = ¢"x'; P= (P | ¢"x > LB);
13 x* = LocalSearch(P,x); LB = c"x*; break

else
14 if (k—kgep > p—gq) then
L keep = max{[k/2],1}

15 Set k =k — kyep
16 | Update proceed2

17 x' =MIPSOLVE(P(X,B(%)),x*); LB = max{LB,c"x'};
18 Add pseudo-cutto P: P = (P | §(B(X),x,x) > 1);

19 x' =MIPSOLVE(P(X ,B(x")),x*); LB = max{LB,c"x'};
20 Addpseudo cutto P: P:(P\ O(B(x),x,x) >1);

21 x' =MIPSOLVE(P(x",B(x")),x*); LB = max{LB X'}
22 Add pseudo-cut to P : P =(P|8(Bx"),x,x") > 1),

23 Update proceed]l;

24 return LB, UB, x*.

Algorithm 19: VNDS for MIPs with pseudo-cuts and another ordering strategy

Formally, let P, be the subproblem obtained from the original problem by adding
the hyperplane constraint e"x = h for A € N, and enriched by an objective cut:

max c¢'x
s.t. Ax < b
(Py) c"x>LB+1
e'x=nh
x€{0,1}’ xR?

Let Ay and hy,,, denote lower and upper bounds on the number of variables
with value 1 in an optimal solution of the problem. Then it is obvious that v(P) =
max{V(Py) | hyin < h < hmay}. Bounds hyi = [V(LPy)| and hyay = | V(LF") | can
be computed by solving the following two problems:

3 Variable Neighborhood Search 81

min ex max e’x
| st Ax<b i s.t.. Ax< b
(LK) c"™x>LB+1 (L) c"™x>LB+1
x€[0,1)P xR x€[0,1)P xR

We define the order of the hyperplanes at the beginning of the algorithm, and
then we explore them one by one, in that order. The ordering can be done ac-
cording to the objective values of the linear programming relaxations LP(F),
h € H = {hmin, .. ,hmax}. In each hyperplane, VNDS-PC1 is applied and if there
is no improvement, the next hyperplane is explored. We refer to this method as
VNDDS (short for Variable Neighborhood Double Decomposition Search), which
corresponds to the pseudo-code in Algorithm 20. This idea is inspired by the ap-
proach proposed in [91], where the ordering of the neighborhood structures in Vari-
able Neighborhood Descent is determined dynamically, by solving relaxations of
the problems. Problems differ in one constraint that defines the Hamming distance
h(h€ H={lmin, -, Pmax })-

Function VNDDS(P,x*,d)
1 Solve the LP-relaxation problems LP; and LP; ;
Set hyin = [V(LPy)] and hyax = [V(LPY) |;
2 Sort the set of subproblems {P,,, ,...,P,,. } so that

V(LP(Ph)) < V(LP(Ph+I))a himin < h < Py
Find initial integer feasible solution x*;
for (h = hyin;h < hypgy;h++) do

L X = VNDS-PC1(Py,d,x*)

(= N7 B)

if (c"X' > ¢"x*) then
L x*=x
return x*.
Algorithm 20: Two levels of decomposition with hyperplanes ordering

It is important to note that the exact variant of VNDDS, i.e., without any limita-
tions regarding the running time or the number of iterations, converges to an optimal
solution in a finite number of steps [51].

3.6.2.3 Comparison

For comparison purposes, five algorithms are ranked according to their objective
values for the MIP benchmark instances in MIPLIB [77] and the benchmark in-
stances for the Maximum Knapsack Problem (MKP) in [21]. Tables 3.3 and 3.4
report the average differences between the ranks of every pair of algorithms for the
MIPLIP and MKP test sets, respectively.

82

Table 3.3 Objective value average rank differences on the MIPLIB set

P. Hansen et al.

ALGORITHM CPLEX VNDS-MIP VNDS-PCI VNDS-PC2 VNDDS
(average rank) (2.14) (1.95) (2.64) (3.64) (4.64)
CPLEX (2.14) 0.00 0.18 —0.50 —1.50 —2.50
VNDS-MIP —0.18 0.00 —0.68 —1.68 —2.68
(1.95)

VNDS-PC1 0.50 0.68 0.00 —1.00 —2.00
(2.64)

VNDS-PC2 1.50 1.68 1.00 0.00 —1.00
(3.64)

VNDDS (4.64) 2.50 2.68 2.00 1.00 0.00

Table 3.4 Objective value average rank differences on the MKP set

ALGORITHM CPLEX VNDS-MIP VNDS-PCI VNDS-PC2 VNDDS
(average rank) (2.86) (3.09) (2.09) (3.23) (3.72)
CPLEX (2.86) 0.00 —0.23 0.77 —0.36 —0.86
VNDS-MIP 0.23 0.00 1.00 —0.14 —0.64
(3.09)

VNDS-PC1 —0.77 —1.00 0.00 —1.14 —1.64
(2.09)

VNDS-PC2 0.36 0.14 1.14 0.00 —0.50
(3.23)

VNDDS (3.72) 0.86 0.64 1.64 0.50 0.00

It appears that VNDS-MIP outperforms the other four methods on MIPLIB
instances, while for the MKP set, the best performance is obtained with the

VNDS-PC1 heuristic.

3.7 Variable Neighborhood Search for Continuous Global

Optimization

The general form of the continuous constrained nonlinear global optimization prob-

lem (GOP) is given as follows:

min f(x)
st @) <0 Vie{l2,..,
(GOP) h(x)=0 Vie{l.2..
a;<x;<b;Vje{l,2,..

wherexeR", f:R" —R,gi:R"—>R,i=1,2,...

m}
r)
n}

ymyand h; :R" - R, i=1,2,...,r

are possibly nonlinear continuous functions, and a,b € R" are the variable bounds. A
box constraint GOP is defined when only the variable bound constraints are present

in the model.

3 Variable Neighborhood Search 83

GOPs naturally arise in many applications, e.g. in advanced engineering design,
data analysis, financial planning, risk management, scientific modeling, etc. Most
cases of practical interest are characterized by multiple local optima and, therefore,
a search effort of global scope is needed to find the globally optimal solution.

If the feasible set X is convex and objective function f is convex, then (GOP)
is relatively easy to solve, i.e., the Karush-Kuhn-Tucker conditions can be applied.
However, if X is not a convex set or f is not a convex function, we can have many lo-
cal optima and the problem may not be solved with classical techniques. For solving
(GOP), VNS has been used in two different ways: (1) with neighborhoods induced
by using a £, norm; (2) without using a £, norm.

(i) VNS with £, norm neighborhoods [40, 75, 81, 84]. A natural approach in ap-
plying VNS for solving GOPs is to induce neighborhood structures 4% (x) from the
£, metric given as:

" 1/p
y) = (Z Xi—yz'|p> , PE[le) (3.3)
i=1

and

pry) = max [xi—yil, p—ee. 3.4
The neighborhood .4z (x) denotes the set of solutions in the k-th neighborhood of x
based on the metric p. It is defined as

J%{(X) = {y €X ‘ p(xvy) < pk}7 (35)

or
M%) ={y € X | pr—1 < p(x,) < px}, (3.6)

where py, known as the radius of .#¢(x), is monotonically increasing with k (k > 2).

For solving box constraint GOPs, both [40] and [75] use the neighborhoods as
defined in (3.6). The basic differences between the two algorithms reported there
are as follows: (1) in the procedure suggested in [75] the ¢ norm is used, while
in [40] the choice of metric is either left to the analyst, or changed automatically
in some predefined order; (2) the commercial solver SNOPT [47] is used as a local
search procedure within VNS in [75], while in [40], the analyst may choose one out
of six different convex minimizers. A VNS based heuristic for solving the generally
constrained GOP is suggested in [84]. There, the problem is first transformed into a
sequence of box constrained problems within the well known exterior point method:

min Fy 4(x) = f(x) + (max{O g7+ 2 |7 (x 3.7

1
a<x<b [l

M=

where 1 and g > 1 are a positive penalty parameter and penalty exponent, respec-
tively. Algorithm 21 outlines the steps for solving the box constraint subproblem as
proposed in [84].

84 P. Hansen et al.

Function G10b-VNS (x*, kyaxs tnax)

1 Select the set of neighborhood structures Az, k =1,. .., kmax
2 Select the array of random distributions types and an initial point x* € X
3 x x5 [f(x),1+0
4 whilet < t,,,, do
5 k<1
6 repeat
7 for all distribution types do
8 y < Shake(x*,k) // Gety € A;(x*) at random
9 y' + BestImprovment(y) // Apply LS to obtain a local minimum y’
10 if (') < f* then
1 L x <y, f*+ f(/),g0 to line 5
12 k< k+1
until £ = kpax
13 t < CpuTime()

Algorithm 21: VNS using a £, norm

The Glob-VNS procedure from Algorithm 21 contains the following parameters
in addition to k., and t,,,,: (1) Values of radii py, k =1,. .., kmax, which may be
defined by the user or calculated automatically in the minimizing process; (2) Geom-
etry of neighborhood structures .44, defined by the choice of metric. Usual choices
are the /1, ¢, and {., norms; (3) Distribution types used for obtaining random points
y from A% in the Shaking step. A uniform distribution in ./4; is the obvious choice,
but other distributions may lead to much better performance on some problems.
Different choices of neighborhood structures and random point distributions lead to
different VNS-based heuristics.

(ii) VNS without using /, norm neighborhoods. Two different neighborhoods,

Ni(x) and N2 (x), are used in the VNS based heuristic suggested in [99]. In N (x),
r (a parameter) random directions from the current point x are generated and a one
dimensional search along each direction is performed. The best point (out of r)
is selected as a new starting solution for the next iteration, if it is better than the
current one. If not, as in VND, the search is continued within the next neighborhood
N, (x). The new point in N (x) is obtained as follows. The current solution is moved

for each x; (j =1,...,n) by a value A;, taken at random from the interval (—a, o);

ie., xﬁ"ew) =xj+A4; or xﬁ”ew) = xj — A,. Points obtained by the plus or minus sign

for each variable define the neighborhood N;(x). If a relative increase of 1% in the
value of xﬁ-"ew) produces a better solution than x
the — sign is chosen.

Neighborhoods N (x) and N, (x) are used for designing two algorithms. The first,
called VND, iterates over these neighborhoods until there is no improvement in the
solution value. In the second variant, a local search is performed with N, and k;;qx
is set to 2 for the shaking step.

<"ew), the + sign is chosen; otherwise

3 Variable Neighborhood Search 85

It is interesting to note that computational results reported by all VNS based
heuristics were very promising. They usually outperformed other recent approaches
from the literature.

3.8 Variable Neighborhood Programming (VNP): VNS for
Automatic Programming

Building an intelligent machine is an old dream that, thanks to computers, begins to
take shape. Automatic programming is an efficient technique that has led to impor-
tant developments in the field of artificial intelligence. Genetic programming (GP)
[73], inspired by the genetic algorithm (GA), is among the few evolutionary algo-
rithms used to evolve a population of programs. The main difference between GP
and GA is the representation of a solution. An individual in GA can be a string,
while in GP, the individuals are programs. A tree is the usual way to represent a
program in GP. For example, assume that the current solution of a problem is the
following function:

o X2+ X3

f(xl7"'a-x5)

+ x4 — X5.

Then the code (tree) that calculates f using GP may be represented as in Fig. 3.4a.
Elleuch et al. [41, 42] recently adapted VNS rules for solving automatic pro-
gramming problems. They first suggested an extended solution representation by
adding coefficients to variables. Each terminal node was attached to its own param-
eter value. These parameters give a weight for each terminal node, with values from
the interval [0, 1]. This type of representation allows VNP to examine parameter val-
ues and the tree structure in the same iteration, increasing the probability for finding
a good solution faster. Let G = {a, 0, ..., 0, } denote a parameter set. In Fig. 3.4b
an example of a solution representation in VNP is illustrated.
(i) Neighborhood structures. Nine different neighborhood structures are proposed
in [42] based on a tree representation. To save space, we will just mention some of
them:

e N (T)—Changing a node value operator. This neighborhood preserves the
tree structure and changes only the values of a functional or a terminal node.
Each node has a set of allowed values from which one can be chosen. Let x; be
the current solution; then a neighbor x; ;| differs from x; by just a single node.
A move within this neighborhood is shown in Fig. 3.5.

86 P. Hansen et al.

a) GP solution representation b) VNP solution representation

Fig. 3.4 Current solution representation in automatic programming problem: (a) —~L— + x4 — x5;

Xp+X3
o x|
(b) Tt + Olyx4 — Ol5X5

{+, ':f7 Si'n"'}

Fig. 3.5 Neighborhood N;: changing a node value

e N,(T)-Swap operator. Here, a subtree from the current tree is randomly se-
lected and a new random subtree is generated as shown in Fig.3.6al and a2.
Then the new subtree replaces the current one (see Fig. 3.6b). In this move, any
constraint related to the maximum tree size should be respected.

3 Variable Neighborhood Search 87

Fig. 3.6 Neighborhood N,: swap operator. (al) The current solution. (a2) New generated subtree.
(b) The new solution

e N3(T)—Changing parameter values. In the two previous neighborhoods, the
tree structure and the node values were considered. In the N3(T') neighborhood,
attention is paid to the parameters. So, the position and value of nodes are kept
in order to search the neighbors in the parameter space. Figure 3.7 illustrates
the procedure where the change from one value to another is performed at
random.

Fig. 3.7 Neighborhood N3: change parameters

These neighborhoods may be used in both the local search step (Ny, £ € [1, {max])
and in the shaking step (A%, k € [1, kyay]) of the VNP.

(i) VNP shaking. The shaking step allows diversification in the search space. The
proposed VNP algorithm does not use exactly the same neighborhood structures Ny
than the local search. Thus, we denote the neighborhoods used in the shaking phase
as M(T),k=1,... . knax- H(T) may be constructed by repeating k times one or
more moves from the set {Ny(T),|¢{ =1,...,{ua }. Consider, for example, the swap

88 P. Hansen et al.

operator N, (T). Let m denote the maximum number of nodes in the tree represen-
tation of the solution. We can get a solution from the kth neighborhood of T using
the swap operator, where k represents the number of nodes of the new generated
sub-tree. If n denotes the number of nodes in the original tree after deleting the old
sub-tree, than n 4 k < m. The objective of the shaking phase is to provide a good
starting point for the local search.

(iii) VNP objective function. The evaluation consists of defining a fitness (or ob-
jective) function to assess a solution. This function depends on the problem consid-
ered. After running each solution (program) on a training data set, the fitness may
be measured by counting the training cases where the returned solution is correct or
close to the exact solution.

(iv) An example: Time series forecasting (TSF) problem. Two widely used
benchmark data sets of the TSF problem are considered in [42] to study the VNP
capabilities: the Mackey-Glass series and the Box-Jenkins set. The parameters for
the VNP implementation that were chosen after some preliminary testing are given
in Table 3.5.

Table 3.5 VNP parameters adjustment for the forecasting problem

Parameters | Values

The functional set F ={+,*,,pow}

The terminal sets {(xi,c),i €[1,...,m],m = number of inputs, ¢ € R}
Neighborhood structures {N1,N2,N3}

Minimum tree length 20 nodes

Maximum tree length 200 nodes

Maximum number of iterations|50,000

The root mean square error (RMSE) is used as the fitness function, as it is nor-
mally done in the literature:

1

n
- 2 yout

3

where 7 is the total number of samples, and y/,, and y; are the output of the VNP
model and the desired output for sample j, respectively. Next we illustrate with a
comparison on a single Box-Jenkins instance.

The gas furnace data for this instance were collected from a combustion process
of a methane air mixture [20]. This time series has found a widespread application
as a benchmark example for testing prediction algorithms. The data set contains
296 pairs of input-output values. The input u(z) corresponds to the gas flow, and the
output y(¢) is the CO; concentration in the outlet gas. The inputs are u(z —4), and
y(t — 1), and the output is y(¢). In this work, 200 samples are used in the training
phase and the remaining samples are used for the testing phase. The performance
of the evolved VNP model is evaluated by comparing it with existing approaches.

3 Variable Neighborhood Search 89

The RMSE achieved by the VNP output model is (0.00038), which is better than
the RMSE obtained by other approaches, as shown in Table 3.6.

Table 3.6 Comparison of testing error on Box-Jenkins dataset

Method Prediction error RMSE
ODE [98] 0.5132
HHMDDE [38] 0.3745
FBBENT [24] 0.0047
VNP [42] 0.0038

3.9 Discovery Science

In all the above applications, VNS is used as an optimization tool. It can also lead
to results in “discovery science”, i.e., for the development of new theories. This has
been done for graph theory in a long series of papers with the common title “Vari-
able neighborhood search for extremal graphs” that report on the development and
applications of the AutoGraphiX (AGX) system [10, 28, 29]. This system addresses
the following problems:

Find a graph satisfying given constraints.

Find optimal or near optimal graphs for an invariant subject to constraints.
Refute a conjecture.

Suggest a conjecture (or repair or sharpen one).

Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea then is to address all of these problems as parametric combinatorial
optimization problems on the infinite set of all graphs (or in practice some smaller
subset) using a generic heuristic to explore the solution space. This is being accom-
plished using VNS to find extremal graphs with a given number n of vertices (and
possibly also a given number of edges). Extremal graphs may be viewed as a family
of graphs that maximize some invariant such as the independence number or chro-
matic number, possibly subject to constraints. We may also be interested in finding
lower and upper bounds on some invariant for a given family of graphs. Once an
extremal graph is obtained, VND with many neighborhoods may be used to build
other such graphs. Those neighborhoods are defined by modifications of the graphs
such as the removal or addition of an edge, rotation of an edge, and so forth. Once
a set of extremal graphs, parameterized by their order, is found, their properties are
explored with various data mining techniques, leading to conjectures, refutations
and simple proofs or ideas of proof.

90 P. Hansen et al.

More recent applications include [31, 32, 45, 50, 55] in chemistry, [8, 29] for
finding conjectures, [16, 35] for largest eigenvalues, [23, 56, 64] for extremal values
in graphs, independence [17, 18], specialty indexes [11, 15, 19, 61] and others [13,
60, 95, 96]. See [9] for a survey with many further references.

The current list of references in the series “VNS for extremal graphs” corre-
sponds to [3, 8, 10-19, 23, 28, 29, 31, 32, 35, 45, 50, 55, 56, 60, 61, 64, 95, 96]. An-
other list of papers, not included in this series, is [4-7, 9, 30, 33, 49, 52-54, 65, 97].
Papers in these two lists cover a variety of topics:

1. Principles of the approach [28, 29] and its implementation [10];

2. Applications to spectral graph theory, e.g., bounds on the index for
various families of graphs, graphs maximizing the index subject to some
conditions [16, 19, 23, 35, 65];

3. Studies of classical graph parameters, e.g., independence, chromatic
number, clique number, average distance [3, 9, 12, 17, 18, 95, 96];

4. Studies of little known or new parameters of graphs, e.g., irregular-
ity, proximity and remoteness [4, 56];

5. New families of graphs discovered by AGX, e.g., bags, which are ob-
tained from complete graphs by replacing an edge by a path, and bugs,
which are obtained by cutting the paths of a bag [14, 60];

6. Applications to mathematical chemistry, e.g., study of chemical graph
energy, and of the Randi¢ index [11, 15, 32, 45, 49, 50, 52, 53, 55];

7. Results of a systematic study of 20 graph invariants, which led to al-
most 1500 new conjectures, more than half of which were proved by
AGX and over 300 by various mathematicians [13];

8. Refutation or strengthening of conjectures from the literature [8, 30,
53];

9. Surveys and discussions about various discovery systems in graph
theory, assessment of the state-of-the-art and the forms of interesting
conjectures together with proposals for the design of more powerful
systems [33, 54].

3.10 Conclusions

The general schemes of variable neighborhood search have been presented and dis-
cussed. In order to evaluate research development related to VNS, one needs a list
of the desirable properties of metaheuristics.

1. Simplicity: the metaheuristic should be based on a simple and clear prin-
ciple, which should be widely applicable;

3 Variable Neighborhood Search 91

2. Precision: the steps of the metaheuristic should be formulated in pre-
cise mathematical terms, independent of possible physical or biological
analogies which may have been the initial source of inspiration;

3. Coherence: all steps of heuristics developed for solving a particular prob-
lem should follow naturally from the metaheuristic principles;

4. Effectiveness: heuristics for particular problems should provide optimal
or near-optimal solutions for all known or at least the most realistic in-
stances. Preferably, they should find optimal solutions for most bench-
mark problems for which such solutions are known;

5. Efficiency: heuristics for particular problems should take a moderate
computing time to provide optimal or near-optimal solutions, or com-
parable or better solutions than the state-of-the-art;

6. Robustness: the performance of the metaheuristic should be consistent
over a variety of instances, i.e., not merely fine-tuned to some training
set and not so good elsewhere;

7. User-friendliness: the metaheuristic should be clearly expressed, easy to
understand and, most importantly, easy to use. This implies it should have
as few parameters as possible, ideally none;

8. Innovation: the principle of the metaheuristic and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of
application.

9. Generality: the metaheuristic should lead to good results for a wide vari-
ety of problems;

10. Interactivity: the metaheuristic should allow the user to incorporate his
knowledge to improve the resolution process;

11. Multiplicity: the metaheuristic should be able to produce several near op-
timal solutions from which the user can choose.

We have tried to show here that VNS possesses to a great extent, all of the above
properties. This framework has led to heuristics which are among the very best ones
for many problems. Interest in VNS is growing quickly. This is evidenced by the
increasing number of papers published each year on this topic. 20 years ago, only a
few; 15 years ago, about a dozen; 10 years ago, about 50, and more than 250 papers
in 2016.

Figure 3.8 shows the parallel increase of the number of papers on VNS and on the
other best known metaheuristics. Data are obtained by using the Scopus search tool,
looking for the terms “Variable Neighborhood Search” (VNS) and “Metaheuristics”
(MH). Figure 3.8 shows the number of times the terms appeared in the abstract of
papers in this database. The years used are from 2000 to 2017 but in 2017 only the
first 6 months (from January to June) are included. For comparison purposes, the
number of papers with MH is divided by 4.

92 P. Hansen et al.

350

H VNS
300

B MH/4

250

200

150

100

50

0
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Fig. 3.8 VNS versus MH

Figure 3.9 shows the parallel increase of number of papers on VNS and on other
most known Metaheuristics. Data are collected again from the Scopus search tool to
look for the terms Variable Neighborhood Search (VNS), Tabu Search (TS), Genetic
Algorithms (GA) and Simulated Annealing (SA). For better illustration, the number
of appearances of TS, GA and SA are divided by 3, 50 and 10, respectively.

From the last figure, one can easily see that the relative increase in the number of
papers with VNS is larger than the one of other major metaheuristics, especially in
the last 5 years.

In addition, the 18th EURO Mini conference held in Tenerife in November 2005
was entirely devoted to VNS. It led to special issues of the IMA Journal of Man-
agement Mathematics in 2007 [76], European Journal of Operational Research
[68] and Journal of Heuristics [87] in 2008. After that, VNS conferences took
place in Herceg Novi—Montenegro (2012), Djerba—Tunis (2014), Malaga—Spain
(2016) and in Ouro Preto—Brazil (2017). Each meeting was covered with before-
conference Proceedings (in Electronic notes of Discrete Mathematics) and with at
least one post-conference special issue in leading OR journals: Computers and OR,
Journal of Global Optimization, IMA JMM, International Transactions of OR.

3 Variable Neighborhood Search 93

300
® VNS
250 TS/3
H GA/50
u SA/10
200
CLUH
100 —
50 -
O,
O NI O XL O A QO 9O NI D & v o0 A
LV "L LLO P N N AY N NN N N
S S A A N

Fig. 3.9 VNS versus other main MHs

Acknowledgements The work of Nenad Mladenovi¢ was conducted at the National Research
University Higher School of Economics, Nizhni Novgorod, Russia, and supported by RSF grant
14-41-00039. The fourth author is partially funded by Ministerio de Economia y Competitividad
(Spanish Government) with FEDER funds, grant TIN2015-70226-R, and by Fundacién Cajaca-
narias, grant 2016TUR19.

References

1. D.J. Aloise, D. Aloise, C.T.M. Rocha, C.C. Ribeiro, J.C. Ribeiro, L.S.S. Moura, Scheduling
work-over rigs for onshore oil production. Discrete Appl. Math. 154, 695-702 (2006)

2. D.V. Andrade, M.G.C. Resende, GRASP with path-relinking for network migration schedul-
ing, in Proceedings of International Network Optimization Conference (INOC) (2007)

3. M. Aouchiche, P. Hansen, Recherche a voisinage variable de graphes extrémes 13. A propos
de la maille (French). RAIRO Oper. Res. 39, 275-293 (2005)

4. M. Aouchiche, P. Hansen, Automated results and conjectures on average distance in graphs, in
Graph Theory in Paris, ed. by A. Bondy, J. Fonlupt, J.L. Fouquet, J.C. Fournier, J.L. Ramirez
Alfonsi. Trends in Mathematics (Birkhauser, Basel, 2006), pp. 21-36

5. M. Aouchiche, P. Hansen, On a conjecture about the Randic index. Discrete Math. 307, 262—
265 (2007)

6. M. Aouchiche, P. Hansen, Bounding average distance using minimum degree. Graph Theory
Notes N. Y. 56, 21-29 (2009)

7. M. Aouchiche, P. Hansen, Nordhaus-Gaddum relations for proximity and remoteness in
graphs. Comput. Math. Appl. 59, 2827-2835 (2010)

o4

10.

11.

12.

13.

14.

15.

16.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

P. Hansen et al.

M. Aouchiche, G. Caporossi, D. Cvetkovi¢, Variable neighborhood search for extremal
graphs 8. Variations on Graffiti 105. Congressus Numerantium 148, 129-144 (2001)

M. Aouchiche, G. Caporossi, P. Hansen, M. Laffay, AutoGraphiX: a survey. Electron Notes
Discrete Math. 22, 515-520 (2005)

M. Aouchiche, J.M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J.
Lacheré, A. Monhait, Variable neighborhood search for extremal graphs 14. The Auto-
GraphiX 2 system, in Global Optimization: From Theory to Implementation, ed. by L. Liberti,
N. Maculan (Springer, Berlin, 2005), pp. 281-309

M. Aouchiche, P. Hansen, M. Zheng, Variable neighborhood search for extremal graphs 18.
Conjectures and results about the Randic index. MATCH. Commun. Math. Comput. Chem.
56, 541-550 (2006)

M. Aouchiche, O. Favaron, P. Hansen, Recherche a voisinage variable de graphes extremes
26. Nouveaux résultats sur la maille (French). Les Cahiers du GERAD, G-2007-55, 2007

M. Aouchiche, G. Caporossi, P. Hansen, Variable Neighborhood search for extremal graphs
20. Automated comparison of graph invariants. MATCH. Commun. Math. Comput. Chem.
58, 365-384 (2007)

M. Aouchiche, G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs
27. Families of extremal graphs. Les Cahiers du GERAD, G-2007-87, 2007

M. Aouchiche, P. Hansen, M. Zheng, Variable neighborhood search for extremal graphs 19.
Further conjectures and results about the Randic index. MATCH. Commun. Math. Comput.
Chem. 58, 83-102 (2007)

M. Aouchiche, FK. Bell, D. Cvetkovié, P. Hansen, P. Rowlinson, S.K. Simi¢, D. Stevanovic,
Variable neighborhood search for extremal graphs 16. Some conjectures related to the largest
eigenvalue of a graph. Eur. J. Oper. Res. 191, 661-676 (2008)

M. Aouchiche, G. Brinkmann, P. Hansen, Variable neighborhood search for extremal graphs
21. Conjectures and results about the independence number. Discrete Appl. Math. 156, 2530-
2542 (2009)

M. Aouchiche, O. Favaron, P. Hansen, Variable neighborhood search for extremal graphs 22.
Extending bounds for independence to upper irredundance. Discrete Appl. Math. 157, 3497—
3510 (2009)

M. Aouchiche, P. Hansen, D. Stevanovié, Variable neighborhood search for extremal graphs
17. Further conjectures and results about the index. Discussiones Mathematicae: Graph The-
ory 29, 15-37 (2009)

C. Audet, V. Bachard, S. Le Digabel, Nonsmooth optimization through mesh adaptive direct
search and variable neighborhood search. J. Glob. Optim. 41, 299-318 (2008)

J. Beasley, OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc.
41(11), 1069-1072 (1990)

N. Belacel, P. Hansen, N. Mladenovié, Fuzzy J-means: a new heuristic for fuzzy clustering.
Pattern Recognit. 35, 2193-2200 (2002)

S. Belhaiza, de, N. Abreu, HanP. sen, C. Oliveira, Variable neighborhood search for extremal
graphs 11. Bounds on algebraic connectivity, in Graph Theory and Combinatorial Optimiza-
tion, ed. by D. Avis, A. Hertz, O. Marcotte (2007), pp. 1-16

S. Bouaziz, H. Dhahri, A.M. Alimi, A. Abraham, A hybrid learning algorithm for evolving
flexible beta basis function neural tree model. Neurocomputing 117, 107-117 (2013)

J. Brimberg, N. Mladenovi¢, A variable neighborhood algorithm for solving the continuous
location-allocation problem. Stud. Locat. Anal. 10, 1-12 (1996)

J. Brimberg, P. Hansen, N. Mladenovié, E. Taillard, Improvements and comparison of heuris-
tics for solving the multisource Weber problem. Oper. Res. 48, 444-460 (2000)

S. Canuto, M. Resende, C. Ribeiro, Local search with perturbations for the prize-collecting
Steiner tree problem in graphs. Networks 31, 201-206 (2001)

G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs 1. The Auto-
GraphiX system. Discrete Math. 212, 29-44 (2000)

G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs 5. Three ways to
automate finding conjectures. Discrete Math. 276, 81-94 (2004)

3 Variable Neighborhood Search 95

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

G. Caporossi, A.A. Dobrynin, I. Gutman, P. Hansen, Trees with palindromic Hosoya polyno-
mials. Graph Theory Notes N. Y. 37, 10-16 (1999)

G. Caporossi, D. Cvetkovi¢, I. Gutman, P. Hansen, Variable neighborhood search for extremal
graphs 2. Finding graphs with extremal energy. J. Chem. Inform. Comput. Sci. 39, 984-996
(1999)

G. Caporossi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs 4.
Chemical trees with extremal connectivity index. Comput. Chem. 23, 469-477 (1999)

G. Caporossi, I. Gutman, P. Hansen, L. Pavlovi¢, Graphs with maximum connectivity index.
Comput. Biol. Chem. 27, 85-90 (2003)

J. Cohoon, S. Sahni, Heuristics for backplane ordering. J. VLSI Comput. Syst. 2, 37-61
(1987)

D. Cvetkovic, S. Simic, G. Caporossi, P. Hansen, Variable neighborhood search for extremal
graphs 3. On the largest eigenvalue of color-constrained trees. Linear Multilinear Algebra 49,
143-160 (2001)

W.C. Davidon, Variable metric algorithm for minimization. Argonne National Laboratory
Report ANL-5990 (1959)

J. Desrosiers, N. Mladenovié, D. Villeneuve, Design of balanced MBA student teams. J. Oper.
Res. Soc. 56, 60-66 (2005)

H. Dhahri, A.M. Alimi, A. Abraham, Hierarchical multi-dimensional differential evolution
for the design of beta basis function neural network. Neurocomputing 97, 131-140 (2012)
A. Djenic, N. Radojicic, M. Maric, N. Mladenovi¢, Parallel VNS for bus terminal location
problem. Appl. Soft Comput. 42, 448-458 (2016)

M. Drazi¢, V. Kovacevic-Vujci¢, M. Cangalovié, N. Mladenovié¢, GLOB - a new VNS-based
software for global optimization, in Global Optimization: From Theory to Implementation,
ed. by L. Liberti, N. Maculan (Springer, Berlin, 2006), pp. 135-144

S. Elleuch, B. Jarboui, N. Mladenovi¢, Reduced variable neighborhood programming for
the preventive maintenance planning of railway infrastructure. GERAD Technical report, G-
2016-92, Montreal (2016)

S. Elleuch, B. Jarboui, N. Mladenovic¢, Variable neighborhood programming - A new auto-
matic programming method in artificial intelligence. GERAD Technical report, G-2016-21,
Montreal (2016)

M. Fischetti, A. Lodi, Local branching. Math. Program. 98, 23-47 (2003)

R. Fletcher, M.J.D. Powell, Rapidly convergent descent method for minimization. Comput. J.
6, 163-168 (1963)

P.W. Fowler, P. Hansen, G. Caporossi, A. Soncini, Variable neighborhood search for extremal
graphs 7. Polyenes with maximum HOMO-LUMO gap. Chem. Phys. Lett. 49, 143-146
(2001)

M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness (Freeman, New York, 1978)

P. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithms for largescale constrained
optimization. SIAM J. Optim. 12, 979-1006 (2002)

R.E. Griffith, R.A. Stewart, A nonlinear programming technique for the optimization of con-
tinuous processing systems. Manag. Sci. 7, 379-392 (1961)

I. Gutman, O. Miljkovié, G. Caporossi, P. Hansen, Alkanes with small and large Randi¢ con-
nectivity indices. Chem. Phys. Lett. 306, 366-372 (1999)

I. Gutman, P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 10. Com-
parison of irregularity indices for chemical trees. J. Chem. Inform. Model. 45, 222-230 (2005)
S. Hanafi, J. Lazi¢, N. Mladenovi¢, C. Wilbaut, I. Crévits, New variable neighborhood search
based 0-1 MIP heuristic. Yugoslav J. Oper. Res. 25, 343-360 (2015)

P. Hansen, Computers in graph theory. Graph Theory Notes N. Y. XLIII, 20-39 (2002)

P. Hansen, How far is, should and could be conjecture-making in graph theory an automated
process? in Graph and Discovery. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol.69 (American Mathematical Society, Providence, 2005), pp. 189-229
P. Hansen, H. Mélot, Computers and discovery in algebraic graph theory. Linear Algebra
Appl. 356, 211-230 (2002)

96

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.
74.
75.
76.
71.
78.
79.
80.

81.

P. Hansen et al.

P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 6. Analyzing bounds
for the connectivity index. J. Chem. Inform. Comput. Sci. 43, 1-14 (2003)

P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 9. Bounding the ir-
regularity of a graph. Graphs Discov. 69, 253-264 (2005)

P. Hansen, N. Mladenovi¢, J-Means: a new local search heuristic for minimum sum-of-
squares clustering. Pattern Recognit. 34, 405—413 (2001)

P. Hansen, N. Mladenovi¢, Variable neighborhood search: principles and applications. Eur. J.
Oper. Res. 130, 449-467 (2001)

P. Hansen, N. Mladenovi¢, Variable neighborhood search, in Handbook of Metaheuristics, ed.
by F. Glover, G. Kochenberger (Kluwer, Boston, 2003), pp. 145-184

P. Hansen, D. Stevanovié, Variable neighborhood search for extremal graphs 15. On bags and
bugs. Discrete Appl. Math. 156, 986-997 (2005)

P. Hansen, D. Vukicevié, Variable neighborhood search for extremal graphs 23. On the Randic
index and the chromatic number. Discrete Math. 309, 4228-4234 (2009)

P. Hansen, B. Jaumard, N. Mladenovié, A. Parreira, Variable neighborhood search for
weighted maximum satisfiability problem. Les Cahiers du GERAD, G-2000-62, 2000

P. Hansen, N. Mladenovi¢, D. Pérez-Brito, Variable neighborhood decomposition search. J.
Heuristics 7, 335-350 (2001)

P. Hansen, H. Mélot, I. Gutman, Variable neighborhood search for extremal graphs 12. A note
on the variance of bounded degrees in graphs. MATCH Commun. Math. Comput. Chem. 54,
221-232 (2005)

P. Hansen, M. Aouchiche, G. Caporossi, H. Mélot, D. Stevanovi¢, What forms do interest-
ing conjectures have in graph theory? in Graph and Discovery. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 69 (American Mathematical Society,
Providence, 2005), pp. 231-251

P. Hansen, N. Mladenovié, D. Urosevi¢, Variable neighborhood search and local branching.
Comput. Oper. Res. 33, 3034-3045 (2006)

P. Hansen, J. Brimberg, D. Urosevié¢, N. Mladenovi¢, Primal-dual variable neighborhood
search for the simple plant location problem. INFORMS J. Comput. 19, 552-564 (2007)

P. Hansen, N. Mladenovi¢, J.A. Moreno Pérez, Variable neighborhood search. Eur. J. Oper.
Res. 191, 593-595 (2008)

P. Hansen, N. Mladenovi¢, J.A. Moreno Pérez, Variable neighborhood search: methods and
applications. 40R. Q. J. Oper. Res. 6, 319-360 (2008)

A. Hertz, M. Plumettaz, N. Zufferey, Variable space search for graph coloring. Discrete Appl.
Math. 156, 2551-2560 (2008)

ILOG CPLEX 10.1. User’s Manual (2006)

K. Jornsten, A. Lokketangen, Tabu search for weighted k-cardinality trees. Asia-Pacific J.
Oper. Res. 14, 9-26 (1997)

J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection (MIT, Cambridge, 1992)

J. Lazié, S. Hanafi, N. Mladenovi¢, D. UroSevi¢, Variable neighbourhood decomposition
search for 0—1 mixed integer programs. Comput. Oper. Res. 37, 1055-1067 (2010)

L. Liberti, M. Drazi¢, Variable neighbourhood search for the global optimization of con-
strained NLPs, in Proceedings of GO Workshop, Almeria, 2005

B. Melian, N. Mladenovié, Editorial. IMA J. Manag. Math. 18, 99-100 (2007)

MIPLIB http://miplib.zib.de/miplib2003/

N. Mladenovié, A variable neighborhood algorithm — a new metaheuristic for combinatorial
optimization. Abstracts of papers presented at Optimization Days, Montréal (1995), p. 112
N. Mladenovié, Formulation space search — a new approach to optimization (plenary talk), in
Proceedings of XXXII SYMOPIS 05, ed. by J. Vuleta (Vrnjacka Banja, Serbia, 2005)

N. Mladenovié, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24, 1097-1100
(1997)

N. Mladenovié, J. Petrovié, V. Kovatevié-Vujgié¢, M. Cangalovié, Solving spread spectrum
radar polyphase code design problem by tabu search and variable neighborhood search. Eur.
J. Oper. Res. 151, 389-399 (2003)

http://miplib.zib.de/miplib2003/

3 Variable Neighborhood Search 97

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

N. Mladenovié, F. Plastria, D. Urosevi¢, Reformulation descent applied to circle packing
problems. Comput. Oper. Res. 32, 2419-2434 (2005)

N. Mladenovié, E. Plastria, D. UroSevi¢, Formulation space search for circle packing prob-
lems. Lect. Notes Comput. Sci. 4638, 212-216 (2007)

N. Mladenovié¢, M. Drazi¢, V. Kovacevic-Vujci¢, M. Cangalovié, General variable neighbor-
hood search for the continuous optimization. Eur. J. Oper. Res. 191, 753-770 (2008)

N. Mladenovi¢, D. Urosevi¢, D. Pérez-Brito, C.G. Garcia-Gonzalez, Variable neighbourhood
search for bandwidth reduction. Eur. J. Oper. Res. 200, 14-27 (2010)

N. Mladenovic, J. Kratica, V. Kovacevic-Vujcic, M. Cangalovic, Variable neighborhood
search for metric dimension and minimal doubly resolving set problems. Eur. J. Oper. Res.
220, 328-337 (2012)

J.M. Moreno-Vega, B. Melian, Introduction to the special issue on variable neighborhood
search. J. Heuristics 14, 403-404 (2008)

J.J. Pantrigo, R. Marti, A. Duarte, E.G. Pardo, Scatter search for the cutwidth minimization
problem. Ann. Oper. Res. 199, 285-304 (2012)

E.G. Pardo, N. Mladenovic, J.J. Pantrigo, A. Duarte, Variable formulation search for the cut-
width minimization problem. Appl. Soft Comput. 13, 2242-2252 (2014)

F. Plastria, N. Mladenovié, D. UroSevié, Variable neighborhood formulation space search for
circle packing, in /8th Mini Euro Conference VNS, Tenerife, 2005

J. Puchinger, G. Raidl, Bringing order into the neighborhoods: relaxation guided variable
neighborhood search. J. Heuristics 14, 457472 (2008)

C.C. Ribeiro, M.C. de Souza, Variable neighborhood search for the degree-constrained mini-
mum spanning tree problem. Discrete Appl. Math. 118, 43-54 (2002)

C.C. Ribeiro, E. Uchoa, R. Werneck, A hybrid GRASP with perturbations for the Steiner
problem in graphs. INFORMS J. Comput. 14, 228-246 (2002)

J. Rolim, O. Sykora, I. Vrt’o, Optimal cutwidths and bisection widths of 2- and 3-dimensional
meshes, in Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Sci-
ence, vol. 1017 (1995), pp. 252-264

J. Sedlar, D. Vukicevic, M. Aouchiche, P. Hansen, Variable neighborhood search for extremal
graphs 24. Conjectures and results about the clique number. Les Cahiers du GERAD G-2007-
33,2007

J. Sedlar, D. Vukicevic, M. Aouchiche, P. Hansen, Variable neighborhood search for extremal
graphs 25. Products of connectivity and distance measures. Les Cahiers du GERAD, G-2007-
47,2007

D. Stevanovic, M. Aouchiche, P. Hansen, On the spectral radius of graphs with a given dom-
ination number. Linear Algebra Appl. 428, 1854-1864 (2008)

B. Subudhi, D. Jena, A differential evolution based neural network approach to nonlinear
system identification. Appl. Soft Comput. 11, 861-871 (2011)

A.D. Toksari, E. Giiner, Solving the unconstrained optimization problem by a variable neigh-
borhood search. J. Math. Anal. Appl. 328, 11781187 (2007)

D. Urosevi¢, J. Brimberg, N. Mladenovic¢, Variable neighborhood decomposition search for
the edge weighted k-cardinality tree problem. Comput. Oper. Res. 31, 1205-1213 (2004)

Y. Vimont, S. Boussier, M. Vasquez, Reduced costs propagation in an efficient implicit enu-
meration for the 01 multidimensional knapsack problem. J. Comb. Optim. 15, 165-178 (2008)
R. Whitaker, A fast algorithm for the greedy interchange of large-scale clustering and median
location problems. INFOR 21, 95-108 (1983)

Chapter 4)
Large Neighborhood Search s

David Pisinger and Stefan Ropke

Abstract In the last 15 years, heuristics based on large neighborhood search (LNS)
and the variant adaptive large neighborhood search (ALNS) have become some
of the most successful paradigms for solving various transportation and schedul-
ing problems. Large neighborhood search methods explore a complex neighbor-
hood through the use of heuristics. Using large neighborhoods makes it possible to
find better candidate solutions in each iteration and hence follow a more promis-
ing search path. Starting from the general framework of large neighborhood search,
we study in depth adaptive large neighborhood search, discussing design ideas and
properties of the framework. Application of large neighborhood search methods in
routing and scheduling are discussed. We end the chapter by presenting the related
framework of very large-scale neighborhood search (VLSN) and discuss parallels to
LNS, before drawing some conclusions about algorithms exploiting large neighbor-
hoods.

4.1 Introduction

The topic of this chapter is the metaheuristic Large Neighborhood Search (LNS)
proposed by Shaw [105] and its more recent extension Adaptive Large Neighbor-
hood Search (ALNS) proposed by Ropke and Pisinger [88, 95]. In LNS, an initial
solution is gradually improved by alternately destroying and repairing the solution.
The LNS heuristic belongs to the class of heuristics known as Very Large Scale
Neighborhood search (VLSN) algorithms [4]. All VLSN algorithms are based on

D. Pisinger - S. Ropke (<)
DTU Management Engineering, Technical University of Denmark, Lyngby, Denmark
e-mail: dapi@dtu.dk; ropke @dtu.dk

© Springer International Publishing AG, part of Springer Nature 2019 99
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_4&domain=pdf
mailto:dapi@dtu.dk
mailto:ropke@dtu.dk
https://doi.org/10.1007/978-3-319-91086-4_4

100 D. Pisinger and S. Ropke

the observation that searching a large neighborhood results in finding local optima
of high quality, and hence a VLSN algorithm may return better solutions. However,
searching a large neighborhood is time consuming, hence various filtering tech-
niques are used to limit the search. In VLSN algorithms, the neighborhood is typ-
ically restricted to a subset of solutions which can be searched efficiently. In LNS,
the neighborhood is implicitly defined by methods (often heuristics) which are used
to destroy and repair an incumbent solution.

The two similar terms LNS and VLSN may cause confusion. We consistently use
VLSN for the broad class of algorithms that searches very large neighborhoods and
LNS for the particular metaheuristic based on destroy and repair neighborhoods, as
described in Sect. 4.2.

In the rest of the introduction, we first define two example problems and the con-
cept of neighborhood search algorithms. In Sect. 4.2, we describe the LNS meta-
heuristic. Its ALNS extension is described in Sect. 4.3. This is followed in Sect. 4.4
by a discussion of properties of ALNS and a survey of LNS and ALNS applica-
tions. Finally, we present the related VLSN framework and discuss parallels to LNS
in Sect.4.5. Some conclusions and future research directions are drawn in Sect. 4.6.

4.1.1 Example Problems

Throughout this chapter, we will refer to two example problems: the Traveling
Salesman Problem (TSP) and a generalization, the Capacitated Vehicle Routing
Problem (CVRP). The TSP is probably the most studied and well-known combina-
torial optimization problem. In the TSP, a salesman has to visit a number of cities.
The salesman must perform a tour through all the cities such that the salesman re-
turns to his starting city at the end of the tour. More precisely, we are given an
undirected graph G = (V,E) in which each edge e € E has an associated cost c,.
The goal of the TSP is to find a cyclic tour, such that each vertex is visited exactly
once. The sum of the edge costs used in the tour must be minimized. We recommend
[7] for more information about the TSP.

In the CVRP, one has to serve a set of customers using a fleet of homogeneous
vehicles based at a common depot. Each customer has a certain demand for goods
which are initially located at the depot. The task is to design vehicle routes starting
and ending at the depot such that all customer demands are fulfilled.

The CVRP can be defined more precisely as follows. We are given an undirected
graph G = (V,E) with vertices V = {0,...,n} where vertex 0 is the depot and the
vertices N = {1,...,n} are customers. Each edge ¢ € E has an associated cost c,.
The demand of each customer i € N is given by a positive quantity g;. Moreover, m
homogeneous vehicles are available at the depot and the capacity of each vehicle is
equal to Q. The goal of the CVRP is to find exactly m routes, starting and ending at
the depot, such that each customer is visited exactly once by a vehicle and such that
the sum of demands of the customers on each route is less than or equal to Q. The
sum of the edge costs used in the m routes must be minimized. We recommend [58]

4 Large Neighborhood Search 101

3 2
2
° ° ° s ° °
1 4
° ° ° 2 °
° * e ¢
° 3 1 2 ®3
° ° ° ° ° ° ° 50
° 1] ®
7
° o ° °] 4 o3 o2
6
° °
)) 2 01 o3
1
° °

Fig. 4.1 Left: a TSP solution. Right: A CVRP solution. In the CVRP, the depot is represented by
a square and each customer i is represented by a node labeled with a demand ¢;

for further information about the CVRP and vehicle routing problems in general.
An example of a TSP and a CVRP solution are shown in Fig.4.1.

4.1.2 Neighborhood Search

In this section, we formally introduce the term neighborhood search. We are given
an instance / of a combinatorial optimization problem, where X is the set of feasible
solutions for the instance (we write X (/) when we need to emphasize the connection
between an instance and its solution set) and ¢ : X — R is a function that maps a
solution to its cost. X is assumed to be finite, but is usually an extremely large set.
We assume that the combinatorial optimization problem is a minimization problem,
that is, we want to find a solution x* such that c¢(x*) < ¢(x) Vx € X.

We define a neighborhood of a solution x € X as N(x) C X. That is, N is a func-
tion that maps a solution to a set of solutions. A solution x is said to be locally opti-
mal or a local optimum with respect to a neighborhood N if c(x) < c(x') V¥’ € N(x).
A neighborhood search algorithm takes an initial solution x as input, and computes
¥ = argmingey(y){c(x”)}, that is, it finds the best solution x’ in the neighborhood
of x. If ¢(x') < ¢(x) then the algorithm performs the update x = x’. The neighbor-
hood of the new solution x is searched for an improving solution and this is repeated
until a local optimum x is reached, in which case the algorithm stops. The algorithm
is denoted a best improvement algorithm as it always chooses the best solution in
the neighborhood.

A simple example of a neighborhood for the TSP is the 2-opt neighborhood
which can be traced back to [41]. The neighborhood of a solution x in the 2-opt
neighborhood is the set of solutions that can be reached from x by deleting two
edges in x and adding two other edges in order to reconnect the tour. A simple ex-
ample of a neighborhood for the CVRP is the relocate neighborhood (see e.g. [61]).
In this neighborhood, N(x) is defined as the set of solutions that can be created from
x by relocating a single customer. The customer can be moved to another position
in its current route or to another route.

102 D. Pisinger and S. Ropke

We define the size of the neighborhood N(-) for a particular instance I as
max {|N(x)| : x € X(I)}. Let .# (n) be the (possibly infinite) set of all instances of
size n for the problem under study. We can then define the size of a neighborhood
as a function f(n) of the instance size n: f(n) = max{|N(x)|: I € #(n),x € X(I)}.
Heuristics based on neighborhoods of size f(n) = O(n*) for low values of k (say
k < 3) are denoted small neighborhood search (SNS) heuristics in the following.

The 2-opt neighborhood for the TSP as well as the relocate neighborhood for the
CVRP have size f(n) = O(n?) where n is the number of cities/customers.

4.2 Large Neighborhood Search

The Large Neighborhood Search (LNS) metaheuristic was proposed by Shaw [105]
and was based on ideas similar to those of the ruin and recreate method by Schrimpf
etal. [102].

Most neighborhood search algorithms explicitly define the neighborhood like the
relocate neighborhood described in Sect. 4.1.2. In the LNS metaheuristic, the neigh-
borhood is implicitly defined by a destroy and a repair method. A destroy method
destructs a part of the current solution while a repair method rebuilds the destroyed
solution. The destroy method typically contains an element of stochasticity, so that
different parts of the solution are destroyed each time the method is invoked. The
neighborhood N(x) of a solution x is then defined as the set of solutions that can be
reached by first applying the destroy method and then the repair method.

To illustrate the destroy and repair concepts, consider the CVRP. A destroy
method for the CVRP could remove, say 15%, of the customers in the current so-
lution, short-cutting the routes where customers have been removed. A very simple
destroy method would select the customers to remove at random. A repair method
could rebuild the solution by inserting removed customers, using a greedy heuristic.
Such a heuristic could simply scan all free customers, insert the one whose insertion
cost is the lowest and repeat the insertion until all customers are done. The destroy
and repair steps are illustrated in Fig. 4.2.

Since the destroy method can destruct a large part of the solution, the neighbor-
hood typically contains a large number of solutions, as indicated by the name of this
heuristic. Consider for example a CVRP instance with 100 customers. There are
C(100,15) = 100! /(15! x 85!) = 2.5 x 10'7 different ways to select the customers
to be removed if the percentage or degree of destruction of the solution is 15%.
There are many ways to repair the solution for each removal choice, but different
removal choices can of course result in the same solution after the repair.

‘We now present the LNS heuristic in more details. Pseudocode for the heuristic is
shown in Algorithm 1. Three variables are maintained by the algorithm. The variable
X% is the best solution observed during the search, x is the current solution and x
is a temporary solution that can be discarded or promoted to the status of current
solution. The function d(-) is the destroy method while r(-) is the repair method.
More specifically, d(x) returns a copy of x that is partly destroyed. Applying r(:)

4 Large Neighborhood Search 103

3 3
2 1 o o \ 2 1 o« o \
° 2 o ° 2 o
3e L4 3 L4
2 e 2
2 l ° e3 2 l ° ®3
i | o ® O °
Te / e3) 7o d e3)
6 6
° °
2 ol e3 2 ol e3
1 1
° 3 2 hd
2 o e
1 4
° 2 °
3e L4
2
2 l ° 3
°
1 0 .5
Te p, e3 o2
6
2¢ 01 e3

Fig. 4.2 Destroy and repair example. The top left figure shows a CVRP solution before the destroy
operation. The top right figure shows the solution after a destroy operation that removed six cus-
tomers (now disconnected from the routes). The bottom figure shows the solution obtained after
reinsertion of the customers by the repair operation

to an incomplete solution repairs it, that is, it returns a feasible solution built from
the destroyed one. In line 2, the global best solution is initialized. In line 4, the
heuristic first applies the destroy method and then the repair method to obtain a new
solution x'. In line 5, the new solution is evaluated, and the heuristic determines
whether this solution should become the new current solution (line 6) or whether it
should be rejected. The accept function can be implemented in different ways. The
simplest choice is to only accept improving solutions. Note that more sophisticated
methods are described later in this section. Line 8 checks whether the new solution is
better than the best known solution. Here c(x) denotes the objective value of solution
x. The best solution is updated in line 9, if necessary. In line 11, the termination
condition is checked. It is up to the implementer to choose the termination criterion,
but a limit on the number of iterations or a time limit would be typical choices. In
line 12, the best solution found is returned. It can be observed from the pseudocode
that the LNS metaheuristic does not search the entire neighborhood of a solution,
but merely samples this neighborhood.

The main idea behind the LNS heuristic is that the large neighborhood allows the
heuristic to navigate in the solution space easily, even if the instance is tightly con-
strained. This is to be opposed to small neighborhood search heuristics like those
mentioned in Sect. 4.1.2 which can make it harder to explore distant parts of the so-
lution space. The idea had been proposed prior to the first LNS papers by Shaw, but
it was Shaw [104, 105] who first described the heuristic in general terms and coined

104 D. Pisinger and S. Ropke

Algorithm 1 Large neighborhood search

: input: a feasible solution x

X0 =x;

. repeat

X =r(d(x));

if accept(x’, x) then
x=x';

end if

if c(x') < c¢(x?) then
xb=x

end if

: until stopping criterion is met

: return x”

A A ol ey

—_—

the name Large neighborhood search. Shaw [105] refers to the papers by Caseau
and Laburthe [25] and Adams et al. [1] as sources of inspiration. Another earlier
heuristic that clearly contains the destroy/repair idea is a set covering heuristic by
Jacobs and Brusco [59].

In the original LNS paper [105], the accept method only allowed improving so-
lutions (we denote such an accept method a hill-climber). Later papers, like [95]
and [102], have used an acceptance criteria borrowed from simulated annealing.
With such an acceptance criterion, the temporary solution x’ is always accepted if
c(x') < ¢(x), and accepted with probability exp(—(c(x') — c(x))/T) if c(x) < c(x).
Here T > 0 is the current temperature. The temperature is initialized at Ty > 0 and
is decreased gradually, for example by performing the update 7;,,,, = a7,y at each
iteration, where 0 < o < 1 is a parameter. T is set to a relatively high value initially,
thus allowing deteriorating solutions to be accepted. As the search progresses, T
decreases and only a few or no deteriorating solutions are accepted towards the end
of the search. If such an acceptance criterion is employed, the LNS heuristic can be
viewed as a standard simulated annealing heuristic with a complex neighborhood
definition.

Other acceptance criteria have been tested in recent works, see for example Lei
et al. [71], Hemmati and Hvattum [51] and Santini et al. [99]. The latter references
compare different acceptance criteria across several problem types. The conclu-
sion is that the simulated annealing acceptance criterion works well, but that better
choices may exist for a given application. Other well performing acceptance cri-
teria are record-to-record travel [37] and threshold accepting [38], both of which
are controlled by a parameter T like simulated annealing. Another finding is that
decreasing the parameter T linearly from Tp to O over the course of the algorithm
results in comparable performance to decreasing T linearly or exponentially to an
application specific end value T¢pq. This holds for all three mentioned acceptance
criteria (for simulated annealing, one has to decrease to an € close to 0 to avoid
division by zero). This observation simplifies parameter tuning since one does not
have to worry about setting an appropriate end temperature.

The destroy method is an important part of the LNS heuristic. The most impor-
tant choice when implementing the destroy method is the degree of destruction: if

4 Large Neighborhood Search 105

only a small part of the solution is destroyed then the heuristic may have trouble
exploring the search space as the effect of a large neighborhood is lost. If a very
large part of the solution is destroyed then the LNS heuristic almost degrades into
repeated re-optimization. This can be time consuming or yield poor quality solu-
tions depending on how the partial solution is repaired. Shaw [105] proposed to
gradually increase the degree of destruction, while Ropke and Pisinger [95] choose
the degree of destruction randomly in each iteration by choosing the degree from a
specific range dependent on the instance size. The destroy method must also allow
the entire search space to be reached, or at least the interesting part of the search
space where the global optimum is expected to be found. Therefore, it cannot focus
on always destroying a particular component of the solution but must make possible
to destroy every part of the solution.

There is a lot of freedom in choosing the repair method of an LNS implemen-
tation. A first decision is whether the repair method should be optimal in the sense
that the best possible complete solution is constructed from the partial solution, or
whether it should be a heuristic, assuming that one is satisfied with a good solution
constructed from the partial solution. An optimal repair operation will be slower
than a heuristic one, but may potentially lead to high quality solutions in a few itera-
tions. However, from a diversification point of view, an optimal repair operation may
not be attractive: only improving or identical-cost solutions will be produced and it
can be difficult to leave valleys in the search space unless a large part of the solution
is destroyed in each iteration. The repair method can be based on a problem-specific
heuristic, an exact method, a general purpose mixed integer programming (MIP), or
a constraint programming solver.

It is worth observing that the LNS heuristic typically alternates between an in-
feasible solution and a feasible solution: the destroy operation creates an infeasi-
ble solution which is brought back into feasible form by the repair heuristic. The
destroy and repair methods can also be viewed as fix/optimize operations: the fix
method (corresponding to the destroy method) fixes part of the solution at its cur-
rent value while the rest remains free; the optimize method (corresponding to the
repair method) attempts to improve the current solution while respecting the fixed
values. Such an interpretation of the heuristic may be more natural if the repair
method is implemented using MIP or constraint programming solvers.

4.3 Adaptive Large Neighborhood Search

The Adaptive Large Neighborhood Search (ALNS) heuristic was proposed in [95]
and extends the LNS heuristic by allowing multiple destroy and repair methods to
be used within the same search process. Each destroy/repair method is assigned a
weight that controls how often that particular method is attempted during the search.
The weights are adjusted dynamically as the search progresses so that the heuristic
adapts to the instance at hand and to the state of the search.

106 D. Pisinger and S. Ropke

Using a neighborhood search terminology, one can say that ALNS extends LNS
by allowing multiple neighborhoods within the same search. The choice of neigh-
borhood to use is controlled dynamically using the recorded performance of the
neighborhoods.

Algorithm 2 Adaptive large neighborhood search

1: 1nput a feasible solution x

2l =xp7=(,...,1);p" =(1,...,1);
3: repeat

4: select destroy and repair methods d € 2~ and r € Q% using p~ and pT;
50 X =r(dx);

6: if accept(x’,x) then

7 x=x;

8: endif

9: ifc(x') < c(x’) then
10: xb =
11: endif
12: update p~ and p+;
13: until stopping criterion is met

b

=

: return x'

A pseudocode for the ALNS heuristic is shown in Algorithm 2. When we com-
pare with the LNS pseudocode in Algorithm 1, we note the following changes. Lines
4 and 12 have been added and line 2 has been modified. The sets of destroy and
repair methods are denoted 2~ and 7, respectively. Two new variables are intro-
duced inline 2: p~ € R land p* € RI? "I, to store the weight of each destroy and
repair method, respectively. Initially all methods have the same weight. In line 4, the
weight vectors p~ and p™ are used to select the destroy and repair methods using
a roulette wheel principle. The algorithm calculates the probability ¢;" of choosing
the jth destroy method as follows

- P;
d’j |Q]\
2o pk
and the probabilities for choosing the repair methods are determined in the same
way.

The weights are adjusted dynamically, based on the recorded performance of
each destroy and repair method. This takes place in line 12: when an iteration of the
ALNS heuristic is completed, a score y for the destroy and repair methods used in
the last iteration is computed using the formula

w; if the new solution is a new global best,
if the new solution is better than the current one,
if the new solution is accepted,

w4 if the new solution is rejected,

W = max 4.1)

4 Large Neighborhood Search 107

where w1, @, w3 and @y are parameters. A high y value corresponds to a successful
method. We would normally have @; > @, > @3 > w4 > 0.

Let a and b be the indices of the destroy and repair methods that were used in the
last iteration of the algorithm, respectively. The components corresponding to the
selected destroy and repair methods in the p~ and p™ vectors are updated using the
equations

Pa =Aps +(1=A)y, p =2p, +(1-A)y, (4.2)

where A € [0, 1] is the decay parameter that controls how sensitive the weights are to
changes in the performance of the destroy and repair methods. Note that the weights
that are not used in the current iteration remain unchanged. The aim of the adaptive
weight adjustment is to select weights that work well for the instance being solved.
We encourage heuristics that bring the search forward, which are the ones rewarded
with the o, @, and w3 parameters in (4.1). We discourage heuristics that lead to
many rejected solutions since an iteration resulting in a rejected solution is a wasted
iteration, roughly speaking. This is achieved by assigning a low value to wy.

In the presentation above, we assigned an individual weight to each destroy and
repair method. This approach may not be appropriate if a particular destroy method
works well together with one repair method and produces non-interesting solutions
when coupled with another repair method. In this case, it can make sense to assign
weight to pairs of (destroy, repair) methods instead of each individual method. An
example of this approach is found in Kovacs et al. [63].

It may also be that the partial solution produced by a destroy operator is incom-
patible with a certain repair method, for example when the repair method makes
certain assumptions about the solution. In this case, one can use coupled neighbor-
hoods. In principle, one may define a subset K; C Q7 of repair neighborhoods that
can be used with each destroy method d;. The roulette wheel selection of repair
neighborhoods will then only choose a neighborhood in K; if d; was chosen.

A special case is K; = @ when the neighborhood d; takes care of both the destroy
and repair steps. One could also use an ordinary local search heuristic to compete
with the other destroy and repair neighborhoods, thus ensuring that a thorough in-
vestigation of the solution space close to the current solution is made from time to
time.

The ALNS heuristic described so far is prone to favor complex repair meth-
ods that more often reach high quality solutions when compared to simpler repair
methods. This is fine if the complex and simple repair methods are equally time-
consuming, but that may not be the case. If some methods are significantly slower
than others, one may normalize the score y of a method with a measure of the time
consumption of the corresponding heuristic. This ensures a proper trade-off between
time consumption and solution quality. An example is found in Adulyasak et al. [2].

108 D. Pisinger and S. Ropke

4.3.1 Designing an ALNS Algorithm

The considerations mentioned earlier for selecting destroy and repair methods in the
LNS heuristic also holds for an ALNS heuristic. However, the ALNS framework
gives some extra freedom because multiple destroy/repair methods are allowed. In
the pure LNS heuristic, we have to select a destroy and a repair method that is ex-
pected to work well for a wide range of instances. In an ALNS heuristic, we can
afford to include destroy/repair methods that only are suitable in some cases—the
adaptive weight adjustment will ensure that these heuristics are seldom used on in-
stances where they are ineffective. Therefore, the selection of destroy and repair
methods can be turned into a search for methods that are good at either diversifica-
tion or intensification.

Below, we will discuss some typical destroy and repair methods. In the discus-
sion, we will assume that our solution is represented by a set of decision variables.
The term variables should be understood in a rather abstract way.

Diversification and intensification for the destroy methods can be accomplished
as follows: to diversify the search, one may randomly select the parts of the solution
that should be destroyed (random destroy method). To intensify the search one may
try to remove g “critical” variables, i.e. variables having a large cost or variables
that spoil the current structure of the solution (e.g. edges crossing each other in an
Euclidean TSP). This is known as worst destroy or critical destroy.

One may also choose a number of related variables that are easy to interchange
while maintaining solution feasibility. This related destroy neighborhood was intro-
duced by Shaw [105]. For the CVRP one can define a relatedness measure between
each pair of customers. The measure could simply be the distance between the cus-
tomers and it could include customer demand as well (customers with similar de-
mand are considered related). Thus, a related destroy method would select a set of
customers that have a high mutual relatedness measure. The idea is that it should be
easy to exchange similar customers.

Finally, one may use history based destroy where the g variables are chosen ac-
cording to some historical information, as presented in [88]. The historical infor-
mation could for example count how often the setting of a given variable (or set of
variables) leads to a bad solution. One may then try to remove variables that are
currently assigned to an improper value, based on the historical information.

The repair methods in set 2 are often based on specific well-performing heuris-
tics for the given problem. These heuristics can make use of variants of the greedy
paradigm, e.g. performing the locally best choice in each step, or performing the
least bad choice in each step. Traditional improvement algorithms that explore small
neighborhoods, denoted SNS heuristics in Sect. 4.1.2, can be used as part of a repair
method to improve the output of a greedy algorithm.

The repair methods can also be based on approximation algorithms or exact al-
gorithms. Exact algorithms can be relaxed to obtain faster solution times at the cost
of solution quality. Some examples are presented in [13, 105]. Time consuming
and fast repair methods can be mixed by penalizing the time consuming methods
as described earlier. Using a MIP solver for performing the repair step is becom-

4 Large Neighborhood Search 109

ALNS

__—

_~
N*

Fig. 4.3 Illustration of neighborhoods used by ALNS. The current solution is marked with x.
ALNS operates on structurally different neighborhoods Ny, ..., N, defined by the corresponding
search heuristics. All neighborhoods Ny,...,N; in ALNS are a subset of the neighborhood N*
defined by modifying g variables, where ¢ is a measure of the maximum degree of destruction

ing increasingly attractive because these solvers become more and more powerful
with every new released version [15]. The MIP approach has the advantage that
repair methods for complex applications can be implemented quickly. A potential
drawback is that extra care regarding the degree of destruction is necessary as the
repair method otherwise could become extremely slow. Some examples of (A)LNS
heuristics that employ a MIP solver for the repair step are: Belo-Filho et al. [12],
Carrizosa et al. [24], Grangier et al. [48], Muller et al. [81]. It is worth pointing out
that an (A)LNS heuristic with a MIP repair method can be seen as a prototype of a
matheuristic.

Figure 4.3 illustrates, in an abstract way, the many neighborhoods in an ALNS
heuristic. Each neighborhood on the figure can be considered as a unique combina-
tion of a destroy and repair method.

In traditional local search heuristics, diversification is controlled implicitly by the
local search paradigm (accept ratio, tabu list, etc.). (A)LNS heuristics typically con-
trols diversification through the accept criterion, and in many (A)LNS applications
further diversification is applied by using noise or randomization in the destroy and
repair methods. The rationale is to avoid a stagnating search processes where the
destroy and repair methods keep performing the same modifications to a solution.

Several papers have pointed out that diversification in the repair step does not
necessarily lead to better solution quality (see, for example, Kiefer et al. [60]). Hem-
mati and Hvatum [51] go a step further and study the effect of exchanging the ran-
domized components with deterministic alternatives in an ALNS algorithm for a
maritime pickup and delivery problem. Seven randomized components are identi-
fied and for five of them, the performance is about the same when the randomized
and deterministic components are compared. The randomized version produces bet-
ter results in one case while the deterministic version produce better results in the

110 D. Pisinger and S. Ropke

remaining case. It is worth pointing out that the deterministic alternatives are not
necessarily simpler or more intuitive compared to their randomized counterparts.

To conclude on this issue, we believe that the benefits of noise, in particular for
the repair component, is application specific and depend on other choices made in
the design of the ALNS heuristic. It is therefore a component that can be omitted. If
included, it would be wise to test if it has any impact.

For some problems, it may be sufficient to have a number of destroy and re-
pair heuristics that are selected randomly with equal probability, that is, without the
adaptive layer. In [88], such heuristics were coined large multiple-neighborhood
search (LMNS) heuristics. LMNS heuristics share the robustness of the ALNS
heuristics, while having considerably fewer parameters to calibrate. Several heuris-
tics of this type have appeared recently in the literature (see Sect. 4.4).

4.3.2 Properties of the ALNS Framework

The ALNS framework has several advantages. For most optimization problems, we
already know a number of well-performing heuristics which can form the core of
an ALNS algorithm. Due to the large neighborhoods and diversity of the neigh-
borhoods, the ALNS algorithm will explore large parts of the solution space in a
structured way. The resulting algorithm becomes very robust because it can adapt
to various characteristics of the individual instances, and it seldom gets trapped in
local optima.

The calibration of the ALNS algorithm is quite limited since the adaptive layer
automatically adjusts the influence of each neighborhood used. It is still necessary
to calibrate the individual sub-heuristics used for searching the destroy and repair
neighborhoods, but one may calibrate these individually or even use the parameters
of existing algorithms.

In the design of most local search algorithms, the researcher has to choose be-
tween a number of possible neighborhoods. In ALNS, the question is not “either-or”
but rather “both-and”. As a matter of fact, our experience is that the more (rea-
sonable) neighborhoods the ALNS heuristic makes use of, the better it performs
[88, 96].

The ALNS framework is not the only one to make use of several neighborhoods
in a LNS heuristic. Rousseau et al. [97] use two LNS neighborhoods for the Vehicle
Routing Problem with Time Windows (VRPTW): one removing customers and an-
other removing arcs. They propose a Variable Neighborhood Descent (VND) where
one neighborhood is used until one is “sufficiently sure” that the search is trapped
in a local minimum, in which case the search switches to the other neighborhood.
When the second neighborhood runs out of steam, the first neighborhood is used
again and so on.

Perron [85] uses an adaptive technique to select repair methods from a portfolio
by assigning weights to the repair methods based on their performance, like ALNS.
Laborie and Godard [67] propose a framework very similar to ALNS, the difference

4 Large Neighborhood Search 111

being that their framework also dynamically adjusts the parameters of the individual
destroy and repair methods. The ALNS framework described in this section assumes
that those parameters are fixed in advance. Palpant et al. [82] only use one destroy
and repair method but propose a method for dynamically adjusting the scope of
the destroy operation in order to find the neighborhood size that allows the repair
operation to be completed within reasonable time. The authors use complex, time
consuming repair methods.

4.3.3 Relation to Other Metaheuristics

The LNS and ALNS have similarities to the variable neighborhood search (VNS)
metaheuristics presented by Hansen and Mladenovi¢ [50], Mladenovi¢ and Hansen
[79]. In order to implement a VNS, one needs a set of neighborhood structures
N,k =1,... kmax. Typically the size of the neighborhood increases with k and it is
common, but not required, that . 4%, (x) C 4%, (x) for any solution x when k; < k.
Furthermore, one needs a local search method. The local search method can use
a single neighborhood or it can use several different neighborhoods in which case
it is called a variable neighborhood descent. The basic VNS heuristic is depicted in
Algorithm 3. Line 5 is known as the shaking step and the result of the shaking step is
improved using the local search in line 6. Lines 7-11 check if the resulting solution
is better than the incumbent. If it is not, k is increased. In this way, the shaking
becomes more powerful (under the assumption that the size of the neighborhood
grows with k).

The VNS heuristic can be understood in LNS terms as follows: the shaking step
in line 5 corresponds to the destroy method in the LNS while the local search step
in line 6 corresponds to the repair step. In this sense, LNS and ALNS can be seen as
generalizations of VNS. The multiple neighborhoods available to the shaking step is
similar to the multiple neighborhoods in ALNS, but there is no adaptive selection of
neighborhood in the basic VNS (adaptive versions in the spirit of ALNS have been
suggested, see for example Schneider et al. [103]).

Another related concept is that of Hyper Heuristics. Burke et al. [21] describes
hyper-heuristics as heuristics to choose heuristics, that is, algorithms where a master
heuristic is choosing between several sub-ordinate heuristics. Therefore, the ALNS
heuristic can be seen as a hyper-heuristic: the adaptive component is choosing from
the set of destroy and repair methods (which usually are heuristics).

4.3.4 Parallelism

Examples of implementations of the (A)LNS heuristics that takes advantage of par-
allel processing have been proposed in the literature. Perron and Shaw [86] describe
a parallel LNS heuristic for a network design problem, while Ropke [94] describes

112 D. Pisinger and S. Ropke

Algorithm 3 Variable neighborhood search (VNS)

1: input: an initial solution x

2: repeat
3 k=1
4 repeat
5 select random x” from 4% (x)
6: x” = localsearch(x”)
7 if f(x”) < f(x) then
8: x=x"1k=1
9: else
10: k=k+1
11: end if

12: until k > kpax
13: until stopping criterion is met
14: return x

a framework for implementing parallel ALNS heuristics. The framework was tested
on the CVRP and TSP with pickup and delivery. More recently, Hifi et al. [55] de-
scribe a parallel LNS for a knapsack problem under disjunctive constraints. Also,
there have been publications about the implementation of (A)LNS using graphical
processing units (GPUs). GPUs are massively parallel processing units that theo-
retically can do many more calculations per second compared to ordinary CPUs.
However, new memory models and rules for execution of program parts must be
understood in order to take the full advantage of the GPU. Campeotto et al. [22]
present a GPU implementation of a large neighborhood search applied to constraint
programming, while Bach et al. [10] present in a short abstract a GPU implementa-
tion of the ALNS for solving distance constrained CVRPs.

4.4 Applications of LNS and ALNS

The LNS heuristic was early on primarily used as a heuristic for solving vehicle
routing problems. But, in recent years, there has been a growth in the number of
papers that apply the heuristic to other problem types. In the following sections,
we review some of the of (A)LNS heuristics proposed for both VRP and non-VRP
applications.

4.4.1 Vehicle Routing Applications

LNS was first applied to vehicle routing problems by Shaw [104, 105]. Then, in
the early 2000s, the method was shown to produce high quality solutions for the
vehicle routing problem with time windows (VRPTW) and the pickup and delivery
problem with time windows (PDPTW) by Bent and Van Hentenryck [13, 14]. At

4 Large Neighborhood Search 113

around the same time, the ALNS was introduced and its first applications were the
PDPTW [95], the VRPTW [88] and other VRP variants [96]. From then on, a large
number of LNS and ALNS heuristics have been proposed for a multitude of VRP
variants. Table 4.1 summarizes some of the publications on VRP variants published
from 2010 to 2017. The list is far from complete: we have chosen a sample that
spans different problem types over those years. The two first columns of the table
report the main problem type (VRP type) and the specific problem studied in the
paper. In terms of the main problem types, we consider VRPs where goods are dis-
tributed from a depot to customers or collected from customers and brought back
to the depot, with different objectives and constraints. In multi-layer routing prob-
lems, goods can be transported along several routes. In the VRP with cross-docking,
for example, goods are picked up using one vehicle, transported to the cross-dock
where goods are consolidated and moved to new vehicles that perform the delivery.
In pickup and delivery problems, a transport request consists of a pickup at one lo-
cation and a delivery at a different location, where typically more than one request
can share the vehicle. In inventory routing problems, customers may need a delivery
several times during a given time horizon and routes should be planned to avoid
running out of stock at one or more customers. Production routing integrates the
routing decision with a lot sizing problem and potentially also with inventory con-
siderations at the customer nodes. Arc routing deals with problems where the arcs
of a graph, not the nodes, require service. A typical example is snow removal. In dy-
namic/stochastic routing problems, a part of the input data is considered uncertain,
but information about the stochastic variables may be available through known dis-
tributions. Such problems can be approached in a classical stochastic optimization
sense where one generate an a-priori solution that minimizes the expected cost or
generates solutions that remain feasible in most scenarios. Another approach is to
simply solve the updated problem every time new information becomes available.
The reader is referred to Pillac et al. [87], Psaraftis et al. [90] and Gendreau et al.
[45] for more information on dynamic and stochastic VRPs.

Columns 3-5 in Table 4.1 show the number of destroy and repair methods used,
as well as the number of combined destroy-repair methods. Combined methods oc-
cur in two different situations. First, the VRP type may be such that the removal
of customers can be seen as both a destroy and a repair method, in which case all
methods are combined. It happens, for example, when a part of the problem is to
select which customers to serve or to select on which day(s) the customers should
be served. An example is the inventory routing problem studied by Coelho et al.
[27]. Second, methods may both destroy and repair in the same step. An example is
the swap method defined in Eskandarpour et al. [40]. It is worth mentioning that the
number of destroy/repair methods for a particular method is debatable. Sometimes,
it is possible to create different instances of one method by changing a parameter.
An example is the widely used regret repair method based on a VRP construction
algorithm proposed by Potvin and Rousseau [89]. In this method, an integer param-
eter defines a kind of look-ahead measure and each parameter value can give rise to
a new repair method. Such multiple parameterized versions of the same algorithm
are counted as one method. Column 6 indicates if ALNS (v) or LNS (-) is used.

114 D. Pisinger and S. Ropke

Column 7 indicates if solutions are improved using a small neighborhood search
(SNS) heuristic (see Sect.4.1.2). A v in the column indicates “yes”. For example,
the routes in a VRP solution may be improved using the 2-opt neighborhood and
the entire solution may be improved using the relocate neighborhood mentioned
in Sect.4.1.2. Column 8 reports the acceptance criterion used, where SA, HC and
RRT indicates Simulated annealing, hill climbing and record to record travel, re-
spectively. The two first acceptance criteria are explained in Sect. 4.2, while the last
is explained in Dueck [37]. The SA and RRT rely on a parameter T that typically is
decreasing over time. If this parameter is kept fixed, it is indicated with fixed in col-
umn 8. For some publications, the acceptance criterion is listed as ad hoc because
it does not fit the common criteria defined in the literature. Column 9 indicates the
publication year.

We comment further on the table in the following section. For now, we would
like to highlight the heuristic presented by Christiaens and Vanden Berghe [26] for
the CVRP. It is currently among the heuristics that perform best on the large set of
instances proposed by Uchoa et al. [109]. This is quite remarkable since the heuristic
is simple and the CVRP is one of the most studied VRP variants (see, for example,
Laporte et al. [69]). Among non-LNS heuristics that perform well on the CVRP, we
would like to mention the hybrid genetic algorithm by Vidal et al. [111] (which also
provides high quality solutions to many other variants).

4.4.2 Other Applications

As already mentioned, the number of (A)LNS applications outside the VRP domain
has traditionally been small compared to the number of VRP applications. But, in
recent years, the number of non-VRP applications has significantly grown. Table 4.2
highlights some of these applications (although the list is far from complete). The
table is organized in the same way as Table 4.1 and cover publications on different
applications from 2010 to 2017. The first column now specifies the major applica-
tion area (the labels should be self-explanatory). It is interesting to note that most
applications fall into the broad category of transport and logistics. This is perhaps
not surprising considering the popularity of (A)LNS heuristics within the VRP com-
munity.

Some trends become apparent when examining Tables 4.1 and 4.2. However, be-
fore drawing any conclusions, we would like to stress that the publications presented
in the tables are just a sample of the entire population of (A)LNS papers. Therefore,
a bias in the selection of publications can skew the conclusions.

115

4 Large Neighborhood Search

[011] $1800

Lo VST | T - ! ¢ |Sunpueq yim gsp Amanep pue dmyorg
10T VS| — A - S 9 [9L] soysuen yym wo[qord opir e eIy
£10¢C oypy| A - - (4 € (€8] spur ® eI AraArpep pue dnyorq
€102 vs| - | ~ - N L T e
-suen s wofqoid Araarep pue dnyorg
L10T] PXJVS DH| — VAl - (4 14 [8] SUR{OOP-SSOID M JHA Sunnox 1ake[-n[ny
(41014 0y pv| — / - € 8 [€S] JYA UO[PYD3-0M],))
910¢ OH| VAl - 14 S [S] YA 99917
910¢ VS| — - - I I [92] JAA parerdede)
10T VS| — VAl - 4 S [6] ordryoa 1od sonor sydnnur im JYA
¥10T VS| - | A - € 4! [+€] Sunnox uonnjjod aanoslqo-1g
10T AN A VAl - 4 14 [¥9] JYA 1UASISUOD
cloc VS| — % - € S [£9] wargord
Surnpayods pue SunNOI UBIOIUYII) AJIAIOS JIA
(414 VS| — VAl - € cl [¢€] Sunnox uonnfjod
(414 VS| — VAl - 4 9 [0T] JA UOHII[[OD IS
(414 VS| — Wl - € L [£6] IIA parerrdedes aanemuwny
110oc JOH| - - I I [co] sprol
ynds ym Surnpayos pue Jupnox diyg
Teox 9oue)doooy [SNS [SNTV | pourquuioog | rredorg | Aonsopy wopqod oyroadg odAy TIA

suoneordde JYA T'H dqBL

D. Pisinger and S. Ropke

vioe vs| / / B 4 4 Sunnoi-KI01UdAUI O1ISLYO0)S puL oﬁEmwm
[8] sainox
cloe VS|~ / B ¢ § AIoAT[op ordpmu yym JYA Orweukq
[1L] smopuim swn pue
rioc L4 / - 4 4 SPUBWIAP O1SLY00Is IM JYA paAeloede) J1SBYO0)S/OIRUA(]
0102 | - | A - b b [89] spucuiop
onseyools yim Sunnor ore pjejoede)
41014 Paxy 1| — 2 S - - [86] SunnoI ore pozIuOIYOUAS 3unnoy o1y
S10¢ OH| — N - 1 8 [21] Sunnos uononpoid| Sunnox uononpoid
S10T VS| — 2 - T IS [zs] Surddrys dwren ur Surnox A10juoAuy
10z vs| A | 2 1 - - (€] wargosd
Sunnol A1ojuaaur d1porrad pue 9ANII[AS Sunmox K101uaAu
[LT] yuow
croe vs| / / 1 B - -dryssuen yim worqoid Junnoi-A10judAuy
Teox 9oue)doooy [SNS [SNTV | pourquuioog | rredorg | Aonsopy wopqod oyroadg odAy TIA

116

a8ed snoraard woIy panunuo)— [AqeL

117

4 Large Neighborhood Search

[$¢] sdew

L1oe OH B I I Surry-ooeds Aq senurerurssip pue suoniodoxd Surziensip

L10T OH - 14 € [08] SuLIAISN[O S[NPOW 21BMIJOS
910¢| 204 pVv A 6 Kuey [zp] Suttofoo uonnied 1o

S10C OH - 1 1 [z,] sSurpying 3rews ur Surnpayos Surjeowr areme A31oug

[11] swurens

L10¢ VS / € 6 -u0d Surjoo} YIm sauryoew [ofered [eonuUpI JurNpayos
- : - - p— Surnpayog

10¢C VS - I 1 [2] waqoad Surnpayos yse) [ouuosiad uonezIwIuIw Jrys
[LL] sonsi3o|
L10T A& / - - wopqoid juowugisse pazierouasd pue Furyojeq IApIo jurof ASnoyaIep
2102 DH , 4 9 [18] sowy dnjas yym Jurzis-jo] Suzis10

L10T OH - 1 (4 [¢¢] Surqesown jooyos ySiy
L10T VS A € ol [09] w[goId SurjqeIawn) 350D Paseq-WNNILLNY Surjqe)
910¢ VS Vs € T [9] Su1uo1109s JUIPNIS ISINOJ SANIIH Jun [euoneonpy

€102 VS a [4 [4 [99] Surjqeiown uone)Nsuo)
L10T VS 2 z v [£6] yuowuSisse oueld Aenb pue uoneoo[e yog suonerado podvog

910¢ VS , € ¥ [8.] uoneooyre yueg
S10T VS » 14 14 [y8] wial uonedso| Lroe

-qoid uoned0[[E—UONEI0] FULIOA0D [BUWIIXBW ONSI[IqBqOI] : -

L10¢ VS - 6 9 [0t] uS1sop spromiou ureyo Ajddng
S10T VS N 4 S [z¢€] sspromiau qny Jo uSIsaq ug1sop YJI0MIAN

€10 OH - ré 1 [0,] woneAIasuOd saroadsnnur 10§ USISAP JI0MIAU ISNQOY

L10T VS N - - [¢7] Suruued sury pue uSrsap yromiau ysuen) prder Kemyrey

910¢ VS A I € [Z11] SuTNpaYos S[OTYAA SLIOI[H
¥10T| 904y pvy - ¢ ¢ [101] (uStsap yr0m)au) USTISIP AINOY yodsuen orqng

worqoxd

coe VS B I ¢ Q01ATas 1a8uassed pue Jurnpayds I[OIYIA SNOJUBINWIS

[1eag [eourideooy | SNS [SNTV [paurquioog [iredom | Konsop|

wopqoxd oyooadg|

urewo(|

suoneordde QYA-UON T'p AqEL

118 D. Pisinger and S. Ropke

With that word of warning, we wish to indicate the following trends to the reader:
it appears that simulated annealing and hill-climbing are the two most popular
choices for the acceptance criterion. These criteria were used in the early successful
LNS and ALNS implementations, so it is not surprising if they are pervasive in the
literature. However, as reported by Santini et al. [99], it may be worthwhile to con-
sider other acceptance criteria in order to improve the performance slightly. From
the tables, it also appears that the idea of applying small neighborhood search to im-
prove the results from the repair step is more widespread in VRP applications than
in other applications. A possible explanation is that well-performing small neigh-
borhoods are widely known for VRP variants and are therefore an easy addition to
the heuristic.

The idea of using more than one destroy/repair method is widespread and is not
found only within ALNS heuristics. One may use multiple destroy/repair methods
in the large multiple-neighborhood search method described earlier, and other ap-
proaches also exists. Mongores et al. [80], for example, let the search start with one
method and only switches to the next method when no improving solution is found
for a certain number of iterations.

The numerous diverse applications in Table 4.2 illustrate the versatility of the
(A)LNS heuristic. It remains an easy-to-apply heuristic, especially if one relies on
existing solvers (e.g. MIP solvers) to perform the repair step. Looking into the fu-
ture, we therefore believe that the heuristic is going to find new applications and
that the ratio between VRP and non-VRP applications could soon shift toward a
majority of published results for non-VRP applications.

4.5 Very Large-Scale Neighborhood Search

We end this chapter by considering a related class of algorithms based on very large-
scale neighborhood search. LNS belongs to the class of VLSN algorithms since it
searches a very large neighborhood. However, neighborhoods of LNS are typically
implicitly defined from the destroy and repair heuristics, while VLSN algorithms
usually have an explicit definition of the neighborhoods.

According to Altner et al. [6], a search algorithm belongs to the class of VLSN
algorithms if the neighborhood it searches grows exponentially with the instance
size or if the neighborhood is simply too large to be searched explicitly. Clearly,
the class of VLSN algorithms is rather broad. Altner et al. [6] categorize VLSN
into three classes: (1) variable depth methods, (2) network flow-based improvement
methods, (3) other methods based on compound moves or variable fixing.

Searching a very large neighborhood should intuitively lead to higher quality so-
lutions than searching a small neighborhood. However, in practice, small neighbor-
hoods can provide similar or superior quality if they are embedded in a metaheuristic
framework, because they typically can be searched more quickly. Such behavior is
reported in [17, 56], for example. Thus, VLSN algorithms are not “magic bullets”.
But, for the right applications, they provide excellent results.

4 Large Neighborhood Search 119

4.5.1 Variable-Depth Methods

Larger neighborhoods generally lead to local solutions of better quality, but the
search is more time-consuming. Hence, a natural idea is to gradually extend the
size of the neighborhood, each time the search gets trapped in a local minimum.

Variable-Depth Neighborhood Search (VDNS) methods search a parameterized
family of still deeper neighborhoods Ni,N,,...,N; in a heuristic way. A typi-
cal example is the l-exchange neighborhood N; where one variable/position is
changed. Similarly, the 2-exchange neighborhood N, swaps the value of two vari-
ables/positions. In general, the k-exchange neighborhood N, changes k variables.
Variable-depth search methods are techniques that search the k-exchange neighbor-
hood partially, hence reducing the time used to search the neighborhood.

One of the first applications of variable-depth search was the Lin-Kernighan
heuristic [73] for solving the TSP. Briefly, the idea in the Lin-Kernighan heuristic
is to replace as many as n edges (with n being the number of cities in the instance)
when moving from a tour S to a tour 7. In even steps of the algorithm, an edge is
inserted into the Hamiltonian path, while in odd steps, an edge is deleted to restore
a Hamiltonian path. From each Hamiltonian path, a Hamiltonian cycle is implicitly
constructed by joining the two end nodes. The choice for the edge to be added to
the Hamiltonian path is made in a greedy way, maximizing the gain in the objective
function. The Lin-Kernighan algorithm terminates when no improving tour can be
constructed.

The basic idea in a VDNS heuristic is to make a sequence of local moves and
to freeze all combinatorial objects that have been moved to prevent the search from
cycling. VDNS stops when no further local move is possible and returns the best
found solution.

An extension of the Lin-Kernighan heuristic, called ejection chains, was pro-
posed by Glover in [46]. An ejection chain is initiated by selecting a set of elements
that will undergo a state change. The result of this change leads to identifying a
collection of other sets, with the property that the elements of at least one set must
be “ejected from” their current states. State-change steps and ejection steps typi-
cally alternate. In some cases, a cascade of operations may be triggered leading to a
domino effect.

Variable-depth and ejection-chain based algorithms have been applied to several
problems, including the traveling salesman problem [43, 92], the vehicle routing
problem with time windows [106], the generalized assignment problem [113] and
nurse scheduling [36]. Ahuja et al. [4] give an excellent overview of earlier applica-
tions of the VDNS methods.

Frequently, VDNS methods are used in conjunction with other metaheuristic
frameworks, like the filter-and-fan methods in Glover and Rego [47].

120 D. Pisinger and S. Ropke

4.5.2 Network Flow-Based Improvement Algorithms

This family of improvement algorithms use various network-flow algorithms to
search the neighborhood. In general, they can be grouped in the following three,
not necessarily distinct, categories: (1) minimum cost cycle methods, (2) shortest
path based methods, and (3) minimum cost assignment based methods. In the fol-
lowing, we give a short overview of the methods and refer to the survey of Ahuja et
al. [4] for further details.

4.5.2.1 Neighborhoods Defined by Cycles

A cyclic exchange neighborhood consists of a sequence of elements being trans-
ferred among a family of subsets. Thompson [107] showed how to find an improv-
ing neighbor in the cyclic exchange neighborhood by finding a negative cost cycle
in a constructed improvement graph. Finding a negative cost subset-disjoint cycle in
the improvement graph is NP-hard, but effective heuristics for searching the graph
exist.

Thompson and Psarafitis [108] and Gendreau et al. [44] applied the cyclic neigh-
borhood to solve the VRP. Ahuja et al. [3] used cyclic exchanges to solve the capac-
itated minimum spanning tree problem.

4.5.2.2 Neighborhoods Defined by Paths

Path exchanges is a generalization of the swap neighborhood. A large-scale neigh-
borhood can be defined by aggregating an arbitrary number of so-called indepen-
dent swap operations [4]. The best neighbor of a TSP tour for this aggregated swap
neighborhood can be found in O(n?) time by solving a shortest path problem in an
improvement graph constructed for this purpose.

For the one machine batching problem, Hurink [56] applies a special case of the
aggregated swap neighborhood where only adjacent pairs are allowed to switch. An
improving neighbor can be found in O(n?) time by solving a shortest path problem
in the improvement graph.

Considering the single machine scheduling problem, Brueggemann and Hurink
[16] presented an extension of the adjacent pairwise interchange neighborhood
which can be searched in quadratic time by calculating a shortest path in an im-
provement graph.

4 Large Neighborhood Search 121

4.5.2.3 Neighborhoods Defined by Assignments and Matching

The assignment neighborhood was first presented by Sarvanov and Doroshko [100]
for the TSP. It is an exponential neighborhood structure obtained by finding mini-
mum cost assignments in an improvement graph.

For the TSP, the assignment neighborhood is based on the removal of k nodes,
from which a bipartite graph is constructed. In this graph, the nodes on the left-hand
side are the removed nodes, and the nodes on the right-hand side are the remaining
nodes. The cost of each assignment is the cost of inserting a node between two
existing nodes. Sarvanov and Doroshko [100] considered the case where k = n/2
and n is even. Punnen [91] generalized this approach to arbitrary k and n.

Using the same idea, Franceschi et al. [31] obtained promising results for the
distance-constrained CVRP. Brueggemann and Hurink [19] presented a neighbor-
hood of exponential size for the problem of scheduling independent jobs on parallel
machines when the weighted average completion time is minimized.

4.5.3 Other VLSN Algorithms

VLSN algorithms can also be based on aggregating or compounding independent
moves. The idea is to simultaneously execute two or more moves when their impact
on the objective function can be evaluated independently. Ergun et al. [39] and Gen-
dreau et al. [44] aggregate independent moves to solve the VRP, and Brueggemann
et al. [18] apply the concept to a minimum makespan parallel machine scheduling
problem.

Another approach is to solve an induced MIP subproblem by fixing a subset of
the decision variables. The RINS algorithm proposed by Danna et al. [29] solve
an induced MIP subproblem where some variables are fixed to values frequently
attained in previous incumbent solutions. Davenport et al. [30] use constraint pro-
gramming to search a large neighborhood.

4.6 Conclusion

This chapter has given an in-depth description of LNS and ALNS, and has briefly
explained the central concepts of VLSN. Algorithms exploiting large neighborhoods
have shown very promising results during the last decade, and we expect to see more
algorithmic developments as well as new application areas.

One of the key benefits of the LNS heuristic is that a heuristic can be quickly
put together from existing components: An existing construction heuristic or exact
method can be turned into a repair heuristic and a destroy method based on random
selection is easy to implement. Therefore, we see a potential for using simple LNS
heuristics for benchmark purposes when developing more sophisticated methods.

122 D. Pisinger and S. Ropke

Large neighborhoods offer no guarantee of finding better solutions than using
smaller neighborhoods. Increased complexity of the neighborhood search means
that fewer iterations can be performed by a local search algorithm. Gutin and Kara-
petyan [49] experimentally compared a number of small and large neighborhoods
for the multidimensional assignment problem, including various combinations of
them. It was demonstrated that some combinations of both small and large neigh-
borhoods provided the best results. This could indicate that hybrid neighborhoods
may be a promising direction for future research.

Another interesting research topic for the future is to investigate if techniques
from machine learning and artificial intelligence could be used to improve the adap-
tive layer in ALNS. It is likely that a more clever dynamic selection of destroy and
repair methods could improve the heuristic and it may be interesting to let other
parameters in the algorithm adapt to the instance at hand, for example parameters
controlling solution acceptance.

References

1. J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop scheduling.
Manag. Sci. 34(3), 391-401 (1988)

2. Y. Adulyasak, J.-F. Cordeau, R. Jans, Optimization-based adaptive large neighborhood search
for the production routing problem. Transp. Sci. 48(1), 2045 (2012)

3. R.K. Ahuja, J.B. Orlin, D. Sharma, Multi-exchange neighborhood structures for the capaci-
tated minimum spanning tree problem. Math. Program. 91(1), 71-97 (2001)

4. RXK. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen, A survey of very large-scale neighborhood
search techniques. Discret. Appl. Math. 123, 75-102 (2002)

5. D. Aksen, O. Kaya, E.S. Salman, O. Tiincel, An adaptive large neighborhood search algo-
rithm for a selective and periodic inventory routing problem. Eur. J. Oper. Res. 239(2), 413—
426 (2014)

6. D.S. Altner, RK. Ahuja, O. Ergun, J.B. Orlin, Very large-scale neighborhood search, in
Search Methodologies: Introductory Tutorials in Optimization and Decision Support Tech-
niques (Springer, Berlin, 2014), pp. 339-367

7. D.L. Applegate, R.E. Bixby, V. Chvatal, W.J. Cook, The Traveling Salesman Problem: A
Computational Study (Princeton University Press, Princeton, 2006)

8. N. Azi, M. Gendreau, J.-Y. Potvin, A dynamic vehicle routing problem with multiple delivery
routes. Ann. Oper. Res. 199(1), 103-112 (2012)

9. N. Azi, M. Gendreau, J.-Y. Potvin, An adaptive large neighborhood search for a vehicle
routing problem with multiple routes. Comput. Oper. Res. 41, 167-173 (2014)

10. L. Bach, G. Hasle, C. Schulz, GPU parallelization of ALNS for the DCVRP, in VeRoLog
Abstracts, Nantes (2016)

11. A.C. Beezdo, J.-F. Cordeau, G. Laporte, H.-H. Yanasse, Scheduling identical parallel ma-
chines with tooling constraints. Eur. J. Oper. Res. 257(3), 834-844 (2017)

12. M.AF. Belo-Filho, P. Amorim, B. Almada-Lobo, An adaptive large neighbourhood search
for the operational integrated production and distribution problem of perishable products.
Int. J. Prod. Res. 53(20), 6040-6058 (2015)

13. R. Bent, P. Van Hentenryck, A two-stage hybrid local search for the vehicle routing problem
with time windows. Transp. Sci. 38(4), 515-530 (2004)

14. R. Bent, P. Van Hentenryck, A two-stage hybrid algorithm for pickup and delivery vehicle
routing problem with time windows. Comput. Oper. Res. 33(4), 875-893 (2006)

4 Large Neighborhood Search 123

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

R.E. Bixby, A brief history of linear and mixed-integer programming computation. Doc.
Math. Extra Volume: Optimization Stories, 107-121 (2012)

T. Brueggemann, J.L.. Hurink, Two exponential neighborhoods for single machine schedul-
ing. Technical report Memorandum No. 1776, University of Twente (2005)

T. Brueggemann, J. Hurink, Two very large-scale neighborhoods for single machine schedul-
ing. OR Spectr. 29, 513-533 (2007)

T. Brueggemann, J.L. Hurink, T. Vredeveld, G.J. Woeginger, Performance of a very large-
scale neighborhood for minimizing makespan on parallel machines. Electron. Notes Discret.
Math. 25, 29-33 (2006)

T. Brueggemann, J.L. Hurink, Matching based exponential neighborhoods for parallel ma-
chine scheduling. J. Heuristics 17(6), 637-658 (2011)

K. Buhrkal, A. Larsen, S. Ropke, The waste collection vehicle routing problem with time
windows in a city logistics context. Procedia. Soc. Behav. Sci. 39, 241-254 (2012)

E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, R. Qu, Hyper-
heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695-1724 (2013)

F. Campeotto, A. Dovier, F. Fioretto, E. Pontelli, A GPU implementation of large neighbor-
hood search for solving constraint optimization problems, in Proceedings of the Twenty-First
European Conference on Artificial Intelligence (10S Press, Amsterdam, 2014), pp. 189-194
D. Canca, A. De-Los-Santos, G. Laporte, J.A. Mesa, An adaptive neighborhood search meta-
heuristic for the integrated railway rapid transit network design and line planning problem.
Comput. Oper. Res. 78, 1-14 (2017)

E. Carrizosa, V. Guerrero, D.R. Morales, Visualizing proportions and dissimilarities by
space-filling maps: a large neighborhood search approach. Comput. Oper. Res. 78, 369-380
(2017)

Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals. Technical report LIENS-
95-25, Ecole Normale Superieure, Département de mathématiques et informatique, Paris
(1995)

J. Christiaens, G. Vanden Berghe, A fresh ruin & recreate implementation for the capacitated
vehicle routing problem. Technical report, KU Leuven, November 2016

L.C. Coelho, J.-F. Cordeau, G. Laporte, The inventory-routing problem with transshipment.
Comput. Oper. Res. 39(11), 2537-2548 (2012)

L.C. Coelho, J.-F. Cordeau, G. Laporte, Heuristics for dynamic and stochastic inventory-
routing. Comput. Oper. Res. 52, 55-67 (2014)

E. Danna, E. Rothberg, C. Le Pape, Exploring relaxation induced neighborhoods to improve
MIP solutions. Math. Program. 102(1), 71-90 (2005)

A. Davenport, J. Kalagnanam, C. Reddy, S. Siegel, J. Hou, An application of constraint pro-
gramming to generating detailed operations schedules for steel manufacturing, in Interna-
tional Conference on Principles and Practice of Constraint Programming (Springer, Berlin,
2007), pp. 64-76

R. De Franceschi, M. Fischetti, P. Toth, A new ILP-based refinement heuristic for vehicle
routing problems. Math. Program. 105(2-3), 471-499 (2006)

E.M. de S4, I. Contreras, J.-F. Cordeau, Exact and heuristic algorithms for the design of hub
networks with multiple lines. Eur. J. Oper. Res. 246(1), 186-198 (2015)

E. Demir, T. Bektas, G. Laporte, An adaptive large neighborhood search heuristic for the
pollution-routing problem. Eur. J. Oper. Res. 223(2), 346-359 (2012)

E. Demir, T. Bektas, G. Laporte, The bi-objective pollution-routing problem. Eur. J. Oper.
Res. 232(3), 464478 (2014)

E. Demirovi¢, N. Musliu, MaxSAT-based large neighborhood search for high school
timetabling. Comput. Oper. Res. 78, 172-180 (2017)

K.A. Dowsland, Nurse scheduling with tabu search and strategic oscillation. Eur. J. Oper.
Res. 106(2-3), 393—407 (1998)

G. Dueck, New optimization heuristics: the great deluge algorithm and the record-to-record
travel. J. Comput. Phys. 104(1), 86-92 (1993)

G. Dueck, T. Scheuer, Threshold accepting: a general purpose optimization algorithm ap-
pearing superior to simulated annealing. J. Comput. Phys. 90(1), 161-175 (1990)

124

39

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

D. Pisinger and S. Ropke

. O. Ergun, J.B. Orlin, A. Steele-Feldman, Creating very large scale neighborhoods out of
smaller ones by compounding moves. J. Heuristics 12(1), 115-140 (2006)

M. Eskandarpour, P. Dejax, O. Péton, A large neighborhood search heuristic for supply chain
network design. Comput. Oper. Res. 80, 23-37 (2017)

M.M. Flood, The traveling salesman problem. Oper. Res. 4(1), 61-75 (1956)

F. Furini, E. Malaguti, A. Santini, An exact algorithm for the partition coloring problem.
Technical report, Optimization Online (2016)

D. Gamboa, C. Osterman, C. Rego, F. Glover, An experimental evaluation of ejection chain
algorithms for the traveling salesman problem. Technical report, School of Business Admin-
istration, University of Mississippi (2006)

M. Gendreau, F. Guertin, J.-Y. Potvin, R. Séguin, Neighborhood search heuristics for a dy-
namic vehicle dispatching problem with pick-ups and deliveries. Transp. Res. C: Emerg.
Technol. 14(3), 157-174 (2006)

M. Gendreau, O. Jabali, W. Rei, Stochastic vehicle routing problems, in Vehicle Routing:
Problems, Methods, and Applications, ed. by P. Toth, D. Vigo, 2nd edn. (Society for Indus-
trial and Applied Mathematics, Philadelphia, 2014), pp. 213-239

F. Glover, Ejection chains, reference structures and alternating path methods for traveling
salesman problems. Discret. Appl. Math. 65(1-3), 223-253 (1996)

F. Glover, C. Rego, Ejection chain and filter-and-fan methods in combinatorial optimization.
40R: Q. J. Oper. Res. 4(4), 263-296 (2006)

P. Grangier, M. Gendreau, F. Lehuédé, L.-M. Rousseau, A matheuristic based on large neigh-
borhood search for the vehicle routing problem with cross-docking. Comput. Oper. Res. 84,
116-126 (2017)

G. Gutin, D. Karapetyan, Local search heuristics for the multidimensional assignment prob-
lem, in Proceedings of Golumbic Festschrift, vol. 5420 (Springer, Heidelberg, 2009), pp.
100-115

P. Hansen, N. Mladenovi¢, Variable neighborhood search: principles and applications. Eur.
J. Oper. Res. 130(3), 449-467 (2001)

A. Hemmati, L.M. Hvattum, Evaluating the importance of randomization in adaptive large
neighborhood search. Int. Trans. Oper. Res. 24(5), 929-942 (2017)

A. Hemmati, M. Stalhane, L.M. Hvattum, H. Andersson, An effective heuristic for solving
a combined cargo and inventory routing problem in tramp shipping. Comput. Oper. Res. 64,
274-282 (2015)

V.C. Hemmelmayr, J.-F. Cordeau, T.G. Crainic, An adaptive large neighborhood search
heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper.
Res. 39(12), 3215-3228 (2012)

G. Hiermann, J. Puchinger, S. Ropke, R.F. Hartl, The electric fleet size and mix vehicle
routing problem with time windows and recharging stations. Eur. J. Oper. Res. 252(3), 995—
1018 (2016)

M. Hifi, S. Negre, T. Saadi, S. Saleh, L. Wu, A parallel large neighborhood search-based
heuristic for the disjunctively constrained knapsack problem, in Parallel & Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2014 IEEE International (IEEE, Piscataway,
2014), pp. 1547-1551

J. Hurink, An exponential neighborhood for a one machine batching problem. OR Spektrum
21(4), 461-476 (1999)

C. Iris, D. Pacino, S. Ropke, Improved formulations and an adaptive large neighborhood
search heuristic for the integrated berth allocation and quay crane assignment problem.
Transport. Res E: Log. Transport. Rev. 105, 123-147 (2017)

S. Irnich, P. Toth, D. Vigo, The family of vehicle routing problems, in Vehicle Routing:
Problems, Methods and Applications, 2nd edn. (SIAM, Philadelphia, 2014), pp. 1-33

L.W. Jacobs, M.J. Brusco, Note: a local-search heuristic for large set-covering problems.
Nav. Res. Logist. 42(7), 1129-1140 (1995)

A. Kiefer, R.F. Hartl, A. Schnell, Adaptive large neighborhood search for the curriculum-
based course timetabling problem. Ann. Oper. Res. 252(2), 255-282 (2017)

4 Large Neighborhood Search 125

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

P. Kilby, P. Prosser, P. Shaw, Guided local search for the vehicle routing problem, in Pro-
ceedings of the 2nd International Conference on Metaheuristics, July 1997

J.E. Korsvik, K. Fagerholt, G. Laporte, A large neighbourhood search heuristic for ship rout-
ing and scheduling with split loads. Comput. Oper. Res. 38(2), 474-483 (2011)

A.A. Kovacs, S.N. Parragh, K.F. Doerner, R.F. Hartl, Adaptive large neighborhood search for
service technician routing and scheduling problems. J. Sched. 15(5), 579-600 (2012)

A.A. Kovacs, S.N. Parragh, R.F Hartl, A template-based adaptive large neighborhood search
for the consistent vehicle routing problem. Networks 63(1), 60-81 (2014)

S. Kristiansen, T.R. Stidsen, Elective course student sectioning at Danish high schools. Ann.
Oper. Res. 239(1), 99-117 (2016)

S. Kristiansen, M. Sgrensen, M.B Herold, T.R. Stidsen, The consultation timetabling problem
at Danish high schools. J. Heuristics 19(3), 465-495 (2013)

P. Laborie, D. Godard, Self-adapting large neighborhood search: application to single-mode
scheduling problems. Technical report TR-07-001, ILOG (2007)

G. Laporte, R. Musmanno, F. Vocaturo, An adaptive large neighbourhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transp. Sci. 44(1), 125-
135 (2010)

G. Laporte, S. Ropke, T. Vidal, Heuristics for the vehicle routing problem, in Vehicle Rout-
ing: Problems, Methods, and Applications, ed. by P. Toth, D. Vigo, 2nd edn. (Society for
Industrial and Applied Mathematics, Philadelphia, 2014), pp. 87-116

R. Le Bras, B. Dilkina, Y. Xue, C. Gomes, K. McKelvey, M. Schwartz, C. Montgomery,
Robust network design for multispecies conservation, in Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence (2013)

H. Lei, G. Laporte, B. Guo, The capacitated vehicle routing problem with stochastic demands
and time windows. Comput. Oper. Res. 38(12), 1775-1783 (2011)

B.P. Lim, M. Van Den Briel, S. Thiébaux, R. Bent, S. Backhaus, Large neighborhood search
for energy aware meeting scheduling in smart buildings, in International Conference on Al
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(Springer, Cham, 2015), pp. 240-254

S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21(2), 498-516 (1973)

S.-W. Lin, K.-C. Ying, Minimizing shifts for personnel task scheduling problems: a three-
phase algorithm. Eur. J. Oper. Res. 237(1), 323-334 (2014)

R. Masson, F. Lehuédé, O. Péton, An adaptive large neighborhood search for the pickup and
delivery problem with transfers. Transp. Sci. 47(3), 344-355 (2013)

R. Masson, F. Lehuédé, O. Péton, The dial-a-ride problem with transfers. Comput. Oper. Res.
41, 12-23 (2014)

M. Matusiak, R. de Koster, J. Saarinen, Utilizing individual picker skills to improve order
batching in a warehouse. Eur. J. Oper. Res. 263(3), 888-899 (2017)

G.R. Mauri, G.M. Ribeiro, L.A.N. Lorena, G. Laporte, An adaptive large neighborhood
search for the discrete and continuous berth allocation problem. Comput. Oper. Res. 70,
140-154 (2016)

N. Mladenovic, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097—
1100 (1997)

M.C. Mongores, A.C.F. Alvim, M.O. Barros, Large neighborhood search applied to the soft-
ware module clustering problem. Comput. Oper. Res. 91, 92-111 (2018)

L.F. Muller, S. Spoorendonk, D. Pisinger, A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. Eur. J. Oper. Res. 218(3), 614-623 (2012)

M. Palpant, C.C. Artigues, P. Michelon, LSSPER: solving the resource-constrained project
scheduling problem with large neighbourhood search. Ann. Oper. Res. 131, 237-257 (2004)
S.N. Parragh, V. Schmid, Hybrid column generation and large neighborhood search for the
dial-a-ride problem. Comput. Oper. Res. 40(1), 490-497 (2013)

M.A. Pereira, L.C. Coelho, L.A.N. Lorena, L.C. De Souza, A hybrid method for the proba-
bilistic maximal covering location—allocation problem. Comput. Oper. Res. 57, 51-59 (2015)

126

85

86.
87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

D. Pisinger and S. Ropke

. L. Perron, Fast restart policies and large neighborhood search, in Proceedings of CP-Al-
OR’2003 (2003)

L. Perron, P. Shaw, Parallel large neighborhood search, in Proceedings of RenPar’15 (2003)
V. Pillac, M. Gendreau, C. Guéret, A.L. Medaglia, A review of dynamic vehicle routing
problems. Eur. J. Oper. Res. 225(1), 1-11 (2013)

D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res.
34(8), 2403-2435 (2007)

J.-Y. Potvin, J.-M. Rousseau, A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. Eur. J. Oper. Res. 66(3), 331-340 (1993)

H.N. Psaraftis, M. Wen, C.A. Kontovas, Dynamic vehicle routing problems: three decades
and counting. Networks 67(1), 3-31 (2016)

A.P. Punnen, The traveling salesman problem: new polynomial approximation algorithms
and domination analysis. J. Inf. Optim. Sci. 22(1), 191-206 (2001)

C. Rego, D. Gamboa, F. Glover, Data structures and ejection chains for solving large scale
traveling salesman problems. Eur. J. Oper. Res. 160(1), 154-171 (2006)

G.M. Ribeiro, G. Laporte, An adaptive large neighborhood search heuristic for the cumula-
tive capacitated vehicle routing problem. Comput. Oper. Res. 39(3), 728-735 (2012)

S. Ropke, PALNS - a software framework for parallel large neighborhood search, in 8th
Metaheuristic International Conference CDROM (2009)

S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transp. Sci. 40(4), 455-472 (2006)

S. Ropke, D. Pisinger, A unified heuristic for a large class of vehicle routing problems with
backhauls. Eur. J. Oper. Res. 171(3), 750-775 (2006)

L.-M. Rousseau, M. Gendreau, G. Pesant, Using constraint-based operators to solve the ve-
hicle routing problem with time windows. J. Heuristics 8(1), 43-58 (2002)

M.A. Salazar-Aguilar, A. Langevin, G. Laporte, Synchronized arc routing for snow plowing
operations. Comput. Oper. Res. 39(7), 1432-1440 (2012)

A. Santini, S. Ropke, L.M. Hvattum, A comparison of acceptance criteria for the adap-
tive large neighbourhood search metaheuristic. J. Heuristics (2018). https://doi.org/10.1007/
s10732-018-9377-x

V.I. Sarvanov, N.N. Doroshko, Approximate solution of the traveling salesman problem by
a local algorithm with scanning neighborhoods of factorial cardinality in cubic time. Softw.
Algorithms Progr. Math. Inst. Beloruss. Acad. Sci., Minsk 31, 11-13 (1981)

V. Schmid, Hybrid large neighborhood search for the bus rapid transit route design problem.
Eur. J. Oper. Res. 238(2), 427437 (2014)

G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck, Record breaking optimization
results using the ruin and recreate principle. J. Comput. Phys. 159(2), 139-171 (2000)

M. Schneider, A. Stenger, J. Hof, An adaptive VNS algorithm for vehicle routing problems
with intermediate stops. OR Spectr. 37(2), 353-387 (2015)

P. Shaw, A new local search algorithm providing high quality solutions to vehicle routing
problems. Technical report, APES Group, Department of Computer Science, University of
Strathclyde, Glasgow, July 1997

P. Shaw, Using constraint programming and local search methods to solve vehicle routing
problems, in CP-98 (Fourth International Conference on Principles and Practice of Con-
straint Programming). Lecture Notes in Computer Science, vol. 1520, pp. 417—431 (1998)
H. Sontrop, P. van der Horn, M. Uetz, Fast ejection chain algorithms for vehicle routing with
time windows. Lect. Notes Comput. Sci. 3636, 78-89 (2005)

P.M. Thompson, Local search algorithms for vehicle routing and other combinatorial prob-
lems. Ph.D. thesis, Operations Research Center, MIT, 1988

PM. Thompson, H.N. Psaraftis, Cyclic transfer algorithms for multivehicle routing and
scheduling problems. Oper. Res. 41(5), 935-946 (1993)

E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, A. Subramanian, New benchmark in-
stances for the capacitated vehicle routing problem. Eur. J. Oper. Res. 257(3), 845-858
(2017)

https://doi.org/10.1007/s10732-018-9377-x
https://doi.org/10.1007/s10732-018-9377-x

4 Large Neighborhood Search 127

110. M. Veenstra, K.J. Roodbergen, L.E. Vis, L.C. Coelho, The pickup and delivery traveling sales-
man problem with handling costs. Eur. J. Oper. Res. 257(1), 118-132 (2017)

111. T. Vidal, T.G. Crainic, M. Gendreau, C. Prins, A unified solution framework for multi-
attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658-673 (2014)

112. M. Wen, E. Linde, S. Ropke, P. Mirchandani, A. Larsen, An adaptive large neighborhood
search heuristic for the electric vehicle scheduling problem. Comput. Oper. Res. 76, 73-83
(2016)

113. M. Yagiura, T. Ibaraki, F. Glover, A path relinking approach with ejection chains for the
generalized assignment problem. Eur. J. Oper. Res. 169(2), 548-569 (2006)

Chapter 5)

Iterated Local Search: Framework ki
and Applications

Helena Ramalhinho Lourengo, Olivier C. Martin, and Thomas Stiitzle

Abstract The key idea underlying iterated local search is to focus the search not on
the full space of all candidate solutions but on the solutions that are returned by some
underlying algorithm, typically a local search heuristic. The resulting search behav-
ior can be characterized as iteratively building a chain of solutions of this embedded
algorithm. The result is also a conceptually simple metaheuristic that nevertheless
has led to state-of-the-art algorithms for many computationally hard problems. In
fact, very good performance is often already obtained by rather straightforward im-
plementations of the metaheuristic. In addition, the modular architecture of iterated
local search makes it very suitable for an algorithm engineering approach where,
progressively, the algorithm’s performance can be further optimized. Our purpose
here is to give an accessible description of the underlying principles of iterated local
search and a discussion of the main aspects that need to be taken into account for a
successful application of it. In addition, we review the most important applications
of this method and discuss its relationship with other metaheuristics.

H. R. Lourenco
Universitat Pompeu Fabra, Barcelona, Spain
e-mail: helena.ramalhinho @upf.edu

0. C. Martin
INRA, Université Paris-Sud, Orsay, France
e-mail: olivier.c.martin @inra.fr

T. Stiitzle (<)
Université Libre de Bruxelles (ULB), Brussels, Belgium
e-mail: stuetzle@ulb.ac.be

© Springer International Publishing AG, part of Springer Nature 2019 129
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_5&domain=pdf
mailto:helena.ramalhinho@upf.edu
mailto:olivier.c.martin@inra.fr
mailto:stuetzle@ulb.ac.be
https://doi.org/10.1007/978-3-319-91086-4_5

130 H. R. Lourenco et al.

5.1 Introduction

The importance of high performance algorithms for tackling difficult optimization
problems cannot be understated, and in many cases the most effective methods are
metaheuristics. When designing a metaheuristic, simplicity should be favored, both
conceptually and in practice. Naturally, it must also lead to effective algorithms. If
we think of a metaheuristic as simply a construction for guiding (problem-specific)
heuristics, the ideal case is when the metaheuristic can be used without any problem-
dependent knowledge.

As metaheuristics have become more and more sophisticated, this ideal case has
been pushed aside in the quest for greater performance. As a consequence, problem-
specific knowledge (in addition to that built into the heuristic being guided) must
now be incorporated into metaheuristic algorithms in order to reach state-of-the-art
level. Unfortunately, this makes the boundary between heuristics and metaheuristics
fuzzy, and we run the risk of losing both simplicity and generality. To counter this,
we appeal to modularity and try to decompose a metaheuristic algorithm into a few
parts, each with its own specificity. In particular, we would like to have a totally
general-purpose part, so that any problem-specific knowledge built into the meta-
heuristic would be restricted to another part. Finally, to the extent possible, we pre-
fer to leave untouched the embedded heuristic (which is to be “guided”) because
of its potential complexity. One can also consider the case where this heuristic is
only available through an object module, the source code being proprietarys; it is
then necessary to be able to treat it as a “black-box” routine. Iterated local search
provides a simple way to satisfy all these requirements.

The essence of iterated local search can be given in a nut-shell: one iteratively
builds a sequence of solutions generated by the embedded heuristic, leading to far
better solutions than if one were to use repeated random trials of that heuristic. This
simple idea [13] has a long history, and its rediscovery by many authors has led
to many different names for iterated local search such as iterated descent [11, 12],
large-step Markov chains [88], iterated Lin-Kernighan [68], chained local optimiza-
tion [87], combinations of these [3] and so on. Readers interested in these historical
developments should consult the review in [69]. For us, there are two main points
that make an algorithm an iterated local search: (1) there must be a single chain that
is being followed (this then excludes population-based algorithms); (2) the search
for better solutions occurs in a reduced space defined by the output of a black-
box heuristic. In practice, local search has been the most frequently used embedded
heuristic, but in fact any optimizer can be used, be it deterministic or not.

The purpose of this review is to give a detailed description of the ideas underly-
ing iterated local search and to show where it stands in terms of performance. So
far, in spite of its conceptual simplicity, it has led to a number of state-of-the-art
results without the use of too much problem-specific knowledge. Perhaps this is be-
cause iterated local search is very malleable, as many implementation choices are
left to the developer and problem-specific knowledge can be incorporated in many
different ways.

5 Tterated Local Search: Framework and Applications 131

We have organized this chapter as follows. First we give a high-level presentation
of iterated local search in Sect.5.2. Then we discuss the importance of the differ-
ent parts of the metaheuristic in Sect. 5.3, especially the subtleties associated with
perturbing the solutions. In Sect. 5.4 we go over past work aimed at testing iterated
local search in practice, while in Sect.5.5 we discuss similarities and differences
between iterated local search and other metaheuristics. The chapter closes with a
summary of what has been achieved so far and an outlook on what the near future
may look like.

5.2 Iterating a Local Search

5.2.1 General Framework

We assume we have been given a problem-specific heuristic optimization algorithm
that from now on we shall refer to as a local search (even if in fact it is not a true
local search). This algorithm is implemented via a computer routine that we call
LocalSearch. The question we ask is “Can such an algorithm be improved by the
use of iteration?”. Our answer is “YES”, and in fact the improvements obtained in
practice are usually significant. Only in rather pathological cases where the iteration
method is “incompatible” with the local search will the improvement be minimal.
In the same vein, in order to have the largest possible improvement, it is necessary
to have some understanding of the way the LocalSearch works. However, to keep
this presentation as simple as possible, we shall ignore for the time being these com-
plications; the additional subtleties associated with tuning the iteration to the local
search procedure will be discussed in Sect. 5.3. Furthermore, all issues associated
with the actual speed of the algorithm are omitted in this first section as we wish to
focus solely on the high-level architecture of iterated local search.

Let C be the cost function of our combinatorial optimization problem; C is to be
minimized. We label candidate solutions or simply “solutions” by s, and denote by
S the set of all s (for simplicity S is taken to be finite, but it does not matter much).
Finally, for the purposes of this high-level presentation, we assume that the local
search procedure is deterministic and memoryless': for a given input s, it always
outputs the same solution s* whose cost is less than or equal to C(s). LocalSearch
then defines a many to one mapping from the set S to the smaller set S* = {s*} of
locally optimal solutions. To have a pictorial view of this, we introduce the “basin
of attraction” of a local minimum s* as the set of solutions s that are mapped to
s* under the local search routine. LocalSearch then takes an s € S as a starting
solution and produces a local optimum s* € §* at the bottom of the corresponding
basin of attraction.

! The reader can check that very little of what we say really uses this property, and in practice,
many successful implementations of iterated local search have non-deterministic local searches or
include memory.

132 H. R. Lourenco et al.

probability density

cost

Fig. 5.1 Probability densities of costs. The curve labeled s indicates the left tail of the cost density
function for all solutions, while the curve labeled s* indicates the cost density function for the
solutions that are local optima

Now take an s or an s* at random. Typically, the cost distribution has a very
rapidly rising part at the lowest values. In Fig. 5.1 we show the kind of distributions
found in practice for combinatorial optimization problems having a finite solution
space. The distribution of costs is bell-shaped, with a mean and variance that is
significantly smaller for solutions in S* than for those in S. As a consequence, it
is much better to use local search than to sample randomly in S if one seeks low
cost solutions. The essential ingredient necessary for local search is a neighborhood
structure. This means that S is a “space” with some topological structure, not just a
set. Having such a space allows one to move from one solution s to a better one in
an intelligent way, something that would not be possible if S were just a set.

Now the question is how to go beyond this use of LocalSearch. More precisely,
given the mapping from S to S*, how can one further reduce the costs found without
opening up and modifying LocalSearch, leaving it as a “black box” routine?

5.2.2 Random Restart

The simplest possibility to improve upon a cost found by LocalSearch is to repeat
the search from another starting point. Every s* generated is then independent, and
the use of multiple trials allows one to reach the lower part of the distribution. Al-
though such a “random restart” approach with independent samplings is sometimes
a useful strategy (in particular when all other options fail), it breaks down as the in-
stance size grows because in the limit, the tail of the cost distribution collapses. In-
deed, empirical studies [69] and general arguments [112] indicate that local search
algorithms on large generic instances lead to costs that: (1) have a mean that is a
fixed percentage above the optimum cost; (2) have a distribution that becomes arbi-

5 Tterated Local Search: Framework and Applications 133

trarily peaked around the mean when the instance size goes to infinity. This second
property makes it impossible in practice to find an s* whose cost is even a little bit
lower percentage-wise than the typical cost. Note, however, that there do exist many
solutions of significantly lower cost, it is just that random sampling has a lower and
lower probability of finding them as the instance size increases. To reach those con-
figurations, a biased sampling is necessary; this is precisely what is accomplished
by a stochastic search.

5.2.3 Searching in §*

To overcome the problem just mentioned associated with large instance sizes, re-
consider what local search does: it takes one solution from & where C has a large
mean to a solution in S* where C has a smaller mean. It is then natural to invoke
recursion: use local search to go from §* to a smaller space S** where the mean cost
is even lower! That would correspond to an algorithm with one local search nested
inside another. Such a construction could be iterated for as many levels as desired,
leading to a hierarchy of nested local searches. But upon closer scrutiny, we see that
the problem is precisely how to formulate local search beyond the lowest level of
the hierarchy: local search requires a neighborhood structure and this is not a priori
given. The fundamental difficulty is to define neighbors in S* so that they can be
enumerated and accessed efficiently. Furthermore, it is desirable for neighbors in S*
to be relatively close according to the distance metric defined in space S; if this were
not the case, a stochastic search on §* would have little chance of being effective.

Upon further thought, it transpires that one can introduce a good neighborhood
structure on S* as follows. First, one recalls that a neighborhood structure on set S
directly induces a neighborhood structure on subsets of S: two subsets are neighbors
simply if they contain solutions that are neighbors. Second, take these subsets to be
the basins of attraction of the solutions in §*; this leads us to associate any s* € S*
with its basin of attraction. Then, this immediately provides the “canonical” notion
of neighborhood on §*, which can be stated in a simple way: s} and s5 are neighbors
in S if their basins of attraction intersect (i.e., they contain neighbor solutions in S).
Unfortunately this definition has the major drawback that one cannot in practice list
the neighbors of s* because there is no computationally efficient method for finding
all solutions s in the basin of attraction of s*. Nevertheless, we can stochastically
generate neighbors as follows. Starting from s*, create a randomized path in S, sy,
2, ..., Si, where s;,1 is a neighbor of s;. Determine the first s; in this path that
belongs to a different basin of attraction so that applying local search to s; leads to
s*' = s*. Then s*' is a neighbor of s*.

Given this procedure, we can in principle perform a local search? in S*. Extend-
ing the argument recursively, we see that it would be possible to have an algorithm
implementing nested searches, performing local search on S, §*, §**, and so on,

2 Note that the local search finds neighbors stochastically; generally there is no efficient way to
ensure that one has tested all the neighbors of any given s*.

134 H. R. Lourenco et al.

in a hierarchical way. Unfortunately, the implementation of a neighbor search at the
level of §* is too costly computationally because of the number of times one has
to execute LocalSearch. Thus we are led to abandon the (stochastic) search for
neighbors in §*; instead we use a weaker notion of closeness which then allows for
a fast stochastic search in S*. Our construction leads to a (biased) sampling of S*.
Such a sampling will be better than a random one if it is possible to find appropri-
ate computational ways to go from one s* to another. Finally, one last advantage of
this modified notion of closeness is that it does not require basins of attraction to
be defined; the local search can then incorporate memory or be non-deterministic,
making the method far more general.

5.2.4 Iterated Local Search

We want to explore $* using a walk that steps from one s* to a “nearby” one, with-
out the constraint of using only neighbors as defined above. Iterated local search
(ILS) achieves this heuristically as follows. Given the current s*, we first apply a
change or perturbation that leads to an intermediate state s’ (which belongs to S).
Then LocalSearch is applied to s’ and we reach a solution s*’ in S*. If s*/ passes an
acceptance test, it becomes the next element of the walk in S*; otherwise, we return
to s*. The resulting walk is a case of a stochastic search in $*, but where neighbor-
hoods are never explicitly introduced. This iterated local search procedure should
lead to good biased sampling as long as the perturbations are neither too small nor
too large. If they are too small, one will often fall back to s* and few new solutions
of &* will be explored. If on the contrary the perturbations are too large, s’ will be
random, there will be no bias in the sampling, and we will recover a random restart
type algorithm.

The overall ILS procedure is pictorially illustrated in Fig. 5.2. To be complete, let
us note that generally the iterated local search walk will not be reversible; in partic-
ular one may sometimes be able to step from s7 to s; but not from s; to s7. However,
this “unfortunate” aspect of the procedure does not prevent ILS from being very
effective in practice.

Since deterministic perturbations may lead to short cycles (for instance of length
two), one should randomize the perturbations or make them adaptive to avoid this
kind of cycling. If the perturbations depend on any of the previous s*, one has a
walk in §* with memory. Now the reader may have noticed that aside from the issue
of perturbations (which use the structure on S), our formalism reduces the problem
to that of a stochastic search on &*. Then all bells and whistles (diversification,
intensification, tabu, adaptive perturbations and acceptance criteria, etc. ...) that
are commonly used in that context may be applied here. This leads us to define
iterated local search as a metaheuristic having the high level architecture given by
Algorithm 1.

5 Tterated Local Search: Framework and Applications 135

perturbation

cost

solution space S

Fig. 5.2 Pictorial representation of iterated local search. Starting with a local minimum s*, we
apply a perturbation leading to a solution s’. After applying LocalSearch, we find a new local
minimum s*' that may be better than s*

Algorithm 1 Iterated local search

1: so = GeneratelnitialSolution

2: s* = LocalSearch(sg)

3: repeat

4: s’ = Perturbation(s*, history)
5. s* =LocalSearch(s")
6

7

s* = AcceptanceCriterion(s*,s*', history)
: until termination condition met

In practice, much of the potential complexity of ILS is hidden in the history
dependence. If there happens to be no such dependence, the walk has no memory>:
the perturbation and acceptance criterion do not depend on any of the solutions
visited previously during the walk, and one accepts or not s*’ with a fixed rule. This
leads to random walk dynamics on S* that are “Markovian”, i.e., the probability of
making a particular step from s7 to s5 depends only on s} and s5. Most of the work
using ILS has been of this type, though studies show that incorporating memory
enhances performance [115].

Staying within Markovian walks, the most basic acceptance criteria will use only
the difference in the costs of s* and s*'; this type of dynamics for the walk is then
very similar in spirit to what occurs in simulated annealing. A limiting case of this is
to accept only improving moves, as happens in simulated annealing at zero temper-
ature; the algorithm then does stochastic descent in S*. If we add to such a method

3 Recall that to simplify this section’s presentation, the local search is assumed to have no memory.

136 H. R. Lourenco et al.

a termination criterion, the resulting algorithm pretty much has two nested local
searches; to be precise, it has a local search operating on S embedded in a stochas-
tic search operating on S*. More generally, one can extend this type of algorithm
to more levels of nesting, having a different stochastic search algorithm for S*, $**
and so on. Each level would be characterized by its own type of perturbation and
stopping rule; to our knowledge, such a construction has never been attempted.

We can summarize this section by saying that the potential power of iterated lo-
cal search lies in its biased sampling of the set of local optima. The efficiency of this
sampling depends both on the kinds of perturbations and on the acceptance criteria.
Interestingly, even with the most naive implementations of these components, iter-
ated local search is much better than random restart. But still much better results can
be obtained if the iterated local search modules are optimized. First, the acceptance
criteria can be adjusted empirically as in simulated annealing without knowing any-
thing about the problem being optimized. This kind of optimization will be familiar
to any user of metaheuristics, though the questions of memory may become quite
complex. Second, the perturbation can incorporate as much problem-specific infor-
mation as the developer is willing to put into it. In practice, a rule of thumb can
be used as a guide: “a good perturbation transforms one excellent solution into an
excellent starting point for a local search”. Together, these different aspects show
that iterated local search algorithms can have a wide range of complexity, but com-
plexity may be added progressively and in a modular way. (Recall in particular that
all of the fine-tuning that resides in the embedded local search can be ignored if
one wants, and it does not appear in the metaheuristic per se.) This makes iterated
local search an appealing metaheuristic for both academic and industrial applica-
tions. The cherry on the cake is speed: as we shall see soon, one can perform k local
searches embedded within an iterated local search much faster than if the k local
searches are run with random restart.

5.3 Getting High Performance

Given all these advantages, we hope the reader is now motivated to go on and con-
sider the more nitty-gritty details that arise when developing an ILS algorithm for
a new application. In this section, we will illustrate the main issues that need to be
tackled when optimizing an ILS algorithm in order to achieve high performance.
There are four components to consider: GeneratelnitialSolution, LocalSearch,
Perturbation, and AcceptanceCriterion. Before attempting to develop a state-of-
the-art algorithm, it is relatively straightforward to develop a more basic version
of ILS. Indeed, (1) one can start with a random solution or one returned by some
greedy construction heuristic; (2) for most problems a local search algorithm is read-
ily available; (3) for the perturbation, a random move in a neighborhood of higher

5 Tterated Local Search: Framework and Applications 137

order than the one used by the local search algorithm can be surprisingly effective;
and (4) a reasonable first guess for the acceptance criterion is to force the cost to de-
crease, corresponding to a stochastic first-improvement algorithm in S*. Basic ILS
implementations of this type usually lead to much better performance than random
restart approaches. The developer can then run this basic ILS to build his intuition
and try to improve the overall algorithm performance by improving each of the four
modules. This should be particularly effective if it is possible to take into account
the specificities of the combinatorial optimization problem under consideration. In
practice, this tuning is easier for ILS than for other, less modular metaheuristics.
The reason may be that the complexity of ILS is reduced by its modularity, the func-
tion of each component being relatively easy to understand. Finally, the last task to
consider is the overall optimization of the ILS algorithm; indeed, the different com-
ponents affect one another and so it is necessary to understand their interactions.
However, because these interactions are so problem dependent, we wait till the end
of this section before discussing that kind of “global” optimization.

Perhaps the main message here is that the developer can choose the level of
optimization he wants. In the absence of any optimizations, ILS is a simple, easy
to implement, and quite effective metaheuristic. But with further work on its four
components, ILS can often be turned into a very competitive or even state-of-the-art
algorithm.

5.3.1 Initial Solution

Local search applied to the initial solution so gives the starting point s of the walk
in §*. Starting with a good s;; can be important if high-quality solutions are to be
reached as fast as possible.

Standard choices for s are either a random initial solution or a solution returned
by a greedy construction heuristic. A greedy initial solution so has two main advan-
tages over random starting solutions: (1) when combined with local search, greedy
initial solutions often result in better quality solutions sj; (2) a local search from
greedy solutions takes, on average, less improvement steps and therefore the local
search requires less CPU time.*

4 Note that the best possible greedy initial solution need not be the best choice when combined
with a local search. For example, in [69], it is shown that the combination of the Clarke-Wright
starting tour (one of the best performing TSP construction heuristics) with local search resulted
in worse local optima than starting from random initial solutions when using 3-opt. Additionally,
greedy algorithms which generate very high quality initial solutions can be quite time-consuming.

138 H. R. Lourenco et al.

4040 NEH stari —— NEH start ——
4020 T Random start - — 3860 . Random start - 1
4000 |

S 3980 |

o

8 3960 |

X

©

= 3940 |
3920 |

3900

3880 L L L L
1 10 100 1000 1 10 100 1000

CPU time [seconds] CPU time [seconds]

Fig. 5.3 The plots show the average solution cost (makespan on the y-axis) as a function of CPU
time (given on the x-axis) for an ILS algorithm applied to the PFSP on instances ta051 and
ta056

The question of an appropriate initial solution for (random restart) local search
carries over to ILS because of the dependence of the walk in §* on 5. Indeed, when
starting with a random s¢, ILS may take several iterations to catch up in quality with
runs using an s;; obtained by a greedy initial solution. Hence, for short computation
times the initial solution is certainly important to achieve the highest possible solu-
tion quality. For larger computation times, the dependence on s of the final solution
returned by ILS reflects just how fast, if at all, the memory of the initial solution is
lost when performing the walk in S*.

Let us illustrate the tradeoffs between random and greedy initial solutions when
using an ILS algorithm for the permutation flow shop problem (PFSP) [114]. That
ILS algorithm uses a straightforward local search implementation, random pertur-
bations, and only accepts better quality solutions in the acceptance test. In Fig. 5.3
we show how the average solution cost (makespan) evolves with the number of it-
erations for two instances. The averages are for 10 independent runs when starting
from random initial solutions or from initial solutions returned by the NEH heuris-
tic [98]. (NEH is one of the best performing constructive heuristics for the PFSP.)
For short runs, the curve for the instance on the right shows that the NEH initial
solutions lead to better average solution cost than random initial solutions. But, for
longer times, the picture is not so clear. Sometimes, random initial solutions lead to
better average results as observed on the instance on the left. This kind of test was
also performed for ILS applied to the TSP [3]. Again it was observed that the initial
solution had a significant influence on quality for short to medium sized runs.

In general, there will not always be a clear-cut answer regarding the best choice
of an initial solution, but greedy initial solutions appear to be recommendable when
one needs low-cost solutions quickly. For much longer runs, the initial solution
seems to be less relevant, so the user can choose the initial solution which is the
easiest to implement. If, however, one has an algorithm where the influence of the
initial solution does persist for long times, the ILS walk is probably having diffi-
culty in exploring S* and so other perturbations or acceptance criteria should be
considered.

5 Tterated Local Search: Framework and Applications 139

5.3.2 Perturbation

The main drawback of iterative improvement is that it gets trapped in local optima
that are significantly worse than the global optimum. Much like simulated anneal-
ing, ILS escapes from local optima by applying perturbations to the current local
minimum. We will refer to the strength of a perturbation as the number of solution
components that are modified. For the TSP, for example, it is the number of edges
that are modified in the tour, while in the flow shop problem, it is the number of
jobs which are moved by the perturbation. Generally, the local search should not
be able to undo the perturbation, otherwise one will fall back into the local opti-
mum just visited. Surprisingly, a random move in a neighborhood of higher order
than the one used by the local search algorithm can often achieve this and will lead
to a satisfactory algorithm. Still better results can be obtained if the perturbations
take into account properties of the problem and are well matched to the local search
algorithm.

By how much should the perturbation change the current solution? If the pertur-
bation is too strong, ILS may behave like a random restart, so better solutions will
only be found with a very low probability. On the other hand, if the perturbation
is too small, the local search will often fall back into the local optimum just visited
and the diversification of the search will be very limited. An example of a simple but
effective perturbation for the TSP is the double-bridge move. This perturbation cuts
four edges (and is thus of “strength” four) and introduces four new ones as shown
in Fig. 5.4. Notice that each bridge is a two-change, but neither of the two-changes
individually keeps the tour connected. Nearly all ILS studies of the TSP have incor-
porated this kind of perturbation, and it has been found to be effective for all instance
sizes. This is almost certainly because it changes the topology of the tour and can
operate on quadruples of very distant cities, whereas local search always modifies
the tour among nearby cities. In effect, the double-bridge perturbation cannot be
undone easily, neither by simple local search algorithms such as 2-opt or 3-opt, nor
by most local search algorithms based on the Lin-Kernighan heuristic [80], which
is currently the champion local search algorithm for the TSP. (Only very few local
searches include such double-bridge changes in the search, the best known being
the Lin-Kernighan implementation of Helsgaun [57, 58].) Furthermore, this pertur-
bation does not increase much the tour length, so even if the current solution is very
good, one is almost sure the next one will be good, too. These two properties of
the perturbation—its small strength and its fundamentally different nature from the
changes used in local search—make the TSP the perfect application for ILS.

140 H. R. Lourenco et al.

Fig. 5.4 Schematic representation of the double-bridge move. The four dotted edges are removed
and the remaining parts A, B, C, D are reconnected by the dashed edges

We will now consider optimizing the perturbation assuming the other modules
to be fixed. In problems like the TSP, one can hope to have a satisfactory ILS when
using perturbations of fixed size (independent of the instance size). On the contrary,
for more difficult problems, fixed-strength perturbations may lead to poor perfor-
mance. Of course, the strength of the perturbations used is not the whole story; their
nature is almost always very important and will also be discussed. Finally we will
close by pointing out that the perturbation strength has an effect on the speed of the
local search: weak perturbations usually lead to faster execution of LocalSearch.
All these different aspects need to be considered when optimizing this module.

5.3.2.1 Perturbation Strength

For some problems, an appropriate perturbation strength is very small and seems
to be rather independent of the instance size. This is the case for both the TSP and
the PFSP, and, interestingly, ILS for these problems is very competitive with to-
day’s best metaheuristic methods. We can also consider other problems where one
is driven instead to large perturbation sizes. Consider the example of an ILS al-
gorithm for the quadratic assignment problem (QAP). We use an embedded 2-opt
local search algorithm, the perturbation is a random exchange of the location of
k items, where k is an adjustable parameter, and the acceptance criterion only ac-
cepts better quality solutions. We applied this ILS algorithm to QAPLIB instances’
from four different classes of QAP instances [120]; computational results are given
in Table 5.1. A first observation is that the best perturbation size is strongly de-
pendent on the particular instance. For two of the instances, the best performance
was achieved when as many as 75% of the solution components were altered by

5 QAPLIB is accessible at http://www.seas.upenn.edu/qaplib.

http://www.seas.upenn.edu/qaplib

5 Tterated Local Search: Framework and Applications 141

Table 5.1 The first column gives the identifier of the QAP instance; the number in the identifier
gives its size n

Instance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n
kra3oa 2.51 251 2.04 1.06 0.83 042 0.0 0.77
sko64 0.65 1.04 050 037 029 029 0.82 0.93
taie0a 2.31 224 191 1.71 1.86 294 3.13 3.18
tai60b 2.44 0.97 0.67 096 0.82 050 0.14 043

The successive columns are for perturbation sizes 3, n/12, ---, n. A perturbation of size n corre-
sponds to random restart. The table shows the average solution cost measured across 10 indepen-
dent runs for each instance. The CPU-time for each trial is 30s. for kra30a, 60s. for taié0a
and sko64, and 120s. for tai60b on a Pentium III 500 MHz PC

the perturbation. Additionally, when the perturbation strength is too small, the ILS
performed worse than random restart (corresponding to the perturbation strength
n). However, the fact that random restart for the QAP may perform—on average—
better than a basic ILS algorithm is a bit misleading: in the next section we will
show that by modifying a bit the acceptance criterion, ILS becomes far better than
random restart. Thus, one should keep in mind that the optimization of an ILS algo-
rithm may require more than the optimization of the individual components.

5.3.2.2 Adaptive Perturbations

The behavior of ILS for the QAP and also for other combinatorial optimization
problems [59, 114, 116] shows that there is no a priori single best size for the per-
turbation. This observation motivates the possibility of modifying the perturbation
strength and adapting it during the run.

To this end, one approach is to exploit the search history. For the development of
such schemes, inspiration can be taken from what is done in the context of reactive
search [9, 10]. In particular, Battiti and Protasi proposed a reactive search algorithm
for MAX-SAT, which fits perfectly into the ILS framework [9]. They perform a
perturbation scheme which is implemented by a tabu search algorithm and after
each perturbation they apply a standard local improvement algorithm. An alternative
is to use feedback from the search process to adapt the choice of the perturbation
operators [19].

Another way of adapting the perturbation is to change its strength during the
search according to an a priori defined scheme. One particular example is employed
in basic variable neighborhood search (basic VNS) [53, 95]; we refer to Sect. 5.5 for
some explanations on VNS. Other examples arise in the context of tabu search [49].
In particular, ideas such as strategic oscillations may be useful to derive more effec-
tive perturbations.

142 H. R. Lourenco et al.

5.3.2.3 More Complex Perturbation Schemes

Perturbations can be more complex than random changes in a higher order neighbor-
hood. One rather general procedure to generate s’ from the current s* is as follows.
First, gently modify the definition of the instance, e.g., via the parameters defin-
ing the various costs. Second, for this modified instance, run LocalSearch using
s* as input; the output is the perturbed solution s'. Interestingly, this is the method
proposed in the oldest ILS work we are aware of: Baxter tested this approach with
success on a location problem [13]. This idea seems to have been rediscovered later
by Codenotti et al. in the context of the TSP [26]. They first change slightly the
city coordinates. Then they apply the local search to s* using the perturbed city lo-
cations, obtaining the new tour s’. Finally, running LocalSearch on s’ using the
unperturbed city coordinates, they obtain the new candidate tour s*'.

Other sophisticated ways to generate good perturbations consist in optimizing a
sub-part of the problem. Such an approach was proposed by Lourencgo [82] in the
context of the job shop scheduling problem (JSP). Her perturbation schemes are
based on defining one- or two-machine sub-problems by fixing a number of vari-
ables in the current solution and solving these sub-problems, either heuristically [83]
or to optimality using for instance Carlier’s exact algorithm [22] or the early-late al-
gorithm [83]. These schemes work well because: (1) local search is unable to undo
the perturbations; (2) after the perturbation, the solutions tend to be very good and
also have “new” parts that are optimized. Even evolutionary algorithms have been
used to generate perturbations for ILS algorithms [85]. The idea in this approach
is to generate a small initial population of solutions by perturbing the best-so-far
solution, to perform a short run of a GA with this population and then to use the
best solution found in this process as a new starting solution for the local search.

5.3.2.4 Speed

In the context of “easy” problems where ILS can work very well with weak (fixed
size) perturbations, there is another reason why that metaheuristic can perform much
better than random restart: Speed. Indeed, LocalSearch will usually execute much
faster on a solution obtained by applying a small perturbation to a local optimum
than on a random solution. As a consequence, iterated local search can run many
more local searches than random restart for the same CPU time. As a qualitative
example, consider again Euclidean TSPs. O(n) local changes have to be applied by
the local search to reach a local optimum from a random starting solution, whereas
empirically a nearly constant number is necessary in ILS when using the s’ obtained
with the double-bridge perturbation. Hence, in a given amount of CPU time, ILS
can sample many more local optima than random restart can. This speed factor can
give ILS a considerable advantage over other restart schemes.

Let us illustrate this speed factor quantitatively. We compared the number of
local searches performed in a given amount of CPU time for the TSP by: (1) ran-
dom restart; (2) ILS using a double-bridge move; (3) ILS using five simultaneous
double-bridge moves. (For both ILS implementations, we used random starting so-

5 Tterated Local Search: Framework and Applications 143

lutions and the routine AcceptanceCriterion accepted only shorter tours.) For our
numerical tests we used a 3-opt implementation with standard speed-up techniques.
In particular, it used a fixed radius nearest neighbor search restricted to candidate
lists with the 40 nearest neighbors of each city and “don’t look™ bits [15, 69, 88].
Initially, all don’t look bits were turned off (set to 0). If no improving move was
found for a given node, its don’t look bit was turned on (set to 1) and the node was
not considered as a starting node for finding an improving move in the next iteration.
When an arc incident to a node was changed by a move, the node’s don’t look bit
was turned off again. In addition, after a perturbation we only turned off the don’t
look bits of the 25 cities around each of the four breakpoints in the current tour.
All three algorithms were run for 120s on a 266 MHz Pentium II processor on a
set of TSPLIB® instances ranging from 100 up to 5915 cities. Results are given in
Table 5.2. For the smallest instances, we see that iterated local search ran between 2
and 10 times as many local searches as random restart. This advantage of ILS grows
fast with increasing instance size: for the largest instance, the first ILS algorithm ran
approximately 260 times as many local searches as random restart in the available
time. Obviously, this speed advantage of ILS over random restart is strongly depen-
dent on the strength of the applied perturbation. The larger the perturbation size, the
more the solution is modified and generally the longer the subsequent local search
takes. This fact is intuitively obvious and it is confirmed in Table 5.2.

In summary, the optimization of the perturbations depends on many factors, and
problem-specific characteristics play a central role. It is important to keep in mind
that the perturbations interact with the other components of ILS. We will discuss
these interactions in Sect. 5.3.5.

Table 5.2 The first column gives the identifier of the TSP instance, where the number in the iden-
tifier specifies the number of cities

Instance #LSgr #LS,pg #LSspp
kroA100 17,507 56,186 34,451
di9s 7715 36,849 16,454
1in318 4271 25,540 9430
pcb442 4394 40,509 12,880
rat783 1340 21,937 4631
prl002 910 17,894 3345
pcb1173 712 18,999 3229
di291 835 23,842 4312
£11577 742 22,438 3915
pr2392 216 15,324 1777
pcb3038 121 13,323 1232
£13795 134 14,478 1773
rl5915 34 8820 556

The next columns give the number of local searches performed when using: (1) random restart
(#LSgr); (2) ILS with a single double-bridge perturbation (#LS;_pg); (3) ILS with a five double-
bridge perturbation (#LS5_ppg). All algorithms were run for 120 s on a PC with a 266 MHz Pentium
processor

6 TSPLIB is accessible at www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

144 H. R. Lourenco et al.

5.3.3 Acceptance Criterion

ILS does a randomized walk in S&*, the space of local minima. The perturbation
mechanism together with the local search defines the possible transitions between a
current solution s* in §* to a “neighboring” solution s*' also in S*. The procedure
AcceptanceCriterion then determines whether s*/ is accepted or not as the new
current solution. AcceptanceCriterion has a strong influence on the nature and ef-
fectiveness of the walk in $*. Roughly, it can be used to control the balance between
intensification and diversification of that search. A simple way to illustrate this is to
consider a Markovian acceptance criterion. A very strong intensification is achieved
if only better solutions are accepted. We call this acceptance criterion Better and
it is defined for minimization problems as:

s if C(s*) < C(s%)
Better(s*,s", history) = (5.1)

s* otherwise.

At the opposite extreme is the random walk acceptance criterion (denoted by RW)
which always applies the perturbation to the most recently visited local optimum,
irrespective of its cost:

RW(s*,s* history) = s*'. (5.2)

This criterion clearly favors diversification over intensification.

Many intermediate choices between these two extreme cases are possible. In one
of the first ILS algorithms, the large-step Markov chain (LSMC) algorithm proposed
by Martin et al. [88, 89], a simulated annealing type acceptance criterion was ap-
plied. We call it LSMC(s*,s*', history). In particular, s*' is always accepted if it is
better than s*. Otherwise, if s*/ is worse than s*, s*/ is accepted with probability
exp{(C(s*) —C(s*'))/T} where T is a parameter called temperature, which is usu-
ally lowered during the run as in simulated annealing. Note that LSMC approaches
the RW acceptance criterion if 7" is very high, while at very low temperatures LSMC
is similar to the Bet ter acceptance criterion. An interesting possibility for LSMC
is to allow non-monotonic temperature schedules as proposed for simulated anneal-
ing [63] or tabu thresholding [47]. This can be most effective if it is done using
memory: when further intensification no longer seems useful, increase the temper-
ature to do diversification for a limited time, then resume intensification. Of course,
just as in tabu search, it is desirable to do this in an automated and self-regulating
manner [49].

A very limited usage of memory in the acceptance criterion is to restart the ILS
algorithm when the intensification seems to become ineffective. (Of course, this is
a rather extreme way to switch from intensification to diversification.) For instance
one can restart the ILS algorithm from a new initial solution if no improved solution
has been found for a given number of iterations. The restart of the algorithm can
easily be modeled by the acceptance criterion Restart(s*,s*, history). Let ij,
be the last iteration where a better solution has been found and i be the iteration
counter. Then Restart(s*,s* history) is defined as

5 Tterated Local Search: Framework and Applications 145
s* if C(s*) < C(s%)

Restart(s*,s” history) ={ s ifC(s*) > C(s*) and i — ijygy > iy (5.3)

s* otherwise.

where i, is a parameter that indicates that the algorithm should be restarted if no
improved solution was found for i, iterations. Typically, s can be generated in dif-
ferent ways. The simplest strategy is to generate a new solution randomly or by a
greedy randomized heuristic. Clearly many other ways to incorporate memory may
and should be considered, the overall efficiency of ILS being quite sensitive to the
acceptance criterion applied. We now illustrate this with two examples.

Table 5.3 Influence of the acceptance criterion for various TSP instances
Instance A.,(RR) A, (RW) A, (Better)

kroAl00 0.0 0.0 0.0
di9s 0.003 0.0 0.0
1in318 0.66 0.30 0.12
pcb442 0.83 0.42 0.11
rat783 2.46 1.37 0.12
prlo02 2.72 1.55 0.14
pcbl173 3.12 1.63 0.40
diz291 221 0.59 0.28
£11577 10.3 1.20 0.33
pr2392 4.38 2.29 0.54
pcb3038 421 2.62 0.47
£13795 38.8 1.87 0.58
rl5915 6.90 2.13 0.66

The first column gives the identifier of the TSP instance, where the number in the identifier specifies
the number of cities. The next columns give the average percentage over the optimal tour length
obtained using: random restart (RR), iterated local search with RW, and iterated local search with
Better. The results are averaged over 10 independent runs. All algorithms were run for 120 s on
a PC with a 266 MHz Pentium processor

5.3.3.1 Example 1: TSP

Let us consider the effect of the two acceptance criteria RW and Better. We per-
formed our tests on the TSP as summarized in Table 5.3. We give the average per-
centage over the known optimal solutions when using 10 independent runs on our
set of benchmark instances. In addition, we also give this number for the random
restart 3-opt algorithm. First, we observe that both ILS algorithms lead to a sig-
nificantly better average solution quality than random restart using the same local
search. This is particularly true for the largest instances, confirming the claims made
in Sect. 5.2. Second, given that one expects good solutions for the TSP to cluster (see

146 H. R. Lourenco et al.

Sect. 5.3.5), a good strategy should incorporate intensification. It is thus not surpris-
ing to see that the Better criterion leads to shorter tours than the RW criterion.

The runs given in this example are rather short. For much longer runs, the
Better strategy comes to a point where it no longer finds improved tours. In fact,
an analysis of ILS algorithms based on the run-time distribution methodology [62]
has shown that such stagnation situations effectively occur and that the performance
of the ILS algorithm can be considerably improved by additional diversification
mechanisms [117], an occasional restart of the ILS algorithm being the conceptu-
ally simplest case.

Table 5.4 Further tests on the QAP benchmark instances using the same perturbations and CPU
times than for Table 5.1; given is the average solution cost measured across 10 independent runs
for each instance

Instance Acceptance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n
kra30a Better 2.51 2.51 2.04 1.06 0.83 042 0.0 0.77
kra30a RW 00 00 00 00 0.0 002 047 0.77
kra30a Restart 00 00 00 00 00 0.0 0.0 077
sko64 Better 0.65 1.04 0.50 037 0.29 029 0.82 0093
sko64 RW 0.11 0.14 0.17 0.24 0.44 0.62 0.88 0.93
sko64 Restart 0.37 031 0.14 0.14 0.15 041 0.79 0.93
tai60a Better 231 224 191 171 186 294 3.13 3.18
tai6e0a RW 1.36 144 2.08 263 2.81 3.02 3.14 3.18
tai60a Restart 1.83 1.74 145 1.73 229 3.01 3.10 3.18
tai60b Better 2.44 097 0.67 096 0.82 050 0.14 0.43
tai60b RW 0.79 0.80 0.52 0.21 0.08 0.14 0.28 043
tai60b Restart 0.08 0.08 0.005 0.02 0.03 0.07 0.17 043

Here we consider three different choices for the acceptance criterion. Clearly, the inclusion of
diversification significantly lowers the average cost found

5.3.3.2 Example 2: QAP

Let us come back to ILS for the QAP. For this problem we found that the accep-
tance criterion Better together with a poor choice of the perturbation strength
could result in worse performance than random restart. In Table 5.4 we give results
for the same ILS algorithm except that we now also consider the use of the RW and
Restart acceptance criteria. We see that the performance of the ILS algorithms
using these acceptance criteria are much better than random restart, the only ex-
ception being for the ILS algorithm with RW for a small perturbation strength on
taie60b.

This example shows that there are strong interdependencies between the pertur-
bation strength and the acceptance criterion. This dependency is rarely completely
understood. But, as a general rule of thumb, when it is necessary to allow for diver-
sification, we believe it is best to do so by accepting numerous small perturbations
rather than by accepting one large perturbation.

5 Tterated Local Search: Framework and Applications 147

Most of the acceptance criteria applied so far in ILS algorithms are either fully
Markovian or make use of the search history in a very limited way. We expect that
there will be many more ILS applications in the future making strong use of the
search history; in particular, alternating between intensification and diversification
is likely to be an essential feature in these applications.

5.3.4 Local Search

So far we have treated the local search algorithm as a black box, which is called
many times by ILS. Since the behavior and performance of the over-all ILS algo-
rithm is quite sensitive to the choice of the embedded heuristic, one should optimize
this choice whenever possible. In practice, there may be many quite different algo-
rithms that can be used for the embedded heuristic. (As mentioned at the beginning
of the chapter, the heuristic needs not even be a local search.) One might think that
the better the local search, the better the corresponding ILS. Often this is true. For
instance in the context of the TSP, Lin-Kernighan [80] is a better local search than 3-
opt, which itself is better than 2-opt [69]. Using a fixed type of perturbation such as
the double-bridge move, one finds that iterated Lin-Kernighan gives better solutions
than iterated 3-opt which itself gives better solutions than iterated 2-opt [69, 117].
But if we assume that the total computation time is fixed, it might be better to apply
more frequently a faster but less effective local search algorithm than a slower and
more powerful one. Clearly, which choice is best depends on just how much more
time is needed to run the better heuristic. If the speed difference is not large, for ex-
ample if it is independent of the instance size, then it usually worth using the better
heuristic. This is the most frequent case; in the TSP, 3-opt is a bit slower than 2-opt,
but the improvement in quality of the tours is well worth the extra CPU time, be it
using random restart or iterated local search. The same comparison applies to using
Lin-Kernighan rather than 3-opt. However, there are other cases where the increase
in CPU time is so large compared to the improvement in solution quality that it is
best not to use the “better” local search. For example, again in the context of the
TSP, it is known that 4-opt gives slightly better solutions than 3-opt, but in standard
implementations it is O(n) times slower (n being the number of cities). It is then
better not to use 4-opt as the local search embedded in ILS.

There are also other aspects that should be considered when selecting a local
search. Clearly, there is not much point in having an excellent local search if it will
systematically undo the perturbation; however this issue is one of globally optimiz-
ing iterated local search, so it will be postponed till the next subsection. Another
important aspect is whether one can really get the speed-ups that were mentioned in
Sect. 5.3.2. There we saw that a standard speed-up for local search was to introduce
don’t look bits. They give a large gain in speed if the bits can also be reset after the
application of the perturbation. This requires that the developer be able to access the
source code of LocalSearch. A state-of-the-art ILS algorithm will take advantage
of all possible speed-up tricks, and thus the LocalSearch most likely will not be a
true black box.

148 H. R. Lourenco et al.

Finally, there may be some advantages in allowing LocalSearch to sometimes
generate worse solutions. For instance, if we replace the local search heuristic by
tabu search or short simulated annealing runs, the corresponding ILS may perform
better. This seems most promising when standard iterative improvement algorithms
perform poorly. This is indeed the case in the job-shop scheduling problem: the use
of tabu search as the embedded heuristic gives rise to a very effective iterated local
search [84].

5.3.5 Global Optimization of ILS

So far, we have considered representative issues arising when optimizing separately
each of the four components of an iterated local search. In particular, when illustrat-
ing various important characteristics of one component, we kept the other compo-
nents fixed. But clearly the optimization of one component depends on the choices
made for the others; as an example, we made it clear that a good perturbation must
have the property that it cannot be easily undone by the local search. Thus, one
should tackle the global optimization of an ILS. Since at present there is no signif-
icant theory for analyzing a metaheuristic such as iterated local search to support
its configuration, we will first give a rough idea of how such a global optimization
can be done in a manual algorithm engineering process. Over the recent years, the
engineering of effective algorithms has been made increasingly automated through
the usage of automatic algorithm configuration techniques and we will also shortly
discuss the possibilities these offer.

If we reconsider the subsection on the effect of the initial solution, we see that
GeneratelnitialSolution is to a large extent irrelevant when the ILS performs well
and rapidly loses the memory of its starting point. Hereafter we assume that this
is the case; then the optimization of GeneratelnitialSolution can be ignored and
we are left with the joint optimization of the three other components. Clearly the
best choice of Perturbation depends on the choice of LocalSearch while the best
choice of AcceptanceCriterion depends on the choices of LocalSearch and Per-
turbation. In practice, we can approximate this global optimization problem by
successively optimizing each component, assuming the others are fixed until no
improvements are found for any of the components [36]. Thus the only difference
with what has been presented in the previous sub-sections is that the optimization
has to be iterative. This does not guarantee global optimization of the ILS, but it
should lead to an adequate optimization of the overall algorithm.

Given these approximations, we should be more precise about what we want to
optimize. For most users, it will be the mean (over starting solutions) of the best cost
found during a run of a given length. Then the “best” choice for the different compo-
nents is a well defined problem, though it is intractable without further restrictions.
Furthermore, in general, the detailed instance that will be considered by the user
is not known ahead of time, so it is important that the resulting ILS algorithm be
robust. Thus it is preferable not to optimize it to the point where it is sensitive to the

5 Tterated Local Search: Framework and Applications 149

details of the instance. This robustness seems to be achieved in practice: researchers
implement versions of iterated local search with a reasonable level of global opti-
mization, and then test with some degree of success the performance on standard
benchmarks.

At the risk of repeating ourselves, let us highlight the main dependencies of the
components:

1. The perturbation should not be easily undone by the local search; if the local
search has obvious shortcomings, a good perturbation should compensate for
them.

2. The combination Perturbation—AcceptanceCriterion determines the relative
balance of intensification and diversification; large perturbations are only useful
if they can be accepted, which occurs only if the acceptance criterion is not too
biased towards better solutions.

As a general guideline, LocalSearch should be as powerful as possible as long as it
is not too costly in CPU time. Given such a choice, find a well adapted perturbation
following the discussion in Sect. 5.3.2; to the extent possible, take advantage of the
structure of the problem. Finally, set the AcceptanceCriterion routine so that S* is
sampled adequately. With this point of view, the overall optimization of the ILS is
nearly a bottom-up process, but with iteration. Perhaps the core issue is what to put
into Perturbation. In particular, is it possible to consider only weak perturbations?
From a theoretical point of view, the answer to this question depends on whether
the best solutions “cluster” in S*. In some problems (and the TSP is one of them),
there is a strong correlation between the cost of a solution and its “distance” to the
optimum: in effect, the best solutions cluster together, i.e., have many similar com-
ponents. This has been referred to in many different ways: “Massif Central” phe-
nomenon [44], principle of proximate optimality [49], and replica symmetry [93].
If the problem under consideration has this property, it is not unreasonable to hope
to find the true optimum using a biased sampling of S*. In particular, it is clear
that it is useful to use intensification to improve the probability of hitting the global
optimum.

There are, however, other types of problems where the clustering is incomplete,
i.e., where very distant solutions can be nearly as good as the optimum. Examples
of combinatorial optimization problems in this category are QAP, graph bi-section,
and MAX-SAT. When the space of solutions has this property, new strategies have
to be used. Clearly, it is still necessary to use intensification to get the best solu-
tion in one’s current neighborhood, but generally this will not lead to the optimum.
After an intensification phase, one must explore other regions of S*. This can be
attempted by using “large” perturbations whose strength grows with the instance.
Other possibilities are to restart the algorithm from scratch and repeat another in-
tensification phase or by oscillating the acceptance criterion between intensification
and diversification phases. Additional ideas on the tradeoffs between intensification
and diversification are well discussed in the context of tabu search (see, for example,
[49]). Clearly, finding an appropriate balance of intensification vs. diversification is
very important but still a challenging problem.

150 H. R. Lourenco et al.

The steps outlined above are those generally followed in a manual algorithm en-
gineering process. In that case, it is important to carefully understand the main de-
pendencies between the algorithm components and to reduce the algorithm design
space to the most promising part. Over the last few years, however, the availability
of algorithmic techniques that automate the parameter setting and configuration of
optimization algorithms and, in particular, metaheuristic algorithms has increased.
Some early methods include the usage of F-races [16] and CALIBRA [1]. Over the
recent years, a number of powerful general-purpose algorithm configurators have
been proposed such as irace [7, 81], ParamILS [64], gender-based genetic algo-
rithms [2], or SMAC [65]. (Interestingly, one of these configurators, ParamILS, is
actually itself again an ILS algorithm that searches the algorithm parameter space
for high-performing algorithm configurations.) These configurators have shown to
be powerful and for a given algorithm skeleton, they reach often significant im-
provements over default algorithms settings or those obtained in a manual algo-
rithm configuration effort [60, 118]. Maybe more importantly, effective algorithm
configuration techniques have the potential to transform the metaheuristic develop-
ment process and moving it actually towards an automated algorithm design process
[61, 118]. When applying such a process to the design of an ILS algorithm, one
would implement possible ILS algorithm components inside a freely configurable
algorithm framework and then exploit automatic algorithm configuration techniques
to search the design space for high-performing algorithm configurations. For more
details on such a process, we refer to the chapter authored by Stiitzle and Lépez-
Ibaiiez in this Handbook.

5.4 Selected Applications of ILS

ILS algorithms have been applied successfully to a variety of combinatorial opti-
mization problems. In some cases, these algorithms achieve extremely high per-
formance and even constitute the current state-of-the-art algorithms, while in other
cases the ILS approach is merely competitive with other metaheuristics. In this sec-
tion, we give an overview of interesting ILS applications, presenting the core ideas
of these algorithms to illustrate possible uses of ILS. We put a particular emphasis
on the TSP, given its central role in the development of ILS algorithms.

5.4.1 ILS for the TSP

The TSP is probably the best-known combinatorial optimization problem. De facto,
it is a standard test-bed for the development of new algorithmic ideas: a good per-
formance on the TSP is taken as evidence of the value of such ideas. Like many
other metaheuristic algorithms, some of the first ILS algorithms were introduced
and tested on the TSP, the oldest case of this being due to Baum [11, 12]. He coined

5 Tterated Local Search: Framework and Applications 151

his method iterated descent; his tests used 2-opt as the embedded heuristic, ran-
dom 3-changes as the perturbations, and imposed the tour length to decrease (thus
the name of the method). His results were not impressive, in part because some al-
gorithm components were probably not the most appropriate and also because he
tackled non-Euclidean TSPs.

A major improvement in the performance of ILS algorithms came from the large-
step Markov chain algorithm proposed by Martin et al. [88]. They used the LSMC
acceptance criterion (see Sect.5.3.3) from which the algorithm’s name is derived.
They considered both the application of 3-opt local search and the Lin-Kernighan
heuristic, which is the best performing local search algorithm for the TSP. But
probably the key ingredient of their work is the introduction of the double-bridge
move for the perturbation. This choice made the approach very powerful for the
Euclidean TSP and encouraged much more work along these lines. In particular,
Johnson [68, 69] coined the term “iterated Lin-Kernighan” (ILK) for his implemen-
tation of ILS using Lin-Kernighan as the local search. The main differences with
the LSMC implementation are: (1) double-bridge moves are random rather than bi-
ased; (2) the costs are improving (only better tours are accepted, corresponding to
the choice Better in our notation). Since these initial studies, other ILS variants
have been proposed; Johnson and McGeoch [69] give a summary of the situation
as of 1997 and several additional ILS variants are covered in a 2002 book chapter,
which summarizes early results from the 8th DIMACS implementation challenge
on the TSP [70].

A high performing ILS algorithm is offered as part of the Concorde software
package and it is available for download at http://www.tsp.gatech.edu/concorde/.
This chained Lin-Kernighan code has been developed by Applegate, Bixby, Chvatal,
and Cook and a detailed description of the code is given in their recent book on the
TSP [4]; this book also contains details on an extensive computational study of this
code. Noteworthy is also the experimental study by Applegate et al. [3] who per-
formed tests on very large TSP instances with up to 25 million cities. Recently, a new
ILS variant has been proposed that further illustrates the impressive performance of
ILS algorithms on very large TSP instances. Currently, the iterated Lin-Kernighan
variant of Merz and Huhse [92] appears to be the best performing algorithm for very
large TSP instances with several millions of cities when the computation times are
relatively short (in the range of a few hours on a modern PC as of 2008).

A major leap in TSP solving stems from Helsgaun’s Lin-Kernighan implemen-
tation and its iterated version [57]. The main novelty of Helsgaun’s algorithm lies
on the local search side: the Lin-Kernighan variant developed is based on more
complex basic moves than previous implementations. His iterated version of the
Lin-Kernighan heuristic is not really an ILS algorithm like the ones presented in
this chapter since the generation of new starting solutions is through a solution con-
struction method. However, the constructive mechanism is very strongly biased to-
wards the incumbent solution, which makes this approach somehow similar to an
ILS algorithm. The most recent version of this algorithm, along with an accompa-
nying technical report describing the recent developments, is available for download
at http://www.akira.ruc.dk/~keld/research/LKH/.

http://www.tsp.gatech.edu/concorde/
http://www.akira.ruc.dk/~keld/research/LKH/

152 H. R. Lourenco et al.

There are a number of other ILS algorithms for the TSP that not necessarily offer
the ultimate state-of-the-art performance but that illustrate various ideas that may be
useful in ILS algorithms. One algorithm, which has already been mentioned before,
is the one by Codenotti et al. [26]. It gives an example of a complex perturbation
scheme, which is based on the modification of the instance data. Various pertur-
bation sizes as well as population-based extensions of ILS algorithms for the TSP
have been studied by Hong et al. [59]. The perturbation mechanism is also the fo-
cus of the work by Katayama and Narisha [71]. They introduce a new perturbation
mechanism, which they called genetic transformation. The genetic transformation
mechanism uses two tours, the best found so far, sz st and a second, current local
optimum, s*. First a random 4-opt move is performed on s}, , resulting in s*'. Then
the subtours that are shared among s*’ and s* are kept and the resulting parts are
reconnected with a greedy algorithm. Computational experiments with an iterated
Lin-Kernighan algorithm using the genetic transformation method instead of the
standard double-bridge move have shown that the approach is effective.

An analysis of the run-time behavior of various ILS algorithms for the TSP is
done by Stiitzle and Hoos [115, 117]; this analysis clearly shows that ILS algo-
rithms with the Better acceptance criterion show a type of stagnation behavior
for long run-times. To avoid such stagnation, restarts and a particular acceptance
criterion to diversify the search were proposed. The goal of this latter strategy is to
force the search, once search stagnation is detected, to continue from a high quality
solution that is beyond a certain minimal distance from the current one [117]. As
shown in [62], current state-of-the-art algorithms such as Helsgaun’s iterated Lin-
Kernighan can also suffer from stagnation behavior and, hence, their performance
can be further improved by similar ideas.

Finally, let us mention that ILS algorithms have been used as components of
more complex algorithms. A clear example is the tour merging approach [4, 29].
The central idea is to generate a set G of high quality tours by using ILS and then to
post-process these solutions further. In particular, in tour merging, the optimal tour
(or, if this is not feasible in reasonable computation time, the best possible tour) is
produced from fragments of tours occurring in G.

5.4.2 ILS for Other Routing Problems

Besides the TSP, ILS algorithms have been applied increasingly often to other rout-
ing problems, in particular, vehicle routing problems (VRPs). Among the first ILS
applications to VRPs, we find the prize-collecting VRP [121], time-dependent VRPs
[56], and VRPs with time penalty functions [66]. In the latter article, a dynamic
programming algorithm is used to minimize penalties for violating time windows;
experimental results with up to 1000 customers show that this ILS was able to reach
very high performance and was also efficient. Various other variants of VRPs have
been tackled. Vaz Penna et al. consider a variant where the fleet of vehicles is hetero-
geneous, that is, it consists of vehicles with different characteristics such as different

5 Tterated Local Search: Framework and Applications 153

capacities [124]. Palhazi Cuervo et al. [101] propose an ILS algorithm for a VRP
with backhauls, where apart from the customer deliveries, suppliers may send back
goods to the depot. The proposed ILS algorithm exploits various neighborhoods and
allows to move between feasible and infeasible solutions. A VRP with multiple, in-
compatible commodities and multiple trips per work day is tackled with an effective
ILS algorithm by Cattaruzza et al. [23]: their algorithm is shown to outperform
previous approaches. Integrating a tabu search algorithm into an ILS approach, Sil-
vestrin and Ritt obtain a high-performing algorithm for the multi-compartment VRP,
surpassing the performance of other, existing heuristic algorithms. Melo Silva et al.
[90] tackle VRPs where split deliveries are allowed, that is, a customer demand
may be served by deliveries from various vehicles or tours. Their ILS algorithm
reached very high performance and for a large number of benchmark instances it
could improve the best known solutions. Nguyen et al. [99] consider a two-echelon
location-routing problem, which involves two types of trips. One type serves several
subordinate depots, which have to be located suitably, from a main depot; a second
type of trips delivers goods to customers from the subordinate depots. Laurent and
Hao considered a multiple depot vehicle scheduling problem, which arises in public
transport [77]. Cruz et al. [33] consider the re-positioning of bikes in a bike-sharing
system among various stations using a single vehicle, where each station may be
served in multiple visits. They develop an ILS algorithm for this problem, reaching
very high performance competitive to other methods. Porumbel et al. [104] propose
a matheuristic, in which an ILS algorithm and a column generation approach collab-
orate in parallel and communicate by exchanging routes. The example application
of this approach to arc-routing problems shows very promising results.

5.4.3 ILS for Scheduling Problems

Scheduling is one of the most popular application areas of ILS and much early
progress has been achieved on such problems. In what follows we discuss some
earlier applications in increasing order of complexity of the underlying scheduling
models, starting with single-machine problems, and give some pointers to more re-
cent literature on the topic. Congram at al. have presented an ILS algorithm for
the single machine total weighted tardiness problem (SMTWTP) [28] based on a
dynasearch local search. The perturbation mechanism in their ILS algorithm applies
a series of random interchange moves and additionally exploits specific properties
of the SMTWTP. In the acceptance criterion, they introduced a backtrack step: after
B iterations in which every new local optimum is accepted, the algorithm restarts
from the best solution found so far; the backtrack step is a particular choice for
incorporating history dependence into the acceptance criterion. The performance
of this ILS algorithm was excellent, solving almost all available benchmark in-
stances in a few seconds on the available hardware. A further improvement over
this algorithm, mainly based on an enlarged neighborhood being explored within
the dynasearch local search, was presented by Grosso et al. [52]. This approach out-

154 H. R. Lourenco et al.

performed the first iterated dynasearch algorithm, defining the state-of-the-art for
solving the SMTWTP. Other applications of ILS to the SMTWTP have been re-
ported in [36]. Later, ILS algorithms have been applied with very good results to
variants of the SMTWTP such as those including sequence-dependent setup times
[119, 127].

Brucker et al. [17, 18] applied early on the principles of ILS to a number of one-
machine and parallel-machine scheduling problems. They introduce a local search
method which is based on two types of neighborhoods. At each step one goes from
one feasible solution to a neighboring one with respect to the secondary neighbor-
hood. The main difference with standard local search methods is that this secondary
neighborhood is defined on the set of locally optimal solutions of the first neighbor-
hood. Thus, this is an ILS with two nested neighborhoods; searching in the primary
neighborhood corresponds to our local search phase; searching in the secondary
neighborhood is like our perturbation phase. The authors note that the second neigh-
borhood is problem specific; this is what is observed in ILS where the perturbation
should be adapted to the problem. The search at a higher level reduces the search
space and at the same time leads to better results.

The first application of ILS to the permutation flow-shop scheduling (PFSP) un-
der the makespan objective, which is the most widely studied flow-shop schedul-
ing problem, has been reported by Stiitzle [114]. This ILS algorithm is based on a
straightforward first-improvement local search using the insert neighborhood while
the perturbation is composed of swap moves, which exchange the positions of two
adjacent jobs, and interchange moves, which have no adjacency constraint. This
ILS algorithm was shown to be the best performing metaheuristic algorithms for
the PFSP in a later review article [109]; an adaptation of this ILS algorithm has
also shown very good performance on the flow-shop problem with flow-time ob-
jective [37]. The ILS algorithm has been extended to an iterated greedy (IG) algo-
rithm [110], a method closely related to ILS; this latter algorithm remained for a
long time the state-of-the-art algorithm for the PFSP and significantly better per-
forming extensions of it have only recently been proposed [40]. ILS has been used
to solve flow-shop problems with other objectives than makespan such as total
flow-time [102] and additional features that make it more difficult to solve. Yang
et al. [129] presented an ILS algorithm for a flow-shop with several stages in se-
ries, where at each stage a number of machines is available for processing the jobs.
Pan et al. have recently applied ILS to the hybrid flow-shop problem with due date
windows and earliness and tardiness objectives, reporting very good results. The
blocking flow-shop problem has been tackled by Ribas et al. [105], who combine,
in the local search as well as in the perturbation, moves in different neighborhoods.
An ILS variation embedding ILS in a biased multi-start approach, called biased-
randomized ILS was applied to the flow-shop problem with failure-risk costs [43].
Urlings et al. proposed ILS algorithms that are interleaved with other techniques to
tackle complex hybrid flexible flowline problems that tightly resemble scheduling
tasks in realistic production shop floors [123].

Also the job-shop scheduling problem has received significant attention by re-
searchers working with ILS. Lourenco [82] and Lourenco and Zwijnenburg [84]

5 Tterated Local Search: Framework and Applications 155

used ILS to tackle the job shop scheduling problem under the makespan criterion.
They performed extensive computational tests, comparing different ways to gen-
erate initial solutions, various local search algorithms, different perturbations, and
three acceptance criteria. While they found that the initial solution had only a very
limited influence, the other components turned out to be very important. Perhaps
the heart of their work is the way they perform the perturbations, which has already
been described in Sect. 5.3.2. Balas and Vazacopoulos [8] presented a variable depth
search heuristic which they called guided local search (GLS). They developed ILS
algorithms by embedding GLS within the shifting bottleneck (SB) procedure and
by replacing the reoptimization cycle of SB with a number of cycles of the GLS
procedure. They call this procedure SB-GLS1. The later SB-GLS2 variant works
as follows. Once all machines have been sequenced, they iteratively remove one
machine and apply GLS to a smaller instance defined by the remaining machines.
Then again GLS is applied on the initial instance containing a/l machines. Hence,
both heuristics are based on re-optimizing a part of the instance and then reapply-
ing local search to the full one. Kreipl applied ILS to the total weighted tardiness
job-shop scheduling problem [76]. His ILS algorithm uses a RW acceptance crite-
rion and the local search consists of reversing critical arcs and arcs adjacent to them.
One original aspect of this ILS is the perturbation step: Kreipl applies a few steps
of a simulated annealing-like algorithm with constant temperature; in the perturba-
tion phase a smaller neighborhood than the one used in the local search phase is
applied. The number of iterations performed during the perturbation phase depends
on how good the incumbent solution is. In promising regions, only a few steps are
applied to stay near good solutions, otherwise, a “large” perturbation is applied to
escape from a poor region. Computational results with the ILS algorithm on a set of
benchmark instances have shown a very promising performance. In fact, the algo-
rithm performance is roughly similar to a later, more complex algorithm proposed
by Essafi et al. [41]. Interestingly, this latter approach integrates an ILS algorithm as
a local search operator into an evolutionary algorithm, illustrating the fact that ILS
can also be used as an improvement method inside other metaheuristics.

5.4.4 ILS for Other Problems

ILS algorithms have been applied to a large number of other problems, often achiev-
ing excellent performance. The graph bipartitioning problem is among the earli-
est available ILS applications. Martin and Otto [86, 87] introduced an ILS for this
problem following their earlier work on the TSP. For the local search, they used
the Kernighan-Lin variable depth local search algorithm [73] which is the analog
of the Lin-Kernighan algorithm for this problem. When considering possible per-
turbations, they noticed a particular weakness of the Kernighan-Lin local search:
it frequently generates partitions with many “islands”, i.e., the two sets A and B
are typically highly fragmented (disconnected). Thus, they introduced perturbations
that exchanged vertices between these islands rather than between the whole sets A

156 H. R. Lourenco et al.

and B. Finally, for the acceptance criterion, Martin and Otto used the Better ac-
ceptance criterion. The overall algorithm significantly improved over the embedded
local search (random restart of the Kernighan-Lin local search); it also improved
over competing simulated annealing algorithms when the acceptance criterion was
optimized.

Battiti and Protasi presented an application of reactive search to the MAX-SAT
problem [9]. Their algorithm consists of two phases: a local search phase and a di-
versification (perturbation) phase, where a tabu search on the current local minimum
guarantees that the modified solution s’ is sufficiently different from the current so-
lution s*. As LocalSearch, they use a standard iterative improvement algorithm
appropriate for the MAX-SAT problem. Depending on the distance between s*' and
s*, the tabu list length for the perturbation phase is dynamically adjusted. The next
perturbation phase is then started based on solution s*'—corresponding to the RW
acceptance criterion. This work illustrates very nicely how one can adjust dynam-
ically the perturbation strength in an ILS run. We conjecture that similar schemes
will be useful to adapt the perturbation size while running an ILS algorithm. In later
work, Smyth et al. [113] have developed an ILS algorithm based on a robust tabu
search algorithm that is used in both the local search phase and the perturbation
phase. The main difference between the two phases is that the length of the tabu
list is strongly increased in the perturbation to drive the search away from the cur-
rent solution. Noteworthy is also the ILS algorithm of Yagiura and Ibaraki, which
is based on large neighborhoods for MAX-SAT that are used in the local search
phase [128]. A number of ILS approaches for coloring graphs have been proposed
[21, 25, 103]; these approaches generally reach very high quality colorings and per-
form particularly well on some structured graphs.

ILS algorithms have also reached remarkable performance on the QAP [116].
Based on the insights gained through an analysis of the run-time behavior of a
basic ILS algorithm with the Better acceptance criterion, a number of differ-
ent ILS algorithms were proposed [116]. Population-based extensions of ILS that
use restart-type criteria and additional criteria for maintaining solution diversity
have been the best performing variants. An extensive experimental campaign has
identified this population-based ILS variant as state-of-the-art for structured QAP
instances. Recently, extension of ILS have been proposed to solve stochastic com-
binatorial optimization problems [51]. This extension, named SimILS, consists in a
simulation-based framework that combines ILS with Monte Carlo Simulation, with
the objective to obtain robust solution in presence of stochasticity.

The application of ILS to continuous optimization problems has been considered
in few articles. Kramer proposed to embed Powell’s direction-set method into an
ILS algorithm for continuous optimization problems and reported promising results
[75]. Liao and Stiitzle have used an ILS algorithm for continuous optimization as
one component in their competition-based approach for continuous optimization,
which was one of the two winners of the CEC 2013 benchmark competition for
real-parameter optimization [79].

ILS has been applied to a number of other problems and we shortly mention
here some of them without attempting to give an exhaustive enumeration. Very

5 Tterated Local Search: Framework and Applications 157

high performing ILS algorithms have been proposed for problems such as maxi-
mum clique [72], image registration [32], some loop layout problems [14], partial
Latin square extension [55], linear ordering [27, 111], logistic network design prob-
lems [30], generalized quadratic multiple knapsack problem [5], maximum weight
independent set [100], capacitated hub location problem [108], fixed-charge trans-
portation problem [20], mirrored traveling tournament problem [106], car sequenc-
ing [31, 107], placement of irregular polygons in a rectangular surface [67], opti-
mization problems arising in wireless ad-hoc networks [126], Euclidean Steiner tree
problem [78], Bayesian networks structure learning [34], minimum sum-of-squares
clustering [91], design of water distribution networks [35], and many others.

5.4.5 Summary

The examples we have chosen in this section stress several points that have already
been mentioned. First, the choice of the local search algorithm is usually quite crit-
ical if one is to obtain peak performance. In most applications, the best performing
ILS algorithms apply much more sophisticated local search algorithms than simple
best- or first-improvement methods. Second, the other components of an ILS also
need to be optimized if state-of-the-art results are to be achieved. This optimization
should be global and should involve the use of problem-specific properties. Exam-
ples of this last point were given in scheduling applications where good perturba-
tions were not simply random, but rather involved re-optimization of significant
parts of the instance (c.f. the job-shop case).

The final picture is one where (1) ILS is a versatile metaheuristic, which can be
easily adapted to different combinatorial optimization problems; (2) it has shown
to be an effective way to boost the performance of simpler improvement methods;
and (3) sophisticated perturbation schemes and search diversification are essential
ingredients to achieve the best possible ILS performance.

5.5 Relation to Other Metaheuristics

In this section, we highlight the similarities and differences between ILS and other
well-known metaheuristics. We shall distinguish metaheuristics that are essentially
variants of local search and those that generate solutions using a mechanism that is
not necessarily based on an explicit neighborhood structure. Among the first class,
which we call neighborhood-based metaheuristics, are methods like simulated an-
nealing (SA) [24, 74], tabu search (TS) [49] or guided local search (GLS) [125].
The second class comprises metaheuristics such as GRASP [42], ant colony opti-
mization (ACO) [38, 39], evolutionary and memetic algorithms [6, 94, 96], scatter
search [48, 50], variable neighborhood search (VNS) [53, 54, 95] and ILS. Some
metaheuristics of this second class, like evolutionary algorithms and ant colony op-

158 H. R. Lourenco et al.

timization, do not necessarily make use of local search algorithms; however a local
search can be embedded in them, in which case the performance is usually enhanced
[38, 96, 97]. The other metaheuristics in this class explicitly use embedded local
search algorithms as an essential part of their structure. For simplicity, we will as-
sume in what follows that all the metaheuristics of this second class do incorporate
local search algorithms. In this case, such metaheuristics generate iteratively input
solutions that are passed to a local search; they can thus be interpreted as multi-start
algorithms, in the most general meaning of that term. This is why we call them here
multi-start-based metaheuristics.

5.5.1 Neighborhood-Based Metaheuristics

Neighborhood-based metaheuristics are extensions of iterative improvement algo-
rithms. They avoid getting stuck in locally optimal solutions by allowing moves to
worse solutions in the neighborhood of the current solution. Metaheuristics in this
class differ mainly by their move strategies. In the case of SA, the neighborhood
is sampled randomly and worse solutions are accepted with a probability, which
depends on a temperature parameter and the degree of deterioration incurred; better
neighboring solutions are usually accepted while much worse neighboring solutions
are accepted with a low probability. In the case of (simple) TS strategies, the neigh-
borhood is explored in an aggressive way and cycles are avoided by declaring tabu
attributes of visited solutions. Finally, in the case of GLS, the evaluation function
is dynamically modified by penalizing certain solution components. This allows the
search to escape from a solution that is a local optimum of the original objective
function.

Obviously, any of these neighborhood-based metaheuristics can be used as the
local search procedure in ILS. In general, however, these metaheuristics do not halt,
so it is necessary to limit their run time if they are to be embedded in ILS. One par-
ticular advantage of combining neighborhood-based metaheuristics with ILS is that
they often obtain much better solutions than iterative improvement algorithms. But
this advantage usually comes at the cost of larger computation times. Since these
metaheuristics allow one to obtain better solutions at the expense of greater compu-
tation times, we are confronted with the following optimization problem when using
them within an ILS’: “For how long should one run the embedded search in order
to achieve the best tradeoff between computation time and solution quality?” This
is analogous to the question of whether it is best to have a fast but not so effective
local search or a slower but a more powerful one. The answer depends of course on
the total computation time available, and on how the costs improve with time.

A different type of connection between ILS, SA and TS arises from certain sim-
ilarities in the algorithms. For example, SA can be seen as an ILS without a local
search phase (SA samples the original space S and not the reduced space S*) and

7 This question is not specific to ILS; it arises for all multi-start-based metaheuristics.

5 Tterated Local Search: Framework and Applications 159

where the acceptance criteria is LSMC(s*,s*' history). While SA does not employ
memory, the use of memory is the main feature of TS which makes a strong use of
historical information at multiple levels. Given its effectiveness, we expect that the
integration of memories will become widespread in future ILS applications.® Fur-
thermore, since TS is a prototype for memory intensive search procedures, it can be
a valuable source of inspiration for deriving ILS variants with a more direct usage
of memory; this can lead to a better balance between intensification and diversifi-
cation in the search.” Similarly, TS strategies may also be improved by features of
ILS algorithms and by some insights gained from the research on ILS.

5.5.2 Multi-Start-Based Metaheuristics

Multi-start-based metaheuristics can be classified into constructive metaheuristics
and perturbation-based metaheuristics.

Well-known examples of constructive metaheuristics are ACO and GRASP,
which both use a probabilistic solution construction phase. An important difference
between ACO and GRASP is that ACO has an indirect memory of the search pro-
cess, which is used to bias the construction process, whereas GRASP does not use
that kind of memory. An obvious difference between ILS and constructive meta-
heuristics is that ILS does not construct solutions. However, both generate a se-
quence of solutions, and if the constructive metaheuristic uses an embedded local
search, both go from one local minimum to another. So it might be said that the per-
turbation phase of an ILS is replaced by a (memory-dependent) construction phase
in these constructive metaheuristics. But another connection can be made: ILS can
be used instead of the embedded “local search” in ACO or GRASP. (This is exactly
what is done, for example, in [106].) This is one way to generalize ILS, but it is
not specific to these kinds of metaheuristics: whenever one has an embedded local
search, one can try to replace it by an iterated local search.

Perturbation-based metaheuristics differ in the techniques they use to actually
perturb solutions. Before going into details, let us introduce one additional feature
for classifying metaheuristics: we will distinguish between population-based algo-
rithms and those that use a single current solution (a population is of size one). For
example, evolutionary algorithms, memetic algorithms, scatter search, and ACO are
population-based, while ILS uses a single solution at each step. Whether or not a
metaheuristics is population-based is important for the type of perturbation that can
be applied. If no population is used, new solutions are generated by applying per-

8 In early TS publications, proposals similar to the use of perturbations were put forward under
the name random shakeup [45]. These procedures where characterized as a “randomized series of
moves that leads the heuristic (away) from its customary path” [45]. The relationship to perturba-
tions in ILS is obvious.

9 Indeed, in [46], Glover uses “strategic oscillation” whereby one cycles over these procedures: the
simplest moves are used till there is no more improvement, and then progressively more advanced
moves are used.

160 H. R. Lourenco et al.

turbations to single solutions; this is what happens for ILS and VNS. If a population
is present, one can also use the possibility of recombining several solutions into a
new one. Such combinations of solutions are implemented by “crossover” operators
in evolutionary algorithms or in the recombination of multiple solutions in scatter
search.

VNS is the metaheuristic that is probably closest to ILS. VNS begins by observ-
ing that the concept of local optimality is conditional on the neighborhood structure
used in a local search. Then VNS systemizes the idea of changing the neighborhood
during the search to avoid getting stuck in poor quality solutions. Several VNS vari-
ants have been proposed. The most widely used one, basic VNS, can be seen as an
ILS algorithm, which uses the Bet ter acceptance criterion and a systematic way
of varying the perturbation strength. To do so, basic VNS orders neighborhoods as
M, ..., Ny where the order is chosen according to the neighborhood size. Let k be
a counter variable, k = 1,2,...,m, initially set to 1. If the perturbation and the sub-
sequent local search lead to a new best solution, then k is reset to 1, otherwise k is
increased by one. We refer to [53, 54] for a description of other VNS variants.

A major difference between ILS and VNS is the philosophy underlying the two
metaheuristics: ILS has the explicit goal of building a walk in the set of locally
optimal solutions, while VNS algorithms are derived from the idea of systematically
changing neighborhoods during the search.

In general, population-based metaheuristics are more complex to use than those
following a single solution: they require mechanisms to manage a population of
solutions and more importantly it is necessary to find effective operators for the
combination of solutions. Most often, this last task is a real challenge. The com-
plexity of population-based local search methods can be justified if they lead to
better performance than non population-based methods. Therefore, one question of
interest is whether using a population of solutions is really useful. Clearly, for some
problems such as the TSP with high cost-distance correlations, the use of a single el-
ement in the population leads to good results, so the advantage of population-based
methods is small or may become only noticeable if very high computation times are
invested. However, for other problems, the use of a population can be an appealing
way to achieve search diversification. Thus, population-based methods may be de-
sirable if their complexity is not overwhelming. Because of this, population-based
extensions of ILS are promising approaches.

To date, several population-based extensions of ILS have been proposed [59, 115,
116, 122]. The approaches in [59, 115] keep the simplicity of ILS algorithms by
maintaining unchanged the perturbations: one parent is perturbed to give one child.
More complex population-based ILS extensions with mechanisms for maintaining
diversity in the population are considered in [116]. A population of solutions is used
in [122] to restrict the perturbation to explore only parts of solutions where pairs of
solutions differ (similar in spirit to the genetic transformations [71]) and to reduce
the size of the neighborhood in the local search.

Clearly, there are major points in common between most of today’s high perfor-
mance metaheuristics. Is there a way to summarize how ILS differs from the others?
We shall proceed by enumeration as the diversity of today’s metaheuristics seems to
forbid any simpler approach. When compared to ACO and GRASP, we see that ILS

5 Tterated Local Search: Framework and Applications 161

uses perturbations to create new solutions; this is quite different in principle and
in practice from using construction. When compared to evolutionary algorithms,
memetic algorithms, and scatter search, we see that ILS, as we defined it, has a pop-
ulation of size one; therefore no recombination operators need be defined. We could
continue like this, but we cannot expect the boundaries between all metaheuristics
to be clear-cut. Not only are hybrid methods very often the way to go, but most often
one can smoothly go from one metaheuristic to another. In addition, as mentioned
at the beginning of this chapter, the distinction between heuristic and metaheuristic
is rarely unambiguous. So our point of view is not that ILS has essential features
that are absent in other metaheuristics; rather, when considering the basic structure
of ILS, some simple yet powerful ideas transpire, and these can be of use in most
metaheuristics, being close or not in spirit to ILS.

5.6 Conclusions

ILS has many of the desirable features of a metaheuristic: it is simple, easy to im-
plement, robust, and highly effective. The essential idea of ILS lies in focusing the
search not on the full space of solutions but on a smaller subspace defined by the so-
lutions that are locally optimal for a given optimization engine. The success of ILS
lies in the biased sampling of this set of local optima. How effective this approach
turns out to be depends mainly on the choice of the local search, the perturbation,
and the acceptance criterion. Interestingly, even when using the most naive imple-
mentations of these components, ILS can do much better than random restart. But,
with further work to carefully adapt the components to the problem at hand, ILS
can often become a competitive or even state-of-the-art algorithm. This dichotomy
is important because the optimization of the algorithm can be done progressively,
and so ILS can be kept at any desired level of simplicity. This, plus the modular
nature of ILS, leads to short development times and gives ILS an edge over more
complex metaheuristics in the world of industrial applications. As an example of
this, recall that ILS essentially treats the embedded heuristic as a black box; then
upgrading an ILS to take advantage of a new and better local search algorithm is
nearly immediate. In addition, the modular nature of ILS also makes it amenable
as an underlying template for the automated design of metaheuristic algorithms, a
trend that will become more prominent in the future. Because of all these features,
we believe that ILS is a promising and powerful algorithm to solve real complex
problems in industry and services, in areas ranging from finance to production man-
agement and logistics. Finally, let us note that even if this review was presented in
the context of tackling combinatorial optimization problems, in reality much of what
we covered can be extended in a straightforward manner to continuous optimization
problems.

The ideas and results presented in this chapter leave many questions unanswered.
Clearly, more work needs to be done to better understand the interplay between the
ILS modules GeneratelnitialSolution, Perturbation, LocalSearch, and Accep-
tanceCriterion. Other directions for improving ILS performance are to consider

162 H. R. Lourenco et al.

the intelligent use of memory, explicit intensification and diversification strategies,
and greater problem-specific tuning. The exploration of these issues will certainly
lead to higher performance iterated local search algorithms.

Acknowledgements Helena Ramalhinho Lourengo acknowledges support from the Spanish Min-
istry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), and
Thomas Stiitzle acknowledges support from the F.R.S.-FNRS, of which he is a research director.
This work received support from the COMEX project P7/36 within the Interuniversity Attraction
Poles Programme of the Belgian Science Policy Office.

References

1. B. Adenso-Dfaz, M. Laguna, Fine-tuning of algorithms using fractional experimental design
and local search. Oper. Res. 54(1), 99—-114 (2006)

2. C. Ansotegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the auto-
matic configuration of algorithms, in Principles and Practice of Constraint Programming,
CP 2009, ed. by L.P. Gent. Lecture Notes in Computer Science, vol. 5732 (Springer, Heidel-
berg, 2009), pp. 142-157

3. D. Applegate, W.J. Cook, A. Rohe, Chained Lin-Kernighan for large traveling salesman
problems. INFORMS J. Comput. 15(1), 82-92 (2003)

4. D.L. Applegate, R.E. Bixby, V. Chvital, W.J. Cook, The Traveling Salesman Problem: A
Computational Study (Princeton University Press, Princeton, 2006)

5. M. Avci, S. Topaloglu, A multi-start iterated local search algorithm for the generalized
quadratic multiple knapsack problem. Comput. Oper. Res. 83, 54-65 (2017)

6. T. Béck, Evolutionary Algorithms in Theory and Practice (Oxford University Press, Oxford,
1996)

7. P. Balaprakash, M. Birattari, T. Stiitzle, Improvement strategies for the F-race algorithm:
sampling design and iterative refinement, in Hybrid Metaheuristics, ed. by T. Bartz-
Beielstein, M.J. Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph, M. Sampels. Lecture
Notes in Computer Science, vol. 4771 (Springer, Heidelberg, 2007), pp. 108—122

8. E.Balas, A. Vazacopoulos, Guided local search with shifting bottleneck for job shop schedul-
ing. Manag. Sci. 44(2), 262-275 (1998)

9. R. Battiti, M. Protasi, Reactive search, a history-based heuristic for MAX-SAT. ACM J. Exp.
Algorithmics 2 (1997). https://doi.org/10.1145/264216.264220

10. R. Battiti, G. Tecchiolli, The reactive tabu search. ORSA J. Comput. 6(2), 126—140 (1994)

11. E.B. Baum, Iterated descent: a better algorithm for local search in combinatorial optimization
problems. Technical Report, Caltech, Pasadena, CA, 1986; manuscript

12. E.B. Baum, Towards practical “neural” computation for combinatorial optimization prob-
lems, in Neural Networks for Computing, ed. by J. Denker. AIP Conference Proceedings
(1986), pp. 53-64

13. J. Baxter, Local optima avoidance in depot location. J. Oper. Res. Soc. 32(9), 815-819 (1981)

14. J.A. Bennell, C.N. Potts, J.D. Whitehead, Local search algorithms for the min-max loop
layout problem. J. Oper. Res. Soc. 53(10), 1109-1117 (2002)

15. J.L. Bentley, Fast algorithms for geometric traveling salesman problems. ORSA J. Comput.
4(4), 387411 (1992)

16. M. Birattari, T. Stiitzle, L. Paquete, K. Varrentrapp, A racing algorithm for configuring
metaheuristics, in Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2002, ed. by W.B. Langdon et al. (Morgan Kaufmann, San Francisco, 2002),
pp. 11-18

17. P. Brucker, J. Hurink, F. Werner, Improving local search heuristics for some scheduling prob-
lems — part I. Discret. Appl. Math. 65(1-3), 97-122 (1996)

https://doi.org/10.1145/264216.264220

5 Tterated Local Search: Framework and Applications 163

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.
39.

40.

P. Brucker, J. Hurink, F. Werner, Improving local search heuristics for some scheduling prob-
lems — part II. Discret. Appl. Math. 72(1-2), 47-69 (1997)

E.K. Burke, M. Gendreau, G. Ochoa, J.D. Walker, Adaptive iterated local search for cross-
domain optimisation, in Proceedings of the 13th Annual Genetic and Evolutionary Computa-
tion Conference, ed. by N. Krasnogor, P.L. Lanzi (ACM Press, New York, 2011), pp. 1987—
1994

E. Buson, R. Roberti, P. Toth, A reduced-cost iterated local search heuristic for the fixed-
charge transportation problem. Oper. Res. 62(5), 1095-1106 (2014)

M. Caramia, P. Dell’Olmo, Coloring graphs by iterated local search traversing feasible and
infeasible solutions. Discret. Appl. Math. 156(2), 201-217 (2008)

J. Carlier, The one-machine sequencing problem. Eur. J. Oper. Res. 11(1), 42-47 (1982)

D. Cattaruzza, N. Absi, D. Feillet, D. Vigo, An iterated local search for the multi-commodity
multi-trip vehicle routing problem with time windows. Comput. Oper. Res. 51, 257-267
(2014)

V. Cerny, A thermodynamical approach to the traveling salesman problem: an efficient sim-
ulation algorithm. J. Optim. Theory Appl. 45(1), 41-51 (1985)

M. Chiarandini, T. Stiitzle, An application of iterated local search to the graph coloring prob-
lem, in Proceedings of the Computational Symposium on Graph Coloring and Its General-
izations, Ithaca, NY, 2002, ed. by A.M.D.S. Johnson, M. Trick, pp. 112-125 (2002)

B. Codenotti, G. Manzini, L. Margara, G. Resta, Perturbation: an efficient technique for the
solution of very large instances of the Euclidean TSP. INFORMS J. Comput. 8(2), 125-133
(1996)

R.K. Congram, Polynomially searchable exponential neighbourhoods for sequencing prob-
lems in combinatorial optimization. Ph.D. thesis, Southampton University, Faculty of Math-
ematical Studies, Southampton, 2000

R.K. Congram, C.N. Potts, S. van de Velde, An iterated dynasearch algorithm for the single-
machine total weighted tardiness scheduling problem. INFORMS J. Comput. 14(1), 52-67
(2002)

W.J. Cook, P. Seymour, Tour merging via branch-decomposition. INFORMS J. Comput.
15(3), 233-248 (2003)

J.-F. Cordeau, G. Laporte, F. Pasin, An iterated local search heuristic for the logistics network
design problem with single assignment. Int. J. Prod. Econ. 113(2), 626-640 (2008)

J.-F. Cordeau, G. Laporte, F. Pasin, Iterated tabu search for the car sequencing problem. Eur.
J. Oper. Res. 191(3), 945-956 (2008)

O. Cordén, S. Damas, Image registration with iterated local search. J. Heuristics 12(1-2),
73-94 (2006)

F. Cruz, A. Subramanian, B.P. Bruck, M. lori, A heuristic algorithm for a single vehicle static
bike sharing rebalancing problem. Comput. Oper. Res. 79, 19-33 (2017)

L.M. de Campos, J.M. Ferndndez-Luna, J. Miguel Puerta, An iterated local search algorithm
for learning Bayesian networks with restarts based on conditional independence tests. Int. J.
Intell. Syst. 18(2), 221-235 (2003)

A. De Corte, K. Sorensen, An iterated local search algorithm for water distribution network
design optimization. Networks 67(3), 187-198 (2016)

M.L. den Besten, T. Stiitzle, M. Dorigo, Design of iterated local search algorithms: an ex-
ample application to the single machine total weighted tardiness problem, in Applications
of Evolutionary Computing. Proceedings of EvoWorkshops 2001, ed. by E.J.W. Boers et al.
Lecture Notes in Computer Science, vol. 2037 (Springer, Heidelberg, 2001), pp. 441-452
X. Dong, H. Huang, P. Chen, An iterated local search algorithm for the permutation flowshop
problem with total flowtime criterion. Comput. Oper. Res. 36(5), 1664—1669 (2009)

M. Dorigo, T. Stiitzle, Ant Colony Optimization (MIT Press, Cambridge, 2004)

M. Dorigo, M. Birattari, T. Stiitzle, Ant colony optimization: artificial ants as a computational
intelligence technique. IEEE Comput. Intell. Mag. 1(4), 28-39 (2006)

J. Dubois-Lacoste, F. Pagnozzi, T. Stiitzle, An iterated greedy algorithm with optimization
of partial solutions for the permutation flowshop problem. Comput. Oper. Res. 81, 160-166
(2017)

164

41.

42.

43.

44,

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.

63.

64.

H. R. Lourenco et al.

I. Essafi, Y. Mati, S. Dauzere-Peréz, A genetic local search algorithm for minimizing total
weighted tardiness in the job-shop scheduling problem. Comput. Oper. Res. 35(8), 2599-
2616 (2008)

T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim.
6, 109-133 (1995)

A. Ferrer, D. Guimarans, H. Ramalhinho Lourenco, A.A. Juan, A BRILS metaheuristic
for non-smooth flow-shop problems with failure-risk costs. Expert Syst. Appl. 44, 177-186
(2016)

C. Fonlupt, D. Robilliard, P. Preux, E.-G. Talbi, Fitness landscape and performance of meta-
heuristics, in Meta-Heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization, ed. by S. Voss, S. Martello, I.H. Osman, and C. Roucairol (Kluwer Academic,
Boston, 1999), pp. 257-268

F. Glover, Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13(5), 533-549 (1986)

F. Glover, Tabu search — part I. ORSA J. Comput. 1(3), 190-206 (1989)

F. Glover, Tabu thresholding: improved search by nonmonotonic trajectories. ORSA J. Com-
put. 7(4), 426-442 (1995)

F. Glover, Scatter search and path relinking, in New Ideas in Optimization, ed. by D. Corne,
M. Dorigo, F. Glover (McGraw Hill, London, 1999), pp. 297-316

F. Glover, M. Laguna, Tabu Search (Kluwer Academic, Boston, 1997)

F. Glover, M. Laguna, R. Marti, Scatter search and path relinking: advances and applica-
tions, in Handbook of Metaheuristics, ed. by F. Glover, G. Kochenberger (Kluwer Academic,
Norwell, 2002), pp. 1-35

A. Grasas, A.A. Juan, H.R. Lourenco. SimILS: a simulation-based extension of the iterated
local search metaheuristic for stochastic combinatorial optimization. J. Simul. 10(1), 69-77
(2016)

A. Grosso, F.D. Croce, R. Tadei, An enhanced dynasearch neighborhood for the single-
machine total weighted tardiness scheduling problem. Oper. Res. Lett. 32(1), 68-72 (2004)
P. Hansen, N. Mladenovi¢, Variable neighborhood search: principles and applications. Eur.
J. Oper. Res. 130(3), 449-467 (2001)

P. Hansen, N. Mladenovi¢, J. Brimberg, J.A. Moreno Pérez, Variable Neighborhood Search,
in Handbook of Metaheuristics, ed. by M. Gendreau, J.-Y. Potvin. International Series in
Operations Research & Management Science, 2nd edn., vol. 146 (Springer, New York, 2010),
pp- 61-86

K. Haraguchi, Iterated local search with Trellis-neighborhood for the partial Latin square
extension problem. J. Heuristics 22(5), 727-757 (2016)

H. Hashimoto, M. Yagiura, T. Ibaraki, An iterated local search algorithm for the time-
dependent vehicle routing problem with time windows. Discret. Optim. 5(2), 434-456 (2008)
K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic.
Eur. J. Oper. Res. 126(1), 106-130 (2000)

K. Helsgaun, General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program.
Comput. 1(2-3), 119-163 (2009)

I. Hong, A.B. Kahng, B.R. Moon, Improved large-step Markov chain variants for the sym-
metric TSP. J. Heuristics 3(1), 63-81 (1997)

H.H. Hoos, Automated algorithm configuration and parameter tuning, in Autonomous
Search, ed. by Y. Hamadi, E. Monfroy, F. Saubion (Springer, Berlin, 2012), pp. 37-71

H.H. Hoos, Programming by optimization. Commun. ACM 55(2), 70-80 (2012)

H.H. Hoos, T. Stiitzle, Stochastic Local Search—Foundations and Applications (Morgan
Kaufmann, San Francisco, 2005)

T.C. Hu, A.B. Kahng, C.-W.A. Tsao, Old bachelor acceptance: a new class of non-monotone
threshold accepting methods. ORSA J. Comput. 7(4), 417-425 (1995)

F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stiitzle, ParamILS: an automatic algorithm con-
figuration framework. J. Artif. Intell. Res. 36, 267-306 (2009)

5 Tterated Local Search: Framework and Applications 165

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for gen-
eral algorithm configuration, in Learning and Intelligent Optimization, ed. by C.A. Coello
Coello. 5th International Conference, LION 5. Lecture Notes in Computer Science, vol. 6683
(Springer, Heidelberg, 2011), pp. 507-523

T. Ibaraki, S. Imahori, K. Nonobe, K. Sobue, T. Uno, M. Yagiura, An iterated local search
algorithm for the vehicle routing problem with convex time penalty functions. Discret. Appl.
Math. 156(11), 2050-2069 (2008)

T. Imamichi, M. Yagiura, H. Nagamochi, An iterated local search algorithm based on non-
linear programming for the irregular strip packing problem. Discret. Optim. 6(4), 345-361
(2009)

D.S. Johnson, Local optimization and the travelling salesman problem, in Proceedings of the
17th Colloquium on Automata, Languages, and Programming. Lecture Notes in Computer
Science, vol. 443 (Springer, Heidelberg, 1990), pp. 446-461

D.S. Johnson, L.A. McGeoch, The traveling salesman problem: a case study in local opti-
mization, in Local Search in Combinatorial Optimization, ed. by E.H.L. Aarts, J.K. Lenstra
(Wiley, Chichester, 1997), pp. 215-310

D.S. Johnson, L.A. McGeoch, Experimental analysis of heuristics for the STSP, in The Trav-
eling Salesman Problem and Its Variations, ed. by G. Gutin, A. Punnen (Kluwer Academic
Publishers, Dordrecht, 2002), pp. 369-443

K. Katayama, H. Narihisa, Iterated local search approach using genetic transformation to
the traveling salesman problem, in Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-1999), ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H. Gar-
zon, V. Honavar, M. Jakiela, R.E. Smith, vol. 1 (Morgan Kaufmann, San Francisco, 1999),
pp- 321-328

K. Katayama, M. Sadamatsu, H. Narihisa, Iterated k-opt local search for the maximum clique
problem, in Evolutionary Computation in Combinatorial Optimization, ed. by C. Cotta,
J. van Hemert. Lecture Notes in Computer Science, vol. 4446 (Springer, Heidelberg, 2007),
pp- 84-95

B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs. Bell Syst.
Tech. J. 49(2), 213-219 (1970)

S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science
220, 671-680 (1983)

O. Kramer, Iterated local search with Powell’s method: a memetic algorithm for continuous
global optimization. Memet. Comput. 2(1), 69-83 (2010)

S. Kreipl, A large step random walk for minimizing total weighted tardiness in a job shop.
J. Sched. 3(3), 125-138 (2000)

B. Laurent, J.-K. Hao, Iterated local search for the multiple depot vehicle scheduling prob-
lem. Comput. Ind. Eng. 57(1), 277-286 (2009)

V. Leal do Forte, EM. Tavares Montenegro, J.A. de Moura Brito, N. Maculan, Iterated local
search algorithms for the Euclidean Steiner tree problem in n dimensions. Int. Trans. Oper.
Res. 23(6), 1185-1199 (2016)

T. Liao, T. Stiitzle, Benchmark results for a simple hybrid algorithm on the CEC 2013 bench-
mark set for real-parameter optimization, in Proceedings of the 2013 Congress on Evolution-
ary Computation (CEC 2013) (IEEE Press, Piscataway, 2013), pp. 1938-1944

S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21(2), 498-516 (1973)

M. Lépez-Ibaiiez, J. Dubois-Lacoste, Leslie Pérez Caceres, T. Stiitzle, M. Birattari, The irace
package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43-58
(2016)

H.R. Lourengo, Job-shop scheduling: computational study of local search and large-step op-
timization methods. Eur. J. Oper. Res. 83(2), 347-364 (1995)

166

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.
95.

96.

97.

98.

99.

100.

101.

102.

H. R. Lourenco et al.

H. Ramalhinho, A polynomial algorithm for a special case of the one—-machine schedul-
ing problem with time-lags, in Engineering Optimization 2014, ed. by E.C. Rodrigues, J.
Herskovits, C.M. Mota Soares, J.M. Guedes, A.L. Aradjo, J.O. Folgado, F. Moleiro, J.EA.
Madeira, Chapter 67 (Taylor & Francis Group, London, 2015), pp. 397-401. https://doi.org/
10.1201/b17488-70

H.R. Lourengo, M. Zwijnenburg, Combining the large-step optimization with tabu-search:
application to the job-shop scheduling problem, in Meta-Heuristics: Theory & Applications,
ed. by I.LH. Osman, J.P. Kelly (Kluwer Academic, Boston, 1996), pp. 219-236

M. Lozano, C. Garcia-Martinez, An evolutionary ILS-perturbation technique, in Hybrid
Metaheuristics, ed. by M.J. Blesa, C. Blum, C. Cotta, A.J. Fernandez, J.E. Gallardo, A. Roli,
M. Sampels. 5th International Workshop, HM 2008. Lecture Notes in Computer Science,
vol. 5296 (Springer, Heidelberg, 2008), pp. 1-15

O. Martin, S.W. Otto, Partitioning of unstructured meshes for load balancing. Concurr. Pract.
Exp. 7(4), 303-314 (1995)

O. Martin, S.W. Otto, Combining simulated annealing with local search heuristics. Ann.
Oper. Res. 63, 57-75 (1996)

O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman
problem. Complex Syst. 5(3), 299-326 (1991)

O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the TSP incorporating local
search heuristics. Oper. Res. Lett. 11(4), 219-224 (1992)

M. Melo Silva, A. Subramanian, L.S. Ochi, An iterated local search heuristic for the split
delivery vehicle routing problem. Comput. Oper. Res. 53, 234-249 (2015)

P. Merz, An iterated local search approach for minimum sum-of-squares clustering, in
Advances in Intelligent Data Analysis V, IDA 2003, ed. by M.R. Berthold, H.-J. Lenz,
E. Bradley, R. Kruse, C. Borgelt. Lecture Notes in Computer Science, vol. 2810 (Springer,
Heidelberg, 2003), pp. 286-296

P. Merz, J. Huhse, An iterated local search approach for finding provably good solutions
for very large TSP instances, in Parallel Problem Solving from Nature—PPSN X, ed. by
G. Rudolph, T. Jansen, S.M. Lucas, C. Poloni, N. Beume. Lecture Notes in Computer Sci-
ence, vol. 5199 (Springer, Heidelberg, 2008), pp. 929-939

M. Mézard, G. Parisi, M.A. Virasoro, Spin-Glass Theory and Beyond. Lecture Notes in
Physics, vol. 9 (World Scientific, Singapore, 1987)

Z. Michalewicz, D.B. Fogel, How to Solve It: Modern Heuristics (Springer, Berlin, 2000)
N. Mladenovi¢, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097—
1100 (1997)

P. Moscato, C. Cotta, Memetic Algorithms, in Handbook of Approximation Algorithms and
Metaheuristics, ed. by T.F. Gonzélez. Computer and Information Science Series, chapter 27
(Chapman & Hall/CRC, Boca Raton, 2007)

H. Miihlenbein, Evolution in time and space — the parallel genetic algorithm, in Foundations
of Genetic Algorithms (Morgan Kaufmann, San Mateo, 1991), pp. 316-337

M. Nawaz, E. Enscore Jr., I. Ham, A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega 11(1), 91-95 (1983)

V.-P. Nguyen, C. Prins, C. Prodhon, A multi-start iterated local search with tabu list and path
relinking for the two-echelon location-routing problem. Eng. Appl. Artif. Intell. 25(1), 56-71
(2012)

B. Nogueira, R.G.S. Pinheiro, A. Subramanian, A hybrid iterated local search heuristic for
the maximum weight independent set problem. Optim. Lett. 12(3), 567-583 (2018). https://
doi.org/10.1007/s11590-017-1128-7

D. Palhazi Cuervo, P. Goos, K. Sorensen, E. Arrdiz, An iterated local search algorithm for
the vehicle routing problem with backhauls. Eur. J. Oper. Res. 237(2), 454-464 (2014)
Q.-K. Pan, R. Ruiz, Local search methods for the flowshop scheduling problem with flowtime
minimization. Eur. J. Oper. Res. 222(1), 31-43 (2012)

https://doi.org/10.1201/b17488-70
https://doi.org/10.1201/b17488-70
https://doi.org/10.1007/s11590-017-1128-7
https://doi.org/10.1007/s11590-017-1128-7

5 Tterated Local Search: Framework and Applications 167

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

L. Paquete, T. Stiitzle, An experimental investigation of iterated local search for coloring
graphs, in Applications of Evolutionary Computing, ed. by S. Cagnoni, J. Gottlieb, E. Hart,
M. Middendorf, G. Raidl. Lecture Notes in Computer Science, vol. 2279 (Springer, Heidel-
berg, 2002), pp. 122-131

D. Porumbel, G. Goncalves, H. Allaoui, T. Hsu, Iterated local search and column generation
to solve arc-routing as a permutation set-covering problem. Eur. J. Oper. Res. 256(2), 349—
367 (2017)

I. Ribas, R. Companys, X. Tort-Martorell, An iterated greedy algorithm for the flowshop
scheduling problem with blocking. Omega 39(3), 293-301 (2011)

C.C. Ribeiro, S. Urrutia, Heuristics for the mirrored traveling tournament problem. Eur. J.
Oper. Res. 179(3), 775-787 (2007)

C.C. Ribeiro, D. Aloise, T.F. Noronha, C. Rocha, S. Urrutia, A hybrid heuristic for a multi-
objective real-life car sequencing problem with painting and assembly line constraints. Eur.
J. Oper. Res. 191(3), 981-992 (2008)

I. Rodriguez-Martin, J.J. Salazar Gonzélez, Solving a capacitated hub location problem. Eur.
J. Oper. Res. 184(2), 468-479 (2008)

R. Ruiz, C. Maroto, A comprehensive review and evaluation of permutation flowshop heuris-
tics. Eur. J. Oper. Res. 165(2), 479—494 (2005)

R. Ruiz, T. Stiitzle, A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033-2049 (2007)

T. Schiavinotto, T. Stiitzle, The linear ordering problem: Instances, search space analysis and
algorithms. J. Math. Model. Algorithms 3(4), 367-402 (2004)

G.R. Schreiber, O.C. Martin, Cut size statistics of graph bisection heuristics. SIAM J. Optim.
10(1), 231-251 (1999)

K. Smyth, H.H. Hoos, T. Stiitzle, Iterated robust tabu search for MAX-SAT, in Advances
in Artificial Intelligence, ed. by Y. Xiang, B. Chaib-Draa. 16th Conference of the Cana-
dian Society for Computational Studies of Intelligence. Lecture Notes in Computer Science,
vol. 2671 (Springer, Heidelberg, 2003), pp. 129-144

T. Stiitzle, Applying iterated local search to the permutation flow shop problem. Technical
Report AIDA-98-04, FG Intellektik, TU Darmstadt, Darmstadt, August 1998

T. Stiitzle, Local Search Algorithms for Combinatorial Problems: Analysis, Improvements,
and New Applications. Dissertations in Artificial Intelligence, vol. 220 (IOS Press, Amster-
dam, 1999)

T. Stiitzle, Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res.
174(3), 1519-1539 (2006)

T. Stiitzle, H.H. Hoos, Analysing the run-time behaviour of iterated local search for the
travelling salesman problem, in Essays and Surveys on Metaheuristics, ed. by P. Hansen,
C. Ribeiro. Operations Research/Computer Science Interfaces Series (Kluwer Academic,
Boston, 2001), pp. 589-611

T. Stiitzle, M. Lopez-Ibafiez, Automatic (offline) configuration of algorithms, in GECCO
(Companion), ed. by J.L. Jiménez Laredo, S. Silva, A.I. Esparcia-Alcazar (ACM Press, New
York, 2015), pp. 681-702

A. Subramanian, M. Battarra, C.N. Potts, An iterated local search heuristic for the single
machine total weighted tardiness scheduling problem with sequence-dependent setup times.
Int. J. Prod. Res. 52(9), 2729-2742 (2014)

E.D. Taillard, Comparison of iterative searches for the quadratic assignment problem. Locat.
Sci. 3(2), 87-105 (1995)

L. Tang, X. Wang, Iterated local search algorithm based on a very large-scale neighborhood
for prize-collecting vehicle routing problem. Int. J. Adv. Manuf. Technol. 29(11-12), 1246—
1258 (2006)

D. Thierens, Population-based iterated local search: restricting the neighborhood search
by crossover, in Genetic and Evolutionary Computation-GECCO 2004, Part II, ed. by
K. Deb et al. Lecture Notes in Computer Science, vol. 3102 (Springer, Heidelberg, 2004),
pp. 234-245

168

123.

124.

125.

126.

127.

128.

129.

H. R. Lourenco et al.

T. Urlings, R. Ruiz, T. Stiitzle, Shifting representation search for hybrid flexible flowline
problems. Eur. J. Oper. Res. 207(2), 1086—1095 (2010)

P.H. Vaz Penna, A. Subramanian, L.S. Ochi, An iterated local search heuristic for the hetero-
geneous fleet vehicle routing problem. J. Heuristics 19(2), 201-232 (2013)

C. Voudouris, E.P.K. Tsang, Guided local search, in Handbook of Metaheuristics, ed. by
F. Glover, G. Kochenberger (Kluwer Academic, Norwell, 2002), pp. 185-218

S. Wolf, P. Merz, Iterated local search for minimum power symmetric connectivity in wire-
less networks, in Proceedings of EvoCOP 2009 — 9th European Conference on Evolutionary
Computation in Combinatorial Optimization, ed. by C. Cotta, P. Cowling. Lecture Notes in
Computer Science, vol. 5482 (Springer, Heidelberg, 2009), pp. 192-203

H. Xu, Z. Lii, T.CEE. Cheng, Iterated local search for single-machine scheduling with
sequence-dependent setup times to minimize total weighted tardiness. J. Sched. 17(3), 271-
287 (2014)

M. Yagiura, T. Ibaraki, Efficient 2 and 3-flip neighborhood search algorithms for the MAX
SAT: experimental evaluation. J. Heuristics 7(5), 423—442 (2001)

Y. Yang, S. Kreipl, M. Pinedo, Heuristics for minimizing total weighted tardiness in flexible
flow shops. J. Sched. 3(2), 89—-108 (2000)

Chapter 6)

Check for

Greedy Randomized Adaptive Search
Procedures: Advances and Extensions

Mauricio G. C. Resende and Celso C. Ribeiro

Abstract A greedy randomized adaptive search procedure (GRASP) is a multi-start
metaheuristic for combinatorial optimization problems, in which each iteration con-
sists basically of two phases: construction and local search. The construction phase
builds a feasible solution whose neighborhood is investigated until a local mini-
mum is found during the local search phase. The best overall solution is kept as
the result. In this chapter, we first describe the basic components of GRASP. Suc-
cessful implementation techniques are discussed and illustrated by numerical re-
sults obtained for different applications. Enhanced or alternative solution construc-
tion mechanisms and techniques to speed up the search are also described: Alterna-
tive randomized greedy construction schemes, Reactive GRASP, cost perturbations,
bias functions, memory and learning, Lagrangean constructive heuristics and La-
grangean GRASP, local search on partially constructed solutions, hashing, and fil-
tering. We also discuss implementation strategies of memory-based intensification
and post-optimization techniques using path-relinking. Restart strategies to speedup
the search, hybridizations with other metaheuristics, and applications are also re-
viewed.

M. G. C. Resende (<)

Amazon.com, Seattle, WA, USA

University of Washington, Seattle, WA, USA
e-mail: mger@uw.edu

C. C. Ribeiro
Universidade Federal Fluminense, Niterdi, Rio de Janeiro, Brazil
e-mail: celso@ic.uff.br

© Springer International Publishing AG, part of Springer Nature 2019 169
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_6&domain=pdf
mailto:mgcr@uw.edu
mailto:celso@ic.uff.br
https://doi.org/10.1007/978-3-319-91086-4_6

170 M. G. C. Resende and C. C. Ribeiro

6.1 Introduction

We consider in this chapter a combinatorial optimization problem, defined by a
finite ground set E = {1,...,n}, a set of feasible solutions F C 2F, and an objective
function f : 2E _3 R. In its minimization version, we seek an optimal solution $* € F
such that f(S*) < f(S), VS € F. The ground set E, the cost function f, and the set of
feasible solutions F are defined for each specific problem. For instance, in the case
of the traveling salesman problem, the ground set E is that of all edges connecting
the cities to be visited, f(S) is the sum of the costs of all edges in S, and F is formed
by all edge subsets that determine a Hamiltonian cycle.

GRASP (Greedy Randomized Adaptive Search Procedure) [90, 91] is a multi-
start or iterative metaheuristic, in which each iteration consists of two phases: con-
struction and local search. The construction phase builds a solution using a greedy
randomized adaptive algorithm. If this solution is not feasible, then it is necessary
to apply a repair procedure to achieve feasibility or to make a new attempt to build
a feasible solution. Once a feasible solution is obtained, its neighborhood is investi-
gated until a local minimum is found during the local search phase. The best overall
solution is kept as the result.

Extensive literature surveys on greedy randomized adaptive search procedures
are presented in [98—100, 212, 213, 224]. A first book on GRASP was published in
2016 by Resende and Ribeiro [215].

The pseudo-code in Fig. 6.1 illustrates the main blocks of a GRASP procedure
for minimization, in which Max_Iterations iterations are performed and Seed
is used as the initial seed for the pseudo-random number generator.

procedure GRASP(Max_Iterations, Seed)

1 Read_Input();

2 fork=1,...,Max_Iterations do

3 Solution « Greedy_Randomized_Construction(Seed);
4 if Solution is not feasible then

5 Solution «- Repair (Solution);

6 end;

7 Solution « Local_Search(Solution);

8 Update_Solution(Solution,Best_Solution);
9 end;

10 return Best_Solution;

end GRASP.

Fig. 6.1 Pseudo-code of the GRASP metaheuristic

Figure 6.2 illustrates the construction phase with its pseudo-code. At each iter-
ation of this phase, let the set of candidate elements be formed by all elements of
the ground set E that can be incorporated into the partial solution being built, with-
out impeding the construction of a feasible solution with the remaining ground set
elements. The selection of the next element for incorporation is determined by the

6 GRASP: Advances and Extensions 171

evaluation of all candidate elements according to a greedy evaluation function. This
greedy function usually represents the incremental increase in the cost function due
to the incorporation of this element into the solution under construction. The evalu-
ation of the elements by this function leads to the creation of a restricted candidate
list (RCL) formed by the best elements, i.e. those whose incorporation to the current
partial solution results in the smallest incremental costs (this is the greedy aspect of
the algorithm). The element to be incorporated into the partial solution is randomly
selected from those in the RCL (this is the probabilistic aspect of the heuristic).
Once the selected element is incorporated into the partial solution, the candidate list
is updated and the incremental costs are reevaluated (this is the adaptive aspect of
the heuristic). The above steps are repeated while there exists at least one candi-
date element. This strategy is similar to the semi-greedy heuristic proposed by Hart
and Shogan [122], which is also a multi-start approach based on greedy randomized
constructions, but without local search.

procedure Greedy_Randomized_Construction(Seed)
Solution « 0;
Initialize the set of candidate elements;
Evaluate the incremental costs of the candidate elements;
while there exists at least one candidate element do
Build the restricted candidate list (RCL);
Select an element s from the RCL at random;
Solution « SolutionU{s};
Update the set of candidate elements;
Reevaluate the incremental costs;

NeleBEN Be N R S

10 end;
11 return Solution;
end Greedy_Randomized_Construction.

Fig. 6.2 Pseudo-code of the construction phase

A randomized greedy construction procedure is not always able to produce a
feasible solution. It may be necessary to apply a repair procedure to the solution to
achieve feasibility. Examples of repair procedures can be found in [80, 81, 169, 180].

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usu-
ally improves the constructed solution. A local search algorithm works in an iter-
ative fashion by successively replacing the current solution by a better solution in
its neighborhood. It terminates when no better solution is found in the neighbor-
hood. The pseudo-code of a basic local search algorithm starting from the solution
Solution constructed in the first phase (and possibly made feasible by the repair
heuristic) and using a neighborhood N is given in Fig. 6.3.

172 M. G. C. Resende and C. C. Ribeiro

procedure Local_Search(Solution)

1 while Solution is not locally optimal do

2 Find s’ € N(Solution) with f(s') < f(Solution);
3 Solution «s';

4 end;

5 return Solution;

end Local_Search.

Fig. 6.3 Pseudo-code of the local search phase

The speed and the effectiveness of a local search procedure depend on several
aspects, such as the neighborhood structure, the neighborhood search technique, the
strategy used for the evaluation of the cost function value at the neighbors, and the
starting solution itself. The construction phase plays a very important role with re-
spect to this last aspect, building high-quality starting solutions for the local search.
Simple neighborhoods are typically used. The neighborhood search can be imple-
mented using either a best-improving or a first-improving strategy. In the case of the
best-improving strategy, all neighbors are investigated and the current solution is
replaced by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution. In practice, we observed on many applications that quite
often both strategies lead to the same final solution, but in smaller computation
times when the first-improving strategy is used. We also observed that premature
convergence to a bad local minimum is more likely to occur with a best-improving
strategy.

6.2 Construction of the Restricted Candidate List

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned. Therefore, development can
focus on implementing appropriate data structures for efficient construction and lo-
cal search algorithms. GRASP has two main parameters: one related to the stopping
criterion and the other to the quality of the elements in the restricted candidate list.

The stopping criterion used in the pseudo-code described in Fig. 6.1 is deter-
mined by the number Max Iterations of iterations. Although the probability
of finding a new solution improving the incumbent (current best solution) decreases
with the number of iterations, the quality of the incumbent does not worsen with the
number of iterations. Since the computation time does not vary much from iteration
to iteration, the total computation time is predictable and increases linearly with the
number of iterations. Consequently, the larger the number of iterations, the larger
will be the computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we consider, without loss
of generality, a minimization problem as the one formulated in Sect. 6.1. We denote

6 GRASP: Advances and Extensions 173

by c(e) the incremental cost associated with the incorporation of element e € E
into the solution under construction. At any GRASP iteration, let M and ¢4 pe,
respectively, the smallest and the largest incremental costs.

The restricted candidate list RCL is made up of the elements e € E with the
best (i.e., the smallest) incremental costs c(e). This list can be limited either by
the number of elements (cardinality-based) or by their quality (value-based). In the
first case, it is made up of the p elements with the best incremental costs, where
p is a parameter. In this chapter, the RCL is associated with a threshold parameter
o € [0, 1]. The restricted candidate list is formed by all elements e € E which can
be feasibly inserted into the partial solution under construction and whose quality
is superior to the threshold value, i.e., c(e) € [¢"™, ™" + o (c™* — ¢™iM)]. The case
o = 0 corresponds to a pure greedy algorithm, while oz = 1 is equivalent to a random
construction. The pseudo-code in Fig. 6.4 is a refinement of the greedy randomized
construction pseudo-code shown in Fig. 6.2. It shows that the parameter o controls
the amounts of greediness and randomness in the algorithm.

procedure Greedy_Randomized_Construction(a,Seed)
1 Solution «+ 0;

2 Initialize the candidate set: C +— E;

3 Evaluate the incremental cost c(e) for all e € C;

4 while C # 0 do

5 e« min{c(e) | e € C};

6 " — max{c(e) |e € C};

7 RCL « {e € C | c(e) < ™ 4 or(cmax — cMmin)};

8 Select an element s from the RCL at random;

9 Solution « SolutionU{s};

10 Update the candidate set C;

11 Reevaluate the incremental cost c(e) for all e € C;
12 end;

13 return Solution;

end Greedy_Randomized_Construction.

Fig. 6.4 Refined pseudo-code of the construction phase

GRASP construction can be viewed as a repetitive sampling technique. Each
iteration produces a sample solution from an unknown distribution, whose mean
and variance are functions of the restrictive nature of the RCL. For example, if the
RCL is restricted to a single element, then the same solution will be produced at all
iterations. The variance of the distribution will be zero and the mean will be equal
to the value of the greedy solution. If the RCL is allowed to have more elements,
then many different solutions will be produced, implying a larger variance. Since
greediness plays a smaller role in this case, the average solution value should be
worse than that of the greedy solution. However, the value of the best solution found
outperforms the average value and can be near-optimal or even optimal. It is unlikely
that GRASP will find an optimal solution if the average solution value is high, even
if there is a large variance in the overall solution values. On the other hand, if there is

174 M. G. C. Resende and C. C. Ribeiro

little variance in the overall solution values, it is also unlikely that GRASP will find
an optimal solution, even if the average solution is low. What often leads to good
solutions are relatively low average solution values in the presence of a relatively
large variance, such as is the case for o = 0.2.

Another interesting observation is that the distances between the solutions ob-
tained at each iteration and the best solution found increase as the construction phase
moves from more greedy to more random. This causes the average time taken by the
local search to increase. Very often, many GRASP solutions may be generated in the
same amount of time required by the local search procedure to converge from a sin-
gle random start. In these cases, the time saved by starting the local search from
good initial solutions can be used to improve solution quality by performing more
GRASP iterations.

These results are illustrated in Table 6.1 and Fig. 6.5, for an instance of the
MAXSAT problem [219] where 1000 iterations were run. For each value of o rang-
ing from O (purely random construction for maximization problems) to 1 (purely
greedy construction for maximization problems), we give in Table 6.1 the average
Hamming distance between each solution built during the construction phase and
the corresponding local optimum obtained after local search, the average number of
moves from the former to the latter, the local search time in seconds, and the total
processing time in seconds. Figure 6.5 summarizes the values observed for the total
processing time and the local search time. We notice that both time measures consid-
erably decrease as o tends to 1, approaching the purely greedy choice. In particular,
we observe that the average local search time taken by oo = 0 (purely random) is
approximately 2.5 times longer than the time taken by oo = 0.9 (almost greedy). In
this example, two to three greedily constructed solutions can be investigated in the
same time needed to apply local search to one single randomly constructed solution.
The appropriate choice of the value of the RCL parameter o is clearly critical and
relevant to achieve a good balance between computation time and solution quality.

Table 6.1 Average number of moves and local search time as a function of the RCL parameter o
for a maximization problem

o Avg. distance Avg. moves Local search time (s) Total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941

1.0 2.733 2.733 5.118 6.235

6 GRASP: Advances and Extensions 175

Prais and Ribeiro [201] show that using a single fixed value for the RCL param-
eter o very often hinders finding a high-quality solution, which could be found if
another value is used. They propose an extension of the basic GRASP procedure,
which they call Reactive GRASP, in which the parameter « is self-tuned and its
value is periodically modified depending on the quality of the solutions obtained
along the search. In particular, computational experiments on the problem of traf-
fic assignment in communication satellites [202] show that Reactive GRASP finds
better solutions than the basic algorithm for many test instances. These results moti-
vated the study of the behavior of GRASP with different strategies for the variation
of the value of the RCL parameter o:

total CPU time

local search CPU time

time (seconds) for 1000 iterations
N
T

0 0.2 0.4 0.6 0.8 1
RCL parameter

Fig. 6.5 Total CPU time and local search CPU time as a function of the RCL parameter ¢ for a
maximization problem (1000 repetitions for each value of o)

R: o self tuned with a Reactive GRASP procedure;

E: o randomly chosen from a uniform discrete probability distribution;

H: o randomly chosen from a decreasing non-uniform discrete probability distri-
bution;

F: o« fixed, close to the purely greedy choice value.

We summarize the results obtained by the experiments reported in [200, 201].
These four strategies are incorporated into the GRASP procedures developed for
four different optimization problems: (P-1) matrix decomposition for traffic assign-
ment in communication satellites [202]; (P-2) set covering [90]; (P-3) weighted
MAX-SAT [219, 221]; and (P-4) graph planarization [210, 226]. Let

176 M. G. C. Resende and C. C. Ribeiro
Y= {al7"'aam}

be the set of possible values for the parameter o for the first three strategies. The
strategy for choosing and self-tuning the value of ¢ in the case of the Reactive
GRASP procedure (R) is described later in Sect.6.3. In the case of the strategy
(E) based on using the discrete uniform distribution, all choice probabilities are
equal to 1/m. The third case corresponds to the a hybrid strategy (H), in which
the authors considered p(a = 0.1) = 0.5, p(a = 0.2) = 0.25, p(a = 0.3) = 0.125,
p(a =0.4) =0.03, p(oc = 0.5) = 0.03, p(a = 0.6) = 0.03, p(ox = 0.7) = 0.01,
p(a=0.8) =0.01, p(a=0.9) =0.01, and p(oc = 1.0) = 0.005. Finally, in the last
strategy (F), the value of ¢ is fixed as recommended in the original references of
problems P-1 to P-4 cited above, where this parameter was tuned for each problem.
A subset of the literature instances was considered for each class of test problems.
The results reported in [201] are summarized in Table 6.2. For each problem, we
first list the number of instances considered. Next, for each strategy, we give the
number of times it found the best solution (hits), as well as the average CPU time
(in seconds) on an IBM 9672 model R34. The number of iterations was fixed at
10,000.

Table 6.2 Computational results for different strategies for the variation of parameter o

R E H F
Problem Instances Hits Time Hits Time Hits Time Hits Time
P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0
Total 24 ~ 91 85 78 59

Strategy (F) presented the shortest average computation times for three out the
four problem types. It was also the one with the least variability in the constructed
solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
The high number of hits observed for strategy (E) also illustrates the effectiveness
of strategies based on the variation of the RCL parameter.

6.3 Alternative Construction Mechanisms

A possible shortcoming of the standard GRASP framework is the independence of
its iterations, i.e., the fact that it does not learn from the search history or from
solutions found in previous iterations. This is so because the basic algorithm dis-
cards information about any solution previously encountered that does not improve

6 GRASP: Advances and Extensions 177

the incumbent. Information gathered from good solutions can be used to imple-
ment memory-based procedures to influence the construction phase, by modifying
the selection probabilities associated with each element of the RCL or by enforcing
specific choices. Another possible shortcoming of the greedy randomized construc-
tion is its complexity. At each step of the construction, each yet unselected candidate
element has to be evaluated by the greedy function. In cases where the difference
between the number of elements in the ground set and the number of elements that
appear in a solution is large, this may not be very efficient.

In this section, we consider enhancements and alternative techniques for the con-
struction phase of GRASP. They include random plus greedy, sampled greedy, Re-
active GRASP, cost perturbations, bias functions, memory and learning, local search
on partially constructed solutions, and Lagrangean GRASP heuristics.

6.3.1 Random Plus Greedy and Sampled Greedy Construction

In Sect. 6.2, we described the semi-greedy construction scheme used to build ran-
domized greedy solutions that serve as starting points for local search. Two other
randomized greedy approaches were proposed in [216], with smaller worst-case
complexities than the semi-greedy algorithm.

Instead of combining greediness and randomness at each step of the construction
procedure, the random plus greedy scheme applies randomness during the first p
construction steps to produce a random partial solution. Next, the algorithm com-
pletes the solution with one or more pure greedy construction steps. The resulting
solution is randomized greedy. One can control the balance between greediness and
randomness in the construction by changing the value of the parameter p. Larger
values of p are associated with solutions that are more random, while smaller val-
ues result in greedier solutions.

Similar to the random plus greedy procedure, the sampled greedy construction
also combines randomness and greediness but in a different way. This procedure is
also controlled by a parameter p. At each step of the construction process, the pro-
cedure builds a restricted candidate list by randomly sampling min{p, |C|} elements
of the candidate set C. Each element of the RCL is evaluated by the greedy function.
The element with the smallest greedy function value is added to the partial solution.
This two-step process is repeated until there are no more candidate elements. The
resulting solution is also randomized greedy. The balance between greediness and
randomness can be controlled by changing the value of the parameter p, i.e. the
number of candidate elements that are sampled. Small sample sizes lead to more
random solutions, while large sample sizes lead to greedier solutions.

178 M. G. C. Resende and C. C. Ribeiro

6.3.2 Reactive GRASP

The first strategy to incorporate a learning mechanism in the memoryless construc-
tion phase of the basic GRASP was the Reactive GRASP procedure introduced in
Sect. 6.2. In this case, the value of the RCL parameter « is not fixed, but instead
is randomly selected at each iteration from a discrete set of possible values. This
selection is guided by the solution values found along the previous iterations. One
way to accomplish this is to use the rule proposed in [202]. Let ¥ = {0, ..., 04 }
be a set of possible values for ¢. The probabilities associated with the choice of
each value are all initially made equal to p; = 1/m, for i = 1,...,m. Furthermore,
let z* be the incumbent solution and let A; be the average value of all solutions found
using o = o, for i = 1,...,m. The selection probabilities are periodically reevalu-
ated by taking p; = q;/ ¥ q;, with g; = 2" /A; for i = 1,...,m. The value of g
will be larger for values of o¢ = ¢; leading to the best solutions on average. Larger
values of g; correspond to more suitable values for the parameter ¢. The probabil-
ities associated with the more appropriate values will then increase when they are
reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on
parameter tuning. In addition to the applications in [200-202], this approach has
been used in power system transmission network planning [46], job shop schedul-
ing [49], channel assignment in mobile phone networks [118], rural road network
development [249], capacitated location [71], strip-packing [15], and a combined
production-distribution problem [50].

6.3.3 Cost Perturbations

The idea of introducing some noise into the original costs is similar to that in the so-
called “noising” method of Charon and Hudry [57, 58]. It adds more flexibility into
the algorithm design and may be even more effective than the greedy randomized
construction of the basic GRASP procedure in circumstances where the construction
algorithms are not very sensitive to randomization. This is indeed the case for the
shortest-path heuristic of Takahashi and Matsuyama [259], used as one of the main
building blocks of the construction phase of the hybrid GRASP procedure proposed
by Ribeiro et al. [233] for the Steiner problem in graphs. Another situation where
cost perturbations can be very effective appears when no greedy algorithm is avail-
able for straightforward randomization. This happens to be the case of the hybrid
GRASP developed by Canuto et al. [54] for the prize-collecting Steiner tree prob-
lem, which makes use of the primal-dual algorithm of Goemans and Williamson
[117] to build initial solutions using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [54], a new solution is built at each iteration using node prizes updated by a pertur-
bation function, based on the structure of the current solution. Two different prize

6 GRASP: Advances and Extensions 179

perturbation schemes were used. In perturbation by eliminations, the primal-dual
algorithm used in the construction phase is driven to build a new solution without
some of the nodes that appeared in the solution constructed in the previous iteration.
In perturbation by prize changes, some noise is introduced into the node prizes to
change the objective function, similarly to what is proposed in [57, 58].

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [233] incorporate learning mechanisms associated with inten-
sification and diversification strategies. Three distinct weight randomization meth-
ods were applied. At a given GRASP iteration, the modified weight of each edge
is randomly selected from a uniform distribution over an interval which depends
on the selected weight randomization method applied at that iteration. The differ-
ent weight randomization methods use frequency information and may be used to
enforce intensification and diversification strategies. The experimental results re-
ported in [233] show that the strategy combining these three perturbation methods
is more robust than any of them used in isolation, leading to the best overall results
on a quite broad mix of test instances with different characteristics. The GRASP
heuristic using this cost perturbation strategy is among the most effective heuristics
currently available for the Steiner problem in graphs.

6.3.4 Bias Functions

In the construction procedure of the basic GRASP, the next element to be introduced
in the solution is chosen at random from the candidates in the RCL. The elements of
the RCL are assigned equal probabilities of being chosen. However, any probability
distribution can be used to bias the selection toward some particular candidates. An-
other construction mechanism was proposed by Bresina [51], where a family of such
probability distributions is introduced. They are based on the rank r(e) assigned to
each candidate element e € C, according to its greedy function value. Several bias
functions were proposed, such as:

random bias: bias(r) = 1;

linear bias: bias(r) = 1/r;

log bias: bias(r) =log ! (r+1);
exponential bias: bias(r) =e™"; and
polynomial bias of order n: bias(r) = r".

Let r(e) denote the rank of element ¢ € C and let bias(r(e)) be one of the bias
functions defined above. Once these values have been evaluated for all elements in
the candidate set C, the probability 7(e) of selecting element e € C is

bias(r(e))
nle)= —————~——. 6.1)
)= S cpias(r@)

180 M. G. C. Resende and C. C. Ribeiro

The evaluation of these bias functions may be restricted to the elements of the
RCL. Bresina’s selection procedure restricted to elements of the RCL was used in
[49]. The standard GRASP uses a random bias function.

6.3.5 Intelligent Construction: Memory and Learning

Fleurent and Glover [106] observed that the basic GRASP does not use a long-term
memory (information gathered in previous iterations) and proposed a long-term
memory scheme to address this issue in multi-start heuristics. Long-term memory
is one of the fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction
phase. To become an elite solution, a solution must be either better than the best
member of the pool, or better than its worst member and sufficiently different from
the other solutions in the pool. For example, one can count identical solution vector
components and set a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding the
objective or changing significantly other variables. A consistent variable is one that
receives a particular value in a large portion of the elite solution set. Let the intensity
function I(e) be a measure of the strong determination and consistency features of
a solution element e € E. Then, I(e) becomes larger as e appears more often in the
pool of elite solutions. The intensity function is used in the construction phase as
follows. Recall that c(e) is the greedy function, i.e. the incremental cost associated
with the incorporation of element e € E into the solution under construction. Let
K(e) = F(c(e),I(e)) be a function of the greedy and intensification functions. For
example, K(e) = Ac(e) +1(e). The intensification scheme biases selection from the
RCL to those elements e € E with a high value of K(e) by setting its selection
probability to be p(e) = K(e)/ Y screr K ().

The function K(e) can vary with time by changing the value of A. For example,
A may be set to a large value that is decreased when diversification is called for.
Procedures for changing the value of A are given by Fleurent and Glover [106] and
Binato et al. [49].

6.3.6 POP in Construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions
at one level are likely to be found ‘close to’ good solutions at an adjacent level”
[115]. Fleurent and Glover [106] provided a GRASP interpretation of this principle.
They suggested that imperfections introduced during steps of the GRASP construc-
tion can be “ironed-out” by applying local search during (and not only at the end of)
the GRASP construction phase.

6 GRASP: Advances and Extensions 181

Because of efficiency considerations, a practical implementation of POP to
GRASP consists in applying local search a few times during the construction phase,
but not at every construction iteration. Local search was applied by Binato et al. [49]
after 40% and 80% of the construction moves were performed, as well as at the end
of the construction phase.

6.3.7 Lagrangean GRASP Heuristics

Lagrangean relaxation [45, 105] is a mathematical programming technique that can
be used to provide lower bounds for minimization problems. Held and Karp [123,
124] were among the first to explore the use of the dual multipliers produced by
Lagrangean relaxation to derive lower bounds, applying this idea in the context of
the traveling salesman problem. Lagrangean heuristics further explore the use of
different dual multipliers to generate feasible solutions. Beasley [43, 44] described
a Lagrangean heuristic for set covering.

6.3.7.1 Lagrangean Relaxation and Subgradient Optimization

Lagrangean relaxation can be used to provide lower bounds for combinatorial op-
timization problems. However, the primal solutions produced by the algorithms
used to solve the Lagrangean dual problem are not necessarily feasible. Lagrangean
heuristics exploit dual multipliers to generate primal feasible solutions.

Given a mathematical programming problem & formulated as

F* =min f(x) (6.2)
gi(x) <0, i=1,....m, (6.3)
xeX, (6.4)

its Lagrangean relaxation is obtained by associating dual multipliers A; € R with
each inequality (6.3), for i = 1,...,m. This results in the following Lagrangean
relaxation problem LRP(A)

min f(x) = f(x) + X A~ gi(x) (6.5)
i=1

xeX, (6.4)

whose optimal solution x(A) gives a lower bound f”(x(1)) to the optimal value of
the original problem & defined by (6.2)—(6.4). The best (dual) lower bound is given
by the solution of the Lagrangean dual problem &

fo = f(x(A%)) = max f'(x(A)). (6.6)

AERY

182 M. G. C. Resende and C. C. Ribeiro

Subgradient optimization is used to solve the dual problem & defined by (6.6).
Subgradient algorithms start from any feasible set of dual multipliers, such as A; =0,
fori=1,...,m, and iteratively generate updated multipliers.

At any iteration g, let A7 be the current vector of multipliers and let x(17) be
an optimal solution to problem LRP(A%), whose optimal value is f’(x(19)). Fur-
thermore, let f be a known upper bound to the optimal value of problem &. Ad-
ditionally, let g7 € R™ be a subgradient of f’(x) at x = x(A7), with g7 = g;(x(17))
for i = 1,...,m. To update the Lagrangean multipliers, the algorithm makes use of
a step size

o NG F6(29)

, 6.7)

(8f)?

where 1 € (0,2]. Multipliers are then updated as
AT —max{0; A7 —d?- g%}, i=1,....m, (6.8)

and the subgradient algorithm proceeds to iteration g+ 1.

6.3.7.2 A Template for Lagrangean Heuristics

We describe next a template for Lagrangean heuristics that make use of the dual
multipliers A¢ and of the optimal solution x(A9) to each problem LRP(A4) to build
feasible solutions to the original problem & defined by (6.2)—(6.4). In the following,
we assume that the objective function and all constraints are linear functions, i.e.
fx) =X cjxjand gi(x) = 2?:1 dijxj—ej,fori=1,....m.

Let # be a primal heuristic that builds a feasible solution x to &7, starting from
the initial solution x = x(A%) at every iteration ¢ of the subgradient algorithm.
Heuristic 77 is first applied using the original costs ¢}, i.e. using the cost function
f(x). In any subsequent iteration ¢ of the subgradient algorithm, 7 uses either the
Lagrangean reduced costs c’j =c;j— ¥, Alld;j or the complementary costs ¢; =
(1-x;(A) -c;.

Let x”*°7 be the solution obtained by heuristic .7, using a generic cost vector y
corresponding to either one of the above modified cost schemes or to the original
cost vector. Its cost can be used to update the upper bound £ to the optimal value of
the original problem. This upper bound can be further improved by local search and
is used to adjust the step size defined by Eq. (6.7).

Figure 6.6 shows the pseudo-code of a Lagrangean heuristic. Lines 1—4 initialize
the upper and lower bounds, the iteration counter, and the dual multipliers. The iter-
ations of the subgradient algorithm are performed along the loop defined in lines 5—
24. The reduced costs are computed in line 6 and the Lagrangean relaxation problem
is solved in line 7. In the first iteration of the Lagrangean heuristic, the original cost
vector is assigned to yin line 9, while in subsequent iterations a modified cost vector
is assigned to y in line 11. Heuristic ¢ is applied in line 13 at the first iteration and
after every H iterations thereafter (i.e., whenever the iteration counter g is a multi-
ple of the input parameter H) to produce a feasible solution x”**¥ to problem 2. If

6 GRASP: Advances and Extensions 183

the cost of this solution is smaller than the current upper bound, then the best solu-
tion and its cost are updated in lines 14-18. If the lower bound f’(x(A19)) is greater
than the current lower bound fy, then f5 is updated in line 19. Line 20 computes a
subgradient at x(A17) and line 21 computes the step size. The dual multipliers are up-
dated in line 22 and the iteration counter is incremented in line 23. The best solution
found and its cost are returned in line 24.

The strategy proposed by Held et al. [125] is commonly used in the implementa-
tion of Lagrangean heuristics to update the dual multipliers from one iteration to the
next. Beasley [44] reported as computationally useful the adjustment of components
of the subgradients to zero whenever they do not effectively contribute to the update
of the multipliers, i.e., arbitrarily setting g/ = 0 whenever g7 > 0 and A = 0, for
i=1,...,m.

procedure Lagrangean_Heuristic(H)

1 f — oo

2 [y e

3 g 0;

4 Al—0,i=1,....m;

5 repeat

6 Compute reduced costs: ¢; < ¢; — 31 Aldi, j=1,....m
7 Solve LRP(A%) to obtain a solution x(19);

8 if ¢ = 0 then

9 ¥ c;

10 else

11 Set y to the modified cost vector ¢’ or ¢;

12 end-if;

13 if ¢ is a multiple of H then apply heuristic .7 with cost vector ¥ to obtain x*7;
14 if f(x7Y) < f

15 then do;

16 X —x:

17 Fe F);

18 end-if;

19 if f/(x(29)) > f then £y — f/(x(29));

20 Compute a subgradient: g7 « g;(x(19)), i=1,...,m;

21 Compute the step size: d4 — - (f — f'(x(A9))) /=7, (g!)?;
22 Update the dual multipliers: l,-q“ —max{0,47 —dig?}, i=1,....m;
23 q—q+1;

24 until stopping criterion satisfied;

25 return x*, f(x*);

end Lagrangean_Heuristic.

Fig. 6.6 Pseudo-code of a template for a Lagrangean heuristic

Different choices for the initial solution x9, for the modified costs 7. and for the
primal heuristic .77 itself lead to different variants of the above algorithm. The in-
teger parameter H defines the frequency in which .77 is applied. The smaller the
value of H, the greater the number of times 57 is applied. Therefore, the computa-

184 M. G. C. Resende and C. C. Ribeiro

tion time increases as the value of H decreases. In particular, one should set H = 1
if the primal heuristic JZ is to be applied at every iteration.

6.3.7.3 Lagrangean GRASP

Pessoa et al. [195, 196] proposed the hybridization of GRASP and Lagrangean re-
laxation leading to the Lagrangean GRASP heuristic described below. Different
choices for the primal heuristic 7# in the template of the algorithm in Fig. 6.6
lead to distinct Lagrangean heuristics. We consider two variants: the first makes
use of a greedy algorithm with local search, while in the second a GRASP with
path-relinking (see Sect. 6.4) is used.

Greedy heuristic: This heuristic greedily repairs the solution x(1¢) produced in
line 7 of the Lagrangean heuristic described in Fig. 6.6 to make it feasible for prob-
lem 2. It makes use of the modified costs (¢’ or ¢). Local search can be applied to
the resulting solution, using the original cost vector c¢. We refer to this approach as
a greedy Lagrangean heuristic (GLH).

GRASP heuristic: Instead of simply performing one construction step followed
by local search, as GLH does, this variant applies a GRASP heuristic to repair the
solution x(A7) produced in line 7 of the Lagrangean heuristic to make it feasible for
problem &.

Although the GRASP heuristic produces better solutions than the greedy heuris-
tic, the greedy heuristic is much faster. To appropriately address this trade-off, we
adapt line 10 of Fig. 6.6 to use the GRASP heuristic with probability 3 and the
greedy heuristic with probability 1 — B, where J is a parameter of the algorithm.

We note that this strategy involves three main parameters: the number H of iter-
ations after which the basic heuristic is always applied, the number Q of iterations
performed by the GRASP heuristic when it is chosen as the primal heuristic, and
the probability 8 of choosing the GRASP heuristic as 7. We shall refer to the
Lagrangean heuristic that uses this hybrid strategy as LAGRASP(3,H, Q).

We next summarize computational results obtained for 135 instances of the set
k-covering problem. These instances have up to 400 constraints and 4000 binary
variables. The set k-covering, or set multi-covering, problem is an extension of the
classical set covering problem, in which each element is required to be covered
at least k times. The problem finds applications in the design of communication
networks and in computational biology.

The first experiment with the GRASP Lagrangean heuristic established the rela-
tionship between running times and solution quality for different parameter settings.
Parameter f3, the probability of GRASP being applied as the heuristic 7, was set to

6 GRASP: Advances and Extensions 185

0, 0.25, 0.50, 0.75, and 1. Parameter H, the number of iterations between successive
calls to the heuristic .77, was set to 1, 5, 10, and 50. Parameter Q, the number of it-
erations carried out by the GRASP heuristic, was set to 1, 5, 10, and 50. By combin-
ing some of these parameter values, 68 variants of the hybrid LAGRASP(S,H, Q)
heuristic were created. Each variant was applied eight times to a subset of 21 in-
stances, with different initial seeds being given to the random number generator.

The plot in Fig. 6.7 summarizes the results for all variants evaluated, display-
ing points whose coordinates are the values of the average deviation from the best
known solution value and the total time in seconds for processing the eight runs on
all instances, for each combination of parameter values. Eight variants of special in-
terest are identified and labeled with the corresponding parameters 3, H, and Q, in
this order. These variants correspond to selected Pareto points in the plot in Fig. 6.7.
Setting B =0 and H = 1 corresponds to the greedy Lagrangean heuristic (GLH) or,
equivalently, to LAGRASP(0,1,—), whose average deviation (in percentage) from
the best value amounts to 0.12% in 4859.16 s of total running time. Table 6.3 shows
the average deviation from the best known solution value and the total time for each
of the eight selected variants.

In another experiment, all 135 test instances were considered for the comparison
of the above selected eight variants of LAGRASP. Table 6.4 summarizes the results

1e+06 T T T
1,1,50%
n
N
100000 + E
+ +
N
+ + +
+ +
— * + +
IC) N +
© 10000 | oo E
E F(0.50,1,1)+ * LR N
[(0,1,-)+ (0.25,5,10)+ + ++ "
(0.2555)+ + 4 N
N
1000 F (0.25,5,1)$jr B * _
R +
+T +
++
(0.25,50,5)+
e
100 Il 1 1 1 Il Il 1 | (0'50’1-):*:
0.05 0.1 015 02 025 03 03 04 045 05 055
AvgDev (%)

Fig. 6.7 Average deviation from the best value and total running time for 68 different variants of
LAGRASP on a reduced set of 21 instances of the set k-covering problem: each point represents a
unique combination of parameters 3, H, and Q

186 M. G. C. Resende and C. C. Ribeiro

Table 6.3 Summary of the numerical results obtained with the selected variants of the GRASP
Lagrangean heuristic on a reduced set of 21 instances of the set k-covering problem

Heuristic Average deviation Total time (s)
LAGRASP(1,1,50) 0.09% 399,101.14
LAGRASP(0.50,1,1) 0.11% 6198.46
LAGRASP(0,1,—) 0.12% 4859.16
LAGRASP(0.25,5,10) 0.24% 4373.56
LAGRASP(0.25,5,5) 0.25% 2589.79
LAGRASP(0.25,5,1) 0.26% 1101.64
LAGRASP(0.25,50,5) 0.47% 292.95
LAGRASP(0,50,—) 0.51% 124.26

These values correspond to the coordinates of the selected variants in Fig. 6.7. The total time is
given in seconds

obtained by the eight selected variants. It shows that LAGRASP(1,1,50) found the
best solutions, with an average deviation from the best values amounting to 0.079%.
It also found the best known solutions in 365 runs (each variant was run eight times
on each instance), again with the best performance when the eight variants are eval-
uated side by side, although its running times are the largest. On the other hand, the
smallest running times were observed for LAGRASP(0,50,—), which was over 3000
times faster than LAGRASP(1,1,50) but found the worst-quality solutions among
the eight variants considered.

Table 6.4 Summary of the numerical results obtained with the selected variants of the GRASP
Lagrangean heuristic on the full set of 135 instances of the set k-covering problem

Heuristic Average deviation Hits Total time (s)
LAGRASP(1,1,50) 0.079% 365 1,803,283.64
LAGRASP(0.50,1,1) 0.134% 242 30,489.17
LAGRASP(0,1,—) 0.135% 238 24,274.72
LAGRASP(0.25,5,10) 0.235% 168 22,475.54
LAGRASP(0.25,5,5) 0.247% 163 11,263.80
LAGRASP(0.25,5,1) 0.249% 164 5347.78
LAGRASP(0.25,50,5) 0.442% 100 1553.35
LAGRASP(0,50,—) 0.439% 97 569.30

The total time is given in seconds

Figure 6.8 illustrates the merit of the proposed approach for one of the test
instances. We first observe that all variants reach the same lower bounds, as ex-
pected, since they depend exclusively on the common subgradient algorithm. How-
ever, as the lower bound appears to stabilize, the upper bound obtained by GLH
(LAGRASP(0,1,—) also seems to freeze. On the other hand, the other variants con-
tinue to make improvements by discovering better upper bounds, since the random-
ized GRASP construction helps them to escape from locally optimal solutions and
find new, improved upper bounds.

6 GRASP: Advances and Extensions 187

10900
LAGRASP(1, 1 0) UB ——
LAGRASP(0. 50 uB ——
LAGRASP(O 1 uB
LAGRASP(0.25,5, 10 uB
10800 [} LAGRASPG 25.5.5) UB i
LAGRASP(0.25,5,1) UB ———
,-\L| LAGRASP(0.25, 50 5)UB ——
%)) LAGRASP(O 50 UuB ——
ke) Lower Bound —
S 10700
o
o]
@ .
a8
S 10600 Y
©
= \
@ l ‘|
2 10500 |
o
3 M
- _‘ —
10400 —_— —
10300 /
500 1000 1500 2000 2500
lterations

Fig. 6.8 Evolution of lower and upper bounds over the iterations for different variants of LA-
GRASP. The number of iterations taken by each LAGRASP variant depends on the step-size,
which in turn depends on the upper bounds produced by each heuristic

Finally, we provide a comparison between GRASP with backward path-relinking
and the LAGRASP variants on all 135 test instances when the same time limits are
used to stop all heuristics. Eight runs were performed for each heuristic and each in-
stance, using different initial seeds for the random number generator. Each heuristic
was run a total of (8 x 135 =) 1080 times. The results in Table 6.5 show that all vari-
ants of LAGRASP outperformed GRASP with backward path-relinking and were
able to find solutions whose costs are very close to or as good as the best known
solution values, while GRASP with backward path-relinking found solutions whose
costs are on average 4.05% larger than the best known solution values.

Table 6.5 Summary of results for the best variants of LAGRASP and GRASP

Heuristic Average deviation Hits
LAGRASP(1,1,50) 3.30% 0
LAGRASP(0.50,1,1) 0.35% 171
LAGRASP(0,1,—) 0.35% 173
LAGRASP(0.25,5,10) 0.45% 138
LAGRASP(0.25,5,5) 0.45% 143
LAGRASP(0.25,5,1) 0.46% 137
LAGRASP(0.25,50,5) 0.65% 97
LAGRASP(0,50,—) 0.65% 93

GRASP with backward path-relinking 4.05% 0

188 M. G. C. Resende and C. C. Ribeiro

Figure 6.9 displays for one test instance the typical behavior of these heuristics.
As opposed to the GRASP with path-relinking, the Lagrangean heuristics are able to
escape from local optima for longer and keep on improving the solutions to obtain
the best results.

We note that an important feature of Lagrangean heuristics is that they provide
not only a feasible solution (which gives an upper bound, in the case of a minimiza-
tion problem), but also a lower bound that may be used to give an estimate of the
optimality gap that may be considered as a stopping criterion.

6.4 Path-Relinking

The LAGRASP heuristics presented in Sect. 6.3.7.3 made use of path-relinking.
Path-relinking is another enhancement to the basic GRASP procedure, leading to
significant improvements in both solution quality and running times. This tech-
nique was originally proposed by Glover [112] as an intensification strategy to
explore trajectories connecting elite solutions obtained by tabu search or scatter
search [113, 115, 116].

We consider the undirected graph associated with the solution space G = (S, M),
where the nodes in S correspond to feasible solutions and the edges in M corre-
spond to moves in the neighborhood structure, i.e. (i, j) € M if and only if i € S,
JES, jEN(i) and i € N(j), where N(s) denotes the neighborhood of a node s € S.
Path-relinking is usually carried out between two solutions: one is called the initial

10800
10750 firfm
[
10700
10650 |-+ : GPRb —— |
: : LAGRASP(1,1,5)
: LAGRASP(O 50,1,1)
= : : LAGRASP(0,1,-)
Q 10600 |- : LAGRASP(0.25,5.10) .
] : : LAGRASP(0.25,5,5)
LAGRASP(0.25,5,1)
: : LAGRASP(0.25 50, 5) ————————
10550 -+ : LAGRASP(0,50,-) - -
10500
10450
10400 - : T T S e
0 5 10 15 20 25 30

Time (s)

Fig. 6.9 Evolution of solution costs with time for the best variants of LAGRASP and GRASP with
backward path-relinking (GPRb)

6 GRASP: Advances and Extensions 189

solution, while the other is the guiding solution. One or more paths in the solution
space graph connecting these solutions are explored in the search for better solu-
tions. Local search is applied to the best solution in each of these paths, since there
is no guarantee that the best solution is locally optimal.

Let s € S be a node on the path between an initial solution and a guiding solution
g € S. Not all solutions in the neighborhood N(s) are candidates to follow s on the
path from s to g. We restrict the choice only to those solutions that are more similar
to g than s. This is accomplished by selecting moves from s that introduce attributes
contained in the guiding solution g. Therefore, path-relinking may be viewed as a
strategy that seeks to incorporate attributes of high quality solutions (i.e. the guiding
elite solutions), by favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Marti [147]. It was followed by several extensions, improvements, and successful
applications [8, 9, 22, 54, 104, 183, 206, 212, 216, 217, 227, 233, 249]. A survey
of GRASP with path-relinking can be found in [213].

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Fig. 6.10 shows time-to-target plots [7, 10, 228,
235, 236] for GRASP and GRASP with path-relinking implementations for four dif-
ferent applications. These time-to-target plots show the empirical cumulative prob-
ability distributions of the time-to-target random variable when using pure GRASP
and GRASP with path-relinking, i.e., the time needed to find a solution at least as
good as a prespecified target value. For all problems, the plots show that GRASP
with path-relinking is able to find target solutions faster than GRASP.

GRASP with path-relinking makes use of an elite set to collect a diverse pool
of high-quality solutions found during the search. This pool is limited in size, i.e. it
can have at most Max_E1lite solutions. Several schemes have been proposed for
the implementation of path-relinking, which may be applied as:

e an intensification strategy, between each local optimum obtained after the local
search phase and one or more elite solutions;

e a post-optimization step, between every pair of elite solutions;

e anintensification strategy, periodically (after a fixed number of GRASP iterations
since the last intensification phase) submitting the pool of elite solutions to an
evolutionary process (see Sect. 6.4.7);

e a post-optimization phase, submitting the pool of elite solutions to an evolution-
ary process; or

e any other combination of the above schemes.

The pool of elite solutions is initially empty. Each locally optimal solution ob-
tained by local search and each solution resulting from path-relinking is considered
as a candidate to be inserted into the pool. If the pool is not yet full, the candidate
is simply added to the pool. Otherwise, if the candidate is better than the incumbent
(best solution found so far), it replaces an element of the pool. In case the candidate
is better than the worst element of the pool but not better than the best element, then
it replaces some element of the pool if it is sufficiently different from every other so-
lution currently in the pool. To balance the impact on pool quality and diversity, the
element selected to be replaced is the one that is most similar to the entering solution
among those elite solutions of quality no better than the entering solution [216].

190 M. G. C. Resende and C. C. Ribeiro

3 index assignment: Balas & Statzman 26.1

_—

0.9
0.8

07 bf
06"'/

os| i
0.4 (i
0.3 Hi /

o1 GRASP —— |

'0 GRASP+PR -

0 200 400 600 800 1000 1200 1400 1600
time to target solution value (seconds)

cumulative probability

MAX-SAT: jnh212
0.9 [-

0.8 7~
7

8.6 //
0.5 /
0.4 /
0.3 /
or 1l

cumulative probabiblity

GRASP —— |
GRASP+PR -

0 50 100 150 200 250 300 350
time to target solution value (seconds)

Bandwidth packing: ATT

- 0.9 —

£ 08 4

% 0.7 /

Q H

© 0.6 i v

Fo¥ i

o 05 H

2ol /

= 045 /

E 0.3 /

3 0.2

° i/ GRASP —— |
: GRASP+4PR -

0
0 100 200 300 400 500 600
time to target solution value (seconds)

QAP: ste36b
1
0.9 —
Z 08 ~
o H —
@ 0.7
S o6 H s
o i
g 05|
g 041/
ER /
5 02
01 |/ GRASP —— |
' GRASP+PR -

0
0 1000 2000 3000 4000 5000 6000 7000 8000
time to target solution value (seconds)

Fig. 6.10 Time to target plots comparing running times of pure GRASP and GRASP with path-
relinking on four instances of distinct problem types: three index assignment, maximum satisfia-
bility, bandwidth packing, and quadratic assignment

6 GRASP: Advances and Extensions 191

Given a local optimum s; produced at the end of a GRASP iteration, we need
to select at random a solution s, from the pool to apply path-relinking between s
and s». In principle, any pool solution could be selected. However, we may want
to avoid pool solutions that are too similar to sy, because relinking two solutions
that are similar limits the scope of the path-relinking search. If the solutions are
represented by 0—1 indicator vectors, we should favor pairs of solutions that are far
from each other, based on their Hamming distance (i.e., the number of components
that take on different values in each solution). A strategy introduced in Resende and
Werneck [216] is to select a pool element s, at random with a probability propor-
tional to the Hamming distance between the pool element and the local optimum
s1. Since the number of paths between two solutions grows exponentially with their
Hamming distance, this strategy favors pool elements with a large number of paths
connecting them to and from s;.

After determining which solution (s or s,) will be designated the initial solution
i and which will be the guiding solution g, the algorithm starts by computing the
set A(i,g) of components in which i and g differ. This set corresponds to the moves
which should be applied to i to reach g. Starting from the initial solution, the best
move in A(i,g) still not performed is applied to the current solution, until the guid-
ing solution is reached. By best move, we mean the one that results in the highest
quality solution in the restricted neighborhood. The best solution found along this
trajectory is submitted to local search and returned as the solution produced by the
path-relinking algorithm.

procedure GRASP+PR(Seed);

1 Set pool of elite solutions & «— &;

2 Set best solution value f* «— oo;

3 while stopping criterion not satisfied do

4 Solution «— Greedy_-Randomized_Construction(Seed);
5 if Solution is not feasible then

6 Solution « Repair(Solution);

7 end-if;

8 Solution « Local_Search(Solution);

9 if |£] > 0 then

10 Select an elite solution Solution’ at random from &’;
11 Solution « PR(Solution,Solution’);
12 end-if;

13 if f(Solution) < f* then

14 Best_Solution «+ Solution;

15 £* e f(S):

16 end-if;

17 Update the pool of elite solutions & with Solution;
18 end-while;

19 return Best_Solution;

end GRASP+PR.

Fig. 6.11 Pseudo-code of a template of a GRASP with path-relinking for a minimization problem

192 M. G. C. Resende and C. C. Ribeiro

The pseudo-code shown in Fig.6.11 summarizes the steps of a GRASP with
path-relinking for a minimization problem. The pseudo-code follows the structure
of the basic GRASP algorithm in Fig. 6.1. Lines 1 and 2 initialize the pool of elite
solutions and the best solution value, respectively. Path-relinking is performed in
line 11 between the solution Solution obtained at the end of the local search
phase (line 8) and a solution Solution’ randomly selected from the pool of elite
solutions & (line 10). Procedure PR(Solution,Solution’) could make use, for
example, of any variant of a pure or combined path-relinking strategy. The best
overall solution found Best _Solution is returned in line 19 after the stopping
criterion is satisfied.

Several alternatives have been considered and combined in recent implementa-
tions of path-relinking. These include forward, backward, back and forward, mixed,
truncated, greedy randomized adaptive, evolutionary, and external path-relinking.
All these alternatives, which are described in the following, involve trade-offs be-
tween computation time and solution quality.

6.4.1 Forward Path-Relinking

In forward path-relinking, the GRASP local optimum is designated as the initial
solution and the pool solution is made the guiding solution. This is the original
scheme proposed by Laguna and Marti [147].

6.4.2 Backward Path-Relinking

In backward path-relinking, the pool solution is designated as the initial solution
and the GRASP local optimum is made the guiding one. This scheme was orig-
inally proposed in Aiex et al. [9] and Resende and Ribeiro [212]. The main ad-
vantage of this approach over forward path-relinking comes from the fact that, in
general, there are more high-quality solutions near pool elements than near GRASP
local optima. Backward path-relinking explores more thoroughly the neighborhood
around the pool solution, whereas forward path-relinking explores more the neigh-
borhood around the GRASP local optimum. Experiments in [9, 212] have shown
that backward path-relinking usually outperforms forward path-relinking.

6.4.3 Back and Forward Path-Relinking

Back and forward path-relinking combines forward and backward path-relinking.
As shown in [9, 212], it finds solutions at least as good as forward path-relinking
or backward path-relinking, but at the expense of taking about twice as long to

6 GRASP: Advances and Extensions 193

run. The reason that back and forward path-relinking often finds solutions of better
quality than simple backward or forward path-relinking stems from the fact that it
thoroughly explores the neighborhoods of both solutions s; and s;.

6.4.4 Mixed Path-Relinking

Mixed path-relinking shares the benefits of back and forward path-relinking, i.e.
it thoroughly explores both neighborhoods, but does so in about the same time as
forward or backward path-relinking alone. This is achieved by interchanging the
roles of the initial and guiding solutions at each step of the path-relinking procedure.
Therefore, two paths are generated, one starting at s; and the other at s,. The paths
evolve and eventually meet at some solution about half way between s; and s».
The joined path relinks these two solutions. Mixed path-relinking was suggested by
Glover [112] and was first implemented and tested by Ribeiro and Rosseti [227],
where it was shown to outperform forward, backward, and back and forward path-
relinking. Figure 6.12 shows a comparison of pure GRASP and four variants of
path-relinking: forward, backward, back and forward, and mixed. The time-to-target
plots show that GRASP with mixed path-relinking has the best running time profile
among the variants compared.

6.4.5 Truncated Path-Relinking

Since good-quality solutions tend to be near other good-quality solutions, one would
expect to find the best solutions with path-relinking near the initial or guiding so-
lution. Indeed, Resende et al. [222] showed that this is the case for instances of the
max-min diversity problem, as shown in Fig. 6.13. In that experiment, a back and
forward path-relinking scheme was tested. The figure shows the average number
of best solutions found by path-relinking taken over several instances and several
applications of path-relinking. The 0-10% range in this figure corresponds to sub-
paths near the initial solutions for the forward path-relinking phase as well as the
backward phase, while the 90-100% range are subpaths near the guiding solutions.
As the figure indicates, exploring the subpaths near the extremities may produce
solutions about as good as those found by exploring the entire path. There is a
higher concentration of better solutions close to the initial solutions explored by
path-relinking.

Truncated path-relinking can be applied to either forward, backward, backward
and forward, or mixed path-relinking. Instead of exploring the entire path, truncated
path-relinking only explores a fraction of the path and, consequently, takes a fraction
of the time to run. Truncated path-relinking has been applied in [22, 222].

194 M. G. C. Resende and C. C. Ribeiro

09 r E
0.8 | R
> 07 B
B
S 06 R
o
o
[0 05 B T
=
S 04t :
IS
3
© 03+ E
0.2 GRASP+ mixed PR ——— 4
GRASP-+backward PR ——
01 b GRASP+back-and-forward PR —— |
’ GRASP+forward PR ——
0 . GRASP (no PR) ——
1 10 100 1000
time to target value (seconds)
1 T T
09 i
0.8 | R
> 07 1
%
S 06 R
o
o
o 05 R
=
S 04} :
IS
3
[&] 03 - .
0.2 r i
GRASP+mixed PR ——
01 b GRASP+backward PR —— |
’ GRASP+back-and-forward PR —
0 GRASPTforward PR ——

1 10
time to target value (seconds)

Fig. 6.12 Time-to-target plots for pure GRASP and four variants of GRASP with path-relinking
(forward, backward, back and forward, and mixed) on an instance of the 2-path network design
problem

6 GRASP: Advances and Extensions 195

6.4.6 Greedy Randomized Adaptive Path-Relinking

In path-relinking, the best not yet performed move in set A(i,g) is applied to the
current solution, until the guiding solution is reached. If ties are broken determin-
istically, this strategy will always produce the same path between the initial and
guiding solutions. Since the number of paths connecting i and g is exponential in
|A(i,g)|, exploring a single path can be somewhat limiting.

Greedy randomized adaptive path-relinking, introduced by Binato et al. [47], is
a semi-greedy version of path-relinking. Instead of taking the best move in A(i,g)
still not performed, a restricted candidate list of good moves still not performed is
set up and a randomly selected move from the latter is applied. By applying this
strategy several times between the initial and guiding solutions, several paths can be
explored. Greedy randomized adaptive path-relinking has been applied in [22, 86,
222].

100

90 R

70 | B

60 R

50 R

30 R

Average number of best solutions

20 B

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
Percentage of path length

Fig. 6.13 Average number of best solutions found at different depths of the path from the initial
solution to the guiding solution on instances of the max-min diversity problem

196 M. G. C. Resende and C. C. Ribeiro

6.4.7 Evolutionary Path-Relinking

GRASP with path-relinking maintains a pool of elite solutions. Applying path-
relinking between pairs of pool solutions may result in an even better pool of solu-
tions. Aiex et al. [9] applied path-relinking between all pairs of elite solutions as an
intensification scheme to improve the quality of the pool and as a post-optimization
step. The application of path-relinking was repeated until no further improvement
was possible.

Resende and Werneck [216, 217] described an evolutionary path-relinking
scheme applied to pairs of elite solutions and used as a post-optimization step.
The pool resulting from the GRASP with path-relinking iterations is referred to as
population Fy. At step k, all pairs of elite set solutions of population Py are relinked
and the resulting solutions are made candidates for inclusion in population Py of
the next generation. The same rules for acceptance into the pool during GRASP
with path-relinking are used for acceptance into Py ;. If the best solution in Py is
better than the best in Py, then k is incremented by one and the process is repeated.
Resende et al. [222] describe another way to implement evolutionary path-relinking,
where a single population is maintained. Each pair of elite solutions is relinked and
the resulting solution is a candidate to enter the elite set. If accepted, it replaces an
existing elite solution. The process is continued while there are still pairs of elite
solutions that have not yet been relinked.

external path-relinking * internal path-relinking H external path-relinking

Fig. 6.14 An internal path (red arcs, red nodes) from solution S to solution 7" and two external
(blue arcs, blue nodes) paths, one emanating from solution S and the other from solution 7. These
paths are produced by internal and external path-relinking

6 GRASP: Advances and Extensions 197

Andrade and Resende [21] used this evolutionary scheme as an intensification
process every 100 GRASP iterations. During the intensification phase, every solu-
tion in the pool is relinked with the two best ones. Since two elite solutions may
be relinked more than once in different calls to the intensification process, greedy
randomized adaptive path-relinking was used.

Resende et al. [222] showed that a variant of GRASP with evolutionary path-
relinking outperformed several other heuristics using GRASP with path-relinking,
simulated annealing, and tabu search for the max-min diversity problem.

6.4.8 External Path-Relinking and Diversification

So far in this section, we have considered variants of path-relinking in which a path
in the search space graph connects two feasible solutions by progressively introduc-
ing in one of them (the initial solution) attributes of the other (the guiding solution).
Since attributes common to both solutions are not changed and all solutions vis-
ited belong to a path between the two solutions, we may also refer to this type of
path-relinking as internal path-relinking.

External path-relinking extends any path connecting two feasible solutions S and
T beyond its extremities. To extend such a path beyond S, attributes not present in
either S or T are introduced in S. Symmetrically, to extend it beyond T, attributes
not present in either S or T are introduced in 7. In its greedy variant, all moves are
evaluated and the solution chosen to be next in the path is one with best cost or, in
case they are all infeasible, the one with least infeasibility. In either direction, the
procedure stops when all attributes that do not appear in either S or 7 have been
tested for extending the path. Once both paths are complete, local search may be
applied to the best solution in each of them. The best of the two local minima is
returned as the solution produced by the external path-relinking procedure.

Figure 6.14 illustrates internal and external path-relinking. The path with red
nodes and edges is the one resulting from internal path-relinking applied with S as
the initial solution and T as the guiding solution. We observe that the orientation
introduced by the arcs in this path is due only to the choice of the initial and guiding
solutions. If the roles of solutions S and 7 were interchanged, it could have been
computed and generated in the reverse direction. The same figure also illustrates two
paths obtained by external path-relinking, one emanating from S and the other from
T, both represented with blue nodes and edges. The orientations of the arcs in each
of these paths indicate that they necessarily emanate from either solution S or 7.

To conclude, we establish a parallel between internal and external path-relinking.
Since internal path-relinking works by fixing all attributes common to the initial and
guiding solutions and searches for paths between them satisfying this property, it is
clearly an intensification strategy. Contrarily, external path-relinking progressively
removes common attributes and replaces them by others that do not appear in either
one of the initial or guiding solution. Therefore, it can be seen as a diversification
strategy which produces solutions increasingly farther from both the initial and
the guiding solutions. External path-relinking becomes therefore a tool for search
diversification.

198 M. G. C. Resende and C. C. Ribeiro

External path-relinking was introduced by Glover [114] and first applied by
Duarte et al. [84] in a heuristic for differential dispersion minimization.

6.5 Restart Strategies

Figure 6.15 shows a typical iteration count distribution for a GRASP with path-
relinking. Observe in this example that for most of the independent runs whose
iteration counts make up the plot, the algorithm finds a target solution in relatively
few iterations: about 25% of the runs take at most 101 iterations; about 50% take at
most 192 iterations; and about 75% take at most 345. However, some runs take much
longer: 10% take over 1000 iterations; 5% over 2000; and 2% over 9715 iterations.
The longest run took 11,607 iterations to find a solution at least as good as the target.
These long tails contribute to a large average iteration count as well as to a high stan-
dard deviation. This section proposes strategies to reduce the tail of the distribution,
consequently reducing the average iteration count and its standard deviation.

1 T DU I MRS
09 | g,,,f |
08T gg (1982, 0.955) -
z 07y ﬁf\(as, 0.745)
B
% 061 (192,0.495) -
‘3 05 (101,0.245) -
S 04} |
g
o 03¢ |
02 |
wl) *
0 xgk . GRASP+PR (norestart) -~
10 100 1000 10000 100000

iterations to target solution

Fig. 6.15 Typical iteration count distribution of GRASP with path-relinking

Consider again the distribution in Fig. 6.15. The distribution shows that each run
will take over 345 iterations with a probability of about 25%. Therefore, any time the
algorithm is restarted, the probability that the new run will take over 345 iterations
is also about 25%. By restarting the algorithm after 345 iterations, the new run will
take more than 345 iterations with probability of also about 25%. Therefore, the
probability that the algorithm will be still running after 345 + 345 = 690 iterations
is the probability that it takes more than 345 iterations multiplied by the probability
that it takes more than 690 iterations given that it took more than 345 iterations,
i.e., about (1/4) x (1/4) = (1/4)2. It follows by induction that the probability that

6 GRASP: Advances and Extensions 199

the algorithm will still be running after k periods of 345 iterations is 1/(4*). In this
example, the probability that the algorithm will be running after 1725 iterations will
be about 0.1%, i.e., much less than the 5% probability that the algorithm will take
over 2000 iterations without restart.

A restart strategy is defined as an infinite sequence of time intervals 71, 72, 73, . . .
which define epochs 71, 7] 4+ T2, T + T2 + 173, . . . when the algorithm is restarted from
scratch. It can be shown that the optimal restart strategy uses 7 = Tp = -+ = T",
where T* is some (unknown) constant. Strategies for speeding up stochastic local
search algorithms using restarts were first proposed by Luby et al. [156], where
they proved the existence of an optimal restart strategy. Restart strategies in meta-
heuristics have been addressed in [67, 139, 182, 187, 250]. Further work on restart
strategies can be found in [251, 252].

Implementing the optimal strategy may be difficult in practice because it re-
quires the constant value 7*. Runtimes can vary greatly for different combinations
of algorithm, instance, and solution quality sought. Since usually one has no prior
information about the runtime distribution of the stochastic search algorithm for the
optimization problem under consideration, one runs the risk of choosing a value of
T* that is either too small or too large. On the one hand, a value that is too small
can cause the restart variant of the algorithm to take much longer to converge than
a no-restart variant. On the other hand, a value that is too large may never lead to
a restart, causing the restart-variant of the algorithm to take as long to converge as
the no-restart variant. Figure 6.16 illustrates the restart strategies with time-to-target

1
S 09} .
=
? 08 i
g
:@ 0.7 B
2 06 .
°
> 05 .
§ 04 Restart every: b
o 6 seconds
Q@ 03 9 seconds —
o 12 seconds ——
g 02}t 18 seconds 4
=R 24 seconds ——
g 01 b 30 seconds ——— |
o 42 seconds ——

0 . . no restart ——

1 10 100 1000 10000

time to target solution (seconds)

Fig. 6.16 Time-to-target plot for target solution value of 554 for a GRASP with path-linking with
restart on the maximum cut instance G12 using different values of 7

200 M. G. C. Resende and C. C. Ribeiro

plots for the maximum cut instance G12 [126] on an 800-node graph with edge
density of 0.63% with target solution value 554 for T = 6, 9, 12, 18, 24, 30, and
42 s. For each value of 7, 100 independent runs of a GRASP with path-relinking
with restarts were performed. The variant with T = oo corresponds to the heuristic
without restart. The figure shows that, for some values of 7, the resulting heuristic
outperformed its counterpart with no restart by a large margin.

In GRASP with path-relinking, the number of iterations between improvements
of the incumbent solution tends to vary less than the runtimes for different combina-
tions of instance and solution quality sought. If one takes this into account, a simple
and effective restart strategy for GRASP with path-relinking is to keep track of the
last iteration when the incumbent solution was improved and restart the GRASP
with path-relinking if x iterations have gone by without improvement. We shall call
such a strategy restart(x). A restart consists in saving the incumbent and emptying
out the elite set.

procedure GRASP+PR+Restarts(Seed);

1 Set pool of elite solutions & «— &;

2 Set best solution value f* «— oo;

3 LastImprov « 0;

4 CurrentlIter « O;

5 while stopping criterion not satisfied do

6 CurrentIter < CurrentIter+1;

7 Solution « Greedy_-Randomized_Construction(Seed);
8 if Solution is not feasible then

9 Solution < Repair(Solution);

10 end-if;

11 Solution « Local_Search(Solution);

12 if |£| > 0 then

13 Select an elite solution Solution’ at random from &’;
14 Solution + forward-PR(Solution,Solution’);
15 end-if;

16 if f(Solution) < f* then

17 Best_Solution « Solution;

18 T f(S)

19 LastImprov «— CurrentlIter;

20 end-if;

21 if CurrentIter —LastImprov > k then

22 & — I

23 LastImprov «— CurrentIter;

24 else

25 Update the pool of elite solutions & with Solution;
26 end-if;

27 end-while;

28 return Best_Solution;

end GRASP+PR+Restarts.

Fig. 6.17 Pseudo-code of a template of a GRASP with path-relinking with restarts for a minimiza-
tion problem

6 GRASP: Advances and Extensions 201

The pseudo-code shown in Fig. 6.17 summarizes the steps of a GRASP with path-
relinking using the restart(x) strategy for a minimization problem. The algorithm
keeps track of the current iteration (CurrentIter), as well as of the last iteration
when an improving solution was found (LastImprov). If an improving solution
is detected in line 16, then this solution and its cost are saved in lines 17 and 18,
respectively, and the iteration of the last improvement is set to the current iteration
in line 19. If, in line 21, it is determined that more than x iterations have gone by
since the last improvement of the incumbent, then a restart is triggered, emptying
out the elite set in line 22 and resetting the iteration of the last improvement to the
current iteration in line 23. If restart is not triggered, then in line 25 the current
solution is tested for inclusion in the elite set and the set is updated if it is accepted.
The best overall solution found Best Solution is returned in line 28 after the
stopping criterion is satisfied.

As an illustration of the use of the restart(x) strategy within a GRASP with path-
relinking, consider the maximum cut instance G/2. For the values x = 50, 100, 200,
300, 500, 1000, 2000, and 5000, the heuristic was run independently 100 times, and
was stopped when a cut of weight 554 or higher was found. A strategy without
restarts was also implemented. Figures 6.18 and 6.19, as well as Table 6.6, sum-
marize these runs, showing the average time to target solution as a function of the
value of x and the time-to-target plots for different values of k. These figures il-
lustrate well the effect on running time of selecting a value of k that is either too
small (k¥ = 50,100) or too large (k = 2000,5000). They further show that there is
a wide range of x values (x = 200, 300, 500, 1000) that result in lower runtimes
when compared to the strategy without restarts.

180

160 b

140 |]

120 f 1

100 b

80 f b

average time to target solution

60 b

40 .

20 | |
10 100 1000 10000 100000
restart period (in iterations)

Fig. 6.18 Average time to target solution for maximum cut instance G2 using different values of
K. All runs of all strategies have found a solution at least as good as the target value of 554

202 M. G. C. Resende and C. C. Ribeiro

Figure 6.20 further illustrates the behavior of the restart(100), restart(500), and
restart(1000) strategies for the previous example, when compared with the strategy
without restarts on the same maximum cut instance G/2. However, in this figure,
for each strategy, we plot the number of iterations to the target solution value. It
is interesting to note that, as expected, each strategy restart(x) behaves exactly like
the strategy without restarts for the x first iterations, for x = 100,500, 1000. After
this point, each trajectory deviates from that of the strategy without restarts. Among
these strategies, restart(500) is the one with the best performance.

09 i
0.8 | i
> 0.7 - E
%
S 06 E
o
o
[0) 05 I '
=
s i Restart frequency: i
g 04 5000 iterations ———
3 2000 iterations =
03r 1000 iterations ——— |
500 iterations =—
0.2 300 iterations = |
200 iterations ———
01l 100 iterations ——— |
’ 50 iterations =——
0 . . no restart ———
1 10 100 1000 10000

time to target solution (seconds)

Fig. 6.19 Time-to-target plots for maximum cut instance G/2 using different values of x. The
figure also shows the time-to-target plot for the strategy without restarts. All runs of all strategies
found a solution at least as good as the target value of 554

We make some final observations about these experiments. The effect of the
restart strategies can be mainly observed in the column corresponding to the fourth
quartile of Table 6.6. Entries in this quartile correspond to those in the heavy tails
of the distributions. The restart strategies in general did not affect the other quartiles
of the distributions, which is a desirable characteristic. Compared to the no-restart
strategy, restart strategies restart(500) and restart(1000) were able to reduce the
maximum number of iterations, as well as the average and the standard deviation.
Strategy restart(100) did so, too, but not as much as restart(500) and restart(1000).
Restart strategies restart(500) and restart(1000) were clearly the best strategies of
those tested.

6 GRASP: Advances and Extensions 203

Table 6.6 Summary of computational results on maximum cut instance G12 with four strategies

Iterations in quartile
Strategy Ist 2nd 3rd 4th Average st.dev.
Norestarts 326 550 1596 68,813 4525.1 11,927.0
restart(1000) 326 550 1423 5014 953.2 942.1
restart(500) 326 550 1152 4178 835.0 746.1
restart(100) 509 1243 3247 8382 2055.0 2005.9
For each strategy, 100 independent runs were executed, each stopped when a solution as good
as the target solution value 554 was found. For each strategy, the table shows the distribution of
the number of iterations by quartile. For each quartile, the table gives the maximum number of
iterations taken by all runs in that quartile, i.e., the slowest of the fastest 25% (1st), 50% (2nd),
75% (3rd), and 100% (4th) of the runs. The average number of iterations over the 100 runs and the
standard deviation (st.dev.) are also given for each strategy

1 T

09 i
0.8 i
> 07 r B
%
8 06 b
o
o
o 05 :
=
S 04t 1
S
>
© 03¢ :
02 r i
no restart ———
04 - restart(1000) ——— |
) restart(500) =—
0 . res;art(100) —
10 100 1000 10000 100000

iterations to target solution

Fig. 6.20 Comparison of the iterations-to-target plots for maximum cut instance G12 using strate-
gies restart(100), restart(500), and restart(1000). The figure also shows the iterations-to-target plot
for the strategy without restarts. All runs of all strategies found a solution at least as good as the
target value of 554

The restart(x) strategy for GRASP with path-relinking discussed in this section
was originally proposed by Resende and Ribeiro [214]. Besides the experiments
presented in this chapter for the maximum cut instance G12, that paper also con-
sidered five other instances of maximum cut, maximum weighted satisfiability, and
bandwidth packing. Interian and Ribeiro [136] implemented restart strategies for
GRASP with path-relinking for the Steiner traveling salesman problem.

204 M. G. C. Resende and C. C. Ribeiro

6.6 Extensions

In this section, we comment on some extensions, implementation strategies, and
hybridizations of GRASP.

The use of hash tables to avoid cycling in conjunction with tabu search was pro-
posed by Woodruff and Zemel [266]. A similar approach was later explored by
Ribeiro et al. [232] in their tabu search algorithm for query optimization in rela-
tional databases. In the context of GRASP implementations, hash tables were first
used by Martins et al. [168] in their multi-neighborhood heuristic for the Steiner
problem in graphs, to avoid the application of local search to solutions already vis-
ited in previous iterations.

Filtering strategies are used to speed up the iterations of GRASP, see e.g. [93,
168, 202]. With filtering, local search is not applied to all solutions obtained at the
end of the construction phase, but only to some more promising unvisited solutions,
defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and
Mladenovi¢ [121, 172], rely almost entirely on the randomization of the local search
to escape from local optima. With respect to randomization, GRASP and variable
neighborhood strategies can be considered complementary and potentially capable
of leading to effective hybrid methods. A first attempt in this direction was made
by Martins et al. [168] where the construction phase of a hybrid heuristic for the
Steiner problem in graphs follows the greedy randomized strategy of GRASP, while
the local search phase makes use of two different neighborhood structures, like the
VND (variable neighborhood descent) procedure [121, 172]. That heuristic was later
improved by Ribeiro et al. [233], where one of the key components of the new algo-
rithm was another strategy for the exploration of different neighborhoods. Ribeiro
and Souza [229] also combined GRASP with VND in a hybrid heuristic for the
degree-constrained minimum spanning tree problem. Festa et al. [102] studied dif-
ferent variants and combinations of GRASP and VNS for the maximum cut prob-
lem, finding and improving the best known solutions for some open instances from
the literature.

GRASP has also been used in conjunction with genetic algorithms. The greedy
randomized strategy used in the construction phase of a GRASP heuristic is applied
to generate the initial population for a genetic algorithm. As an example, consider
the genetic algorithm of Ahuja et al. [4] for the quadratic assignment problem. It
makes use of the GRASP heuristic proposed by Li et al. [150] to create the initial
population of solutions. A similar approach was used by Armony et al. [31], with
the initial population made up of both randomly generated solutions and those built
by a GRASP heuristic.

The hybridization of GRASP with tabu search was first studied by Laguna and
Gonzélez-Velarde [146]. Delmaire et al. [71] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reac-

6 GRASP: Advances and Extensions 205

tive GRASP algorithm presented in Sect. 6.3.2, in which the local search phase is
strengthened by tabu search. Results reported for the capacitated location problem
show that the hybrid approaches perform better than the isolated methods previously
used. Two two-stage heuristics are proposed in [1] for solving the multi-floor facil-
ity layout problem. GRASP/TS applies a GRASP to find the initial layout and tabu
search to refine it.

Iterated Local Search (ILS) iteratively builds a sequence of solutions generated
by the repeated application of local search and perturbation of the local optima
found by local search [42]. Lourengo et al. [155] point out that ILS has been re-
discovered many times and is also known as iterated descent [40, 41], large step
Markov chains [165], iterated Lin-Kernighan [137], and chained local optimization
[164]. A GRASP/ILS hybrid can be obtained by replacing the standard local search
of GRASP by ILS. The GRASP construction produces a solution which is passed to
the ILS procedure. Ribeiro and Urrutia [230] presented a hybrid GRASP with ILS
for the mirrored traveling tournament problem, in which perturbations are achieved
by randomly generating solutions in the game rotation ejection chain [110, 111]
neighborhood.

6.7 Applications

The first application of GRASP was described in the literature in 1989 [90]. In that
paper, GRASP was applied to difficult set covering problems Since then, GRASP
has been applied to a wide range of problems. The main applications areas are sum-
marized below with links to specific references:

e Assignment problems [4, 9, 89, 106, 150, 153, 154, 169, 170, 177, 178, 183, 188,
190, 198, 202, 204, 218, 241]

e Biology [23, 64, 68, 76, 97, 108, 231]

e Computer vision [53, 132, 246, 247]

Covering, packing, and partitioning [13, 15, 16, 28,29, 72,77, 90, 109, 119, 192,

195, 196, 223, 239, 244, 245]

Diversity and dispersion [79, 84, 163, 222]

Finance [19, 127]

Graph and map drawing [66, 96, 147, 159, 160, 162, 184, 210, 226]

Location and layout [1, 60, 66, 71, 120, 133, 141, 171, 181, 185, 253, 255, 260,

261]

Logic [75, 104, 189, 208, 219, 221]

e Minimum Steiner tree [54, 166—-168, 233]

Optimization in graphs [2, 3, 5, 12, 32, 56, 73, 82, 83, 93, 101, 103, 134, 148,

149, 157, 160, 161, 168, 179, 191, 193, 207, 210, 220, 226, 233, 248, 257]

Power systems [25, 46, 48, 86, 203, 263]

Robotics [144, 240]

Routing [30, 33, 38, 52, 55, 63, 136, 143, 145, 151, 176, 181, 206, 262, 264, 265]

Software engineering [158]

206 M. G. C. Resende and C. C. Ribeiro

e Sports [26, 140, 225, 230]

e Telecommunications [2, 17, 18, 20, 22, 31, 62, 107, 141, 153, 174, 175, 194, 197,
199, 202, 207, 209, 212, 234, 258]

e Timetabling, scheduling, and manufacturing [8, 11, 14, 20, 22, 24, 35-37, 39,
49, 50, 59, 61, 65, 69, 70, 74, 78, 85, 87, 88, 92, 94, 95, 138, 142, 146, 152, 173,
180, 186, 205, 230, 237, 238, 242, 243, 267, 268]

e Transportation [30, 34, 87, 89, 256]

e VLSI design [27, 28]

The reader is referred to Festa and Resende [100] and the book by Resende and
Ribeiro [215] for extended annotated bibliographies of GRASP applications.

6.8 Concluding Remarks

The results described in this chapter reflect successful applications of GRASP to a
large number of classical combinatorial optimization problems, as well as to prob-
lems that arise in real-world situations in different areas of business, science, and
technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks (solution construction procedures and local search methods)
that are often readily available. Contrary to what occurs with most other metaheuris-
tics, such as tabu search or genetic algorithms, that make use of a large number of
parameters in their implementations, the basic variant of GRASP requires the ad-
justment of a single parameter, i.e. the restricted candidate list (RCL) parameter c.

Recent developments, presented in this chapter, show that different extensions of
the basic procedure allow further improvements in the solutions found by GRASP.
Among these, we highlight reactive GRASP, which automates the adjustment of
the restricted candidate list parameter; variable neighborhoods, which permit accel-
erated and intensified local search; path-relinking, which beyond allowing the im-
plementation of intensification strategies based on the memory of elite solutions,
opens the way for the development of very effective cooperative parallel strate-
gies [6, 8, 9, 227]; and restart strategies to speedup the search.

These and other extensions make up a set of tools that can be added to sim-
pler heuristics to find better-quality solutions. To illustrate the effect of additional
extensions on solution quality, Fig. 6.21 shows some results obtained for the prize-
collecting Steiner tree problem (PCSTP), as discussed by Canuto et al. in [54]. The
figure shows results for 11 different levels of solution accuracy (varying from op-
timal to 10% from optimal) on 40 PCSTP instances. For each level of solution ac-
curacy, the figure shows the number of instances for which each component found
solutions within the accuracy level. The components are the primal-dual construc-
tive algorithm (GW) of Goemans and Williamson [117], GW followed by local
search (GW+LS), corresponding to the first GRASP iteration, 500 iterations of
GRASP with path-relinking (GRASP+PR), and the complete algorithm, using vari-
able neighborhood search as a post-optimization procedure (GRASP+PR+VNS).

6 GRASP: Advances and Extensions 207

We observe that the number of optimal solutions found goes from six, using only
the constructive algorithm, to a total of 36, using the complete algorithm described
in [54]. The largest relative deviation with respect to the optimal value decreases
from 36.4% in the first case, to only 1.1% for the complete algorithm. It is easy to
notice the contribution made by each additional extension.

GRASP+PR+VNS

GRASP+FPR

single GRASP itr ===
GW om -

number of solutions with percent deviation

0 1 2 3 4 5 6 7 8 9 10
percent deviation from optimal value

Fig. 6.21 Performance of GW approximation algorithm, a single GRASP iteration (GW followed
by local search), 500 iterations of GRASP with path-relinking, and 500 iterations of GRASP with
path-relinking followed by VNS for series C prize-collecting Steiner tree problems

The structure of GRASP makes it very amenable to straightforward, efficient
parallel implementations that benefit from the computer architecture. Parallel im-
plementations of GRASP [6, 8, 9, 227] are quite robust and lead to linear speedups
both in independent and cooperative strategies. Cooperative strategies are based on
the collaboration between processors through path-relinking and a global pool of
elite solutions. This allows the use of more processors to find better solutions in less
computation time. Many parallel implementations of GRASP have been reported in
the literature, see e.g. [166, 168, 178, 188, 189]. In many of these papers, a common
observation was made: the speedups in the measured running times were propor-
tional to the number of processors. This observation can be explained if the random
variable time-to-target-solution-value is exponentially distributed. Aiex et al. [7]
developed a graphical methodology based on runtime distributions to empirically
show that the running times of GRASP heuristics fit exponential distributions, as
summarized below.

208 M. G. C. Resende and C. C. Ribeiro

Runtime distributions or time-to-target plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given tar-
get value within a given running time, shown on the abscissa axis. They provide a
very useful tool to characterize the running times of stochastic algorithms for com-
binatorial optimization problems and to compare different algorithms or strategies
for solving a given problem. Time-to-target plots were first used by Feo et al. [93]
and have been widely used as a tool for algorithm design and comparison. Run-
time distributions have also been advocated by Hoos and Stiitzle [135] as a way
to characterize the running times of stochastic local search algorithms for combi-
natorial optimization. In particular, they have been largely applied to evaluate and
compare the efficiency of different strategies of sequential and parallel implemen-
tations of GRASP with (and without) path-relinking heuristics. Aiex et al. [7] used
time-to-target plots to show experimentally that the running times of GRASP heuris-
tics fit shifted (or two-parameter) exponential distributions, reporting computational
results for 2400 runs of GRASP heuristics for each of five different problems: max-
imum stable set, quadratic assignment, graph planarization [210, 211, 226], maxi-
mum weighted satisfiability, and maximum covering. Aiex et al. [10] developed a
Perl program to create time-to-target plots for measured times that are assumed to
fit a shifted exponential distribution, following closely the work in [7]. Ribeiro et
al. [235] developed a closed form result to compare two exponential algorithms and
an iterative procedure to compare two algorithms following generic runtime distri-
butions. This work was extended by Ribeiro et al. [236] and was also applied in
the comparison of parallel heuristics. Ribeiro and Rosseti [228] developed a code to
compare runtime distributions of randomized algorithms.

To conclude, this chapter provides the reader with the tools to build a basic
GRASP to find optimal or near-optimal solutions to a combinatorial optimization
problem. The chapter also provides the means to add more advanced features to this
basic GRASP, like path-relinking and restart strategies, that enable better perfor-
mance, both with respect to solution quality and solution run time. Left out of this
chapter is the use of GRASP for solving continuous optimization problems. The in-
terested reader is pointed to [128-131, 215, 254] for an introduction to C-GRASP,
or Continuous GRASP, as well as to some software and applications of C-GRASP.

References

1. S. Abdinnour-Helm, S.W. Hadley, Tabu search based heuristics for multi-floor facility layout.
Int. J. Prod. Res. 38, 365-383 (2000)

2. J. Abello, PM. Pardalos, M.G.C. Resende, On maximum clique problems in very large
graphs, in External Memory Algorithms and Visualization, ed. by J. Abello, J. Vitter. DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 50 (Ameri-
can Mathematical Society, Providence, 1999), pp. 199-130

3. J. Abello, M.G.C. Resende, S. Sudarsky, Massive quasi-clique detection, in LATIN 2002:
Theoretical Informatics, ed. by S. Rajsbaum. Lecture Notes in Computer Science, vol. 2286
(Springer, Berlin, 2002), pp. 598-612

6 GRASP: Advances and Extensions 209

10.

11.

12.

13.

14.

17.

18.

20.

21.

22.

23.

24.

25.

26.

R.K. Ahuja, J.B. Orlin, A. Tiwari, A greedy genetic algorithm for the quadratic assignment
problem. Comput. Oper. Res. 27, 917-934 (2000)

R.K. Ahuja, J.B. Orlin, D. Sharma, Multi-exchange neighborhood structures for the capaci-
tated minimum spanning tree problem. Math. Program. 91, 71-97 (2001)

R.M. Aiex, M.G.C. Resende, Parallel strategies for GRASP with path-relinking, in Meta-
heuristics: Progress as Real Problem Solvers, ed. by T. Ibaraki, K. Nonobe, M. Yagiura
(Springer, New York, 2005), pp. 301-331

R.M. Aiex, M.G.C. Resende, C.C. Ribeiro, Probability distribution of solution time in
GRASP: an experimental investigation. J. Heuristics 8, 343-373 (2002)

R.M. Aiex, S. Binato, M.G.C. Resende, Parallel GRASP with path-relinking for job shop
scheduling. Parallel Comput. 29, 393-430 (2003)

R.M. Aiex, PM. Pardalos, M.G.C. Resende, G. Toraldo, GRASP with path-relinking for
three-index assignment. INFORMS J. Comput. 17, 224-247 (2005)

R.M. Aiex, M.G.C. Resende, C.C. Ribeiro, TTTPLOTS: a perl program to create time-to-
target plots. Optim Lett. 1, 355-366 (2007)

E. Alekseeva, M. Mezmaz, D. Tuyttens, N. Melab, Parallel multi-core hyper-heuristic
GRASP to solve permutation flow-shop problem. Concurrency Comput. Pract. Exp. 29,
€3835 (2017)

D. Aloise, C.C. Ribeiro, Adaptive memory in multistart heuristics for multicommodity net-
work design. J. Heuristics 17, 153-179 (2011)

R. Alvarez-Valdés, F. Parreno, J.M. Tamarit, A GRASP algorithm for constrained two-
dimensional non-guillotine cutting problems. J. Oper. Res. Soc. 56, 414-425 (2005)

R. Alvarez-Valdés, E. Crespo, J.M. Tamarit, F. Villa, GRASP and path relinking for project
scheduling under partially renewable resources. Eur. J. Oper. Res. 189, 1153-1170 (2008)

. R. Alvarez-Valdesa, F. Parreno, J.M. Tamarit, Reactive GRASP for the strip-packing prob-

lem. Comput. Oper. Res. 35, 1065-1083 (2008)

R. Alvarez-Valdes, F. Parrefio, J.M. Tamarit, A GRASP/path relinking algorithm for two- and
three-dimensional multiple bin-size bin packing problems. Comput. Oper. Res. 40, 3081-
3090 (2013)

E. Amaldi, A. Capone, F. Malucelli, Planning UMTS base station location: optimization
models with power control and algorithms. IEEE Trans. Wirel. Commun. 2, 939-952 (2003)
E. Amaldi, A. Capone, F. Malucelli, F. Signori, Optimization models and algorithms for
downlink UMTS radio planning, in Proceedings of Wireless Communications and Network-
ing, vol. 2 (2003), pp. 827-831

K.P. Anagnostopoulos, P.D. Chatzoglou, S. Katsavounis, A reactive greedy randomized adap-
tive search procedure for a mixed integer portfolio optimization problem. Manag. Financ. 36,
1057-1065 (2010)

D.V. Andrade, M.G.C. Resende, A GRASP for PBX telephone migration scheduling, in Pro-
ceedings of the Eighth INFORMS Telecommunications Conference (2006)

D.V. Andrade, M.G.C. Resende, GRASP with evolutionary path-relinking. Technical Report
TD-6XPTS7, AT&T Labs Research, Florham Park, 2007

D.V. Andrade, M.G.C. Resende, GRASP with path-relinking for network migration schedul-
ing, in Proceedings of the International Network Optimization Conference (2007)

A.A. Andreatta, C.C. Ribeiro, Heuristics for the phylogeny problem. J. Heuristics 8, 429-447
(2002)

C. Andrés, C. Miralles, R. Pastor, Balancing and scheduling tasks in assembly lines with
sequence-dependent setup times. Eur. J. Oper. Res. 187, 1212-1223 (2008)

C.H. Antunes, E. Oliveira, P. Lima, A multi-objective GRASP procedure for reactive power
compensation planning. Optim. Eng. 15, 199-215 (2014)

A.PF. Aratjo, C. Boeres, V.E.F. Rebello, C.C. Ribeiro, S. Urrutia, Exploring grid imple-
mentations of parallel cooperative metaheuristics: a case study for the mirrored traveling
tournament problem, in Metaheuristics: Progress in Complex Systems Optimization, ed. by
K.F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R.F. Hartl, M. Reimann (Springer,
New York, 2007), pp. 297-322

210

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

M. G. C. Resende and C. C. Ribeiro

S.M. Areibi, GRASP: an effective constructive technique for VLSI circuit partitioning, in
Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering,
Edmonton, pp. 462-467 (1999)

S. Areibi, A. Vannelli, A GRASP clustering technique for circuit partitioning, in Satisfia-
bility Problems, ed. by J. Gu, PM. Pardalos. DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, vol. 35 (American Mathematical Society, Providence, 1997),
pp- 711-724

M.F. Argiiello, T.A. Feo, O. Goldschmidt, Randomized methods for the number partitioning
problem. Comput. Oper. Res. 23, 103—111 (1996)

M.F. Argiiello, J.F. Bard, G. Yu, A GRASP for aircraft routing in response to groundings and
delays. J. Comb. Optim. 1, 211-228 (1997)

M. Armony, J.C. Klincewicz, H. Luss, M.B. Rosenwein, Design of stacked self-healing rings
using a genetic algorithm. J. Heuristics 6, 85-105 (2000)

J.E.C. Arroyo, P.S. Vieira, D.S. Vianna, A GRASP algorithm for the multi-criteria minimum
spanning tree problem. Ann. Oper. Res. 159, 125-133 (2008)

J.B. Atkinson, A greedy randomised search heuristic for time-constrained vehicle scheduling
and the incorporation of a learning strategy. J. Oper. Res. Soc. 49, 700-708 (1998)

J.E. Bard, An analysis of a rail car unloading area for a consumer products manufacturer. J.
Oper. Res. Soc. 48, 873-883 (1997)

J.E. Bard, T.A. Feo, Operations sequencing in discrete parts manufacturing. Manage. Sci. 35,
249-255 (1989)

J.F. Bard, T.A. Feo, An algorithm for the manufacturing equipment selection problem. IIE
Trans. 23, 83-92 (1991)

J.F. Bard, T.A. Feo, S. Holland, A GRASP for scheduling printed wiring board assembly. IIE
Trans. 28, 155-165 (1996)

J.F. Bard, L. Huang, P. Jaillet, M. Dror, A decomposition approach to the inventory routing
problem with satellite facilities. Transp. Sci. 32, 189-203 (1998)

J.F. Bard, Y. Shao, A.L. Jarrah, A sequential GRASP for the therapist routing and scheduling
problem. J. Scheduling 17, 109-133 (2014)

E.B. Baum, Iterated descent: a better algorithm for local search in combinatorial optimization
problems. Technical Report, California Institute of Technology, 1986

E.B. Baum, Towards practical ‘neural’ computation for combinatorial optimization prob-
lems, in AIP Conference Proceedings 151 on Neural Networks for Computing (American
Institute of Physics Inc., Woodbury, 1987), pp. 53-58

J. Baxter, Local optima avoidance in depot location. J. Oper. Res. Soc. 32, 815-819 (1981)
J.E. Beasley, An algorithm for set-covering problems. Eur. J. Oper. Res. 31, 85-93 (1987)
J.E. Beasley, A Lagrangian heuristic for set-covering problems. Nav. Res. Logist. 37, 151—
164 (1990)

J.E. Beasley, Lagrangean relaxation, in Modern Heuristic Techniques for Combinatorial
Problems, ed. by C.R. Reeves (Blackwell Scientific Publications, Oxford, 1993), pp. 243—
303

S. Binato, G.C. Oliveira, A reactive GRASP for transmission network expansion planning,
in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic
Publishers, Boston, 2002), pp. 81-100

S. Binato, H. Faria Jr., M.G.C. Resende, Greedy randomized adaptive path relinking, in Pro-
ceedings of the IV Metaheuristics International Conference, ed. by J.P. Sousa, pp. 393-397
(2001)

S. Binato, G.C. Oliveira, J.L. Aratjo, A greedy randomized adaptive search procedure for
transmission expansion planning. IEEE Trans. Power Syst. 16, 247-253 (2001)

S. Binato, W.J. Hery, D. Loewenstern, M.G.C. Resende, A GRASP for job shop scheduling,
in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic
Publishers, Boston, 2002), pp. 59-79

M. Boudia, M.A.O. Louly, C. Prins, A reactive GRASP and path relinking for a combined
production-distribution problem. Comput. Oper. Res. 34, 3402-3419 (2007)

6 GRASP: Advances and Extensions 211

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

. J.L. Bresina, Heuristic-biased stochastic sampling, in Proceedings of the Thirteenth National

Conference on Artificial Intelligence, Portland, pp. 271-278 (1996)

A.M. Campbell, B.W. Thomas, Probabilistic traveling salesman problem with deadlines.

Transp. Sci. 42, 1-21 (2008)

R.G. Cano, G. Kunigami, C.C. de Souza, PJ. de Rezende, A hybrid GRASP heuristic to

construct effective drawings of proportional symbol maps. Comput. Oper. Res. 40, 1435-

1447 (2013)

S.A. Canuto, M.G.C. Resende, C.C. Ribeiro, Local search with perturbations for the prize-

collecting Steiner tree problem in graphs. Networks 38, 50-58 (2001)

C. Carreto, B. Baker, A GRASP interactive approach to the vehicle routing problem with

backhauls, in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer

Academic Publishers, Boston, 2002), pp. 185-199

W.A. Chaovalitwongse, C.A.S Oliveira, B. Chiarini, P.M. Pardalos, M.G.C. Resende, Re-

vised GRASP with path-relinking for the linear ordering problem. J. Comb. Optim. 22, 572—

593 (2011)

I. Charon, O. Hudry, The noising method: a new method for combinatorial optimization.

Oper. Res. Lett. 14, 133-137 (1993)

1. Charon, O. Hudry, The noising methods: a survey, in Essays and Surveys in Metaheuristics,

ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers, Boston, 2002), pp. 245-261

M. Chica, O. Cordén, S. Damas, J. Bautista, A multiobjective GRASP for the 1/3 variant of

the time and space assembly line balancing problem, in Trends in Applied Intelligent Systems,

ed. by N. Garcia-Pedrajas, F. Herrera, C. Fyfe, J. Benitez, M. Ali. Lecture Notes in Computer

Science, vol. 6098 (Springer, Berlin, 2010), pp. 656—-665

R. Colomé, D. Serra, Consumer choice in competitive location models: formulations and

heuristics. Pap. Reg. Sci. 80, 439-464 (2001)

C.W. Commander, S.I. Butenko, P.M. Pardalos, C.A.S. Oliveira, Reactive GRASP with path

relinking for the broadcast scheduling problem, in Proceedings of the 40th Annual Interna-

tional Telemetry Conference, pp. 792-800 (2004)

C. Commander, C.A.S. Oliveira, PM. Pardalos, M.G.C. Resende, A GRASP heuristic for

the cooperative communication problem in ad hoc networks, in Proceedings of the VI Meta-

heuristics International Conference, pp. 225-330 (2005)

A. Corberan, R. Marti, J.M. Sanchis, A GRASP heuristic for the mixed Chinese postman

problem. Eur. J. Oper. Res. 142, 70-80 (2002)

R. Cordone, G. Lulli, A GRASP metaheuristic for microarray data analysis. Comput. Oper.

Res. 40, 3108-3120 (2013)

J.E. Correcher, M.T. Alonso, F. Parre no, R. Alvarez-Valdes, Solving a large multicontainer

loading problem in the car manufacturing industry. Comput. Oper. Res. 82, 139-152 (2017)

G.L. Cravo, G.M. Ribeiro, L.A. Nogueira Lorena, A greedy randomized adaptive search

procedure for the point-feature cartographic label placement. Comput. Geosci. 34, 373-386

(2008)

M.M. D’Apuzzo, A. Migdalas, P.M. Pardalos, G. Toraldo, Parallel computing in global op-

timization, in Handbook of Parallel Computing and Statistics, ed. by E. Kontoghiorghes

(Chapman & Hall/CRC, Boca Raton, 2006)

S. Das, S.M. Idicula, Application of reactive GRASP to the biclustering of gene expression

data, in Proceedings of the International Symposium on Biocomputing (ACM, Calicut, 2010),
.14

II)’. De, J.B. Ghosj, C.E. Wells, Solving a generalized model for con due date assignment and

sequencing. Int. J. Prod. Econ. 34, 179-185 (1994)

R. De Leone, P. Festa, E. Marchitto, Solving a bus driver scheduling problem with random-

ized multistart heuristics. Int. Trans. Oper. Res. 18, 707-727 (2011)

H. Delmaire, J.A. Diaz, E. Fernandez, M. Ortega, Reactive GRASP and Tabu Search based

heuristics for the single source capacitated plant location problem. INFOR 37, 194-225

(1999)

X. Delorme, X. Gandibleux, F. Degoutin, Evolutionary, constructive and hybrid procedures

for the bi-objective set packing problem. Eur. J. Oper. Res. 204, 206-217 (2010)

212

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

M. G. C. Resende and C. C. Ribeiro

Y. Deng, J.F. Bard, A reactive GRASP with path relinking for capacitated clustering. J.
Heuristics 17, 119-152 (2011)

Y. Deng, J.F. Bard, G.R. Chacon, J. Stuber, Scheduling back-end operations in semiconductor
manufacturing. IEEE Trans. Semicond. Manuf. 23, 210-220 (2010)

A.S. Deshpande, E. Triantaphyllou, A greedy randomized adaptive search procedure
(GRASP) for inferring logical clauses from examples in polynomial time and some exten-
sions. Math. Comput. Model. 27, 75-99 (1998)

S. Dharan, A.S. Nair, Biclustering of gene expression data using reactive greedy randomized
adaptive search procedure. BMC Bioinf. 10(Suppl 1), S27 (2009)

J.A. Diaz, D.E. Luna, J.-F. Camacho-Vallejo, M.-S. Casas-Ramirez, GRASP and hybrid
GRASP-Tabu heuristics to solve a maximal covering location problem with customer pref-
erence ordering. Expert Syst. Appl. 82, 67-76 (2017)

A. Drexl, F. Salewski, Distribution requirements and compactness constraints in school
timetabling. Eur. J. Oper. Res. 102, 193-214 (1997)

A. Duarte, R. Marti, Tabu search and GRASP for the maximum diversity problem. Eur. J.
Oper. Res. 178, 71-84 (2007)

A. Duarte, C.C. Ribeiro, S. Urrutia, A hybrid ILS heuristic to the referee assignment problem
with an embedded MIP strategy. Lect. Notes Comput. Sci. 4771, 82-95 (2007)

A.R. Duarte, C.C. Ribeiro, S. Urrutia, E.H. Haeusler, Referee assignment in sports leagues.
Lect. Notes Comput. Sci. 3867, 158-173 (2007)

A. Duarte, R. Marti, M.G.C. Resende, R.M.A. Silva, GRASP with path relinking heuristics
for the antibandwidth problem. Networks 58, 171-189 (2011)

A. Duarte, R. Marti, A. Alvarez, F. Angel—Bello, Metaheuristics for the linear ordering prob-
lem with cumulative costs. Eur. J. Oper. Res. 216, 270-277 (2012)

A. Duarte, J. Sanchez-Oro, M.G.C. Resende, F. Glover, R. Marti, GRASP with exterior path
relinking for differential dispersion minimization. Inform. Sci. 296, 46-60 (2015)

M. Essafi, X. Delorme, A. Dolgui, Balancing lines with CNC machines: a multi-start and
based heuristic. CIRP J. Manuf. Sci. Technol. 2, 176-182 (2010)

H. Faria Jr., S. Binato, M.G.C. Resende, D.J. Falcdo, Transmission network design by a
greedy randomized adaptive path relinking approach. IEEE Trans. Power Syst. 20, 43-49
(2005)

T.A. Feo, J.F. Bard, Flight scheduling and maintenance base planning. Manag. Sci. 35, 1415—
1432 (1989)

T.A. Feo, J.F. Bard, The cutting path and tool selection problem in computer-aided process
planning. J. Manufact. Syst. 8, 17-26 (1989)

T.A. Feo, J.L. Gonzilez-Velarde, The intermodal trailer assignment problem: Models, algo-
rithms, and heuristics. Transp. Sci. 29, 330-341 (1995)

T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set cov-
ering problem. Oper. Res. Lett. 8, 67-71 (1989)

T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim.
6, 109-133 (1995)

T.A. Feo, K. Venkatraman, J.F. Bard, A GRASP for a difficult single machine scheduling
problem. Comput. Oper. Res. 18, 635-643 (1991)

T.A. Feo, M.G.C. Resende, S.H. Smith, A greedy randomized adaptive search procedure for
maximum independent set. Oper. Res. 42, 860-878 (1994)

T.A. Feo, J.F. Bard, S. Holland, Facility-wide planning and scheduling of printed wiring
board assembly. Oper. Res. 43, 219-230 (1995)

T.A. Feo, K. Sarathy, J. McGahan, A GRASP for single machine scheduling with sequence
dependent setup costs and linear delay penalties. Comput. Oper. Res. 23, 881-895 (1996)
E. Fernandez, R. Marti, GRASP for seam drawing in mosaicking of aerial photographic
maps. J. Heuristics 5, 181-197 (1999)

P. Festa, On some optimization problems in molecular biology. Math. Biosci. 207, 219-234
(2007)

6 GRASP: Advances and Extensions 213

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.
116.

117.

118.

P. Festa, M.G.C. Resende, GRASP: An annotated bibliography, in Essays and Surveys in
Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers, Boston, 2002),
pp. 325-367

P. Festa, M.G.C. Resende, An annotated bibliography of GRASP, part I: algorithms. Int.
Trans. Oper. Res. 16, 1-24 (2009)

P. Festa, M.G.C. Resende, An annotated bibliography of GRASP, part II: applications. Int.
Trans. Oper. Res. 16, 131-172 (2009)

P. Festa, PM. Pardalos, M.G.C. Resende, Algorithm 815: FORTRAN subroutines for com-
puting approximate solution to feedback set problems using GRASP. ACM Trans. Math.
Softw. 27, 456464 (2001)

P. Festa, M.G.C. Resende, P. Pardalos, C.C. Ribeiro, GRASP and VNS for Max-Cut, in
Extended Abstracts of the Fourth Metaheuristics International Conference, Porto, pp. 371—
376 (2001)

P. Festa, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro, Randomized heuristics for the MAX-
CUT problem. Optim. Methods Softw. 7, 1033—1058 (2002)

P. Festa, PM. Pardalos, L.S. Pitsoulis, M.G.C. Resende, GRASP with path-relinking for the
weighted MAXSAT problem. ACM J. Exp. Algorithmics 11, 1-16 (2006)

M.L. Fisher, The Lagrangian relaxation method for solving integer programming problems.
Manag. Sci. 50, 1861-1871 (2004)

C. Fleurent, F. Glover, Improved constructive multistart strategies for the quadratic assign-
ment problem using adaptive memory. INFORMS J. Comput. 11, 198-204 (1999)

E. Fonseca, R. Fuchsuber, L.EM. Santos, A. Plastino, S.L. Martins, Exploring the hybrid
metaheuristic DM-GRASP for efficient server replication for reliable multicast, in Interna-
tional Conference on Metaheuristics and Nature Inspired Computing, Hammamet (2008)
R.D. Frinhani, R.M. Silva, G.R. Mateus, P. Festa, M.G.C. Resende, GRASP with path-
relinking for data clustering: a case study for biological data, in Experimental Algorithms, ed.
by P.M. Pardalos, S. Rebennack. Lecture Notes in Computer Science, vol. 6630 (Springer,
Berlin, 2011), pp. 410-420

J.B. Ghosh, Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19,
175-181 (1996)

F. Glover, New ejection chain and alternating path methods for traveling salesman problems,
in Computer Science and Operations Research: New Developments in Their Interfaces, ed.
by O. Balci, R. Sharda, S. Zenios (Elsevier, Amsterdam, 1992), pp. 449-509

F. Glover, Ejection chains, reference structures and alternating path methods for traveling
salesman problems. Discret. Appl. Math. 65, 223-254 (1996)

F. Glover, Tabu search and adaptive memory programing — advances, applications and chal-
lenges, in Interfaces in Computer Science and Operations Research, ed. by R.S. Barr, R.V.
Helgason, J.L. Kennington (Kluwer Academic Publishers, Boston, 1996), pp. 1-75

F. Glover, Multi-start and strategic oscillation methods — principles to exploit adaptive mem-
ory, in Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer
Science and Operations Research, ed. by M. Laguna, J.L. Gonzéles-Velarde (Kluwer Aca-
demic Publishers, Boston, 2000), pp. 1-24

F. Glover, Exterior path relinking for zero-one optimization. Int. J. Appl. Metaheuristic Com-
put. 5, 1-8 (2014)

F. Glover, M. Laguna, Tabu Search (Kluwer Academic Publishers, Boston, 1997)

F. Glover, M. Laguna, R. Marti, Fundamentals of scatter search and path relinking. Control
Cybern. 39, 653-684 (2000)

M.X. Goemans, D.P. Williamson, The primal dual method for approximation algorithms
and its application to network design problems, in Approximation Algorithms for NP-Hard
Problems, ed. by D. Hochbaum (PWS Publishing Co., Boston, 1996), pp. 144-191

F.C. Gomes, C.S. Oliveira, P.M. Pardalos, M.G.C. Resende, Reactive GRASP with path re-
linking for channel assignment in mobile phone networks, in Proceedings of the 5th Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile Computing and Communi-
cations (ACM Press, New York, 2001), pp. 60-67

214

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

M. G. C. Resende and C. C. Ribeiro

PL. Hammer, D.J. Rader Jr., Maximally disjoint solutions of the set covering problem. J.
Heuristics 7, 131-144 (2001)

B.T. Han, V.T. Raja, A GRASP heuristic for solving an extended capacitated concentrator
location problem. Int. J. Inf. Technol. Decis. Mak. 2, 597-617 (2003)

P. Hansen, N. Mladenovi¢, Developments of variable neighborhood search, in Essays and
Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers,
Boston, 2002), pp. 415-439

J.P. Hart, A.W. Shogan, Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6, 107—
114 (1987)

M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees. Oper.
Res. 18, 1138-1162 (1970)

M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees: part II.
Math. Program. 1, 6-25 (1971)

M. Held, P. Wolfe, H.P. Crowder, Validation of subgradient optimization. Math. Program. 6,
62-88 (1974)

C. Helmberg, F. Rendl, A spectral bundle method for semidefinite programming. SIAM 1J.
Optim. 10, 673-696 (2000)

A.J. Higgins, S. Hajkowicz, E. Bui, A multi-objective model for environmental investment
decision making. Comput. Oper. Res. 35, 253-266 (2008)

M.J. Hirsch, GRASP-based heuristics for continuous global optimization problems. Ph.D.
thesis, Department of Industrial and Systems Engineering, University of Florida, Gainesville,
2006

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.G.C. Resende, Global optimization by contin-
uous GRASP. Optim. Lett. 1, 201-212 (2007)

M.J. Hirsch, PM. Pardalos, M.G.C. Resende, Solving systems of nonlinear equations with
continuous GRASP. Nonlinear Anal. Real World Appl. 10, 2000-2006 (2009)

M.J. Hirsch, PM. Pardalos, M.G.C. Resende, Speeding up continuous GRASP. Eur. J. Oper.
Res. 205, 507-521 (2010)

M.J. Hirsch, PM. Pardalos, M.G.C. Resende, Correspondence of projected 3D points and
lines using a continuous GRASP. Int. Trans. Oper. Res. 18, 493-511 (2011)

K. Holmgqyvist, A. Migdalas, PM. Pardalos, Greedy randomized adaptive search for a lo-
cation problem with economies of scale, in Developments in Global Optimization, ed. by
.M. Bomze et al. (Kluwer Academic Publishers, Dordrecht, 1997), pp. 301-313

K. Holmqvist, A. Migdalas, P.M. Pardalos, A GRASP algorithm for the single source un-
capacitated minimum concave-cost network flow problem, in Network Design: Connectiv-
ity and Facilities Location, ed. by P.M. Pardalos, D.-Z. Du. DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, vol. 40 (American Mathematical Society,
Providence, 1998), pp. 131-142

H.H. Hoos, T. Stiitzle, Evaluation of Las Vegas algorithms - Pitfalls and remedies, in Pro-
ceedings of the 14th Conference on Uncertainty in Artificial Intelligence, ed. by G. Cooper,
S. Moral (Morgan Kaufmann, Madison, 1998), pp. 238-245

R. Interian, C.C. Ribeiro, A GRASP heuristic using path-relinking and restarts for the Steiner
traveling salesman problem. Int. Trans. Oper. Res. 24, 1307-1323 (2017)

D.S. Johnson, Local optimization and the traveling salesman problem, in Proceedings of the
17th Colloquium on Automata. LNCS, vol. 443 (Springer, Berlin, 1990), pp. 446-461

E.H. Kampke, J.E.C. Arroyo, A.G. Santos, Reactive GRASP with path relinking for solving
parallel machines scheduling problem with resource-assignable sequence dependent setup
times, in Proceedings of the World Congress on Nature and Biologically Inspired Computing,
Coimbatore (IEEE, New York, 2009), pp. 924-929

H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, B. Selman, Dynamic restart policies, in Proceed-
ings of the Eighteenth National Conference on Artificial Intelligence (American Association
for Artificial Intelligence, Edmonton, 2002), pp. 674681

G. Kendall, S. Knust, C.C. Ribeiro, S. Urrutia, Scheduling in sports: an annotated bibliogra-
phy. Comput. Oper. Res. 37, 1-19 (2010)

6 GRASP: Advances and Extensions 215

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.
157.
158.
159.
160.
161.
162.
163.

164.

J.G. Klincewicz, Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Ann. Oper. Res. 40, 283-302 (1992)

J.G. Klincewicz, A. Rajan, Using GRASP to solve the component grouping problem. Nav.
Res. Log. 41, 893-912 (1994)

G. Kontoravdis, J.F. Bard, A GRASP for the vehicle routing problem with time windows.
ORSA J. Comput. 7, 10-23 (1995)

M. Kulich, J.J. Miranda-Bront, L. Preucil, A meta-heuristic based goal-selection strategy for
mobile robot search in an unknown environment. Comput. Oper. Res. 84, 178-187 (2017)
N. Labadi, C. Prins, M. Reghioui, GRASP with path relinking for the capacitated arc routing
problem with time windows, in Advances in Computational Intelligence in Transport, Lo-
gistics, and Supply Chain Management, ed. by A. Fink, F. Rothlauf (Springer, Berlin, 2008),
pp. 111-135

M. Laguna, J.L. Gonzdlez-Velarde, A search heuristic for just-in-time scheduling in parallel
machines. J. Intell. Manuf. 2, 253-260 (1991)

M. Laguna, R. Marti, GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11, 44-52 (1999)

M. Laguna, R. Marti, A GRASP for coloring sparse graphs. Comput. Optim. Appl. 19,
165-178 (2001)

M. Laguna, T.A. Feo, H.C. Elrod, A greedy randomized adaptive search procedure for the
two-partition problem. Oper. Res. 42, 677687 (1994)

Y. Li, PM. Pardalos, M.G.C. Resende, A greedy randomized adaptive search procedure
for the quadratic assignment problem, in Quadratic Assignment and Related Problems,
ed. by PM. Pardalos, H. Wolkowicz. DIMACS Series on Discrete Mathematics and The-
oretical Computer Science, vol. 16 (American Mathematical Society, Providence, 1994),
pp- 237-261

A. Lim, F. Wang, A smoothed dynamic tabu search embedded GRASP for m-VRPTW, in
Proceedings of ICTAI 2004, pp. 704-708 (2004)

A. Lim, B. Rodrigues, C. Wang, Two-machine flow shop problems with a single server. J.
Sched. 9, 515-543 (2006)

X. Liu, PM. Pardalos, S. Rajasekaran, M.G.C. Resende, A GRASP for frequency assignment
in mobile radio networks, in Mobile Networks and Computing, ed. by B.R. Badrinath, F. Hsu,
PM. Pardalos, S. Rajasejaran. DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, vol. 52 (American Mathematical Society, Providence, 2000), pp. 195—
201

H.R. Lourengo, D. Serra, Adaptive approach heuristics for the generalized assignment prob-
lem. Mathw. Soft Comput. 9, 209-234 (2002)

H.R. Lourengo, O.C. Martin, T. Stiitzle, Iterated local search, in Handbook of Metaheuristics,
ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Boston, 2003), pp. 321-
353

M. Luby, A. Sinclair, D. Zuckerman, Optimal speedup of Las Vegas algorithms. Inf. Process.
Lett. 47, 173-180 (1993)

M. Luis, S. Salhi, G. Nagy, A guided reactive GRASP for the capacitated multi-source Weber
problem. Comput. Oper. Res. 38, 1014-1024 (2011)

C.L.B. Maia, R.A.F. Carmo, F.G. Freitas, G.A.L. Campos, J.T. Souza, Automated test case
prioritization with reactive GRASP. Adv. Softw. Eng. 2010, Article ID 428521 (2010)

R. Marti, Arc crossing minimization in graphs with GRASP. IEE Trans. 33, 913-919 (2001)
R. Marti, Arc crossing minimization in graphs with GRASP. IEEE Trans. 33, 913-919 (2002)
R. Marti, V. Estruch, Incremental bipartite drawing problem. Comput. Oper. Res. 28, 1287-
1298 (2001)

R. Marti, M. Laguna, Heuristics and meta-heuristics for 2-layer straight line crossing mini-
mization. Discret. Appl. Math. 127, 665-678 (2003)

R. Marti, F. Sandoya, GRASP and path relinking for the equitable dispersion problem. Com-
put. Oper. Res. 40, 3091-3099 (2013)

O. Martin, S.W. Otto, Combining simulated annealing with local search heuristics. Ann.
Oper. Res. 63, 57-75 (1996)

216

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

M. G. C. Resende and C. C. Ribeiro

O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman
problem. Complex Syst. 5, 299-326 (1991)

S.L. Martins, C.C. Ribeiro, M.C. Souza, A parallel GRASP for the Steiner problem in graphs,
in Proceedings of IRREGULAR’98 — 5th International Symposium on Solving Irregularly
Structured Problems in Parallel, ed. by A. Ferreira, J. Rolim. Lecture Notes in Computer
Science, vol. 1457 (Springer, Berlin, 1998), pp. 285-297

S.L. Martins, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro, Greedy randomized adaptive
search procedures for the steiner problem in graphs, in Randomization Methods in Algorith-
mic Design, PM. Pardalos, S. Rajasejaran, J. Rolim. DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, vol. 43 (American Mathematical Society, Providence,
1999), pp. 133-145

S.L. Martins, M.G.C. Resende, C.C. Ribeiro, PM. Pardalos, A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy. J. Glob. Optim. 17, 267—
283 (2000)

G.R. Mateus, M.G.C. Resende, R.M.A. Silva, GRASP with path-relinking for the generalized
quadratic assignment problem. J. Heuristics 17, 527-565 (2011)

T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A GRASP for the biquadratic
assignment problem. Eur. J. Oper. Res. 105, 613-621 (1998)

M. Mestria, L.S. Ochi, S.L. Martins, GRASP with path relinking for the symmetric Euclidean
clustered traveling salesman problem. Comput. Oper. Res. 40, 3218-3229 (2013)

N. Mladenovi¢, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24, 1097—
1100 (1997)

S.K. Monkman, D.J. Morrice, J.F. Bard, A production scheduling heuristic for an electronics
manufacturer with sequence-dependent setup costs. Eur. J. Oper. Res. 187, 1100-1114 (2008)
R.E.N. Moraes, C.C. Ribeiro, Power optimization in ad hoc wireless network topology con-
trol with biconnectivity requirements. Comput. Oper. Res. 40, 3188-3196 (2013)

L.F. Moran-Mirabal, J.L. Gonzélez-Velarde, M.G.C. Resende, R.M.A. Silva, Randomized
heuristics for handover minimization in mobility networks. J. Heuristics 19, 845-880 (2013)
L.F. Moran-Mirabal, J.L. Gonzélez-Velarde, M.G.C. Resende, Randomized heuristics for the
family traveling salesperson problem. Int. Trans. Oper. Res. 21, 41-57 (2014)

R.A. Murphey, P.M. Pardalos, L.S. Pitsoulis, A greedy randomized adaptive search proce-
dure for the multitarget multisensor tracking problem, in Network Design: Connectivity and
Facilities Location, ed. by P.M. Pardalos, D.-Z. Du. DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, vol. 40 (American Mathematical Society, Providence,
1998), pp. 277-301

R.A. Murphey, PM. Pardalos, L.S. Pitsoulis, A parallel GRASP for the data association
multidimensional assignment problem, in Parallel Processing of Discrete Problems, ed. by
P.M. Pardalos. The IMA Volumes in Mathematics and Its Applications, vol. 106 (Springer,
New York, 1998), pp. 159-180

M.C.V. Nascimento, L. Pitsoulis, Community detection by modularity maximization using
GRASP with path relinking. Comput. Oper. Res. 40, 3121-3131 (2013)

M.C.V. Nascimento, M.G.C. Resende, FM.B. Toledo, GRASP heuristic with path-relinking
for the multi-plant capacitated lot sizing problem. Eur. J. Oper. Res. 200, 747-754 (2010)
V.-P. Nguyen, C. Prins, C. Prodhon, Solving the two-echelon location routing problem by a
GRASP reinforced by a learning process and path relinking. Eur. J. Oper. Res. 216, 113-126
(2012)

E. Nowicki, C. Smutnicki, An advanced tabu search algorithm for the job shop problem. J.
Sched. 8, 145-159 (2005)

C.A. Oliveira, P.M. Pardalos, M.G.C. Resende, GRASP with path-relinking for the quadratic
assignment problem, in Proceedings of III Workshop on Efficient and Experimental Algo-
rithms, vol. 3059, ed. by C.C. Ribeiro, S.L. Martins (Springer, New York, 2004), pp. 356—
368

ILH. Osman, B. Al-Ayoubi, M. Barake, A greedy random adaptive search procedure for the
weighted maximal planar graph problem. Comput. Ind. Eng. 45, 635-651 (2003)

6 GRASP: Advances and Extensions 217

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

J.A. Pacheco, S. Casado, Solving two location models with few facilities by using a hybrid
heuristic: a real health resources case. Comput. Oper. Res. 32, 3075-3091 (2005)

A.V.F. Pacheco, G.M. Ribeiro, G.R. Mauri, A GRASP with path-relinking for the workover
rig scheduling problem. Int. J. Nat. Comput. Res. 1, 1-14 (2010)

G. Palubeckis, Multistart tabu search strategies for the unconstrained binary quadratic opti-
mization problem. Ann. Oper. Res. 131, 259-282 (2004)

PM. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A parallel GRASP implementation for the
quadratic assignment problem, in Parallel Algorithms for Irregularly Structured Problems —
Irregular’94, ed. by A. Ferreira, J. Rolim (Kluwer Academic Publishers, Dordrecht, 1995),
pp. 115-133

P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A parallel GRASP for MAX-SAT problems.
Lect. Notes Comput. Sci. 1184, 575-585 (1996)

P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, Algorithm 769: Fortran subroutines for ap-
proximate solution of sparse quadratic assignment problems using GRASP. ACM Trans.
Math. Softw. 23, 196-208 (1997)

PM. Pardalos, T. Qian, M.G.C. Resende, A greedy randomized adaptive search procedure
for the feedback vertex set problem. J. Comb. Optim. 2, 399-412 (1999)

F. Parrefio, R. Alvarez-Valdes, J.M. Tamarit, J.F. Oliveira, A maximal-space algorithm for
the container loading problem. INFORMS J. Comput. 20, 412-422 (2008)

R.A. Patterson, H. Pirkul, E. Rolland, A memory adaptive reasoning technique for solving
the capacitated minimum spanning tree problem. J. Heuristics 5, 159-180 (1999)

O. Pedrola, M. Ruiz, L. Velasco, D. Careglio, O. Gonzilez de Dios, J. Comellas, A GRASP
with path-relinking heuristic for the survivable IP/MPLS-over-WSON multi-layer network
optimization problem. Comput. Oper. Res. 40, 3174-3187 (2013)

L.S. Pessoa, M.G.C. Resende, C.C. Ribeiro, Experiments with the LAGRASP heuristic for
set k-covering. Optim. Lett. 5, 407419 (2011)

L.S. Pessoa, M.G.C. Resende, C.C. Ribeiro, A hybrid Lagrangean heuristic with GRASP and
path-relinking for set k-covering. Comput. Oper. Res. 40, 3132-3146 (2013)

E. Pinana, I. Plana, V. Campos, R. Marti, GRASP and path relinking for the matrix bandwidth
minimization. Eur. J. Oper. Res. 153, 200-210 (2004)

L.S. Pitsoulis, P.M. Pardalos, D.W. Hearn, Approximate solutions to the turbine balancing
problem. Eur. J. Oper. Res. 130, 147-155 (2001)

F. Poppe, M. Pickavet, P. Arijs, P. Demeester, Design techniques for SDH mesh-restorable
networks, in Proceedings of the European Conference on Networks and Optical Communi-
cations, Volume 2: Core and ATM Networks, pp. 94—101, (1997)

M. Prais, C.C. Ribeiro, Parameter variation in GRASP implementations, in Extended Ab-
stracts of the Third Metaheuristics International Conference, Angra dos Reis, pp. 375-380
(1999)

M. Prais, C.C. Ribeiro, Parameter variation in GRASP procedures. Investigacion Operativa
9, 1-20 (2000)

M. Prais, C.C. Ribeiro, Reactive GRASP: an application to a matrix decomposition problem
in TDMA traffic assignment. INFORMS J. Comput. 12, 164—176 (2000)

M. Rahmani, M. Rashidinejad, E.M. Carreno, R.A. Romero, Evolutionary multi-move path-
relinking for transmission network expansion planning, in 2010 IEEE Power and Energy
Society General Meeting, Minneapolis (IEEE, New York, 2010), pp. 1-6

M.C. Rangel, N.M.M. Abreu, P.O. Boaventura Netto, GRASP in the QAP: an acceptance
bound for initial solutions. Pesquisa Operacional 20, 45-58 (2000)

M.G. Ravetti, F.G. Nakamura, C.N. Meneses, M.G.C. Resende, G.R. Mateus, P.M. Pardalos,
Hybrid heuristics for the permutation flow shop problem. Technical Report, AT&T Labs
Research Technical Report, Florham Park, 2006

M. Reghioui, C. Prins, N. Labadi, GRASP with path relinking for the capacitated arc routing
problem with time windows, in Applications of Evolutionary Computing, ed. by M. Giacobini
et al. Lecture Notes in Computer Science, vol. 4448 (Springer, Berlin, 2007), pp. 722-731
M.G.C. Resende, Computing approximate solutions of the maximum covering problem using
GRASP. J. Heuristics 4, 161-171 (1998)

218

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

2217.

228.

229.

M. G. C. Resende and C. C. Ribeiro

M.G.C. Resende, T.A. Feo, A GRASP for satisfiability, in Cliques, Coloring, and Satisfi-
ability: The Second DIMACS Implementation Challenge, ed. by D.S. Johnson, M.A. Trick.
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 26 (Amer-
ican Mathematical Society, Providence, 1996), pp. 499-520

L.ILP. Resende, M.G.C. Resende, A GRASP for frame relay permanent virtual circuit rout-
ing, in Extended Abstracts of the IIl Metaheuristics International Conference, ed. by C.C.
Ribeiro, P. Hansen, Angra dos Reis, pp. 397-401 (1999)

M.G.C. Resende, C.C. Ribeiro, A GRASP for graph planarization. Networks 29, 173-189
(1997)

M.G.C. Resende, C.C. Ribeiro, Graph planarization, in Encyclopedia of Optimization, vol. 2,
ed. by C. Floudas, P.M. Pardalos (Kluwer Academic Publishers, Boston, 2001), pp. 368-373
M.G.C. Resende, C.C. Ribeiro, A GRASP with path-relinking for private virtual circuit rout-
ing. Networks 41, 104-114 (2003)

M.G.C. Resende, C.C. Ribeiro, GRASP with path-relinking: recent advances and applica-
tions, in Metaheuristics: Progress as Real Problem Solvers, ed. by T. Ibaraki, K. Nonobe,
M. Yagiura (Springer, Boston, 2005), pp. 29-63

M.G.C. Resende, C.C. Ribeiro, Restart strategies for GRASP with path-relinking heuristics.
Optim. Lett. 5, 467-478 (2011)

M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP: Greedy Randomized Adaptive
Search Procedures (Springer, New York, 2016)

M.G.C. Resende, R.F. Werneck, A hybrid heuristic for the p-median problem. J. Heuristics
10, 59-88 (2004)

M.G.C. Resende, R.F. Werneck, A hybrid multistart heuristic for the uncapacitated facility
location problem. Eur. J. Oper. Res. 174, 54-68 (2006)

M.G.C. Resende, P.M. Pardalos, Y. Li, Algorithm 754: Fortran subroutines for approximate
solution of dense quadratic assignment problems using GRASP. ACM Trans. Math. Softw.
22, 104-118 (1996)

M.G.C. Resende, L.S. Pitsoulis, P.M. Pardalos, Approximate solution of weighted MAX-
SAT problems using GRASP, in Satisfiability Problems, ed. by J. Gu, P.M. Pardalos. DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 35 (Ameri-
can Mathematical Society, Providence, 1997), pp. 393-405

M.G.C. Resende, T.A. Feo, S.H. Smith, Algorithm 787: Fortran subroutines for approximate
solution of maximum independent set problems using GRASP. ACM Trans. Math. Softw.
24, 386-394 (1998)

M.G.C. Resende, L.S. Pitsoulis, P.M. Pardalos, Fortran subroutines for computing approx-
imate solutions of MAX-SAT problems using GRASP. Discret. Appl. Math. 100, 95-113
(2000)

M.G.C. Resende, R. Marti, M. Gallego, A. Duarte, GRASP and path relinking for the max-
min diversity problem. Comput. Oper. Res. 37, 498-508 (2010)

A.P. Reynolds, B. de la Iglesia, A multi-objective GRASP for partial classification. Soft
Comput. 13, 227-243 (2009)

C.C. Ribeiro, GRASP: Une métaheuristique gloutone et probabiliste, in Optimisation Ap-
prochée en Recherche Opérationnelle, ed. by J. Teghem, M. Pirlot (Hermes, Paris, 2002),
pp. 153-176

C.C. Ribeiro, Sports scheduling: problems and applications. Int. Trans. Oper. Res. 19, 201-
226 (2012)

C.C. Ribeiro, M.G.C. Resende, Algorithm 797: Fortran subroutines for approximate solu-
tion of graph planarization problems using GRASP. ACM Trans. Math. Softw. 25, 342-352
(1999)

C.C. Ribeiro, I. Rosseti, Efficient parallel cooperative implementations of GRASP heuristics.
Parallel Comput. 33, 21-35 (2007)

C.C. Ribeiro, I. Rosseti, tttplots-compare: A perl program to compare time-to-target plots or
general runtime distributions of randomized algorithms. Optim. Lett. 9, 601-614 (2015)
C.C. Ribeiro, M.C. Souza, Variable neighborhood search for the degree constrained mini-
mum spanning tree problem. Discret. Appl. Math. 118, 43-54 (2002)

6 GRASP: Advances and Extensions 219

230.

231.

232.

233.

234,

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

C.C. Ribeiro, S. Urrutia, Heuristics for the mirrored traveling tournament problem. Eur. J.
Oper. Res. 179, 775-787 (2007)

C.C. Ribeiro, D.S. Vianna, A GRASP/VND heuristic for the phylogeny problem using a new
neighborhood structure. Int. Trans. Oper. Res. 12, 325-338 (2005)

C.C. Ribeiro, C.D. Ribeiro, R.S. Lanzelotte, Query optimization in distributed relational
databases. J. Heuristics 3, 5-23 (1997)

C.C. Ribeiro, E. Uchoa, R.F. Werneck, A hybrid GRASP with perturbations for the Steiner
problem in graphs. INFORMS J. Comput. 14, 228-246 (2002)

C.C. Ribeiro, S.L. Martins, I. Rosseti, Metaheuristics for optimization problems in computer
communications. Comput. Comuun. 30, 656-669 (2007)

C.C. Ribeiro, I. Rosseti, R. Vallejos, On the use of run time distributions to evaluate and com-
pare stochastic local search algorithms, in Engineering Stochastic Local Search Algorithms,
ed. by T. Sttzle, M. Biratari, and H.H. Hoos. Lecture Notes in Computer Science, vol. 5752
(Springer, Berlin, 2009), pp. 16-30

C.C. Ribeiro, I. Rosseti, R. Vallejos, Exploiting run time distributions to compare sequential
and parallel stochastic local search algorithms. J. Glob. Optim. 54, 405-429 (2012)

R.Z. Rios-Mercado, J.F. Bard, Heuristics for the flow line problem with setup costs. Eur. J.
Oper. Res. 110, 76-98 (1998)

R.Z. Rios-Mercado, J.F. Bard, An enhanced TSP-based heuristic for makespan minimization
in a flow shop with setup costs. J. Heuristics 5, 57-74 (1999)

R.Z. Rios-Mercado, E. Fernandez. A reactive GRASP for a commercial territory design prob-
lem with multiple balancing requirements. Comput. Oper. Res. 36, 755-776 (2009)

A. Riva, F. Amigoni, A GRASP metaheuristic for the coverage of grid environments with
limited-footprint tools, in Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’17, Richland, SC, pp. 484—491. International Foundation for
Autonomous Agents and Multiagent Systems (2017)

A.J. Robertson, A set of greedy randomized adaptive local search procedure (GRASP) imple-
mentations for the multidimensional assignment problem. Comput. Optim. Appl. 19, 145-
164 (2001)

PL. Rocha, M.G. Ravetti, G.R. Mateus, The metaheuristic GRASP as an upper bound for a
branch and bound algorithm in a scheduling problem with non-related parallel machines and
sequence-dependent setup times, in Proceedings of the 4th EU/ME Workshop: Design and
Evaluation of Advanced Hybrid Meta-Heuristics, vol. 1 (2004), pp. 62—-67

F.J. Rodriguez, C. Blum, C. Garcia-Martinez, M. Lozano, GRASP with path-relinking for
the non-identical parallel machine scheduling problem with minimising total weighted com-
pletion times. Ann. Oper. Res. 201, 383-401 (2012)

F.J. Rodriguez, F. Glover, C. Garcia-Martinez, R. Marti, M. Lozano, Grasp with exterior path-
relinking and restricted local search for the multidimensional two-way number partitioning
problem. Comput. Oper. Res. 78, 243-254 (2017)

M.A. Salazar-Aguilar, R.Z. Rios-Mercado, J.L. Gonzélez-Velarde, GRASP strategies for a
bi-objective commercial territory design problem. J. Heuristics 19, 179-200 (2013)

J. Santamaria, O. Cordén, S. Damas, R. Marti, R.J. Palma, GRASP & evolutionary path
relinking for medical image registration based on point matching, in 2010 IEEE Congress on
Evolutionary Computation (IEEE, New York, 2010), pp. 1-8

J. Santamaria, O. Cordén, S. Damas, R. Marti, R.J. Palma, GRASP and path relinking hy-
bridizations for the point matching-based image registration problem. J. Heuristics 18, 169—
192 (2012)

D. Santos, A. de Sousa, F. Alvelos, A hybrid column generation with GRASP and path
relinking for the network load balancing problem. Comput. Oper. Res. 40, 3147-3158 (2013)
M. Scaparra, R. Church, A GRASP and path relinking heuristic for rural road network de-
velopment. J. Heuristics 11, 89-108 (2005)

I.V. Sergienko, V.P. Shilo, V.A. Roshchin, Optimization parallelizing for discrete program-
ming problems. Cybern. Syst. Anal. 40, 184—-189 (2004)

O.V. Shylo, T. Middelkoop, P.M. Pardalos, Restart strategies in optimization: parallel and
serial cases. Parallel Comput. 37, 60-68 (2011)

0.V. Shylo, O.A. Prokopyev, J. Rajgopal, On algorithm portfolios and restart strategies. Oper.
Res. Lett. 39, 49-52 (2011)

220

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

M. G. C. Resende and C. C. Ribeiro

F. Silva, D. Serra, Locating emergency services with different priorities: the priority queuing
covering location problem. J. Oper. Res. Soc. 59, 1229-1238 (2007)

R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, M.J. Hirsch, A Python/C library for bound-
constrained global optimization with continuous GRASP. Optim. Lett. 7, 967-984 (2013)
R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, G.R. Mateus, G. de Tomi, GRASP with path-
relinking for facility layout, in Models, Algorithms, and Technologies for Network Analysis,
ed. by B.I. Goldengorin, V.A. Kalyagin, PM. Pardalos. Springer Proceedings in Mathematics
and Statistics, vol. 59 (Springer, Berlin, 2013), pp. 175-190

D. Sosnowska, Optimization of a simplified fleet assignment problem with metaheuristics:
simulated annealing and GRASP, in Approximation and Complexity in Numerical Optimiza-
tion, ed. by P.M. Pardalos (Kluwer Academic Publishers, Dordrecht, 2000)

M.C. Souza, C. Duhamel, C.C. Ribeiro, A GRASP heuristic for the capacitated minimum
spanning tree problem using a memory-based local search strategy, in Metaheuristics: Com-
puter Decision-Making, ed. by M.G.C. Resende, J. Souza (Kluwer Academic Publisher, Dor-
drecht, 2004), pp. 627-658

A. Srinivasan, K.G. Ramakrishnan, K. Kumaram, M. Aravamudam, S. Naqvi, Optimal de-
sign of signaling networks for Internet telephony, in JEEE INFOCOM 2000, vol. 2 (2000),
pp. 707-716

H. Takahashi, A. Matsuyama, An approximate solution for the Steiner problem in graphs.
Math. Jpn. 24, 573-577 (1980)

T.L. Urban, Solution procedures for the dynamic facility layout problem. Ann. Oper. Res.
76, 323-342 (1998)

T.L. Urban, W.-C. Chiang, R.A. Russel, The integrated machine allocation and layout prob-
lem. Int. J. Prod. Res. 38, 2913-2930 (2000)

FL. Usberti, PM. Franga, A.L.M. Franca, GRASP with evolutionary path-relinking for the
capacitated arc routing problem. Comput. Oper. Res. 40, 3206-3217 (2013)

J.X. Vianna Neto, D.L.A. Bernert, L.S. Coelho, Continuous GRASP algorithm applied to
economic dispatch problem of thermal units, in Proceedings of the 13th Brazilian Congress
of Thermal Sciences and Engineering, Uberlandia (2010)

J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, N. Velasco, GRASP/VND and multi-
start evolutionary local search for the single truck and trailer routing problem with satellite
depots. Eng. Appl. Artif. Intelli. 23, 780-794 (2010)

J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, N. Velasco, A GRASP with evolutionary
path relinking for the truck and trailer routing problem. Comput. Oper. Res. 38, 1319-1334
(2011)

D.L. Woodruff, E. Zemel, Hashing vectors for tabu search. Ann. Oper. Res. 41, 123-137
(1993)

J.Y. Xu, S.Y. Chiu, Effective heuristic procedure for a field technician scheduling problem.
J. Heuristics 7, 495-509 (2001)

J. Yen, M. Carlsson, M. Chang, J.M. Garcia, H. Nguyen, Constraint solving for inkjet print
mask design. J. Imaging Sci. Technol. 44, 391-397 (2000)

Chapter 7)
Intelligent Multi-Start Methods et

Rafael Marti, Ricardo Aceves, Maria Teresa Le6n, Jose M. Moreno-Vega,
and Abraham Duarte

Abstract Heuristic search procedures aimed at finding globally optimal solutions to
hard combinatorial optimization problems usually require some type of diversifica-
tion to overcome local optimality. One way to achieve diversification is to re-start
the procedure from a new solution once a region has been explored, which consti-
tutes a multi-start procedure. In this chapter we describe the best known multi-start
methods for solving optimization problems. We also describe their connections with
other metaheuristic methodologies. We propose classifying these methods in terms
of their use of randomization, memory and degree of rebuild. We also present a com-
putational comparison of these methods on solving the Maximum Diversity Problem
to illustrate the efficiency of the multi-start methodology in terms of solution quality
and diversification power.

R. Marti (0<) - M. T. Le6n
Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Valencia, Spain
e-mail: rafael.marti @uv.es; teresa.leon@uv.es

R. Aceves

Departamento de Ingenierfa de Sistemas, Universidad Nacional Auténoma de México, Mexico
City, Mexico

e-mail: aceves @unam.mx

J. M. Moreno-Vega

Departamento de Ingenieria Informética y de Sistemas, Universidad de La Laguna, San Cristobal
de La Laguna, Spain

e-mail: jmmoreno@ull.es

A. Duarte

Departamento de Ciencias de la Computacién, Arquitectura de Computadores, Lenguajes y Sis-
temas Informaticos, Estadistica e Investigacion Operativa, Universidad Rey Juan Carlos, Méstoles,
Spain

e-mail: abraham.duarte @urjc.es

© Springer International Publishing AG, part of Springer Nature 2019 221
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_7&domain=pdf
mailto:rafael.marti@uv.es
mailto:teresa.leon@uv.es
mailto:aceves@unam.mx
mailto:jmmoreno@ull.es
mailto:abraham.duarte@urjc.es
https://doi.org/10.1007/978-3-319-91086-4_7

222 R. Marti et al.

7.1 Introduction

Metaheuristics are high level solution methods that provide guidelines to design and
integrate subordinate heuristics to solve optimization problems. These high level
methods characteristically focus on strategies to escape from local optima and per-
form a robust search of a solution space. Most of them are based, at least partially,
on a neighborhood search, and the degree to which neighborhoods are exploited
varies according to the type of method.

Multi-start procedures were originally conceived as a way to exploit a local or
neighborhood search procedure, by simply applying it from multiple random initial
solutions. It is well known that search methods based on local optimization that
are aimed at finding global optima usually require some type of diversification to
overcome local optimality. Without this diversification, such methods can become
reduced to tracing paths that are confined to a small area of the solution space,
making it impossible to find a global optimum. Multi-start methods, appropriately
designed, incorporate a powerful form of diversification.

For some problems, construction procedures are more effective than neighbor-
hood based procedures. For example, in constrained scheduling problems it is diffi-
cult to define neighborhoods (i.e., structures that allow transitions from a given solu-
tion to so-called adjacent solutions) that maintain feasibility, whereas solutions can
be created relatively easily by an appropriate construction process. Something simi-
lar happens in simulation-optimization where the model treats the objective-function
evaluation as a black box, making the search algorithm context-independent. In
these problems the generation of solutions by stepwise constructions, according
to information recorded during the search process, is more efficient than the ex-
ploration of solutions in the neighborhood of a given solution since the evaluation
requires a simulation process that is usually very time-consuming. Therefore, Multi-
start methods provide an appropriate framework within which to develop algorithms
to solve combinatorial optimization problems.

The re-start mechanism of multi-start methods can be superimposed on many dif-
ferent search methods. Once a new solution has been generated, a variety of options
can be used to improve it, ranging from a simple greedy routine to a complex meta-
heuristic. This chapter focuses on the different strategies and methods for generating
solutions to launch a succession of new searches for a global optimum. We illustrate
the efficiency of the multi-start methodology with a computational comparison of
different methods on solving the Maximum Diversity Problem. This chapter com-
plements a recent survey [44] devoted to multi-start methods in the context of com-
binatorial optimization. In particular, the survey sketches historical developments
that have motivated these methods and focuses on several contributions that defined
the state-of-the-art of the field in 2013.

7 Intelligent Multi-Start Methods 223

7.2 An Overview

Multi-start methods have two phases: the first one in which the solution is generated
and the second one in which the solution is typically (but not necessarily) improved.
Then, each global iteration produces a solution (usually a local optima) and the best
overall is the algorithm’s output.

In recent years, many heuristic algorithms have been proposed to solve some
combinatorial optimization problems. Some of them are problem-dependent and
the ideas and strategies implemented are difficult to apply to different problems,
while others are based on a framework that can be used directly to design solving
methods for other problems. In this section we describe the most relevant procedures
in terms of applying them to a wide variety of problems. We pay special attention
to the adaptation of memory structures to multi-start methods.

The explicit use of memory structures constitutes the core of a large number
of intelligent solving methods. They include tabu search [16], scatter search [34],
iterated-based methods [40], evolutionary path relinking [56], and some hybridiza-
tions of multi-start procedures. These methods focus on exploiting a set of strategic
memory designs. Tabu search (TS), the metaheuristic that launched this perspective,
is the source of the term Adaptive Memory Programming (AMP) to describe meth-
ods that use advanced memory strategies (and hence learning, in a non-trivial sense)
to guide a search.

In the following subsections we trace some of the more salient contributions
to multi-start methods of the past two decades (though the origins of the meth-
ods go back somewhat farther). We have grouped them according to four cate-
gories: memory based designs (Sect. 7.2.1), GRASP (Sect. 7.2.2), theoretical anal-
ysis (Sect. 7.2.5), constructive designs (Sect. 7.2.3) and hybrid designs (Sect. 7.2.4).
Based on the analysis of these methods, we propose a classification of multi-start
procedures (Sect. 7.3) in which the use of memory plays a central role.

7.2.1 Memory Based Designs

Many papers on multi-start methods that appeared before the mid-90s do not use ex-
plicit memory, as notably exemplified by the Monte Carlo random re-start approach
in the context of nonlinear unconstrained optimization. Here, the method simply
evaluates the objective function at randomly generated points. The probability of
success approaches one as the sample size tends to infinity under very mild assump-
tions about the objective function. Many algorithms have been proposed that com-
bine the Monte Carlo method with local search procedures [57]. The convergence
for random re-start methods is studied in [62], where the probability distribution
used to choose the next starting point can depend on how the search evolves. Some
extensions of these methods seek to reduce the number of complete local searches
that are performed and increase the probability that they start from points close to

224 R. Marti et al.

the global optimum [45]. More advanced probabilistic forms of re-starting based on
memory functions were subsequently developed in [38, 58].

Fleurent and Glover [13] propose some adaptive memory search principles to
enhance multi-start approaches. The authors introduce a template of a constructive
version of Tabu Search using both a set of elite solutions and intensification strate-
gies based on identifying strongly determined and consistent variables. Strongly de-
termined variables are those whose values cannot be changed without significantly
eroding the objective function value or disrupting the values of other variables. A
consistent variable is defined as one that receives a particular value in a significant
portion of good solutions. The authors propose the inclusion of memory structures
within the multi-start framework as it is done with tabu search. Computational ex-
periments for the quadratic assignment problem show that these methods improve
significantly over previous multi-start methods like GRASP and random restart that
do not incorporate memory based strategies.

Patterson et al. [51] introduce a multi-start framework (Adaptive Reasoning
Techniques, ART) based on memory structures. The authors implement the short
term and long term memory functions, proposed in the Tabu Search framework,
to solve the Capacitated Minimum Spanning Tree Problem. ART is an iterative,
constructive solution procedure that implements learning methodologies on top of
memory structures. ART derives its success from being able to learn about, and
modify the behavior of a primary greedy heuristic. The greedy heuristic is executed
repeatedly, and for each new execution, constraints that prohibit certain solution
elements from being considered by the greedy heuristic are probabilistically intro-
duced. The active constraints are held in a short term memory. A long term memory
holds information regarding the constraints that were in the active memory for the
best set of solutions.

Glover [17] proposes approaches for creating improved forms of constructive
multi-start and strategic oscillation methods, based on new search principles: per-
sistent attractiveness and marginal conditional validity. These concepts play a key
role in deriving appropriate measures to capture information during prior search.
Applied to constructive neighborhoods, strategic oscillation operates by alternating
constructive and destructive phases, where each solution generated by a constructive
phase is dismantled (to a variable degree) by the destructive phase, after which a new
phase builds the solution anew. The conjunction of both phases and their associated
memory structures provides the basis for an improved multi-start method.

The principle of persistent attractiveness says that good choices derive from
making decisions that have often appeared attractive, but that have not previously
been made within a particular region of the search space. That is, persistent attrac-
tiveness also carries with it the connotation of persistently unselected (i.e., not se-
lected in many trials) within a specific domain or interval. The principle of marginal
conditional validity specifies that the problem becomes more restricted as more and
more decisions are made. Consequently, as the search progresses future decisions
face less complexity and less ambiguity about which choices are likely to be prefer-
able. Therefore, early decisions are more likely to be bad ones or at least to look

7 Intelligent Multi-Start Methods 225

better than they should, once later decisions are made. Specific strategies for ex-
ploiting these concepts and their underlying principles are given in [17].

Scatter Search and Path-Relinking [23] are effective methodologies to solve a
great diversity of optimization problems. These methods differ from other evolu-
tionary procedures, such as genetic algorithms, in their approach to combine so-
lutions based on path construction (both in Euclidean spaces and in neighborhood
spaces). In the context of Scatter Search, Laguna and Marti [33] discuss the de-
velopment and application of the OptQuest system. Using this library, Ugray et al.
[66] develop the algorithm called OQNLP to find global optimal for pure and mixed
integer non-linear problems, where all the functions are differentiable with respect
to continuous variables. It uses OptQuest to generate candidate starting points for a
local NLP solver as a kind of multi-start algorithm. Additionally, the authors show
in [67] that OQNLP is a promising approach to NLP smooth nonconvex problems
with continuous variables. Later, Lasdon and Plummer [36] describe modifications
to OptQuest/NLP and Multistart-NLP for global optimization, which allow them to
find feasible solutions to a system of nonlinear constraints more efficiently. Modifi-
cations include the replacement of the penalty function used to measure the good-
ness of an initial point by the sum of infeasibilities and ending the search when a
feasible solution is found.

Beausoleil at al. [3] consider a multi-objective combinatorial optimization prob-
lem called Extended Knapsack Problem. By applying multi-start search and path
relinking their solving method rapidly guides the search toward the most balanced
zone of the Pareto-optimal front (the zone in which all the objectives are equally
important). Through the Pareto relation, a subset of the best generated solutions
is designated as the current efficient set of solutions. A max-min criterion applied
to the Hamming distance is used as a measure of dissimilarity in order to find di-
verse solutions to be combined. The performance of this approach is compared with
several state-of-the-art Multi-Objective Evolutionary Algorithms on a suite of test
problems taken from the literature.

Considering the problem of finding global optima for restricted multimodal func-
tions, Lasdon et al. [37] present some multi-start methods based on the adaptive
memory programming (AMP) structure, which involves memory structures that can
be superimposed to a local optimizer, to guide the search for initial points when
solving global optimization problems. The first approach is based on a tabu tunnel-
ing strategy and the second one on a pseudo-cut strategy. Both are designed to avoid
being trapped in local optima.

Since we cannot refer here to all the previous developments in this area, and
we limit ourselves to a few significant examples. For instance, there is a recent ap-
plication in the context of mobile network design [64]. The problem of assigning
network elements to controllers when defining network structure can be modeled as
a graph partitioning problem. Accordingly, a comprehensive analysis of a sophis-
ticated graph partitioning algorithm for grouping base stations into packet control
units for a mobile network is presented. The proposed algorithm combines multi-
level and adaptive multi-start schemes to obtain high quality solutions efficiently.
Performance assessment is carried out on a set of problem instances built from mea-

226 R. Marti et al.

surements in a live network. The overall results confirm that the proposed algorithm
finds solutions better than those obtained by classical multi-level approaches and
much faster than classical multistart approaches. The analysis shows that the best
local minima share strong similarities, which explains the superiority of adaptive
multi-start approaches

7.2.2 GRASP

One of the most well known Multi-start methods is the Greedy Adaptive Search Pro-
cedures (GRASP), which was introduced by Feo and Resende [11]. It was first used
to solve set covering problems [10]. Each GRASP iteration consists of constructing
a trial solution and then applying a local search procedure to find a local optimum
(i.e., the final solution for that iteration). The construction step is an adaptive and
iterative process guided by a greedy evaluation function. It is iterative because the
initial solution is built considering one element at a time. It is greedy because the
addition of each element is guided by a greedy function. It is adaptive because the
element chosen at any iteration in a construction is a function of previously chosen
elements. (That is, the method is adaptive in the sense of updating relevant infor-
mation from one construction step to the next.) At each stage, the next element to
be added to the solution is randomly selected from a candidate list of high quality
elements according to the evaluation function. Once a solution has been obtained,
it is typically improved by a local search procedure. The improvement phase per-
forms a sequence of moves towards a local optimum, which becomes the output of
a complete GRASP iteration. Some examples of successful applications are given
in [32, 35, 54]. Recently, Festa and Resende [12] present an overview of GRASP,
describing its basic components and enhancements to the basic procedure, including
reactive GRASP and intensification strategies.

Laguna and Mart{ [32] introduce Path Relinking within GRASP as a way to im-
prove Multi-start methods. Path Relinking has been suggested as an approach to
integrate intensification and diversification strategies in the context of tabu search
[21]. This approach generates new solutions by exploring trajectories that connect
high-quality solutions. It starts from one of these solutions and generates a path in
the neighborhood space that leads toward the other solutions. This is accomplished
by selecting moves that introduce attributes contained in the guiding solutions. Re-
linking in the context of GRASP consists in finding a path between a solution found
after an improvement phase and a chosen elite solution. Therefore, the relinking
concept has a different interpretation within GRASP, since the solutions found from
one iteration to the next are not originally linked by a sequence of moves (as in
tabu search), but are linked for the first time when this procedure is applied. The
proposed strategy can be applied to any method that produces a sequence of solu-
tions; specifically, it can be used in any multi-start procedure. Based on these ideas,
Binato et al. [4] proposed the Greedy Randomized Adaptive Path Relinking. Many
different designs named Evolutionary Path Relinking have also been studied in [55].

7 Intelligent Multi-Start Methods 227

Prais and Ribeiro [52] propose an improved GRASP implementation, called re-
active GRASP, for a matrix decomposition problem arising in the context of traffic
assignment in communication satellites. The method incorporates a memory struc-
ture to record information about previously found solutions. In Reactive GRASP,
the basic parameter which restricts the candidate list during the construction phase
is self-adjusted, according to the quality of the previously found solutions. The pro-
posed method matches most of the best solutions known.

Morillo et al. [48] propose a new design of the GRASP for solving the latency-
aware partitioning problem in Distributed Virtual Environments (DVE systems)
called M-GRASP or GRASP with memory. The idea is to start from scratch and
to design a specific GRASP that can be implemented in parallel and can provide a
feasible solution for the considered problem at any iteration, in such a way that it
can be adapted to any time constraint. Since each iteration in GRASP consists of a
constructive phase and a local search phase, they propose different alternatives for
each phase, evaluating the performance obtained with each alternative. Additionally,
they enhance this basic approach with some intensification strategies, selecting the
option with the best performance as the proposed final implementation.

Ribeiro and Resende [56] compare the run time distributions of GRASP with and
without path-relinking implementations for four different applications: three-index
assignment, maximum satisfiability, bandwidth packing, and quadratic assignment.
In all cases the plots show that GRASP with path relinking performs better (found-
ing target solutions faster) than the memoryless basic algorithm.

Glover [19] introduces a new design for a framework that links iterated neigh-
borhood search methods and iterated constructive methods by exploiting the notions
of conditional influence within a strategic oscillation framework. These approaches,
which are unified within a class of methods called multi-wave algorithms, exploit
memory-based strategies that draw on the concept of persistent attractiveness. These
algorithms provide new forms of both neighborhood search methods and multi-start
methods and are readily embodied within evolutionary algorithms and memetic al-
gorithms by solution combination mechanisms derived from path relinking.

In 2007, Hirsch [26] proposed an adaptation of GRASP for continuous global
optimization called continuous GRASP (C-GRASP), which was shown to perform
well on a set of multimodal test functions, as well as on real-world applications.
C-GRASP is a stochastic local search metaheuristic for finding cost-efficient solu-
tions to continuous global optimization problems subject to box constraints. Like
GRASP, C-GRASP is a multi-start procedure where a starting solution for local
improvement is constructed in a greedy randomized fashion. In 2010, Hirsch et al.
[27] described several improvements to speed up the original C-GRASP and make
it more robust. The authors compare the new C-GRASP with the original version
as well as with other algorithms from the recent literature on a set of benchmark
multimodal test functions whose global minima are known. A sequential stopping
rule is implemented and C-GRASP is shown to converge.

De Santis et al. [8] recently propose a variant of the GRASP framework that
uses a nonmonotone strategy to explore the neighborhood of the current solution.
Inspired by an idea proposed for Newton’s method, this approach controls uphill

228 R. Marti et al.

moves without using a tabu list but rather by maintaining a number of previously
computed objective function values. A new solution is accepted if its function value
improves the worst value in the set. The authors formally state the convergence of
the nonmonotone local search to a locally optimal solution and illustrate the effec-
tiveness of the resulting Nonmonotone GRASP on three classical hard combinato-
rial optimization problems: the maximum cut problem (MAX-CUT), the weighted
maximum satisfiability problem (MAX-SAT), and the quadratic assignment prob-
lem (QAP).

7.2.3 Constructive Designs

Multi-start procedures usually follow a global scheme in which generation and im-
provement alternate for a certain number of iterations. Note that there are some
applications in which the improvement can be applied several times within a global
iteration. In the incomplete construction methods, the improvement phase is peri-
odically invoked during the construction process of the partial solution rather than
after the complete construction, as it is usually done (see [7, 59] for successful ap-
plications of this approach in vehicle routing).

Hickernell and Yuan [25] present a multi-start algorithm for unconstrained global
optimization based on quasirandom samples. Quasirandom samples are sets of de-
terministic points, as opposed to random points, that are evenly distributed over a
set. The algorithm applies an inexpensive local search (steepest descent) on a set
of quasirandom points to concentrate the sample. Then, the sample is reduced by
replacing worse points with new quasirandom points. Any point that is retained for
a certain number of iterations is used to start an efficient complete local search. The
algorithm terminates when no new local minimum is found after several iterations.
An experimental comparison shows that the method performs favorably with respect
to other global optimization procedures.

Hagen and Kahng [24] implement an adaptive multi start method for a VLSI
partitioning optimization problem where the objective is to minimize the number of
signals sent between components. The method consists of two phases: (1) generate
a set of random starting points and perform the iterative (local search) algorithm
on each point, thus producing a set of local minima; and (2) construct adaptive
starting points derived from the best local minima found so far. The authors add
a preprocessing cluster module to reduce the size of the problem. The resulting
Clustering Adaptive Multi Start method (CAMS) is fast and stable and improves
upon previous partitioning results reported in the literature.

Tu and Mayne [65] describe a multi-start approach with a clustering strategy
for constrained optimization problems. It exploits the characteristics of non-linear
constrained global optimization problems by extending a strategy previously tested
on unconstrained problems. In this study, variations of multi-start with clustering
are considered including a simulated annealing procedure for sampling the design
domain and a quadratic programming (QP) sub-problem for cluster formation. The

7 Intelligent Multi-Start Methods 229

strategies are evaluated by solving 18 non-linear mathematical problems and six
engineering design problems. Numerical results show that the solution of a one-step
QP sub-problem helps predict possible basins of attraction of local minima and can
enhance robustness and effectiveness in identifying local minima without sacrificing
efficiency. In comparison with other multi-start techniques, the strategies proposed
in this study are superior in terms of the number of local searches performed, the
number of minima found and the number of function evaluations required.

Bronmo et al. [6] present a multi-start local search heuristic for a typical ship
scheduling problem. Their method generates a large number of initial solutions
with a randomized insertion heuristic. The best initial solutions are improved with
a quick local search heuristic coupled with an extended version. The quick local
search is used to improve a given number of the best initial solutions. The extended
local search heuristic then further improves some of the best solutions found. The
multi-start local search heuristic is compared with an optimization-based solution
approach with respect to computation time and solution quality. The computational
study shows that the multi-start local search method consistently returns optimal or
near-optimal solutions to real-life instances of the ship scheduling problem within a
reasonable amount of CPU time.

In 2013, Glover [18] introduces advanced greedy algorithms and applies them on
knapsack and covering problems with linear and quadratic objective functions. Be-
ginning with single-constraint problems, he provides extensions for multiple knap-
sack and covering problems, where the elements should be assigned to different
knapsacks and covers. For multi-constraint knapsack and covering problems, the
constraints are exploited using surrogate constraint strategies. Also, he introduces a
progressive probe strategy for improving the selection of variables that should be as-
signed a value. The author describes ways to utilize these algorithms with multi-start
and strategic oscillation metaheuristics. He also identifies how surrogate constraints
can be employed to produce inequalities that dominate those previously used in the
best linear programming methods for multi-constraint knapsack problems. These al-
gorithms are often embedded within constructive processes used in multi-start meta-
heuristics and also within linked constructive and destructive processes in strategic
oscillation metaheuristics.

Talarico et al. [63] develop and combine four constructive heuristics, as well as a
local search composed of six operators to solve a variant of the capacitated vehicle
routing problem. The initial solution obtained with one of the four construction
heuristics serves as input for the local search. The construction heuristics and the
local search are embedded in two different global metaheuristic structures: a multi-
start and a perturb-and-improve (or perturbation) structure. The multi-start structure
repeats both the construction phase and the local search phase a number of times.
The perturbation structure only uses the construction heuristic once, and restarts the
local search block from a perturbed solution. The resulting metaheuristics are able
to obtain solutions of excellent quality in very limited computing times.

Luis et al. [41] investigate a multi-start constructive heuristic algorithm based on
the furthest distance rule and a concept of restricted regions is developed to tackle
a variant of the classical multi-source location-allocation problem in the presence

230 R. Marti et al.

of capacity restrictions. The classical problem assumes that the number of facilities
is known in advance, whereas in practice, determining the number of facilities is a
decision factor. This new approach determines the number of facilities minimizing
the total sum of fixed and variable costs in accordance with finding the best trade-off
between customer demand and opening of new facilities. The proposed method is
assessed using benchmark data sets from the literature.

7.2.4 Hybrid Designs

Ulder et al. [68] combine genetic algorithms with local search strategies to improve
previous genetic approaches for the travelling salesman problem. They apply an it-
erative algorithm to improve each individual, either before or while being combined
with other individuals to form a new solution (offspring). The combination of these
three elements: Generation, Combination and Local Search, extends the paradigm
of Re-Start and establishes links with other metaheuristics such as Scatter Search
[17] or Memetic Algorithms [49].

Mezmaz et al. [46] hybridize the multi-start framework with a model in which
several evolutionary algorithms run simultaneously and cooperate to compute bet-
ter solutions (called island model). They propose a solving method in the context
of multi-objective optimization on a computational grid. The authors point out that
although the combination of these two models usually provides very effective par-
allel algorithms, experiments on large-size problem instances must often be stopped
before convergence. The full exploitation of the cooperation model needs a large
amount of computational resources and the management of fault tolerance issues.
In this paper, a grid-based fault-tolerant approach for these models and their imple-
mentation on the XtremWeb grid middleware is proposed. The approach has been
tested on the bi-objective Flow-Shop problem on a computational grid made of 321
heterogeneous Linux PCs within a multi-domain education network. The prelimi-
nary results, obtained after an execution time of several days, demonstrate that the
use of grid computing effectively and efficiently exploits the two parallel models and
their combination for solving challenging optimization problems. In particular, the
effectiveness is improved by over 60% when compared with a serial meta-heuristic.

An open question about the design of a good search procedure is whether it is bet-
ter to implement a simple improving method that allows a large number of global
iterations or, alternatively, to apply a complex routine that significantly improves
a few generated solutions. A simple procedure depends heavily on the initial so-
lution but a more elaborate method takes much more running time and therefore
can only be applied a few times, thus reducing the sampling of the solution space.
Some metaheuristics, such as GRASP, launch limited local searches from numer-
ous constructions (i.e., starting points). In most tabu search implementations, the
search starts from one initial point and if a restarting procedure is also part of the
method, it is invoked only a limited number of times. However, the inclusion of re-

7 Intelligent Multi-Start Methods 231

starting strategies within the Tabu Search framework has been well documented in
several papers (see for example [15, 21]). In [42] the balance between restarting and
search-depth (i.e., the time spent searching from a single starting point) is studied
in the context of the Bandwidth Matrix Problem. The authors tested both alterna-
tives and concluded that it was better to invest the CPU time to search from a few
starting points than re-starting the search more often. Although we cannot draw a
general conclusion from these experiments, the experience gained in this work and
in previous research indicates that some metaheuristics, like Tabu Search, need to
reach a critical search depth to be effective. If this search depth is not reached, the
effectiveness of the method is severely compromised.

Based on Iterated Local Search (ILS), Prins [53] proposes heuristics for the Ve-
hicle Routing Problem: an ILS with several offspring solutions per generation called
Evolutionary Local Search (ELS), and two hybrid forms of GRASP. These variants
share three main features: a simple structure, a mechanism to alternate between so-
lutions encoded as giant tours and VRP solutions, and a fast local search based on a
sequential decomposition of moves. Using this idea, Lacomme et al. [31] address an
extension of the Capacitated Vehicle Routing Problem where the demand of a cus-
tomer consists of three-dimensional weighted items (3L-CVRP), and the objective
is to design a set of trips for a homogeneous fleet of vehicles based at a depot node
so as to minimize the total transportation cost. The items in each vehicle trip must
satisfy the three-dimensional orthogonal packing constraints. The proposed method
is a multi-start algorithm where ELS is applied to the initial solutions generated by
the greedy randomized heuristics.

Kaucic [29] presents a multi-start Particle Swarm Optimization (PSO) algorithm
for the global optimization of a function subject to bound constraints. The procedure
consists of three main steps. In the initialization phase, an opposition-based learning
strategy is performed. Then, a variant of an adaptive differential evolution scheme is
used to adjust the velocity of the particles. Finally, a re-initialization strategy based
on two swarm diversity measures is applied to avoid premature convergence and
stagnation. The overall idea is to increase the search abilities of PSO by employing
an opposition-based selection for the initial swarm and an adaptive velocity update
equation for the following iterations. The restart scheme is applied to the particles
in the swarm whenever premature convergence and stagnation occur.

Pacheco et al. [50] propose a heuristic method for solving a problem of sequenc-
ing jobs on a machine with programmed preventive maintenance and sequence-
dependent set-up times. The method hybridizes multi-start strategies with Tabu
Search. Their algorithm, called Multi-start Tabu (MST), is an iterative algorithm
that generates a solution in each iteration using a constructive algorithm (called
Diversification Generator), and then, improves it using a Tabu Search procedure
(called Basic Tabu). In this way, each iteration produces a local optimum and the
best one is the algorithm’s output. To explore the whole space of feasible solutions,
the designed constructive procedure takes into account the knowledge accumulated
during previous executions, generating solutions in regions not visited previously.

The research work of Sharma and Glemmestad [60] focuses on the use of the
Generalized Reduced Gradient (GRG) method [67] to solve a constraint multivari-

232 R. Marti et al.

able lift gas allocation optimization problem. The GRG algorithm is a local solver
i.e. the solution provided by GRG may only be a local optimum. To ensure that the
final solution is as close as possible to a global optimum, a multi-start search routine
is applied on top of the GRG algorithm. First, different feasible starting points are
generated. Then, GRG is applied to each of these feasible starting points and the
corresponding local optima are stored. Finally, when all points have been exploited,
the solution which maximizes the objective function is returned as the final solution.

7.2.5 Theoretical Analysis

From a theoretical point of view, Hu et al. [28] study the combination of the gradient
algorithm with random initializations to find a global optimum. Efficacy of parallel
processing, choice of the restart probability distribution and number of restarts are
studied for both discrete and continuous models. The authors show that the uniform
probability distribution is a good choice for restarting procedures.

Boese et al. [5] analyze relationships among local minima from the perspective
of the best local minimum, finding convex structures in the cost surfaces. Based on
the results of that study, they propose a multi-start method where starting points for
greedy descent are adaptively derived from the best previously found local minima.
In the first step, Adaptive Multi-start heuristics (AMS) generate r random starting
solutions and run a greedy descent method from each one to determine a set of cor-
responding random local minima. In the second step, adaptive starting solutions
are constructed based on the local minima obtained so far and improved with a
greedy descent method. This improvement is applied several times from each adap-
tive starting solution to yield corresponding adaptive local minima. The authors test
this method for the traveling salesman problem and obtain significant speedups over
previous multi-start implementations. Hagen and Kahng [24] apply this method for
the iterative partitioning problem.

Moreno et al. [47] propose a stopping rule for the multi-start method based on a
statistical study of the number of iterations needed to find the global optimum. The
authors introduce two random variables that together provide a way of estimating the
number of global iterations needed to find the global optima: the number of initial
solutions generated and the number of objective function evaluations performed to
find the global optima. From these measures, the probability that the incumbent
solution is the global optimum is evaluated via a normal approximation. Thus, at
each global iteration, this value is computed and if it is greater than a fixed threshold,
the algorithm stops, otherwise a new solution is generated. The authors illustrate the
method using the median p-hub problem.

Simple forms of multi-start methods are often used to compare other methods and
measure their relative contribution. Baluja [2] compares different genetic algorithms
for six sets of benchmark problems commonly found in the GA literature: Traveling
Salesman Problem, Job-Shop Scheduling, Knapsack, Bin Packing, Neural Network
Weight Optimization, and Numerical Function Optimization. The author uses the

7 Intelligent Multi-Start Methods 233

multi-start method (Multiple Restart Stochastic Hill-climbing, MRSH) as a baseline
in the computational testing. Since solutions are represented with strings, the im-
provement step consists of a local search based on random flip of bits. The results
indicate that using Genetic Algorithms for the optimization of static functions does
not yield a benefit, in terms of the final result obtained, over simpler optimization
heuristics. Other comparisons between MRSH and GAs can be found, for example,
in [1, 70].

Many heuristics used for global optimization can be described as population-
based algorithms in which, at every iteration, the quality of a population of solutions
is evaluated and a new population is randomly generated according to a given rule,
designed to achieve an acceptable trade-off in the allocation of computational effort
for “exploration” versus “exploitation”. Wang and Garcia [69] propose an algorith-
mic design for global optimization with multiple interacting threads. It applies a
multi-start method that makes use of a local search algorithm to guarantee the di-
versity of search spaces. In the proposed design, each thread implements a search
with a relative emphasis on exploitation that does not vary over time. More efficient
exploration is achieved by means of a simple acceptance-rejection rule preventing
duplication of the search spaces.

7.3 A Classification

We have found three key elements in multi-start methods that can be used for clas-
sification purposes: memory, randomization and degree of rebuild. The possible
choices for each element are not restricted to its presence or absence, but rather
represent a whole continuum between these two extremes. We can identify these
extremes as:

o Memory/Memory-less
o Systematic/Randomized
e Rebuild/Build-from-scratch

The Memory classification refers to elements that are common to certain pre-
viously generated solutions. As in the Tabu Search framework [21], such memory
provides a foundation for incentive-based learning, where actions leading to good
solutions are reinforced through incentives or actions leading to bad solutions are
discouraged through deterrents. Thus, instead of simply resorting to randomized
re-starting processes, in which the current decisions do not get any benefit from
the knowledge accumulated during prior search, specific information is identified to
exploit the search history. On the other hand, memory avoidance (via the Memory-
less classification) is employed in a variety of methods where the construction of
unconnected solutions is viewed as a means of strategically sampling the solution
space. It should be noted that memory is not restricted to recording good solutions
(or attributes of these solutions) but also includes recording solutions that exhibit
diversity.

234 R. Marti et al.

Starting solutions can be randomly generated or, on the contrary, they can be
generated in a systematic way. Randomization is a very simple way of achiev-
ing diversification, but with no control over the diversity achieved since in some
cases randomization can obtain very similar solutions. Moreover, there is a variety
of forms of diversity that can be more important for conducting an effective search
process than the haphazard outcomes of randomization. More systematic mecha-
nisms are available to control the similarities among solutions, as a way to yield
outcomes exhibiting a useful range of structural differences. Between the extremes
of Randomized and Systematic (or deterministic) generation of solutions lie a signif-
icant number of possibilities. These can range from imposing deterministic controls
on a randomized process to alternating in various ways between randomized and
deterministic processes. The GRASP method discussed later combines several of
these intermediate possibilities.

The Degree of Rebuild measures the number or proportion of elements that re-
main fixed from one generation to another. Most applications build the solution at
each generation from scratch, but some strategies fix (or lock-in) some elements
found in previously generated solutions. Such an approach was proposed in the
context of identifying and then iteratively exploiting strongly determined and con-
sistent variables [15]. This selective way of fixing elements, by reference to their
impact and frequency of occurrence in previously visited solutions, is a memory-
based strategy of the type commonly used in tabu search. This type of approach
is also implicit in the operation of Path Relinking [20] which generates new solu-
tions by exploring trajectories that connect high-quality solutions. In this case the
process seeks to incorporate the attributes of previously generated elite solutions by
creating incentives to favor these attributes in currently generated solutions. In an
extreme case all the elements in the new solution will be determined (and fixed) by
the information generated from the set of elite solutions considered. This is labeled
as (complete) Rebuild.

This classification has already been used in a practical approach to solve a vehi-
cle routing problem proposed by an international company operating in Spain. The
work reported in [39] considered a variant of the Open Vehicle Routing Problem in
which the makespan, i.e., the time spent in the vehicle by one person, must be mini-
mized. A competitive multi-start algorithm producing high quality solutions within
reasonable computing time is proposed. The effectiveness of the algorithm is ana-
lyzed through computational testing on a set of 19 school-bus routing benchmark
problems from the literature, and on 9 hard real-world problem instances.

The multi-start algorithm in [39] is a classical two-phases iterative process. First,
there is a construction phase in which a feasible solution is generated, followed by
a local search phase in which an attempt to improve solution quality and (possi-
bly) infeasibility is performed. As a consequence, each iteration produces a locally
optimal solution, and the algorithm returns the best solution found during the iter-
ative process. According to our classification, the authors classify their method as
Memory-less, Randomized, and Build-from-scratch because those characteristics
favor solution diversity, thus providing a best overall result.

7 Intelligent Multi-Start Methods 235

7.4 The Maximum Diversity Problem

In this section we consider a difficult optimization problem to illustrate how to im-
plement a multi-start method. In particular, we describe different solution methods
for the Maximum Diversity Problem. It also gives us the opportunity to evaluate the
use of memory structures in the context of multi-start methods.

The problem of choosing a subset of elements with maximum diversity from a
given set is known as the Maximum Diversity Problem (MDP). This problem has
a wide range of practical applications involving fields such as medical treatments,
environmental balance, immigration policies and genetic engineering, among others
[22]. The MDP has been studied by numerous authors, the most prominent among
them being Kuo et al. [30], who described four formulations of the problem, rang-
ing from the most intuitive to the most efficient. These formulations also served to
show that the MDP is NP-hard. In 1996, Ghosh [14] proposed a multi-start method
and proved the completeness of the problem. Later, Glover et al. [22] proposed
four deterministic heuristic methods, two of them constructive and the other two
destructive. Silva et al. [61] presented a multi-start algorithm based on the GRASP
methodology. Specifically, they described three constructive methods, called KLD,
KLDv2 and MDI, and two improvement methods: LS, which is an adaptation of the
one proposed by Ghosh, and SOMA, based on a VNS implementation.

The MDP can be formally described as a combinational optimization problem
which can be stated as follows: let S = {s; : i € N} be a set of elements where N =
{1,2,...,n} is the set of indexes. Each element of the set s; € S may be represented
by a vector s; = (si,,5i,,--,5i,). Let dj; be the distance between two elements s; and
s;j and let m (with m < n) be the desired size of the maximum diversity set. In this
context, the solution of the MDP consists of finding a subset Sel of m elements of S
(Sel C S and |Sel| = m) in order to maximize the sum of the distances between the
selected elements. Mathematically, the MDP may be rewritten as an optimization
problem in the following terms:

max z = Zdijxixj
i<j
subject to

zx,-:m
i=1
x€{0,1}i=1,...,n

where x; = 1 indicates that element s; has been selected.

Two constructive algorithms are proposed to solve the MDP using a multi-start
scheme, one with memory and the other without. Each algorithm is described in
turn in the following sections.

236 R. Marti et al.

7.4.1 Multi-Start Without Memory (MSWoM)

The Multi-Start Without Memory (MSWoM) algorithm consists of a GRASP based
constructive procedure and a first improvement local search. This approach comes
from a heuristic method proposed in Glover et al. [22]. In each step, the constructive
procedure adds a high quality element (given by a greedy function) to the set Sel.
The non-selected elements are contained in the set S — Sel. The set Sel is initially
empty, meaning that all elements may be selected. The algorithm starts by selecting
an element from S at random and placing it in the set Sel. The distance from all
the non-selected elements s; € S — Sel to the elements in Sel is then computed as
follows:

d(si,Sel) = Y d(si,s;) (7.1)

s;j€ESel

To select the next element for inclusion in the set Sel, an ordered list L is constructed
with all the elements s; € S — Sel within a percentage ¢ of the maximum distance.
Mathematically, L is defined as:

L= {Si €S- Sez/d(shsel) > dpin + a(dmax - dmin)} (7.2)
where
dnax = max d(s;,Sel) dpin = min d(s;,Sel)
s;i€S—Sel s;ieS—Sel

The next element introduced in set Sel is chosen at random among the elements in
L, thus ensuring a minimum quality as defined by the percentage a. So, it is not a
purely greedy selection, but it combines greediness with randomization. This pro-
cedure is repeated until m elements have been chosen (|Sel| = m). At this point, Sel
contains a solution to the problem. After niter executions, the arithmetic mean of the
niter solutions will typically be worse than if the solution had been constructed by
taking the element with a maximum distance over those already selected, although
some of the niter solutions will probably improve on this value.

For the algorithm to have a reactive behavior, the parameter ¢ is initially set at 0.5
and then adjusted dynamically depending on the quality of the solutions obtained;
that is, if after niter/5 consecutive iterations, the best solution has not improved,
then o is increased by 0.1 (up to a maximum of 0.9).

The improvement method is based on a simplification of the local search de-
scribed in [14], which seeks to increase the efficiency of the local search. The pro-
posed method is classified as a first improvement local search which, as described
in [32], not only tends to yield better results than the best improvement strategies,
but also requires much less time. It does so by factoring the contribution from each
element s; in Sel; that is, for each element s; € Sel, its contribution d; to the objective
function is:

di= Y dij=d(s;,Sel) (7.3)

sj€Sel

7 Intelligent Multi-Start Methods 237

with the objective function defined as:

zzl Y d; (7.4)

s;€Sel

Subsequently, the element s;+ € Sel with the lowest contribution d;+« to the current
solution is selected and exchanged with the first element s; € § — Sel (in lexico-
graphical order) that leads to an increase in the objective value. The search pro-
cedure continues for as long as the objective function improves by extracting the
element from the set Se/ which contributes the least and inserting another element
from S — Sel which improves the value of the objective function. When there is no
improvement, the second least-contributing element is used, and so on. This proce-
dure is continued until no further improvement is obtained.

7.4.2 Multi-Start With Memory (MSWM)

Multistart with Memory (MSWM) is the second multistart algorithm described in
[9]. The method uses memory both in the solution construction and improvement
phases. These strategies are integrated within the Tabu Search method [21].

In each iteration, the constructive algorithm penalizes the frequency of use of
those elements which appeared in previous solutions. The procedure also rewards
those elements which previously appeared in high quality solutions. To implement
this algorithm, the number of times element s; was selected in previous constructions
is stored in freqli]. The maximum value of freq[i] over all i is stored in maxfreq.
The average value of the solutions in which element s; has appeared is stored in
qualityli]. In addition, max, stores the maximum value of quality[i] over all i. The
evaluation of each non-selected element in the current construction is modified de-
pending on these values, thus favoring the selection of low-frequency, high-quality
elements. This is achieved by using the following expression instead of the distance
metric described in Eq. (7.3) between an element and the set of selected elements:

d'(s;,Sel) = d(s;,Sel) — ﬁrange(Sel)nii:;(jc[:]eCI + 5range(Sel)qi[nCZ:_yq[l]
with
range(Sel) = Sjletéel)geld(s],Sel) - Sjgsuirggld(s] ,Sel)
where 3 and O are parameters that quantify the contributions of the frequency
penalty and the reward for quality. Both are adjusted experimentally. The purpose
of the range(Sel) parameter is to smooth the changes in the penalty function.

The set Sel is initially empty, meaning that any element can be selected. The
algorithm starts by selecting an element from S at random and inserting it in the set
Sel. It then computes the distance d’(s;,Sel) for each element s; € S — Sel, which in

238 R. Marti et al.

the first construction would correspond with d(s;, Sel), since freq[i] = quality[i] =
0. The chosen element i* is the one such that:

d'(si+,Sel) = max{d'(s;,Sel)}

Si€ES

It is then inserted in Sel, after which the frequency vector is updated. This procedure
is repeated until m elements have been chosen. Once a solution is constructed, the
quality vector is updated. The tabu multi-start method executes this procedure niter
times, in such a way that with each construction the distances between an element
and the set of those already selected is updated depending on its past history.

The improvement method is a modification of the one described above with the
addition of a short-term memory based on the exchange of an element between
Sel and S — Sel. One iteration of this algorithm consists of randomly selecting an
element s; € Sel. The probability of selecting this element is inversely proportional
to its associated d; value. That element of Sel is replaced by the first element s; €
S — Sel which improves the value of the objective function. If this element does not
exist, then the one which degrades the least the objective function is chosen (i.e.,
an exchange is always performed). When this exchange is carried out, both s;, and
s take on a tabu status for TabuTenure iterations. Consequently, it is forbidden to
remove element s; from set Sel (respectively, element s; from set S — Sel) for that
number of iterations. The tabu search process continues until MaxIter consecutive
iterations are executed without improving the best value obtained thus far.

7.4.3 Experimental Results

To illustrate the behavior of the two multi-start algorithms summarized in this paper
and proposed in [9], we present a comparison with two other previously reported
algorithms. Specifically, the MSWoM and MSWM algorithms are compared with
the D2 constructive algorithm [22], along with the improvement method described
in [14], and the KLDv2 algorithm with its improvement procedure [61]. They are
the best methods for this problem. All the algorithms were coded in C and compiled
with Borland Builder 5.0, optimized for maximum speed. The experiments were
carried out on a 3-GHz Pentium IV with 1 GB RAM.
The algorithms were executed on three sets of instances:

1. Silva: 20 n X n matrices with random integer values generated from a [0,9]
uniform distribution with n € [100,500] and m € [0.1n,0.4n].

2. Glover: 20 n x n matrices in which the values are the distances between each
pair of points with Euclidean coordinates randomly generated in [0, 10]. Each
point has r coordinates, with r € [2,21].

3. Random: 20 n x n matrices with real weights generated from a (0, 10) uniform
distribution with n = 2000 and m = 200. It should be noted that these were the
largest problem instances solved in the references consulted.

7 Intelligent Multi-Start Methods 239

Tables 7.1, 7.2 and 7.3 compare MSWoM, MSWM, D2 + LS and KLDv2+LS. These
tables show the average percentage of deviation for each procedure with respect to
the best solution produced in each experiment (since the optimal values are un-
known), the number of best solutions and the number of constructions and improve-
ments made by the algorithm in 10 s (stopping criterion).

Table 7.1 Constructive methods—Silva instances
D2 + LS KLDv2 + LS MSWoM MSWM
Dev. 1.722% 1.079% 0.0377% 0.0130%
ff Best 2 5 12 13
f Const. 5140.5 5 12 13

Table 7.2 Constructive methods—Glover instances
D2 + LS KLDv2 + LS MSWoM MSWM
Dev. 0.018% 0.006% 0.000% 0.000%
f Best 16 18 20 20
f Const. 2149.6 971.0 7904 397.5

Table 7.3 Constructive methods—Random instances
D2 + LS KLDv2 + LS MSWoM MSWM
Dev. 1.270% 1.219% 0.204% 0.099%
f Best 0 0 7 15
f Const. 128.1 35 12 14.8

We can conclude from these tables that the proposed multi-start methods sub-
stantially improve on previous algorithms, with regard to both the deviation from
the best known values and the number of times that value is found. Moreover, the
experiments also show that the use of memory, at least for the instances tested, leads
to better results. Note that in the case of Glover instances, the algorithms studied
yield very similar values. This fact indicates that these are the simplest problem in-
stances, and consequently say little about the quality of each algorithm. At the other
extreme are the Random instances, where substantial improvements are obtained
with the multi-start methods.

A thorough computational study to compare 10 heuristics and 20 metaheuristics
for the maximum diversity problem (MDP) can be found in [43]. The authors present
the benchmark library MDPLIB which contains 315 instances of the problem, and
compare the 30 methods on MDPLIB making use of non-parametric statistical tests
to draw significant conclusions. They conclude that even the simplest heuristics
provide good solutions to this problem. However, to obtain high-quality solutions
they recommend to apply multi-start metaheuristics.

240 R. Marti et al.

7.5 Conclusion

The objective of this chapter is to extend and advance the knowledge on multi-start
methods. Unlike other well-known methods, these procedures have not yet become
widely implemented and tested as true metaheuristic for solving complex optimiza-
tion problems. We have presented new ideas that have recently emerged in the field
of multi-start methods. These ideas, which have yet to be fully explored, have great
potential. We have also shown the connections between these methodologies and
other metaheuristics.

Our findings indicate that memory appears to play an important role during both
the constructive and the improvement phase of a multi-start procedure. One possible
explanation may be that the repeated application of the constructive phase operates
primarily as a diversification process, while the introduction of memory structures
guides the diversification in an efficient way. On the other hand, the benefits as-
sociated with the inclusion of memory structures in the local search (improvement
phase) has been extensively documented in the Tabu Search literature. Our results
with the Maximum Diversity Problem confirm these previous findings. The com-
parison between memory-based and memory-less designs is an interesting area for
future research.

Acknowledgements This research was partially supported by the Ministerio de Economia y Com-
petitividad with codes TIN2015-65460-C2 (MINECO-FEDER) and TIN2015-70226-R.

References

1. D.P. Ackley, An empirical study of bit vector function optimization, in Genetic Algorithms
and Simulated Annealing, ed. by L. Davis (Morgan Kaufmann, Los Altos, 1987), pp. 170-204

2. S. Baluja, An empirical comparison of seven iterative and evolutionary function optimiza-
tion heuristics. Technical report CMU-CS-95-193, Computer Science Department, Carnegie
Mellon University (1995)

3. R.P. Beausoleil, G. Baldoquin, R.A. Montejo, Multi-start and path relinking methods to deal
with multiobjective knapsack problems. Ann. Oper. Res. 157(1), 105-133 (2008)

4. S. Binato, H. Faria Jr., M.G.C. Resende, Greedy randomized adaptive path relinking, in Pro-
ceedings of the 4th Metaheuristics International Conference (2001), pp. 393-397

5. K.D. Boese, A.B. Kahng, S. Muddu, A new adaptive multi-start technique for combinatorial
global optimizations. Oper. Res. Lett. 16(2), 101-113 (1994)

6. G. Brgnmo, M. Christiansen, K. Fagerholt, B. Nygreen, A multi-start local search heuristic
for ship scheduling: a computational study. Comput. Oper. Res. 34(3), 900-917 (2007)

7. W.C. Chiang, R.A. Russell, Simulated annealing metaheuristics for the vehicle routing prob-
lem with time windows. Ann. Oper. Res. 63(1), 3-27 (1996)

8. M. De Santis, P. Festa, G. Liuzzi, S. Lucidi, F. Rinaldi, A nonmonotone GRASP. Math. Pro-
gram. Comput. 8(3), 271-309 (2016)

9. A. Duarte, R. Marti, Tabu search and GRASP for the maximum diversity problem. Eur. J.
Oper. Res. 178(1), 71-84 (2007)

10. T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set cover-

ing problem. Oper. Res. Lett. 8(2), 67-71 (1989)

7 Intelligent Multi-Start Methods 241

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

T. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2),
109-133 (1995)

P. Festa, M.G.C. Resende, GRASP: basic components and enhancements. Telecommun. Syst.
46(3), 253-271 (2011)

C. Fleurent, F. Glover, Improved constructive multistart strategies for the quadratic assignment
problem using adaptive memory. INFORMS J. Comput. 11(2), 198-204 (1999)

J.B. Ghosh, Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19(4),
175-181 (1996)

F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1),
156-166 (1977)

F. Glover, Tabu search. ORSA J. Comput. 1(3), 190-206 (1989)

F. Glover, Multi-start and strategic oscillation methods: principles to exploit adaptive memory,
in Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer Sci-
ence and Operations Research, ed. by M. Laguna, J.L. Gonzdlez-Velarde (Springer, Boston,
2000), pp. 1-23

F. Glover, Advanced greedy algorithms and surrogate constraint methods for linear and
quadratic knapsack and covering problems. Eur. J. Oper. Res. 230(2), 212-225 (2013)

F. Glover, Multi-wave algorithms for metaheuristic optimization. J. Heuristics 22(3), 331-358
(2016)

F. Glover, M. Laguna, Tabu search, in Modern Heuristic Techniques for Combinatorial Prob-
lems, ed. by C.R. Reeves (Blackwell Scientific Publications, Oxford, 1993), pp. 70-141

F. Glover, M. Laguna, Tabu Search (Kluwer, Boston, 1997)

F. Glover, C.C. Kuo, K.S. Dhir, Heuristic algorithms for the maximum diversity problem. J.
Inform. Optim. Sci. 19(1), 109-132 (1998)

F. Glover, M. Laguna, R. Marti, Fundamentals of scatter search and path relinking. Control
Cybern. 29, 653-684 (2000)

L.W. Hagen, A.B. Kahng, Combining problem reduction and adaptive multistart: a new tech-
nique for superior iterative partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
16(7), 709-717 (1997)

FJ. Hickernell, Y. Yuany, A simple multistart algorithm for global optimization. OR Trans.
1(2), 1-11 (1997)

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M. Ragle, Mauricio G.C. Resende, A continuous
GRASP to determine the relationship between drugs and adverse reactions. AIP Conf. Proc.
953(1), 106-121 (2007)

M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Speeding up continuous GRASP. Eur. J. Oper.
Res. 205(3), 507-521 (2010)

X. Hu, R. Shonkwiler, M.C. Spruill, Random restarts in global optimization. Technical report,
Georgia Institute of Technology (2009)

M. Kaucic, A multi-start opposition-based particle swarm optimization algorithm with adap-
tive velocity for bound constrained global optimization. J. Glob. Optim. 55(1), 165-188 (2013)
C.C. Kuo, F. Glover, K.S. Dhir, Analyzing and modeling the maximum diversity problem by
zero-one programming. Decis. Sci. 24(6), 1171-1185 (1993)

P. Lacomme, H. Toussaint, C. Duhamel, A GRASP x ELS for the vehicle routing problem
with basic three-dimensional loading constraints. Eng. Appl. Artif. Intell. 26(8), 1795-1810
(2013)

M. Laguna, R. Marti, GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11(1), 44-52 (1999)

M. Laguna, R. Marti, The OptQuest callable library, in Optimization Software Class Libraries,
ed. by S. VoB, D.L. Woodruff (Springer, Boston, 2002), pp. 193-218

M. Laguna, R. Marti, Scatter Search: Methodology and Implementations in C, vol. 24
(Springer, Boston, 2012)

M. Laguna, T.A. Feo, H.C. Elrod, A greedy randomized adaptive search procedure for the
two-partition problem. Oper. Res. 42(4), 677-687 (1994)

L. Lasdon, J.C. Plummer, Multistart algorithms for seeking feasibility. Comput. Oper. Res.
35(5), 1379-1393 (2008)

242

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

R. Marti et al.

L. Lasdon, A. Duarte, F. Glover, M. Laguna, R. Marti, Adaptive memory programming for
constrained global optimization. Comput. Oper. Res. 37(8), 1500-1509 (2010)

A. Lgkketangen, F. Glover, Probabilistic move selection in tabu search for zero-one mixed
integer programming problems, in Meta-Heuristics — Theory and Applications (Springer, New
York, 1996), pp. 467487

A.D. Lépez-Sanchez, A.G. Hernandez-Diaz, D. Vigo, R. Caballero, J. Molina, A multi-start
algorithm for a balanced real-world open vehicle routing problem. Eur. J. Oper. Res. 238(1),
104-113 (2014)

M. Lozano, F. Glover, C. Garcia-Martinez, F.J. Rodriguez, R. Marti, Tabu search with strategic
oscillation for the quadratic minimum spanning tree. IIE Trans. 46(4), 414-428 (2014)

M. Luis, H. Lamsali, A. Imran, A. Lin, A multi-start heuristic for the capacitated planar
location-allocation problem with facility fixed costs. Information 19(7A), 2441-2446 (2016)

R. Marti, M. Laguna, F. Glover, V. Campos, Reducing the bandwidth of a sparse matrix with
tabu search. Eur. J. Oper. Res. 135(2), 450-459 (2001)

R. Marti, M. Gallego, A. Duarte, E.G. Pardo, Heuristics and metaheuristics for the maximum
diversity problem. J. Heuristics 19(4), 591-615 (2013)

R. Marti, M.G.C. Resende, C.C. Ribeiro, Multi-start methods for combinatorial optimization.
Eur. J. Oper. Res. 226(1), 1-8 (2013)

D.Q. Mayne, C.C. Meewella, A non-clustering multistart algorithm for global optimization,
in Analysis and Optimization of Systems (Springer, Berlin, 1988), pp. 334-345

M. Mezmaz, N. Melab, E.-G. Talbi, Using the multi-start and island models for parallel multi-
objective optimization on the computational grid, in e-Science 2006 - Second IEEE Interna-
tional Conference on e-Science and Grid Computing (IEEE, Piscataway, 2006)

J.A. Moreno, N. Mladenovic, J.M. Moreno-Vega, A statistical analysis of strategies for mul-
tistart heuristic searches for p-facility location-allocation problems, in Eighth Meeting of the
EWG on Locational Analysis (Lambrecht, Germany, 1995)

P. Morillo, J.M. Orduna, J. Duato, M-GRASP: a GRASP with memory for latency-aware
partitioning methods in DVE systems. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum.
39(6), 1214-1223 (2009)

P. Moscato, Memetic algorithms: a short introduction, in New Ideas in Optimization (McGraw-
Hill, London, 1999), pp. 219-234

J. Pacheco, F. Angel—Bello, A. Alvarez, A multi-start tabu search method for a single-
machine scheduling problem with periodic maintenance and sequence-dependent set-up times.
J. Scheduling 16(6), 661-673 (2013)

R. Patterson, H. Pirkul, E. Rolland, A memory adaptive reasoning technique for solving the
capacitated minimum spanning tree problem. J. Heuristics 5(2), 159180 (1999)

M. Prais, C.C. Ribeiro, Reactive grasp: an application to a matrix decomposition problem in
TDMA traffic assignment. INFORMS J. Comput. 12(3), 164-176 (2000)

C. Prins, A GRASP evolutionary local search hybrid for the vehicle routing problem, in Bio-
inspired Algorithms for the Vehicle Routing Problem, ed. by E.B. Pereira, J. Tavares (Springer,
Berlin, 2009), pp. 35-53

M.G.C. Resende, Computing approximate solutions of the maximum covering problem with
GRASP. J. Heuristics 4(2), 161-177 (1998)

M.G.C. Resende, R. Marti, M. Gallego, A. Duarte, GRASP and path relinking for the max—
min diversity problem. Comput. Oper. Res. 37(3), 498-508 (2010)

C.C. Ribeiro, M.G.C. Resende, Path-relinking intensification methods for stochastic local
search algorithms. J. Heuristics 18(2), 193-214 (2012)

A.H.G. Rinnooy Kan, G.T. Timmer, Global optimization, in Handbooks in Operations Re-
search and Management Science, vol. 1, ed. by A.H.G. Rinnooy Kan, M.J. Todd (North Hol-
land, Amsterdam, 1989), pp. 631-662

Y. Rochat, E.D. Taillard, Probabilistic diversification and intensification in local search for
vehicle routing. J. Heuristics 1(1), 147-167 (1995)

R.A. Russell, Hybrid heuristics for the vehicle routing problem with time windows. Transp.
Sci. 29(2), 156-166 (1995)

7 Intelligent Multi-Start Methods 243

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

R. Sharma, B. Glemmestad, On generalized reduced gradient method with multi-start and
self-optimizing control structure for gas lift allocation optimization. J. Process Control 23(8),
1129-1140 (2013)

G.C. Silva, L.S. Ochi, S.L. Martins, Experimental comparison of greedy randomized adaptive
search procedures for the maximum diversity problem. Lect. Notes Comput. Sci 3059, 498—
512 (2004)

FJ. Solis, R.J.B. Wets, Minimization by random search techniques. Math. Oper. Res. 6(1),
19-30 (1981)

L. Talarico, K. Sorensen, J. Springael, Metaheuristics for the risk-constrained cash-in-transit
vehicle routing problem. Eur. J. Oper. Res. 244(2), 457-470 (2015)

M. Toril, V. Wille, I. Molina-Ferndndez, C. Walshaw, An adaptive multi-start graph partition-
ing algorithm for structuring cellular networks. J. Heuristics 17(5), 615-635 (2011)

W. Tu, R.W. Mayne, An approach to multi-start clustering for global optimization with non-
linear constraints. Int. J. Numer. Methods Eng. 53(9), 2253-2269 (2002)

Z. Ugray, L. Lasdon, J.C. Plummer, F. Glover, J. Kelly, R. Marti, A multistart scatter search
heuristic for smooth NLP and MINLP problems, in Metaheuristic Optimization via Memory
and Evolution: Tabu Search and Scatter Search, ed. by R. Sharda, S. Vo8, C. Rego, B. Alidaece
(Springer, Boston, 2005), pp. 25-57

Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, R. Marti, Scatter search and local NLP
solvers: a multistart framework for global optimization. INFORMS J. Comput. 19(3), 328-340
(2007)

N.L.J. Ulder, E.H.L. Aarts, H.-J. Bandelt, P.J.M. Van Laarhoven, E. Pesch, Genetic local
search algorithms for the traveling salesman problem, in International Conference on Par-
allel Problem Solving from Nature (Springer, Berlin, 1990), pp. 109-116

Y. Wang, A. Garcia, Interactive model-based search for global optimization. J. Glob. Optim.
61(3), 479-495 (2015)

M. Wattenberg, A. Juels, Stochastic hillclimbing as a baseline method for evaluating genetic
algorithms. Technical report, Berkeley (1994)

Chapter 8)

Next Generation Genetic Algorithms: A s
User’s Guide and Tutorial

Darrell Whitley

Abstract Genetic algorithms are different from most other metaheuristics because
they exploit three key ideas: (1) the use of a population of solutions to guide search,
(2) the use of crossover operators that recombine two or more solutions to generate
new and potentially better solutions, and (3) the active management of diversity to
sustain exploration. New ideas that are also introduced in this chapter include (1) the
use of deterministic recombination operators that are capable of tunneling between
local optima, and (2) the use of deterministic constant time move operators.

8.1 Introduction

Genetic algorithms have been a popular tool for search and optimization for more
than 30 years. The first “International Conference on Genetic Algorithms and Their
Applications” was held in 1985, and there has been steady growth in the field since
that time. Two key landmark publications that appeared in 1975 were John Holland’s
book “Adaptation in Natural and Artificial Systems” [26], and the Ph.D. dissertation
of Ken De Jong, “An analysis of the behavior of a class of genetic adaptive systems”
[9].

Both Holland (in the introduction to the second edition of his book [27]) and De
Jong [10] have argued that “genetic algorithms are not function optimizers,” and
that instead, genetic algorithms are complex systems that adaptively find new com-
petitive opportunities in complex environments where the notion of a static “optimal
solution” may not make sense. Nevertheless, genetic algorithms have been widely
used as function optimizers.

D. Whitley (<)
Colorado State University, Fort Collins, CO, USA
e-mail: whitley @colostate.edu

© Springer International Publishing AG, part of Springer Nature 2019 245
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_8&domain=pdf
mailto:whitley@colostate.edu
https://doi.org/10.1007/978-3-319-91086-4_8

246 D. Whitley

Genetic algorithms and evolutionary algorithms in general build on the idea that
natural evolution is a powerful adaptive system that is responsible for the diversity
and adaptation of all life on earth. In a natural system, the environment is constantly
changing and natural evolution has resulted in highly adapted life forms capable of
complex behavior. The connection between “evolutionary computation” and natural
evolution makes it possible to separate evolutionary algorithms from other meta-
heuristics based on natural metaphors. Sorensen [47] has written a blistering cri-
tique of the creation of metaheuristics based on what are essentially meaningless
metaphors. Swarms of bees and flocks of birds might display interesting adaptive
behavior, but a natural swarm of bees has never evolved an eye, or designed a wing,
or solved any other general design problem. Evolution is different. However, we
still do not understand how to harness the power of evolution in an open-end fash-
ion: artificial evolution is highly constrained compared to natural evolution. Natural
evolution builds new life forms, whereas artificial evolution in most cases just opti-
mizes a parameterized search space.

Part of the early euphoria over genetic algorithms was fueled by claims that ge-
netic algorithms were capable of global search and near optimal allocation of trials
to sample different regions of the search space. Thus, by extension, genetic algo-
rithms were thought to ensure globally competitive results. These claims were partly
based on mathematics combined with certain sampling assumptions, and ultimately,
those assumptions were not well suited to static function optimizers. Note that the
title of Holland’s seminal book also references adaptation in natural systems. Hol-
land’s theories were about open-ended evolution where a solution can be evolved
to adaptively respond to almost any kind of problem in almost any kind of envi-
ronment. When evolutionary algorithms are used as static optimization tools and as
function optimizers, we have changed the rules of the game.

Today, there is very little theoretical justification for claims that genetic algo-
rithms used for function optimizers are “global optimizers.” Instead they must be
seen as complex stochastic hill climbers that operate in a more complex space than
other stochastic hill climbers. Nevertheless, genetic algorithms still bring three pow-
erful trademark ideas to the table:

1. How can a population of solutions be used to yield a more robust search?

2. How can two or more solutions be recombined to yield new (and potentially
better) solutions?

3. How can “diversity” in a population be actively managed to sustain exploration?

This notion of diversity is often associated with mutation operators in evolution-
ary systems. But diversity can also be achieved by random restarts, by using local
search operators, or by any number of other mechanisms. Diversity can also be man-
aged by controlling selection and the composition of the population.

In this paper, a brief overview of classic, Holland-style genetic algorithms will
be given. This also serves the purpose of explaining the three critical components
of evolutionary systems, the population, recombination and diversity, and the role
these components play in genetic algorithms. Also, genetic algorithms will only
be considered for discrete combinatorial optimization problems. This is consistent

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 247

with the fact that evolutionary algorithms such as Covariance Matrix Adaptation
Evolution Strategies [19, 20] have now replaced genetic algorithms for real-valued
parameter optimization [2].

This paper will also present a new generation of genetic algorithms. Genetic
algorithms (and evolutionary algorithms in general) are normally highly stochas-
tic algorithms. “Mutations” are generally random mutations. Recombination is also
generally a random process that mixes components from two (or more) “parents” in
order to construct an “offspring” solution. But in some cases crossover and mutation
need not be random. In certain domains, we can prove that deterministic forms of
recombination can be used to “tunnel” between local optima in O(n) time. These
deterministic forms of recombination decompose the parents into ¢ components,
such that the offspring generated by recombination is guaranteed to be the best of
29 possible reachable solutions. “Random mutation” can also be replaced by the
deterministic selection of improving moves in constant time. The result is a form
of Gray Box Optimization where knowledge about problem structure is actively and
explicitly exploited [67].

8.2 Classic Simple Genetic Algorithms (SGA)

We will start with pseudo-Boolean optimization problems. A pseudo-Boolean func-
tion is a function f : {0,1}" — R that maps strings over a binary alphabet into the
real numbers. We can represent the search space using binary strings drawn from
the set 2" = {0,1}" (i.e., all binary strings of length n). The neighborhood 4" is
given by the standard Hamming operator. The neighbors at Hamming distance 1 are
generated by flipping a single bit.

Recombination: Assume we are working with strings where n = 50, which means
the size of the search space is 2°°. Without loss of generality, assume the following
two strings, Parent 1 and Parent 2 are possible candidate solutions. (To illustrate
recombination more clearly, y=0 and x=1 in Parent 2.) Assume that recombination is
applied by performing a single randomly chosen crossover point to yield Offspring
1 and Offspring 2.

Parent 1: 0000011111 0010101010 0000011111 0000000000 0000000000
Parent 2: yyXXXXXyyy YYYXYXXYYy XXXXXYYYYY XXXXXXXXXX XXXXXXXXXX
Offspring 1: 0000011111 0010101010 00 XXXyyyyy XXXXXXXXXX XXXXXXXXXX
Offspring 2: yyxxxxxyyy yyyxyxxyyy xx 00011111 0000000000 0000000000

We could also use two crossover points to generate another pair of offspring,
Offspring 3 and Offspring 4, as follows:

Offspring 3: 0000011111 0010101010 00 xxxyyyyy xxxxxxxxxx 0000000000
Offspring 4: yyxxxxxyyy yyyxyxxyyy xx 00011111 0000000000 XxXXXXXXXXX

248 D. Whitley

Recombination is sometimes referred to as crossover. And the strings in the pop-
ulation are sometimes referred to as individuals.

Selection: Selection determines which parents are allowed to produce offspring.
More precisely, a “fitness function” is used to sample the population so as to allocate
opportunities to reproduce to “parent strings.” Obviously, selection must reference
the objective function in some way. Often, “fitness” is a relative measure: how good
is string A compared to the rest of the current population or compared to another
string B? Many researchers now refer to the objective function as being the “fitness
function.” This is technically imprecise (or incorrect), but it is nevertheless common
practice.

Mutation: For pseudo-Boolean optimization problems, the neighborhood .4~ is
given by the standard Hamming operator: the neighbors at Hamming distance 1
are generated by flipping a single bit. In classic genetic algorithms, a mutation op-
erator is applied to every bit with very low probably. Typically, the probability of
mutating a single bit, denoted by p,,, is proportional to string length, for example

pm=1/n

is commonly used. It is inefficient to actually compute a mutation probability for
every bit, and instead one might compute how many mutations will occur and then
compute where the mutations should occur.

One can also discard mutation and instead apply local search to improve every
offspring that is generated. This result is a “hybrid genetic algorithm” that com-
bines local search and the genetic algorithm [11]; such hybrids have also been called
“memetic algorithms” [36] although the term “memetic” is more correctly applied
to the evolution of ideas.

The goal of mutation is to introduce new variation and to explore locally. Vari-
ation can be introduced by generating a completely random new string. Variation
can also be introduced by doing a random walk: take a high quality solution, then
randomly change a small number of bits (e.g. 10 or 20) or randomly change a small
percentage of the entire string (e.g., 10%).

8.2.1 The Population and Selection

A hallmark of all genetic algorithms is the use of a population. The population
makes genetic algorithms unlike other “point based” search methods, such as local
search. A point based search method maintains a single current incumbent solu-
tion (e.g., denoted by x); the search algorithm then selects a direction to move that
will yield an improving move (or an exploratory move). For local search methods
applied to combinatorial optimization problems, searching for an improving move
usually means defining a neighborhood and then searching that neighborhood for an
improving move.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 249

A point based search method has a search trajectory that moves in the space
of solutions. This trajectory can be seen as a probability distribution; given that the
current incumbent solution is x, what is the probably of moving to any other solution
x; in the search space?

A genetic algorithm using a population has a search trajectory that moves from
population to population. So even if an genetic algorithm is a complex hill-climber,
it is climbing in the space of possible populations, and the trajectory of that search
can be presented as a probability distribution that asks: if the current population is
2., what is the probably of moving to any other population &;, where &7; can be
any other feasible population? Michael Vose’s book The Simple Genetic Algorithm
[55] is the classic reference describing the trajectory of populations.

Returning to Holland’s simple genetic algorithm [14], assume we have a popula-
tion, and we have recombination and mutation operators. We also need to define a
selection operator to decide which strings in the population will undergo recombi-
nation and/or mutation. In fact, we can think of “one generation” in a simple genetic
algorithm as first using selection to create an intermediate population (see Fig. 8.1)
that is made up of clones, or identical copies of the parents. The population size (as
well as the size of the intermediate population) is fixed to a constant. Based on se-
lection, some parents are replicated more than others, and a small number of parents
are dropped from the population at this phase.

Holland proposed using what is known as “fitness proportional selection.” This
involves computing the average evaluation of all strings in the population: we denote
this by f,. We also denote the fitness of a string j in the current population by
fj- Under fitness proportional selection the string j should be selected such that in
expectation there are fj/f, copies of string j in the intermediate population. One
way to do this is using a method known as “roulette wheel selection.” Each string is
assigned a space on a roulette wheel proportional to f;/ fp, and a spin of the roulette
wheel selects a string. (One can also construct the roulette wheel so as to select the
entire population in one spin [14, 62].)

To be more precise, we should also index the current population by time (denoted
by ¢) as measured by generations. Denote the population average at generation ¢ by
fp+- This makes it obvious the roulette wheel is redefined every generation. This
also highlights one of the problems with “fitness proportional selection” when us-
ing a genetic algorithm for static function optimization. Assuming the population
average increases over time (when maximizing) the selective pressure for string j
decreases because f;/f,, decreases as f,, increases. Several references cover fit-
ness proportional selection in detail [14, 62].

One dubious advantage of fitness proportional selection is that it is much easier
to model mathematically than other common types of selection [55]. This also con-
tributes to a divergence between theory (modeling simple genetic algorithms that
are nicely described by mathematics) and practice (where complex operators may
be used that are more difficult to model).

We can now outline the operation of a simple genetic algorithm as illustrated
in Fig.8.1. There is a population at time ¢. First, all individuals in the population
are evaluated using the objective function. Second, an intermediate population is
created using selection. The selection operator draws strings from the population
at time ¢, and then creates clones of these individuals (exact copies) in such a way

250 D. Whitley

Selection Recombination
(Duplication) (Crossover and Mutation)

Sringl [———=—-—- String 1 = ~~,” = | Offspring-A(1X2)
String 2 PSonTes String 2 -~ - Offspring-B (1 X 2)
String 3 e String 2 e N ke Offspring-A (2 X 4)
Stringd p———=——- String 4 - Offspring-B (2 X 4)

...... sz---- -,

..... i o it ____/____ o

Current Intermediate Next
Generation t Generation t Generation t + 1

Fig. 8.1 An illustration of the classic Holland style “simple genetic algorithm.” In this illustra-
tion, it is assumed that the order in which strings have been placed in the intermediate population
has been randomized so that the recombination of adjacent strings in the intermediate population
results in the random pairing of parent strings

that better individuals pass more copies into the intermediate population. Third,
after the intermediate population is defined, crossover and mutation are applied to
create the next population (i.e., the next generation) at time ¢ + 1. If the placement of
individuals into the intermediate population has been randomized, adjacent strings
can be recombined; otherwise, a random pairing of parents is used.

In Holland’s classic simple genetic algorithm, two parents are recombined to
create two offspring, and the two offspring replace the two parents. This means that
the best solution might not survive from one generation to the next.

Elitism is a mechanism whereby the best solution at generation ¢ is placed directly
into the population at generation ¢ + 1. Elitism can also be parameterized so that
a constant number of the best individuals are directly placed into the next genera-
tion. This also has the side effect of increasing selective pressure, since it reduces
the number of available positions that can be filled in the population by newly cre-
ated strings produced by recombination and/or mutation. Both crossover and muta-
tion can be parameterized so that not all strings undergo recombination, and not all
strings undergo mutation.

This cycle of (1) evaluation, (2) selection and (3) reproduction is then repeated
for some number of generations or until other stopping criteria are met. The ini-
tial population is often randomly generated. The initial population might also be
improved using local search or some other mechanism.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 251

8.2.2 Tournament Selection

In modern genetic algorithms fitness proportional selection has been largely re-
placed by rank based selection, the most common form being tournament selection
[16, 17].

In its simplest form, tournament selection randomly selects two strings from the
population, compares their evaluation using the objective function, and then returns
the best of the two strings. This also randomizes the order in which strings are
placed in the intermediate population, thus allowing parents in adjacent positions
to be recombined without bias (see Fig. 8.1). When this form of tournament selec-
tion is used to fill every position in the intermediate population, this produces a
linear selective pressure of 2.0, such that the best individual is represented 2 times
in expectation, the median individual is represented 1.0 time in expectation, and the
worst individual’s representation drops to 0. (By interpolation, the individual at the
top 75% quartile in the population has an expected representation of 1.5 and the
individual at the lower 25% quartile has an expected representation of 0.5.)

Unbiased Tournament Selection: One flaw in tournament selection is due to ran-
dom sampling: not all strings will compete in exactly two tournaments under stan-
dard tournament selection. A form of unbiased tournament selection [45, 46] can
be implemented by using a random permutation denoted by 7 representing pointers
into the population. Obviously, the length of the permutation is equal to the popu-
lation size denoted by N,,. A tournament would then compare the two randomly
chosen strings indexed by 7(i) and 7(i + 1) and select the best. The last tourna-
ment also compares the strings indexed by 7(1) and 7(N,,,,). Since the permutation
was generated randomly, this also randomly pairs the parent strings. This strategy
guarantees that every string competes in exactly two tournaments and makes the
sampling process less noisy.

Parameterized Tournament Selection: One other enhancement to tournament se-
lection is to adjust the selective pressure. To create a linear selective pressure of
less than 2.0, define a selective pressure variable, denoted by 0.5 < §,, < 1 such that
the actual selective pressure is given by 2S,. The parameter S, denotes the proba-
bility that the best string is selected during tournament selection. If S, = 0.5, then
selection is completely random because the selective pressure is 1.0 and thus flat. If
S, = 1.0 the linear selective pressure is 2.0. As S, increases, the probability that the
better string is selected also increases linearly.

8.3 Steady State and Monotonic Genetic Algorithms

Steady state genetic algorithms have become one of the most popular forms of ge-
netic algorithm. Davis [7] notes that the first steady state genetic algorithm was
the GENITOR algorithm introduced by Whitley and Kauth [61]. The “steady state”

252 D. Whitley

name was later coined by Syswerda [49]. An alternative (and probably better) name
is monotonic genetic algorithms. In a steady state genetic algorithm, the popula-
tion is always monotonically improving. Typically some form of rank based selec-
tion is also used.

A monotonic genetic algorithm is very easy to implement, particularly when used
in combination with tournament selection. Offspring are generated one at a time in-
stead of generating a whole generation in one step. The algorithm works as follows.
(1) Select two individuals to recombine using two tournaments. (2) Generate one
offspring (e.g., by recombination and mutation), or generate two offspring, evaluate
them both, and keep the best. (3) Place the new offspring in the population by re-
placing the worst member of the population. The population can be stored in a data
structure known as a heap so that finding and replacing the worst individual can be
done efficiently.

The use of a steady state genetic algorithm results in much higher selective pres-
sure than the Holland style genetic algorithm: the pressure of tournament selection
is compounded with the pressure created by replacing the worst member of the pop-
ulation [17]. It also increases the genetic algorithm’s hill-climbing abilities, but it
does so at a cost: diversity is driven out of the population faster.

8.4 The Demise of Hyperplane Sampling Theory

Two ideas formed the cornerstones of John Holland’s theoretical characterizations
of genetic algorithms: “building blocks” and “hyperplane sampling.” Holland used
schemata to define hyperplanes. We will use three symbols to construct schemata:
0’s, I’s and *’s. The 0’s and 1’s denote bits. The * symbol denotes a “wildcard”
operator that matches either a 0 or a 1. Thus, the hyperplane (for n = 30) containing
strings that have a O in the first position is denoted by:

Ok kkkkkhkhhhhkhkkkkkkkkkhkkkkk*x

A hyperplane with only 1 bit specified in this way is called an order I hyperplane.
In general a hyperplane with i bits specified denotes an order i hyperplane. If the
string length is n then an order i hyperplane denotes a set of strings of size 2"

The hyperplane sampling hypothesis asserts that if hyperplane A contains bet-
ter solutions on average than hyperplane B, then the specified bits (the 0’s and 1’s)
found in the strings contained in hyperplane A should increase faster in the popula-
tion. Consider the following examples of hyperplanes:

hyperplane A: Oxkkkkhhhhhhkkhkhkhkkkkxkkkkk k%
hyperplane B Ixkkkkhhhhkhhkhkhkhkkkkkkkkk k%
hyperplane C: Ox*10xkkkhkhhhkhkhkkkkkkkkk kK%
hyperplane D I N R

The hyperplane sampling hypothesis suggests that if hyperplane A contains
better solutions on average than hyperplane B, then the number of 0’s in the first

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 253

position should increase in the population in the next generation. But suppose that
hyperplane A is better than hyperplane B, but hyperplane D is better than hyper-
plane C. So which hyperplane increases its representation in the population faster,
hyperplane A, which has a 0 in the first position, or hyperplane D, which has a 1 in
first position? Do the number of 0’s in the first position now increase or decrease?
And what happens at generation 1 compared to generation 100? These questions
cannot be answered without modeling the full dynamics of the genetic algorithm
[40, 54, 57].

Holland’s schema theorem computes a lower bound on the sampling rate of a hy-
perplane from one generation at time ¢ to the next generation at time ¢ + 1. However,
the schema theorem, while mathematically correct, does not precisely characterize
hyperplane sampling rates (even in a single generation) and it certainly cannot ade-
quately predict hyperplane sampling rates over multiple generations. Exact Markov
Models of the genetic algorithm’s behavior developed in the early 1990s make this
abundantly clear [40, 54, 57].

There is also another problem. For some classes of problems, it is possible to
exactly calculate static hyperplane averages in polynomial time. For example, we
can exactly compute hyperplane averages in closed form for MAX-kSAT and for
all k-bounded pseudo-Boolean optimization problems [41]. It turns out that exactly
determining that Hyperplane A is better than Hyperplane B, and that Hyperplane D
is better than Hyperplane C does not always (or even often) help to guide search.
Statically computed hyperplane averages do not appear to provide reliable gradient
information. Occasionally hyperplane averages can be useful. But sometimes hy-
perplane averages can be deceptive and misleading [67]. Interactions between low
order hyperplanes are enough to render MAX-3SAT problems NP Hard.

The Building Block Hypothesis. Consider the following argument: If a giraffe with
a long neck is better able to reach its food, and a giraffe with long legs is better able
to reach its food, then a giraffe with both long legs and a long neck is even better.

The building block hypothesis asserts that useful traits will be assembled together
by evolution. Selection increases the number of good “building blocks” in the pop-
ulation, and crossover reassorts these building blocks to combine useful traits.

The population can certainly assemble building blocks during selection and re-
combination. But things can also go wrong. Assume that trait A is normally good,
and trait B is normally good, but A and B together are not good. This can certainly
happen with nonlinear functions. Even for problems with bounded nonlinearity, it is
very difficult to predict how variables will interact.

Recombination and selection can also fail to isolate and properly reassort differ-
ent traits [34]. How (and where) different parameters are encoded on the string also
matters. Parameters that are close together on the string representation tend to be
inherited together more often under 1-point or 2-point crossover. Assume trait A is
very good, but trait Z is not. Nevertheless, if A and Z are often inherited together,
Z can benefit from selection for trait A. This results in a form of genetic hitching
where the frequency of a less desirable trait nevertheless increases in the population
because it is commonly inherited along with a more desirable trait.

254 D. Whitley

8.5 Gray Box Optimization

Optimization is often posed as a “blackbox” process. Parameter values are passed
into an objective function (the black box), and the evaluation of that particular pa-
rameter configuration is passed out.

However, in most cases, the best optimizer is not a blackbox optimizer. Instead,
we can extract additional information from the objective function that can be used to
guide search. Indeed, for many classic NP Hard problems such as MAX-kSAT or the
Traveling Salesman Problem (TSP), the best optimizers are not blackbox optimizers.
Indeed, blackbox optimizers are hopelessly inefficient on such problems. Instead,
the best optimizers explicitly exploit problem structure. And it is relatively safe to
say that every exact solver exploits problem structure.

Gray Box Optimizers are designed to exploit problem specific structure while
still maintaining a high degree of generality [67]. We will look specifically at k-
bounded Pseudo-Boolean functions as well as the TSP as two examples where a
Gray Box Optimization strategy can be used to dramatically improve the search
capabilities of genetic algorithms.

8.6 The k-Bounded Pseudo-Boolean Functions

As previously noted, a pseudo-Boolean function is a function f : {0,1}" — R that
maps strings over a binary alphabet into the real numbers. A pseudo-Boolean func-
tion is k-bounded if it can be expressed as the sum of m subfunctions where each
subfunction depends on at most & bits (where k is a constant).

f@x) =3 filx)

Figure 8.2 shows a simplified general model for k-bounded pseudo-Boolean func-
tions. A mask can be used to select the k (or fewer) variables that are passed to
subfunction f;. However, we can assume that the mask is implicit in the definition
of each subfunction f;. In many cases, we will assume m = O(n) which implies
there exists a constant z such that m = zn. It is possible to implement a Hamming
distance r local search and to know exactly where the improving moves are located
without enumerating the local search neighborhood.

MAX-kSAT is the classic k-bounded Boolean function [44]. But other k-bounded
Boolean and pseudo-Boolean functions are associated with a number of well-studied
combinatorial optimization problems over the set of binary strings. For MAX-kSAT,
each subfunction is a logical clause in Conjunctive Normal Form, and each clause
evaluates to True or False (1 or 0). NK Landscapes [29, 30] are another well known
class of k-bounded pseudo-Boolean functions. Whitley et al. [67] has proposed the
more general term “Mk Landscapes” to refer to functions composed of m subfunc-
tions where each subfunction accepts k variables.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 255

m

o= > £

i=1

10101110‘01100101010010111\001

Fig. 8.2 A general model of Mk landscapes and k-bounded pseudo-Boolean optimization

Under Gray Box Optimization, we want to ask what general properties can be
exploited when optimizing a k-bounded pseudo-Boolean function. First, the func-
tion f(x) can be expressed as a discrete Fourier polynomial, also known as a Walsh
polynomial.

) = W(f () = iwoﬁ(x»

where W is a discrete Fourier transform [21, 41], also known as a Walsh transform.
Goldberg [15] provides a helpful tutorial on Walsh polynomials and how they have
been used to understand genetic algorithms. Converting a subfunction f;(x) into a
Walsh polynomial takes 2% time. Thus, if m = O(n) then the construction of the
Walsh polynomial takes m2¥ = O(n) time, and (luckily!) there are at most O(n)
non-zero coefficients. This result is critical: in the worst case, the Walsh transform
yields O(2") coefficients [15], but for k-bounded pseudo-Boolean problems where
m = O(n), there are only O(n) coefficients.

Every k-bounded pseudo-Boolean optimization problem is also a sum of k Ele-
mentary Landscapes

where wy = f (i.e., wy is the order zero Walsh coefficient) and the jth subfunction
(p(j) is composed of all the jth order coefficients of the Walsh polynomial. For exam-
ple, @V (x) is composed of the n linear Walsh coefficients, and ¢(?) (x) is composed
of all of the order two “pairwise” nonlinear Walsh coefficients. There are at most
m(k(k—1)/2) order two Walsh coefficients. Each subfunction /), j < k is also an
eigenvector of the neighborhood graph Laplacian. This makes it possible to exactly
compute basic statistical information about neighborhoods in closed form [43, 48].

256 D. Whitley

Fig. 8.3 An illustration of the Variable Interaction Graph (VIG). The vertices present the variables
using numbers, e.g., 9 = x9. There is an edge in the VIG if there is nonlinear interaction between
two variables. For k-bounded pseudo Boolean functions the VIG has at most O(n) edges

8.6.1 Tunneling Between Optima

We next show how it is possible to “tunnel” between local optima in O(n) time on
k-bounded pseudo-Boolean optimization problems.

As an illustration, we produce a graph of the nonlinear interactions as indicated
by the non-zero Walsh coefficients. Note again there are at most O(n) coefficients,
the graph is generated only once, and this takes O(n) time. Consider a function
composed of the following subfunctions:

flx)= ity i(x) where:

filx1,x3,%) fo(x6,X10,X13) fui(xin,xi6,x17) fis(x15,%7,x13)
falxa,x1,x6) fr(x7,%12,X15) fi2(x12,x10,x17) fi6(x16,X9,X11)
f3(x3,x6,x14) f3(x8,X18,X6) fi3(x13,x12,x15) fi7(x17,x5,%16)
fa(xa,x1,x14) fo(xo,x11,X14) fra(x14,x4,x16) f1s(x18,%7,%13)
fs(xs,x4,x0) fro(x10,%2,%17)

From these subfunctions, assume we extract the nonlinear interactions from the
Walsh polynomial: these are shown in Fig.8.3 as a Variable Interaction Graph.
Two variables are not connected in the VIG if the Walsh coefficients associated
with those potential variable interactions are zero in value (or do not exist). In this
example, every pair of variables that appear together in a subfunction has a nonlinear
interaction.

We will use the Variable Interaction Graph [4] to implement a recombination op-
erator that can directly move from local optima to local optima with high probability
[51]. For now we will assume that local optima are well defined: a local optimum
represents a single solution rather than a set of solutions with equal evaluation form-
ing a plateau. Plateaus are not a problem: but for the moment, it is simpler to have a
well-defined local optimum.

The recombination operator is named “Partition Crossover” because it partitions
the evaluation function into linearly separable subfunctions during recombination.
Partition Crossover is not random: instead, it is both greedy and deterministic.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 257

Fig. 8.4 The recombination graph with three separable recombining components for the parent
strings Sp; = 000000000000000000 and Spr = 111000111011101101

We will assume the two parents that are to be recombined using Partition
Crossover are local optima under Hamming distance 1 local search. Returning to
the example in Fig. 8.3, without loss of generality let the two parents be denoted by
Sp1 and Sp; such that

Sp1 = 000000000000000000 and Spp =111000111011101101

Thus, x4 = x5 = xg = x19 = X124 = x17 = 0 in both parents. Otherwise, x; = 0 in
parent 1 (Sp1), and x; = 1 in parent 2 (Spy) for all of the other bits. Thus, both parents
reside in the hyperplane * % %000 * * * 0 % % % 0 % *0* where * denotes the bits that are
different in the two solutions, and 0 marks the positions where they have the same
bit values (again, without loss of generality).

Next, we will use the hyperplane * x *000 * * % O % x x 0 % x0x to decompose the
VIG in order to produce a recombination graph. We remove all of the variables (ver-
tices) that have the same “common assignments” and also remove all edges that are
incident on the vertices corresponding to these bits. This yields the Recombination
Graph shown in Fig. 8.4.

We will use the idea of connected components to identify recombining compo-
nents. The decomposition in Fig. 8.4 results in ¢ = 3 recombining components. Any
variables that are connected in the recombination graph must be inherited together
from one parent. The recombination graph also allows us to define a reduced evalu-
ation function, g, that is linearly separable into g recombining components.

g(x) = a+gi(x9,x11,x16) + g2(x1,%2,%3) + &3(x18, X7, X8, X12,X13,X15)

where g(x') = f(x) but where the domain of function g(x’) is restricted to a subspace
that contains the parent strings Sp; and Spy; a is a constant, a = f(x) — 2?:1 gi(x).
In other words, g(x’) operates over the largest Hamming hyperplane subspace that
contains both parent 1 and parent 2. Also note that the function g(x') is linearly
separable. The subfunctions that make up g(x’) share no variables.

One can compute each subfunction g; from the original subfunctions used by
function f. Keep in mind that only active variables are passed to these subfunc-

258 D. Whitley

tions; for example, g, (x’) calls subfunction f3(x'), but the only active variable being
passed to f3(x3,x6,Xx14) is x3 because x¢ = 0 and x4 = 0 in both parents. Note that
g(x’) partitions both the subfunctions and the variables used by function f(x).

g1(x") = fo(xo,x11) + fu1 (x11,%16) + f1a(x16) + fi6(xX16,X9,%11) + f17(x16)

&) = filx1,x3) + fo(x1,x2) + f3(x3) + fa(x1) + f5(x2) + fio(x2)

And expressed more generically in terms of x':

() = fo(X)+ 1) + () + fia (&) + fis (&) + fis(x) + fis(x')

Again, there is no overlap in the subfunctions or the variables. As a result of this
decomposition, evaluating the contribution of all of the subfunctions in g can be
done in O(n) time. Note that not all subfunctions will necessarily be used in the
decomposition of g(x'), and the constant a must account for the contribution of
subfunctions where there are no active variables.

We can now see how tunneling works. Every recombination over g recombining
components induces a new separable function g(x’) that operates in a hyperplane of

fx): \
g)=a+Y gl
i=1

Since g(x') is separable, we can be greedy and select which parent yields the best
partial solution for each subfunction g;(x"). We can now prove the following results.

The Partition Crossover Theorem [65]: Given g linearly separable recombin-
ing components, Partition Crossover using two parents returns the best of 29 —2
reachable solutions distinct from parent 1 and parent 2 in O(n) time.

The Local Optimum Theorem [51]: Every solution generated by Partition
Crossover for k-bounded pseudo-Boolean optimization is guaranteed to be a lo-
cal optimum relative to the function g(x') when the parent strings Sp1 and Sp, are
locally optimal relative to function f(x).

Stated another way, an offspring generated by Partition Crossover must be locally
optimal in the largest hyperplane subspace containing both parents. Empirically, in
most cases when an offspring is locally optimal in g(x'), is it locally optimal in f(x).

8.6.2 How to Select Improving Moves in Constant Time

Normally, when local search is used to find improving moves for a combinatorial
optimization problem, the local search neighborhood is enumerated to find an im-
proving move. However, for certain NP Hard problems and for certain neighbor-
hoods, selecting an improving move can be done in constant time. This is true for
both “best improving” moves that return the best move in the entire neighborhood,

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 259

as well as for “next improving” moves that return the first improving move that is
found. We show how to do this for k-bounded pseudo-Boolean functions. Comput-
ing the location of improving moves makes normal mutation operators unnecessary.

m

= > £

i=1

10101110‘01100101010010111001
I flip

Fig. 8.5 Tracking the changes following 1 bit flip; the location of potential improving moves is
obvious

Figure 8.2 shows a simplified general model for k-bounded pseudo-Boolean
functions. Figure 8.5 shows what happens after a bit flip that allows us to identify
new improving moves in constant time. We will first consider Hamming distance 1
local search. Assume we have scanned the full neighborhood and know the location
of all of the improving moves. Then a move is taken, and the set of available im-
proving moves must be updated. The bit interactions can be traced in Fig. 8.5. If a bit
flips, the interactions flow up to the subfunctions. When a subfunction is affected, it
changes the potential contribution of the other bits that flow into those subfunctions.
One can prove that the only new improving moves are found at the variables that
feed into the affected subfunctions. Over multiple moves, on average there can be
only a constant number of locations that must be checked for new improving moves.
By tracking these changes, we can construct a highly efficient move operator with
O(1) average complexity per move [60, 66].

The idea of looking at all k-bounded pseudo-Boolean problems in this way is
new; the idea of looking at MAXSAT in this way is only partly new. The origi-
nal GSAT local search algorithm for MAX-kSAT used a similar strategy to track
the cascading effects of each bit flip [12, 28, 44]. Whitley and collaborators have
introduced three new contributions: (1) using a mild tabu on repeated bit flips, it
can be proven that improving moves can be found in ©(1) time on average for all
k-bound pseudo-Boolean functions [60], (2) a proof that there is no difference in
runtime complexity between (an almost always best) best-improving local search
and next-improving local search (which is somewhat surprising) [66], and (3) an
algorithm showing these results can be extended to the Hamming distance » local
search neighborhood [4].

260 D. Whitley

Following Hoos and Stiitzle [28], let Score be a vector where Score(p) stores the
incremental change in the evaluation function relative to the current solution x when
bit p is flipped; the string y,, is a Hamming distance 1 neighbor of x which is reached
by flipping a single bit p.

f(yp) — f(x) = Score(p)

We will generalize the Score vector notation: Score(radius,start,destination) where
radius = r denotes the number of bits that are flipped in a single move, start is
the current solution, and destination is the solution to which we are moving. The
destination will be denoted by yp, p,,...p, Where p1,pa, ..., pr explicitly denotes the
individual r bits that are flipped. (There are more concise notations, but the goal
in this case is to be very explicit about how updates occur.) Thus, Score(1,x,y,)
denotes the start solution is x and the destination is y, which is reached by flipping
a single bit p.

Lety, € N(x) be a Hamming distance 1 neighbor of string x generated by flipping
bit p.

Wy €N F(vp) = f(x) + Score(1,x,,)

Optimizing Score(1,x,y,) also optimizes the choice of an improving move f(y,).
In practice, the current start solution x is implicit, and what is actually stored and
updated is Score(r,destination).

We will convert all subfunctions into Walsh polynomials. When a bit flips, this
changes the contribution (by changing the sign) of the Walsh coefficients. This ap-
proach has three advantages: (1) the results generalize to all k-bounded pseudo-
Boolean problems, (2) the updates remain simple for multistep moves involving
multiple bit flips, and (3) the representation is compact, since it consolidates dupli-
cation of interactions. However, other implementations use differences in subfunc-
tions rather than Walsh polynomial to update the Score vectors [4], particularly for
MAXSAT [28, 44].

Assume bit p is flipped and search moves from solution x to neighboring solution
¥p- Recall that:

Score(1,x,y,) = f(yp) — f(x).

When search first starts, the Score vector must be initialized by evaluating every
possible bit flips, which requires n evaluations. After this, the Score vector can be
updated incrementally in constant time (on average).

Assume we now want to update the Score vector because bit p has just flipped
and the new start location is y,. Let yj, be any arbitrary bit flip in the Score vector
(i.e., this anticipates flipping bit /). The only linear update changes Score(1,y,,y,).
As will be seen in the following explanation, when updated Score(1,yp,y,) =
—Score(1,x,y,) because every Walsh coefficient changes sign. All other updates
of the form Score(1,y,,yy) are strictly nonlinear.

The update is as follows:

Score(1,y,,yn) = Score(1,x,yp) —2 z wili(yp)
Vi, (hCi)A(pCi)

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 261

where w; is a Walsh coefficient and y;(x) = —17'* modulates the sign of the Walsh
coefficient. The index i is a bit string which also encodes the integer i indexing
w;. The notation (h C i) A (p C i) indicates both bit 4 and j have value 1 in the
string i encoding integer index i. If there is a nonlinear Walsh coefficient indexed
by both bit p and bit A, then Score(1,y,,y;) needs to be updated after a bit flip
moving from solution x to solution y,. On average, this takes constant time: the
only update is to change the sign of a subset of the Walsh coefficients, y;(y,) =

—yi(x) = —(—I’T") since x and y, must differ by exactly one bit. Because Walsh
coefficients are zero centered, when a Walsh coefficient changes its contribution,
the difference is a factor of 2 (e.g., a negative contribution of w; must be removed
before a positive contribution of w; is added). Thus, the net impact of each relevant
Walsh coefficient after one bit flip is —2.

However, if no Walsh coefficients are indexed by both p and % (e.g., they do not
co-occur in any subfunction), then Score(1,x,y,) = Score(1,yp,,y;) and no update
is needed. This is conceptually the same as the example given in Fig. 8.5; the Score
vector can also be updated by computing the change in the affected subfunctions in
those cases were p and & do co-occur in one or more subfunctions.

There are O(n?) possible pairwise variable interactions but only O(n) total Walsh
coefficients. Thus, there is approximately a probability of O(1/n) that bit p and bit
h will have a nonlinear interaction, and in most cases there is no interaction. This
means that, on average, most of the values stored in the Score vector do not change.
We have proven that on average only a constant number of locations in the Score
vector need to be updated after a bit flip. One update can take O(n) time in the worst
case, but updates takes O(1) time on average [60, 66]; this assumes a mild tabu on
flipping the same (costly) bit again if it was very recently flipped.

8.6.3 Looking Multiple Steps Ahead

Can we look five or ten steps ahead instead of just one step ahead? And how can this
be done in constant time? In general, flipping r bits induces a neighborhood of size
O(n"). However, the number of possible new improving moves remains bounded by
a constant (on average) if no variable appears in more than a constant number of
subfunctions. (This additional restriction does not apply to the Hamming distance 1
neighborhood.)

To illustrate this, assume we wish to look three moves ahead by flipping individ-
ual variables vy, vy, v,,. We will use the notation y, ; to denote that bits p,h were
most recently flipped to arrive at solution y), 5, starting from some solution x.

fOp) = fx) +Score(1,x,y,)

fOpn) = [f(x)+Score(1,x,y,)] + Score(1,y,,yn)
= f(x)+ Score(2,x,y,1)
FOpnw) = [[f(x)+Score(1,x,y,)] + Score(1,y,,yu)] + Score(1,yp, yw)

f(x)+Score(3,x,yp hw)

262 D. Whitley

Fig. 8.6 An example of the graph constructed from the union of two solutions, Sp; (dashed edges)
and Sp; (solid edges), and how graph G, can be partitioned into three recombining components

Note that Score(1,y,,y,) and Score(1,yp,yw) can be computed on the fly given
Score(1,x,yp). Chicano et al. [4] show that one can also use differences in the sub-
function evaluations to update the Score vectors, and describe how to compute im-
proving moves in the r-radius Hamming Ball in detail.

One might ask, “Doesn’t the cost of this computation explode?” We can prove it
does not [4]. Because there are only O(n) Walsh coefficients, there are only O(n)
combinations of r variables that can result in an improving move. For example,
in the Variable Interaction Graph in Fig. 8.3, note that variables x;,x7 and x;; are
not directly connected in the VIG. Assume all of the Hamming distance 1 moves
have already been taken (and thus no linear improvement is possible); then flipping
bits x,x7 and x1; together cannot yield an improving move because there are no
nonlinear Walsh coefficients associated with any combination of these variables.

8.7 The Traveling Saleman (TSP): Tunneling Between Optima

We next consider the Traveling Salesman Problem (TSP). The goal when solving
the TSP is to find the shortest Hamiltonian cycle that visits all of the vertices in a
graph, assuming the graph is fully connected [5, 42]. A solution, S, is a permutation
of vertices. We again start with two parent solutions, Sp; and Sp>.

We first look at how to apply “Partition Crossover” to the TSP. The tunneling
algorithm first constructs a graph G, = (V,E) where V is the set of cities in the TSP
instance and E is the union of edges in the two parent solutions Sp; and Sp;.

An example of finding recombination components is given in Fig. 8.6. We will
use two mechanisms to break G, into multiple linearly independent subgraphs: (1)
remove common edges, and (2) split a vertex if and only if it has degree 4. We again
refer to the subgraphs that result from decomposing the parents as recombining
components. The recombining components can be found in O(n) time.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 263

The simplest types of components have the property that every subgraph (except
one) has two end points: let one end point be an entry and the other an exit. This

Fig. 8.7 This illustration shows how viable partitions can be found that cut four edges at a time

means that both solutions Sp; and Spy enter a recombining component at the same
“entry” vertex, and exit the recombining component at the same “exit” vertex. The
tunneling algorithm selects the path followed by either Sp; or Spy in a greedy fash-
ion from each recombining component to construct a new solution. The Partition
Crossover Theorem tells us that the solution that is constructed is the best of the
24 — 2 reachable solutions distinct from Sp; and Sp;.

Another TSP recombination operator, Iferative Partial Transcription (IPT), can
also find the same recombining components that have two end points. The IPT
crossover operator was first proposed by Mobius et al. in 1999 [35]; the original
IPT explicitly searches for two endpoints of the recombining components and has
O(n?) complexity. The Partition Crossover operator achieves O(n) complexity by
exploiting decomposition.

However these are not the only partitions that exist. In Fig. 8.7 the graph can
be separated into two feasible recombining components, but the partition cuts four
edges. These kinds of partitions are not found by IPT. Tinés et al. [50] discuss
methods that can still find these additional recombining components.

One thing that is immediately obvious from Figs. 8.6 and 8.7 is that the parent so-
lutions Spy and Spy must share a significant number of “common edges.” This does
not happen if Sp; and Sp are randomly generated solutions. However local optima
do share a significant number of “common edges.” 2-opt and 3-opt are the most com-
monly used local search operators for the TSP [6, 32]. For a sample of 1500 city to
2000 city problems, we found that when recombining solutions improved using 3-
opt there was on average 26 recombining components, and we confirmed that more
than 2% of these reachable solutions were also locally optimal under 3-opt. Thus, a
single tunneling event is returning the best of 223 locally optimal solutions. More re-
cent versions of Partition Crossover are capable of finding many more recombining
components and it is an open research question whether all possible opportunities
for Partition Crossover can be found in O(n) time (or even polynomial time) for
the TSP.

264 D. Whitley

Figure 8.8 shows tunnels between local optima included by Partition Crossover
on a 323 city problem, instance rbg323 [52]. By contrast, local search in the form

\ & '
" .]
o Ay] &' qi?
'y % g O 2 »
e ., 4, R
L G PR gee® T %
24 A g‘a 4 Rbe %o
"t r- il @ _d\\-
TR M S
&% %% X 3
['5\ & 025 6:& 3o , P S g2
r.‘*g&-.o 's “‘ - i 1
L3 . P
.;':\ﬁ '?. P 3 !-r.- ‘:
o _, ® L o '
L L -{ b, .
L1 e] - * p LA o /"
= 1 -0 SOt T e B -
VA, o T 5y ~ 0 :
: -9 ' s i
e " !] A !
4 ~ 'q . £ i ’
o AL &g - 3 v y, & AP
- "'_"n, d % '.r,'\ i h b
[S Jeg” . { 7 4 e
- y . 4 AT Te
.-"r‘.., 1 L § 4 ol ‘r :
4 - -
b L
ra® helt 4 R, o o !
I or it o A
L i o g
' o D = o T
& & Lo of ©) ’ 95,
‘r‘."'t P o a9 :u"“
. LE __- —-‘ LT 0:-‘ '..
Pes Sphp o 4%ed ¥]
TA he oo 1 :" - ‘!-’." r - ° &
e [} S a_-‘ o9
L

Fig. 8.8 This illustration shows how partition crossover induces tunnels connecting local optima.
Each circle denotes a local optimum. Each directed edge denotes a tunnel between local optima
induced by Partition Crossover. These tunnels can lead to one of several globally optimal solutions
(larger red circles) on TSP instance rbg323 [52]

of the Chained LK algorithm [5] is often trapped on plateaus in the search space on
this same instance [52].

8.8 An Iterated Hybrid Genetic Algorithm

The Lin-Kernigham-Helsaun (LKH) algorithm [22-24] is widely recognized as the
best iterated local search algorithm [28] for the TSP. The core of LKH is the variable
depth local search heuristic developed by Lin and Kernighan (LK) [32]. LKH also
explores general k-opt submoves and the partition of large TSPs into smaller sub-
problems. Surprisingly, the LKH algorithm also includes a recombination operator:
the previously mentioned Iterative Partial Transcription (IPT) [35].

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 265

Helsgaun’s implementation of LKH uses recombination in a clever way. In gen-
eral, iterated local search runs the local search multiple times. In LKH (and the
well-known Chained LK algorithm [5]), when local search stalls, a soft restart mech-
anism is used. We might assume that each iteration of local search converges to a

Mulit-Start LKH compared to LKH+PX on 31K City Dimacs Cluster Instance
1.5

1.4
-

T3 LKH+PX
3 = LKH
o
- 1.2
I
Q
21
=
g
2 1
Q
g 0.9
o\c .

0.8

0.7

0 5 10 15 20 25 30 35 40 45 50

Iterations

Fig. 8.9 An Iterated Hybrid Genetic Algorithm compared to Multi-trial LKH2 on a 31,000 city
clustered TSP instance. The Iterated Hybrid Genetic Algorithm (LKH+PX) is created by maintain-
ing a population of all of the “Local Optima” found by LKH2. Every new solution is recombined
with all members of the population using Partition Cross (PX)

local optimum, but when variable size neighborhoods are used by local search, one
iteration of local search more likely stops because some stagnation metric is trig-
gered. We will still (imprecisely) refer to these solutions as “local optima” since
they will still be locally optimal under 2-opt and 3-opt local search.

Let Spo denote the “new local optimum” returned by the most recent iteration
of local search. Let Spyr denote the “Best so Far” solution found by iterated local
search. In the LKH algorithm, the solutions Sz o and Spsr are recombined using
Iterative Partial Transcription (IPT). If an improvement is found, this becomes the
new “Best so Far” solution.

The use of crossover in the LKH algorithm suggests a new way that genetic
algorithms can be hybridized with iterated local search.

To create an Iterated Hybrid Genetic Algorithm we will accumulate all of the
“local optima” found by iterated local search [18]. Thus, “the population” can be
created dynamically and opportunistically, and continues to grow in size with every
newly discovered local optimum. Every new local optimum that is found can be
recombined with all of the previously discovered local optima. Alternatively, instead
of allowing the population size to continue to grow indefinitely, one can establish
a fixed population size to retain a subset of the best previously discovered local
optima. Again, every new local optimum that is found is recombined with all of the
members of the current population.

266 D. Whitley

Figure 8.9 illustrates how the LKH algorithm can be improved by maintaining a
population of all the local optima found by each iteration of local search on a 31,000
city clustered TSP instance. In this case, the main improvement is not the use of
Partition Crossover (vs. IPT), but rather collecting a population of local optima that
are then recombined to yield more improving moves [18]. Tinds et al. [50] use this
strategy to improve on LKH on both symmetric and asymmetric TSP instances.

8.8.1 The Limitations of Tunneling and Partition Crossover

Recombination operators such as Partition Crossover are capable of producing rapid
and dramatic improvements during search. However, while Partition Crossover is
highly exploitive, it also lacks exploratory power. This is particularly evident in the
case of the TSP. Partition Crossover returns an offspring that is only composed of
edges found in the two parents. This means that Partition Crossover never introduces
new edges into a population: if the edges needed to construct a globally optimal
solution are not in the population, then Partition Crossover cannot be used to reach
a globally optimal solution. Therefore, other operators are needed to generate new
edges, but particularly new edges that are likely to be found in high quality solutions.

8.9 The EAX Algorithms for the TSP

To illustrate the kind of implementation that can be found in a modern genetic al-
gorithm we specifically examine the EAX genetic algorithm [37-39]. The name
“EAX” stands for Edge Assembly Crossover, but EAX also is used to refer to both
the EAX crossover operator and the genetic algorithm that uses EAX.

The EAX crossover operator combines the two parents into a graph, which we
again denote by G,,. It then finds what are known as AB-Cycles in the graph G,,. An
AB-Cycle is found by taking one edge from parent 1, then one edge from parent
2, then one edge from parent 1 again, etc. This continues until a loop results. The
loop of alternating edges is an AB-Cycle. A number of AB-Cycles are generated
and together are referred to as the E-Set. The AB-Cycles can then be used to cut
one of the parents into subcycles. These steps are illustrated in Fig. 8.10. Parent 1 is
cut using the AB-Cycles shown. This cutting process means that edges found both
in Parent 1 and the AB-Cycles are removed. Then edges from Parent 2 found in the
AB-Cycles are added to Parent 1. This process yields the subcycles. The subcycles
are then merged in a greedy fashion to create an offspring. This greedy process
which merges the subcycles into a Hamiltonian cycle also introduces relatively short
edges that are not found in either parent. Thus, EAX has a way to introduce new (and
highly useful) diversity into the population [37, 56].

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 267

In addition to the novelty of the EAX recombination operator, the EAX genetic
algorithm also provides a lesson in how genetic algorithms can be configured to
yield sustained search.

The curse of all genetic algorithms is a lack of diversity. Without diversity, the
population stagnates. It is easy to see why this would be deadly to an operator such
as Partition Crossover. However, an operator such as EAX would seem to be in-
herently diversity preserving, since it can continually introduce new edges into the
population. But this is not quite true. If two parent strings are too similar, there are
few AB-Cycles and it is not possible to decompose the parents into subcycles in
useful ways. When this happens, EAX also fails to introduce new edges into the

)
o |
) ’ \\ [AY
/. o 7./ \\ ’V \\
’ \ 1 \
'S e e |
o o | °
AN e /!
o e K
o ? .- ‘
S ‘ 7 ’ | 7 ’ !
PARENT 1 PARENT 2 UNION OF PARENTS

[T

: 7
/// L4 /l {.
’
.\o\ * e . e ~/I {I
N s

AB CYCLES (THE E-SET) THE SUBCYCLES OFFSPRING: NEW EDGES - -

Fig. 8.10 An illustration of the EAX recombination operator. The top three graphs represent the
two parents and the union of the two parents into one graph. AB-Cycles are extracted from the
graph which is the Union of the Parents. The AB-Cycles are then used to cut Parent 1 into subcy-
cles. These subcycles are then reconnected in a greedy fashion to create an offspring

population at a rate that can sustain diversity. When diversity collapses in this way,
the population and the search stagnates. One way to enhance diversity is to use a
larger population size. A larger population converges slower and preseves diversity
(see Fig. 8.11).

268 D. Whitley
11400
11200 J“

11000 -

=0~ Popsize 200

10800 <& Popsize 500

10600 - Popsize 1000

10400 -

Evaluation

10200 -

10000

9800

9600

0 2000 4000 6000 8000 10000 12000 14000
Run Time

Fig. 8.11 A composite illustration of the runtime behavior of EAX based on multiple runs on a
10,000 city TSP. The EAX algorithm displays the classic “Tortoise and Hare” phenomenon, where
small populations converge faster, but larger populations ultimately converge to better results

The EAX genetic algorithm uses a number of mechanisms to preserve population
diversity. It can “localize” the EAX crossover operator so that the offspring is more
similar to Parent 1, or it can “globalize” the EAX crossover operator so that the
offspring inherits a more mixed combination of edges from parents and new edges.
One way it can do this is to use fewer or more AB-Cycles in the Edge Set. If only
a single AB-cycle is used, the offspring will be more like Parent 1 because most of
the edges are inherited from Parent 1.

The EAX genetic algorithm can also exploit the similarity between Parent 1 and
the offspring. It does not use selection in the conventional sense. EAX uses a form
of generational replacement that in some ways represents a return to a Holland style
genetic algorithm compared to the use of steady state genetic algorithms. A random
permutation of pointers to members of the population is generated. We again denote
this random permutation by 7. Instead of using 7 to apply tournament selection, the
parent at location (i) is directly recombined with the solution at location 7w (i + 1).
The offspring that is generated replaces parent 7(i). By making parent 7(i) the
“Parent 1” solution (as illustrated in Fig. 8.10) during an application of EAX, the
offspring will replace the parent from which it inherited the most edges. This slows
down the loss of diversity.

If the EAX genetic algorithm does not use selection pressure when selecting
parents, where is selection pressured applied? EAX uses brood selection.

Brood Selection is a form of selection where a large number of offspring are
generated, and the best offspring is then selected. For example, in the EAX ge-
netic algorithm, two parents may be recombined 30 times to generate 30 different
offspring. (The number of offspring can obviously be parameterized.) But only the
best of the 30 offspring is returned. In this case, recombination is clearly a stochastic
process, and different offspring can be produced by generating different sets of AB-

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 269

Cycles when applying the EAX recombination operator. Brood selection increases
the probability that the EAX recombination operator will find an improvement.

Yet another way that diversity can be preserved in the population is to not always
select the best solution during brood selection. EAX computes two metrics to deter-
mine fitness: one metric looks at the improvement in tour length using the objective
function. But the EAX genetic algorithm also looks at the edges in the current pop-
ulation and computes a diversity metric relative to each new potential offspring and
the current population [38]. An offspring that represents a more modest improve-
ment in tour length that also preserves diversity can be selected instead of a solution
with a shorter tour length that does not preserve diversity. Whitley et al. [65] also
used a hybrid fitness function that included a diversity metric in combination with
Partition Crossover for the TSP.

EAX can be highly effective for large TSP instances. Nagata and Kobayashi [38]
report they have found optimal or new best known solutions on many TSP instances
with up to 200,000 cities. And EAX does this without using any mutation operator
or any local search operators.

8.10 Massively Parallel Genetic Algorithms

Holland’s generational genetic algorithm is easily parallelized when tournament se-
lection is used. The processes of tournament selection, recombination, mutation and
evaluation can be done in parallel. The level of parallelism is proportional to the
population size. However, we can also look to the EAX algorithm to see how a
more modern genetic algorithm can be parallelized.

As noted in the last section, in the EAX genetic algorithm every recombination
involves only the parent at location i and location i+ 1. All of these recombinations
can be done in parallel. Assuming a population size of 500, this work can easily
be mapped onto 500 processors. And because EAX also uses brood selection, the
construction and evaluation of 30 offspring produced by recombining the parents at
position i and i+ 1 can also be done in parallel. Thus, assuming a population size
of 500 and a brood of 30 offspring, this work could be trivially parallelized across
15,000 processors. While there are synchronization issues, there is very little global
communication in the EAX algorithm.

This use of localized mating in a 1-D population array by the EAX genetic algo-
rithm has connections to parallel “cellular genetic algorithms” [59] where parents
are selected locally to reproduce. However, cellular genetic algorithms are more
commonly associated with populations that are distributed onto a 2-D or 3-D grid.

“Steady State Genetic Algorithms” are perhaps best parallelized using an Island
Model of parallelism. This also provides a more coarse grain level of parallelism.
For example, if the population size is 1600, the population might be broken into 16
subpopulations, or “islands,” where each island has a population of 100 strings. Each
island runs for a fixed amount of time. Then a migration process allows a very small
number of individuals (e.g., one individual per island) to migrate from one island to

270 D. Whitley

another. If migration is frequent, the islands behave more like one single population
due to panmictic mixing. However, if migration is more restricted, the island model
can help to preserve diversity and increase exploration. Thus, an island model steady
state genetic algorithm can produce results that are better than a single population
steady state genetic algorithm [58, 63]. Lugue and Alba [1] provide a more recent
review of parallel genetic algorithms.

8.11 Conclusions

It is impossible to capture the wide range of work that has been published on ge-
netic algorithms in a relatively short survey. One of the areas where genetic algo-
rithms have been particular useful is for scheduling applications, particularly re-
source scheduling applications; Whitley et al. [64] surveys this work. There has
also been very interesting work on Vehicle Routing problems [25, 53] and on Graph
Coloring [13, 33].

This survey has focused on a few application areas, specifically k-bounded
pseudo-Boolean optimization and the TSP. While it may not be widely appreci-
ated, the EAX genetic algorithm is one of the best heuristic TSP solvers, and LKH,
the primary iterated local search competitor, also uses recombination to accelerate
search. Kotthoff et al. [31] have used both solvers in combination, using machine
learning to decide which method to apply to which TSP instance, but genetic re-
combination is still inside both algorithms.

The focus on k-bounded functions in the tutorial might seem restrictive. At the
same time, every pseudo-Boolean function (every problem with a bit representation)
and a closed form evaluation function (with a polynomial space representation) can
be transformed into a k-bounded pseudo-Boolean function [3]. This mirrors the well
known result for SAT such that every SAT problem can be transformed (reduced)
to MAX-3SAT in polynomial time. While such transformations are common place
in the SAT community, they have not been explored to any significant degree in the
genetic algorithm community.

This tutorial has also looked at how old ideas can be applied in new ways. The
use of brood selection in the EAX algorithm provides a different way of approach-
ing the problem of selection. Rather than use a steady state genetic algorithm and
tournament selection, the EAX algorithm combines brood selection (a configuration
that one might associate with a (it + A) evolution strategy) and a generational ge-
netic algorithm. Brood selection provides the genetic algorithm with a different way
to be greedy, in as much as many offspring are generated, but only the single best
offspring is retained. At the same time, this approach can still yield high levels of
parallelism, and it keeps communication overhead minimal: there is no tournament
to worry about, and replacement is simple.

The concept of tunneling between local optima was also outlined. “Tunneling” is
likely to be an important part of other genetic algorithm applications in the future. A
genetic algorithm introduced by Deb and Myburgh [8] for foundry cast scheduling

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 271

uses a related form of deterministic greedy recombination. Rather than decomposing
the problems into separable subfunctions, the method used by Deb and Myburgh
relaxes constraints to decompose parents into independent components; when this
relaxation results in violations of the constraints, repair mechanisms are used after
recombination. Deb and Myburgh show how this form of recombination and repair
scales to solve problems with up to one billion variables.

Genetic algorithms continue to provide state-of-the-art results for certain classes
of discrete combinatorial optimization problems.

This tutorial has also advanced the idea that genetic algorithms should be con-
structed as Gray Box Optimizers whenever possible. A number of toy test problems
(ONEMAX, LEADING ONES, the JUMP function and all functions of unitation)
become absolutely trivial to solve under Gray Box optimization. This should come
as no surprise, since all of these problems have simple polynomial time solutions.
Furthermore, there is no theoretical evidence to suggest that complexity results on
toy problems that have polynomial time solutions can yield any insight about how
genetic algorithms perform on NP Hard problems. Gray Box Optimization, on the
other hand, allows us to ask relevant questions about the complexity and decompos-
ability of challenging NP Hard problems.

References

1. E. Alba, G. Lugue, Parallel Genetic Algorithms: Theory and Real World Applications, vol. 367
(Springer, Berlin, 2011)

2. Th. Béck, C. Foussette, P. Krause, Contemporary Evolutionary Strategies (Springer, Berlin,
2013)

3. E. Boros, P.L. Hammer, Pseudo-boolean optimization. Discret. Appl. Math. 123(1), 155-225
(2002)

4. F. Chicano, D. Whitley, A. Sutton, Efficient identification of improving moves in a ball for
pseudo-boolean problems, in Genetic and Evolutionary Computation Conference (GECCO)
(ACM, New York, 2014), pp. 437444

5. W. Cook, Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation
(Princeton University Press, Princeton, 2011)

6. G.A. Croes, A method for solving traveling salesman problems. Oper. Res. 6(6), 791-812
(1958)

7. L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991)

8. K. Deb, C. Myburgh, Breaking the billion variable barrier in real world optimization, in Ge-
netic and Evolutionary Computation Conference (GECCO) (ACM, New York, 2016), pp. 653—
660

9. K. DeJong, An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis,
University of Michigan, Department of Computer and Communication Sciences, Ann Arbor,
1975

10. K. DeJong, Genetic algorithms are NOT function optimizers, in Foundations of Genetic Algo-
rithms, ed. by D. Whitley, vol. 2 (Morgan Kaufmann, Burlington, 1993), pp. 5-17

11. T. El-Mihoub, A. Hopgood, L. Nolle, A. Battersby, Hybrid genetic algorithms: a review. Eng.
Lett. 13(2), 124-137 (2006)

12. L.P. Gent, T. Walsh, Towards an understanding of hill-climbing procedures for SAT, in
The National Conference on Artificial Intelligence (AAAI) (MIT Press, Cambridge, 1993),
pp. 28-33

272 D. Whitley

13. C.Glass, A. Prugel-Bennett, Genetic algorithm for graph coloring: exploration of Galinier and
Hao’s algorithm. J. Comb. Optim. 7(3), 229-236 (2003)

14. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-
Wesley, Reading, 1989)

15. D. Goldberg, Genetic algorithms and Walsh functions: part I, a gentle introduction. Complex
Syst. 3, 129-152 (1989)

16. D. Goldberg, A note on Boltzmann tournament selection for genetic algorithms and
population-oriented simulated annealing. Complex Syst. 4(4), 445-460 (1990)

17. D. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms,
in Foundations of Genetic Algorithms, ed. by G. Rawlins, vol. 1 (Morgan Kaufmann, Burling-
ton, 1991), pp. 69-93

18. D. Hains, D. Whitley, A. Howe, Improving Lin-Kernighan-Helsgaun with crossover on clus-
tered instances of the TSP, in Parallel Problem Solving from Nature (PPSN) (Springer, Berlin,
2012), pp. 388-397

19. N. Hansen, The CMA evolution strategy: a comparing review, in Toward a New Evolutionary
Computation (Springer, Berlin, 2006), pp. 75-102

20. N. Hansen, S. Kern, Evaluating the CMA evolution strategy on multimodal test functions, in
Parallel Problem Solving from Nature (PPSN) (Springer, Berlin, 2004), pp. 282-291

21. R.B. Heckendorn, Embedded landscapes. Evol. Comput. 10(4), 345-369 (2002)

22. K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic.
Eur. J. Oper. Res. 126(1), 106-130 (2000)

23. K. Helsgaun, General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program.
Comput. 1(2-3), 119-163 (2009)

24. K. Helsgaun, DIMACS TSP challenge results: current best tours found by LKH (2013). http://
www.akira.ruc.dk/keld/research/LKH/DIMACSresults.html. November 24, 2013

25. G.Ho, P. Ji, H. Lau, A hybrid genetic algorithm for multi-depot vehicle routing problem. Eng.
Appl. Artif. Intell. 21(4), 548-557 (2008)

26. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann
Arbor, 1975)

27. J. Holland, Adaptation in Natural and Artificial Systems, 2nd edn. (MIT Press, Cambridge,
1992)

28. H.H. Hoos, Th. Stiitzle, Stochastic Local Search: Foundations and Applications (Morgan
Kaufman, Burlington, 2004)

29. S.A. Kauffman, Adaptation on rugged fitness landscapes, in Lectures in the Science of Com-
plexity, ed. by D.L. Stein (Addison-Wesley, Boston, 1989), pp. 527-618

30. S.A. Kauffman, The Origins of Order (Oxford Press, Oxford, 1993)

31. L. Kotthoff, P. Kerschke, H. Hoos, H. Trautmann, Improving the state of the art in inexact TSP
solving using per-instance algorithm selection, in International Conference on Learning and
Intelligent Optimization (Springer, Berlin, 2015), pp. 202-217

32. S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21, 498-516 (1973)

33. Z.Li, J.K. Hao, A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241-250
(2010)

34. M. Mitchell, S. Forrest, Fitness landscapes: royal road functions, in Handbook of Evolution-
ary Computation, ed. by T. Bick, D. Fogel, Z. Michalewicx, vol. B2.7 (Institute of Physics
Publishing, Bristol, 1997), pp. 1-25

35. A. Mobius, B. Freisleben, P. Merz, M. Schreiber, Combinatorial optimization by iterative par-
tial transcription. Phys. Rev. E 59(4), 46674674 (1999)

36. P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in Handbook of Meta-
heuristics, ed. by F. Glover, G. Kochenberger (Springer, Boston, 2003), pp. 105-144

37. Y. Nagata, S. Kobayashi, Edge assembly crossover: a high-power genetic algorithm for the
traveling salesman problem, in International Conference on Genetic Algorithms (ICGA), ed.
by T. Biack (Morgan Kaufmann, Burlington, 1997), pp. 450-457

38. Y. Nagata, S. Kobayashi, A powerful genetic algorithms using edge assemble crossover the
traveling salesman problem. INFORMS J. Comput. 25(2), 346-363 (2013)

http://www.akira.ruc.dk/ keld/research/LKH/DIMACS results.html
http://www.akira.ruc.dk/ keld/research/LKH/DIMACS results.html

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 273

39.

40.

41.

42.

43.
44,

45.

46.

47.
48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Y. Nagata, D. Soler, A new genetic algorithm for the asymmetric TSP. Expert Syst. Appl.
39(10), 8947-8953 (2012)

A. Nix, M. Vose, Modelling genetic algorithms with Markov chains. Ann. Math. Artif. Intell.
5,79-88 (1992)

S. Rana, R. Heckendorn, D. Whitley, A tractable Walsh analysis of SAT and its implications
for genetic algorithms, in The National Conference on Artificial Intelligence (AAAI) (MIT
Press, Cambridge, 1998), pp. 392-397

C. Rego, D. Gamboa, F. Glover, C. Osterman, Traveling salesman problem heuristics: leading
methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 427-441 (2011)
C.M. Reidys, PF. Stadler, Combinatorial landscapes. SIAM Rev. 44, 3-54 (2002)

B. Selman, H. Levesque, D. Mitchell, A new method for solving hard satisfiability problems,
in The National Conference on Artificial Intelligence (AAAI), San Jose (1992), pp. 44—446

A. Sokolov, D. Whitley, Unbiased tournament selection, in Genetic and Evolutionary Compu-
tation Conference (GECCO) (ACM, New York, 2005), pp. 1131-1138

A. Sokolov, D. Whitley, A note on the variance of rank-based selection strategies for genetic
algorithms and genetic programming. Genet. Program Evolvable Mach. 8(3), 221-237 (2007)
K. Sorensen, Metaheuristics: the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3-18 (2015)
A.M. Sutton, A. Howe, D. Whitley, A theoretical analysis of the k-satisfiability search space,
in Workshop on Engineering Stochastic Local Search Algorithms (SLS) (2009), pp. 46—60

G. Syswerda, Reproduction in generational and steady state genetic algorithms, in Founda-
tions of Genetic Algorithms, ed. by G. Rawlins, vol. 1 (Morgan Kaufmann, Burlington, 1991),
pp- 94-101

R. Tinds, D. Whitley, G. Ochoa, Generalized asymmetric partition crossover (GAPX) for the
asymmetric TSP, in Genetic and Evolutionary Computation Conference (GECCO) (ACM,
New York, 2014), pp. 501-508

R. Tinés, D. Whitley, F. Chicano, Partition crossover for pseudo-Boolean optimization, in
Foundations of Genetic Algorithms (FOGA-15) (2015), pp. 137-149

N. Veerapen, G. Ochoa, D. Whitley, Tunneling crossover for the asymmetric TSP, in Parallel
Problem Solving from Nature (PPSN). Lecture Notes in Computer Science (Springer, Cham,
2016), pp. 994-1004

T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi, W. Rei, A hybrid genetic algorithm for multi-
depot and periodic vehicle routing problems. Oper. Res. 60(3), 611-624 (2012)

M. Vose, Modeling simple genetic algorithms, in Foundations of Genetic Algorithms (FOGA
2), ed. by D. Whitley (Morgan Kaufmann, Burlington, 1993), pp. 63-73

M. Vose, The Simple Genetic Algorithm (MIT Press, Cambridge, 1999)

J. Watson, C. Ross, V. Eisele, J. Denton, J. Bins, C. Guerra, D. Whitley, The traveling Salesrep
problem, edge assembly crossover, and 2-opt, in Parallel Problem Solving from Nature (PPSN)
(Springer, Berlin, 1998), pp. 823-832

D. Whitley, An executable model of the simple genetic algorithm, in Foundations of Genetic
Algorithms (FOGA 2) ed. by D. Whitley (Morgan Kaufmann, Burlington, 1993), pp. 45-62
D. Whitley, A genetic algorithm tutorial. Stat. Comput. 4, 65-85 (1994)

D. Whitley, A review of models for simple and cellular genetic algorithms, in Applications of
Modern Heuristic Search, ed. by V.J. Rayward-Smith, Chap. 4 (Alfred Waller Limited, Oxon,
1995), pp. 55-67

D. Whitley, W. Chen, Constant time steepest descent local search with lookahead for NK-
landscapes and MAX-kSAT, in Genetic and Evolutionary Computation Conference (GECCO)
(ACM, New York, 2012), pp. 1357-1364

D. Whitley, J. Kauth, GENITOR: a different genetic algorithm, in Proceedings of the Rocky
Mountain Conference on Artificial Intelligence (1988), pp. 118-130

D. Whitley, A. Sutton, Genetic algorithms: a survey of models and methods, in Handbook of
Natural Computation (Springer, Berlin, 2013), pp. 637-671

D. Whitley, S. Rana, R. Heckendorn, The island model genetic algorithm: on separability,
population size and convergence. J. Comput. Inf. Technol. 7(1), 33-47 (1999)

274 D. Whitley

64. D. Whitley, A. Sutton, A.E. Howe, L. Barbulescu, Resource scheduling with permutation
based representations: three applications, in Evolutionary Computation in Practice, ed. by
T. Yu, L. Davis, C. Baydar, R. Roy. Studies in Computational Intelligence, vol. 88 (Springer,
Berlin, 2008), pp. 219-243

65. D. Whitley, D. Hains, A. Howe, A hybrid genetic algorithm for the traveling salesman prob-
lem using generalized partition crossover, in Parallel Problem Solving from Nature (PPSN)
(Springer, Berlin, 2010), pp. 566-575

66. D. Whitley, A. Howe, D. Hains, Greedy or not? Best improving versus first improving stochas-
tic local search for MAXSAT, in The National Conference on Artificial Intelligence (AAAI)
(2013), pp. 940-946

67. D. Whitley, F. Chicano, B. Goldman, Gray box optimization for Mk landscapes (NK land-
scapes and MAX-kSAT). Evol. Comput. 24, 491-519 (2016)

Chapter 9)

An Accelerated Introduction to Memetic Ciachicr
Algorithms

Pablo Moscato and Carlos Cotta

Abstract Memetic algorithms (MAs) are optimization techniques based on the or-
chestrated interplay between global and local search components and have the ex-
ploitation of specific problem knowledge as one of their guiding principles. In its
most classical form, a MA is typically composed of an underlying population-based
engine onto which a local search component is integrated. These aspects are de-
scribed in this chapter in some detail, paying particular attention to design and in-
tegration issues. After this description of the basic architecture of MAs, we move
to different algorithmic extensions that give rise to more sophisticated memetic ap-
proaches. After providing a meta-review of the numerous practical applications of
MAs, we close this chapter with an overview of current perspectives of memetic
algorithms.

9.1 Introduction and Historical Notes

The generic denomination of ‘Memetic Algorithms’ (MAs) [135] is used to encom-
pass a broad class of metaheuristics, understanding the latter as high-level templates
that orchestrate the functioning on low-level rules and heuristics. The method, which
is based on a population of agents, had practical success in a variety of problem do-
mains, in particular for the heuristic resolution of NP-hard optimization problems.

P. Moscato
The University of Newcastle, Callaghan, NSW, Australia
e-mail: Pablo.Moscato @newcastle.edu.au

C. Cotta (D)
Escuela Técnica Superior de Ingenieria Informdtica, Universidad de Mdlaga, Mdlaga, Spain
e-mail: ccottap@Icc.uma.es

© Springer International Publishing AG, part of Springer Nature 2019 275
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_9&domain=pdf
mailto:Pablo.Moscato@newcastle.edu.au
mailto:ccottap@lcc.uma.es
https://doi.org/10.1007/978-3-319-91086-4_9

276 P. Moscato and C. Cotta

Unlike traditional evolutionary computation (EC) methods, MAs are intrinsically
concerned with exploiting all available knowledge about the problem under study.
The incorporation of problem domain knowledge is not an optional mechanism,
but a fundamental feature that characterizes MAs. This functioning philosophy is
perfectly illustrated by the term “memetic”. Coined by Dawkins [40], the word
‘meme’ denotes an analogous to the gene in the context of cultural evolution [116].
In Dawkins’ words:

Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of making pots
or of building arches. Just as genes propagate themselves in the gene pool by leaping from
body to body via sperms or eggs, so memes propagate themselves in the meme pool by
leaping from brain to brain via a process which, in the broad sense, can be called imitation.

This characterization of a meme suggests that in cultural evolution processes,
information is not simply transmitted unaltered between individuals. Rather, it is
processed and enhanced by the communicating parts. This enhancement is accom-
plished in MAs by incorporating heuristics, approximation algorithms, local search
techniques, specialized recombination operators, truncated exact methods, etc. In
essence, most MAs can be interpreted as a search strategy in which a population of
optimizing agents cooperate and compete [144]. The success of MAs can probably
be explained as being a direct consequence of the synergy of the different search
approaches they incorporate.

The most crucial and distinctive feature of MAs, the inclusion of problem knowl-
edge, is also supported by strong theoretical results. As Hart and Belew [68] initially
stated and Wolpert and Macready [190] later popularized in the so-called No-Free-
Lunch Theorem, a search algorithm strictly performs in accordance with the amount
and quality of the problem knowledge they incorporate. More precisely, the theo-
rem establishes that the performance of any search algorithm is indistinguishable
on average from any other one when all possible problems are considered, a sce-
nario that captures the lack of knowledge on the target problem (this very broad
assumption can be challenged [45]; this said, similar results can be found for more
restricted scenarios [78, 165]). The quest for universal solvers is thus futile [36]: us-
ing and exploiting problem knowledge is a requirement for attaining efficient prob-
lem solvers [116]. Given that the term hybridization is often used to denote the
process of incorporating problem knowledge (due to the fact that it is accomplished
by combining or hybridizing concepts from different resolution algorithms [39]), it
is not surprising that MAs are sometimes called ‘Hybrid Evolutionary Algorithms’
(hybrid EAs) as well.

One of the first algorithms to which the MA label was assigned dates back to
1988 [144], and was regarded by many as a hybrid of traditional Genetic Algo-
rithms (GAs) and Simulated Annealing (SA). Part of the initial motivation was to
find a way out of the limitations of both techniques on a well-studied combinato-
rial optimization problem the MIN EUCLIDEAN TRAVELING SALESMAN problem
(MIN ETSP)—the reader interested in the historical circumstances of the initial de-
velopments in this field is directed to a personal and very detailed account in [119].
According to the authors, the original inspiration came from computer game tour-
naments [72] used to study “the evolution of cooperation” [4, 130]. That approach

9 An Accelerated Introduction to Memetic Algorithms 277

had several features which anticipated many current algorithms in practice today.
The competitive phase of the algorithm was based on the new allocation of search
points in the configuration space, a process involving a “battle” for survival fol-
lowed by the so-called “cloning”, which has a strong similarity with ‘go with the
winners’ algorithms [1, 150]. Thus, the cooperative phase followed by local search
may be better named “go-with-the-local-winners” since the topological arrange-
ment of the optimizing agents was a two-dimensional toroidal lattice. After initial
computer experiments, an insight was derived on the particular relevance of the
“spatial” organization, when coupled with an appropriate set of rules, for the over-
all performance of population search processes. A few months later, Moscato and
Norman discovered that they shared similar views with other researchers [61, 126]
and other authors proposing “island models” for GAs. Spacialization is now being
recognized as the “catalyzer” responsible for a variety of phenomena [129, 130].
This is an important research issue, currently only understood in a rather heuristic
way. However, some proper undecidability results have been obtained for related
problems [63] giving some hope to a more formal treatment.

Less than a year later, in 1989, Moscato and Norman identified several authors
who were also pioneering the introduction of heuristics to improve the solutions be-
fore recombining them [60, 127] (see other references and the discussion in [116]).
Particularly coming from the GA field, several authors were introducing problem-
domain knowledge in a variety of ways. In [116] the denomination of ‘memetic
algorithms’ was introduced for the first time. It was also suggested that cultural
evolution can be a better working metaphor for these metaheuristics to avoid “bio-
logically constrained” thinking that was restricting progress at that time.

Thirty years later, albeit unfortunately under different names, MAs have become
an important optimization approach, with several successes in a variety of classical
NP-hard optimization problems. We aim to provide an updated and self-contained
introduction to MAs, focusing on their technical innards and formal features, but
without loosing the perspective of their practical applications and open research
issues.

9.2 Memetic Algorithms

Before proceeding to the description of MAs, it is necessary to provide some ba-
sic concepts and definitions. Several notions introduced in the first subsection are
strongly related to the field of computational complexity. Nevertheless, we approach
them in a slightly different way, more oriented toward the subsequent developments
in the chapter. These basic concepts will give rise to the notions of local search and
population-based search, upon which MAs are founded. This latter class of search
settles the scenario for recombination, a crucial mechanism in the functioning of
MAs that will be studied to some depth. Finally, a basic algorithmic template and
some guidelines for designing MAs will be presented.

278 P. Moscato and C. Cotta

9.2.1 Basic Concepts

An algorithm is a detailed step-by-step procedure for solving a computational prob-
lem. A computational problem P denotes a class of algorithmically-doable tasks,
and it has an input domain set of instances denoted Ip. For each instance x € Ip,
there is an associated set solp(x) which denotes the feasible solutions for problem
P given instance x. The set solp(x) is also known as the set of acceprable or valid
solutions.

We are expected to deliver an algorithm that solves problem P; this means that
our algorithm, given instance x € Ip, must return at least one element y from a set
of answers ansp(x) (also called given solutions) that satisfies the requirements of
the problem. This is the first design issue to face. To be precise, depending on the
kind of answers expected, computational problems can be classified into different
categories; for example:

finding all solutions in solp(x), i.e., enumeration problems.

counting how many solutions exist in solp(x), i.e. counting problems.
determining whether the set solp(x) is empty or not, i.e., decision problems.
finding a solution in solp(x) maximizing or minimizing a given function, i.e.,
optimization problems.

In this chapter, we will focus on the last possibility, that is, a problem will be
considered solved by finding a feasible solution y € solp(x) which is optimal or by
giving an indication that no such feasible solution exists. It is thus convenient in
many situations to define a Boolean feasibility function feasiblep(x,y) in order to
identify whether a given solution y € ansp(x) is acceptable for an instance x € Ip of
a computational problem P, i.e., checking if y € solp(x).

An algorithm is said to solve problem P if it can fulfill this condition for any
given instance x € Ip. This definition is certainly too broad, so a more restrictive
characterization for our problems of interest is necessary. This characterization is
provided by restricting ourselves to the so-called combinatorial optimization prob-
lems. These constitute a special subclass of computational problems in which for
each instance x € Ip:

the cardinality of solp(x) is finite.
each solution y € solp(x) has a goodness integer value mp(y,x), obtained by
means of an associated objective function mp.

e a partial order <p is defined over the set of goodness values returned by the
objective function, thus allowing to determine which of two goodness values is
preferable.

An instance x € Ip of a combinatorial optimization problem P is solved by finding
the best solution y* € solp(x), i.e., finding a solution y* such that no other solution
y <p y* exists if solp(x) is not empty. It is very common to have <p defining a total
order. In this case, the best solution is the one that maximizes (or minimizes) the
objective function.

9 An Accelerated Introduction to Memetic Algorithms 279

As an example of a combinatorial optimization problem consider the 0—1 MUL-
TIPLE KNAPSACK PROBLEM (0—1 MKP). Each instance x of this problem is defined
by a vector of profits V = {vg,---,v,_1}, a vector of capacities C = {cg, " ,Cm—1}»
and a matrix of capacity constraints coefficients M = {m;; : 0 <i<m, 0< j <n}.
Intuitively, the problem consists of selecting a set of objects so as to maximize the
profit of this set without violating the capacity constraints. If the objects are indexed
with the elements of the set N, = {0,1,---,n — 1}, the answer set ansp(x) for an
instance x is simply the power set of N,,, that is, each subset of N,, is a possible
answer. Furthermore, the set of feasible answers solp(x) is composed of those sub-
sets whose incidence vector B verifies M - B < C. Finally, the objective function is
defined as mp(y,x) = ¥;c, Vi, i.¢., the sum of profits for all selected objects, the goal
being to maximize this value.

Notice that a decisional version can be associated with a combinatorial opti-
mization problem. To formulate the decision problem, an integer goodness value K
is considered, and instead of trying to find the best solution of instance x, we ask
whether x has a solution whose goodness is equal or better than K. In the above
example, we could ask whether a feasible solution y exists such that its associated
profit is equal or better than K.

9.2.2 Search Landscapes

As mentioned above, having defined the concept of combinatorial optimization
problem, the goal is to find at least one of the optimal solutions for a given instance.
For this purpose, a search algorithm must be used. Before discussing search algo-
rithms, three entities must be discussed. These are the search space, the neighbor-
hood relation, and the guiding function. It is important to consider that, for any given
computational problem, these three entities can be instantiated in several ways, giv-
ing rise to different optimization tasks.

Let us start by defining the concept of search space for a combinatorial problem
P. To do so, we consider a set .#p(x), whose elements must satisfy the following
requirements:

Each element s € .%p(x) represents at least one answer in ansp(x).
For decision problems: at least one element of solp(x) that stands for a ‘Yes’
answer must be represented by one element in .%p(x).

e For optimization problems: at least one optimal element y* of solp(x) is repre-
sented by one element in .%p(x).

Each element of .#p(x) is called a configuration. It is related to an answer in ansp(x)
by a growth function g : .#p(x) — ansp(x). Note that the first requirement refers to
ansp(x) and not to solp(x), i.e., some configurations in the search space may corre-
spond to infeasible solutions. Thus, the search algorithm may need to be prepared
to deal with this fact. If these requirements have been achieved, we say that we have
a valid representation or valid formulation of the problem. For simplicity, we will

280 P. Moscato and C. Cotta

just write . to refer to .p(x) when x and P are clear from the context. People using
biologically-inspired metaphors like to call .#p(x) the genotype space and ansp(x)
the phenotype space, so we appropriately refer to g as the growth function.

To illustrate this notion of search space, consider again the case of the 0—1 MKP.
Since solutions in ansp(x) are subsets of N,,, we can define the search space as the
set of n-dimensional binary vectors. Each vector will represent the incidence vector
of a certain subset, i.e., the growth function g is defined as g(s) = g(boby - by,—1) =
{i | b; = 1}. As mentioned above, many binary vectors may correspond to infea-
sible sets of objects. Another possibility is defining the search space as the set of
permutations of elements in N,, [62]. In this case, the growth function may consist
of applying a greedy construction algorithm, considering objects in the order pro-
vided by the permutation. Unlike the binary search space previously mentioned, all
configurations represent feasible solutions in this case.

The role of the search space is to provide a “ground” where the search algorithm
will act. Important properties of the search space that affect the dynamics of the
search algorithm are related to the accessibility relationships between the configura-
tions. These relationships are dependent of a neighborhood function N : ./ — 27 .
This function assigns to each element s € .7 a set 4 (s) C . of neighboring con-
figurations of s. The set .4 (s) is called the neighborhood of s and each member
s € AN (s) is called a neighbor of s.

It must be noted that the neighborhood depends on the instance, so the notation
A (s) is a simplified form of Ap(s,x) since it is clear from the context. The ele-
ments of .4 (s) need not be listed explicitly. In fact, it is very usual to define them
implicitly by referring to a set of possible moves, which define transitions between
configurations. Moves are usually defined as “local” modifications of some part of
s, where “locality” refers to the fact that the move is done on a single solution to
obtain another single solution. This “locality”, is one of the key ingredients of local
search, and actually it has also given the name to the whole search paradigm.

As examples of concrete neighborhood definitions, consider the two representa-
tions of solutions for the 0—1 MKP presented above. In the first case (binary rep-
resentation), moves can be defined as changing the values of a number of bits.
If just one bit is modified at a time, the resulting neighborhood structure is the
n-dimensional binary hypercube. In the second case (permutation representation),
moves can be defined as the interchange of two positions in the permutation. Thus,
two configurations are neighboring if, and only if, they differ in exactly two posi-
tions.

This definition of locality presented above is not necessarily related to “close-
ness” under some kind of distance relationship between configurations (except in
the tautological situation in which the distance between two configurations s and s’
is defined as the number of moves needed to reach s’ from s). As a matter of fact,
it is possible to give common examples of very complex neighborhood definitions
unrelated to intuitive distance measures.

An important feature that must be considered when selecting the class of moves
to be used in the search algorithm is its “ergodicity”, that is the ability, given any
s € .7 to find a sequence of moves that can reach all other configurations s’ € ..

9 An Accelerated Introduction to Memetic Algorithms 281

In many situations this property is self-evident and no explicit demonstration is re-
quired. It is important since even if we have a valid representation (recall the defini-
tion above), it is necessary to guarantee a priori that at least one optimal solution is
reachable from any given initial solution. Again, consider the binary representation
of solutions for a 0—1 MKP instance. If moves are defined as single bit-flips, it is
easily seen that any configuration s” can be reached from another configuration s in
exactly h moves, where / is the Hamming distance between these configurations.
This is not always the case though.

The last entity that must be defined is the guiding function. To do so, we require
a set .# whose elements are termed fitness values (typically .# = R), and a partial
order < # on % (typically, but not always, < #=<). The guiding function is defined
as a function Fy : ¥ — . that associates to each configuration s € .% a value Fy(s)
that assesses the quality of the solution. The behavior of the search algorithm will
be “controlled” by these fitness values.

Notice that for optimization problems there is an obvious direct connection be-
tween the guiding function F and the objective function mp (and hence between
partial orders <p and < #). As a matter of fact, it is very common to enforce this re-
lationship to the point that both terms are usually considered equivalent. However,
this equivalence is not necessary and, in many situations, not even desirable. For
decision problems, since a solution is a ‘Yes’ or ‘No’ answer, associated guiding
functions usually take the form of distance to satisfiability.

A typical example is the BOOLEAN SATISFIABILITY PROBLEV, i.e., determin-
ing whether a Boolean expression in conjunctive normal form is satisfiable. In this
case, solutions are assignments of Boolean values to variables, and the objective
function mp is a binary function returning 1 if the solution satisfies the Boolean
expression, and O otherwise. This objective function could be used as the guiding
function. However, a much more typical choice is to use the number of satisfied
clauses in the current configuration as guiding function, i.e., Fy(s) = Y, fi(s), the
sum over clause indexes i of f;(s), defined as f;(s) = O for a yet unsatisfied clause
i, and fi(s) = 1 if the clause i is satisfied. Hence, the goal is to maximize this num-
ber. Notice that the guiding function in this case is the objective function of the
associated NP-hard optimization problem called MAX SAT.

The above differentiation between objective function and guiding function is also
very important in the context of constrained optimization problems, i.e., problems
for which, in general, solp(x) is chosen to be a proper subset of ansp(x). Since
the growth function establishes a mapping from . to ansp(x), the search algo-
rithm may need to process both feasible solutions (whose goodness values are well-
defined) and infeasible solutions (whose goodness values are ill-defined in general).
In many implementations of MAs for these problems, a guiding function is defined
as a weighted sum of the value of the objective function and the distance to feasi-
bility (which accounts for the constraints). Typically, a higher weight is assigned to
the constraints, so as to give preference to feasibility over optimality. Several other
remedies to this problem abound, including resorting to multi-objective techniques.

The combination of a certain problem instance and the three entities defined
above induces a so-called fitness landscape [87]. Essentially, a fitness landscape

282 P. Moscato and C. Cotta

can be defined as a weighted digraph, in which the vertices are configurations of
the search space .7, and the arcs connect neighboring configurations. The weights
are the differences between the guiding function values of the two endpoint con-
figurations. The search can thus be seen as the process of “navigating” the fitness
landscape using the information provided by the guiding function. This is a very
powerful metaphor; it allows interpretations in terms of well-known topographical
objects such as peaks, valleys, mesas, etc., which is of great utility to visualize the
search progress, and to grasp factors affecting the performance of the process. In
particular, the important notion of local optimum is associated with this definition
of fitness landscape. To be precise, a local optimum is a vertex of the fitness land-
scape whose guiding function value is better than the values of all its neighbors. No-
tice that different moves define different neighborhoods and hence different fitness
landscapes, even when the same problem instance is considered. For this reason, the
notion of local optimum is not intrinsic to a problem instance as it is, sometimes,
erroneously considered.

The notion of fitness landscape is not only useful for conceptual or visualization
purposes. It also serves as a very useful instrument in order to analyze the properties
of the search space as regarded by a certain search algorithm (via the moves used by
the latter). Thus, analytical tools such as random-walk correlation or fitness distance
correlation can be used to assess the difficulty perceived by the optimizer, and other
statistical tools can be utilized to guide the design/parameterization of the search
algorithm—see [111].

9.2.3 Local vs. Population-Based Search

The definitions presented in the previous subsection naturally lead to the notion
of local search algorithm. A local search algorithm starts from a configuration
so € .7, generated at random or constructed by some other algorithm. Subsequently,
it iterates using at each step a transition based on the neighborhood of the current
configuration. Transitions leading to preferable (according to the partial order < #)
configurations are accepted, i.e., the newly generated configuration turns to be the
current configuration in the next step. Otherwise, the current configuration is kept.
This process is repeated until a certain termination criterion is met. Typical crite-
ria are the realization of a pre-specified number of iterations, not having found any
improvement in the last m iterations, or even more complex mechanisms based on
estimating the probability of being at a local optimum [29]. Due to these character-
istics, the approach is metaphorically called “hill climbing”. The whole process is
sketched in Algorithm 1.

The selection of the particular type of moves to use (which are also known as
mutations in the context of GAs) does certainly depend on the specific character-
istics of the problem and the representation chosen. There is no general advice for
this, since it is a matter of the available computer time for the whole process as
well as other algorithmic decisions that include ease of coding, etc. In some cases

9 An Accelerated Introduction to Memetic Algorithms 283

Algorithm 1: A local search algorithm

1 Procedure Local-Search-Engine (current);

2 begin
3 repeat
4 new < GenerateNeighbor(current);
5 if Fy(new) <z Fy(current) then
6 ‘ current < new;
7 endif
8 until TerminationCriterion() ;
9 return current,
10 end

some moves are conspicuous, for example it can be the change of the value of one
single variable or the swap of the values of two different variables. Sometimes the
“step” may also be composed of a chain of transitions. For instance, in relation with
MAs, Radcliffe and Surry introduced the concept of Binomial Minimal Mutation,
where the number of mutations to perform is selected according to a certain bino-
mial distribution [159]. In the context of fitness landscapes, this is equivalent to a
redefinition of the neighborhood relation, considering two configurations as neigh-
bors when there exists a chain of transitions connecting them.

Local search algorithms are thus characterized by keeping a single configuration
at a time. The immediate generalization of this behavior is the simultaneous main-
tenance of k, (k > 2) configurations. The term population-based search algorithms
has been coined to denote search techniques behaving this way.

The availability of several configurations at a time allows the use of new power-
ful mechanisms for traversing the fitness landscape in addition to the standard mu-
tation operator. The most popular of these mechanisms, the recombination operator,
will be studied in more depth in the next section. In any case, notice that the general
functioning of population-based search techniques is very similar to the pseudocode
depicted in Algorithm 1. As a matter of fact, a population-based algorithm can be
seen as a procedure in which we sequentially visit vertices of a hypergraph. Each
vertex of the hypergraph represents a set of configurations in .#p(x), i.e., a pop-
ulation. The next vertex to be visited, i.e., the new population, can be established
according to the composition of the neighborhoods of the different transition mech-
anisms used in the population algorithm. Despite the analogy with local search, it is
widely accepted in the scientific literature to apply the denomination ‘local’ just to
one-configuration-at-a-time search algorithms. For this reason, the term ‘local’ will
be used with this interpretation in the remainder of the chapter.

284 P. Moscato and C. Cotta

9.2.4 Recombination

As mentioned in the previous section, local search is based on the application of a
mutation operator to a single configuration. Despite the apparent simplicity of this
mechanism, “mutation-based” local search has revealed itself a very powerful mech-
anism for obtaining good quality solutions for NP-hard problems. For this reason,
some researchers have tried to provide a more theoretically-solid background to this
class of search. In this line, it is worth mentioning the definition of the Polynomial
Local Search class (PLS) by Johnson et al. [86]. Basically, this complexity class
comprises a problem and an associated search landscape such that for any given
point in the search landscape we can decide in polynomial time if it is a local op-
timum or not, and in the latter case find an improved solution in the neighborhood.
Unfortunately, this does not mean that we can find a local optimum in polynomial
time (in fact, it may generally take an exponential number of steps to do so). This
fact has justified the quest for additional search mechanisms to be used as stand-
alone operators or as complements to standard mutation.

In this line, recall that population-based search allowed the definition of gener-
alized move operators termed recombination operators. In essence, recombination
can be defined as a process in which a set .}, of n configurations (informally re-
ferred to as “parents”) is taken into consideration to create a set s C solp(x)
of m new configurations (informally termed “descendants”). The creation of these
descendants involves the identification and combination of features extracted from
the parents.

At this point, it is possible to consider properties of interest that can be exhib-
ited by recombination operators [159]. The first property, respect, represents the
exploitation side of recombination. A recombination operator is said to be respect-
ful, regarding a particular type of features of the configurations, if, and only if, it
generates descendants carrying all basic features common to all parents (where the
term ‘basic’ refers to features being used to represent solutions, hence constituting
a representation basis in an algebraic sense). Notice that, if all parent configurations
are identical, a respectful recombination operator is forced to return the same con-
figuration as a descendant. This property is termed purity, and can be achieved even
when the recombination operator is not generally respectful.

On the other hand, assortment represents the exploratory side of recombination.
A recombination operator is said to be properly assorting if, and only if, it can
generate descendants carrying any combination of compatible features taken from
the parents. The assortment is said to be weak if this cannot be accomplished in a
single recombination event, and further applications of the recombination operator
on the offspring are required.

Finally, transmission is a very important property that captures the intuitive role
of recombination. An operator is said to be transmitting if every feature exhibited
by the offspring is present in at least one of the parents. Thus, a transmitting re-
combination operator combines the information present in the parents but does not
introduce new information. This latter task is usually left to the mutation opera-

9 An Accelerated Introduction to Memetic Algorithms 285

tor. For this reason, a non-transmitting recombination operator is said to introduce
implicit mutation.

The three properties above suffice to describe the abstract input/output behav-
ior of a recombination operator regarding some particular features. It provides a
characterization of the possible descendants that can be produced by the operator.
Nevertheless, there exist other aspects of the functioning of recombination that must
be studied. In particular, it is interesting to consider how the construction of %,
is approached.

First of all, a recombination operator is said to be blind if it has no other input
than .%),,, i.e., it does not use any information from the problem instance. This
definition is certainly very restrictive, and hence is sometimes relaxed to allow the
recombination operator to use information regarding the problem constraints (so as
to construct feasible descendants), and possibly the fitness values of configurations
Y € Fpar (so as to bias the generation of descendants toward the best parents). A
typical example of a blind recombination operator is the classical Uniform crossover

[180]. This operator is defined on search spaces . = X", i.e., strings of n symbols
taken from an alphabet X. The construction of the descendant is done by randomly
selecting at each position one of the symbols appearing in that position in any of the
parents. This random selection can be totally uniform or can be biased according
to the fitness values of the parents as mentioned before. Furthermore, the selection
can be done so as to enforce feasibility (e.g., consider the binary representation of
solutions in the 0—1 MKP). Notice that, in this case, the resulting operator is neither
respectful nor transmitting in general.

The use of blind recombination operators has been usually justified on the
grounds of not introducing excessive bias in the search algorithm, thus preventing
extremely fast convergence to suboptimal solutions. This is questionable though.
First, notice that the behavior of the algorithm is in fact biased by the choice of rep-
resentation and the mechanics of the particular operators. Second, there exist widely
known mechanisms (e.g., spatial isolation) to hinder these problems. Finally, it can
be better to quickly obtain a suboptimal solution and restart the algorithm than using
blind operators for a long time in pursuit of an asymptotically optimal behavior (not
even guaranteed in most cases).

Recombination operators that use problem knowledge are commonly termed
heuristic or hybrid. In these operators, problem information is utilized to guide the
process of constructing the descendants. This can be done in a plethora of ways for
each problem, so it is difficult to provide a taxonomy of heuristic recombination
operators. Nevertheless, there exist two main aspects into which problem knowl-
edge can be injected: the selection of the parental features that will be transmitted
to the descendant, and the selection of non-parental features that will be added to it.
A heuristic recombination operator can focus in one of these aspects, or in both of
them simultaneously.

As an example of a heuristic recombination operator focusing on the first aspect,
Dynastically Optimal Recombination (DOR) [27] can be mentioned. This operator
explores the dynastic potential (i.e., the set of possible children) of the configura-
tions being recombined, so as to find the best member of this set (notice that, since

286 P. Moscato and C. Cotta

configurations in the dynastic potential are entirely composed of features taken from
any of the parents, this is a transmitting operator). This exploration is done using a
subordinate complete algorithm, and its goal is thus to find the best combination
of parental features giving rise to a feasible child. This can be accomplished us-
ing techniques such as branch and bound (BnB) or dynamic programming (see, e.g.
[57]). This operator is monotonic in the sense that any child generated is at least as
good as the best parent.

With regard to heuristic operators concentrating on the selection of non-parental
features, one can cite the patching-by-forma-completion operators proposed by Rad-
cliffe and Surry [158]. These operators are based on generating an incomplete child
using a non-heuristic procedure (e.g., the RAR, operator [157]), and then complet-
ing the child either using a local hill climbing procedure restricted to non-specified
features (locally optimal forma completion) or a global search procedure that finds
the globally best solution carrying the specified features (globally optimal forma
completion). Notice the similarity of this latter approach with DOR.

Finally, there exist some operators trying to exploit knowledge in both of the
above aspects. A distinguished example is the Edge Assembly Crossover (EAX)
[128]. EAX is a specialized operator for the TSP (both for symmetric and asymmet-
ric instances) in which the construction of the child comprises two-phases: the first
one involves the generation of an incomplete child via the so-called E-sets (subtours
composed of alternating edges from each parent); subsequently, these subtours are
merged into a single feasible subtour using a greedy repair algorithm. The authors
of this operator reported impressive results in terms of accuracy and speed. It has
some similarities with the recombination operator proposed in [117]. We can also
mention the use of path relinking [59], a method based on creating a trajectory in
the search space between the solutions being “recombined” and picking the best
solution along that path.

A final comment must be made in relation to the computational complexity of re-
combination. It is clear that combining the features of several solutions is in general
computationally more expensive than modifying a single solution (i.e., a mutation).
Furthermore, the recombination operation will be usually invoked a large number of
times. For this reason, it is convenient (and in many situations mandatory) to keep
it at a low computational cost. A reasonable guideline is to consider an O(NlogN)
upper bound for its complexity, where N is the size of the input (the set S, and the
problem instance x). Such limit is easily affordable for blind recombination opera-
tors, which are called crossover, a reasonable name to convey their low complexity
(yet not always used in this context). However, this limit can be relatively astringent
in the case of heuristic recombination, mainly when epistasis (non-additive inter-
feature influence on the fitness value) is involved. This admits several solutions de-
pending upon the particular heuristic used. For example, DOR has exponential worst
case behavior, but it can be made affordable by picking larger pieces of information
from each parent (the larger the size of these pieces of information, the lower the
number of them needed to complete the child) [26]. In any case, heuristic recom-
bination operators provide better solutions than blind recombination operators, and
hence they need not be invoked the same number of times.

9 An Accelerated Introduction to Memetic Algorithms 287

Algorithm 2: A population-based search algorithm

1 Procedure Population-Based-Search-Engine;

2 begin
3 Initialize pop using GeneratelnitialPopulation();
4 repeat
5 newpop <— GenerateNewPopulation(pop);
6 pop < UpdatePopulation (pop, newpop);
7 if pop has converged then
8 | pop < RestartPopulation(pop);
9 endif
10 until TerminationCriterion() ;
11 end

Algorithm 3: Injecting high-quality solutions in the initial population

1 Procedure GeneratelnitialPopulation;
2 begin
3 Initialize pop using EmptyPopulation();
4 for j < I to popsize do
5 i < GenerateRandomConfiguration();
6 i < Local-Search-Engine (i);
7 InsertInPopulation individual i to pop;
8 endfor
9 return pop;
10 end

9.2.5 A Memetic Algorithm Template

In light of the above considerations, it is possible to provide a general template for
a memetic algorithm. As mentioned in Sect.9.2.3, this template is very similar to
that of a local search procedure acting on a set of |pop| > 2 configurations. This is
shown in Algorithm 2.

This template requires some explanation. First of all, the GeneratelnitialPopu-
lation procedure is responsible for creating the initial set of |pop| configurations.
This can be done by simply generating |pop| random configurations or by using
a more sophisticated seeding mechanism (for instance, some constructive heuris-
tic), by means of which high-quality configurations are injected in the initial pop-
ulation [179]. Another possibility is to use the Local-Search-Engine presented in
Sect.9.2.3 (as shown in Algorithm 3) or any other randomized constructive algo-
rithm for that matter. For example, a Greedy Randomized Adaptive Search Proce-
dure (GRASP) [161, 162] mechanism was used in [51], and Beam Search [189] was
used in [56].

As for the TerminationCriterion function, it can be defined very similarly to Lo-
cal Search, i.e., setting a limit on the total number of iterations, reaching a maximum
number of iterations without improvement or performing a certain number of popu-
lation restarts, etc.

288 P. Moscato and C. Cotta

Algorithm 4: The pipelined GenerateNewPopulation procedure

1 Procedure GenerateNewPopulation (pop);

2 begin

3 buffer® «— pop;

4 for j < 1ton,, do

5 | Initialize buffer/ using EmptyPopulation();

6 endfor

7 for j < Iton,, do

8 S{W <+ ExtractFromBuffer (buﬁ‘erj -1 arity{n);
9 S e ApplyOpe_rator (op’, Shar);
10 for z < 1 to arity), do
11 InsertInPopulation individual §/,__[z] to buffer/;
12 endfor

13 endfor
14 return buffer’r;

15 end

The GenerateNewPopulation procedure is at the core of memetic algorithms. Es-
sentially, this procedure can be seen as a pipelined process comprising 7, stages.
Each of these stages consists of applying a variation (or reproductive) operator op’
by taking arity{n configurations from the previous stage to produce arity’,,, new con-
figurations. This pipeline is restricted to have arityl.ln = popsize. The whole process
is sketched in Algorithm 4.

This template for the GenerateNewPopulation procedure is typically instantiated
in GAs by letting n,, = 3, using a selection, a recombination, and a mutation opera-
tor. Traditionally, mutation is applied after recombination, i.e., on each child gener-
ated by the recombination operator. However, if a heuristic recombination operator
is being used, it may be more convenient to apply mutation before recombination.
Since the purpose of mutation is simply to introduce new features in the configura-
tion pool, using it in advance is possible in this case. Furthermore, the smart feature
combination performed by the heuristic operator would not be disturbed this way.

This situation is slightly different in MAs. In this case, it is very common to let
nop = 4, inserting a Local-Search-Engine right after applying op* and op® (respec-
tively recombination and mutation). Due to the local optimization performed after
mutation, their combined effect (i.e., mutation + local search) cannot be regarded as
a simple disruption of a computationally-demanding recombination. Note also that
the interplay between mutation and local search requires the former to be differ-
ent than the neighborhood structure used in the latter; otherwise mutations can be
readily reverted by local search, and their usefulness would be negligible.

The UpdatePopulation procedure is used to reconstruct the current population us-
ing the old population pop and the newly generated population newpop. Borrowing
the terminology from the evolution strategy [160, 166] community, there exist two
main possibilities to carry on this reconstruction: the plus strategy and the comma
strategy. In the former, the current population is constructed taken the best popsize
configurations from pop U newpop. For the latter, the best popsize configurations

9 An Accelerated Introduction to Memetic Algorithms 289

are taken just from newpop. In this case, it is required to have |newpop| > popsize,
so as to put some selective pressure on the process (the bigger the |newpop|/ popsize
ratio, the stronger the pressure). Otherwise, the search would reduce to a random
wandering through ..

There are a number of studies regarding appropriate choices for the UpdatePopu-
lation procedure (see e.g., [6]). As a general guideline, the comma strategy is usually
regarded as less prone to stagnation, with the ratio |newpop|/popsize ~ 6 being a
common choice [7]. Nevertheless, this option can be somewhat computationally ex-
pensive if the guiding function is complex and time-consuming. Another common
alternative is to use a plus strategy with a low value of [newpop|, analogous to the
so-called steady-state replacement strategy in GAs [187]. This option usually pro-
vides a faster convergence to high-quality solutions. However, care has to be taken
with premature convergence to suboptimal regions of the search space, i.e., all con-
figurations in the population being very similar to each other, hence hindering the
exploration of other regions of .7

The above consideration about premature convergence leads to the last compo-
nent of the template shown in Algorithm 2, the restarting procedure. First of all,
it must be decided whether the population has degraded or has not. To do so, it
is possible to use some measure of information diversity in the population such as
Shannon’s entropy [38]. If this measure falls below a predefined threshold, the pop-
ulation is considered to be in a degenerate state. This threshold depends upon the
representation (number of values per variable, constraints, etc.) and hence must be
determined in an ad-hoc fashion. A different possibility is using a probabilistic ap-
proach to determine with a desired confidence that the population has converged.
For example, in [77] a Bayesian approach is presented for this purpose.

Once the population is considered to be at a degenerate state, the restart procedure
is invoked. Again, this can be implemented in a number of ways. A very typical
strategy is to keep a fraction of the current population (this fraction can be as small
as one solution, the current best), and substituting the remaining configurations with
newly generated (from scratch) solutions, as shown in Algorithm 5.

The procedure shown in Algorithm 5 is also known as the random-immigrant
strategy [20]. Another possibility is using the previous search history [178] or ac-
tivate a strong or heavy mutation operator in order to drive the population away
from its current location in the search space. Both options have their advantages
and disadvantages. For example, when using the random-immigrant strategy, one
has to take some caution to prevent the preserved configurations to take over the
population (this can be achieved by putting a low selective pressure, at least in the
first iterations after a restart). As to the heavy mutation strategy, one has to achieve a
tradeoff between an excessively strong mutation that would destroy any information
contained in the current population, and a not so strong mutation that would cause
the population to converge again in a few iterations.

290 P. Moscato and C. Cotta

Algorithm 5: The RestartPopulation procedure

1 Procedure RestartPopulation (pop);

2 begin

3 Initialize newpop using EmptyPopulation();

4 #preserved < popsize - %opreserve;

5 for j < I to #preserved do

6 i < ExtractBestFromPopulation(pop);

7 InsertInPopulation individual i to newpop;
8
9

endfor
for j < #preserved 4 1 to popsize do
10 i < GenerateRandomConfiguration();
11 i < Local-Search-Engine (i);
12 InsertInPopulation individual i to newpop;
13 endfor
14 return newpop;
15 end

9.2.6 Designing an Effective Memetic Algorithm

The general template of MAs depicted in the previous section must be instantiated
with precise components in order to be used for solving a specific problem. This
instantiation has to be done carefully so as to obtain an effective optimization tool.
We will address some design issues in this section.

A first obvious remark is that there exist no general approach for the design of ef-
fective MAs. This observation is based on different proofs depending on the precise
definition of effective in the previous statement. Such proofs may involve classical
complexity results and conjectures if ‘effective’ is understood as ‘polynomial-time’,
or the NFL Theorem if we consider a more general set of performance measures,
and even Computability Theory if we relax the definition to arbitrary decision prob-
lems. For these reasons, we can only define several design heuristics that will likely
result in good-performing MAs, but without explicit guarantees for this.

This said, MAs are commonly implemented as evolutionary algorithms endowed
with an independent search component, sometimes provided by a local search mech-
anism (recall previous section), and as such can benefit from the theoretical corpus
available for EAs. This is particularly applicable to some basic aspects such as the
representation of solutions in terms of meaningful information units [37, 158]. Fo-
cusing now on more specific aspects of MAs, the first consideration that must be
clearly taken into account is the interplay among the local search component and
the remaining operators, mostly with respect to the characteristics of the search
landscape. A good example of this issue can be found in the work of Merz and
Freisleben on the TSP [49]. They consider the use of a highly intensive local search
procedure—the Lin-Kernighan heuristic [104]—and note that the average distance
between local optima is similar to the average distance between a local optimum and
the global optimum. For this reason, they introduce a distance-preserving crossover
(DPX) operator that generate offspring whose distance from the parents is the same

9 An Accelerated Introduction to Memetic Algorithms 291

as the distance between the parents themselves. Such an operator is likely to be
less effective if a not-so-powerful local improvement method, e.g., 2-opt, was used,
inducing a different distribution of local optima.

Another important choice refers to the learning model used. The most common
option is to use a Lamarckian model, whereby an improved solution is sought via
local search and the corresponding genotypic changes are retained in the solution.
However, there also exists the possibility of using a Baldwinian model, in which
the improved solution is only used for the purposes of fitness computation, but the
actual solution is not changed at all. This might be useful in order to avoid local
optima while converging to the global optimum [58, 89, 192]; see also [188] for a
classical analysis of these two strategies in optimization.

In addition to the particular choice (or choices) of local search operator, there
remains the issue of determining an adequate parameterization for the procedure,
namely, how much effort must be spent on each local search, how often the local
search must be applied, and—were it not applied to every new solution generated—
how to select the solutions that will undergo local improvement. Regarding the first
two items, there exists theoretical evidence [99, 175] that an inadequate parameter
setting can turn the algorithmic solution from easily solvable to non-polynomially
solvable. Besides, there are obvious practical limitations in situations where the lo-
cal search and/or the fitness function is computationally expensive. This fact admits
different solutions. On the one hand, the use of surrogates (i.e., fast approximate
models of the true function) to accelerate evolution is an increasingly popular option
in such highly demanding problems [64, 102, 185, 186, 194]. On the other hand, par-
tial lamarckism [23, 74, 149], where not every individual is subject to local search,
is commonly used as well. The precise value for the local search application prob-
ability (or multiple values when more than one local search procedure is available)
largely depends on the problem under consideration [81], and its determination is
in many cases an art. For this reason, adaptive and self-adaptive mechanisms have
been defined in order to let the algorithm learn what the most appropriate setting
is (see Sect.9.3.4). The interested reader is referred to [176, 177] for a more in-
depth analysis of the balance between the local and global (i.e., population-based)
components of the memetic algorithm.

As to the selection of individuals that will undergo local search, the most com-
mon options are random-selection, and fitness-based selection, where only the best
individuals are subject to local improvement. Nguyen et al. [136] also consider a
‘stratified’ approach, in which the population is sorted and divided into k levels (k
being the number of local search applications), and one individual per level is ran-
domly selected. Their experimentation on some continuous functions indicates that
this strategy and improve-the-best (i.e., applying local search to the best individ-
uals) provide better results than random selection. Such strategies can be readily
deployed on a structured MA as defined by Moscato et al. [10, 15, 48, 110, 125],
where good solutions flow upwards within a tree-structured population, and lay-
ers are explicitly available. Other population management strategies are possible as
well, see [14, 153, 154, 173].

292 P. Moscato and C. Cotta

9.3 Algorithmic Extensions of Memetic Algorithms

The algorithmic template and design guidelines described in the previous section
can characterize most basic incarnations of MAs, namely population-based algo-
rithms endowed with static local search for single-objective optimization. However,
more sophisticated approaches can be conceived, and are certainly required in cer-
tain applications. This section is aimed at providing an overview of more advanced
algorithmic extensions used in the MA realm.

9.3.1 Multiobjective Memetic Algorithms

Multiobjective problems are frequent in real-world applications. Rather than having
a single objective to be optimized, the solver is faced with multiple, partially con-
flicting objectives. As a result, there is no a priori single optimal solution but rather
a collection of optimal solutions, providing different trade-offs among the objectives
considered. In this scenario, the notion of Pareto-dominance is essential: given two
solutions s,s" € solp(x), s is said to dominate s’ if it is better than s’ in at least one of
the objectives, and it is no worse in the remaining ones. This clearly induces a partial
order <p, since given two solutions it may be the case that none of them dominates
the other. This collection of optimal solutions is termed the optimal Pareto front, or
the optimal non-dominated front.

Population-based search techniques, in particular evolutionary algorithms (EAs),
are naturally fit to deal with multiobjective problems, due to the availability of a
population of solutions which can approach the optimal Pareto front from different
directions. There is an extensive literature on the deployment of EAs in multiobjec-
tive settings, and the reader is referred to [21, 22, 42, 195], among others, for more
information on this topic. MAs can obviously benefit from this corpus of knowl-
edge. However, MAs typically incorporate a local search mechanism, and it has to
be adapted to the multiobjective setting as well. This can be done in different ways
[94], which can be roughly classified into two major classes: scalarizing approaches,
and Pareto-based approaches. Scalarizing approaches are based on the use of some
aggregation mechanism to combine the multiple objectives into a single scalar value.
This is usually done using a linear combination of the objective values, with weights
that are either fixed (at random or otherwise) for the whole execution of the local
search procedure [182], or adapted as the local search progresses [66]. With regard
to Pareto-based approaches, the notion of Pareto-dominance is considered for de-
ciding transitions among neighboring solutions, typically coupled with the use of
some measure of crowding to spread the search, e.g, [91].

A full-fledged multiobjective MA (MOMA) is obtained by appropriately com-
bining population-based and local search-based components for multiobjective op-
timization. Again, the strategy used in the local search mechanism can be used to
classify most MOMASs. On one hand, we have aggregation approaches. Thus, two
proposals due to Ishibuchi and Murata [79, 80] and Jaszkiewicz [83, 84] are based

9 An Accelerated Introduction to Memetic Algorithms 293

on the use of random scalarization each time a local search is to be used. Alterna-
tively, a single-objective local search could be used to optimize individual objectives
[82]. Ad hoc mating strategies based on the particular weights chosen at each local
search invocation (whereby the solutions to be recombined are picked according
to these weights) are used as well. A related approach—including the on-line ad-
justment of scalarizing weights—is followed by Guo et al. [65—67]. On the other
hand, we have Pareto-based approaches. In this line, a MA based on PAES (Pareto
Archived Evolution Strategy) was defined by Knowles and Corne [92, 93]. More
recently, a MOMA based on particle swarm optimization (PSO) has been defined
by Liu et al. [101, 108]. In this algorithm, an archive of non-dominated solutions is
maintained and randomly sampled to obtain reference points for particles. A differ-
ent approach is used by Schuetze et al. [164] for numerical-optimization problems.
The continuous nature of solution variables allows using their values for computing
search directions. This fact is exploited in their local search procedure (HCS for
Hill Climber with Sidestep) to direct the search toward specific regions (e.g., along
the Pareto front) when required. We refer to [85] for a more in-depth discussion on
multiobjective MAs.

9.3.2 Continuous Optimization

Continuous optimization problems are defined on a dense search space [183], typ-
ically by some subset of the n-fold Cartesian product R"”. Many problems have de-
cision variables of this continuous nature and hence continuous optimization is a
realm of paramount importance. Throughout previous sections, MAs were admit-
tedly described with a discrete background in mind. Indeed, discrete optimization
problems put to test the skills of the algorithmic designer in the sense that the dif-
ficulty of solving a particular problem and the effectiveness of the solver depend
on the precise instantiation of notions such as the neighborhood relation. This said,
most of the ideas and concepts sketched before for discrete optimization are also ap-
plicable to continuous optimization. Of course, in this realm there is a natural notion
of neighborhood of a point s given by open balls B;(s) = {s" : ||s — s'|| < d}, i.e.,
those points located within distance d of x, for a suitable distance metric (typically,
but not necessarily, the Euclidean distance—see [44]).

The different components of a classic MA, namely the population-based engine
and the local search technique, must be adapted to deal with this new domain of
solutions. Regarding the former, there is plenty of literature on how to adapt the
variation operators to tackle continuous optimization [70, 71, 109, 191] and actually
some evolutionary computation families lend themselves naturally to this kind of
optimization [13, 174]. Typical options with regard to the recombination operator
are the following (assuming for the sake of notation that parental solutions s =
(s1,...,8n) and s’ = (s],...,s,) are being recombined to obtain u = (uy,...,uy,)):

e use a discrete approach and create the offspring by using the precise values the
decision variable have in the parental solutions, i.e., u; € {s;,s}}.

294 P. Moscato and C. Cotta

e use some arithmetical operation to combine the values of homologous variables
in the parental solutions, e.g., compute an average: u; = (s; +5;) /2.

e use some sampling procedure within some hyperrectangle, hyperellipse, or other
suitable hypersurface defined by the parental solutions, e.g., u; € [m;, M;] where
m; = min(s;,s;) — oud;, M; = max(s;,s;) + oud;, d; = |s; — s}], o« > 0.

The situation is more flexible when multiparent recombination is used. In this case,
other possibilities exist in addition to the previous methods, such as utilizing some
subset of the parental solutions to create a hypersurface and using some projection
technique to create the offspring, much like it is done in the Nelder-Mead method
[131]. For mutation, it is typically accomplished by some additive or multiplicative
perturbation to variable values, obtained by means of some predefined distribution
such as uniform, Gaussian or Cauchy, just to cite some of the most common exam-
ples. The extent of the perturbation is a parameter than can be subject to adaptation
during the run (cf. Sect.9.3.4)

Regarding the local search component, there are many techniques that can be
used for this purpose, just by adapting the definition of neighborhood as mentioned
before and using some kind of gradient ascent, possibly modulated with some mech-
anism to escape from local optima (as it is done in e.g., simulated annealing); see
[41] for a more detailed discussion of these. One particular issue worth mentioning
in connection with local search is the fact that, unlike many typical discrete opti-
mization scenarios in which the objective function can be decomposed in order to
isolate the effect caused by the modification of a certain decision variable (i.e., the
fitness value of the modified solution is f(u) = f(s) + A(s,u) for some function
A(s,u) which is computationally cheaper to compute than f(u«)), continuous opti-
mization problem usually exhibits many couplings and non-linearities that preclude
or at least limit such approaches. This affects the cost of the local search component
which in turn may influence the optimal balance between local and global search
in the algorithm. Some authors [115] have proposed to store the state of the local
search along with each solution it is applied to, so that further applications of the lo-
cal improvement routine resume from this state. We refer to [25] for a more detailed
discussion of design issues in MAs for continuous optimization.

9.3.3 Memetic Computing Approaches

Memes were introduced in Sect. 9.1 as units of imitation. In a computational context
(and more precisely with regard to memetic algorithms), they acquire a new mean-
ing though. In this sense, a first interpretation would be to use the notion of meme
as a high-level non-genetic pattern of information, that is, the carrier particle of in-
dividual learning. From the standpoint of classical MAs, this role is implemented
by local improvement procedures. Thus, the particular choice of a local search pro-
cedure (a simple heuristic rule, hill climbing, simulated annealing, etc.) plus the
corresponding parameterization can be regarded as the implicit definition of a fixed

9 An Accelerated Introduction to Memetic Algorithms 295

meme. However, earlier works already anticipated that these memes needed not be
static, but change dynamically during the search. Quoting [118]:

It may be possible that a future generation of MAs will work in at least two levels and two
timescales. In the short-timescale, a set of agents would be searching in the search space
associated to the problem while the long-time scale adapts the heuristics associated with the
agents.

The first steps in this direction were taken in [96, 168] by including an explicit rep-
resentation of memes alongside solutions, and having them evolve. This has given
rise to the notion of memetic computing, which can be defined as a broad discipline
that focuses on the use of dynamic complex computational structures composed of
interacting modules (the memes) which are harmoniously coordinated to solve par-
ticular problems [132]; see also [19, 146].

There are obvious connections here with the notion of adaptive hyperheuristics
[16, 18, 35, 88], particularly in the context of Meta-Lamarckian learning [137, 145],
in which a collection of memes are available and some mechanism is used to decide
which one to apply and when (be it using information on the previous applications
of each meme or gathering population statistics [134]). Some other possibilities can
be used though. As mentioned above, memes can be explicitly represented (this can
range from a simple parameterization of a generic template—i.e., the neighborhood
definition of a local search procedure, the pivot rule, etc.—to the full definition of
the local improver using mechanisms akin to genetic programming) and self-adapt
during the execution of the algorithm, either as a part of solutions [97, 98, 140, 171]
or in a separate population [169]. Furthermore, it is possible to aggregate simple
memes into larger compounds or memeplexes [19] in order to attain synergistic co-
operation and improved search efficiency.

9.3.4 Self-x Memetic Algorithms

When some design guidelines were given in Sect.9.2.6, the fact that these were
heuristics that ultimately relied on the available problem knowledge was stressed.
This is not a particular feature of MAs, but affects the field of metaheuristics as a
whole. Indeed, one of the keystones in practical metaheuristic problem-solving is
the necessity of customizing the solver for the problem at hand [30]. Therefore, it is
not surprising that attempts to transfer a part of this tuning effort to the metaheuristic
technique itself have been common. Such attempts can take place at different levels,
or can affect different components of the algorithm. The first—and more intuitive
one—is the parametric level involving the numerical values of parameters, such as
the operator application rates. Examples of this can be found in early EAs, see for
example [3, 12, 39, 167]. An overview of these approaches (actually broader in
scope, covering more advanced topics than parameter adaptation) can be found in
[170]. Focusing specifically on MAs, this kind of adaptation has been applied in
[8, 71, 113, 114, 147].

296 P. Moscato and C. Cotta

The explicit processing of memes described in the previous section is actually a
further step in the direction of promoting the autonomous functioning of the algo-
rithm. Indeed, from a very general point of view this connects to the idea of auto-
nomic computing [73], that tries to transfer to the computing realm the idea of the
autonomic nervous system carrying essential functions without conscious control.
In this line, the umbrella term self-x properties [5] is used to describe the capacity
of self-management in complex computational systems [76]. Self-parameterization
attempts mentioned previously fall within the scope of self-x properties, and so does
the explicit handling of memes described in previous section, which can be consid-
ered a case of self-generating search strategies. As a matter of fact, both approaches
constitute examples of self-optimization [9], because they aim at improving the ca-
pabilities of the algorithm for carrying out its functions (which is in turn solving the
objective problem).

Self-x properties can encompass other advanced capabilities beyond self-
optimization such as self-scaling or self-healing. The former refers to the ability
of the system to react efficiently to changes in its scale parameters, be it related to
changes in the scale of the problem being solved, in the scale of the computational
resources available, or in other circumstance or combination of circumstances of the
computation. Such capability may involve some form of self-configuration in order
to accomplish the objective of the computation in the most effective way in light of
the change of scale. An example can be found in the domain of island-based MAs
[138] deployed in unstable distributed environments [32]: if the computational sub-
strate is composed of processing nodes whose availability fluctuate, the algorithm
may face uncontrollable reductions or increments of the computational resources
(i.e., some islands may appear, other islands may disappear). As a reaction, the algo-
rithm may attempt to resize the islands and balance them out, so that the population
size is affected as little as possible [141]. The second property, namely self-healing,
is also relevant in this context: it aims to maintain and restore system attributes that
may have been affected by internal or external actions, i.e., self-healing externally
infringed damage. In the volatile computational scenario depicted, such damage is
caused by the loss of information and the disruptions in connectivity caused by the
disappearance of islands [142]. To tackle these issues, the algorithm may use self-
sampling (using a probabilistic model of the population—much like it is done in
estimation of distribution algorithms [100, 151]—in order to enlarge it in a sensi-
ble way when required) and self-rewiring in order to create new connectivity links
and prevent the network from becoming disconnected. It must also be noted as an
aside that very traditional techniques commonly used when metaheuristic face con-
strained problems, namely using a repair function to restore the feasibility of solu-
tions [112], can also fall within the scope of self-repairing approaches.

9 An Accelerated Introduction to Memetic Algorithms 297

9.3.5 Memetic Algorithms and Complete Techniques

The combination of exact techniques with metaheuristics is an increasingly pop-
ular approach. Focusing on local search techniques, Dumitrescu and Stiiztle [46]
have provided a classification of methods in which exact algorithms are used to
strengthen local search, i.e., to explore large neighborhoods, to solve exactly some
subproblems, to provide bounds and problem relaxations to guide the search, etc.
Some of these combinations can also be found in the literature on population-
based methods. For example, exact techniques—such as BnB [27] or dynamic pro-
gramming [54] among others—have been used to perform recombination (recall
Sect.9.2.4), and approaches in which exact techniques solved some subproblems
provided by EAs date back to 1995 [28]; see also [47] for a large list of references
regarding local search/exact hybrids.

Puchinger and Raidl [155] have provided a classification of this kind of hybrid
techniques in which algorithmic combinations are either collaborative (sequential
or intertwined execution of the combined algorithms) or integrative (one technique
works inside the other one, as a subordinate). Some of the exact/metaheuristic hy-
brid approaches defined before are clearly integrative—i.e., using an exact technique
to explore neighborhoods. Further examples are the use of BnB in the decoding
process [156] of a genetic algorithm (i.e., exact method within a metaheuristic tech-
nique), or the use of evolutionary techniques for the strategic guidance of BnB [95]
(metaheuristic approach within an exact method).

With regard to collaborative combinations, a sequential approach in which the
execution of a MA is followed by a branch-and-cut method can be found in [90]. In-
tertwined approaches are also popular. For example, Denzinger and Offerman [43]
combine genetic algorithms and BnB within a parallel multi-agent system. These
two algorithms also cooperate in [28, 52], the exact technique providing partial
promising solutions, and the metaheuristic returning improved bound. A related ap-
proach involving beam search and full-fledged MAs can be found in [53, 55, 56];
see also [31] for a broader overview of this kind of combinations.

It must be noted that most hybrid algorithms defined so far that involve exact
techniques and metaheuristics are not complete, in the sense that they do not guaran-
tee an optimal solution (an exception is the proposal of French et al. [50], combining
an integer-programming BnB approach with GAs for MAX-SAT). Thus, the term
‘complete MA’ may be not fully appropriate. Nevertheless, many of these hybrids
can be readily adapted for completeness purposes, although obviously time and/or
space requirements will grow faster-than-polynomial in general.

9.4 Applications of Memetic Algorithms

Applications are the “raison d’étre” of memetic algorithms. Their functioning phi-
losophy, namely incorporating and exploiting knowledge of the problem being
solved, presumes they are designed with a target problem in mind. This section will

298 P. Moscato and C. Cotta

provide an overview of the numerous applications of MAs. The reader may actually
be convinced of the breadth of these applications by noting the existence of a num-
ber of domain-specific reviews of MAs. As a matter of fact, we have organized this
section as a meta-review of applications, providing pointers to these compilations
rather than to individual specific applications. This is done in Table 9.1.

Table 9.1 Application surveys of memetic algorithms

Domain References

General overviews [33, 69, 120-123, 132]
Bioinformatics [11,122]
Combinatorial optimization [120-123]

Electronics and telecommunications [33, 34, 120, 122, 123]
Engineering [17, 33]

Machine learning and knowledge discovery [120, 122, 123]
Molecular optimization [120, 123]

Planning, scheduling, and timetabling [24, 122-124]

General overviews are also referenced with respect to the subdomains in which they are internally
structured

Any of the reviews mentioned are far from exhaustive since new applications are
being developed continuously. However, they are intended to illustrate the practical
impact of these optimization techniques, pointing out some selected compilations
from these well-known application areas. For further information about MA ap-
plications, we suggest querying bibliographical databases or web browsers for the
keywords ‘memetic algorithms’ and ‘hybrid genetic algorithms’.

9.5 Conclusions

We believe that the future looks good for MAs. This belief is based on the following.
First of all, MAs are showing a great record of efficient implementations, providing
very good results for practical problems, as the reader may have noted in Sect. 9.4.
We also have reasons to believe that we are close to some major leaps forward in
our theoretical understanding of these techniques, including for example the worst-
case and average-case computational complexity of recombination procedures. On
the other hand, the ubiquitous nature of distributed systems is likely to boost
the deployment of MAs on large-scale, computationally demanding optimization
problems.

We also see as a healthy sign the systematic development of other particular op-
timization strategies. If any of the simpler metaheuristics (SA, TS, VNS, GRASP,
etc.) performs the same as a more complex method (GAs, MAs, Ant Colonies, etc.),
an “elegance design” principle should prevail and we must either resort to the sim-
pler method, or to the one that has less free parameters, or to the one that is easier

9 An Accelerated Introduction to Memetic Algorithms 299

to implement. Such a fact should challenge us to adapt complex methodologies to
beat simpler heuristics, or to check if that is possible at all. An unhealthy sign of

250 |- —@— Web of Science
—m— Scopus

200
a
.2
=

2 150
e
a
Gy
o

5 100
)
E
=

50

0

2000 2005 2010 2015
year

Fig. 9.1 Number of publications obtained by querying the Web of Science and Scopus with the
term “memetic algorithm” (1998-2016)

current research, however, are the attempts to encapsulate metaheuristics in sepa-
rate compartments. Fortunately, such attempts are becoming increasingly less fre-
quent. Indeed, combinations of MAs with other metaheuristics such as differential
evolution [133, 143, 163, 181], estimation of distribution algorithms [2, 139, 184],
particle swarm optimization [75, 101, 105-108, 148, 152, 172, 193], or ant-colony
optimization [103] are not unusual nowadays. Furthermore, there is a clear ascend-
ing trend in the number of publications related to MAs, as shown in Fig.9.1. Thus,
as stated before, the future looks promising for MAs.

Acknowledgements This chapter is an update of [122], refurbished with new references and the
inclusion of sections on timely topics which were not fully addressed in the previous editions.
Pablo Moscato acknowledges funding of his research by the Australian Research Council grants
Future Fellowship FT120100060 and Discovery Project DP140104183. He also acknowledges pre-
vious support by FAPESP, Brazil (1996-2001). Carlos Cotta acknowledges the support of Spanish
Ministry of Economy and Competitiveness and European Regional Development Fund (FEDER)
under project EphemeCH (TIN2014-56494-C4-1-P).

300

P. Moscato and C. Cotta

References

1.

10.

15.

16.

19.

20.

D. Aldous, U. Vazirani, “Go with the winners” algorithms, in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (IEEE Press, Los Alamitos, 1994), pp. 492—
501

. J.E. Amaya, C. Cotta, A.J. Ferndndez, Cross entropy-based memetic algorithms: an applica-

tion study over the tool switching problem. Int. J. Comput. Intell. Syst. 6(3), 559-584 (2013)

. P. Angeline, Morphogenic evolutionary computations: introduction, issues and example, in

Fourth Annual Conference on Evolutionary Programming, ed. by J.R. McDonnell et al. (MIT
Press, Cambridge, 1995), pp. 387-402

. R. Axelrod, W. Hamilton, The evolution of cooperation. Science 211(4489), 1390-1396

(1981)

. O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, M. van Steen

(eds.), Self-Star Properties in Complex Information Systems. Lecture Notes in Computer
Science, vol. 3460 (Springer, Berlin, 2005)

. T. Bick, Evolutionary Algorithms in Theory and Practice (Oxford University Press, New

York, 1996)

. T. Bick, F. Hoffmeister, Adaptive search by evolutionary algorithms, in Models of Self-

organization in Complex Systems, ed. by W. Ebeling, M. Peschel, W. Weidlich. Mathematical
Research, vol. 64 (Akademie-Verlag, Berlin, 1991), pp. 17-21

. N. Bambha, S. Bhattacharyya, J. Teich, E. Zitzler, Systematic integration of parameterized

local search into evolutionary algorithms. IEEE Trans. Evol. Comput. 8(2), 137-155 (2004)

. A.Berns, S. Ghosh, Dissecting self-x properties, in Third IEEE International Conference on

Self-Adaptive and Self-Organizing Systems - SASO 2009 (IEEE Press, San Francisco, 2009),
pp- 10-19

R. Berretta, C. Cotta, P. Moscato, Enhancing the performance of memetic algorithms by
using a matching-based recombination algorithm: results on the number partitioning prob-
lem, in Metaheuristics: Computer-Decision Making, ed. by M. Resende, J. Pinho de Sousa
(Kluwer Academic Publishers, Boston, 2003), pp. 65-90

. R. Berretta, C. Cotta, P. Moscato, Memetic algorithms in bioinformatics, in Handbook of

Memetic Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelli-
gence, vol. 379 (Springer, Berlin, 2012), pp. 261-271

. H. Beyer, Toward a theory of evolution strategies: self-adaptation. Evol. Comput. 3(3), 311-

348 (1995)

. H.G. Beyer, H.P. Schwefel, Evolution strategies — a comprehensive introduction. Nat. Com-

put. 1(1), 3-52 (2002)

. M. Boudia, C. Prins, M. Reghioui, An effective memetic algorithm with population manage-

ment for the split delivery vehicle routing problem, in Hybrid Metaheuristics 2007, ed. by
T. Bartz-Beielstein et al. Lecture Notes in Computer Science, vol. 4771 (Springer, Berlin,
2007), pp. 16-30

L. Buriol, P. Franca, P. Moscato, A new memetic algorithm for the asymmetric traveling
salesman problem. J. Heuristics 10(5), 483-506 (2004)

E. Burke, G. Kendall, E. Soubeiga, A tabu search hyperheuristic for timetabling and roster-
ing. J. Heristics 9(6), 451470 (2003)

. A. Caponio, F. Neri, Memetic algorithms in engineering and design, in Handbook of Memetic

Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence,
vol. 379 (Springer, Berlin, 2012), pp. 241-260

. K. Chakhlevitch, P. Cowling, Hyperheuristics: recent developments, in Adaptive and Mul-

tilevel Metaheuristics, ed. by C. Cotta, M. Sevaux, K. Sorensen. Studies in Computational
Intelligence, vol. 136 (Springer, Berlin, 2008), pp. 3-29

X. Chen, Y.S. Ong, A conceptual modeling of meme complexes in stochastic search. IEEE
Trans. Syst. Man Cybern. Part C Appl. Rev. 42(5), 612-625 (2012)

H. Cobb, J. Grefenstette, Genetic algorithms for tracking changing environments, in Proceed-
ings of the Fifth International Conference on Genetic Algorithms, ed. by S. Forrest (Morgan
Kaufmann, San Mateo, 1993), pp. 529-530

9 An Accelerated Introduction to Memetic Algorithms 301

21

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

. C. Coello Coello, G. Lamont, Applications of Multi-Objective Evolutionary Algorithms
(World Scientific, New York, 2004)

C. Coello Coello, D. Van Veldhuizen, G. Lamont, Evolutionary Algorithms for Solving Multi-
Objective Problems. Genetic Algorithms and Evolutionary Computation, vol. 5 (Kluwer
Academic Publishers, Dordrecht, 2002)

C. Cotta, Memetic algorithms with partial lamarckism for the shortest common superse-
quence problem, in Artificial Intelligence and Knowledge Engineering Applications: A Bioin-
spired Approach, ed. by J. Mira, J. Alvarez. Lecture Notes in Computer Science, vol. 3562
(Springer, Berlin, 2005), pp. 84-91

C. Cotta, A. Fernandez, Memetic algorithms in planning, scheduling, and timetabling, in
Evolutionary Scheduling, ed. by K. Dahal, K. Tan, P. Cowling. Studies in Computational
Intelligence, vol. 49 (Springer, Berlin, 2007), pp. 1-30

C. Cotta, F. Neri, Memetic algorithms in continuous optimization, in Handbook of Memetic
Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence,
vol. 379 (Springer, Berlin, 2012), pp. 121-134

C. Cotta, J. Troya, On the influence of the representation granularity in heuristic forma re-
combination, in ACM Symposium on Applied Computing 2000, ed. by J. Carroll, E. Damiani,
H. Haddad, D. Oppenheim (ACM Press, New York, 2000), pp. 433439

C. Cotta, J. Troya, Embedding branch and bound within evolutionary algorithms. Appl. In-
tell. 18(2), 137-153 (2003)

C. Cotta, J. Aldana, A. Nebro, J. Troya, Hybridizing genetic algorithms with branch and
bound techniques for the resolution of the TSP, in Artificial Neural Nets and Genetic Algo-
rithms 2, ed. by D. Pearson, N. Steele, R. Albrecht (Springer, Wien, 1995), pp. 277-280

C. Cotta, E. Alba, J. Troya, Stochastic reverse hillclimbing and iterated local search, in Pro-
ceedings of the 1999 Congress on Evolutionary Computation (IEEE, Washington, DC, 1999),
pp. 1558-1565

C. Cotta, M. Sevaux, K. Sorensen, Adaptive and Multilevel Metaheuristics. Studies in Com-
putational Intelligence, vol. 136 (Springer, Berlin, 2008)

C. Cotta, A.J. Ferndndez Leiva, J.E. Gallardo, Memetic algorithms and complete techniques,
in Handbook of Memetic Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Com-
putational Intelligence, vol. 379 (Springer, Berlin, 2012), pp. 189-200

C. Cotta, A.J. Ferndndez-Leiva, F. Fernandez de Vega, F. Chavez, J.J. Merelo, P.A. Castillo,
G. Bello, D. Camacho, Ephemeral computing and bioinspired optimization - challenges and
opportunities, in 7th International Joint Conference on Evolutionary Computation Theory
and Applications, Lisboa (2015), pp. 319-324

C. Cotta, L. Mathieson, P. Moscato, Memetic algorithms, in Handbook of Heuristics, ed. by
M. Resende, R. Marti, P. Pardalos (Springer, Berlin, 2015)

C. Cotta, J. Gallardo, L. Mathieson, P. Moscato, A contemporary introduction to memetic al-
gorithms, in Wiley Encyclopedia of Electrical and Electronic Engineering (Wiley, Hoboken,
2016), pp. 1-15. https://doi.org/10.1002/047134608X.W8330

P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach to schedule a sales submit,
in Third International Conference on Practice and Theory of Automated Timetabling III -
PATAT 2000, ed. by E. Burke, W. Erben. Lecture Notes in Computer Science, vol. 2079
(Springer, Berlin, 2000), pp. 176-190

J. Culberson, On the futility of blind search: an algorithmic view of “no free lunch”. Evol.
Comput. 6(2), 109-128 (1998)

Y. Davidor, Epistasis variance: suitability of a representation to genetic algorithms. Complex
Syst. 4(4), 369-383 (1990)

Y. Davidor, O. Ben-Kiki, The interplay among the genetic algorithm operators: informa-
tion theory tools used in a holistic way, in Parallel Problem Solving From Nature II, ed. by
R. Minner, B. Manderick (Elsevier Science Publishers B.V., Amsterdam, 1992), pp. 75-84
L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold Computer Library, New
York, 1991)

R. Dawkins, The Selfish Gene (Clarendon Press, Oxford, 1976)

https://doi.org/10.1002/047134608X.W8330

302

41

42

43.

44,
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

P. Moscato and C. Cotta

. M.A.M. de Oca, C. Cotta, F. Neri, Local search, in Handbook of Memetic Algorithms. Studies
in Computational Intelligence, ed. by F. Neri, C. Cotta, P. Moscato, vol. 379 (Springer, Berlin,
2012), pp. 2941

. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, Chichester,

2001)

J. Denzinger, T. Offermann, On cooperation between evolutionary algorithms and other

search paradigms, in 6th International Conference on Evolutionary Computation (IEEE

Press, New York, 1999), pp. 2317-2324

M. Deza, E. Deza, Encyclopedia of Distances (Springer, Berlin, 2009)

S. Droste, T. Jansen, I. Wegener, Perhaps not a free lunch but at least a free appetizer, in

Genetic and Evolutionary Computation - GECCO 1999, ed. by W. Banzhaf et al., vol. 1

(Morgan Kaufmann Publishers, Orlando, 1999), pp. 833-839

I. Dumitrescu, T. Stiitzle, Combinations of local search and exact algorithms, in Applications

of Evolutionary Computing: EvoWorkshops 2003, ed. by G.R. Raidl et al. Lecture Notes in

Computer Science, vol. 2611 (Springer, Berlin, 2003), pp. 212-224

S. Fernandes, H. Lourengo, Hybrids combining local search heurisitcs with exact algorithms,

in V Congreso Espaiiol sobre Metaheuristicas, Algoritmos Evolutivos y Bioinspirados, Las

Palmas, Spain, ed. by F. Almeida et al. (2007), pp. 269-274

PM. Franga, J.N. Gupta, A.S. Mendes, P. Moscato, K.J. Veltink, Evolutionary algorithms for

scheduling a flowshop manufacturing cell with sequence dependent family setups. Comput.

Ind. Eng. 48(3), 491-506 (2005)

B. Freisleben, P. Merz, A genetic local search algorithm for solving symmetric and asymmet-

ric traveling salesman problems, in Proceedings of the 1996 IEEE International Conference

on Evolutionary Computation, Nagoya, Japan (IEEE Press, New York, 1996), pp. 616-621

A. French, A. Robinson, J. Wilson, Using a hybrid genetic-algorithm/branch and bound ap-

proach to solve feasibility and optimization integer programming problems. J. Heuristics

7(6), 551-564 (2001)

J.E. Gallardo, C. Cotta, A GRASP-based memetic algorithm with path relinking for the far

from most string problem. Eng. Appl. Artif. Intell. 41, 183-194 (2015)

J. Gallardo, C. Cotta, A. Ferndndez, Solving the multidimensional knapsack problem using

an evolutionary algorithm hybridized with branch and bound, in Artificial Intelligence and

Knowledge Engineering Applications: A Bioinspired Approach, ed. by J. Mira, J. Alvarez.

Lecture Notes in Computer Science, vol. 3562 (Springer, Berlin, 2005), pp. 21-30

J. Gallardo, C. Cotta, A. Fernandez, A multi-level memetic/exact hybrid algorithm for the

still life problem, in Parallel Problem Solving from Nature IX, ed. by T. Runarsson et al.

Lecture Notes in Computer Science, vol. 4193 (Springer, Berlin, 2006), pp. 212-221

J. Gallardo, C. Cotta, A. Ferndndez, A memetic algorithm with bucket elimination for the

still life problem, in Evolutionary Computation in Combinatorial Optimization, ed. by J. Got-

tlieb, G. Raidl. Lecture Notes in Computer Science, vol. 3906 (Springer, Budapest, 2006),

pp. 73-84

J. Gallardo, C. Cotta, A. Ferndndez, Reconstructing phylogenies with memetic algorithms

and branch-and-bound, in Analysis of Biological Data: A Soft Computing Approach, ed. by

S. Bandyopadhyay, U. Maulik, J.T.L. Wang (World Scientific, Singapore, 2007), pp. 59-84

J.E. Gallardo, C. Cotta, A.J. Fernandez, On the hybridization of memetic algorithms with

branch-and-bound techniques. IEEE Trans. Syst. Man Cybern. B 37(1), 77-83 (2007)

J.E. Gallardo, C. Cotta, A.J. Fernandez, Solving weighted constraint satisfaction problems

with memetic/exact hybrid algorithms. J. Artif. Intell. Res. 35, 533-555 (2009)

M. Gen, R. Cheng, Genetic Algorithms and Engineering Optimization (Wiley, Hoboken,

2000)

F. Glover, M. Laguna, R. Mart, Fundamentals of scatter search and path relinking. Control.

Cybern. 29(3), 653-684 (2000)

M. Gorges-Schleuter, ASPARAGOS: an asynchronous parallel genetic optimization strat-

egy, in Proceedings of the 3rd International Conference on Genetic Algorithms, ed. by J.D.

Schaffer (Morgan Kaufmann Publishers, Burlington, 1989), pp. 422-427

9 An Accelerated Introduction to Memetic Algorithms 303

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

M. Gorges-Schleuter, Explicit parallelism of genetic algorithms through population struc-
tures, in Parallel Problem Solving from Nature, ed. by H.P. Schwefel, R. Ménner (Springer,
Berlin, 1991), pp. 150-159

J. Gottlieb, Permutation-based evolutionary algorithms for multidimensional knapsack prob-
lems, in ACM Symposium on Applied Computing 2000, ed. by J. Carroll, E. Damiani, H. Had-
dad, D. Oppenheim (ACM Press, New York, 2000), pp. 408-414

P. Grim, The undecidability of the spatialized prisoner’s dilemma. Theor. Decis. 42(1), 53-80
(1997)

F. Guimaraes, F. Campelo, H. Igarashi, D. Lowther, J. Ramirez, Optimization of cost func-
tions using evolutionary algorithms with local learning and local search. IEEE Trans. Magn.
43(4), 1641-1644 (2007)

X. Guo, Z. Wu, G. Yang, A hybrid adaptive multi-objective memetic algorithm for 0/1 knap-
sack problem, in Al 2005: Advances in Artificial Intelligence. Lecture Notes in Artificial
Intelligence, vol. 3809 (Springer, Berlin, 2005), pp. 176-185

X. Guo, G. Yang, Z. Wu, A hybrid self-adjusted memetic algorithm for multi-objective opti-
mization, in 4th Mexican International Conference on Artificial Intelligence. Lecture Notes
in Computer Science, vol. 3789 (Springer, Berlin, 2005), pp. 663-672

X. Guo, G. Yang, Z. Wu, Z. Huang, A hybrid fine-timed multi-objective memetic algorithm.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E§9A(3), 790-797 (2006)

W. Hart, R. Belew, Optimizing an arbitrary function is hard for the genetic algorithm, in
Proceedings of the Fourth International Conference on Genetic Algorithms, ed. by R. Belew,
L. Booker (Morgan Kaufmann, San Mateo, 1991), pp. 190-195

W. Hart, N. Krasnogor, J. Smith, Recent Advances in Memetic Algorithms. Studies in Fuzzi-
ness and Soft Computing, vol. 166 (Springer, Berlin, 2005)

F. Herrera, M. Lozano, J. Verdegay, Tackling real-coded genetic algorithms: operators and
tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265-319 (1998)

F. Herrera, M. Lozano, A. Sanchez, A taxonomy for the crossover operator for real-coded
genetic algorithms: an experimental study. Int. J. Intell. Syst. 18, 309-338 (2003)

D. Hofstadter, Computer tournaments of the prisoners-dilemma suggest how cooperation
evolves. Sci. Am. 248(5), 16-23 (1983)

P. Horn, Autonomic computing: IBM’s perspective on the state of information technology,
Technical report, IBM Research, 2001, http://people.scs.carleton.ca/~soma/biosec/readings/
autonomic_computing.pdf. Accessed 18 Sept 2017

C. Houck, J. Joines, M. Kay, J. Wilson, Empirical investigation of the benefits of partial
lamarckianism. Evol. Comput. 5(1), 31-60 (1997)

Z.Hu, Y. Bao, T. Xiong, Comprehensive learning particle swarm optimization based memetic
algorithm for model selection in short-term load forecasting using support vector regression.
Appl. Soft Comput. 25, 15-25 (2014)

M. Huebscher, J. McCann, A survey of autonomic computing-degrees, models and applica-
tions. ACM Comput. Surv. 40(3) (2008). Article 7

M. Hulin, An optimal stop criterion for genetic algorithms: a bayesian approach, in Proceed-
ings of the Seventh International Conference on Genetic Algorithms, ed. by T. Back (Morgan
Kaufmann, San Mateo, 1997), pp. 135-143

C. Igel, M. Toussaint, On classes of functions for which no free lunch results hold. Inf.
Process. Lett. 86(6), 317-321 (2003)

H. Ishibuchi, T. Murata, Multi-objective genetic local search algorithm, in /996 Interna-
tional Conference on Evolutionary Computation, ed. by T. Fukuda, T. Furuhashi (IEEE Press,
Nagoya, 1996), pp. 119-124

H. Ishibuchi, T. Murata, Multi-objective genetic local search algorithm and its application to
flowshop scheduling. IEEE Trans. Syst. Man Cybern. 28(3), 392-403 (1998)

H. Ishibuchi, T. Yoshida, T. Murata, Balance between genetic search and local search in
memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol.
Comput. 7(2), 204-223 (2003)

http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf

304

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

P. Moscato and C. Cotta

H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, Y. Nojima, Use of heuristic local search
for single-objective optimization in multiobjective memetic algorithms, in Parallel Prob-
lem Solving from Nature X, ed. by G. Rudolph et al. Lecture Notes in Computer Science,
vol. 5199 (Springer, Berlin, 2008), pp. 743-752

A. Jaszkiewicz, Genetic local search for multiple objective combinatorial optimization. Eur.
J. Oper. Res. 137(1), 50-71 (2002)

A. Jaszkiewicz, A comparative study of multiple-objective metaheuristics on the bi-objective
set covering problem and the Pareto memetic algorithm. Ann. Oper. Res. 131(1-4), 135-158
(2004)

A. Jaszkiewicz, H. Ishibuchi, Q. Zhang, Multiobjective memetic algorithms, in Handbook of
Memetic Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelli-
gence, vol. 379 (Springer, Berlin, 2012), pp. 201-217

D. Johnson, C. Papadimitriou, M. Yannakakis, How easy is local search? J. Comput. Syst.
Sci. 37(1), 79-100 (1988)

T. Jones, Evolutionary algorithms, fitness landscapes and search, Ph.D. thesis, University of
New Mexico, 1995

G. Kendall, P. Cowling, E. Sou, Choice function and random hyperheuristics, in Fourth Asia-
Pacific Conference on Simulated Evolution and Learning, ed. by L. Wang et al. (2002),
pp. 667-671

C.W. Kheng, S.Y. Chong, M. Lim, Centroid-based memetic algorithm - adaptive lamarckian
and baldwinian learning. Int. J. Syst. Sci. 43(7), 1193-1216 (2012)

G. Klau, I. Ljubié, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, R. Weiskircher,
Combining a memetic algorithm with integer programming to solve the prize-collecting
Steiner tree problem, in GECCO 04: Genetic and Evolutionary Computation Conference
(Part 1), vol. 3102 (2004), pp. 1304-1315

J. Knowles, D. Corne, Approximating the non-dominated front using the pareto archived
evolution strategy. Evol. Comput. 8(2), 149-172 (2000)

J. Knowles, D. Corne, A comparison of diverse approaches to memetic multiobjective com-
binatorial optimization, in Proceedings of the 2000 Genetic and Evolutionary Computation
Conference Workshop Program, ed. by A.S. Wu (2000), pp. 103-108

J. Knowles, D.W. Corne, M-PAES: a memetic algorithm for multiobjective optimization,
in Proceedings of the 2000 Congress on Evolutionary Computation (CEC00) (IEEE Press,
Piscataway, 2000), pp. 325-332

J. Knowles, D. Corne, Memetic algorithms for multiobjective optimization: issues, methods
and prospects, in Recent Advances in Memetic Algorithms, ed. by W. Hart, N. Krasnogor, J.E.
Smith. Studies in Fuzziness and Soft Computing, vol. 166 (Springer, Berlin, 2005), pp. 313—
352

K. Kostikas, C. Fragakis, Genetic programming applied to mixed integer programming, in
7th European Conference on Genetic Programming, ed. by M. Keijzer et al. Lecture Notes
in Computer Science, vol. 3003 (Springer, Berlin, 2004), pp. 113-124

N. Krasnogor, Studies in the theory and design space of memetic algorithms, Ph.D. thesis,
University of the West of England, 2002

N. Krasnogor, Self generating metaheuristics in bioinformatics: the proteins structure com-
parison case. Genet. Program. Evolvable Mach. 5(2), 181-201 (2004)

N. Krasnogor, J. Smith, A tutorial for competent memetic algorithms: model, taxonomy and
design issues. IEEE Trans. Evol. Comput. 9(5), 474-488 (2005)

N. Krasnogor, J. Smith, Memetic algorithms: the polynomial local search complexity theory
perspective. J. Math. Model. Algorithms 7(1), 3-24 (2008)

P. Larraiaga, J. Lozano (eds.), Estimation of Distribution Algorithms. Genetic Algorithms
and Evolutionary Computation, vol. 2 (Springer, Berlin, 2002)

B.B. Li, L. Wang, B. Liu, An effective PSO-based hybrid algorithm for multiobjective per-
mutation flow shop scheduling. IEEE Trans. Syst. Man Cybern. B 38(4), 818-831 (2008)
D. Lim, Y.S. Ong, Y. Jin, B. Sendhoft, A study on metamodeling techniques, ensembles, and
multi-surrogates in evolutionary computation, in GECCO '07: Proceedings of the 9th annual

9 An Accelerated Introduction to Memetic Algorithms 305

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

conference on Genetic and evolutionary computation, ed. by D. Thierens et al., vol. 2 (ACM
Press, London, 2007), pp. 1288-1295

K. Lim, Y.S. Ong, M. Lim, X. Chen, A. Agarwal, Hybrid ant colony algorithms for path
planning in sparse graphs. Soft. Comput. 12(10), 981-994 (2008)

S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21(2), 498-516 (1973)

B. Liu, L. Wang, Y.H. Jin, D.X. Huang, An effective PSO-based memetic algorithm for TSP,
in Intelligent Computing in Signal Processing and Pattern Recognition. Lecture Notes in
Control and Information Sciences, vol. 345 (Springer, Berlin, 2006), pp. 1151-1156

B. Liu, L. Wang, Y. Jin, An effective PSO-based memetic algorithm for flow shop scheduling.
IEEE Trans. Syst. Man Cybern. B 37(1), 18-27 (2007)

B. Liu, L. Wang, Y. Jin, D. Huang, Designing neural networks using PSO-based memetic
algorithm, in 4th International Symposium on Neural Networks, ed. by D. Liu, S. Fei, Z.G.
Hou, H. Zhang, C. Sun. Lecture Notes in Computer Science, vol. 4493 (Springer, Berlin,
2007), pp. 219-224

D. Liu, K.C. Tan, C.K. Goh, W.K. Ho, A multiobjective memetic algorithm based on particle
swarm optimization. IEEE Trans. Syst. Man Cybern. B 37(1), 42-50 (2007)

M. Lozano, F. Herrera, N. Krasnogor, D. Molina, Real-coded memetic algorithms with
crossover hill-climbing. Evol. Comput. 12(3), 273-302 (2004)

A. Mendes, C. Cotta, V. Garcia, P. Franga, P. Moscato, Gene ordering in microarray data
using parallel memetic algorithms, in Proceedings of the 2005 International Conference
on Parallel Processing Workshops, ed. by T. Skie, C.S. Yang (IEEE Press, Oslo, 2005),
pp- 604611

P. Merz, Memetic algorithms and fitness landscapes in combinatorial optimization, in Hand-
book of Memetic Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational
Intelligence, vol. 379 (Springer, Berlin, 2012), pp. 95-119

Z. Michalewicz, Repair algorithms, in Handbook of Evolutionary Computation, ed. by
T. Béck et al. (Institute of Physics Publishing/Oxford University Press, Bristol, 1997),
pp- C5.4:1-5

D. Molina, F. Herrera, M. Lozano, Adaptive local search parameters for real-coded memetic
algorithms, in Proceedings of the 2005 IEEE Congress on Evolutionary Computation, ed. by
D. Corne et al., vol. 1 (IEEE Press, Edinburgh, 2005), pp. 888-895

D. Molina, M. Lozano, F. Herrera, Memetic algorithms for intense continuous local search
methods, in Hybrid Metaheuristics 2008, ed. by M. Blesa et al. Lecture Notes in Computer
Science, vol. 5296 (Springer, Berlin, 2008), pp. 58-71

D. Molina, M. Lozano, A.M. Sanchez, F. Herrera, Memetic algorithms based on local search
chains for large scale continuous optimisation problems: ma-ssw-chains. Soft. Comput.
15(11), 2201-2220 (2011)

P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: towards
memetic algorithms, Technical report, Caltech Concurrent Computation Program, Report
826, California Institute of Technology, Pasadena, CA, 1989

P. Moscato, An introduction to population approaches for optimization and hierarchical ob-
jective functions: the role of tabu search. Ann. Oper. Res. 41(1-4), 85-121 (1993)

P. Moscato, Memetic algorithms: a short introduction, in New Ideas in Optimization, ed. by
D. Corne, M. Dorigo, F. Glover (McGraw-Hill, Maidenhead, 1999), pp. 219-234

P. Moscato, Memetic algorithms: the untold story, in Handbook of Memetic Algorithms, ed.
by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence, vol. 379 (Springer,
Berlin, 2012), pp. 275-309

P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in Handbook of Meta-
heuristics, ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Boston, 2003),
pp. 105-144

P. Moscato, C. Cotta, Chapter 22: Memetic algorithms, in Handbook of Approximation Al-
gorithms and Metaheuristics, ed. by T. Gonzalez (Taylor & Francis, Milton Park, 2006)

306

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

P. Moscato and C. Cotta

P. Moscato, C. Cotta, A modern introduction to memetic algorithms, in Handbook of Meta-
heuristics, ed. by M. Gendreau, J. Potvin. International Series in Operations Research and
Management Science, vol. 146, 2nd edn. (Springer, Berlin, 2010), pp. 141-183

P. Moscato, C. Cotta, A. Mendes, Memetic algorithms, in New Optimization Techniques in
Engineering, ed. by G. Onwubolu, B. Babu (Springer, Berlin, 2004), pp. 53-85

P. Moscato, A. Mendes, C. Cotta, Scheduling & produ, in New Optimization Techniques in
Engineering, ed. by G. Onwubolu, B. Babu (Springer, Berlin, 2004), pp. 655-680

P. Moscato, A. Mendes, R. Berretta, Benchmarking a memetic algorithm for ordering mi-
croarray data. Biosystems 88(1), 56-75 (2007)

H. Miihlenbein, Evolution in time and space — the parallel genetic algorithm, in Founda-
tions of Genetic Algorithms, ed. by G.J. Rawlins (Morgan Kaufmann Publishers, Burlington,
1991), pp. 316-337

H. Miihlenbein, M. Gorges-Schleuter, O. Krimer, Evolution algorithms in combinatorial op-
timization. Parallel Comput. 7(1), 65-88 (1988)

Y. Nagata, S. Kobayashi, Edge assembly crossover: a high-power genetic algorithm for the
traveling salesman problem, in Proceedings of the Seventh International Conference on Ge-
netic Algorithms, ed. by T. Biack (Morgan Kaufmann, San Mateo, 1997), pp. 450-457

M. Nakamaru, H. Matsuda, Y. Iwasa, The evolution of social interaction in lattice models.
Sociol. Theory Methods 12(2), 149-162 (1998)

M. Nakamaru, H. Nogami, Y. Iwasa, Score-dependent fertility model for the evolution of
cooperation in a lattice. J. Theor. Biol. 194(1), 101-124 (1998)

J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 308—
313 (1965)

FE. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: a literature
review. Swarm Evol. Comput. 2, 1-14 (2012)

F. Neri, V. Tirronen, On memetic differential evolution frameworks: a study of advantages
and limitations in hybridization, in 2008 IEEE World Congress on Computational Intelli-
gence, ed. by J. Wang (IEEE Computational Intelligence Society/IEEE Press, Hong Kong,
2008), pp. 2135-2142

F. Neri, V. Tirronen, T. Kdrkkidinen, T. Rossi, Fitness diversity based adaptation in multimeme
algorithms: a comparative study, in /EEE Congress on Evolutionary Computation - CEC
2007 (IEEE Press, Singapore, 2007), pp. 2374-2381

F. Neri, C. Cotta, P. Moscato (eds.), Handbook of Memetic Algorithms. Studies in Computa-
tional Intelligence, vol. 379 (Springer, Berlin, 2012)

Q.H. Nguyen, Y.S. Ong, N. Krasnogor, A study on the design issues of memetic algorithm,
in 2007 IEEE Congress on Evolutionary Computation, ed. by D. Srinivasan, L. Wang (IEEE
Computational Intelligence Society/IEEE Press, Singapore, 2007), pp. 2390-2397

Q.C. Nguyen, Y.S. Ong, J.L. Kuo, A hierarchical approach to study the thermal behavior of
protonated water clusters H+(H20)(n). J. Chem. Theory Comput. 5(10), 2629-2639 (2009)
R. Nogueras, C. Cotta, An analysis of migration strategies in island-based multimemetic
algorithms, in Parallel Problem Solving from Nature - PPSN XIII, ed. by T. Bartz-Beielstein
et al. Lecture Notes in Computer Science, vol. 8672 (Springer, Berlin, 2014), pp. 731-740
R. Nogueras, C. Cotta, A study on multimemetic estimation of distribution algorithms, in
Parallel Problem Solving from Nature - PPSN XIII, ed. by T. Bartz-Beielstein et al. Lecture
Notes in Computer Science, vol. 8672 (Springer, Berlin, 2014), pp. 322-331

R. Nogueras, C. Cotta, A study on meme propagation in multimemetic algorithms. Appl.
Math. Comput. Sci. 25(3), 499-512 (2015)

R. Nogueras, C. Cotta, Studying self-balancing strategies in island-based multimemetic al-
gorithms. J. Comput. Appl. Math. 293, 180-191 (2016)

R. Nogueras, C. Cotta, Self-healing strategies for memetic algorithms in unstable and
ephemeral computational environments. Nat. Comput. 6(2), 189-200 (2017)

N. Noman, H. Iba, Accelerating differential evolution using an adaptive local search. IEEE
Trans. Evol. Comput. 12(1), 107-125 (2008)

9 An Accelerated Introduction to Memetic Algorithms 307

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

M. Norman, P. Moscato, A competitive and cooperative approach to complex combinatorial
search, in Proceedings of the 20th Informatics and Operations Research Meeting, Buenos
Aires (1989), pp. 3.15-3.29

Y. Ong, A. Keane, Meta-lamarckian learning in memetic algorithm. IEEE Trans. Evol. Com-
put. 8(2), 99-110 (2004)

Y. Ong, M. Lim, X. Chen, Memetic computation—past, present and future. IEEE Comput.
Intell. Mag. 5(2), 24-31 (2010)

E. Ozcan, J.H. Drake, C. Altintas, S. Asta, A self-adaptive multimeme memetic algorithm
co-evolving utility scores to control genetic operators and their parameter settings. Appl.
Soft Comput. 49, 81-93 (2016)

Q.K. Pan, L. Wang, B. Qian, A novel multi-objective particle swarm optimization algorithm
for no-wait flow shop scheduling problems. J. Eng. Manuf. 222(4), 519-539 (2008)

W. Paszkowicz, Properties of a genetic algorithm extended by a random self-learning oper-
ator and asymmetric mutations: a convergence study for a task of powder-pattern indexing.
Anal. Chim. Acta 566(1), 81-98 (2006)

M. Peinado, T. Lengauer, Parallel “go with the winners algorithms” in the LogP Model,
in Proceedings of the 11th International Parallel Processing Symposium (IEEE Computer
Society Press, Los Alamitos, 1997), pp. 656664

M. Pelikan, M. Hauschild, F. Lobo, Estimation of distribution algorithms, in Handbook
of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin, 2015),
pp. 899-928

Y.G. Petalas, K.E. Parsopoulos, M.N. Vrahatis, Memetic particle swarm optimization. Ann.
Oper. Res. 156(1), 99-127 (2007)

C. Prins, C. Prodhon, R. Calvo, A memetic algorithm with population management (MA
| PM) for the capacitated location-routing problem, in Evolutionary Computation in Com-
binatorial Optimization, ed. by J. Gottlieb, G. Raidl. Lecture Notes in Computer Science,
vol. 3906 (Springer, Budapest, 2006), pp. 183-194

C. Prodhom, C. Prins, A memetic algorithm with population management (MA|PM) for the
periodic location-routing problem, in Hybrid Metaheuristics 2008, ed. by M. Blesa et al.
Lecture Notes in Computer Science, vol. 5296 (Springer, Berlin, 2008), pp. 43-57

J. Puchinger, G. Raidl, Combining metaheuristics and exact algorithms in combinatorial op-
timization: a survey and classification, in Artificial Intelligence and Knowledge Engineering
Applications: A Bioinspired Approach, ed. by J. Mira, J. Alvarez. Lecture Notes in Computer
Science, vol. 3562 (Springer, Berlin, 2005), pp. 41-53

J. Puchinger, G. Raidl, G. Koller, Solving a real-world glass cutting problem, in 4th European
Conference on Evolutionary Computation in Combinatorial Optimization, ed. by J. Gottlieb,
G. Raidl. Lecture Notes in Computer Science, vol. 3004 (Springer, Berlin, 2004), pp. 165-
176

N. Radcliffe, The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4), 339-384
(1994)

N. Radcliffe, P. Surry, Fitness variance of formae and performance prediction, in Proceedings
of the 3rd Workshop on Foundations of Genetic Algorithms, ed. by L. Whitley, M. Vose
(Morgan Kaufmann, San Francisco, 1994), pp. 51-72

N. Radcliffe, P. Surry, Formal memetic algorithms, in Evolutionary Computing: AISB Work-
shop, ed. by T. Fogarty. Lecture Notes in Computer Science, vol. 865 (Springer, Berlin,
1994), pp. 1-16

I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution (Frommann-Holzboog Verlag, Stuttgart, 1973)

M. Resende, C. Ribeiro, Greedy randomized adaptive search procedures, in Handbook of
Metaheuristics, ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Boston,
2003), pp. 219-249

M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP: Greedy Randomized Adaptive
Search Procedures (Springer, New York, 2016)

308

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

P. Moscato and C. Cotta

N.R. Sabar, J.H. Abawajy, J. Yearwood, Heterogeneous cooperative co-evolution memetic
differential evolution algorithm for big data optimization problems. IEEE Trans. Evol. Com-
put. 21(2), 315-327 (2017)

O. Schuetze, G. Sanchez, C. Coello Coello, A new memetic strategy for the numerical treat-
ment of multi-objective optimization problems, in GECCO ’08: Proceedings of the 10th An-
nual Conference on Genetic and Evolutionary Computation, ed. by M. Keijzer et al. (ACM
Press, Atlanta, 2008), pp. 705-712

C. Schumacher, M. Vose, L. Whitley, The no free lunch and description length, in Genetic
and Evolutionary Computation - GECCO 2001, ed. by L. Spector et al. (Morgan Kaufmann
Publishers, San Francisco, 2001), pp. 565-570

H.P. Schwefel, Evolution strategies: a family of non-linear optimization techniques based on
imitating some principles of natural evolution. Ann. Oper. Res. 1(2), 165-167 (1984)

H. Schwefel, Imitating evolution: collective, two-level learning processes, in Explaining Pro-
cess and Change - Approaches to Evolutionary Economics (University of Michigan Press,
Ann Arbor, 1992), pp. 49-63

J. Smith, The co-evolution of memetic algorithms for protein structure prediction, in Re-
cent Advances in Memetic Algorithms, ed. by W. Hart, N. Krasnogor, J. Smith. Studies in
Fuzziness and Soft Computing, vol. 166 (Springer, Berlin, 2005), pp. 105-128

J.E. Smith, Coevolving memetic algorithms: a review and progress report. IEEE Trans. Syst.
Man Cybern. B 37(1), 6-17 (2007)

J. Smith, Self-adaptation in evolutionary algorithms for combinatorial optimization, in Adap-
tive and Multilevel Metaheuristics, ed. by C. Cotta, M. Sevaux, K. Sorensen. Studies in Com-
putational Intelligence, vol. 136 (Springer, Berlin, 2008), pp. 31-57

J. Smith, Self-adaptative and coevolving memetic algorithms, in Handbook of Memetic Algo-
rithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence, vol. 379
(Springer, Berlin, 2012), pp. 167-188

S.M. Soak, S.W. Lee, N. Mahalik, B.H. Ahn, A new memetic algorithm using particle swarm
optimization and genetic algorithm, in Knowledge-Based Intelligent Information and Engi-
neering Systems. Lecture Notes in Artificial Intelligence, vol. 4251 (Springer, Berlin, 2006),
pp. 122-129

K. Sérensen, M. Sevaux: MA | PM: memetic algorithms with population management. Com-
put. Oper. Res. 33(5), 1214-1225 (2006)

R. Storn, K. Price, Differential evolution — a simple and efficient heuristic for global opti-
mization over continuous spaces. J. Glob. Optim. 11(4), 341-359 (1997)

D. Sudholt, Memetic algorithms with variable-depth search to overcome local optima, in
GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Com-
putation, ed. by M. Keijzer et al. (ACM Press, Atlanta, 2008), pp. 787-794

D. Sudholt, The impact of parametrization in memetic evolutionary algorithms. Theor. Com-
put. Sci. 410(26), 2511-2528 (2009)

D. Sudholt, Parametrization and balancing local and global search, in Handbook of Memetic
Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence,
vol. 379 (Springer, Berlin, 2012), pp. 55-72

J. Sun, J.M. Garibaldi, N. Krasnogor, Q. Zhang, An intelligent multi-restart memetic algo-
rithm for box constrained global optimisation. Evol. Comput. 21(1), 107-147 (2013)

P. Surry, N. Radcliffe, Inoculation to initialise evolutionary search, in Evolutionary Com-
puting: AISB Workshop, ed. by T. Fogarty. Lecture Notes in Computer Science, vol. 1143
(Springer, Berlin, 1996), pp. 269-285

G. Syswerda, Uniform crossover in genetic algorithms, in Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms, ed. by J. Schaffer (Morgan Kaufmann, San Mateo,
1989), pp. 2-9

V. Tirronen, F. Neri, T. Kiarkkdinen, K. Majava, T. Rossi, A memetic differential evolution in
filter design for defect detection in paper production, in Applications of Evolutionary Com-
puting, ed. by M. Giacobini et al. Lecture Notes in Computer Science, vol. 4448 (Springer,
Berlin, 2007), pp. 320-329

9 An Accelerated Introduction to Memetic Algorithms 309

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

E. Ulungu, J. Teghem, P. Fortemps, D. Tuyttens, MOSA method: a tool for solving multi-
objective combinatorial optimization problems. J. Multi-Criteria Decis. Anal. 8(4), 221-236
(1999)

M. Voitsekhovskii, Continuous set, in Encyclopaedia of Mathematics, ed. by M. Hazewinkel,
vol. 1 (Springer, Berlin, 1995)

S. Wang, L. Wang, An estimation of distribution algorithm-based memetic algorithm for
the distributed assembly permutation flow-shop scheduling problem. IEEE Trans. Syst. Man
Cybern. Syst. 46(1), 139-149 (2016)

E. Wanner, F. Guimardes, R. Takahashi, P. Fleming, Local search with quadratic approxima-
tions into memetic algorithms for optimization with multiple criteria. Evol. Comput. 16(2),
185-224 (2008)

E. Wanner, F. Guimarges, R. Takahashi, D. Lowther, J. Ramirez, Multiobjective memetic
algorithms with quadratic approximation-based local search for expensive optimization in
electromagnetics. [IEEE Trans. Magn. 44(6), 1126-1129 (2008)

D. Whitley, Using reproductive evaluation to improve genetic search and heuristic discovery,
in Proceedings of the 2nd International Conference on Genetic Algorithms and their Applica-
tions, ed. by J. Grefenstette (Lawrence Erlbaum Associates, Cambridge, 1987), pp. 108-115
D. Whitley, V.S. Gordon, K. Mathias, Lamarckian evolution, the baldwin effect and function
optimization, in ed. by Parallel Problem Solving from Nature — PPSN 111, ed. by Y. Davidor,
H.P. Schwefel, R. Minner (Springer, Berlin, 1994), pp. 5-15

P. Wiston, Artificial Intelligence (Addison-Wesley, Reading, 1984)

D. Wolpert, W. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Com-
put. 1(1), 67-82 (1997)

A.H. Wright, Genetic algorithms for real parameter optimization, in Proceedings of the First
Workshop on Foundations of Genetic Algorithms, ed. by G.J.E. Rawlins (Morgan Kaufmann,
Burlington, 1990), pp. 205-218

Q. Yuan, F. Qian, W. Du, A hybrid genetic algorithm with the baldwin effect. Inf. Sci. 180(5),
640-652 (2010)

Z.Zhen, Z. Wang, Z. Gu, Y. Liu, A novel memetic algorithm for global optimization based
on PSO and SFLA, in 2nd International Symposium on Advances in Computation and Intel-
ligence, ed. by L. Kang, Y. Liu, S.Y. Zeng. Lecture Notes in Computer Science, vol. 4683
(Springer, Berlin, 2007), pp. 127-136

Z.Zhou, Y.S. Ong, M.H. Lim, B.S. Lee, Memetic algorithm using multi-surrogates for com-
putationally expensive optimization problems. Soft. Comput. 11(10), 957-971 (2007)

E. Zitzler, M. Laumanns, S. Bleuler, A Tutorial on Evolutionary Multiobjective Optimization,
in Metaheuristics for Multiobjective Optimisation, ed. by X. Gandibleux et al. Lecture Notes
in Economics and Mathematical Systems, vol. 535 (Springer, Berlin, 2004)

Chapter 10)
Ant Colony Optimization: Overview and %
Recent Advances

Marco Dorigo and Thomas Stiitzle

Abstract Ant Colony Optimization (ACO) is a metaheuristic that is inspired by the
pheromone trail laying and following behavior of some ant species. Artificial ants in
ACO are stochastic solution construction procedures that build candidate solutions
for the problem instance under concern by exploiting (artificial) pheromone infor-
mation that is adapted based on the ants’ search experience and possibly available
heuristic information. Since the proposal of Ant System, the first ACO algorithm,
many significant research results have been obtained. These contributions focused
on the development of high performing algorithmic variants, the development of a
generic algorithmic framework for ACO algorithm, successful applications of ACO
algorithms to a wide range of computationally hard problems, and the theoretical un-
derstanding of important properties of ACO algorithms. This chapter reviews these
developments and gives an overview of recent research trends in ACO.

10.1 Introduction

Ant Colony Optimization (ACO) [63, 66, 70] is a metaheuristic for solving
hard combinatorial optimization problems. The inspiring source of ACO is the
pheromone trail laying and following behavior of real ants, which use pheromones
as a communication medium. By analogy with the biological example, ACO is
based on indirect communication within a colony of simple agents, called (artifi-
cial) ants, mediated by (artificial) pheromone trails. The pheromone trails in ACO
serve as distributed, numerical information, which is used by the ants to probabilis-

M. Dorigo - T. Stiitzle (P<))
IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium
e-mail: mdorigo@ulb.ac.be;stuetzle @ulb.ac.be

© Springer International Publishing AG, part of Springer Nature 2019 311
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_10&domain=pdf
mailto:mdorigo@ulb.ac.be; stuetzle@ulb.ac.be
https://doi.org/10.1007/978-3-319-91086-4_10

312 M. Dorigo and T. Stiitzle

tically construct solutions to the problem being solved and which they adapt during
the algorithm’s execution to reflect their search experience.

The first example of such an algorithm is Ant System (AS) [61, 67-69], which
was proposed using as application example the well known traveling salesman prob-
lem (TSP) [6, 110, 155]. Despite encouraging initial results, AS could not compete
with state-of-the-art algorithms for the TSP. Nevertheless, it had the important role
of stimulating further research both on algorithmic variants, which obtain much
better computational performance, and on applications to a large variety of different
problems. In fact, there exist now a considerable number of applications of such
algorithms where world class performance is obtained. Examples are applications
of ACO algorithms to problems such as sequential ordering [84], scheduling [20],
assembly line balancing [21], probabilistic TSP [7], 2D-HP protein folding [160],
DNA sequencing [27], protein—ligand docking [107], packet-switched routing in
Internet-like networks [52], and so on. The ACO metaheuristic provides a common
framework for the existing applications and algorithmic variants [63, 70]. Algo-
rithms which follow the ACO metaheuristic are called ACO algorithms.

The (artificial) ants in ACO implement a randomized construction heuristic
which makes probabilistic decisions as a function of artificial pheromone trails and
possibly available heuristic information based on the input data of the problem to be
solved. As such, ACO can be interpreted as an extension of traditional construction
heuristics, which are readily available for many combinatorial optimization prob-
lems. Yet, an important difference with construction heuristics is the adaptation of
the pheromone trails during algorithm execution to take into account the cumulated
search experience.

The rest of this chapter is organized as follows. In Sect. 10.2, we briefly overview
construction heuristics and local search algorithms. In Sect. 10.3, we present a spe-
cific version of the ACO metaheuristic that focuses on applications to A/P-hard
problems. Section 10.4 outlines the inspiring biological analogy and describes the
historical developments leading to ACO. In Sect. 10.5, we illustrate how the ACO
metaheuristic can be applied to different types of problems and we give an overview
of its successful applications. Section 10.6 gives an overview of recent developments
in ACO and Sect. 10.7 concludes the chapter.

10.2 Approximate Approaches

Many important combinatorial optimization problems are hard to solve. The notion
of problem hardness is captured by the theory of computational complexity [88, 150]
and for many important problems it is well known that they are NP-hard, that is,
the time needed to solve an instance in the worst case grows exponentially with

10 Ant Colony Optimization: Overview and Recent Advances 313

procedure Greedy Construction Heuristic
sp = empty solution
while s;, not_a_complete_solution do
e = GreedyComponent(sp)
Sp =sp Qe
end
return s,
end Greedy Construction Heuristic

Fig. 10.1 Algorithmic skeleton of a greedy construction heuristic. The addition of component e
to a partial solution s, is denoted by the operator ®

the instance size. Often, approximate algorithms are the only feasible way to obtain
near optimal solutions at relatively low computational cost.

Most approximate algorithms are either construction algorithms or local search
algorithms.! These two types of methods are significantly different, because con-
struction algorithms work on partial solutions trying to extend them in the best pos-
sible way to complete problem solutions, while local search methods move in the
search space of complete solutions.

10.2.1 Construction Algorithms

Construction algorithms build solutions to a problem under consideration in an in-
cremental way starting with an empty initial solution and iteratively adding appro-
priate solution components without backtracking until a complete solution is ob-
tained. In the simplest case, solution components are added in random order. Often
better results are obtained if a heuristic estimate of the myopic benefit of adding
solution components is taken into account. Greedy construction heuristics add at
each step a solution component that achieves the maximal myopic benefit as mea-
sured by some heuristic information. An algorithmic outline of a greedy construc-
tion heuristic is given in Fig. 10.1. The function GreedyComponent returns the
solution component e with the best heuristic estimate as a function of the current
partial solution s,. Solutions returned by greedy algorithms are typically of (much)
better quality than randomly generated solutions. Yet, a disadvantage of greedy con-
struction heuristics is that they typically generate only a limited number of different
solutions. Additionally, greedy decisions in early stages of the construction process
constrain the available possibilities at later stages, often causing very poor moves in
the final phases of the solution construction.

! Other approximate methods are also conceivable. For example, when stopping exact methods,
like Branch and Bound, before completion [11, 104] (e.g., using some given time bound, or when
some guarantee on solution quality is obtained through the use of lower and upper bounds), we can
convert exact algorithms into approximate ones.

314 M. Dorigo and T. Stiitzle

procedure [terativeImprovement (s € S)
s’ = Improve(s)

while s’ # s do
s=s'
s’ = Improve(s)

end

return s

end [terativeImprovement

Fig. 10.2 Algorithmic skeleton of iterative improvement

As an example, consider a greedy construction heuristic for the TSP. In the TSP
we are given a complete weighted graph G = (N, A) with N being the set of vertices,
representing the cities, and A the set of edges fully connecting the vertices N. Each
edge is assigned a value d;;, which is the length of edge (i, j) € A. The TSP is the
problem of finding a minimum length Hamiltonian cycle of the graph, where an
Hamiltonian cycle is a closed tour visiting exactly once each of the n = |N| vertices
of G. For symmetric TSPs, the distances between the cities are independent of the
direction of traversing the edges, that is, d;; = d; for every pair of vertices. In the
more general asymmetric TSP (ATSP) at least for one pair of vertices i, j we have
di j 75 d i

A simple rule of thumb to build a tour is to start from some initial city and to
always choose to go to the closest still unvisited city before returning to the start
city. This algorithm is known as the nearest neighbor tour construction heuristic.

Construction algorithms are typically the fastest approximate methods, but the
solutions they generate are often not of very high quality and they are not guaran-
teed to be optimal with respect to small changes; therefore, the results produced by
constructive heuristics can often be improved by local search algorithms.

10.2.2 Local Search Algorithms

Local search algorithms start from a complete initial solution and try to find a better
solution in an appropriately defined neighborhood of the current solution. In its most
basic version, known as iterative improvement, the algorithm searches the neighbor-
hood for an improving solution. If such a solution is found, it replaces the current
solution and the local search continues. These steps are repeated until no improv-
ing neighbor solution can be found and the algorithm ends in a local optimum. An
outline of an iterative improvement algorithm is given in Fig. 10.2. The procedure
Improve returns a better neighbor solution if one exists, otherwise it returns the
current solution, in which case the algorithm stops.

10 Ant Colony Optimization: Overview and Recent Advances 315

\\ 2—exchange N
. .
\
\),,7 7
A
SN
\ el
N ~
\ .~

Fig. 10.3 Schematic illustration of a 2-exchange move. The proposed move reduces the total tour
length if we consider the Euclidean distance between the points

The choice of an appropriate neighborhood structure is crucial for the perfor-
mance of local search algorithms and has to be done in a problem specific way. The
neighborhood structure defines the set of solutions that can be reached from s in
one single step of the algorithm. An example of neighborhood for the TSP is the
k-exchange neighborhood in which neighbor solutions differ by at most & edges.
Figure 10.3 shows an example of a 2-exchange neighborhood. The 2-exchange
algorithm systematically tests whether the current tour can be improved by replac-
ing two edges. To fully specify a local search algorithm, it is necessary to designate
a particular neighborhood examination scheme that defines how the neighborhood
is searched and which neighbor solution replaces the current one. In the case of
iterative improvement algorithms, this rule is called the pivoting rule [188] and ex-
amples are the best-improvement rule, which chooses the neighbor solution giving
the largest improvement of the objective function, and the first-improvement rule,
which uses the first improved solution found when scanning the neighborhood to
replace the current one. A common problem with local search algorithms is that
they easily get trapped in local minima and that the result strongly depends on the
initial solution.

10.3 The ACO Metaheuristic

Artificial ants used in ACO are stochastic solution construction procedures that
probabilistically build a solution by iteratively adding solution components to par-
tial solutions by taking into account (1) heuristic information about the problem in-
stance being solved, if available, and (2) (artificial) pheromone trails which change
dynamically at run-time to reflect the agents’ acquired search experience.

A stochastic component in ACO allows the ants to build a wide variety of differ-
ent solutions and hence to explore a much larger number of solutions than greedy
heuristics. At the same time, the use of heuristic information, which is readily avail-
able for many problems, can guide the ants towards the most promising solutions.
More important, the ants’ search experience can be used to influence, in a way remi-
niscent of reinforcement learning [179], the solution construction in future iterations

316 M. Dorigo and T. Stiitzle

of the algorithm. Additionally, the use of a colony of ants can give the algorithm in-
creased robustness and in many ACO applications the collective interaction of a
population of agents is needed to efficiently solve a problem.

The domain of application of ACO algorithms is vast. In principle, ACO can
be applied to any discrete optimization problem for which some solution construc-
tion mechanism can be conceived. In the remainder of this section, we first define a
generic problem representation that the ants in ACO may exploit to construct solu-
tions, and then we define the ACO metaheuristic.

10.3.1 Problem Representation

Let us consider minimization problems? and define a general model of a combina-
torial optimization problem.

Definition 1. A model P = (S, (2, f) of a combinatorial optimization problem con-
sists of

e a search space S that is defined by a finite set of decision variables, each with a
finite domain, and a set 2 of constraints among the variables;
e an objective function f: S+]R(’)L that is to be minimized.

The search space is defined by a finite set of variables X;,i = 1,...,n, each having
an associated domain D; of values that can be assigned to it. An instantiation of a
variable consists in an assignment of a value v{ € D; to variable X; and it is denoted
by X; =v/. A feasible solution s € S is an assignment to each variable of a value in its
domain such that all the problem constraints in £2 are satisfied. If €2 is empty, then
the problem is unconstrained and each decision variable can take any value from
its domain, independent of the other variables. In this case, P is an unconstrained
problem model; otherwise it is called constrained. A feasible solution s* € S is called
a global minimum of P if and only if f(s*) < f(s) Vs € S. We denote by §* C S the
set of all global minima. O

This model of a combinatorial optimization problem can be directly used to de-
rive a generic pheromone model that is exploited by ACO algorithms. To see how, let
us call the instantiation of a variable X; with a particular value v{ of its domain a so-
lution component, which is denoted by ¢/. Ants then need to appropriately combine
solution components to form high-quality, feasible solutions. To do so, each solution
component ¢ will have an associated pheromone variable T;;. We denote the set of
all solution components by C and the set of all pheromone variables by T. Each
pheromone variable T;; has a pheromone value 7;;; this value indicates the desir-

2 The adaptation to maximization problems is straightforward.

10 Ant Colony Optimization: Overview and Recent Advances 317

procedure ACO algorithm for combinatorial optimization problems
Initialization
while (termination condition not met) do
ConstructAntSolutions

ApplyLocalSearch % optional
GlobalUpdatePheromones
end

end ACO algorithm for combinatorial optimization problems

Fig. 10.4 Algorithmic skeleton for ACO algorithms applied to combinatorial optimization prob-
lems. The application of a local search algorithm is a typical example of a possible daemon action
in ACO algorithms

ability of choosing solution component c{ . Note that, as said before, the pheromone
values are time-varying and therefore they are a function of the algorithm iteration
t. In what follows we will, however, omit the reference to the iteration counter and
write simply 7;; instead of 7;;(z).

As an example of this formalization, consider the TSP. In this case, the solution
components are the moves from one city to another one. This can be formalized by
associating one variable with each city. The domain of each variable X; has then
n—1values, j=1,...,n, j#i. As aresult, with each edge between a pair of cities
is associated one pheromone value 7;;. An instantiation of the decision variables
corresponds to a feasible solution, if and only if the set of edges corresponding to
the values of the decision variables forms a Hamiltonian cycle. (Note that for the
TSP it is possible to guarantee that ants generate feasible solutions.) The objective
function f(-) computes for each feasible solution the sum of the edge lengths, that
is, the length of the Hamiltonian cycle.

10.3.2 The Metaheuristic

A general outline of the ACO metaheuristic for applications to static combinato-
rial optimization problems? is given in Fig. 10.4. After initializing parameters and
pheromone trails, the main loop consists of three main steps. First, m ants construct
solutions to the problem instance under consideration, biased by the pheromone in-
formation and possibly by the available heuristic information. Once the ants have
completed their solutions, these may be improved in an optional local search phase.
Finally, before the start of the next iteration, the pheromone trails are adapted to
reflect the search experience of the ants. The main steps of the ACO metaheuristic
are explained in more detail in the following.

3 Static problems are those whose topology and costs do not change while they are being solved.
This is the case, for example, for the classic TSP, in which city locations and intercity distances
do not change during the algorithm’s run-time. In contrast, in dynamic problems the topology and
costs can change while solutions are built. An example of such a problem is routing in telecommu-
nications networks [52], in which traffic patterns change all the time.

318 M. Dorigo and T. Stiitzle

Initialization. At the start of the algorithm, parameters are set and all
pheromone variables are initialized to a value 7y, which is a parameter of the algo-
rithm.

ConstructAntSolutions. A setof m ants constructs solutions to the prob-
lem instance being tackled. To do so, each ant starts with an initially empty solu-
tion s, = 0. At each construction step, an ant extends its current partial solution
sp by choosing one feasible solution component ¢/ € N (s,) C C and adding it to
its current partial solution. A/ (s),) is the set of solution components that may be
added while maintaining feasibility and is defined implicitly by the solution con-
struction process that the ants implement. If a partial solution cannot be extended
while maintaining feasibility, it depends on the particular construction mechanism
whether the solution construction is abandoned or an infeasible, complete solution
is constructed. In the latter case, infeasible solutions may be penalized depending
on the degree of violation of the problem constraints.

The choice of the solution component to add is done probabilistically at each
construction step. Various ways for defining the probability distributions have been
considered. The most widely used rule is that of Ant System (AS) [69]:

, Vel e N(sp) (10.1)

where 7(-) is a function that assigns a heuristic value 1);; to each feasible solu-

tion component ¢! € N(s,), which is usually called the heuristic information. Pa-
rameters o and 3 determine the relative influence of the pheromone trails and the
heuristic information and have the following influence on the algorithm behavior. If
o = 0, the selection probabilities are proportional to [1); j]ﬁ and a solution compo-
nent with a high heuristic value will more likely be selected: this case corresponds
to a stochastic greedy algorithm. If 8 = 0, only pheromone amplification is at work.

ApplyLocalSearch. Once complete candidate solutions are obtained, these
may further be improved by applying local search algorithms. In fact, for a wide
range of combinatorial optimization problems, ACO algorithms reach best perfor-
mance when coupled with local search algorithms [66]. More generally, local search
is one example of what have been called daemon actions [63, 70]. These are used
to implement problem specific or centralized actions that cannot be performed by
individual ants.

GlobalUpdatePheromones. The pheromone update is intended to make
solution components belonging to good solutions more desirable for the following
iterations. There are essentially two mechanisms that are used to achieve this goal.
The first is pheromone deposit, which increases the level of the pheromone of so-
lution components that are associated with a chosen set S,,4 of good solutions. The
goal is to make these solution components more attractive for ants in the following
iterations. The second is pheromone trail evaporation, which is the mechanism that
decreases over time the pheromone deposited by previous ants. From a practical
point of view, pheromone evaporation is needed to avoid a too rapid convergence

10 Ant Colony Optimization: Overview and Recent Advances 319

of the algorithm towards a sub-optimal region. It implements a useful form of for-
getting, favoring the exploration of new areas of the search space. The pheromone
update is commonly implemented as:

Ti=1-p)ui+ Y gls) (10.2)

sES,,pd|ci/ €s

where §,,,4 is the set of solutions that are used to deposit pheromone, p € (0,1]
is a parameter called evaporation rate, g(-) : S — R™ is a function such that f(s) <
f(s") = g(s) > g(s'). It determines the quality of a solution and it is commonly
called evaluation function.

ACO algorithms typically differ in the way pheromone update is implemented:
different specifications of how to determine S, result in different instantiations of
the update rule given in Eq. (10.2). Typically, S,q is a subset of Sjs, U {sgb}, where
Sirer 1s the set of all solutions constructed in the current iteration of the main loop
and sg;, is the best solution found since the start of the algorithm (gb stands for
global-best).

10.4 History

The first ACO algorithm to be proposed was Ant System (AS). AS was applied to
some rather small TSP instances with up to 75 cities. It was able to reach the perfor-
mance of other general-purpose heuristics like evolutionary computation [61, 69].
Despite these initial encouraging results, AS did not prove to be competitive with
state-of-the-art algorithms specifically designed for the TSP. Therefore, a substan-
tial amount of research in ACO has focused on ACO algorithms which show better
performance than AS when applied, for example, to the TSP. In the remainder of this
section, we first briefly introduce the biological metaphor by which AS and ACO
are inspired, and then we present a brief history of the early developments that have
led from the original AS to more performing ACO algorithms.

10.4.1 Biological Analogy

In many ant species, individual ants may deposit a pheromone (a chemical that ants
can smell) on the ground while walking [48, 89]. By depositing pheromone, ants
create a trail that is used, for example, to mark the path from the nest to food sources
and back. Foragers can sense the pheromone trails and follow the path to food dis-
covered by other ants. Several ant species are capable of exploiting pheromone trails
to determine the shortest among the available paths leading to the food.
Deneubourg and colleagues [48, 89] used a double bridge connecting a nest of
ants and a food source to study the pheromone trail laying and following behavior

320 M. Dorigo and T. Stiitzle

in controlled experimental conditions.* They ran a number of experiments in which
they varied the length of the two branches of the bridge. For our purposes, the most
interesting of these experiments is the one in which one branch was longer than the
other. In this experiment, at the start the ants were left free to move between the nest
and the food source and the percentage of ants that chose one or the other of the
two branches was observed over time. The outcome was that, although in the initial
phase random oscillations could occur, in most experiments all the ants ended up
using the shorter branch.

This result can be explained as follows. When a trial starts there is no pheromone
on the two branches. Hence, the ants do not have a preference and they select with
the same probability either of the two branches. It can be expected that, on average,
half of the ants choose the short branch and the other half the long branch, although
stochastic oscillations may occasionally favor one branch over the other. However,
because one branch is shorter than the other, the ants choosing the short branch
are the first to reach the food and to start their travel back to the nest.’> But then,
when they must make a decision between the short and the long branch, the higher
level of pheromone on the short branch biases their decision in its favor.® Therefore,
pheromone starts to accumulate faster on the short branch, which will eventually be
used by the great majority of the ants.

It should be clear by now how real ants have inspired AS and later algorithms:
the double bridge was substituted by a graph, and pheromone trails by artificial
pheromone trails. Also, because we wanted artificial ants to solve problems more
complicated than those solved by real ants, we gave artificial ants some extra ca-
pacities, like a memory (used to implement constraints and to allow the ants to
retrace their solutions without errors) and the capacity for depositing a quantity of
pheromone proportional to the quality of the solution produced (a similar behavior
is observed also in some real ants species in which the quantity of pheromone de-
posited while returning to the nest from a food source is proportional to the quality
of the food source [10]).

In the next section we will see how, starting from AS, new algorithms have been
proposed that, although retaining some of the original biological inspiration, are less
and less biologically inspired and more and more motivated by the need of making
ACO algorithms better or at least competitive with other state-of-the-art algorithms.
Nevertheless, many aspects of the original Ant System remain: the need for a colony,
the role of autocatalysis, the cooperative behavior mediated by artificial pheromone
trails, the probabilistic construction of solutions biased by artificial pheromone trails
and local heuristic information, the pheromone updating guided by solution quality,
and the evaporation of pheromone trail are present in all ACO algorithms.

4 The experiment described was originally executed using a laboratory colony of Argentine ants
(Iridomyrmex humilis). It is known that these ants deposit pheromone both when leaving and when
returning to the nest [89].

5 In the ACO literature, this is often called differential path length effect.

6 A process like this, in which a decision taken at time 7 increases the probability of making the
same decision at time 7" > ¢ is said to be an autocatalytic process. Autocatalytic processes exploit
positive feedback.

10 Ant Colony Optimization: Overview and Recent Advances 321

10.4.2 Historical Development

As said, AS was the first ACO algorithm to be proposed in the literature. In fact,
AS was originally a set of three algorithms called ant-cycle, ant-density, and ant-
quantity. These three algorithms were proposed in Dorigo’s doctoral dissertation
[61] and first appeared in a technical report [67, 68] that was published a few years
later in the IEEE Transactions on Systems, Man, and Cybernetics [69]. Other early
publications are [36, 37].

While in ant-density and ant-quantity the ants updated the pheromone directly
after a move from a city to an adjacent one, in ant-cycle the pheromone update was
only done after all the ants had constructed the tours and the amount of pheromone
deposited by each ant was set to be a function of the tour quality. Because ant-cycle
performed better than the other two variants, it was later called simply Ant System
(and in fact, it is the algorithm that we will present in the following subsection),
while the other two algorithms were no longer studied.

The major merit of AS, whose computational results were promising but not
competitive with other more established approaches, was to stimulate a number of
researchers, mostly in Europe, to develop extensions and improvements of its basic
ideas so as to produce better performing, and often state-of-the-art, algorithms.

10.4.2.1 The First ACO Algorithm: Ant System and the TSP

The TSP is a paradigmatic NP-hard combinatorial optimization problem, which
has attracted an enormous amount of research effort [6, 103, 110]. The TSP is a
very important problem also in the context of Ant Colony Optimization because it
is the problem to which the original AS was first applied [61, 67-69], and it has later
often been used as a benchmark to test new ideas and algorithmic variants.

In AS each ant is initially put on a randomly chosen city and has a memory, which
stores the partial solution it has constructed so far (initially the memory contains
only the start city). Starting from its start city, an ant iteratively moves from city to
city, which corresponds to adding iteratively solution components as explained in
Sect. 10.3.2. When being at a city i, an ant k chooses to go to an as yet unvisited
city j with a probability given by Eq. (10.1). The heuristic information is given by
nij = 1/d;j and N (sp,) is the set of cities that ant k has not visited yet.

The solution construction ends after each ant has completed a tour, that is, after
each ant has constructed a sequence of length n, corresponding to a permutation of
the city indices. Next, the pheromone trails are updated. In AS this is done by using
Eq. (10.2), where we have

Supd = Siter (10.3)

and

g(s) =1/f(s), (10.4)

322 M. Dorigo and T. Stiitzle

where f(s) is the length of the tour s. Hence, the shorter the ant’s tour is, the more
pheromone is received by edges (solution components) belonging to the tour.” In
general, edges which are used by many ants and which are contained in shorter
tours receive more pheromone and therefore are also more likely to be chosen in
future iterations of the algorithm.

10.4.2.2 Ant System and Its Extensions

As previously stated, AS was not competitive with state-of-the-art algorithms for
the TSP. Researchers then started to extend it to try to improve its performance.

A first improvement, called the elitist strategy, was introduced in [61, 69]. It con-
sists of giving the best tour since the start of the algorithm (called s,;) a strong addi-
tional weight. In practice, each time the pheromone trails are updated by Eq. (10.2),
we have that S,,q = Siter U {5gp}, and g(s),s # sg, is given by Eq.(10.4) and
8(sgn) = e/ f(sqp), where e is a positive integer. Note that this type of pheromone
update is a first example of a daemon action as described in Sect. 10.3.2.

Other improvements reported in the literature are rank-based Ant System
(AS,ank)s MAX-MIN Ant System (MMAS), and Ant Colony System (ACS).
AS, .k [32] is in a sense an extension of the elitist strategy: it sorts the ants accord-
ing to the lengths of the tours they generated and, after each tour construction phase,
only the (w— 1) best ants and the global-best ant are allowed to deposit pheromone.
The rth best ant of the colony contributes to the pheromone update with a weight
given by max{0,w — r} while the global-best tour reinforces the pheromone trails
with weight w. This can easily be implemented by an appropriate choice of S,,4 and
g(s) in Eq. (10.2).

MMAS [172, 175, 176] introduces upper and lower bounds to the values of the
pheromone trails, as well as a different initialization of their values. In practice, the
allowed range of the pheromone trail strength in MMAS is limited to the interval
[Tmin Tmax» that is, Tmin < Tij < Tmax V7;j, and the pheromone trails are initialized to
the upper trail limit, which causes a higher exploration at the start of the algorithm.
In [172, 176] it is discussed how to set the upper and lower pheromone trail limits.
Pheromone updates are performed using a strong elitist strategy: only the best solu-
tion generated is allowed to update pheromone trails. This can be the iferation-best
solution, that is, the best in the current iteration, or the global-best solution. The
amount of pheromone deposited is then given by g(s;) = 1/f(sp), where s, is either
sip, the iteration-best solution, or s,. In fact, the iteration-best ant and the global-
best ant can be used alternately in the pheromone update. Computational results
have shown that best results are obtained when pheromone updates are performed
using the global-best solution with increasing frequency during the algorithm exe-
cution [172, 176]. As an additional means for increasing the explorative behavior
of MMAS (and of ACO algorithms, in general), occasional pheromone trail reini-

7 Note that, when applied to symmetric TSPs, the edges are considered to be bidirectional and
edges (i, j) and (j,7) are both updated. This is different for the ATSP, where edges are directed; in
this case, an ant crossing edge (i, j) will update only this edge and not edge (j,i).

10 Ant Colony Optimization: Overview and Recent Advances 323

tialization is used. M AS has been improved also by the addition of local search
routines that take the solution generated by ants to their local optimum just before
the pheromone update.

ACS [64, 65, 83] improves over AS by increasing the importance of exploita-
tion of information collected by previous ants with respect to exploration of the
search space.? This is achieved via two mechanisms. First, a strong elitist strategy
is used to update pheromone trails. Second, ants choose a solution component (that
is, the next city in the TSP case) using the so-called pseudo-random proportional
rule [65]: with probability g, 0 < go < 1, they move to the city j for which the
product between pheromone trail and heuristic information is maximum, that is,
j=arg maxclj c N(sp){ri i ng}, while with probability 1 — go they operate a biased
exploration in which the probability p;;(¢) is the same as in AS (see Eq. (10.1)). The

Table 10.1 Overview of the main ACO algorithms for A/P-hard problems that have been proposed
in the literature

ACO algorithm Main references Year TSP
Ant system [61, 67, 69] 1991 Yes
Elitist AS [61, 67, 69] 1992 Yes
Ant-Q [82] 1995 Yes
Ant colony system [64, 65, 83] 1996 Yes
MMAS [174-176] 1996 Yes
Rank-based AS [31, 32] 1997 Yes
ANTS [124, 125] 1998 No

Best-worst AS [38, 39] 2000 Yes
Population-based ACO [92] 2002 Yes
Beam-ACO [19, 20] 2004 No

Given are the ACO algorithm name, the main references where these algorithms are described, the
year they were first published, and whether they were tested on the TSP or not

value g is a parameter: when it is set to a value close to 1, as it is the case in most
ACS applications, exploitation is favored over exploration. Obviously, when go = 0
the probabilistic decision rule becomes the same as in AS.

Also, as in MMAS, only the best ant (the global-best or the iteration-best ant)
is allowed to add pheromone after each iteration of ACS; the former is the most
common choice in applications of ACS. The amount of pheromone deposited is
then given by g(s5) = p/f(s4s), where p is the pheromone evaporation.

8 ACS was an offspring of Ant-Q [82], an algorithm intended to create a link between reinforce-
ment learning [179] and Ant Colony Optimization. Computational experiments have shown that
some aspects of Ant-Q, in particular the pheromone update rule, could be strongly simplified with-
out affecting performance. It is for this reason that Ant-Q was abandoned in favor of the simpler
and equally good ACS.

324 M. Dorigo and T. Stiitzle

Finally, ACS also differs from most ACO algorithms because ants update the
pheromone trails while building solutions (as in ant-quantity and in ant-density).
In practice, ACS ants remove some of the pheromone trail on the edges they visit.
This has the effect of decreasing the probability that the same path is used by all
ants (that is, it favors exploration, counterbalancing the other two above-mentioned
modifications that strongly favor exploitation of the collected knowledge about the
problem). Similarly to MMAS, ACS also usually exploits local search to improve
its performance.

We could continue by enumerating the modifications that have been proposed
in various other ACO algorithms that have been reported in the literature. Instead,
we give an overview of the various developments on ACO algorithms for A/P-hard
problems in Table 10.1. There we give for each of the main ACO variants that have
been proposed, the main references to these algorithms, the year in which they have
been proposed and whether they have been tested on the TSP. In fact, (published)
tests of most ACO variants have been done on the TSP, which again confirms the
central role of this problem in ACO research.

10.4.2.3 Applications to Dynamic Network Routing Problems

The application of ACO algorithms to dynamic problems, that is, problems whose
characteristics change while being solved, is among the main success stories in
ACO. The first such application [159] was concerned with routing in circuit-
switched networks (e.g., classical telephone networks). The proposed algorithm,
called ABC, was demonstrated on a simulated version of the British Telecom net-
work. The main merit of ABC was to stimulate the interest of ACO researchers
in dynamic problems. In fact, only rather limited comparisons were made between
ABC and state-of-the-art algorithms, so that it is not possible to judge on the quality
of the results obtained.

A very successful application of ACO to dynamic problems is the AntNet al-
gorithm, proposed by Di Caro and Dorigo [50-53] and discussed in Sect. 10.5.3.
AntNet was applied to routing in packet-switched networks (e.g., the Internet). It
contains a number of innovations with respect to AS and it has been shown ex-
perimentally to outperform a whole set of state-of-the-art algorithms on numerous
benchmark problems. Later, AntNet has also been extended to routing problems in
mobile ad-hoc networks, obtaining again excellent performance [74].

10.4.2.4 Towards the ACO Metaheuristic

Given the initial success of ACO algorithms in the applications to A/P-hard prob-
lems as well as to dynamic routing problems in networks, Dorigo and Di Caro [63]
made the synthesis effort that led to the definition of a first version of the ACO meta-
heuristic (see also [63, 66, 70]). In other words, the ACO metaheuristic was defined
a posteriori with the goal of providing a common characterization of a new class
of algorithms and a reference framework for the design of new instances of ACO
algorithms.

10 Ant Colony Optimization: Overview and Recent Advances 325

The first version of the ACO metaheuristic was aimed at giving a comprehensive
framework for ACO algorithm applications to “classical” AP-hard combinatorial
optimization problems and to highly dynamic problems in network routing applica-
tions. As such, this early version of the ACO metaheuristic left very large freedom
to the algorithm designer in the definition of the solution components, construc-
tion mechanism, pheromone update, and ants’ behavior. This more comprehensive
variant of the ACO metaheuristic is presented in many publications on this topic
[63, 66, 70]. The version of the ACO metaheuristic described in Sect. 10.3 is targeted
towards the application of ACO algorithms to N P-hard problems and therefore it is
also more precise with respect to the definition of the solution components and so-
lution construction procedure. It follows mainly the versions presented in Chapter 3
of [66] or [23, 24].

10.5 Applications

The versatility and the practical use of the ACO metaheuristic for the solution of
combinatorial optimization problems is best illustrated via example applications to
a number of different problems.

The ACO application to the TSP has already been illustrated in the previous
section. Here, we additionally discuss applications to two N P-hard optimization
problems, the single machine total weighted tardiness problem (SMTWTP), and
the set covering problem (SCP). We have chosen these problems since they are in
several aspects different from the TSP. Although the SMTWTP is also a permutation
problem, it differs from the TSP in the interpretation of the permutations. In the SCP
a solution is represented as a subset of the available solution components.

Applications of ACO to dynamic problems focus mainly on routing in data net-
works. To give a flavor of these applications, as a third example, we present the
AntNet algorithm [52].

10.5.1 Example 1: The Single Machine Total Weighted Tardiness
Scheduling Problem (SMTWTP)

In the SMTWTP n jobs have to be processed sequentially without interruption on
a single machine. Each job has an associated processing time p;, a weight w;, and
a due date d; and all jobs are available for processing at time zero. The tardiness
of job j is defined as 7; = max{0,C; —d,}, where C; is its completion time in the
current job sequence. The goal in the SMTWTP is to find a job sequence which
minimizes the sum of the weighted tardiness given by X/, w; - 7.

For the ACO application to the SMTWTP, we can have one variable X; for each
position 7 in the sequence and each variable has n associated values j =1,...,n. The
solution components model the assignment of a job j to position i in the sequence.

326 M. Dorigo and T. Stiitzle

The SMTWTP was tackled in [47] using ACS (ACS-SMTWTP). In ACS-
SMTWTP, the positions of the sequence are filled in their canonical order, that
is, first position one, next position two, and so on, until position n. At each con-
struction step, an ant assigns a job to the current position using the pseudo-random-
proportional action choice rule, where the feasible neighborhood of an ant is the
list of yet unscheduled jobs. Pheromone trails are therefore defined as follows: 7;;
refers to the desirability of scheduling job j at position i. This definition of the
pheromone trails is, in fact, used in many ACO applications to scheduling prob-
lems [9, 47, 136, 170]. Concerning the heuristic information, the use of three pri-
ority rules allowed to define three different types of heuristic information for the
SMTWTP [47]. The investigated priority rules were: (1) the earliest due date rule,
which puts the jobs in non-decreasing order of the due dates d;, (2) the modi-
fied due date rule which puts the jobs in non-decreasing order of the modified
due dates given by mdd; = max{C + pj,d;} [9], where C is the sum of the pro-
cessing times of the already sequenced jobs, and (3) the apparent urgency rule
which puts the jobs in non-decreasing order of the apparent urgency [144], given
by auj = (w;/p;) - exp(—(max{d; — C;,0})/kp), where k is a parameter. In each
case, the heuristic information was defined as n;; = 1/h j,» where h; is either dj,
mdd;, or auj, depending on the priority rule used.

The global and the local pheromone updates are carried out as in the standard
ACS described in Sect. 10.4.2, where in the global pheromone update, g(s,p) is the
total weighted tardiness of the global best solution.

In [47], ACS-SMTWTP was combined with a powerful local search algorithm.
The final ACS algorithm was tested on a benchmark set available from ORLIB at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html. Within the computation
time limits given,” ACS reached a very good performance and could find in each
single run the optimal or best known solutions on all instances of the benchmark set
[47].

10.5.2 Example 2: The Set Covering Problem (SCP)

In the set covering problem (SCP) we are given a finite set A = {ay,...,a,} of
elements and a set B = {By,...,B;} of subsets, B; C A, that covers A, that is, we
have Ule B; = A. We say that a set B; covers an element a;, if a; € B;. Each set B;
has an associated cost c;. The goal in the SCP is to choose a subset C of the sets in
B such that (1) every element of A is covered and that (2) C has minimum total cost,
that is, the sum of the costs of the subsets in C is minimal.

ACO can be applied in a very straightforward way to the SCP. A binary variable
X; is associated with every set B; and a solution component cl-1 indicates that B; is
selected for set C (i.e., X; = 1), while a solution component c? indicates that it is not
selected (i.e., X; = 0). Each solution component c} is associated with a pheromone

® The maximum time for the largest instances was 20 min on a 450 MHz Pentium III PC with
256 MB RAM. Programs were written in C++ and the PC was run under Red Hat Linux 6.1.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html

10 Ant Colony Optimization: Overview and Recent Advances 327

trail 7; and a heuristic information 7; that indicate the learned and the heuristic
desirability of choosing subset B;. (Note that no pheromone trails are associated
with solution components ¢?.) Solutions can be constructed as follows. Each ant
starts with an empty solution and then adds at each step one subset until a cover is
completed. A solution component c,-1 is chosen with probability

- [Mi(sp)])P |
i(sp) = —— , YeleN 10.5
pi(sp) Sieno) T (M) c (sp) (10.5)

where N (s,) consists of all subsets that cover at least one still uncovered element
of A. The heuristic information 1;(s,) can be chosen in several different ways. For
example, a simple static information could be used, taking into account only the
subset cost: 17; = 1 /¢;. A more sophisticated approach would be to consider the total
number of elements d; covered by a set B; and to set 1; = d;/c;. These two ways of
defining the heuristic information do not depend on the partial solution. Typically,
more accurate heuristics can be developed taking into account the partial solution
of an ant. In this case, it can be defined as 1;(s),) = e;(s,)/ci, where e;(s,) is the so-
called cover value, that is, the number of additional elements covered when adding
subset B; to the current partial solution s,. In other words, the heuristic information
measures the unit cost of covering one additional element.

An ant ends the solution construction when all the elements of A are covered. In
a post-optimization step, an ant can remove redundant subsets—subsets that only
cover elements that are already covered by other subsets in the final solution—or
apply some additional local search to improve solutions. The pheromone update
can be carried out in a standard way as described in earlier sections.

When applying ACO to the SCP one difference with the previously presented
applications is that the number of solution components in the ant’s solutions may
differ among the ants and, hence, the solution construction only ends when all the
ants have terminated their corresponding walks.

There have been a few applications of ACO algorithms to the SCP [4, 42, 100,
112, 156]. The best results of these ACO algorithms are obtained by the variants
tested by Lessing et al. [112]. In their article, they compared the performance of a
number of ACO algorithms with and without the usage of a local search algorithm
based on 3-flip neighborhoods [186]. The best performance results were obtained,
as expected, when including local search and for a large number of instances the
computational results were competitive with state-of-the-art algorithms for the SCP.

10.5.3 Example 3: AntNet for Network Routing Applications

Given a graph representing a telecommunications network, the problem solved by
AntNet is to find the minimum cost path between each pair of vertices of the graph.
It is important to note that, although finding a minimum cost path on a graph is an
easy problem (it can be efficiently solved by algorithms having polynomial worst

328 M. Dorigo and T. Stiitzle

case complexity [13]), it becomes extremely difficult when the costs on the edges
are time-varying stochastic variables. This is the case of routing in packet-switched
networks, the target application for AntNet.

Here we briefly describe a simplified version of AntNet (the interested reader
should refer to [52], where the AntNet approach to routing is explained and eval-
uated in detail). As stated earlier, in AntNet each ant searches for a minimum cost
path between a given pair of vertices of the network. To this end, ants are launched
from each network vertex towards randomly selected destination vertices. Each ant
has a source vertex s and a destination vertex d, and moves from s to d hopping
from one vertex to the next until vertex d is reached. When ant k is in vertex i, it
chooses the next vertex j to move to according to a probabilistic decision rule which
is a function of the ant’s memory and of local pheromone and heuristic information
(very much like AS, for example).

Unlike AS, where pheromone trails are associated with edges, in AntNet phero-
mone trails are associated with edge-destination pairs. That is, each directed edge
(i,/) has n— 1 associated trail values 7;;; € [0, 1], where n is the number of vertices
in the graph associated with the routing problem. In other words, there is one trail
value 7;;4 for each possible destination vertex ¢ an ant located in vertex i can have.
In general, it will hold that 7;;; # 7;;4. Each edge also has an associated heuristic
value 7;; € [0,1] independent of the final destination. The heuristic values can be
set for example to the values 1;; = 1 —gqi;j/ X c nr, qit» Where g;; is the length (in bits
waiting to be sent) of the queue of the link connecting vertex i with its neighbor j:
links with a shorter queue have a higher heuristic value.

Ants choose their way probabilistically, using as probability a functional compo-
sition of the local pheromone trails 7;;; and heuristic values 7;;. While building the
path to their destinations, ants move using the same link queues as data packets and
experience the same delays. Therefore, the time Ty, elapsed while moving from the
source vertex s to the destination vertex d can be used as a measure of the quality
of the path they built. The overall quality of a path is evaluated by a heuristic func-
tion of the trip time Ty; and of a local adaptive statistical model maintained in each
vertex. In fact, paths need to be evaluated relative to the network status because a
trip time 7 judged of low quality under low congestion conditions could be an ex-
cellent one under high traffic load. Once the generic ant k has completed a path, it
deposits on the visited vertices an amount of pheromone At*(¢) proportional to the
quality of the path. To deposit pheromone after reaching its destination vertex, the
ant moves back to its source vertex along the same path but backward and using
high priority queues, to allow a fast propagation of the collected information. The
pheromone trail intensity of each edge /;; used by the ant while it was moving from
s to d is increased as follows: T;j4(t) < T;ja(t) + AT*(t). After the pheromone trail
on the visited edges has been updated, the pheromone value of all the outgoing con-
nections of the same vertex i, relative to destination d, evaporates in such a way that
the pheromone values are normalized and can continue to be used as probabilities:
Tia(t) < Tija(t) /(1 +ATH(t)), Vj € N;, where A is the set of neighbors of vertex i.

AntNet was compared with many state-of-the-art algorithms on a large set of
benchmark problems under a variety of traffic conditions. It always compared fa-

10 Ant Colony Optimization: Overview and Recent Advances 329

vorably with competing approaches and it was shown to be very robust with respect
to varying traffic conditions and parameter settings. More details on the experimen-
tal results can be found in [52].

10.5.4 Applications of the ACO Metaheuristic

ACO has raised a lot of interest in the scientific community. There are now hun-
dreds of successful implementations of the ACO metaheuristic applied to a wide
range of different combinatorial optimization problems. The vast majority of these
applications concern NP-hard combinatorial optimization problems.

Many successful ACO applications to A/P-hard problems use local search algo-
rithms to improve the ants’ solutions. Another common feature of many success-
ful ACO applications is that they use one of the advanced ACO algorithms such
as ACS, MMAS, etc. In fact, AS has been abandoned by now in favor of more
performing variants. Finally, for problems for which ACO algorithms reach very
high performance, the available ACO algorithms are fine-tuned to the problem un-
der consideration. Apart from fine-tuning parameter settings, this typically involves
the exploitation of problem knowledge, for example, through the use of appropriate
heuristic information, informed choices for the construction mechanism, or the use
of fine-tuned local search algorithms. For a complete overview of ACO applications
until the year 2004 we refer to [66]. Pointers to some early, successful applications
of ACO algorithms to challenging “static”” optimization problems are also given in
Table 10.2.

Another large class of applications of ACO algorithms is routing problems where
some system properties such as the availability of links or the cost of traversing
links is time-varying. This is a common case in telecommunications networks. As
said before, the first ACO applications have been to telephone like networks [159],
which are circuit-switched, and to packet switched networks such as the Internet
[52]. Ant-based algorithms have given rise to several other routing algorithms, en-
hancing performance in a variety of wired network scenarios, see [49, 161] for a
survey. Later applications of these strategies involved the more challenging class
of mobile ad hoc networks (MANETS). Even though the straightforward applica-
tion of the ACO algorithms developed for wired networks has proven unsuccessful
due to the specific characteristics of MANETS (very high dynamics, link asymme-
try) [190], Ducatelle et al. [54, 74] were able to propose an ACO algorithm which
is competitive with state-of-the-art routing algorithms for MANETS, while at the
same time offering better scalability. For an exhaustive list of references on ACO
applications to dynamic network routing problems we refer to [75, 78].

The above mentioned applications are mainly early examples of successful ACO
applications. They have motivated other researchers to either consider ACO-based
algorithms for a wide range of different applications or to advance some aspects of
ACO algorithms on widely studied benchmark problems. As a result, the number

330

Table 10.2 Some early applications of ACO algorithms

M. Dorigo and T. Stiitzle

Problem type

Problem name

Authors

Year References

Routing

Traveling salesman

TSP with time windows

Dorigo et al.

Dorigo and Gambardella
Stiitzle and Hoos

Lépez Ibafiez et al.

1991, 1996 [68, 69]
1997 [65]

1997, 2000 [175, 176]
2009 [121]

Sequential ordering Gambardella and Dorigo 2000 [84]
Vehicle routing Gambardella et al. 1999 [85]
Reimann et al. 2004 [154]
Favoretto et al. 2007 [79]
Fuellerer et al. 2009 [81]
Multicasting Hernandez and Blum 2009 [101]
Assignment Quadratic assignment Maniezzo 1999 [125]
Stiitzle and Hoos 2000 [176]
Frequency assignment Maniezzo and Carbonaro 2000 [126]
Course timetabling Socha et al. 2002, 2003 [166, 167]
Graph coloring Costa and Hertz 1997 [41]
Scheduling Project scheduling Merkle et al. 2002 [137]
Weighted tardiness den Besten et al. 2000 [47]
Merkle and Middendorf 2000 [135]
Flow shop Stiitzle 1997 [170]
Rajendran, Ziegler 2004 [152]
Open shop Blum 2005 [20]
Car sequencing Solnon 2008 [168]
Subset Set covering Lessing et al. 2004 [112]
[-cardinality trees Blum and Blesa 2005 [22]
Multiple knapsack Leguizamén and Michalewicz 1999 [111]
Maximum clique Solnon, Fenet 2006 [169]
Machine Classification rules Parpinelli et al. 2002 [151]
learning Martens et al. 2006 [127]
Otero et al. 2008 [148]
Bayesian networks Campos, Ferndndez-Luna 2002 [44, 45]
Neural networks Socha, Blum 2007 [163]
Bioinformatics Protein folding Shmygelska and Hoos 2005 [160]
Docking Korb et al. 2006 [106, 107]
DNA sequencing Blum et al. 2008 [27]
Haplotype inference Benedettini et al. 2008 [12]

Applications are listed according to problem types

of applications of ACO and, thus, also the number of articles focusing on ACO has
increased a lot, reaching the level of several hundreds of articles listed annually in
the Scopus database. In particular, Fig. 10.5 gives the number of articles that are
published annually based on a search of the terms ant system, ant colony system,
or ant colony optimization in article titles. In particular, since the publication of the
1996 journal article by Dorigo et al. [69], the number of articles published annually
has increased strongly until ca. the year 2010 and since then has maintained a high
level of more than 400 articles each year.

10 Ant Colony Optimization: Overview and Recent Advances 331

Number of documents
700

600

500

400

300

200

100

0
1995 2000 2005 2010 2015 2020

<

Fig. 10.5 Development of the number of publications containing the terms “ant system,” “ant
colony system” or “ant colony optimization” in the title from the years 1996 to 2016; source:
Scopus publication database

10.5.5 Main Application Principles

ACO algorithms have been applied to a large number of different combinatorial
optimization problems. Based on this experience, one can identify some basic issues
that need to be addressed when attacking a new problem. These issues are discussed
in the following.

10.5.5.1 Definition of Solution Components and Pheromone Trails

Of crucial importance in ACO applications is the definition of the solution compo-
nents and of the pheromone model. Consider, for example, the differences in the
definition of solution components in the TSP and the SMTWTP. Although both
problems represent solutions as permutations, the definition of solution components
(and, hence, the interpretation of the pheromone trails), is very different. In the TSP
case, a solution component refers to the direct successor relationship between ele-
ments, while in the SMTWTP it refers to the allocation of a job to a specific position
in the permutation. This is intuitively due to the different role that permutations have
in the two problems. In the TSP, only the relative order of the solution components
is important and a permutation 7 = (1 2 ... n) has the same tour length as the per-
mutation 7' = (n 12 ... n— 1)—it represents the same tour. On the contrary, in the
SMTWTP (as well as in many other scheduling problems), 7w and 7’ would repre-
sent two different solutions with most probably very different costs; in this case the
position information is very important.

In some applications, the role of the pheromone trail definition has been inves-
tigated in more depth. Blum and Sampels compare different ways of defining the
pheromone model for job shop scheduling problems [25]. In [24], Blum and Dorigo

332 M. Dorigo and T. Stiitzle

show that the choice of an inappropriate pheromone model can result in an un-
desirable performance degradation over time. Fortunately, in many applications the
solution components used in high performing constructive algorithms, together with
the correct choice of the pheromone model, typically result in high performing algo-
rithms. However, finding the best pheromone model is not always a straightforward
task. Examples of some more complex or unusual choices are the ACO application
to the shortest common supersequence problem [140] or the application of ACO to
protein—ligand docking [107].

10.5.5.2 Balancing Exploration and Exploitation

Any effective metaheuristic algorithm has to achieve an appropriate balance be-
tween the exploitation of the search experience gathered so far and the exploration of
unvisited or relatively unexplored search space regions. In ACO several ways exist
for achieving such a balance, typically through the management of the pheromone
trails. In fact, the pheromone trails induce a probability distribution over the search
space and determine which parts of the search space are effectively sampled, that is,
in which part of the search space the constructed solutions are located with higher
frequency.

The best performing ACO algorithms typically use an elitist strategy in which
the best solutions found during the search contribute strongly to pheromone trail
updating. A stronger exploitation of the “learned” pheromone trails can be achieved
during solution construction by applying the pseudo-random proportional rule of
ACS, as explained in Sect. 10.4.2.2. These exploitation features are then typically
combined with some means to ensure enough search space exploration trying to
avoid convergence of the ants to a single path, corresponding to a situation of search
stagnation. There are several ways to try to avoid such stagnation situations. For ex-
ample, in ACS the ants use a local pheromone update rule during solution construc-
tion to make the path they have taken less desirable for subsequent ants and, thus, to
diversify the search. MMAS introduces an explicit lower limit on the pheromone
trail value so that a minimal level of exploration is always guaranteed. MMAS also
uses a reinitialization of the pheromone trails, which is a way of enforcing search
space exploration. Finally, an important role in the balance of exploration and ex-
ploitation is played by the parameters o and f in Eq. (10.1). Consider, for example,
the influence of parameter . (Parameter 3 has an analogous influence on the ex-
ploitation of the heuristic information). For or > 0, the larger the value of o the
stronger the exploitation of the search experience; for o¢ = 0 the pheromone trails
are not taken into account at all; and for o < O the most probable choices taken
by the ants are those that are less desirable from the point of view of pheromone
trails. Hence, varying o could be used to shift from exploration to exploitation and
conversely.

10 Ant Colony Optimization: Overview and Recent Advances 333

10.5.5.3 ACO and Local Search

In many applications to N'P-hard combinatorial optimization problems, ACO algo-
rithms perform best when coupled with local search algorithms. Local search algo-
rithms locally optimize the ants’ solutions and these locally optimized solutions are
used in the pheromone update.

The use of local search in ACO algorithms can be very interesting since the two
approaches are complementary. In fact, ACO algorithms perform a rather coarse-
grained search, and the solutions they produce can then be locally fine-tuned by an
adequate local search algorithm. On the other side, generating appropriate initial
solutions for local search algorithms is not an easy task. In practice, ants probabilis-
tically combine solution components which are part of the best locally optimal solu-
tions found so far and generate new, promising initial solutions for the local search.
Experimentally, it has been found that such a combination of a probabilistic, adap-
tive construction heuristic with local search can yield excellent results [28, 65, 175].
Particularly good results are obtained when the integration of the local search in the
ACO algorithm is well designed. To reach highest performance when very power-
ful local search algorithms are available or when problem instances are very large,
modifications of the ACO algorithm may also be beneficial in some cases as shown
by Gambardella et al. [86].

Despite the fact that the use of local search algorithms has been shown to be cru-
cial for achieving state-of-the-art performance in many ACO applications, it should
be noted that ACO algorithms also show very good performance when local search
algorithms cannot be applied easily [52, 140].

10.5.5.4 Heuristic Information

The possibility of using heuristic information to direct the ants’ probabilistic solu-
tion construction is important because it gives the possibility of exploiting problem
specific knowledge. This knowledge can be available a priori (this is the most fre-
quent situation in A/P-hard problems) or at run-time (this is the typical situation in
dynamic problems).

For most A/P-hard problems, the heuristic information 1) can be computed at
initialization time and then it remains the same throughout the whole algorithm’s
run. An example is the use, in the TSP applications, of the length d;; of the edge
connecting cities i and j to define the heuristic information 1;; = 1/d;;. However, the
heuristic information may also depend on the partial solution constructed so far and
therefore be computed at each step of an ant’s solution construction. This determines
a higher computational cost that may be compensated by the higher accuracy of the
computed heuristic values. For example, in the ACO applications to the SMTWTP
and the SCP the use of such “adaptive” heuristic information was found to be crucial
for reaching very high performance.

334 M. Dorigo and T. Stiitzle

Finally, it should be noted that while the use of heuristic information is rather
important for a generic ACO algorithm, its importance is strongly reduced if local
search is used to improve solutions. This is due to the fact that local search takes
into account information about the cost to improve solutions in a more direct way.

10.6 Developments

In this section, we review recent research trends in ACO. These include (1) the
application of ACO algorithms to non-standard problems; (2) the development of
ACO algorithms that are hybridized with other metaheuristics or techniques from
mathematical programming; (3) the parallel implementation of ACO algorithms;
and (4) theoretical results on ACO algorithms.

10.6.1 Non-standard Applications of ACO

We review here applications of ACO to problems that involve complicating factors
such as multiple objective functions, time-varying data and stochastic information
about objective values or constraints. In addition, we review some recent applica-
tions of ACO to continuous optimization problems.

10.6.1.1 Multi-Objective Optimization

Frequently, in real-world applications, various solutions are evaluated as a function
of multiple, often conflicting objectives. In simple cases, objectives can be ordered
with respect to their importance, or they can be combined into a single-objective by
using a weighted sum approach. An example of the former approach is the applica-
tion of a two-colony ACS algorithm for the vehicle routing problem with time win-
dows [85]; an example of the latter is given by Doerner et al. [56] for a bi-objective
transportation problem.

If a priori preferences or weights are not available, the usual option is to ap-
proximate the set of Pareto-optimal solutions—a solution s is Pareto optimal if no
other solution has a better value than s for at least one objective and is not worse
than s for the remaining objectives. The first general ACO approach targeted to such
problems is due to Iredi et al. [102], who discussed various alternatives to apply
ACO to multi-objective problems and presented results with a few variants for a
bi-objective scheduling problem. Since then, several algorithmic studies have tested
various alternative approaches. These possible approaches differ in whether they use
one or several pheromone matrices (one for each objective), one or several heuristic
information, how solutions are chosen for pheromone deposit, and whether one or
several colonies of ants are used. Several combinations of these possibilities have

10 Ant Colony Optimization: Overview and Recent Advances 335

been studied, for example, in [3, 120]. For a detailed overview of available multi-
objective ACO algorithms we refer to the review articles by Garcia-Martinez [87],
which also contains an experimental evaluation of some proposed ACO approaches,
and by Angus and Woodward [5].

A different approach to develop multi-objective ACO algorithms has been pro-
posed by Lépez-Ibdfiez and Stiitzle [118, 119]. They have analyzed carefully the
various existing ACO approaches to tackle multi-objective problems and proposed
a generalized multi-objective ACO (MOACO) structure from which most of the then
available approaches could be instantiated but also new variants be generated. Ex-
ploring the resulting design space of MOACO algorithms through a novel method-
ology for generating automatically multi-objective optimizers, they could generate
new MOACO algorithms that clearly outperformed all previously proposed ACO
algorithms for multi-objective optimization [118]. Such framework may also be fur-
ther extended to consider more recent ACO approaches to many-objective problems
such as those proposed by Falcon-Cardona and Coello Coello [77].

10.6.1.2 Dynamic Versions of \P-hard Problems

As said earlier, ACO algorithms have been applied with significant success to dy-
namic problems in the area of network routing [52, 54]. ACO algorithms have also
been applied to dynamic versions of classical A'P-hard problems. Examples are
the applications to dynamic versions of the TSP, where the distances between cities
may change or where cities may appear or disappear [76, 91, 92, 130]. More recent
work in this area includes the explicit usage of local search algorithms to improve
the ACO performance on dynamic problems [133]. Applications of ACO algorithms
to dynamic vehicle routing problems are reported in [60, 131, 143], showing good
results on both academic instances and real-world instances. For a recent review of
swarm intelligence algorithms for dynamic optimization problems, including ACO,
we refer to [132].

10.6.1.3 Stochastic Optimization Problems

In many optimization problems data are not known exactly before generating a so-
lution. Rather, what is available is stochastic information on the objective function
value(s), on the decision variable values, or on the constraint boundaries due to un-
certainty, noise, approximation or other factors. ACO algorithms have been applied
to a few stochastic optimization problems. The first stochastic problem to which
ACO was applied is the probabilistic TSP (PTSP), where for each city the probabil-
ity that it requires a visit is known and the goal is to find an a priori tour of minimal
expected length over all the cities. The first to apply ACO to the PTSP were Bianchi
et al. [14], who used an adaptation of ACS. This algorithm was improved by Branke
and Guntsch and by Balaprakash et al. [7], resulting in a state-of-the-art algorithm
for the PTSP. Other applications of ACO include the vehicle routing problem with

336 M. Dorigo and T. Stiitzle

uncertain demands [15], the vehicle routing problem with uncertain demands and
customers [8], and the selection of optimal screening policies for diabetic retinopa-
thy [30], which builds on the S-ACO algorithm by Gutjahr [95]. For an overview of
the application of metaheuristics, including ACO algorithms, to stochastic combi-
natorial optimization problems we refer to [16].

10.6.1.4 Continuous Optimization

Although ACO was proposed for combinatorial problems, researchers started to
adapt it to continuous optimization problems.!” The simplest approach for apply-
ing ACO to continuous problems would be to discretize the real-valued domain of
the variables. This approach has been successfully followed when applying ACO
to the protein—ligand docking problem [107], where it was combined with a local
search that was, however, working on the continuous domain of the variables. ACO
algorithms that handle continuous parameters natively have been proposed [162].
An example is the ACOg algorithm by Socha and Dorigo [165], where the prob-
ability density functions that are implicitly built by the pheromone model in clas-
sic ACO algorithms are explicitly represented by Gaussian kernel functions. Other
early references on this subject are [162, 181, 183]. ACOg has been refined by Liao
et al. using an increasing population size and integrating powerful local search al-
gorithms [113]; additional refinements were later reported by Kumar et al. [109].
A unified framework for ACO applications to continuous optimization is proposed
by Liao et al. [114]. In their approach, many variants of ACOg can be instantiated
by choosing specific algorithm components and by setting freely a large number
of algorithm parameters. Using the help of an automated algorithm configuration
tool called irace [122], the unified framework proved to be able to generate con-
tinuous ACO algorithms superior to those previously proposed in the literature. An
extension of ACOg to multi-modal optimization is presented by Yang et al. [187].
Finally, the ACOg approach has also been extended to mixed-variable—continuous
and discrete—problems [115, 164].

10.6.2 Algorithmic Developments

In the early years of ACO research, the focus was in developing ACO variants with
modified pheromone update rules or solution generation mechanisms to improve
the algorithmic performance. More recently, researchers have explored combina-
tions of ACO with other algorithmic techniques. Here, we review some of the most
noteworthy developments.

10 There have been several proposals of ant-inspired algorithms for continuous optimization [17,
73, 142]. However, these differ strongly from the underlying ideas of ACO (for example, they use
direct communication among ants) and therefore cannot be considered as algorithms falling into
the framework of the ACO metaheuristic.

10 Ant Colony Optimization: Overview and Recent Advances 337

10.6.2.1 Hybridizations of ACO with Other Metaheuristics

The most straightforward hybridization of ACO is with local improvement heuris-
tics, which are used to fine-tune the solutions constructed by the ants. Often simple
iterative improvement algorithms are used. However, in various articles, other meta-
heuristic algorithms have been used as improvement methods. One example is the
use of tabu search to improve the ants’ solutions for the quadratic assignment prob-
lem [176, 180]. Interestingly, other, more sophisticated hybridizations have been
proposed. A first one is to let the ants start the solution construction not from scratch
but from partial solutions that are obtained either by removing solution components
from an ant’s complete solution [185, 189] or by taking partial solutions from other
complete solutions [1, 2, 182]. Two important advantages of starting the solution
construction from partial solutions are that (1) the solution construction process is
much faster and (2) good parts of solutions may be exploited directly. Probably the
most straightforward of these proposals is the iferated ants [185], which uses ideas
from the iterated greedy (IG) metaheuristic [158]. Once some initial solution has
been generated, IG iterates over construction heuristics by first removing solution
components of a complete solution s, resulting in a partial solution s,. From s, a
complete solution is then rebuilt using some construction mechanism. In the iter-
ated ants algorithm, this mechanism is simply the standard solution construction
of the underlying ACO algorithm. Computational results suggest that this idea is
particularly useful if no effective local search is available.

10.6.2.2 Hybridizations of ACO with Branch-and-Bound Techniques

The integration of tree search techniques into constructive algorithms is an appeal-
ing possibility of hybridization since the probabilistic solution construction of ants
can be seen as the stochastic exploration of a search tree. Particularly attractive are
combinations of ACO with tree search techniques from mathematical programming
such as branch-and-bound. A first algorithm is the approximate nondeterministic
tree search (ANTS) algorithm by Maniezzo [125]. The most important innovation
of ANTS is the use of lower bound estimates as the heuristic information for rat-
ing the attractiveness of adding specific solution components. Additionally, lower
bound computations allow the method to prune feasible extensions of partial so-
lutions if the estimated solution cost is larger than that of the best solution found
so far. An additional innovation of ANTS consists of computing an initial lower
bound to influence the order in which solution components are considered in the
solution construction. Computational results obtained with ANTS for the quadratic
assignment and the frequency assignment problems are very promising [125, 126].

BeamACO, the combination of ACO algorithms with beam-search, was proposed
by Blum [20]. Beam-search is a derivative of branch-and-bound algorithms that
keeps at each iteration a set of at most fiw nodes in a search tree and expands each of
them in at most bw directions according to a selection based on lower bounds [149].
At each extension step applied to the fw current partial solutions, fiv - bw new partial

338 M. Dorigo and T. Stiitzle

solutions are generated and the fw best ones are kept (where best is rated with re-
spect to a lower bound). BeamACO takes from beam-search the parallel exploration
of the search tree and replaces the beam-search’s deterministic solution extension
mechanism by that of ACO. The results with BeamACO have been very good so
far. For example, it is a state-of-the-art algorithm for open shop scheduling [20], for
some variants of assembly line balancing [21], and for the TSP with time windows
[117].

10.6.2.3 Combinations of ACO with Constraint and Integer Programming
Techniques

For problems that are highly constrained and for which it is difficult to find feasible
solutions, an attractive possibility is to integrate constraint programming techniques
into ACO. A first proposal in this direction can be found in [139]. In particular, the
authors integrate a constraint propagation mechanism into the solution construction
of the ants to identify earlier in the construction process whether specific solutions
extensions would lead to infeasible solutions. Computational tests on a highly con-
strained scheduling problem have shown the high potential of this approach. More
recently, Khichane et al. [105] have examined the integration of an ACO algorithm
into a constraint solver. Massen et al. [128] have considered the usage of ACO mech-
anisms in a column generation approach to vehicle routing problems with black-box
feasibility constraints. The ACO-based approach is used as a heuristic to generate
candidate routes for the vehicles, which correspond to the columns in the integer
programming model; an “optimal” combination of the generated candidate routes
is then found by an integer programming technique. A further analysis of the pa-
rameters of this method is proposed by Massen et al. [129], which resulted in some
improved solutions to various benchmark instances.

10.6.3 Parallel Implementations

The very nature of ACO algorithms lends them to be parallelized in the data or
population domains. In particular, many parallel models used in other population-
based algorithms can be easily adapted to ACO. Most early parallelization strategies
can be classified into fine-grained and coarse-grained strategies. Characteristics of
fine-grained parallelization are that very few individuals are assigned to one single
processor and that frequent information exchange among the processors takes place.
On the contrary, in coarse grained approaches, larger subpopulations or even full
populations are assigned to single processors and information exchange is rather
rare. We refer, for example, to [34] for an overview.

Fine-grained parallelization schemes have been investigated early when multi-
core CPUs and shared memory architectures were not available or not common.
The first fine-grained parallelization schemes were studied with parallel versions of

10 Ant Colony Optimization: Overview and Recent Advances 339

AS for the TSP on the Connection Machine CM-2 by attributing a single processing
unit to each ant [29]. Experimental results showed that communication overhead can
be a major problem, since ants ended up spending most of their time communicating
the modifications they made to pheromone trails. Similar negative results have also
been reported in [33, 153].

As shown by several researches [29, 33, 123, 141, 171], coarse grained par-
allelization schemes are much more promising for ACO; such schemes are also
still relevant in the context of modern architectures. When applied to ACO, coarse
grained schemes run p subcolonies in parallel, where p is the number of available
processors. Even though independent runs of the p subcolonies in parallel have
shown to be effective [123, 171], often further improved performance may be ob-
tained by a well-designed information exchange among the subcolonies. In this case,
a policy defines the kind of information to be exchanged, how migrants between
the subcolonies are selected, to which colonies the information is sent, when infor-
mation is sent and what is to be done with the received information. We refer to
Middendorf et al. [141] or Twomey et al. [184] for comprehensive studies of this
subject. With the wide-spread availability of multi-core CPUs and shared memory
architectures, thread-level parallelism is nowadays the option of choice to speed-up
a single run of an ACO algorithm. Nevertheless, if high solution quality is desired,
the above mentioned coarse-grained schemes can easily be implemented also on
such architectures. Recent work on the parallelization of ACO algorithms evaluates
them on various platforms [90] and studies the exploitation of graphics processor
units to speed them up [35, 43, 46].

10.6.4 Theoretical Results

The initial, experimentally driven research on ACO has established it as an interest-
ing algorithmic technique. After this initial phase, researchers have started to obtain
insights into fundamental properties of ACO algorithms.

The first question was whether an ACO algorithm, if given enough time, will
eventually find an optimal solution. This is an interesting question, because the
pheromone update could prevent ACO algorithms from ever reaching an optimum.
The first convergence proofs were presented by Gutjahr in [93]. He proved con-
vergence with probability 1 — € to the optimal solution of Graph-Based Ant Sys-
tem (GBAS), an ACO algorithm whose empirical performance is unknown. Later,
he proved convergence to any optimal solution [94] with probability one for two
extended versions of GBAS. Interestingly, convergence proofs for two of the top
performing ACO algorithms in practice, ACS and MMAS, could also be obtained
[66, 173].

Unfortunately, these convergence proofs do not say anything about the speed
with which the algorithms converge to the optimal solution. A more detailed analy-
sis would therefore consider the expected runtime when applying ACO algorithms
to specific problems. In fact, a number of results have been obtained in that direc-

340 M. Dorigo and T. Stiitzle

tion. The first results can be found in [96] and since then a number of additional
results have been obtained [58, 59, 98, 99, 145, 146]. Due to the difficulty of the
theoretical analysis, most of these results, however, have been obtained consider-
ing idealized, polynomially solvable problems. While often these include simple
pseudo-Boolean functions, in [147] a theoretical runtime analysis is carried out for
a basic combinatorial problem, the minimum spanning tree problem, while Sudholt
and Thyssen study the shortest path problem [178]. More recently, Lissov and Witt
have considered the analysis of MM AS for dynamic shortest path problems, study-
ing, in particular, the impact of the population size on optimization performance as a
function of the type of dynamic variations [116]. For an early review of this research
direction, we refer to [97].

Other research in ACO theory has focused on establishing formal links between
ACO and other techniques for learning and optimization. One example relates ACO
to the fields of optimal control and reinforcement learning [18], while another ex-
amines the connections between ACO algorithms and probabilistic learning algo-
rithms such as the stochastic gradient ascent and the cross-entropy method [138].
Zlochin et al. [191] have proposed a unifying framework for so-called model-based
search algorithms. Among other advantages, this framework allows a better under-
standing of what are important parts of an algorithm and it could lead to a better
cross-fertilization among algorithms.

While convergence proofs give insight into some mathematically relevant prop-
erties of algorithms, they usually do not provide guidance to practitioners for the
implementation of efficient algorithms. More relevant for practical applications are
research efforts aimed at a better understanding of the behavior of ACO algorithms.
Blum and Dorigo [24] have shown that ACO algorithms in general suffer from first
order deception in the same way as genetic algorithms suffer from deception. They
further introduced the concept of second order deception, which occurs, for ex-
ample, in situations where some solution components receive updates from more
solutions on average than others they compete with [26]. The first to study the be-
havior of ACO algorithms by analyzing the dynamics of the pheromone model were
Merkle and Middendorf [134]. For idealized permutation problems, they showed
that the bias introduced on decisions in the construction process (due to constraints
on the feasibility of solutions) leads to what they call a selection bias. When apply-
ing ACO to the TSP, the solution construction can be seen as a probabilistic version
of the nearest neighbor heuristic. However, Kotzing et al. show that different con-
struction rules result in better performance at least from a theoretical perspective
[108].

A discussion of recent theoretical results on ACO including those on the expected
run-time analysis can be found in a tutorial on the theory of swarm intelligence
algorithms [177]. A review paper on early advancements in ACO theory is [62].

10 Ant Colony Optimization: Overview and Recent Advances 341

10.7 Conclusions

Since the proposal of the first ACO algorithms in 1991, the field of ACO has at-
tracted a large number of researchers and nowadays a large number of research
results of both experimental and theoretical nature exist. By now ACO is a well
established metaheuristic. The importance of ACO is exemplified by (1) the bian-
nual conference ANTS (International conference on Ant Colony Optimization and
Swarm Intelligence; http://www.swarm-intelligence.eu/), where researchers meet to
discuss the properties of ACO and other ant algorithms, both theoretically and ex-
perimentally; (2) the IEEE Swarm Intelligence Symposium series; (3) various con-
ferences on metaheuristics and evolutionary algorithms, where ACO is a central
topic; and (4) a number of journal special issues [40, 57, 71, 72]. More informa-
tion on ACO can also be found on the Ant Colony Optimization web page: www.
aco-metaheuristic.org. Additionally, a moderated mailing list dedicated to the ex-
change of information related to ACO is accessible at: www.aco-metaheuristic.org/
mailing-list.html.

The majority of the currently published articles on ACO are clearly on its ap-
plication to computationally challenging problems. While most researches here are
on academic applications, it is noteworthy that companies have started to use ACO
algorithms for real-world applications [157]. For example, the company AntOptima
(www.antoptima.com) plays an important role in promoting the real-world appli-
cation of ACO. Furthermore, the company Arcelor-Mittal uses ACO algorithms to
solve several of the optimization problems arising in their production sites [55, 80].
In real-world applications, features such as time-varying data, multiple objectives
or the availability of stochastic information about events or data are rather common.
Interestingly, applications of ACO to problems that show such characteristics are
receiving increased attention. In fact, we believe that ACO algorithms are particu-
larly useful when they are applied to such “ill-structured” problems for which it is
not clear how to apply local search, or to highly dynamic domains where only local
information is available.

Acknowledgements This work was supported by the COMEX project, P7/36, within the In-
teruniversity Attraction Poles Programme of the Belgian Science Policy Office. Marco Dorigo and
Thomas Stiitzle acknowledge support from the Belgian F.R.S.-FNRS, of which they are Research
Directors.

References

1. A. Acan, An external memory implementation in ant colony optimization, in Ant Colony
Optimization and Swarm Intelligence: 4th International Workshop, ANTS 2004, ed. by
M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, T. Stiitzle. Lecture Notes
in Computer Science, vol. 3172 (Springer, Heidelberg, 2004), pp. 73-84

http://www.swarm-intelligence.eu/
www.aco-metaheuristic.org
www.aco-metaheuristic.org
www.aco-metaheuristic.org/mailing-list.html
www.aco-metaheuristic.org/mailing-list.html
www.antoptima.com

342

10.

11.

12.

13.

14.

17.

18.

20.

M. Dorigo and T. Stiitzle

. A. Acan, An external partial permutations memory for ant colony optimization, in Evolution-
ary Computation in Combinatorial Optimization, ed. by G. Raidl, J. Gottlieb. Lecture Notes
in Computer Science, vol. 3448 (Springer, Heidelberg, 2005), pp. 1-11

I. Alaya, C. Solnon, K. Ghédira, Ant colony optimization for multi-objective optimization

problems, in /9th IEEFE International Conference on Tools with Artificial Intelligence (ICTAI

2007), vol. 1 (IEEE Computer Society, Los Alamitos, 2007), pp. 450457

. D.A. Alexandrov, Y.A. Kochetov, The behavior of the ant colony algorithm for the set cover-
ing problem, in Operations Research Proceedings 1999, ed. by K. Inderfurth, G. Schwo-
diauer, W. Domschke, F. Juhnke, P. Kleinschmidt, G. Wischer (Springer, Berlin, 2000),
pp- 255-260

. D. Angus, C. Woodward, Multiple objective ant colony optimization. Swarm Intell. 3(1),
69-85 (2009)

. D. Applegate, R.E. Bixby, V. Chvital, W.J. Cook, The Traveling Salesman Problem: A Com-
putational Study (Princeton University Press, Princeton, 2006)

. P. Balaprakash, M. Birattari, T. Stiitzle, Z. Yuan, M. Dorigo, Estimation-based ant colony
optimization algorithms for the probabilistic travelling salesman problem. Swarm Intell. 3(3),
223-242 (2009)

. P. Balaprakash, M. Birattari, T. Stiitzle, Z. Yuan, M. Dorigo, Estimation-based metaheuris-
tics for the single vehicle routing problem with stochastic demands and customers. Comput.
Optim. Appl. 61(2), 463-487 (2015)

. A. Bauer, B. Bullnheimer, R.F. Hartl, C. Strauss, An ant colony optimization approach for the

single machine total tardiness problem, in Proceedings of the 1999 Congress on Evolutionary

Computation (CEC’99) (IEEE Press, Piscataway, 1999), pp. 1445-1450

R. Beckers, J.-L. Deneubourg, S. Goss, Modulation of trail laying in the ant Lasius niger

(hymenoptera: Formicidae) and its role in the collective selection of a food source. J. Insect

Behav. 6(6), 751-759 (1993)

R. Bellman, A.O. Esogbue, 1. Nabeshima, Mathematical Aspects of Scheduling and Applica-

tions (Pergamon Press, New York, 1982)

S. Benedettini, A. Roli, L. Di Gaspero, Two-level ACO for haplotype inference under pure

parsimony, in Ant Colony Optimization and Swarm Intelligence, 6th International Workshop,

ANTS 2008, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stiitzle, A.F.T. Winfield.

Lecture Notes in Computer Science, vol. 5217 (Springer, Heidelberg, 2008), pp. 179-190

D. Bertsekas, Network Optimization: Continuous and Discrete Models (Athena Scientific,

Belmont, 1998)

L. Bianchi, L.M. Gambardella, M. Dorigo, An ant colony optimization approach to the proba-

bilistic traveling salesman problem, in Parallel Problem Solving from Nature — PPSN VII: 7th

International Conference, J.J. Merelo Guervos, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-

Villacanas, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 2439 (Springer, Heidel-

berg, 2002), pp. 883-892

. L. Bianchi, M. Birattari, M. Manfrin, M. Mastrolilli L. Paquete, O. Rossi-Doria, T. Schi-
avinotto, Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J.
Math. Model. Algorithms 5(1), 91-110 (2006)

. L. Bianchi, L.M. Gambardella, M. Dorigo, W. Gutjahr, A survey on metaheuristics for

stochastic combinatorial optimization. Nat. Comput. 8(2), 239-287 (2009)

G. Bilcheyv, I.C. Parmee, The ant colony metaphor for searching continuous design spaces, in

Evolutionary Computing, AISB Workshop, ed. by T.C. Fogarty. Lecture Notes in Computer

Science, vol. 993 (Springer, Heidelberg, 1995), pp. 25-39

M. Birattari, G. Di Caro, M. Dorigo, Toward the formal foundation of ant programming, in

Ant Algorithms: Third International Workshop, ANTS 2002, ed. by M. Dorigo, G. Di Caro,

M. Sampels. Lecture Notes in Computer Science, vol. 2463 (Springer, Heidelberg, 2002),

pp- 188-201

. C. Blum, Theoretical and practical aspects of ant colony optimization, PhD thesis, IRIDIA,

Université Libre de Bruxelles, Brussels, 2004

C. Blum, Beam-ACO—hybridizing ant colony optimization with beam search: an application

to open shop scheduling. Comput. Oper. Res. 32(6), 1565-1591 (2005)

10

21

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

Ant Colony Optimization: Overview and Recent Advances 343

. C. Blum, Beam-ACO for simple assembly line balancing. INFORMS J. Comput. 20(4), 618—
627 (2008)

C. Blum, M.J. Blesa, New metaheuristic approaches for the edge-weighted k-cardinality tree
problem.Comput. Oper. Res. 32(6), 1355-1377 (2005)

C. Blum, M. Dorigo, The hyper-cube framework for ant colony optimization. IEEE Trans.
Syst. Man Cybern. B 34(2), 1161-1172 (2004)

C. Blum, M. Dorigo, Search bias in ant colony optimization: on the role of competition-
balanced systems. IEEE Trans. Evol. Comput. 9(2), 159-174 (2005)

C. Blum, M. Sampels, Ant colony optimization for FOP shop scheduling: a case study on
different pheromone representations, in Proceedings of the 2002 Congress on Evolutionary
Computation (CEC’02) (IEEE Press, Piscataway, 2002), pp. 1558-1563

C. Blum, M. Sampels, M. Zlochin, On a particularity in model-based search, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2002), ed. by W.B.
Langdon et al. (Morgan Kaufmann Publishers, San Francisco, 2002), pp. 35-42

C. Blum, M. Yabar, M.J. Blesa, An ant colony optimization algorithm for DNA sequencing
by hybridization.Comput. Oper. Res. 35(11), 3620-3635 (2008)

K.D. Boese, A.B. Kahng, S. Muddu, A new adaptive multi-start technique for combinatorial
global optimization. Oper. Res. Lett. 16(2), 101-113 (1994)

M. Bolondi, M. Bondanza, Parallelizzazione di un algoritmo per la risoluzione del prob-
lema del commesso viaggiatore, Master’s thesis, Dipartimento di Elettronica, Politecnico di
Milano, Italy, 1993

S.C. Brailsford, W.J. Gutjahr, M.S. Rauner, W. Zeppelzauer, Combined discrete-event sim-
ulation and ant colony optimisation approach for selecting optimal screening policies for
diabetic retinopathy. Comput. Manag. Sci. 4(1), 59-83 (2006)

B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank based version of the Ant System — a
computational study, Technical report, Institute of Management Science, University of Vi-
enna, 1997

B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank-based version of the Ant System: a com-
putational study. Cent. Eur. J. Oper. Res. Econ. 7(1), 25-38 (1999)

B. Bullnheimer, G. Kotsis, C. Strauss, Parallelization strategies for the Ant System, in High
Performance Algorithms and Software in Nonlinear Optimization, ed. by R. De Leone,
A. Murli, P. Pardalos, G. Toraldo. Kluwer Series of Applied Optmization, vol. 24 (Kluwer
Academic Publishers, Dordrecht, 1998), pp. 87-100

E. Cantd-Paz, Efficient and Accurate Parallel Genetic Algorithms (Kluwer Academic Pub-
lishers, Boston, 2000)

J.M. Cecilia, J.M. Garcia, A. Nisbet, M. Amos, M. Ujaldén, Enhancing data parallelism for
ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 52-61 (2013)

A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in Proceed-
ings of the First European Conference on Artificial Life, ed. by F.J. Varela, P. Bourgine (MIT,
Cambridge, 1992), pp. 134-142

A. Colorni, M. Dorigo, V. Maniezzo, An investigation of some properties of an ant algorithm,
in Parallel Problem Solving from Nature — PPSN I1, ed. by R. Minner, B. Manderick (North-
Holland, Amsterdam, 1992), pp. 509-520

0. Cordén, I. Fernandez de Viana, F. Herrera, L. Moreno, A new ACO model integrating
evolutionary computation concepts: the best-worst Ant System, in Abstract proceedings of
ANTS 2000 — From Ant Colonies to Artificial Ants: Second International Workshop on Ant
Algorithms, ed. by M. Dorigo, M. Middendorf, T. Stiitzle (IRIDIA, Université Libre de Brux-
elles, Brussels, 2000), pp. 22-29

0. Cordén, I. Fernandez de Viana, F. Herrera, Analysis of the best-worst Ant System and its
variants on the TSP. Mathw. Soft Comput. 9(2-3), 177-192 (2002)

0. Cordon, F. Herrera, T. Stiitzle, Special issue on ant colony optimization: models and ap-
plications. Mathw. Soft Comput. 9(2-3), 137-268 (2003)

D. Costa, A. Hertz, Ants can colour graphs. J. Oper. Res. Soc. 48(3), 295-305 (1997)

B. Crawford, R. Soto, E. Monfroy, F. Paredes, W. Palma, A hybrid ant algorithm for the set
covering problem. Int. J. Phys. Sci. 6(19), 4667-4673 (2011)

L. Dawson, [.A. Stewart, Improving ant colony optimization performance on the GPU us-
ing CUDA, in Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013
(IEEE Press, Piscataway, 2013), pp. 1901-1908

344

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

M. Dorigo and T. Stiitzle

L.M. de Campos, J.M. Fernandez-Luna, J.A. Gamez, J.M. Puerta, Ant colony optimization
for learning Bayesian networks. Int. J. Approx. Reason. 31(3), 291-311 (2002)

L.M. de Campos, J.A. Gamez, J.M. Puerta, Learning Bayesian networks by ant colony opti-
misation: searching in the space of orderings. Mathw. Soft Comput. 9(2-3), 251-268 (2002)
A. Delvacq, P. Delisle, M. Gravel, M. Krajecki, Parallel ant colony optimization on graphics
processing units. J. Parallel Distrib. Comput. 73(1), 52-61 (2013)

M.L. den Besten, T. Stiitzle, M. Dorigo, Ant colony optimization for the total weighted tardi-
ness problem, in Proceedings of PPSN-VI, Sixth International Conference on Parallel Prob-
lem Solving from Nature, ed. by M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J.
Merelo, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 1917 (Springer, Heidel-
berg, 2000), pp. 611-620

J.-L. Deneubourg, S. Aron, S. Goss, J.-M. Pasteels, The self-organizing exploratory pattern
of the Argentine ant. J. Insect Behav. 3(2), 159-168 (1990)

G. Di Caro, Ant Colony Optimization and its application to adaptive routing in telecommu-
nication networks, PhD thesis, IRIDIA, Université Libre de Bruxelles, Brussels, 2004

G. Di Caro, M. Dorigo, AntNet: a mobile agents approach to adaptive routing, Technical
Report IRIDIA/97-12, IRIDIA, Université Libre de Bruxelles, Brussels, 1997

G. Di Caro, M. Dorigo, Ant colonies for adaptive routing in packet-switched communications
networks, in Proceedings of PPSN-V, Fifth International Conference on Parallel Problem
Solving from Nature, ed. by A. E. Eiben, T. Béack, M. Schoenauer, H.-P. Schwefel. Lecture
Notes in Computer Science, vol. 1498 (Springer, Heidelberg, 1998), pp. 673-682

G. Di Caro, M. Dorigo, AntNet: distributed stigmergetic control for communications net-
works. J. Artif. Intell. Res. 9, 317-365 (1998)

G. Di Caro, M. Dorigo, Mobile agents for adaptive routing, in Proceedings of the 31st Inter-
national Conference on System Sciences (HICSS-31), ed. by H. El-Rewini. (IEEE Computer
Society Press, Los Alamitos, 1998), pp. 74-83

G. Di Caro, F. Ducatelle, L.M. Gambardella, AntHocNet: an adaptive nature-inspired al-
gorithm for routing in mobile ad hoc networks. Eur. Trans. Telecommun. 16(5), 443-455
(2005)

D. Diaz, P. Valledor, P. Areces, J. Rodil, M. Sudrez, An ACO algorithm to solve an extended
cutting stock problem for scrap minimization in a bar mill, in Swarm Intelligence, 9th Inter-
national Conference, ANTS 2014, ed. by M. Dorigo, M. Birattari, S. Garnier, H. Hamann,
M. Montes de Oca, C. Solnon, T. Stiitzle. Lecture Notes in Computer Science, vol. 8667
(Springer, Heidelberg, 2014), pp. 13-24

K.F. Doerner, R.F. Hartl, M. Reimann, Are CompetAnts more competent for problem solv-
ing? the case of a multiple objective transportation problem. Cent. Eur. J. Oper. Res. Econ.
11(2), 115-141 (2003)

K.F. Doerner, D. Merkle, T. Stiitzle, Special issue on ant colony optimization. Swarm Intell.
3(1), 1-2 (2009)

B. Doerr, F. Neumann, D. Sudholt, C. Witt, On the runtime analysis of the 1-ANT ACO al-
gorithm, in Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings
(ACM press, New York, 2007), pp. 33—40

B. Doerr, F. Neumann, D. Sudholt, C. Witt, Runtime analysis of the 1-ant ant colony opti-
mizer. Theor. Comput. Sci. 412(17), 1629-1644 (2011)

A.V. Donati, R. Montemanni, N. Casagrande, A.E. Rizzoli, L.M. Gambardella, Time de-
pe