
Chapter 6
Electron Correlation Effects in Theoretical
Model of Doped Fullerides

Yu. Skorenkyy, O. Kramar, L. Didukh, and Yu. Dovhopyaty

6.1 Introduction

The diversity of physical properties of doped fullerides has not been explained so far
at a microscopic level despite the intensive experimental and theoretical studies
conducted in recent decades. A variety of fullerene-based organic compounds have
been synthesized with metals [1], hydrogen [2, 3], halogens [4–6], and benzene [7]
that form a new class of organic conductors and semiconductors with tunable
parameters. In polycrystalline C60 doped with alkali metals, at temperatures under
33 K superconductivity has been observed [8–13] with critical temperatures varying
from 2.5 K for Na2KC60 to 33 K for RbCs2C60. Along with the phonon mechanism
of Cooper pairing [14, 15], purely electronic pairing mechanism has been proposed
[16]. To date, superconductivity of molecular conductors remains an open problem.
According to the theoretical band structure calculations (see [17] for a review),
fullerides with integer band-filling parameter n should be Mott–Hubbard insulators
because all of them possess large enough intra-atomic Coulomb correlation. At the
same time, the doped systems A3C60 (where A¼K, Rb, Cs) turn out to be metallic at
low temperatures [1]. It has been noted in papers [18, 19] that for a proper descrip-
tion of the metallic behavior of A3C60 (with x¼ 3 corresponding to the half filling of
conduction band), the orbital degeneracy of the energy band is to be taken into
account.

Adding to fullerene C60 the radicals containing metals of platinum group creates
fullerene-based ferromagnetic materials [1]. Another example of ferromagnetic
system in which neither component per se is ferromagnetic, are stacked Pd/C60

bilayers [20]. A purely organic compound TDAE-C60 (TDAE stands for tetrakis
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(dimethylamino)ethylene) represents a pronounced example of ferromagnetic
behavior [21–23] of unclear nature. Studies of polymerized fullerenes [24–26] are
promising as well. Distinct from polycrystalline fulleride, where fullerene molecules
are bound weakly by van der Waals forces, in such polymers a chemical binding is
realized. In temperature interval from 300 K to 500 K the polymerized fullerene C60

has the features of semiconductor with 2.1 eV energy gap [27].
Solid-state fullerenes (fullerides) are molecular crystals with intra-molecular

interaction much stronger than intermolecular one. In a close packing structure
each fullerene molecule has 12 nearest neighbors. Such structures are of two
types, namely, base-centered cubic and hexagonal ones [28–30]. At low tempera-
tures, the cubic Оh crystal lattice symmetry does not correspond to the icosahedral
Y symmetry of individual C60 molecules. There are four C60 molecules per unit cell
of fulleride lattice, arranged in tetrahedra so that molecules’ orientations in every
tetrahedron are identical. The tetrahedra form a simple cubic lattice. At ambient
temperatures, solid fullerides have one of closely packed lattices [31, 32] and are
semiconductors with band gap of 1.5–1.95 eV for C60 [33, 34], 1.91 eV for C70 [35],
0.5–1.7 eV for C78 [36], 1.2–1.7 eV for C84 [37–39]. Electrical resistivity of
polycrystalline C60 [37, 40, 41] decreases monotonically with temperature and
energy gap depends on the external pressure. Experimental studies of fulleride
films [42] have shown nonexponential dependences with characteristic relaxation
times of τ~5 � 10�8 s. The absence of temperature dependence in the temperature
region 150–400 K favors the carrier localization and the recombination mechanism
related to electron tunneling between the localized states. Transition from electronic
to hole conductivity is proven by change of Hall coefficient sign. Such a transition is
inherent, for example, to half-filled conduction band of K3C60.

In single-particle approximation, neglecting electron correlations, the following
spectrum has been calculated [43]: 50 of 60 pz electrons of a neutral molecule fill all
orbitals up to L ¼ 4. The lowest L ¼ 0,1,2 orbitals correspond to icosahedral states
ag, t1u, hg. All states with greater L values undergo the icosahedral-field splitting.
There are ten electrons in partially filled L ¼ 5 state. Icosahedral splitting
(L ¼ 5 ! hu + t1u + t2u) of these 11-fold degenerate orbitals leads to the electronic
configuration shown in Fig. 6.1.

Microscopic calculations and experimental data show that the completely filled
highest occupied molecular orbital is of hu symmetry, and LUМО (threefold degen-
erate) has t1u symmetry. The HOMO–LUMO gap is caused by icosahedral pertur-
bation in L ¼ 5 shell, with experimentally found value of about 1 eV [45]. t1g
(LUMO+1) state formed by L ¼ 6 shell is 1 eV above the t1u LUМО. Different
phases of the alkali fullerides are formed at changes of temperature, alkali metal
concentration, or lattice structure. In particular, metallic or insulating phases occur at
different fillings n of LUMO in С60 (n can take values from 0 to 6).

For a detailed theoretical study of electrical and magnetic properties of doped
fullerides a model is to be formulated, which takes into account orbital degeneracy of
energy levels, Coulomb correlation, as well as correlated hopping of electrons in
narrow energy bands. The proper treatment of these interactions is important for a
consistent description of a competition between on-site Coulomb correlation
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(characterized by Hubbard parameter U) and delocalization processes (translational
motion of electrons is determined by bare bandwidth and energy levels’ degener-
acy). Section 6.2 is devoted to the formulation of such model. Energy spectrum of
electronic subsystem and the ground-state energy have been calculated within the
Green function approach in Sect. 6.3. A generalization of the magnetization and
Curie temperature calculations [46, 47] has been developed, which allows us to
extend the phase diagram of the model and discuss driving forces for ferromagnetic
state stabilization observed in TDAE-doped fullerides and polymerized fullerides.
The competition of itinerant behavior enhanced by the external pressure application
and localization due to the correlation effects is discussed.

6.2 Theoretical Model of Doped Fulleride Electronic
Subsystem

Within the second quantization formalism, the Hamiltonian of interacting electrons
(with spin-independent interaction Vee(r � r') in crystal field Vion(r)) may be written
as

H ¼ H0 þ Hin t, ð6:1Þ
H0 ¼

X
σ

Z
d3rcþσ rð Þ � h

2m
Δþ V ion rð Þ

� �
cσ rð Þ,

Hin t ¼
X
σ, σ0

Z
d3r

Z
d3r0Vee r � r0ð Þnσ rð Þnσ0 r0ð Þ:

Here cþσ rð Þ, cσ(r) are field operators of electron with spin σ creation and annihi-
lation, respectively, nσ rð Þ ¼ cþσ rð Þcσ rð Þ. Interaction term is diagonal with respect to
spatial coordinates r, r'; therefore, it depends only on the electron fillings of the sites

Fig. 6.1 Single-electron energy levels of fullerene С60 (from paper [44]). The highest occupied
molecular orbital (НОМО) and the lowest unoccupied molecular orbital (LUМО) are of particular
importance
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interacting, with energy Vee(r � r'). The lattice potential Vion(r) causes the splitting
of initial band into multiple sub-bands numbered by index λ. For noninteracting
electrons description, Bloch wave functions ψλ k(r) and band energies єλk of
corresponding states are used. Let us introduce Wannier functions, localized at
position Ri:

φλ i rð Þ ¼ 1ffiffiffiffi
N

p
X
k

e�i k Riψλ k ,

where N is the number of lattice sites. Electron creation and annihilation operators
aþi λ σ , ai λ σ on lattice site i in band λ can be introduced:

aþi λ σ ¼
Z

d3rφλ i rð Þbcþσ rð Þ,

ai λσ ¼
Z

d3rφλ i rð Þbcσ rð Þ,

with the inverse transform

bcþσ rð Þ ¼
X
iσ

φ∗
λ i rð Þaþi λσ ,

bcσ rð Þ ¼
X
iσ

φ∗
λ i rð Þai λ σ:

In this way a general Hamiltonian can be rewritten in Wannier (site) representa-
tion as

H ¼
X
λijσ

tijλa
þ
iλσaiλσ þ

1
2

X
αβγδ

X
ijkl

X
σσ0

Jαβγδijkl aþiασa
þ
jβσ0alδσ0akγσ , ð6:2Þ

where the matrix elements are defined by formulae

tijλ ¼
Z

d3rφ∗
λ iðr � RiÞ � h

2m
Δþ V ionðrÞ

� �
φλ jðr � RjÞ, ð6:3Þ

Jαβγδijkl ¼
Z

d3r

Z
d3r0Veeðr � r0Þϕ∗

iαðr � RiÞϕ∗
jβðr0 � RjÞϕlδðr0 � RlÞϕkγðr � RkÞ

ð6:4Þ
Note that the Hamiltonian in Wannier representation is nondiagonal, which is

essential feature of strongly correlated electron systems and requires specific theo-
retical approaches for energy spectrum calculation. By analogy to the nondegenerate
model [48, 49], we obtain the following Hubbard-type Hamiltonian for orbitally
degenerate band with matrix elements of electron interactions describing correlated
electron hoppings:
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H ¼ �μ
X
iλσ

aþiλσaiλσ þ
X
i jλσ

0aþiλσ
�
ti j þ

X
k0λ0

Jðiλk0λ0jλk0λ0Þnk0λ0
�
ajλσþ

þU
X
iλ

niλ"niλ# þ U
0

2

X
iσλλ0

niλσniλ0 σ þ ðU0 � J0Þ
2

X
iσλλ0

niλσniλ0σþ

þ1
2
J
X

i jλλ0σσ0
aþiλσa

þ
jλ0σ0aiλσ0ajλ0σ ,

ð6:5Þ

where μ is chemical potential, niλσ ¼ aþiλσaiλσ is number operator of electrons of spin
σ in orbital λ of site i, σ denotes spin projection opposite to σ, niλ ¼ niλ"niλ#; tij is
electron hopping integral from site j to site i (interorbital hoppings are neglected),

J iλkλ0 jλkλ0ð Þ ¼
Z Z

φ∗
λ r � Rið Þφλ r � R j

� � e2

r � r0j j φλ0 r
0 � Rkð Þj j2drdr0 ð6:6Þ

(ϕλ are Wannier functions),

U ¼
Z Z

φλ r � Rið Þj j2 e2

r � r0j j φλ r0 � Rið Þj j2drdr0 ð6:7Þ

is on-site Coulomb correlation, assumed to have the same magnitude for all orbitals,

J0 ¼
Z Z

φ∗
λ r � Rið Þφλ0 r � Rið Þ e2

r � r0j jφ
∗
λ0 r

0 � Rið Þφλ r0 � Rið Þdrdr0 ð6:8Þ

is on-site Hund’s rule exchange integral, which stabilizes states |λ " λ0"i and |λ # λ0#i,
forming the atomic moments. Values of U, U

0
, and J0 are related by condition [50]

U0 ¼ U � 2J0:

Intersite exchange coupling is parameterized as

J ¼ J iλjλ0 jλiλ0ð Þ ¼
Z Z

φ∗
λ r � Rið Þφλ r � R j

� � e2

r � r0j jφ
∗
λ r � R j

� �
φλ r � Rið Þdrdr0:

ð6:9Þ
Intra-site Coulomb repulsion U and intersite exchange J are two principal energy

parameters of the model. In fullerides, the competition between the Coulomb
repulsion and delocalization processes (translation motion of electrons) determines
the metallic or insulating state realization [51].

For fullerides, magnitude of U may be estimated from different methods. Within
the local density approximation the Coulomb repulsion of 3.0 eV was obtained
[52, 53]. From experimental data of paper [54] based on the electron affinity to ion
C�
60 the value 2.7 eV has been obtained. In solid state closely spaced C60 molecules

cause screening, which leads to the repulsion energy reduction to 0.8–1.3 eV
[52, 53]. Auger spectroscopy and photo-emission spectroscopy gave values in the
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1.4–1.6 eV range [44, 55]. It is worthwhile to note that electrons of the same spin
projection spend less energy to sit on the same site than those of antiparallel spins;
thus, orbitally degenerated levels are filled in accordance to Hund’s rule. Experi-
ments [55] give for singlet-triplet splitting a value of 0.2 eV � 0.1 eV; in paper [45],
U2 is taken to be 0.05 eV.

We reduce the term
X=

ijkλλ0σ
J iλkλ0 jλkλ0ð Þaþiλσnkλ0a jλ0σ in Hamiltonian (6.5) to

X
i jλσ

0
�
Jðiλ iλ jλ iλÞaþiλσajλσniσ þ h:c:

�
þ
X
i jλλσ

0
�
Jðiλ iλ jλ iλÞaþiλσajλσniλ þ h:c:

�
þ
X
i jλλ0σ

0 X
k 6¼ i
k 6¼ j

�
Jðiλkλ jλkλ0Þaþiλσajλσnkλ0

�

(here λdenotes the orbital other than λ). The first and the third sums in this expression
generalize the correlated hopping, introduced for nondegenerate model (see, e.g.,
[49]). The second sum describes the correlated hopping type, which is a peculiarity
of orbitally degenerated systems. Among such processes one can distinguish three
distinct types of hopping, of which the first and the second are influenced by the
occupancies of sites between which hopping takes place and the third one depends
on neighboring sites’ filling. The latter can be taken into account in a mean-field type
approximation:

X0
ijλλ0σ

X
k 6¼i
k 6¼j

J iλkλ0 jλ0 kλ0ð Þaþiλσa jλσnkλ0 ffi n
X0
ijλσ

T1 ijð Þaþiλσa jλσ ,

where n ¼ < niα + niβ + niγ> is mean number of electrons per site,

T1 ijð Þ ¼
X
k 6¼i
k 6¼j

J iλkλ0 jλkλ0ð Þ

and we assume that J(iλ kα jλ kα) ¼ J(iλ kβ jλ kβ) ¼ J(iλ kγ jλ kγ) and T1(ij) is the
same for all orbitals. If α-, β-, and γ-orbital states are equivalent, one can take:

J
�
iλ iλ jλ iλ

� ¼ t0αα ijð Þ ¼ t0ββ ijð Þ ¼ t0γγ ijð Þ ¼ t0i j,
J iλ iλ jλ iλð Þ ¼ t00αα ijð Þ ¼ t00ββ ijð Þ ¼ t00γγ ijð Þ ¼ t00i j:

The Hamiltonian takes its final form
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H ¼ �μ
X
iλσ

aþiλσaiλσ þ U
X
iλ

niλ"niλ# þ U0

2

X
iλσ

niλσniλ0σþ

þ U0 � J0ð Þ
2

X
iλλ0σ

niλσniλ0σ þ
X0
ijλσ

tij nð Þaþiλσa jλσþ

þ
X0
ijλλσ

�
t0i ja

þ
iλσa jλσniλ þ h:c:

�þX0
ijλσ

�
t00i ja

þ
iλσa jλσniλσ þ h:c:

�
þ1
2

X
ijλσσ0

J ijð Þaþiλσaþjλσ0aiλσ0a jλσ ,

ð6:10Þ

with effective concentration-dependent hopping integral tij(n) ¼ tij + nT1(ij). Esti-
mations of bare half bandwidth (w¼ z|tpj|, z being the number of nearest neighbors to
a site) are 0.5–0.6 eV from data of paper [17] and 0.6 eV from paper [45].

6.3 Results and Discussion

For calculation of single-particle electron spectrum we apply the Green function
method. The equation for single-particle Green function is

E apα"jaþp0α"
D ED E

¼ δpp0

2π
þ αpα";H

	 
jaþp0α"D ED E
: ð6:11Þ

Taking into account the Hamiltonian (6.10) structure, in the commutator from the
above equation we approximate nondiagonal terms in a mean-field manner asX

ijλσλ0
t0ij nð Þ apα"; aþiλσa jλσniλ0

	 
þ apα"; aþiλσa jλσn jλ0
	 
� � ¼

¼
X
j

t0pj npβ
� �þ npγ

� �� �
a jα" þ

X
jσ

t0pj aþpβσa jβσ

D E
þ aþpγσa jγσ

D E� �
apα"þ

þ
X
j

t0pj n jβ

� �þ n jγ

� �� �
a jα" þ

X
jσ

t0pj aþjβσapβσ
D E

þ aþjγσapγσ
D E� �

apα":

ð6:12Þ

In a general case, averaged value of electron number operator depends on orbital
hniλi ¼ nλ,

β0λ ¼
X

jσ, λ0 6¼λ

t0pj aþpλ0σa jλ0σ þ h:c:
D E

: ð6:13Þ

According to the terminology of work [56], we classify the quantity β0λ as orbital-
dependent shift of the band center.

Analogously, we process terms
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X
ijλσ

t00ij
	
apα"; aþiλσa jλσniλσ


þ 	apα"; aþiλσa jλσn jλσ


� � ¼
¼ 2

X
j

t00pj npα#
� �

a jα" þ
X
j

t00pj aþpα#a jα#
D E

apα"

 ! ð6:14Þ

and introduce notations nλσ ¼ hnjλσi and

β00λσ ¼ 2
X
j

t00pj aþpλσa jλσ

D E
: ð6:15Þ

According to the terminology of paper [56], we classify the quantity β00λσ as spin-
dependent shift of the sub-band center.

Then the commutator (6.14) can be represented in the form

2nλσ
X
j

t00pja jα" þ β00λσ:

For the exchange interaction we have

1
2
J
X
ijλλ0σσ0

aþpα"; a
þ
iλσa

þ
jλ0σ0aiλσ0a jλ0σ

h i
¼ J

X
jλ0σ0

aþjλ0σ0apασ0a jλ0": ð6:16Þ

Averaging this expression, one has to take into account that aþjλσapλσ
D E

¼ 0 because

the electron transfer between different orbitals is excluded aþjλσa jλσ

D E
¼ S�jλ
D E

¼ 0,

then we have

J
X
σ

aþjασapασ
D EX

j

a jα" � zJ nα" þ nβ" þ nγ"
� �

apα":

Other commutators in Eq. (6.11) are trivial. Hence, the equation of motion in the
mean-field approximation takes the form

E þ μ� β0α � β00α" � Unα# � 2U0nβ# � 2 U0 � J0ð Þnβ" þ zJ nα" þ nβ" þ nγ"
� �n o

apα"jaþp0α"
D ED E

¼

¼ δpp0

2π
þ
X
j

tpj nð Þ � 4t0pjnλ � 2t00pjnλ# þ J
X
σ

aþjασapασ
D E( )

a jα"jaþp0α"
D ED E

:

ð6:17Þ
Let us introduce notations

eμλσ ¼ μ� β0λ � β00λσ � Unλσ � 2U0nλσ � 2 U0 � J0ð Þnλσ þ zJ
X
λ

nλσ , ð6:18Þ

for the renormalized chemical potential and
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αλσ ¼ 1� τ1n� 4τ0nλ � 2τ00nλσ � zJ

w

X
jσ

aþjασapασ
D E

: ð6:19Þ

for the correlation band narrowing factor.
Here, dimensionless parameters of correlated hopping τ0 ¼ t0pj= tpj



 

; τ00 ¼ t00pj= tpj


 



are introduced. In absence of the correlated hopping τ1 ¼ 0, τ
0 ¼ τ

00 ¼ 0.
After the Fourier-transform, we obtain for the Green function

apλσ jaþp0λσ
D ED E

k
! ¼ 1

2π
1

E � Eλσ
�
k
!� , ð6:20Þ

where the energy spectrum is

Eλσ
�
k
!� ¼ �eμλσ þ αλσ t

�
k
!�

: ð6:21Þ
The chemical potential is to be calculated from the equation

nλσ ¼ 1
N

X
k
!

Z1
�1

J k
!

λσ Eð ÞdE, ð6:22Þ

where the spectral density of the Green function is defined by the expression

J k
!

λσ ¼ δ E � Eλσ
�
k
!�� �

1þ exp
�
E � eμλσ

�
=θ

� �	 
�1
: ð6:23Þ

where θ ¼ kT. In case of arbitrary density of electronic states ρ(ε) for nonzero
temperatures one has

nλσ ¼
Zw
�w

ρ εð Þ 1þ exp Eλσ
�
k
!�� eμλσ

� �
=θ

� �� ��1

dε: ð6:24Þ

The ground-state energy can be calculated by the method of work in [57] as

E0 ¼ 1
2N

X
k
!
λσ

Z1
�1

�
t
k
!ðnÞ þ Eλσðk

!
Þ
�
Jλσ
k
! ðEÞdE ¼

¼ 1
2N

X
k
!
λσ

�
t
k
!ðnÞ þ Eλσðk

!
Þ
�
½1þ exp

��
Eλσðk

!
Þ � eμλσ

�
=θÞ��1:

ð6:25Þ

For arbitrary density of states (at T ¼ 0 K) one has
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E0 ¼ 1
2

X
λσ

Zελσ
�w

ρ εð Þ 1� τ1nð Þεþ Eλσ εð Þ� �
dε: ð6:26Þ

Single-electron states occupation numbers are related by the constraintsX
λσ

nλσ ¼ n,
X
λ

nλ" � nλ#
� � ¼ m,

in the case of no orbital ordering, we have nλ" ¼ (n + m)/3, nλ# ¼ (n � m)/3.
In the case of rectangular density of states, the ground-state energy can be

calculated analytically:

E0 ¼ �
X
λσ

1� τ1nþ αλσ
� �

1� nλσð Þnλσw2 þ eμλσ
nλσ
2

n o
, ð6:27Þ

where

eμλσ ¼ μ� β0λ � β00λσ � U þ 2U0ð Þ n� ησm

3
� 2 U0 � J0ð Þ nþ ησm

3
þ zJ nþ ησmð Þ,

αλσ ¼ 1� τ1n� 8
3
τ0n� 2

3
τ00 n� ησmð Þ � 2

3
zJ

w
n� 1

3
n2 þ m2
� �� �

,

ησ ¼ 1 for spin-up electrons and �1 otherwise. In these calculations we take into
account that

zJ

w

X
jσ

aþjασapασ
D E

¼ �zJ

w

X
jσ

tpj
tpj


 

 aþjασapασ

D E
¼ zJ

w

X
σ

nασ 1� nλσð Þ ð6:28Þ

and

β0λ ¼ 4
X
jσ

t0pj aþ
jλσ
apλσ

D E
¼ �4τ0

X
σ

Zw
�w

ρ εð Þεdε: ð6:29Þ

For the rectangular density of states

β0λ ¼ �8
3
τ0w n� 1

3
n2 þ m2
� �� �

: ð6:30Þ

Analogously,

β00λ" ¼
2
9
τ00w n 3� nð Þ � ησm 3� 2nð Þ � m2
� �

: ð6:31Þ
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Thus, the model is parameterized and dependences of the ground-state energy of the
considered model E0 on energy parameters U, JH, zJ, correlated hopping parameters
τ1, τ

0
, τ

00
, electron concentration n, and magnetization m can be studied numerically.

Using the expression (6.27), one can obtain the equilibrium value of system mag-
netization mGS, which is a zeroth-order approximation in magnetization calculation
at nonzero temperature. In case of the second-order transition, one obtains equation
for the Curie temperature at arbitrary density of states

θc ¼ 6
Zw
�w

ρ εð Þ Aþ Bεð Þexp E∗=θcð Þ exp E∗=θcð Þ þ 1ð Þ�2dε, ð6:32Þ

where E∗ is paramagnetic spectrum. The chemical potential is determined by the
condition

n ¼ 3
Zw
�w

ρ εð Þ exp E∗=θcð Þ þ 1ð Þ�1dε: ð6:33Þ

Equations (6.32) and (6.33) generalize corresponding results for nondegenerate
case [47] on triple orbital degeneracy of energy levels and allow modeling of the
Curie temperature at various densities of electronic states in a wide range of the
model energy parameters values for electron concentrations 0 < n < 3 (which
corresponds to doped fullerides AnC60 and TDAE-C60). Behavior of Curie temper-
ature appears to be closely related to the ground-state magnetization concentrational
dependence. The correlated hopping reduces the obtained values of the Curie
temperature considerably.

In Fig. 6.2, the concentration dependence of Curie temperature is shown in
different scenarios, corresponding to different acting mechanisms of correlated
hopping of electrons, both second-type correlated hopping parameters considered
to have the same magnitude τ2 ¼ τ

0 ¼ τ
00
. One can see that the correlated hopping,

which is known [49] to suppress conductance, enhances ferromagnetic tendencies
greatly. Applicability of the particular scenario to a given fulleride requires further
studies and will be considered elsewhere. On a qualitative level, taking into account
the correlated hopping allows to obtain reasonable estimates for Curie temperature
within the considered model of triply degenerate band with intersite exchange small
enough to be characteristic for polymerized fullerenes [58] and αTDAE-C60

[59]. We note that the system remains semiconducting at Coulomb interaction
energies greater than the bandwidth at integer average occupation number of a site
in this model [19].

Thus, both ferromagnetic ordering and semiconducting behavior [21] can be
observed. Simultaneous taking into account of triple orbital degeneracy of energy
levels and correlated hopping of electrons makes standard methods of theoretical
treatment complicated to apply, though it gives a clue for description of
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ferromagnetic behavior of doped fullerides. At the same time, the approach used in
this investigation has its own shortcomings [47], namely, it overestimates numerical
values for Curie temperature. This is rewarded by the natural description of the
electron–hole asymmetry, which is clearly seen from curves 2 and 3 in Fig. 6.2. As
expected, Hund’s rule coupling affects the Curie temperature considerably (see
Fig. 6.3); however, in the absence of the correlated hopping, the values of J0/
w required for a ferromagnetic solution are too large to be the case of the doped
fullerides.

In Fig. 6.3, there is a region of sharp critical temperature increase at increasing J0/
w (this region corresponds to a partial spin polarization of the system) and a region of
linear proportionality between Curie temperature and J0/w (this region corresponds
to saturated ferromagnetic state). The competition of itinerant behavior and locali-
zation due to the correlation effects can be enhanced by the external pressure
application renormalizing the effective band width. This effect is particularly impor-
tant near the critical value of J0/w parameter. In our opinion, based on estimations of
papers [17, 45, 55], curve 3 can be used as a reasonable model for the pressure-
driven transition to ferromagnetic state.

From Fig. 6.4 one can see that the change of electron concentration qualitatively
changes tendencies in the present model, which is yet another example of electron–
hole asymmetry. In the present approach, the difference between ferromagnetic
order stabilization by the correlated hopping for scenarios 1,2 and destabilization
for 3,4,5 can be attributed to the different consequences of sub-bands’ narrowing
caused by the correlated hopping in energy band picture at electron concentrations
n ¼ 1 and n ¼ 3.

Fig. 6.2 Curie temperature
dependence of band filling
at U/w ¼ 1.2, J0/w ¼ 0/35.
Curve 1 corresponds to zJ/
w¼ 0.25 and τ1 ¼ τ2 ¼ 0; 2:
zJ/w ¼ 0.1 and
τ1 ¼ τ2 ¼ 0.05; 3: zJ/
w ¼ 0.1; and τ1 ¼ 0.05,
τ2 ¼ 0.07
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6.4 Conclusions

The general model for electronic subsystem of doped fullerides can describe both
semiconducting behavior and magnetic order onset, if Coulomb correlation, intersite
exchange interaction, correlated hopping of electrons, and orbital degeneracy of
energy levels are all taken into account. In such a model, the magnetization and

Fig. 6.3 Curie temperature
dependence on J0/w for
quarter-filling of the band at
U/w ¼ 1.2 and zJ/w ¼ 0.05.
Curve 1 corresponds to the
absence of correlated
hopping; 2: τ1 ¼ 0.1, τ2 ¼ 0;
3: τ1 ¼ 0.1, τ2 ¼ 0.1

Fig. 6.4 Curie temperature
dependence on the
correlated hopping
parameter τ2 at U/w ¼ 1, zJ/
w¼ 0.05, J0/w ¼ 0.4. Curve
1 corresponds to n ¼ 1,
τ1 ¼ 0; curve 2: n ¼ 1,
τ1 ¼ 0,1; curve 3: n ¼ 3,
τ1 ¼ 0,05; curve 4: n ¼ 3,
τ1 ¼ 0,08; curve 5: n ¼ 3,
τ1 ¼ 0,1
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Curie temperature calculations allow us to extend the model phase diagram and
discuss driving forces for ferromagnetic state stabilization observed in polymerized
fullerenes and tetrakis(diethylamino)ethylene-fullerene. Curie temperature depen-
dence on integer electron concentration at realistic values of the Coulomb correlation
strength and Hund’s rule coupling, associated with orbital degeneracy of energy
levels, is strongly asymmetrical with respect to half-filling. Hund’s rule coupling
stabilizes ferromagnetic ordering in quarter-filled band. There is a region of sharp
critical temperature increase at increasing Hund’s rule coupling parameter
corresponding to a partial spin polarization of the system and a region of saturated
ferromagnet state. The balance of itinerant behavior and localization due to the
correlation effects can be shifted by the external pressure application renormalizing
the effective band width.
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