
Chapter 17
Internal Reflection of the Surface of a
Plasmonic Substrate Covered by Active
Nanoparticles

Eugene Bortchagovsky and Yurii Demydenko

17.1 Introduction

Surface plasmon polaritons (SPPs) are surface electromagnetic waves propagating
along metal-dielectric [1, 2] or doped semiconductor-dielectric [2, 3] interfaces.
Under phase-matching or resonance conditions, the energy of the exciting light
wave is coupled to the collective oscillation of conducting electrons on the metal
or semiconductor surface. There are a number of standard experimental methods for
the realization of such an energy transfer [4, 5]. In the visible part of the spectrum,
the Kretschmann configuration [5] based on a prism coupler with an active
plasmonic film on its base is mainly used. Experimentally, the energy transferred
at the excitation of a SPP wave is observed as a dip of a reflectance spectrum. As the
excitation of the SPP wave has a resonant nature, the shape and the position of this
minimum are highly sensitive to any changes in the refractive index at the surface of
a plasmonic film. So, this configuration has been extensively applied to various
chemical and biochemical sensing applications [6–9].

In the case when the surface of the plasmonic film is covered with a layer of active
nanoparticles, SPP can act as a source of excitation of so-called localized plasmon
polaritons (LPPs) [10–12] which, similar to conventional planar SPP in an extended
system, are charge density oscillations confined within the nanoparticles. LPP is also
resonant excitation, and the electromagnetic field of LPP near the surface of a
nanoparticle may be strongly enhanced. Spectral properties of LPP depend on the
material of nanoparticles, their structure, size, shape, and on the refractive index of
local dielectric environment [12–17].
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The interaction of LPPs excited on the nanoparticles with SPP waves leads to a
modification of optical properties of SPPs which results, depending on the coupling
of two excitations, in changing of the position of the minimum of reflectance (or the
position of maximum of an absorption/extinction spectra of SPPs) or in the splitting
of that minimum corresponding to the hybridization of two plasmonic modes. For
the cases of high surface concentration of active nanoparticles on the surface of the
plasmonic film, interactions between LPPs of individual nanoparticles lead to
formation of a new collective long-range electromagnetic surface mode. In this
case due to the interaction of this new mode with the SPP, we can definitely expect
the mode hybridization and the occurrence of new minimum in reflectance (maxi-
mum in absorption/extinction) spectra of SPPs as well as to splitting of existed
extremum [16–19].

For practical applications of plasmonic nanosystems, in particular in sensor
applications, it is important to understand how one can govern their optical proper-
ties most efficiently by means of optimizing their structure and design [20–22]. In
this connection the studying of the influence of parameters of the layer of active
nanoparticles placed on the surface of an active plasmonic film on optical properties
of such a system has both fundamental and practical interest.

In this paper we present general theoretical considerations of the influence of
parameters of a layer of cylinder-like active nanoparticles placed on the surface of a
plasmonic film on the reflectance spectrum measured in the Kretschmann configu-
ration. Calculations of the optical properties of such a system are based on the Green
function method [23, 24] taking into account of the local field effects in the system
with uniformly distributed nanoparticles on the surface of the plasmonic film.

The paper is organized as follows: In Sect. 17.2 we give general remarks on the
model and outline the geometry of the task. Section 17.3 deals with the common
analytical method of the calculation of reflection coefficients for the chosen model.
In Sect. 17.4 we apply the developed formalism for the numerical calculations of the
reflection coefficient for the case of p-polarized excitation. These calculations are
performed for the Kretschmann configuration assuming the uniform distributed
cylindrical gold nanoparticles for the case when n-doped semiconductor F:SnO2 is
considered as the plasmonic substrate. The “mirror” case of exchanged materials of
the nanoparticles and the substrate is considered as well. The shape and particle’s
concentration influence on the reflectance spectrum are scrutinized. Section 17.5
presents some conclusions for the results obtained in the presented work. In Appen-
dix A we present the analytical calculation of the susceptibility of a single nanopar-
ticle on a surface in the near-field approximation based on the effective susceptibility
concept developed in [16, 17, 25–27]. In Appendix B the scheme of the calculation
of the susceptibility of a nanoparticle layer within the Green function method is
presented in brief [23, 24].
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17.2 Problem Definition

Let us consider the Kretschmann scheme of the frustrated total internal reflection [5]
with a glass prism covered by a thin film of a plasmonic material; on the surface of
the film, a layer of active nanoparticles is placed, as it is depicted in Fig. 17.1. The
incident radiation illuminates the plasmonic film in the Kretschmann scheme from
the glass side at the angle of θ, and, for angles θ bigger than the Brewster angle, SPP
wave can be excited at the interface of plasmonic film with environment.

The layer of active nanoparticles consists of identical cylindrical nanoparticles
randomly distributed on the surface of the plasmonic film with the thickness h
(Fig. 17.2). We will consider nanoparticles with diameter d and the height hp,
which are much less than the wavelength of light λ0 (d, hp < < λ0). Supposing that
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 film

“1” Glass   ATR
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Fig. 17.1 Experimental
scheme: Layer of cylindrical
plasmonic nanoparticles is
placed on a plasmonic film
deposited on the base of a
glass prism. The structure is
illuminated in the
Kretschmann configuration

hp

d
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Fig. 17.2 Illustration of a particle layer placed on the surface of a plasmonic film. The particles are
distributed randomly and uniformly with surface concentration n
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the minimal distance between neighboring nanoparticles rb is bigger than their
diameter (rb � d), one can treat interparticle interaction as dipole-dipole one [28].

The SPP wave interacts with localized plasmons of the active nanoparticles in the
layer. As the properties of localized plasmons of nanoparticles strongly depend on
the shape, size of nanoparticles, and the interaction between them, these properties
depend on the concentration of particles on the surface. Thus, altering system
parameters such as shape and particle concentration, one can change the optical
properties of the whole system that results in modification of corresponding reflec-
tance spectra.

17.3 Reflected Field

The reflected field E 1ð Þ R;ωð Þ at the point R can be represented as superposition of
two fields – the field reflected by the system without the layer of particlesE 01ð Þ R;ωð Þ
and the field radiated by the particles

E 1ð Þ R;ωð Þ ¼ E 01ð Þ R;ωð Þ � iμ0ω
XN
υ¼1

Z
Vυ

dR0
υ
eG 13ð Þ R;R0

υ;ω
� �

j 3ð Þ R0
υ;ω

� �
, ð17:1Þ

with eG abð Þ R;R0;ωð Þ the Green function (the photon propagator) describing field of
frequency ω propagation from the source point R0 in medium “a” to the observation
point R in medium “b” for the system with two smooth interfaces [29]. The
summation in Eq. (17.1) is over all positions υ which are occupied by the particles,
j 3ð Þ R0

υ;ω
� �

is the induced current density within the υth particle, Vυ is the volume of
the υth particle, and μ0 is the vacuum permeability.

Supposing of a local relation between the current density j 3ð Þ R0
υ;ω

� �
and the local

field E 3ð Þ R0
υ;ω

� �
at the point R0

υ, one can write

j 3ð Þ R0
υ;ω

� � ¼ �iωε0eχ ωð ÞE 3ð Þ R0
υ;ω

� �
, ð17:2Þ

with eχ ωð Þ ¼ eε ωð Þ � eU� �
=4π, where eχ ωð Þ and eε ωð Þ are the linear response to the

local fieldE 3ð Þ R0
υ;ω

� �
and the dielectric function of the material of particles, ε0 is the

vacuum permittivity, and eU is the unit tensor.
Inserting this expression for j 3ð Þ R0

υ;ω
� �

into Eq. (17.1), one can write

E 1ð Þ R;ωð Þ ¼ E 01ð Þ R;ωð Þ � k20
XN
υ¼1

Z
Vυ

dR
0
υ
eG 13ð Þ R;R0

υ;ω
� �eχ ωð ÞE 3ð Þ R0

υ;ω
� �

,

ð17:3Þ
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where k20 ¼ ω=c and c is the light velocity. Considering each particle as the point-like
dipole located at its center of mass with the polarizability of the cylindrical particle
(the so-called quasi-point-like approximation [24–26]), the second term of Eq. (17.3)
can be rewritten in the form

XN
υ¼1

Z
Vυ

dR0
υ
eG 13ð Þ R;R0

υ;ω
� �eχ ωð ÞE 3ð Þ R

0
υ;ω

� �

� V
XN
υ¼1

eG 13ð Þ r � r
0
υ; z; zc;ω

� �eχ Sð Þ ωð ÞE 3ð Þ r0υ; zc;ω
� �

, ð17:4Þ

where vectors r
0
υ define the positions of the particles in the zc-plane and zc denotes the

z-coordinate of the center of mass of a particle. The tensor,eχ sð Þ ωð Þ, introduced in
Eq. (17.4) determines the linear response of a cylindrical particle on the surface of a
substrate to the local field acting inside the particle volume V (the dimensionless
polarizability). The implicit expression of eχ sð Þ ωð Þis given in Appendix A.

Taking into account that the considered system is homogeneous in the XOY
plane, it is possible to perform the Fourier transformation of Eq. (17.4) in the plane
and to average the obtained result with the function of the homogeneous distribution
[25–27]. Then Eq. (17.3) for the reflected fieldE 1ð Þ k; z;ωð Þ at the observation point z
is written in the k-z representation as

E 1ð Þ k; z;ωð Þ ¼ E 01ð Þ k; z;ωð Þ � ρeG 13ð Þ k; z; zc;ωð Þeχ Sð Þ ωð ÞE 3ð Þ k; zc;ωð Þ, ð17:5Þ
with ρ ¼ Vk20n, where n is a concentration of nanoparticles on the surface of the
plasmonic film.E 01ð Þ k; z;ωð Þ is the field reflected in Kretschmann configuration from
the structure without the layer of particles

E 10ð Þ k; z0;ωð Þ ¼ �iμ0ω

Z
l0

dz00eG 11ð Þ
I k; z0; z00;ωð Þj1ext k; z00;ωð Þ, ð17:6Þ

where eG 11ð Þ
I is the indirect part of the Green’s function [29] and j1ext k; z00;ωð Þ is the

current density of a source of the external to the system field.
Using connection between local fieldE 3ð Þ k; zc;ωð Þ and the external field acting on

a nanoparticle in the layer E 30ð Þ k; zc;ωð Þ, which is given by Eq. (17.B6), Eq. (17.5)
takes the form

E 1ð Þ k; z;ωð Þ ¼ E 01ð Þ k; z;ωð Þ
� ρeG 13ð Þ k; z; zc;ωð Þeχ Sð Þ ωð ÞeΩ k; zc; zc;ωð ÞE 30ð Þ k; zc;ωð Þ ð17:7Þ

with

E 30ð Þ k; zc;ωð Þ ¼ �iμ0ω

Z
l0

dz00eG 31ð Þ k; zc; z00ωð Þj1ext k; z00;ωð Þ: ð17:8Þ
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Supposing that the source of the external electric field is a point dipole located at z0,
we can write

j1ext k; z00;ωð Þ ¼ j1ext k;ωð Þδ z00 � z0ð Þ: ð17:9Þ
Substituting Eq. (17.9) into Eq. ((17.7), we receive

E 1ð Þ k; z;ωð Þ ¼ �iμ0ω eG 11ð Þ
I k; z; z0;ωð Þ

�
�ρeG 13ð Þ k; z; zc;ωð Þeχ ωð ÞeΩ�

k; zc; zc;ω
�eG 31ð Þ�k; zc; z0;ω�

�
j1ext k;ωð Þ:

ð17:10Þ
Taking into account the explicit expressions of the Green function [29], Eq. (17.10)
may be rewritten in the form

E 1ð Þ k; z;ωð Þ ¼ �iμ0ωe
æ1z eG 11ð Þ

I k;ωð Þ � ρeT 11ð Þ�k;ω�� �
j 1extð Þ k; z0;ωð Þ, ð17:11Þ

where the next designations are introduced

eT 11ð Þ k;ωð Þ ¼ eG 13ð Þ k;ωð Þeχ ωð ÞeΩ k; zc; zc;ωð ÞeG 31ð Þ k;ωð Þexp -2æ3zcð Þ, ð17:12Þ

j 1extð Þ k; z0;ωð Þ ¼ j 1extð Þ k;ωð Þexp �æ1jz0jð Þ, ð17:13Þ

æu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kj j2 � εuk

2
0

q
, u ¼ 1; 2; 3ð Þ ð17:14Þ

with εu denoting dielectric constants of media constituting the system.
To calculate the reflectance of the system, the expression for the field illuminating

the system E(1ext) is necessary, which can be obtained via the direct part of the
Green’s function, eG 11ð Þ

D [29]

E 1extð Þ k; z;ωð Þ ¼ �iμ0ωe
-æ1zeG 11ð Þ

D k;ωð Þj1ext k; z0;ωð Þ: ð17:15Þ
Dividing the field on s- and p-polarized components, we can calculate corresponding
reflectivities Rs and Rp from Eqs. (17.11) and (17.15):

Rs k;ωð Þ ¼ G 11ð Þ
Iyy k;ωð Þ � ρT 11ð Þ

yy

�
k;ω

���� ���2= G 11ð Þ
Dyy k;ωð Þ

��� ���2, ð17:16Þ

Rp k;ωð Þ

¼
G 11ð Þ

Ixx k;ωð Þ � ρT 11ð Þ
xx

�
k;ω

�� �
cos θ þ G 11ð Þ

Ixz k;ωð Þ � ρT 11ð Þ
xz

�
k;ω

�� �
sin θ

��� ���2

þ G 11ð Þ
Izx k;ωð Þ � ρT 11ð Þ

zx

�
k;ω

�� �
cos θ þ G 11ð Þ

Izz k;ωð Þ � ρT 11ð Þ
zz

�
k;ω

�� �
sin θ

��� ���2
0
B@

1
CA

= G 11ð Þ
Dxx k;ωð Þ cos θ þ G 11ð Þ

Dxz

�
k;ω

�
sin θ

��� ���2 þ G 11ð Þ
Dzx k;ωð Þ cos θ þ G 11ð Þ

Dzz

�
k;ω

�
sin θ

��� ���2
� 	

:

ð17:17Þ
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Eqs. (17.16) and (17.17) were written under assumption that Reæ1 ¼ 0
(a nonabsorbing glass prism).

17.4 Numerical Calculation of Reflectance Spectra
and Discussion

We will consider two “mirror” cases with respect to active materials of nanoparticles
and the plasmonic film. In the first case, metallic cylindrical particles are placed on
the surface of a thin film of a n-doped semiconductor transparent in the visible, as it
is shown in Figs.17.1 and 17.2 and the second case when the materials of the
particles and the substrate are replaced by each other.

Let us suppose that optical properties of the considered system can be described
rather adequately taking the dielectric functions of a metal in Drude form:

eε ωð Þ ¼ ε11 � ω2
p= ω2 þ iωγp
� �h ieU , ð17:18Þ

where ε11 is the optical high-frequency dielectric constant of a metal and ωp and γp
are the plasma frequency and the rate constant for the metal, respectively. We shall
take the dielectric function of a n-doped semiconductor in the form

eε ωð Þ ¼ ε21 1þ ω2
LO � ω2

TO

� �
= ω2

TO � ω2 � iωγph
� �� eω2

e= ω2 þ iωγe
� �
 �eU ,

ð17:19Þ
with ε21 denoting the optical high-frequency dielectric constant of a semiconductor;
ωLO, ωTO, and γph are the transverse and longitudinal frequency of the optical
phonons and the phonon damping constant, respectively; and eωe ¼ ωe=

ffiffiffiffiffiffiffiffi
ε21

p
, ωe,

and γe are the plasma frequency and the damping rate constant of free electrons for
the doped semiconductor, respectively. The following effective parameters were
taken for the dielectric function of metal (gold) [30]: ε11 ¼ 9,84, ωp ¼ 1,38�1016 s�1,
and γp ¼ 1,09�1014 s�1. Fluorinated tin oxide (F:SnO2) is considered as a n-doped
semiconductor with the following effective parameters [31]: ε21 ¼ 3,19, ωLO¼ 9,03�10
15 s�1, ωTO¼ 7,99�1015 s�1, ωe¼ 2,24�1015 s�1, γph¼ 1,94�1014 s�1, and γe¼ 2,54�10
14 s�1.

We will consider the case when p-polarized radiation excites the system coming
from the medium “1” at the angle of incidence θ¼600 in the (XOZ) plane (Fig. 17.1).
The BK7 glass prism with the refraction coefficient npr ¼ 1,47 is considered as the
medium “1”, and the wave vector of the incident radiation is k ¼ k0npr sin θex; 0

� �
.

The thickness of the active layer h ¼ 50 nm is chosen the same for both considered
cases.

Sizes of cylindrical gold nanoparticles were taken as hp¼ 25 nm and d¼ 100 nm,
and their dielectric function was obtained by Eq. (17.18). Then, considering F:SnO2
as the active film with dielectric function defined by Eq. (17.19), numerical
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calculations of an influence of the surface concentration n on the reflection spectrum
of the system in the Kretschmann geometry were performed using Eq. (17.17). The
results are presented in Fig. 17.3.

As it is seen from Fig. 17.3, the reflection spectra for selected parameters
remarkably depend on the particle concentration. Without gold particles on the
surface of F:SnO2, there is only one dip in the reflectance spectra around normalized
frequency x ¼ 0,07 connected with the excitation of the plasmon of a subsystem of
conducting electrons. Deposition of gold particles results in the arising of a new dip
close to x¼ 0,25 corresponding to the excitation of out of plane localized plasmons.
The spectral position of this localized plasmon for one separated nanoparticle on the
surface of F:SnO2 film is x ¼ 0,248, which is shown in figures by arrow. At small
particle concentration of about n � 107 cm�2, this dip is not pronounced but further
rises with the increase of the number of particles. This behavior is obvious as the
absorbed energy should correlate with the number of absorbers. However, the depth
of the minimum rises not linear with the number of particles became slower at bigger
concentrations. Along with the increase of the depth of that minimum, its blue shift is
observed (spectral positions of sequential minima are given in Fig. 17.3 and shown
in Fig. 17.4). It is the exhibition of interparticle interactions that results in the
creation of common mode of the ensemble of degenerated localized plasmons of
individual particles. The blue shift also indicates that we observe out of plane
plasmonic resonance of nanoparticles [32]. The blue shift becomes more pronounced
for concentrations of particles more than 1�108 cm�2.

However, this behavior of the minimum changes remarkably after the concentra-
tion exceeds about 5�108 cm�2. One minimum splits demonstrating at x � 0,245

Fig. 17.3 Influence of the particle concentration n on the reflectance spectra. The spectra calculated
for the case with F:SnO2 as a substrate for gold particles. The angle of incidence θ ¼ 600

250 E. Bortchagovsky and Y. Demydenko



small minimum as the deep one moves to the blue side to about x ¼ 0,26. Further
increase of the concentration makes both minima equally pronounced with smaller
but comparable depths indicated in Fig. 17.3 by letters “a” and “b.” The spectral
position of the second dip gets about x � 0,275 at the highest concentration 1,5�109
cm�2 what is about the limit to which we can restrict ourself by dipole-dipole
interactions. This behavior demonstrates the transfer from weak coupling of SPP
with collective mode of nanoparticles to strong one with their hybridization and
splitting. It happens when the energy of coupling exceeds the damping [33] and
modes can exchange energy of excitation many times before decay.

Fig. 17.4 exhibits the normalized spectral position of minima of reflectivity
spectra versus the surface concentration of nanoparticles on the surface. Two
branches, which correspond to two minima shown in Fig. 17.3, are visible. It is
interesting that the behavior of the blue shifted minimum noticed in Fig. 17.3 by “a”
is practically linear with the concentration. The second minimum becomes notice-
able only at concentrations higher than 5�108 cm�2 and visually recognizable after
1�109 cm�2. The positions of that red shifted minimum were defined either from the
second derivative revealing flex points of the curve what is shown by solid line or
from the visually recognizable minima position (first derivative) at higher concen-
trations what is shown by stars. The difference behavior of stars can be explained by
the influence of not well-separated blue shifted minimum and the exhibition of the
red shifted minimum as a shoulder on the dip of the blue shifted minimum. It gives

Fig. 17.4 Position of minima in reflectivity spectra versus the concentration of nanoparticles on the
surface. Dashed line gives the position of the resonance of one separated particle as blue and red
ones of two blue and red shifted minima noticed in Fig. 17.3 by a and b correspondingly. The insert
demonstrates the position of red shifted minimum in more details. The line represents the position
defined from the second derivative as stars by visually visible minimum positions
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visually shifted minimum position to the direction of the main minimum (in our case
to blue side) according to the real one. It is obvious that the flex point should be
closer to the minimum position just when it is very shallow and not revealed by the
first derivative. Finite numerical precision explains not smooth behavior of the flex
point.

Despite shown dependences are not dispersion curves, demonstrated behavior
proves that we have different coupling conditions for surface and localized reso-
nances at different concentration of deposited nanoparticles in the system gold
nanoparticles – n-doped semiconductor F:SnO2 and transfer between these two
regimes. To demonstrate this transfer more pronouncedly, reflectivity of our system
is shown in more details in Fig. 17.5 for three ranges of the particle concentration:
small up to 1�108 cm�2, intermediate from 1�108 cm�2 to 5�108 cm�2, and high up to
1,5�109 cm�2.

Panel 4a shows sequential increasing of the depth of the absorption dip with
rather small blue shift, as the average distances between particles in our system at the
concentration 1�108 cm�2 are still rather large of about 1 μm remarkably exceeding

Fig. 17.5 Detailed presentation of the reflectivity from Fig. 17.3 for different ranges of concen-
trations: (a) small ones up to 1�108 cm�2, (b) intermediate ones for the range 1�5�108 cm�2, (c)
high ones over 5�108 cm�2, and (d) the first derivatives of curves from the panel b
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the lateral size of the particle. Panel 4b exhibits the range of intermediate concen-
trations of 1�5�108 cm�2. For this range pronounced blue shift is visible up to about
x� 0,255 what is far from the position of the resonance of the only particle indicated
by arrow. Panel 4c exhibits the case of higher concentrations when the splitting of
minima is clearly visible. It may be seen that the position of the resonance at x �
0,245 is practically nonshifted from the resonance of one separated particle. So this
resonance corresponds to the localized-like branch of two hybridized modes.

It is necessary to note that careful consideration of the reflectance curve for the
concentration of 5�108 cm�2 reveals its slight asymmetry. To clarify it, first deriv-
atives of curves from panel 4b are shown in panel 4d. It is clearly seen that already at
the concentration of 5�108 cm�2 and less pronounced at 4�108 cm�2, there is the trace
of the second minimum corresponding to the localized-like mode. It means that
already at the distance between edges of particles exceeding their size in 1.5�2
times, there is the creation of the common mode of the layer and their hybridization
with the surface plasmon of the substrate resulting in the splitting of two modes. The
hybridization of modes at smaller concentration is probably absent. At least even the
second derivative does not demonstrate any additional features beside of the one
resonance for the concentration of 3�108 cm�2.

So we suppose that presented three diapasons of the particle concentration
correspond to three different coupling regimes for surface and localized plasmons
in the considered system. At small concentrations of nanoparticles when interparticle
interactions are practically unobservable, there is weak coupling of modes. Rising
the concentration of deposited nanoparticles, we come to the case of noticeable
interparticle interactions resulting in the shift of the common resonance of the layer
of nanoparticles, but still intermediate coupling of surface and localized modes when
the strength of the coupling is comparable with the mode dumping [33] and splitting
is not yet pronounced. Only the trace of the splitting is visible in this case as the
shoulders of the reflectivity spectrum. The third regime of strong coupling with
pronounced Rabi splitting is realized at high particle concentration.

As it is well known [34, 35], the positions of minima of the reflectance spectrum
at the excitation of SPPs are determined by the positions of zeroes of the pole part of
the susceptibility of the considered system. These zeroes define points on the plane
(θ,ω) where SPPs can be excited under given parameters of the system. The number
of these points determines curves, which are dispersion characteristics of excited
SPPs. In the case considered in this work, the appropriate zero points can be obtained
from the equation

Re det eΩ k; zc; zc;ωð Þ
� ��1

� 
� �
¼ 0, k ¼ k0npr sin θ

� �
: ð17:20Þ
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Let us consider the plot of Re det eΩ k; zc; zc;ωð Þ
� ��1

� 
� �
as the function of the

normalized frequency x¼ ω / ωΤΟ for the case of high concentration of nanoparticles
with parameters used in previous calculations. These curves are shown in Fig. 17.6
for different concentrations of nanoparticles.

As it is seen from Fig. 17.6, for the nanoparticle concentrations for which n �
1�109 cm�2, one can say that requirement of the excitation of SPP waves in the
considered system is satisfied. The discrepancy of this value with the value n� 5�108
cm�2, obtained in the analysis of reflectance spectra, may be explained by damping.
Only at n� 1�109 cm�2, two minima are well seen, before the red one is seen only as
the shoulder on the curve. The account of damping would correspond to the
spreading of linear curves in Fig. 17.6 to stripes, so even at smaller concentrations,
there would be touching of zero line corresponding to the excitation of SPP in the
system.

As it was already mentioned in the introduction [12–17], optical properties of
LPP strongly depend on the shape of the nanoparticle. Thus, we can expect effective
control of the optical properties and the reflectance spectra of the system modifying
the shape of deposited nanoparticles. Let us fix the particle concentration at
n ¼ 1,5�109 cm�2 and the value of the particle volume at V ¼ 1,96�10�22 m3 (the
value of the volume corresponds to hp ¼ 25 nm and d ¼ 100 nm; these geometrical
parameters will be used as initial ones) and study numerically the influence of the
change of the particle shape on the reflectance spectrum using Eq. (17.17) with the

Fig. 17.6 The illustration of the appearance of zeroes of the pole part of eΩ k; zc; zc;ωð Þwhen the
surface nanoparticle concentration, n, increases
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same other parameters of the system as it was used in previous calculations. The
result of these calculations is presented in Fig. 17.7.

As it is seen from Fig. 17.7, the change of the particle form from the disk-like to
pillar-like one leads to quick disappearance of the “red” (b) localized-like mode. This
happens along with rapid displacement of the remaining “blue” (a) toward low
frequencies that results in the disappearance of this minimum at the frequency of
SPP mode of the F:SnO2 substrate at given angle of incidence θ ¼ 600. The local
field interactions of localized plasmons of nanoparticles with surface plasmonic
excitation of conducting electrons on the F:SnO2 substrate lead to slight improve-
ment of SPP generation condition exhibited by a bit dipper minimum at x ¼ 0,07.

Let us exchange the materials of deposited nanoparticles and the active film
assuming semiconducting particles on gold and using Eq. (17.17) consider the
influence of particle concentration on the reflectance spectrum of such a modified
system in the same way as it was done for the previous system presented in
Fig. 17.3. The incident angle of external radiation is now θ ¼ 440, as for angles of
incidence bigger than 500, the minimum in reflectivity spectra is not pronounced.
The height and diameter of nanoparticles are the same as for Fig. 17.3. At these
conditions the well-known SPP is generated on the surface of gold layer. The field of
SPP interacts with the disk-like nanoparticles of F:SnO2 that leads to worsening of
the generation condition of the SPP wave at high concentrations, and, as the result of
the interaction, the minimum of SPP becomes shallower and a bit shifted than for the
clean surface of a gold film. The result of calculations is shown in Fig. 17.8. So, no

Fig. 17.7 The influence of the modification of the particle shape on the reflectance spectrum for the
case of high particle concentration. For all curves the particle volume V is taken constant
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distinctive influence on the reflectance spectrum is found but the fact that loading of
active semiconducting particles of F:SnO2 gives slight blue shift of the plasmonic
resonance in contrast to deposition of any passive material on the gold surface.

17.5 Conclusion

Within the frame of the Green functions method with the use of the concept of
effective susceptibility the approach for the calculation of reflectance spectra of the
layer of possessing LP cylindrical nanoparticles situated on the surface of a
plasmonic film was developed. The modeling was performed for the system of
gold disks on the surface of the n-doped semiconductor F:SnO2 for the illumination
of the system in the Kretschmann configuration with the excitation of SPP. The
dependences of the reflectivity on the particle concentration and on their shape were
investigated. Obtained results clearly demonstrate the possibility of effective control
of optical properties of the system and its reflectance spectrum changing parameters
of the layer of particles. The spectral position of resonances of such a system can be
tuned by changing the particle shape.

Investigation of the concentration dependence of the optical properties of the
considered system reveals the existence of regions of weak and strong coupling of
surface and localized modes and clear transition from one to the other regime. At
higher concentration of deposited nanoparticles, damping of the common mode of
nanoparticle layer, which is created from degenerated localized resonance by

Fig. 17.8 The influence of particle concentration n on the reflectance spectra of “reversed”
structure with semiconducting particles on the gold film
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interparticle interactions, drops, and we obtain the strong coupling regime with the
hybridization of modes and Rabi splitting. This transition between two regimes was
analyzed in detail.

The system considered in this study can be used as active element of sensors.

Appendices

Appendix A

Susceptibility of a Nanoparticle on the Surface in the Near-Field
Approximation

Let us consider a cylindrical nanoparticle placed on the surface of an isotropic active
plasmonic substrate (metal or n-doped semiconductor) with the dielectric constant ε
2 (ω) illuminated by long-range electrical field E(0)(R,ω) as it is illustrated in
Fig. 17.2. As linear dimension of the particle is supposed less than the wavelength,
all electrodynamic interactions between the particle and the substrate as well as with
a surrounding medium can be taken into account by using the Green function in
near-field approximation [16, 17]. Then the local field E(R,ω) at any point R in the
system can be calculated by the equation

E R;ωð Þ ¼ E 0ð Þ R;ωð Þ � iωμ0 lim
δ!0

Z
V�Vδ

dR
0 eGNF R;R

0
;ω

� �
j R

0
;ω

� �

� 1
iωε0

eL j R;ωð Þ, ð17:A1Þ

where Vδ is the so-called exclusion volume which is used to remove the singularity
of eGNF at R ¼ R0 and eL is the source dyadic accounting depolarizing properties of
Vδ, which depends solely on the shape of the exclusion volume [36, 37].

Choosing the origin of a Cartesian coordinate system on the surface of the
plasmonic film with the z-axis directed along the axis of the cylindrical particle, as
shown in Fig. 17.2, for our case eL has the next simple diagonal form:

eL ¼ 0:5a ξð ÞeU t þ 1� a ξð Þð Þ ez
O

ez
� �

, ð17:A2Þ

where a ξð Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
and ξ ¼ d=hp with eU t ¼ ei

O
ei

� �
the transversal unit

tensor ei (i ¼ x, y) and ez denote unit vectors in a Cartesian xyz-coordinate system.
According to the method developed in [26], we suppose that similar to Eq. (17.2)

for the local current density j(R,ω), one can introduce the relation connecting j(R,ω)
with the external field E(0)(R,ω) illuminating the system:
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j R;ωð Þ ¼ �iωε0eχ Sð Þ R;ωð ÞE 0ð Þ R;ωð Þ, ð17:A3Þ
whereeχ Sð Þ R;ωð Þ is the tensor of linear response of the particle on the surface to the
external field E(0)(R,ω). Then using the constitutive relation Eq. (17.2) in the form

j R;ωð Þ ¼ �iωε0eχ ωð ÞE R;ωð Þ, ð17:A4Þ
and Eq. (17.A3), the external field can be expressed as

E 0ð Þ R;ωð Þ ¼ eχ Sð Þ�R;ω� ��1eχ ωð ÞE R;ωð Þ: ð17:A5Þ

The reverse matrix eχ Sð Þ�R;ω� ��1
exists because there is dissipation in the system.

Substituting Eq. (17.A4) into Eq. (17.A1), one obtains analogously to [26]

E R;ωð Þ ¼ eχ Sð Þ R;ωð Þ� ��1eχ ωð ÞE R;ωð Þ
�k20 limδ!0

Z
V�Vδ

dR
0 eGNF R;R

0
;ω

� �eχ ωð ÞE R
0
;ω

� �
þ eLeχ ωð ÞE R;ωð Þ:

ð17:A6Þ
Since Eq. (17.A6) fulfills for all points of the system including points within the
volume V - Vδ, we can act on Eq. (17.A6) by the operator lim

δ!0

R
V�Vδ

dR. Then,

supposing that local field can be represented in the form [26]

E R;ωð Þ ¼
X
K

E K;ωð Þexp iKRð Þ, ð17:A7Þ

after interchanging of the dummy variables R0 $ R and, correspondingly, the order
of integration, one obtains from Eq. (17.A6)

X
K

lim
δ!0

Z
V�Vδ

dR eU � eLeχ ωð Þ þ k20 lim
δ!1

Z
V�Vδ

dR
0 eGNF

�
R

0
;R;ω

�eχ ωð Þ
8<
:

� eχ Sð Þ R;ωð Þ� ��1eχ ωð Þ
o
E K;ωð Þexp iKRð Þ ¼ 0:

ð17:A8Þ

Using the fact that exponents form the complete set of orthonormal functions, we
obtain from Eq. (17.A8)

eχ Sð Þ R;ωð Þ ¼ eχ ωð Þ eU þ k20 limδ!0

Z
V�Vδ

dR
0 eGNF R

0
;R;ω

� �
� eL

0
B@

1
CAeχ ωð Þ

2
64

3
75
�1

:

ð17:A9Þ
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Using Eqs. (17.A3), (17.A4), and (17.A9), one can receive the relation between the
local and external fields existing within the volume V – Vδ:

E R;ωð Þ ¼ eΘ R;ωð ÞE 0ð Þ R;ωð Þ, ð17:A10Þ

eΘ R;ωð Þ ¼ eU þ k20 limδ!0

Z
V�Vδ

dR
0 eGNF R0;R;ωð Þ � eL

0
B@

1
CAeχ ωð Þ

2
64

3
75
�1

: ð17:A11Þ

The electric dipole moment of the current density distribution j(R,ω)

p ωð Þ ¼ i=ωð Þ
Z
V

dRj R;ωð Þ: ð17:A10Þ

Taking into account Eq. (17.A4), it can be rewritten in the form

p ωð Þ ¼ ε0eχ ωð Þ
Z
V

dRE R;ωð Þ: ð17:A11Þ

Replacing the local field E(R,ω) in Eq. (17.A11) by the external field E(0)(R,ω), we
obtain

p ωð Þ ¼ ε0eχ ωð Þ
Z
V

dReΘ R;ωð ÞE 0ð Þ R;ωð Þ: ð17:A12Þ

Since we consider nanoparticles with sizes less than the wavelength of the external
illuminating field, one can omit the variation of the external field across the particle,
i.e., in Eq. (17.A12), one can replace E(0)(R,ω) by E(0)(Rc,ω), then

p ωð Þ ¼ ε0eχ ωð Þ
Z
V

dReΘ R;ωð Þ
2
4

3
5E 0ð Þ Rc;ωð Þ,Rc ¼ 0; zcð Þ: ð17:A13Þ

Evaluating the integral in square brackets of Eq. (17.A13) as

Z
V

dReΘ R;ωð Þ
2
4

3
5 � V eΘ Rc;ωð Þ ð17:A14Þ

we can introduce the dyadic dipole-dipole polarizability of the particle via

eα ωð Þ ¼ ε0Veχ Sð Þ ωð Þ: ð17:A15Þ
The tensor eχ Sð Þ ωð Þ for the considered case has the diagonal form
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eχ Sð Þ ωð Þ ¼ χ Sð Þ
k ωð ÞUt þ χ Sð Þ

⊥ ωð Þ ez
O

ez
� �

i ¼ x; yð Þ ð17:A16Þ

with the components of the polarizability written as

χ Sð Þ
q ωð Þ ¼ χ ωð Þ= 1þ Aq ω; ξð Þ� �

q ¼ k;⊥ð Þ, ð17:A17Þ

where

Ak ω; ξð Þ ¼ 0, 25 �1þ a ξð Þ 3þ 0; 5η ωð Þð Þ � 1; 5b ξð Þη ωð Þð Þ, ð17:A18Þ

A⊥ ω; ξð Þ ¼ �0, 5

þ 0, 25 �a ξð Þ 6� η ωð Þ 3þ 4=ξ2

 �� �þ b ξð Þη ωð Þ 1þ 12=ξ2


 �� �
,

ð17:A19Þ

b ξð Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ ξ2

q
, η ωð Þ ¼ ε2 ωð Þ � ε3ð Þ= ε2 ωð Þ þ ε3ð Þ, ð17:A20Þ

ε3 is a dielectric function of surrounding medium.

Calculation of the Susceptibility of a Nanoparticle Layer

Let us suppose that the tensor of linear response of the cylindrical particle on the
surface of an active medium eχ Sð Þ ωð Þ is known; then the electric field in the medium
“3” where the particles are located can be written in the form similar to Eq. (17.5):

E 3ð Þ k; z;ωð Þ ¼ E 03ð Þ k; z;ωð Þ � ρeG 33ð Þ k; z; zc;ωð Þeχ Sð Þ ωð ÞE 3ð Þ k; zc;ωð Þ, ð17:B1Þ
where E 03ð Þ k; z;ωð Þ is the external long-range electrical field acting on the particle in
the layer

E 03ð Þ k; z;ωð Þ ¼ �iμ0ω

Z
l0

dz
00 eG 31ð Þ k; z; z00;ωð Þj1ext k; z00;ωð Þ: ð17:B2Þ

Let us assume that the Green function of the considered system eF 31ð Þ is known,
then

E 3ð Þ k; z;ωð Þ ¼ �iμ0ω

Z
l0

dz00eF 31ð Þ k; z; z00;ωð Þj1ext k; z00;ωð Þ: ð17:B3Þ

Substituting Eq. (17.B3) into Eq. (17.B1), one can write
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eF 31ð Þ k; z; z00;ωð Þ þ ρeG 33ð Þ k; z; zc;ωð Þeχ Sð Þ ωð ÞeF 31ð Þ k; zc; z00;ωð Þ
�eG 03ð Þ k; z; z00;ωð Þ ¼ 0:

ð17:B4Þ

Taking Eq. (17.B4) at the point z ¼ zc and using Eq. (17.B3), we obtain the simple
relation between the local field E(3) and the external field E(03) at the point z ¼ zc:

E 3ð Þ k; zc;ωð Þ ¼ eΩ k; zc; zc;ωð ÞE 03ð Þ k; zc;ωð Þ, ð17:B5Þ

eΩ k; zc; zc;ωð Þ ¼ eU þ ρeG 33ð Þ k; zc; zc;ωð Þeχ Sð Þ ωð Þ
h i�1

: ð17:B6Þ

The tensor eΩ k; zc; zc;ωð Þ is the dimensionless effective susceptibility of the layer of
cylindrical nanoparticles on a surface [16, 17], which accounts both near- and
far-field electromagnetic interactions within the layer and with the substrate.
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