
Chapter 13
Features of Spin Transport in Magnetic
Nanostructures with Nonmagnetic
Metal Layers

A. M. Korostil and M. M. Krupa

13.1 Introduction

Coupling between spin currents and localized magnetic moments in magnet (M)/
normal (nonmagnetic) metal (N)-based multilayer magnetic nanostructures consti-
tutes the basis of the mutual control between electric current and static or dynamic
magnetic states. Herewith, magnetic layers include magnets with the exchange
interactions both ferromagnetic (F) and antiferromagnetic (AF) types (e.g., ferrimag-
netic compounds like YIG, Gd3 Fe5O12 and AFs Fe3O4, NiFe2O4, NiO [1, 2]), and
normal metals are, usually, heavy metals with strong spin-orbit coupling (e.g., Pt, Ta,
W). The mentioned interconnection in these magnetic nanostructures occurs via the
interface scattering of the spin-polarized current and its s-d exchange interaction
with static or dynamic magnetic states [3–6]. The impact of the spin current on the
magnetic states is manifested through the spin-transfer torque, and the impact of the
localized magnetic momentum on the spin current is manifested via the spin-
dependent interface scattering accompanied by magnetoresistance effect. The spin
polarization can be induced by effective bias fields of different origins including
fields caused by an exchange interaction and the strong spin-orbit coupling. The
entire spin-coherent region is limited in size by spin-flip relaxation processes.

In the case of static magnetic states, the mutual influence of the spin current and
magnetic ordering can be manifested as the magnetoresistance effect of the depen-
dence of the spin current on the magnetization orientation in the magnetic layer and,
vice versa, the dependence of the latter on the spin current [5, 6]. Such effects can
constitute the base for magnetic writing techniques in nonvolatile memory
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technologies such as MRAM [7] and racetrack memories [8]. They also include the
giant magnetoresistance (GMR) effect in metallic magnetic multilayers, which was
commercially utilized in high-end magnetic recording media [9]. Obtaining the
mentioned multilayer magnetic nanostructures with properties of electric-controlled
magnetic switching and the magnetic-controlled spin current involves the descrip-
tion of features of the spin transport in magnetic heterogeneous nanostructures
allowing for the compatibility conditions at the interfaces [4, 10]. This is usually
solved within the Landauer-Büttiker formalism [11] and, more rigorously, using the
nonequilibrium Keldysh-Green functions [12, 13].

In the case of the dynamic magnetic states, their interconnection with the control
spin current is affected by the magnetic precession-induced spin pumping and the
spin accumulation in the normal-metal layer at the interface [3, 10]. The action of the
spin currents on the magnetic dynamics via the spin-transfer torque and the recipro-
cal process of spin pumping result in the effect of controlled magnetic auto-
oscillations [14]. The magnetic dynamic damping is related to the spin-pumping
effect at the M|N interface that can be compensated by the spin-transfer torque from
the spin current of the converted input current. This spin transfer is governed by the
reflection and transmission matrices of the system, analogous to the scattering theory
of transport and interlayer exchange coupling. Due to interfacial processes, M|N
coupling becomes important in the limit of ultrathin (� 10 nm) magnetic films and
can lead to a sizable enhancement of the damping constant.

The abovementioned coupling effects at interfaces can occur in the magnetic
nanostructures with both ferromagnetic (F) and antiferromagnetic (AF) exchange
interactions, which are realized in ferro-, ferri-, and antiferromagnetic materials.
Normal metal layers are medium for the spin currents, which can be converted from
the control charge current by the spin-orbit interaction, especially the spin Hall and
the spin-orbit Rashba [15, 16] effects.

The paper is organized as follows. In Sect. l, the spin-dependent transport in the F/
N-based magnetic nanostructure is studied for the static magnetization. In the
modified Stoner model with potential barrier dependent on the physical parameters
including the magnetization directions, the chemical potentials of the layers, and the
contact conductances, the parametrically dependent scattering of spin-polarized
current is investigated. The mentioned parameters are determined by the spin-
polarized kinetic equations in the framework of the Keldysh-Green function
approach. It is considered both in single and composite F/N-based magnetic
nanostructures. In Sect. 2, features of the interconnection between magnetization
dynamics and the spin currents are studied in the F/N-based nanostructures. The
process of the magnetization precession-induced pumping spin current in the
nonmagnetic layers is considered as the result of the parametric time dependence
of the interfacial scattering with the precession as the parameter. It is shown that the
spin pumping slows down the precession corresponding to an enhanced Gilbert
damping constant in the Landau-Lifshitz-Gilbert model. The spin current related to
the spin pumping, which flows back into the ferromagnetic layers and driven by the
accumulated spins in the normal-metal layers, is also discussed.
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13.2 Spin Transport in the Case of Static Magnetic Field

13.2.1 Features of Spin-Dependent Electric Current
in the F/N Bilayers

Characteristic features of the spin-dependent transport and the interfacial scattering
in multilayer magnetic nanostructures with nonmagnetic metal (N) interlayers are
manifested in the model bilayer nanostructure F/N depicted in Fig. 13.1.

These features are related to the conditions under which long-range spin effects
are observable in normal metals. Spins injected into a normal-metal layer relax due
to unavoidable spin-flip processes

Naturally, the dwell time on the layer must be shorter than the spin-flip relaxation
time in order to observe nonlocality in the electron transport. For a simple F/N
double heterostructure (F/N/F) with antiparallel magnetizations, the condition can be
described as follows [17]. The spin current into the normal-metal layer is roughly
proportional to the particle current, e(ds/dt)tr~I ¼ V/R, where s is the number of
excess spins on the normal-metal layer, V is the voltage difference between the two
reservoirs coupled to the normal-metal layer, and R is the F|N contact resistance.
When the layer is smaller than the spin-diffusion length, the spin-relaxation rate is
e(ds/dt)rel ¼ � s/τsf, where τsf denotes the spin-relaxation time on the layer.
(Otherwise, this simple approach breaks down since the spatial dependence of the
spin distribution in the normal metal should be taken into account [18].) The number
of spins on the normal-metal layer is equivalent to a nonequilibrium chemical
potential difference Δμ ¼ sδ in terms of the energy level spacing δ(the inverse
density of states) (more generally the relation between Δμ and s is determined by the
spin susceptibility). The spin accumulation on the normal-metal layer significantly
affects the transport properties when the nonequilibrium chemical potential differ-
ence is of the same order of magnitude or larger than the applied source-drain
voltage, Δμ > eV or δτsf/h > R/RK, where RK ¼ e2/h is the quantum resistance.
Thus, spin accumulation is only relevant for sufficiently small normal-metal layers
and/or sufficiently long spin-accumulation times and/or good contact conductances.

Fig. 13.1 A contact between a ferromagnetic (F) and a normal (N) metal layers. At the normal-
metal side, the current is denoted as the dotted line. The transmission coefficient from the
ferromagnet to the normal metal is t

0
, and the reflection matrix from the normal metal to the normal

metal is r
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The spin-dependent current in the model structure F/N (Fig. 13.1) is expressed via
the 2 � 2 distribution matrix f(ε) in spin space at a given energy ε in the layer. The
external reservoirs are assumed to be in local equilibrium so that the distribution
matrix is diagonal in spin space and attains its local equilibrium value f ¼ 1f(ε, μα),
where 1 is the unit matrix, f(ε, μα) is the Fermi-Dirac distribution function, and
f(ε, μα) is the local chemical potential in reservoir α. The direction of the magneti-
zation of the ferromagnetic layers is denoted by the unit vector mα.

The 2� 2 nonequilibrium distribution matrices in the layers in the stationary state
are uniquely determined by current conservation

X
α

Iαβ ¼
∂f β
∂t

� �
rel

, ð13:1Þ

where Iαβ denotes the 2 � 2 current in spin space from layer (or reservoir) α to layer
(or reservoir) β and the term on the right-hand side describes spin relaxation in the
normal layer. The right-hand side of Eq. (13.1) can be set to zero when the spin
current in the layer is conserved, i.e., when an electron spends much less time on the
layer than the spin-flip relaxation time τsf. If the size of the layer in the transport
direction is smaller than the spin-flip diffusion length lsf ¼

ffiffiffiffiffiffiffiffiffi
Dτsf

p
, where D is

the diffusion coefficient, then the spin relaxation in the layer can be introduced as
(∂fN/∂t)rel ¼ (1Tr(fN)/2 � fN)/τsf.

13.2.2 Passing the Electric Current Through the F|N Contact

The dependence of the spin current through the F|N interface on the distribution
functions in the bilayer magnetic nanostructure F/N is described on the base of the
method of the nonequilibrium Green function theory and Keldysh formalism. The
Green functions are determined by the Kadanoff-Baym equations, representing the
quantum kinetic equations for one-particle propagators. The electron subsystem of
the bilayer F/N nanostructure subjected to an external field φ in the modified Stoner
model is described by the Hamiltonian, which in the representation of the field
operators of annihilation (ψ) and creation (ψ{) is given by

H tð Þ ¼
Z

dxψ{ xð Þh x; tð Þψ xð Þ þ 1
2

�
Z

dx1dx2ψ
{ x1ð Þψ{ x2ð Þw x1; x2ð Þψ x2ð Þψ x1ð Þ, ð13:2Þ

where

h r; tð Þ ¼ � 1
2
∇2 þ Vp rð Þ þ Vs rð Þ þ φ r; tð Þ ð13:2Þ
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Here x ¼ (r, s) is the collective space-spin coordinate, the one-particle potential
(13.2) contains spin-independent (Vp(r)) and spin-dependent (Vs(r)) parts of the
barrier potentials in the interface F|N, and w(r1, r2) is the operator of the
two-particle interaction. The spin-dependent potential is Vs(r) ¼ (σ � m)Ws(r),
where σ is the Pauli matrix and m is the unit vector of the magnetization existing
only in the ferromagnetic layer (F) and vanishing in the normal-metal layer (N).

The physical properties of the system are described by the one-particle
nonequilibrium Green function, i.e., the expectation value of the time contour-
ordered product of creation and annihilation field operators ψ{(i) and ψ(i)
(i ¼ (1, 2, . . .)), respectively, with the collective coordinate, i ¼ (xi, zi), where
xi ¼ (r, s) is position-spin component and zi is the time component. The latter
takes real and imaginary values in intervals [t0, t] and [t0, t0 � iβ] (β is inverse
temperature), respectively. The imaginary time interval corresponds to the equilib-
rium state. The conjugation of the mentioned time intervals forms the so-called
Keldysh contour C consisting of forward and backward real-time branches and the
thermal imaginary track. This nonequilibrium Green function can be presented as
[12, 13]

G 1; 2ð Þ ¼ �i
Tr TCe

�i
R
C
H zð Þdzψ 1ð Þψ 1ð Þψ{ 2ð Þ

h i
Tr TCe

�i
R
C
H0 zð Þdzψ 1ð Þh i ¼¼ �i ψH 1ð Þψ{

H 2ð Þ
D E

: ð13:3Þ

where TC is contour time-ordering operator on the Keldysh contour C with
H0 zð Þ ¼ H zð Þjz2 t0;t0�iβ½ � and the subscript H in the right-hand side denotes the

Heisenberg representation. Due to (13.3), the Green function can be presented as

G 1; 2ð Þ ¼ θ z1; z2ð ÞG> 1; 2ð Þ þ θ z2; z1ð ÞG< 1; 2ð Þ, ð13:4Þ
where θ(z1, z2) is the contour step function equal to 1 or 0 versus z1 or z2 and is later
on the contour C, and the greater (G>) and lesser (G<) Green functions are deter-
mined by the relations

G> 1; 2ð Þ ¼ �i ψH 1ð Þψ{
H 2ð Þ

D E
, G< 1; 2ð Þ ¼ i ψ{

H 2ð ÞψH 1ð Þ
D E

, ð13:5Þ

where an extra sign is introduced due to the interchange of the fermionic operators
by the contour-ordering operator TC. The Green function provides a direct access to
observable physical quantities of the system. For example, the equal-time limit gives
directly the particle spin density at the space-time point 1

n 1ð Þh i ¼ ψ{
H 1ð ÞψH 1ð Þ

D E
¼ �G< 1; 1þð Þ ð13:6Þ

(a superscript “+” means infinitesimal). The spin current density is determined as

I 1ð Þ ¼ � ∂tG
> t; t0ð Þ þ ∂t0G

<
�
t; t0
�� �

t0¼t ð13:7Þ
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The Green functions are described by the equation

i∂z1 � h 1ð Þf gG 1; 2ð Þ ¼ δ 1; 2ð Þ þ
Z

d3w 1; 3ð ÞG 1; 3; 2; 3þð Þ ð13:8Þ

following the Schrӧdinger equation for wave functions. Here, the two-particle Green
function

G 1; 3; 2; 3þð Þ ¼ ψ{
H 2ð ÞψH 1ð ÞψH 3ð Þψ{

H 3þð Þψ{
H 2ð Þ

D E
ð13:9Þ

expresses via the variation derivative with respect to the variation in the infinitesimal
external potential ν of the one-particle Green function by the relation [12]

G 1; 3; 2; 3þð Þ ¼ i n 3ð Þh iG 1; 2ð Þ þ δG 1; 2ð Þ
δν 3ð Þ ð13:10Þ

Consequently, Eq. (13.8) can be represented as self-contained variation derivative
equation with the matrix representation

L0 þ L1
� �

G ¼ 1, ð13:11Þ
where the matrix L0 is determined by matrix elements

L0 1; 2ð Þ ¼ i∂z � h∗ 1ð Þ þ
Z

d3w
�
1; 3
�
n 3ð Þh i

� �
δ1,2 ð13:12Þ

not containing the variation derivative. The matrix L1 is determined by matrix
elements

L1 1; 2ð Þ ¼ iδ1,2

Z
d3w 1; 3ð Þ δ

δν 3ð Þ ð13:13Þ

which are proportional to the variation derivative.
The expression for the functional derivative

δ

δν 3ð ÞG ¼ δ

δν 3ð ÞG G�1
	 


G ð13:14Þ

(the bracket separates the expression experiencing the variation differentiation)
allows to represent the operation of the differential matrix L1 onG via the self-energy
matrix Σ not containing functional derivatives:

L1G ¼ ΣG, Σ ¼ L1G G�1
	 
 ð13:15Þ

Finally, the matrix Eq. (13.11) reduces to the system

L0 þ Σ
� �

G ¼ 1 ð13:16Þ

188 A. M. Korostil and M. M. Krupa



Σ ¼ �L1G L0 þ Σ
	 
 ð13:17Þ

The first-order approximation with respect to the interaction w determines the
Hartree-Fock self-energy matrix ΣHF ¼ � L1G[L0] with matrix elements

ΣHF 1; 2ð Þ ¼ �δ 1; 2ð Þ
Z

d3w 1; 3ð Þ n 3ð Þh i þ iw 1; 2ð ÞG 1; 2ð Þ ð13:18Þ

Here the first term describes the classical Hartree potential at 1 produced by the
charge density throughout the space, and the second term is the space-nonlocal
exchange potential originating from the Pauli exclusion principle and antisymmetry
of the wave functions. Due to (13.16) the self-energy matrix in second-order
approximation is determined by the equation

Σ ¼ �L1G L0
	 
þ L1G L1G L0

	 
	 
 ð13:19Þ
with matrix elements of the form

Σ2 ¼ ΣHF 1; 2ð Þ þ G 1; 2ð Þ
Z

d3d4w 1; 3ð Þw 2; 4ð ÞG 4; 3ð ÞG 3; 4þð Þ

�
Z

d3d4G 1; 3ð Þw 1; 4ð ÞG 3; 4ð ÞG 4; 2ð Þw 3; 2ð Þ ð13:20Þ

Here the second and third terms describe the correlation and scattering effects,
respectively.

In the stationary situation, the Green function is determined via its energy Fourier
transform GE which without the subscript will be considered below. Entering in the
given bilayer model F/N, the Cartesian coordinate system with the axis x along the
interface plane normal and the axes y and z in the interface plane, the Green function
can be represented by decomposition into quasi-one-dimensional modes as

Gss0 1; 1
0ð Þ ¼

X
nm, αβ

Gαβ
nsms0χ

n
s ρ; xð Þχm∗s0 ρ0; x

0
� �

eiαk
n
s x�iβk m

s0 x
0
, ð13:21Þ

where the indices α, β ¼ (+,�); the signs “+” and “�” denote right-going (+) and
left-going (�) modes, respectively; χ n

s ρ; xð Þ is the transverse wave function; and k n
s

denotes the longitudinal wave vector for an electron in transverse mode nwith spin s.
Then, from the definition of the current through the Green function, at the spatial
independence of the transverse wave function χ n

s ρ; xð Þ, it can be obtained the
expression

Iss0 xð Þ ¼ ie
X
nαβ

αvns � βvms0
� �

Gαβ
nsms0 x; xð Þ

Z
dρχ n

s ρ; xð Þχ m
s0 ρ; xð Þ, ð13:22Þ

describing the spin current, where vns ¼ hk n
s =m is the longitudinal velocity for an

electron in transverse mode nwith spin s. In a normal metal, the transverse states and
the longitudinal momentum are spin-independent, and the spin current simplifies to
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Iss0 xð Þ ¼ 2ie
X
nα

αvns G
αα
nsms0 x; xð Þ, ð13:23Þ

which is used in the calculation of the spin current on the normal side of the contact.
Using the representation

Gαβ
nsms0 x; x

0ð Þ ¼ �i
gαβ
nsms0 x; x

0ð Þffiffiffiffiffiffiffiffiffiffi
vns v

m
s0

p þ 1δss0
αδα,βsign x-x0ð Þ

vns

 !
, ð13:24Þ

where the latter term does not contribute to the current on the normal-metal side,
whence it follows the expression

Iss0 xð Þ ¼ 2e
X
nα

αvns g
αα
nsms0 x; xð Þ ð13:25Þ

for the spin current on the normal-metal side.
The complete description of the spin current through the F|N interface involves

taking into account the connection between waves propagating to the right (left) on
the right-hand side of the contact ψþ

R ψ�
R

� �
and waves propagating to the right (left)

on the left-hand side of the contact ψþ
L ψ�

L

� �
. This is described by the transfer matrix

M obeying the relation

ψþ
R

ψ�
R

 !
¼ M

ψþ
L

ψ�
L

 !
, ð13:26Þ

which in terms of the transmission (t) and reflection (r) coefficients takes the form

M ¼ t � r0 t
0� ��1

r r0 t0ð Þ�1

� t0ð Þ�1r t0ð Þ�1

0
@

1
A: ð13:27Þ

Here the transmission and reflection coefficients enter in definition of the scatter-
ing matrix

S ¼
r t0

t r0

 !
, ð13:28Þ

where r sσnm is the reflection matrix for incoming states from the left in mode m and
spin σ to mode n with spin s and t sσnm is the transmission matrix for incoming states
from the left transmitted to outgoing states to the right. In addition, r

0
is the reflection

matrix for incoming states from the right reflected to the right, and t
0
is the

transmission matrix for incoming states from the right transmitted to the left. The
Green function to the left (x¼ x2) of the interface is expressed via the Green function
to the right (x ¼ x1) of the interface by the relation
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gσσ
0

nsms0 x ¼ x2; x
0ð Þ ¼

X
ls00, σ0 0

Mσσ00
nsls00g

σ00σ0
ls00ms0 x ¼ x1; x

0ð Þ, ð13:29Þ

which after redefining, g2(1) ¼ g(x ¼ x2(1), x
0 ¼ x2(1)), takes the matrix form

g2 ¼ Mg1M
{.

In the approximation of isotropic quasi-classical Green functions in nanolayers
1 and 2, G1ð Þαβnsms0 ¼ δn,mδ

αβ G1ð Þαβss0 . In the representation of the retarded (GR),
advanced (GA), and Keldysh (GK) Green function, the total Green function has the

form G ¼ GR GK

0 GA

� �
. Here GR ¼ � GA ¼ � 1, GK, 1(2) ¼h1(2)1, where the

two-dimensional matrix h is related to the nonequilibrium distribution functions h1
(2) ¼ 2(f(ε)1(2) � 1). Herewith

g�þ
R, 1 ¼ 2r, gþ�

R, 2 ¼ 2r0 ð13:30Þ

and

g��
K, 1 ¼ t0h2t0

{ þ h1r
{, g��

K, 2 ¼ th1t
{ þ r0h2r0{ ð13:31Þ

Inserting the expression (13.31) into (13.25) results in the expression

I ¼ e

h

X
mm

t0nmf F t
0mn

� �þ
� Mf F � τnmf N τmnð Þþ� � �( )

, ð13:32Þ

which describes the current through interface on its normal-metal side. Here r nmss0 is
the reflection coefficient for electrons from transverse mode m with spin s

0
incoming

from the normal-metal side reflected to transverse mode n with spin s on the normal-
metal side, and t0 nmss0 is the transmission coefficient for electrons from transverse mode
m with spin s

0
incoming from the ferromagnet transmitted to transverse mode n with

spin s on the normal-metal side.

13.2.3 Spin Parametric Dependence of Spin Current

The relation (13.32) between the current and the distribution functions has a simple
form after transforming the spin-quantization axis. Disregarding spin-flip processes
in the contacts, the reflection matrix for an incoming electron from the normal metal
transforms is

rnm ¼
X
s

usr nms , u" #ð Þ ¼ 1� σ �mð Þ=2, ð13:33Þ
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where r nm" #ð Þ are the spin-dependent reflection coefficients in the basis where the spin-
quantization axis is parallel to the magnetization m in the ferromagnet and σ is a
vector of Pauli matrices. Similarly for the transmission matrix t nm" #ð Þ

t0nm t0mn
� �þ ¼

X
s

us t0 nms
�� ��2 ð13:34Þ

From the unitarity of the scattering matrix, it follows that the general form of the
relation (13.32) reads

eI ¼
X
s¼", #

Gsus f F � f N
� �

us � G"#u"f Nu# � G"#� �∗
u#f Nu", ð13:35Þ

where it is introduced the spin-dependent conductance parameters

G" #ð Þ ¼ e2

h
M �

X
nm

r nm" #ð Þ
��� ���2

" #
¼ e2

h

X
nm

t nm" #ð Þ
��� ���2 ð13:36Þ

and the mixing conductance

G"# ¼ e2

h
M �

X
nm

r nm" r nm#
� �∗" #

ð13:37Þ

The precession of spins leads to an effective relaxation of spins non-collinear to
the local magnetization in ferromagnets, and consequently the distribution function
is limited to the form f F ¼ 1f F0 þ σ �m f Fs . Such a restriction does not appear in the
normal-metal layer and fN can be any Hermitian 2 � 2 matrix.

The relation between the current through a contact and the distributions in the
ferromagnetic layer and the normal-metal layer is determined by four parameters, the
two real spin-dependent conductances (G", G#) and the real and imaginary parts of
the mixing conductance G"#. These contact-specific parameters can be obtained by
microscopic theory or from experiments. The spin conductances G" and G# describe
spin transport for a long time [19]. The mixing conductance is relevant for transport
between non-collinear ferromagnets. Note that although the mixing conductance is a
complex number, the 2 � 2 current in spin space is Hermitian, and consequently the
current and the spin current in any direction given by (13.35) are real numbers. Due
to the definitions of the spin-dependent conductances (13.36) and the “mixing”
conductance (13.38)

2ReG"# ¼ G" þ G# þ e2

h

X
nm

r nm" � r nm#
��� ���2 ð13:38Þ

and consequently, the conductances should satisfy the relation 2 Re G"#� G" + G#.

192 A. M. Korostil and M. M. Krupa



In terms of a scalar particle and a vector spin contribution
I ¼ 1I0 � σ � Isð Þ=2, fN Fð Þ ¼ 1fN Fð Þ

0 � σ � ss mð ÞfN Fð Þ
s , and the particle current is

described by the expression

I0 ¼ G" þ G#� �
f F0 þ f N0
� �þ G" � G#� �

f Fs �m � s f Ns
� � ð13:39Þ

The familiar expressions for collinear transport are recovered when m � s ¼ � 1.
The spin current is described by the expression

Is ¼m G" � G#� �
f F0 � f N0
� �þ f Fs
� �þ 2ReG"# � G" � G#� �

m � s f Ns
	 


�2sReG"#f Ns þ m� sð Þ2ImG"#f Ns :
ð13:40Þ

The first two terms point in the direction of the magnetization of the ferromagnet
m, the third term is in the direction of the nonequilibrium spin distribution s, and the
last term is perpendicular to both s andm. The last contribution solely depends on the
imaginary part of the mixing conductance. This term can be interpreted by consid-
ering how the direction of the spin on the normal metal layer s would change in
timekeeping, with all other parameters constant. The cross product creates a preces-
sion of s around the magnetization direction m of the ferromagnet similar to a
classical torque while keeping the magnitude of the spin-accumulation constant. In
contrast, the first three terms represent diffusion-like processes, which decrease the
magnitude of the spin accumulation. Due to the abovementioned relation 2 Re G"#

� G" + G#, the nonequilibrium spin distribution f Ns propagates easier into a
configuration parallel to s than parallel to m, since these processes are governed
by positive diffusion-like constants 2 Re G"# and 2 Re G"# � G" � G#, respectively.

13.2.4 Dependence of Spin Current on Contact Type

The four conductance parameters G", G#, ReG"#, and ImG"# depend on the micro-
scopic details of the contact between ferromagnetic and normal-metal layers, which
is characterized by elementary model contacts of a diffusive, a ballistic, and a tunnel
types.

In the case a diffusive contact between a normal metal (N) and a ferromagnet (F)
with conductances GN

D and GFs
D , respectively, the spin-dependent resistance of the

whole contact is the sum GFs
D

� ��1 þ GN
D

� ��1
, consequently the whole conductance

Gs
D ¼ GFs

D GN
D = GFs

D þ GN
D

� �
, where s ¼ (", #). These spin-dependent conductances

fully describe collinear transport (in the absence of spin-flip scattering).
For non-collinear magnetizations, the mixing conductance, which is also needed,

can be derived from the scattering matrix. The latter follows from the diffusion
equation, describing the scattering properties of the contact by a spatially dependent
distribution matrix. The current density (i) on the normal side of the contact (x < 0) is
i(x < 0)¼ σN∂xf, where σ

N is the conductivity of the N layer. Consequently, the total

13 Features of Spin Transport in Magnetic Nanostructures. . . 193



current in the N layer with the length LN is I(x < 0) ¼ GN
D LN∂x

� �
f , where f is the

spatially dependent distribution matrix on the normal side in the contact. In the
normal-metal part, the boundary condition is f(x ¼ � LN) ¼ fN. In a ferromagnet,
spin-up and spin-down states are incoherent, and hence spins non-collinear to the
magnetization direction relax and only spins collinear with the magnetization will
propagate sufficiently far away from the F|N interface. It is assumed that the
ferromagnet is sufficiently strong and that the contact is longer than the ferromag-
netic decoherence length ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

D=hex
p

, where D is the diffusion constant and hex is
the exchange splitting. The decoherence length is typically very short in ferromag-
nets, ξ ¼ 2 nm in Ni wires.

The distribution function on the ferromagnetic side is represented by a
two-component distribution function f(x > 0) ¼ u"f" + u#f#, where u" and u# are
the mentioned spin-projection matrices. Here a spin accumulation collinear to the
magnetization direction in the ferromagnet is taken into account. The boundary
condition determined by the distribution function in the ferromagnetic part is thus

f " x ¼ LF
� � ¼ f F", f # x ¼ LF

� � ¼ f F#, ð13:41Þ
where LF is the length of the F layer.

In assumption that the resistance of the diffusive region of the contacts is much
larger than the contact resistance between the N and F layers, the total current in the
ferromagnet is

I x > 0ð Þ ¼ GF"
D u"∂xf

" þ GF#
D u#∂xf

# ð13:42Þ
The distribution function is continuous across the F|N interface, f(0+) ¼ f(0�).

Current conservation on the left (x < 0) and on the right (x > 0) of the normal metal-
ferromagnet interface dictates the equation, ∂xI ¼ 0, which together with the
boundary conditions f(x ¼ � LN) ¼ fN, f(0+) ¼ f(0�), and (13.41) uniquely
determines the distribution functions and hence the conductance in the diffusive
contact. Then the current on the normal side of the contact becomes

eI ¼G"
Du

" f F � f N
� �

u# þ G#
Du

# f F � f N
� �

u#

þGN
D u" f F � f N

� �
u# þ u# f F � f N

� �
u#

	 
 ð13:43Þ

The current in a diffusive contact thus takes the generic form (13.35) with
G" ¼ G"

D, G
# ¼ G#

D, and G"# ¼ GN
D . The mixing conductance is thus real and only

depends on the normal conductance. The latter results can be understood as a
consequence of the effective spin relaxation of spins non-collinear to the local
magnetization direction. Those spins cannot propagate in the ferromagnet, and
consequently the effective conductance can only depend on the conductance in the
normal metal.

In the case of the ballistic contact, the reflection and transmission coefficients
appearing in (13.36) and (13.37) are diagonal in the space of the transverse channels
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since the transverse momentum is conserved. In a simplified model [20], the
transmission channels are either closed t ¼ 0 or open t ¼ 1. The conductances
(13.36) and (13.37) can then be found by simply counting the number of propagating
modes. Then the spin-dependent conductanceG" #ð Þ

B ¼ e2=h
� �

N" #ð Þ, where N"(N#) is
the number of spin-up (spin-down) propagating channels. The mixing conductance

is determined by G"#
B ¼ max G"

B;G
#
B

� �
and is real. In a quantum mechanical

calculation, the channels just above the potential step are only partially transmitting,
and the channels below a potential step can have a finite transmission probability due
to tunneling. Furthermore, the band structure of ferromagnetic metals is usually
complicated and interband scattering exists even at ideal interfaces. The phase of the
scattered wave will be relevant giving a nonvanishing imaginary part of the mixing
conductance.

In the case of a tunneling contact, the transmission coefficients are exponentially
small, and the reflection coefficients have a magnitude close to one. The spin-
dependent conductance is

Gs
T ¼ e2

h

X
nm

t nms
�� ��2: ð13:44Þ

For simple models of tunnel barriers, r nms ¼ δnmexpiϕn ¼ δr nms , where the phase
shift ϕn is spin-independent. The expansion (38) in the small correction δr nms leads to

the expression ReG"#
T ¼ G"

T þ G#
T

� �
=2, where G"

T and G#
T are the spin-dependent

tunneling conductances (13.44). Since the transmission coefficients in a tunnel
contact are all exponentially small, the imaginary part of G"#

T is of the same order
of magnitude as G"

T and G#
T , but it is not universal and depends on the details of the

contact.

13.3 Spin Transport in the Case of Dynamic Magnetic Field

13.3.1 Features of Coupling Spin Currents with Magnetic
Dynamics

The interconnection between spin currents and the magnetic dynamics in F/N-based
magnetic multilayer nanostructures underlies the current-controlled magnetic
dynamics and utilization of the latter as new functionality in spintronic devices
[21]. One is related to the s-d exchange interaction with localized spins and the spin-
dependent scattering of spin-polarized electrons near the F|N interface. The impact
of the spin current on localized spins occurs via a finite torque on the magnetic order
parameter, and, vice versa, a moving magnetic order vector loses torque by emitting
a spin current. The magnetic precession acts as a spin pump which transfers angular
momentum from the magnetic into normal metal.
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The technological potential of the mentioned magnetic nanostructures is related
to utilizing transition metals (for instance, Co, Ni, Fe) that operate at ambient
temperatures. Examples are current-induced tunable microwave generators (spin-
torque oscillators) [22, 23] and nonvolatile magnetic electronic architectures that can
be randomly read, written, or programmed by current pulses in a scalable manner
[24]. The interaction between currents and magnetization can also cause undesirable
effects such as enhanced magnetic noise in read heads made from magnetic
multilayers [25].

In the framework of the Landau-Lifshitz-Gilbert model, the impact of the spin
current on the magnetic dynamics, caused by the spin transfer, reduces to change of
fundamental parameters such as the gyromagnetic ratio and Gilbert damping param-
eters. This spin transfer is governed by the reflection and transmission matrices of the
system, analogous to the scattering theory of transport and interlayer exchange
coupling. In the case when the normal-metal layers adjacent to the ferromagnetic
layers are perfect spin sinks, the spin accumulation in the normal metal vanishes
[26]. In the opposite case, the spin accumulation accompanies the spin diffusion,
which gives essential contribution to the total spin current and its interconnection
with magnetic dynamics.

Spin pumping by a precessing ferromagnet is, in some sense, the reverse process
of current-induced magnetization dynamics. When the pumped spin angular
momentum is not quickly dissipated to the normal-metal atomic lattice, a spin
accumulation builds up and creates reaction torques due to transverse-spin backflow
into ferromagnets. The interplay between magnetization dynamics and the
nonequilibrium spin-polarized transport in heterostructures determining magnetic
properties will be considered for the case of F/N-based nanostructures below.

13.3.2 Precession-Induced Spin Pumping Through F/N
Interfaces

Characteristic properties of the precession-induced spin pumping are manifested in
the model N/F/Nmagnetic junction schematic of which is displayed in Fig. 13.2. The
ferromagnetic layer F is a spin-dependent scatterer that governs electron transport
between (left (L) and right (R)) normal-metal reservoirs. The 2� 2 operator Il for the
charge and spin current in lth lead (l ¼ L, R) can be expressed in terms of operators
aαm, l(E) and bαm, l(E) that annihilate a spin-α electron with energy E leaving
(entering) the lth lead through the mth channel:

I αβl tð Þ ¼ e

h

X
m

Z
dEdE0ei E�E0ð Þt=h a{βm, l Eð Þaαm, l E

0
� �

� b{βm, l Eð Þbαm, l E
0

� �h i
:

ð13:45Þ
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When the scattering matrix sαβmn, ll0 tð Þ of the ferromagnetic layer varies slowly on

the time scales of electronic relaxation in the system, an adiabatic approximation
may be used. The annihilation operators for particles entering the N layers are then
related to the operators of the outgoing states by the instantaneous value of the
scattering matrix bαm, l Eð Þ ¼ sαβmn, ll0 tð Þaβn, l0 Eð Þ. In terms of aαm, l only, we can

evaluate the expectation value I αβl tð Þ
D E

of the current operator using

a{αm, l Eð Þaβn, l0 E
0

� �D E
¼ f l Eð Þδα,βδm,nδl, l0δ E � E

0
� �

, where fl(E) is the isotropic

distribution function in the lth reservoir. When the scattering matrix depends on a
single time-dependent parameter X(t), then the Fourier transform of the current
expectation value Il(ω) ¼

R
dteiωtIl(t) can be written as

Il ωð Þ ¼ gX, l ωð ÞX ωð Þ ð13:46Þ
In terms of a frequency ω- and X-dependent parameter

gX, l ωð Þ ¼ �eω

4π

X
l0

Z
dE �∂f l0 Eð Þ

∂E

� �X
mn

�∂smn, ll0 Eð Þ
∂X

s{mn, ll0 Eð Þ � H:c:

� �
:

ð13:47Þ
Equation (13.46) is the first-order (in frequency) correction to the dc Landauer-

Büttiker formula [11]. At equilibrium fR(E) ¼ fL(E), (13.46) is the lowest-order
nonvanishing contribution to the current. Furthermore, at sufficiently low tempera-
tures, we can approximate ∂fl(E)/∂E by a δ-function centered at Fermi energy. The
expectation value of the 2 � 2 particle number operator Ql(ω)(defined by
Il(t) ¼ dQl(t)/dt) in time or by Il(ω) ¼ � iωQl(ω) in frequency domain) for the lth
reservoir is then given by

Ql ωð Þ ¼ e

4πi

X
mnl0

∂smn, ll0 Eð Þ
∂X

s{mn, ll0 Eð Þ þ H:c:

 !
X ωð Þ, ð13:48Þ

Fig. 13.2 Ferromagnetic
layer (F) sandwiched
between two normal-metal
layers (N). The reflection
and transmission amplitudes
r and t

0
govern the spin

current pumped into the
right lead
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where the scattering matrices are evaluated at the Fermi energy. Because the
prefactor on the right-hand side of (13.46) does not depend on frequency ω, the
equation is also valid in time domain. The change in particle number δQl(t) is
proportional to the modulation δX(t) of parameter X, and the 2 � 2 matrix current
(directed into the normal-metal leads) reads

Il tð Þ ¼ e
dnl
dX

dX tð Þ
dt

, ð13:49Þ

where the “matrix emissivity” into lead l is

∂nl
∂X

¼ 1
4πi

X
mnl0

∂smn, ll0 Eð Þ
∂X

s{mn, ll0 Eð Þ þ H:c: ð13:50Þ

If the spin-flip scattering in the ferromagnetic layer is disregarded, the scattering
matrix s can be written in terms of the spin-up and spin-down scattering coefficients
s"(#) using the projection matrices u" ¼ (1 + σ � m)/2 and u# ¼ (1 � σ � m)/2:

smn, ll0 ¼ s"mn, ll0u
" þ s#mn, ll0u

# ð13:51Þ

The spin current pumped by the magnetization precession is obtained by identifying
X(t) ¼ φ(t), where φ is the azimuthal angle of the magnetization direction in the
plane perpendicular to the precession axis. For simplicity, we assume that the
magnetization rotates around the y-axis: m ¼ (sinφ, 0, cosφ). Using (13.51), it is
then easy to calculate the emissivity (13.50) for this process:

∂nl
∂φ

¼ � 1
4π

Arσy þ Ai σx cosφ� σy sinφ
� �	 


, ð13:52Þ

where Ar(Ai) ¼ Re (Im)[g"# � t"#]. Expanding the 2 � 2 current into isotropic and
traceless components,

I ¼ 1
2
Ic � e

h
σ � Is: ð13:53Þ

Here the charge current Ic and spin current Is are identified. Due to Eqs. (13.49),
(13.52), and (13.53), the charge current vanishes, Ic ¼ 0, and the spin current

Is ¼ Ai cosφ;Ar � Ai sinφð Þ h
4π

dφ

dt
ð13:54Þ

can be rewritten as

Ipump
s ¼ h

4π
Arm� dm

dt
� Ai

dm
dt

� �
ð13:55Þ
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This current into a given N layer depends on the complex-valued parameter
A ¼ Ar + iAi (the “spin-pumping conductance”) and the time-dependent order
parameter of the ferromagnet m(t). In addition, A ¼ g"# � t"# depends on the
scattering matrix of the ferromagnetic layer since

gσσ
0 ¼

X
mn

δmn � r σmn rσ
0

mn

� �∗ �
ð13:56Þ

is the dimensionless dc conductance matrix [10, 26] and t"# ¼
X
mn

t0"mn t0#mn
� �∗

. Here

r"mn (r
#
mn) is a reflection coefficient for spin-up ~spin-down electrons on the normal-

metal side, and t
0 " #ð Þ
mn is a transmission coefficient for spin-up/spin-down electrons

across the ferromagnetic film from the opposite reservoir into the normal-metal
layer, where m and n label the transverse modes at the Fermi energy in the
normal-metal films. The magnetization can take arbitrary directions; in particular,
m(t) may be far away from its equilibrium value. In such a case, the scattering matrix
itself can depend on the orientation of the magnetization, and one has to use A(m) in
Eq. (13.55).

When the ferromagnetic film is thicker than its transverse spin coherence length
d > π/(k" � k#), where k" #ð Þ

F are the spin-dependent Fermi wave vectors, t"# vanishes
[26], the spin pumping through a given F|N interface is governed entirely by the
interfacial mixing conductance A ¼ g"# ¼ g"#r þ ig"#i , and we can consider only one
of the two interfaces, as it is presented in Fig. 13.3.

The spin current (13.55) leads to a damping of the ferromagnetic precession,
resulting in a faster alignment of the magnetization with the (effective) applied
magnetic field Heff. The pumped spins are entirely absorbed by the attached ideal
reservoirs. Thereto the enhancement rate of damping is accompanied by an energy
flow out of the ferromagnet, until a steady state is established in the accompanied
F/N system. For simplicity, assume a magnetization which at time t starts rotating

Fig. 13.3 Ferromagnetic
nanostructure with the unit
magnetization vector m(t)
precessing around the
external magnetic field Heff

and inducing the spin
pumping Ipump

s through the
interface F/N. The spin
accumulation μs results in
the back spin current Ibacks
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around the vector of the magnetic field, m(t) ⊥ Heff. In a short interval of time δt, it
slowly (i.e., adiabatically) changes to m(t + δt) ¼ m(t) + δm. In the presence of a
large but finite nonmagnetic reservoir without any spin-flip scattering attached to one
side of the ferromagnet, this process can be expected to induce a nonvanishing spin
accumulation μs ¼

R
dεTr[σf(ε)], where σ is the Pauli matrix vector and f(ε) is the

2� 2 matrix distribution function at a given energy ε. For a slow enough variation of
m(t), this nonequilibrium spin imbalance must flow back into the ferromagnet,
canceling any spin current generated by the magnetization rotation, since, due to
the adiabatic assumption, the system is always in a steady state.

For the spins accumulated in the reservoir along the magnetic field, μskHeff flow
of Ns spins into the normal metal transfers the energy ΔEN ¼ Nsμs/2 and angular
momentum ΔLN ¼ Nsh/2 (directed along Heff). By the conservation laws,
ΔEF¼ � ΔEN and ΔLF¼ � ΔLN, for the corresponding values in the ferromagnet.
Using the magnetic energy,ΔEF¼ � γΔLFHeff, where γ is the gyromagnetic ratio of
the ferromagnet, it can be found that Nsμs/2 ¼ γNshHeff/2. Then μs ¼ hγHeff ¼ hω,
where ω ¼ γHeff is the Larmor frequency of precession in the effective field. The
spin-up and spin-down chemical potentials in the normal metal split by μs ¼ hω, the
energy corresponding to the frequency of the perturbation.

The above mentioned the backflow of spin current Ibacks , which equals to the
pumping current Ipump

s described by the expression

Ibacks ¼¼ 1
2π

g"#r μs þ g"#i m� μs
� �

¼ h
4π

g"#r m� dm
dt

� g"#i
dm
dt

� �
ð13:57Þ

Here, it is used that μs ¼ hω and μs ⊥ m, since by the conservation of angular
momentum, the spin transfer is proportional to the change in the direction δm ⊥ m.
Thus, for the case of a single and finite reservoir, Eq. (13.55) is recovered. It is easy
to repeat the proof for an arbitrary initial alignment of m(t) with Heff.

The expressions for the adiabatic spin pumping are not the whole story, since
spin-flip scattering is essential. In this case, the spin build-up occurs in the normal
metal at dynamic equilibrium. Then, the contribution to Is due to the spin-
accumulation-driven current Ibacks back into the ferromagnet:

Is ¼ Ipump
s � Ibacks , ð13:58Þ

which vanishes in the absence of spin-flip scattering.
The spin current out of the ferromagnet carries angular momentum perpendicular

to the magnetization direction. By conservation of angular momentum, the spins
ejected by Is correspond to a torque T ¼ � Is on the ferromagnet. If possible,
interfacial spin-flip processes are disregarded, and the torque t is entirely transferred
to the coherent magnetization precession. The dynamics of the ferromagnet can then
be described by a generalized Landau-Lifshitz-Gilbert (LLG) equation [5]
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dm
dt

¼ �γm�Heff þ α0m
dm
dt

þ γ

MsV
Is, ð13:59Þ

where α0 is the dimensionless bulk Gilbert damping constant, Ms is the saturation
magnetization of the ferromagnet, and V is its volume. The intrinsic bulk constant
α0 is smaller than the total Gilbert damping α ¼ α0 + α'. The additional damping α'

caused by the spin pumping is observable in, for example, FMR spectra here.

13.3.3 Spin-Accumulation-Driven Backflow
in the F/N Bilayer

The precession of the magnetization does not cause any charge current in the system.
The spin accumulation or nonequilibrium chemical potential imbalance μs in the
normal metal is a vector, which depends on the distance from the interface x x,
0 < x < L, where L is the thickness of the normal-metal film (see Fig. 13.4). When the
ferromagnetic magnetization steadily rotates around the z axis, m � ∂tm and the
normal-metal spin accumulation μs(x) are oriented along z. There is no spin imbal-
ance in the ferromagnet, because μs(x) is perpendicular to the magnetization direc-
tion m. The time-dependent ms is also perpendicular to m even in the case of a
precessing ferromagnet with time-dependent instantaneous rotation axis, as long as
the precession frequency ω is smaller than the spin-flip rate τ�1

sf in the normal metal.
The spin accumulation diffuses into the normal metal as

iωμs ¼ D∂2
xμs � τ�1

sf μs, ð13:60Þ

Fig. 13.4 Schematic view of the F-N bilayer. Precession of the magnetization direction m(t) of the
ferromagnet F pumps spins into the adjacent normal-metal layer N by inducing a spin current Is
pump. This leads to a buildup of the normal-metal spin accumulation μs which either relaxes by
spin-flip scattering or flows back into the ferromagnet as Ibacks
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where D is the diffusion coefficient. The boundary conditions are determined by the
continuity of the spin current from the ferromagnet into the normal metal at x ¼ 0
and the vanishing of the spin current at the outer boundary x ¼ L:

x ¼ 0 : ∂xμs ¼ �2 hNSDð Þ�1Is, x ¼ L : ∂xμs ¼ 0 ð13:61Þ
where N is the (one-spin) density of states in the layer and S is the area of the
interface. The solution to (13.60) with the boundary conditions (13.61) is

μs xð Þ ¼ coshk x� Lð Þ
sinhkL

2Is
hNSDk

ð13:62Þ

Using relation D ¼ v2Fτel=3 between the diffusion coefficient D, the Fermi
velocity vF, and the elastic scattering time τel, we find for the spin-diffusion length
λsd ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τelτsf =3

p
. An effective energy level spacing of the states participating in

the spin-flip scattering events in a thick layer can be defined by δsd ¼ (NSλsd)
�1. The

spin-accumulation-driven spin current Ibacks through the interface reads

Ibacks ¼ 1
8π

2g"#r μs 0ð Þ þ 2g"#i m� μs 0ð Þ
h

þ g"" þ g## � 2g"#r
� �

m � μs
�
0

� �

: ð13:63Þ

Substitution of (13.62) into (13.63) gives total spin current

Is¼Ipump
s � β

2
2g"#r Is þ 2g"#i m� Is þ g"" þ g## � 2g"#r

� �
m � Isð Þm

h i
, ð13:64Þ

where the spin current returning into the ferromagnet is governed by the backflow
factor β ¼ (τsfδsd)/(h tanh (L/λsd)). When the normal metals are shorter than the spin-
diffusion length (L 	 λsd), β ! τsfδ/h, where δ ¼ (NSL)�1. Basically, β is therefore
the ratio between the energy level spacing of the normal-metal layer with thickness
Lsf ¼ min (L, λsd) and the spin-flip rate.

By inverting Eq. (13.64), the total spin current Is can be expressed in terms of the
pumped spin current Ipump

s ([26])

Is ¼ 1þ 2g"#r þ
βg"#i
� �2
1þ βg"#r

2
64

3
75
�1

1� βg"#i
1þ βg"#r

m�
 !

Ipump
s ð13:65Þ

Then, substituting (13.55) into (13.65) results in total spin current Is, which is
described by the equation of the form (13.55) but with a redefined spin-pumping
conductance A0 ¼ A0

r þ A0
i

Is ¼ h
4π

A0
rm� dm

dt
� A0

i

dm
dt

� �
ð13:66Þ
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Here A
0
is function of the mixing conductance g"# and the backflow factor β,A

0

¼ A
0
(g"#, β). For realistic F|N interfaces g"#i 	 g"#r , so that g"# 
 g"#r and, conse-

quently, A0
i vanishes. Substituting (13.66) into (13.59) renormalizes its Gilbert

dumping constant, α0, so that α0 ! α ¼ α0 + α
0
, where

α0 ¼ gLg
"#

4πμ
1þ g"#

τsf δsd=hβg
"#
i

� �2
tanh L=λsdð Þ

2
64

3
75
�1

ð13:67Þ

is the additional damping constant due to the interfacial F|N coupling. Here, gL is the
g factor and μ is the total layer magnetic moment in units of μB. When L ! 1,
(13.67) reduces α0 ¼ gLg

"#
eff =4π, where 1=g

"#
eff ¼ 1=g"# þ Rsd and Rsd ¼ τsfδsd/h is the

resistance (per spin, in units of h/e2) of the normal-metal layer of thickness λsd. It
follows that the effective spin pumping out of the ferromagnet is governed by g"#eff ,
i.e., the conductance of the F|N interface in series with diffusive normal-metal film
with thickness λsd.

The second factor on the right-hand side of (13.67) suppresses the additional
Gilbert damping due to the spin angular momentum that diffuses back into the
ferromagnet. Because spins accumulate in the normal metal perpendicular to the
ferromagnetic magnetization, the spin-accumulation-driven transport across the F|N
contact, as well as the spin pumping, is governed by a mixing conductance.

13.4 Conclusions

The spin transport in the F/N-based magnetic nanostructures in magneto-static and
magneto-dynamic cases has been studied in the framework of the modified Stoner
model. Using the modified quantum kinetic equation for the nonlinear Green
functions and the spin-dependent scattering matrix, the spin currents through and
near the F|N interface are described. In the magnetostatic case, the parametric
dependence of the spin current on the relative orientation of the spin polarization
and magnetization is shown. In the magneto-dynamic case of the magnetization
precession, the precession-induced spin pumping into the normal-metal layer is
described. The accompanying effect of the spin accumulation and the spin backflow
exerted via the spin torque on the magnetization precession is considered.
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