
Chapter 11
Graphene Quantum Dots in Various
Many-Electron π-Models

Anatoliy Luzanov

11.1 Introduction

After the discovery of graphene, there has been a rising interest in its fundamental
electronic properties. Up to now, graphene nanoparticles, in particular graphene
quantum dots (GQDs), remain an extremely important topics in solid-state physics
and material sciences [1–5]. There are many useful models and techniques for
studying GQD electronic structure, and among them are the conventional tight-
binding (TB) model and its Hückel version for π-electron shells. Certainly, simple
Hückel and TB computations provided many important results for understanding the
unique physics of graphene systems (e.g., see [2]). At the same time, accounting for
many-electron effects is essential in this case of extended delocalized systems
containing a lot of conjugated bonds.

The present work continues our previous study on the electronic structure of
carbon-containing nanoclusters [6–11]. One of the principal aims of this paper is to
show that some well-known quantum chemistry models which are less familiar to
the graphene research community can be served as a suitable and feasible tool for
exploring nanographenes at the semiempirical many-electron level. In particular, we
apply here the so-called spin-extended Hartree-Fock (EHF) and restricted active
space configuration interaction (RAS-CI) methods.

Another goal of the work is to elucidate, for the selected graphene-like molecules,
a behavior of π-electrons in extreme electric fields. In this problem, the electron
unpairing (see review [8]) is a particularly exciting issue. At last, the problem of
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graphene aromaticity continues to attract interest [1, 12–14], and here we will also
focus on it using the previously given approach [15] .

11.2 Computational Schemes

11.2.1 Electronic Instabilities and Lowest Excitations

In this and next subsections, we shortly sketch themain electronicmodels that we apply
to GQDs. First, we consider rather qualitative schemes. Usually, the frontier orbital
energy gap (the so-called HOMO-LUMO gap) is considered as a descriptor of the
molecular stability. But this electronic indicator is too crude. More correct and more
informative is the Hartree-Fock (HF) stability theory [16] (see also [17], Sect 10.10).
We recall that theHF stability of the givenmolecular systemmeans that theHF stability
matrix (matrix of second derivatives with respect to variational parameters of HF wave
function) has only positive eigenvalues λstable. An occurrence of zero or negative λstable

values indicates on the HF instability of the system under study.
For closed-shell singlet states, the restricted HF (RHF) model is usually

employed, and in this case one can define the Hartree-Fock stability of two types,
singlet one and triplet one [16]. The corresponding eigenvalues of the HF stability
matrix will be denoted byλstables¼0 and λstables¼1 , respectively. Typically, minimum value of
λstables¼1 is lesser than minimum λstables¼0 , that is, the triplet RHF instability appears before
the singlet HF instability does. In fact, the negative λstables¼0 is an indicator of a very
strong electronic instability. To be more specific, consider π-electrons in the
hexacene molecule C26H24 for which we find λstables¼1 ¼ �1.16 eV, and λstables¼0
¼ 2.10 eV (as for the π-parameterization adopted here see Sect. 11.3). We see that
even this not so long oligocene structure is quite unstable and exhibits sufficiently
strong electron correlation.

Along with the HF stability analysis, here we invoke typical models of lowest-
energy electronic transitions. The simplest is the configuration interaction (CI) singles
method, or CIS method. The corresponding minimal eigenvalues, λCISs¼1 and λ

CIS
s¼0, of the

CIS Hamiltonian matrix give rather crude estimates of the lowest-energy singlet-triplet
and singlet-singlet transitions. Considerably more advanced is the restricted active
space CI (RAS-CI) method [17, 18]. In RAS-CI one divides the full one-electron
orbital space into certain active and frozen orbital subsets. To deal with this, the
standard full CI (FCI) technique is applied only to electrons assigned to the chosen
active orbital subset. Then, the lowest eigenvalues of the appropriate RAS-CI matrix
will approximate energies of the ground and excited states. For the low-lying excita-
tion energies, the approach provides estimates more reliable than those from CIS.

In our study we employ a nonstandard but equivalent RAS-CI formulation. It is
based on the many-electron equation describing a detachment of multi-electrons
(say¸ 2 k electrons), from the intermediate state with N + 2k electrons where N � 2n
is a number of electrons in an even-electron molecule under study. Thus, we start
with a polyanionic (N + 2k)� electron state for which we form the Slater determinant
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with n + k occupied MOs. The aimed equation is the FCI eigenvalue problem for
2 k-electron Hamiltonian of the form

Hdetach ¼ �Q act
2k

X

1�i�2k

f ið Þ �
X

1�i<j�2k

g i; jð Þ
" #

Q act
2k ,

where f is the conventional Fock operator of the intermediate 2(n + k) electron singlet
state (recall that n ¼ N/2 is a number of electron pairs in the molecule under study);
g is the two-electron Coulomb operator, and Q act

2k is the 2 k-electron projection
operator onto the chosen active subset. The lowest singlet-triplet, λRAS-CIs¼1 , and
singlet-singlet, λRAS-CIs¼0 , excitation energies are evidently obtained from the
corresponding differences of the Hdetach eigenvalues. In practice, we carried out
RAS-CI spectral calculations with k ¼ 6. In terms of results, the computations are
equivalent to those within the conventional RAS-CI 6 � 6 scheme. A lower part of
the Hdetach spectrum was computed by the modified Lanczos-type diagonalization
algorithm described in Ref. [9], Appendix A.

11.2.2 Unrestricted and Extended Hartree-Fock Methods

Here the used HF schemes will be only briefly sketched. We begin with the
unrestricted Hartree-Fock method (UHF) which is a precursor of EHF. The single-
determinant UHF model is not accidentally named also as “spin-polarized Hartree-
Fock method.” Unlike RHF, the UHF method brings into play, if possible, spin-
polarized MOs, i.e., different orbitals for different spins. The latter are usually
signified by ϕα

j and by ϕβ
j for spin-up and spin-down electrons, respectively.

From these orbitals the fundamental projection operators, ρα and ρβ, are constructed.
In Dirac notation these are

ρα ¼
X

1�j�nþs

j φα
j >< φα

j j , ρβ ¼
X

1�j�n�s

j φβ
j >< φβ

j j ,

and n + s and n � s are, respectively, total numbers of spin-up and spin-down
electrons in the given N-electron state with a total spin s. By applying variational
method, one can directly derive the conventional UHF equations in terms of ρα and
ρβ [19]. Although a certain correlation of opposite-spin electrons appears in the
corresponding Slater determinant jΦ>, the correlated state of this type does not exist
in weakly correlated closed-shell systems. More exactly, in a such singlet-like case
with s ¼ 0, a nontrivial UHF solution is possible if the initial RHF singlet state
satisfies the triplet Hartree-Fock instability condition, that is, λstables¼1 < 0 [20]. For
strongly correlated systems (e.g., zigzag graphenes), the UHF model provides a
more or less reasonable π-electron picture.
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Nowwe proceed to the EHF approximation that was firstly formulated by Löwdin
[21] for π-electron systems. There are many works on the EHF theory (see, e.g.,
reviews [22, 23]), and recently this theory was revived at the ab initio level [24]. In
EHF the spin contamination of a trial UHF determinant jΦ> is removed by acting on
jΦ> an appropriate spin-projection operator Os. Generally, it depends on a spin z-
projection value m as well. Thus, instead of jΦ>, we introduce the normalized EHF
wave function as follows:

ΦEHF
�� � ¼ Os Φj i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φh jOs Φj i

p
:

It is important that, unlike UHF, the EHF theory imposes no restriction on
electron correlation strength so that even for s ¼ 0, the nontrivial EHF (i.e., ϕα

j

6¼ ϕβ
j ) solution always exist [23]. This feature is very important for our aims because

it allows us to treat weakly and strongly correlated problems on equal footing.
Furthermore, there are many derivations and practical formulations of the EHF
variational equations, but we prefer using matrix formulations in terms of ρα and ρ
β [23, 25], as they provide suitable and compact algorithms. Our matrix technique
[25] is easily coded and applied to large molecules. At last, we must mention one
essential drawback of EHF and related variational models (including half-projected
HF and complex MO schemes). This is a lack of size consistency which precludes
obtaining robust results for too large-scale systems.

11.3 π -Electron Properties of Selected Nanographenes

Now we will analyze the results of π-electron computations on small GQDs. For this
study, we selected four rather typical honeycomb carbon structures which are similar
in composition (Figs. 11.1 and 11.2). The first system is a nanoribbon fragment C130,
that is (9,6)-periacene, or shortly (9,6)-PA. Related structures are frequently consid-
ered in literature, particularly in the context of their polyradical character
[8, 10]. Two other systems, GQD C130 and GQD C 132, belong to a class of recently
synthesized colloidal graphene quantum dots [26] (see also Ref. [2]). For these
GQDs, a simplified Hubbard-like π-electron model, with a somewhat artificial

Fig. 11.1 Structure of the
studied graphene molecules
with strong and moderate
electron correlation
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choice of π-parameters, was used in Ref. [2]. The last GQD C138 is the fully
benzenoid (Clar’s type) nanographene molecule, which should be particularly stable
from the viewpoint of the so-called Clar aromatic sextet theory [14, 27].

Throughout the paper we apply the conventional Pariser-Parr-Pople π-electron
Hamiltonian with the usual π-parameters (resonance integral βCC ¼ �2.4 eV,
two-center Coulomb integrals γμν due to Ohno, and one-center integral
γC ¼ 11.13 eV).

11.3.1 Hartree-Fock Instabilities and Optical Transitions

The key issue for large polycyclic hydrocarbons is their stability/instability as
systems with spatially extended π-electron wave functions. The corresponding HF
stability values along with CIS and RAS-CI results for excitation energies are listed
in Table 11.1. The RHF stability and CIS excitations are studied here by using the
conventional RHF MOs. As to our implementation of RAS-CI approach, we prefer,
instead of RHF MOs, to utilize more sophisticated orbital sets such as in Ref.
[28]. Only we used the EHF natural orbitals rather than the half-projected HF ones
employed in [28].

From Table 11.1 we see that two first clusters, (9,6)-PA and GQD C130, possess a
strong triplet instability; furthermore, (9,6)-PA possesses, too, a clear singlet insta-
bility. It means that these π-structures cannot be correctly treated within RHF and
related schemes. The erroneously negative value of λCISs¼1 for GQD C130 in Table 11.1
is indicative of this point. At the same time, RAS-CI data (a penultimate column in

Fig. 11.2 Structure of the
studied graphene molecules
with weak electron
correlation

Table 11.1 The π-electron RHF stability value λstable, lowest CIS excitation energy λCIS, and
RAS-CI excitation energy λRAS ‐ CI (all values in eV) for singlet (s ¼ 0) and triplet (s ¼ 1) states in
nanographenes

System λstables¼1 λstables¼0 λCISs¼1 λCISs¼0 λRAS-CIs¼1 λRAS-CIs¼0

(9,6)-PA �4.29 �0.35 �2.00 0.11 0.05 0.23

GQD C130 �1.69 0.82 �0.17 1.15 0.14 0.75

GQD C132 0.02 1.32 1.80 2.28 2.46 2.62

GQD C138 �0.04 1.20 1.69 2.15 2.15 2.46
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the table) show that all triplet excitation energies are positive, as it should be
according to the known Ovchinnikov-Lieb rule for bipartite π-networks
[29, 30]. The third system, GQD C 132, turns out to be a normal stable system
with the lowest excitation energy in a visible optical region. The fully benzoid GQD
C138 must absorb in the same optical region.

11.3.2 Effectively Unpaired Electrons

Firstly, we give some preliminary remarks. The effectively unpaired electron (EUE)
theory provides a special understanding of strongly correlated spin-singlet systems
in terms of loosely coupled electrons (for more detail see Ref. [8]). We only note that
here we follow the Head-Gordon approach [31], but in fact the hole-particle analysis
given in Ref. [6, 8] will be employed. In this approach, a special EUE number, Neff

(NU in notation from Refs. [10, 31]), is constructed. In the hole-particle representa-
tion, Neff is but a doubled occupation value of virtual particles, or explicitly,

Neff ¼ 2
X

a>n

λa,

with λa being the natural orbital occupation numbers for the particle (virtual) states of
one electron. More exactly, {λa} is understood as a set of the one-electron density
matrix eigenvalues in a decreasing order. Within the EUE formalism, one can also
introduce the associated EUE distribution DA

eff

� �
over all atoms {A} [10, 31]. Fur-

thermore, a suitable participation ratio index of the second order (PR2) serves to
estimate an average number of the most active atoms on which unpaired electrons
are localized; the PR2 precise definition is given in Ref. [8], Eq. (6.88). The above
characteristics were employed in our investigation, and the main EUE results
obtained at the EHF level are displayed in Fig. 11.3. In this figure the EUE

Fig. 11.3 EUE diagrams for the small graphene molecules treated by π-electron EHF method
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distributions are visualized by diagrams in which atomic EUE densities are shown
with red discs of radius proportional to the correspondingDA

eff value. From the given
diagrams, it follows that in case of the strongly correlated systems, that is, (9,6)-PA
and GQD C130, the number of unpaired electrons is significant (Neff � 6), and they
are localized on the zigzag (anthracene-like) part of the total board of the graphene
structures. As in the previous studies [6, 8, 10], the armchair (phenanthrene-like) part
of the board is almost not populated by unpaired electrons.

Opposite to (9,6)-PA and GQD C130, the third system GQD C132 has a small Neff<
2, and the corresponding EUE distribution is spread over the network more or less
equally. These peculiarities in EUE localization are additionally reflected by the PR2
values (numbers of localization sites) which are rather small for the first two systems
(PR2 ¼ 13.8 and PR2 ¼ 17.0, respectively) and too large for the last system
(PR2 ¼ 96.1). We do not display the EUE diagram for GQD C138 because in this
molecule Neff is too small (�0.36), so that the atomic EUE diagram becomes
inexpressive (DA

eff � 10�3).

11.3.3 Characterizing Nanographene Aromaticity

It was long recognized that the aromaticity quantification is a too tricky matter. No
wonder that there is a variety of quantum-chemical tools to understand aromaticity in
a quantitative manner. Many such schemes are focused upon the so-called local
aromaticity associated with a given benzenoid fragment in the whole system (e.g.,
see a fresh review [32] where one can find a vast literature on this issue).

In the present work, we apply a special aromaticity scale (σarom scale) proposed in
Ref. [15]. It is based on comparing the atomization energies of the molecule under
study and the related one produced by removing the given benzenoid ring A from the
molecule. For the benzenoid cycle A, the corresponding local aromaticity index
σarom[A] is computed by Eqs. (73) and (74) in Ref. [15]. In Figs. 11.4 and 11.5, the
local aromaticity diagrams are built from these σarom[A] values which (in %) are
inserted in benzenoid rings. The diagrams given here show, at the simple Hückel
MO level, the typical features of distributing aromaticity over the graphene net-
works. To better understand them, it is useful to bear in mind an analogous image for
the related hexacene molecule:

We see that in all structures, the most inner cycles are markedly less aromatic
than the outer cycles. At the same time, the outer cycles belonging to a zigzag
border of the nanographenes have also a lower aromaticity. We clearly observe
that in all the systems, the armchair (phenanthrene-like) border regions show
more aromatic, and thus more stable behavior. This fact is in conjunction to the
EUE distributions given in Fig. 11.3.
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11.3.4 Effects of Weak and Strong Electrostatic Fields

Over the last few years, there has been an upsurge of interest in the nonlinear optical
properties (electric hyperpolarizabilities) of conjugated polymers and nanoclusters,
including GQDs (see [33–36] and many others). In this subsection, we briefly
examine the π-electron behavior of the nanographenes in presence of an electric
field. The influence of electric fields, say, in x-direction, is usually modeled by

Fig. 11.4 Local aromaticity in the graphene molecules with strong and moderate electron
correlation

Fig. 11.5 Local aromaticity in the graphene molecules with weak electron correlation

168 A. Luzanov



including in the full π-electron Hamiltonian the additional one-electron operator
having atomic (μ,ν)-matrix elements proportional to xμ δμν, with xμ being x-coordi-
nate of the μ-th atom. The proportionality constant is in fact a strength field F. Below
in studying electric properties, we follow UHF approach rather than EHF, the latter
requiring too much time to perform calculations repeatedly for many values of the
field. Preliminary UHF and EHF computations on small acenes demonstrate reason-
ably similar field dependences of the main electronic properties. Our typical results
for GQDs are presented in Table 11.2 and Fig. 11.6.

Before discussing them, recall that in weak electric fields, the key effect is well
reflected through a small number of low-order electric polarizabilities. Namely, the
molecular dipole moment induced by a small external electric field F is

dind ffi d þ αF þ βF2=2þ γF3=6,

where coefficients d, α, β, and γ are, respectively, the static dipole moment, (linear)
polarizability, the first hyperpolarizability, and the second hyperpolarizability at the
zero field. Besides, in the considered systems, which are all bipartite (alternant) ones,
the dipole moment and the first hyperpolarizability are zero in standard π-electron
approximations, so that dind ffi αF + γ F3/6.

The polarizabilities and hyperpolarizabilities were computed by the finite-field
method (see, e.g., Ref. [37] for HF and Refs [35, 38] for FCI computations).

Table 11.2 Average π-electron polarizability and second-order hyperpolarizability (all in atomic
units) for the graphene π-electron shells at the UHF level

Property (9,6)-PA GQD C130 GQD C138

α 1394 1366 1536

γ � 10�7 0.96 0.76 0.97

Fig. 11.6 Distribution of the average dipole π-polarizability in the small nanographenes at the UHF
level
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Table 11.2 displays the obtained α and γ data. We see that differences in the static
electric properties of the molecules are not so significant. Concurrently, we must
keep in mind that for the benzene (basic) molecule, the respective values are
α ¼ 25.3 au and γ ¼ 788 au. It means that an enormous exaltation of the static
polarizabilities takes a place even in the case of small graphenes. For instance, GQD
C138 formally contains only 23 benzene units C6, whereas α[C138]/α[C6]ffi 61. In the
case of hyperpolarizabilities, the tremendous nonadditivity effects make practically
meaningless any comparison of the graphene γ values with that of the benzene
subunit.

An additional interpretation of the above electric properties can be provided by
their description in terms of local (atomic) contributions. Many theoretical (fre-
quently rather sophisticated) procedures were proposed for dividing the total com-
puted dipole polarizability into effective atomic polarizabilities {αμ} [39–42]. At the
Hartree-Fock level, the simplest is the partition technique from Ref. [39], and below
we will employ it. Only instead of the atomic contributions {αμ} including all atoms
in the studied graphene structure, we make use of corresponding effective polariz-
abilities αBenzene for each 6-atomic benzenoid cycle. These quantities are shown in
the visible diagrams (Fig. 11.6) where numbers in hexagons are local effective
αBenzene values expressed in A∘ 3. They should be compared with the reference
magnitude α0Benzene ¼ 3:8A∘ 3 of the isolated benzene. From Fig. 11.6 we
observe that indeed the effective π-electron polarizabilities are essentially larger
than α0Benzene, and more importantly, they are markedly larger inside the graphene
molecules than in peripheral hexagons. It means that in concordance with Figs. 11.4
and 11.5, in the nanographenes the aromaticity degree of inner cycles is lesser than
that of border cycles. This is in line with a plausible suggestion that the aromaticity
degree should be antibatic with the electronic polarizability. The assertion is
supported by the so-called minimum polarizability principle [43] and its applications
in many works, see, e.g., Refs. [44, 45].

To conclude the section, we shortly discuss the behavior of the same structures in
strong fields. In Fig. 11.7 we show the field dependence of dipole moment d and the
electron unpairing index Neff (see Sect. 11.3.2). We observe in Fig. 11.7 a very large
(sharp in certain field regions) increase of the dipole moment with applied field.
Almost in the same field regions, Neffexhibits sharp variations. Furthermore, under a
very strong field, the great enhancement of radical character occurs, as it was
previously reported for more simple conjugated molecules [8, 46]. The difference
is that the external fields, which are causing polyradical-like structures in graphenes,
are of an order of magnitude lesser as compared to those in Ref. [46]. It reflects an
essentially increasing instability of nanographenes even in comparatively weak
electric fields.
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11.4 Conclusion

We have studied the valence π-shells, i.e., the most active electron subshells, for
several small graphene molecules. To this end, various approaches were employed,
in each case depending on the solved problem and a feasibility of using the selected
quantum chemistry method with the relatively modest hardware requirements. It was
crucially important to take proper account of electron-correlation effects because
many of them are found to exhibit a strong Hartree-Fock instability.

To obtain the lowest singlet and triplet excitations, we used the conventional
RAS-CI technique with a special (EHF) orbital basis of natural states. The used CI
technique guaranteed the non-negativity of computed triplet excitation energies
λs ¼ 1 whereas the other well-known technique - CIS - did produce the wrong
(negative) λs ¼ 1 in two GQDs where strong π-electron correlations take a place
(Table 11.1).

Another important correlation effect is a large electron unpairing even in the
ground singlet state of graphenes. The diagrams in Fig. 11.4 clearly demonstrate the
unpairing effect for correlated π-systems of (9,6)-PA and GQD C130. Moreover, an
unusual behavior of the electron unpairing is observed in all GQDs when they are
subjected to a sufficiently strong electric field. In that regard, the fully benzenoid
structure GQD C138 turned out to be a remarkable example – a negligible initial
(at the zero field) electron unpairing enormously increased even in moderate electric
fields.

The last point which is worth discussing here is why we systematically use
π-electron schemes whereas many authors follow seemingly more appropriate

Fig. 11.7 Influence of strong electric fields on the nanographene dipole moment d (top) and
effective electron unpairing Neff (bottom) at the π-electron UHF level. The applied field
(in atomic units) is in the long axis direction
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DFT techniques. Indeed, DFT for not too huge clusters frequently gives good results
(see Ref. [1] for DFT applications to graphenes). However, DFT is not an universal
tool, saying nothing about a certain semiempirical character of energy functionals
used in practical DFT calculations (a dependence on internal parameters of func-
tionals, etc.). We do not also forget about a number of severe “ideological” difficul-
ties in DFT (see review [47]), particularly those which are caused by absence of an
explicit spin dependence in the general DFT theory (as McWeeny says, “unlike the
classical position and momentum variables, electron spin is in a certain sense
extraneous to the DFT.” [48]; see also a careful analysis of Kaplan [49, 50]). In
Ref. [51] one can find an interesting viewpoint on a special semiempirical use of the
DFT technique as a possible tool for finding improved sets of π-electron parameters.
We hope that in the future, our π-electron approaches to complex graphene networks
can be further improved and extended with the help of more refined
π-parameterizations [51].
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