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Preface

This work, organized into two volumes, publishes a selection of most relevant
contributions, presented at the International Symposium, MME2017 Mathematical
Methods in Engineering, held at Çankaya University, Ankara, Turkey, during April
27–29, 2017.

The first volume of the book Mathematical Methods in Engineering - Theoretical
Aspects” is divided into two parts, namely, “Fixed point theory and applications” and
“New mathematical ideas.”

The reader starts by finding an excellent review about the fixed point results
on partial metric spaces. This book also includes 13 high-quality contributions.
The book expands the works entitled: Fixed points results for mixed multivalued
mappings of Feng-Liu type on Mb-metric spaces, Hyers-Ulam and Hyers-Ulam-
Rassias stability for a class of integro-differential equations, Exact solutions, Lie
symmetry analysis and conservation laws of the time fractional diffusion-absorption
equation, Integral balance approach to 1-D space-fractional models: approximate
solutions and analysis, Fractional order filter discretization by particle swarm
optimization method, and On the existence of solution for a sum fractional finite
difference inclusion.

In addition, the book contains Comparison on solving a class of nonlinear
systems of partial differential equations and multiple solutions of second order
differential equations, Effect of edge deletion and addition on Zagreb indices of
graphs, The limit Q-Bernstein operators with varying Q, Localization of the spectral
expansions associated with the partial differential operators, Energy decay in a
quasilinear system with finite and infinite memories, A new method for solving two-
dimensional Bratu differential equation, and A note on the upper bound of average
distance via irregularity index.

The symposium provided a forum for discussing recent developments about
theoretical and applied areas of mathematics and engineering with emphasis on the
topics fractional calculus and nonlinear analysis.

The members of the organizing committee were Kenan Taş (Turkey), J. A.
Tenreiro Machado (Portugal), and Yangjian Cai (China).
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vi Preface

All local organizing committee members with leadership of Dumitru Baleanu
and all members of Çankaya University, Mathematics Department, as well as the
organizers of Special Sessions, Plenary and Invited Speakers, and International
Scientific Committee deserve heartfelt thanks.

The editors of this book are grateful to the President of the board of trustees of
Çankaya University, Sitki Alp, and to the Rector, Prof. Dr. Hamdi Mollamahmuto-
glu, for their continuous support of the symposium activities.

We would like to thank all the referees and other colleagues who helped in
preparing this book for publication.

Finally, our special thanks are due to Kiruthika Kumar and Michael Luby from
Springer, for their continuous help and work in connection with this book.

Ankara, Turkey Kenan Taş
Ankara, Turkey Dumitru Baleanu
Porto, Portugal J. A. Tenreiro Machado
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Fixed Point Theory and Applications



Chapter 1
Advances on Fixed Point Results
on Partial Metric Spaces

Erdal Karapınar, Kenan Taş, and Vladimir Rakočević

1.1 Introduction and Preliminaries

It is a well-accepted fact that the notion of metric space axiomatically formulated
first by Maurice René Frechét [52] under the name of L-space. The name, metric
space, has been used after F. Hausdorff. This notion has crucial roles in various
branches of mathematics and quantitative sciences, such as economics, statistics,
theoretical physics, engineering, neuroscience, computer vision, computational
biology, networking, and so on (see, e.g., [38, 41, 51, 53, 56, 82–85, 116, 117, 121,
128, 129] and the references therein).

Definition 1 Let X be a nonempty set. A function d : X × X → [0,∞) is called
metric if it fulfills the following conditions:

(d1) d(x, x) = 0;
(d2) d(x, y) = d(y, x) = 0 =⇒ x = y;
(d3) d(x, y) = d(y, x);
(d4) d(x, z) ≤ d(x, y)+ d(y, z);
for every x, y, z ∈ X. In addition, the pair (X, d) is called metric space.
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On account of the problems of applications, the researchers need to extend
and improve the notion of metric spaces in various ways, like modular metric
space, quasi-metric spaces, ultra metric space, uniform spaces, D-metric space,
symmetric spaces, fuzzy metric space, cone metric spaces, TVS-metric space,
complex valued metric space,G-metric space, partial metric space, statistical metric
space, rectangular (Branciari) metric space, b-metric space, and so on (see, e.g.,
[22, 23, 28–30, 35, 36, 40, 46, 54, 57, 61–64, 86, 88, 90, 91]). Among them, we
shall focus on very interesting generalization metric spaces, namely, partial metric
spaces.

The concept of partial metric spaces was proposed by Matthews [85] in 1992 to
solve the problems of computer science, especially, to domain theory and semantics,
by transferring the structure of metric space. The most important difference of
partial metric rather than the standard metric is the existing possibility of non-zero
self-distance. In other words, in partial metric, self-distance, p(x, x), need not to be
zero.

At the first glance, it seems that such axiom is superfluous and it is not a natural
axiom. Particularly considering the well-known examples of metric space, such
axiom seems impossible. On the other hand, by regarding Baire metric, we can
visualize how self-distance can be non-zero in a very natural way. More precisely,
consider a distance function on the set of all infinite sequences ω as follows:

p : ω × ω : [0,∞) with p(x, y) = 2− sup{n|∀i<n such that xi=yi}. (1.1)

One can easily check that the function p(x, y), defined above, forms a standard
metric on ω. This metric is known as Baire metric in the literature. Matthews [85]
extended the domain of the above function ω by replacing with a more general
set, the set of all finite and infinite sequences, ωf . For instance, let x ∈ ωf such
that x = (x1, x2, x3, x4, x5), thus, p(x, x) = 1

25 �= 0 (for more details, see, e.g.
[41]). Indeed, in computer programming, finite sequences have been used rather
than infinite sequences. That is why Matthews [85] proposed the notion of partial
metric regarding the similarity with standard metric. After that, the topological
structure and various applications of them have been investigated by several authors
independently (see, e.g., [51, 56, 81, 83, 116, 117, 121, 128, 129] and the references
therein).

In this study, we focus on the fixed point problems of certain mappings in the
context of partial metric. This direction was also initiated by Matthews [85], by
proving the analog of celebrated Banach Contraction Mapping Principle in the
setting of partial metric spaces. Following this pioneer result, several papers have
been reported on the existence and uniqueness of various operators in the frame of
the partial metric spaces (see, e.g., [1, 3–13, 19–21, 24, 41, 47, 66–72, 75, 76, 93–
111, 119, 120] and the references therein).

Throughout the paper, N and N0 denote the set of positive integers and the set of
nonnegative integers, respectively. Furthermore, R, R+, and R

+
0 represent the set of

reals, positive reals, and nonnegative reals, respectively.
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We recall the notion of a partial metric introduced by Matthews [85].

Definition 2 ([85]) A partial metric on a nonempty setX is a functionp : X×X→
R

+
0 such that for all x, y, z ∈ X,

(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z)+ p(z, y)− p(z, z).

A pair (X, p) is called a partial metric space.

Remark 1 If p(x, y) = 0, then from (p1) and (p2), we have x = y. The converse
may not hold. For example, let X = R

+
0 and p : X × X → R

+
0 be p(x, y) =

max{x, y}. Then (X, p) is a partial metric space and p(x, x) �= 0 for all x ∈ X\{0}.
Example 1 (See, e.g., [76, 120]) Let (X, d) be standard metric space and (X, p) be
a partial metric space. Consider the mappings ρi : X × X −→ R

+
0 (i ∈ {1, 2, 3})

defined by

ρ1(x, y) = p(x, y)+ p(x, y)
ρ2(x, y) = p(x, y)+ max{ω(x), ω(y)}
ρ3(x, y) = p(x, y)+ a

It is clear that the functions ρ1, ρ2, ρ3 form a partial metrics onX,where ω : X −→
R

+
0 is an arbitrary function and a ≥ 0.

Example 2 (See [85]) Let X = {[a, b] : a, b,∈ R, a ≤ b} and define
p([a, b], [c, d]) = max{b, d} − min{a, c}. Then (X, p) is a partial metric space.

Example 3 (See [85]) Let X := [0, 1] ∪ [2, 3] and define p : X ×X→ [0,∞) by

p(x, y) =
{

max{x, y} if {x, y} ∩ [2, 3] �= ∅,
|x − y| if {x, y} ⊂ [0, 1].

Then, (X, p) is a complete partial metric space.

Each partial metric p on X generates a T0 topology τp on X which has as a base
the family of open p-balls {Bp(x, γ ) : x ∈ X, γ > 0}, where Bp(x, γ ) = {y ∈ X :
p(x, y) < p(x, x)+ γ } for all x ∈ X and γ > 0. If p is a partial metric on X, then
the function dp : X ×X → R

+
0 given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.
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The functions dpm and p0 defined on X ×X by

d
p
m(x, y) = max{p(x, y)− p(x, x), p(x, y)− p(y, y)}

= p(x, y)− min{p(x, x), p(y, y)}, (1.2)

and {
p0(x, x) = 0, for all x ∈ X
p0(x, y) = p(x, y), for all x �= y (1.3)

are also metrics on X (see [9] and [118], respectively).
Observe that if p is a metric on X then p = dpm.
The following topological inclusions are well-known and easy to check: τp ⊆

τdp = τdmp ⊆ τp0 .

Pay attention to the fact that in the partial metric space (X, p) mentioned in
Remark 1 both dp and dmp are the Euclidean metric on X.

Definition 3 ([21, 85]) Let (X, p) be a partial metric space. Then

(1) a sequence {xn} in (X, p) converges to x ∈ X if p(x, x) = limn→∞ p(x, xn);
(2) a sequence {xn} in (X, p) is called a Cauchy sequence if limm,n→∞ p(xm, xn)

exists (and is finite);
(3) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,

with respect to τp, to a point x ∈ X such that p(x, x) = limm,n→∞ p(xm, xn);
(4) a subset A of a partial metric space (X, p) is closed in (X, p) if it contains its

limit points, that is, if a sequence {xn} in A converges to some x ∈ X, then
x ∈ A.

(5) a subset A of a partial metric space (X, p) is bounded in (X, p) if there exist
x0 ∈ X and M ∈ R such that for all a ∈ A, we have a ∈ Bp(x0,M), that is,
p(x0, a) < p(a, a)+M .

Definition 4 Let (X, p) be a partial metric space. A self-mapping T on X is called
continuous, if for each sequence {xn} in X converges to u ∈ X, that is,

lim
n→∞p(xn, u) = lim

n→∞p(xn, xn+k) = p(u, u) (1.4)

provides

lim
n→∞p(T xn, T u) = lim

n→∞p(T xn, T xn+k) = P(T u, T u). (1.5)

Notice that the equality (1.5) can be expressed as

lim
n→∞p(T xn, T u)

= lim
n→∞p(xn+1, T u) = lim

n→∞p(xn+1, xn+k+1) = p(u, u)
= lim
n→∞p(T xn, T xn+k) = P(T u, T u). (1.6)



1 Advances on Fixed Point Results on Partial Metric Spaces 7

Remark 2 The limit in a partial metric space may not be unique. For example, con-

sider the sequence
{

1
n2+n

}
n∈N in the partial metric space (X, p) where p(x, y) =

max{x, y}. Note

p(1, 1) = lim
n→∞p

(
1,

1

n2 + n
)

and p(2, 2) = lim
n→∞p

(
2,

1

n2 + n
)
.

Lemma 1 ([85, 92])

(i) {xn} is a Cauchy sequence in a partial metric space (X, p) if and only if it is a
Cauchy sequence in the metric space (X, dp);

(ii) A partial metric space (X, p) is complete if and only if the metric space (X, dp)
is complete. Furthermore, limn→∞ dp(xn, x) = 0 if and only if p(x, x) =
limn→∞ p(xn, x) = limn→∞ p(xn, xm).

(iii) If {xn} is a convergent sequence in (X, dp), then it is a convergent sequence in
the partial metric space (X, p).

Lemma 2 ([1]) Let {xn} and {yn} be two sequences in a partial metric space X
such that

lim
n→∞p(xn, x) = lim

n→∞p(xn, xn) = p(x, x), (1.7)

and

lim
n→∞p(yn, y) = lim

n→∞p(yn, yn) = p(y, y), (1.8)

then lim
n→∞p(xn, yn) = p(x, y). In particular, lim

n→∞p(xn, z) = p(x, z) for every

z ∈ X.

Lemma 3 (See e.g.[67]) Let (X, p) be a partial metric space. Then

(A) If p(x, y) = 0, then x = y,
(B) If x �= y, then p(x, y) > 0.

Fixed point theory in partial metric spaces was studied by many authors in the
literature (see [1, 2, 4, 9–21, 24, 25, 43, 44, 47, 55, 59, 60, 66–73, 75–77, 81, 83–
85, 92, 94, 100, 105–111, 113, 115–117, 119, 120, 124–129] and the reference
therein). On the other hand, we should underline that all fixed point results in partial
metric spaces do not bring a novelty. For instance, in [55], the authors proved that
certain fixed point results in the context of partial metric spaces are equivalent to
corresponding results in the frame of the standard metric spaces. More precisely, for
a mapping T : X → X where X �= ∅ it was observed that

MT
d (x, y) = MT

p (x, y), with

MT
ρ (x, y) = max{ρ(x, y), ρ(x, T x), ρ(Ty, y), ρ(T x, y), ρ(x, T y)}
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where ρ = d, p are metric, partial metric, respectively. For the presented results in
this work, the approaches and techniques used in [55] are not applicable.

Let � be the family of functions ψ : [0,∞) → [0,∞) satisfying the following
conditions:

(�1) ψ is nondecreasing;
(�2) there exist k0 ∈ N and a ∈ (0, 1) and a convergent series of nonnegative terms∑∞

k=1 vk such that

ψk+1 (t) ≤ aψk (t)+ vk, (1.9)

for k ≥ k0 and any t ∈ R
+.

In the literature such functions are called as (c)-comparison functions (see [112]
and also [37, 101, 102]).

Lemma 4 (See, e.g., [112]) If ψ ∈ Ψ , then the following hold:

(i) (ψn (t))n∈N converges to 0 as n→ ∞ for all t ∈ R
+;

(ii) ψ (t) < t, for any t ∈ R
+;

(iii) ψ is continuous at 0;
(iv) the series

∑∞
k=1 ψ

k (t) converges for any t ∈ R
+.

Recently, Samet et al. [114] suggested a new contraction type self-mapping to unify
several existing results in the literature by auxiliary functions.

Definition 5 Let α : X × X → [0,∞). A self-mapping T : X → X is called
α-admissible if the condition

α(x, y) ≥ 1 =⇒ α(T x, Ty) ≥ 1,

is satisfied for all x, y ∈ X.

Definition 6 Let T be a self-mapping defined on a b-metric space (X, d). Then,
T is called an α − ψ contractive mapping if there exist two auxiliary mappings
α : X ×X → [0,∞) and ψ ∈ � such that

α(x, y)p(T x, T y) ≤ ψ(p(x, y)), for all x, y ∈ X.

The main results in [114] are the following fixed point theorems.

Theorem 1 Let T : X → X be an α − ψ contractive mapping where (X, d) is a
complete b-metric space. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous, or
(iii)’ if {xn} is a sequence inX such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X

as n→ ∞, then α(xn, x) ≥ 1 for all n.

Then, there exists u ∈ X such that T u = u.
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Theorem 2 Adding to the hypotheses of Theorem 1 the condition: For all x, y ∈ X,
there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1, we obtain uniqueness of
the fixed point.

Note that Banach fixed point theorem is covered by Theorem 2 by letting α(x, y) =
1 for all x, y ∈ X and ψ(t) = kt , where k ∈ (0, 1). For more interesting
consequence of Theorem 2, see, e.g., [74, 114].

Popescu [100] suggested the concept of α-orbital admissible as a refinement of
the alpha-admissible notion, defined in [78, 114].

Definition 7 ([100]) Let T : X → X be a mapping and α : X ×X → [0,∞) be a
function. We say that T is an α-orbital admissible if

α(x, T x) ≥ 1 ⇒ α(T x, T 2x) ≥ 1.

Notice that each α-admissible mapping is an α-orbital admissible. For more details
and counterexamples, see, e.g., [79, 100].

1.2 Basic Fixed Point Results

In this section, we shall state and prove a fixed point theorem that covers and unifies
several existing results in the literature.

Definition 8 Let T be a self-mapping defined on a partial metric space (X, p). We
say that T is an (α − ψ)-type K-contraction if there exist mappings α : X ×X →
[0,∞) and ψ ∈ � such that

α(x, y)p(T x, T y) ≤ ψ(K(x, y)) for all x, y ∈ X, (1.10)

where

K(x, y) := a1p(x, y)+ a2p(x, T x)+ a3p(y, T y)+ a4[p(x, T y)+ p(y, T x)],
(1.11)

where 0 ≤ ai ≤ 1, i = 1, 2, 3, 4, and a1 + a2 + a3 + 2a4 ≤ 1.

Theorem 3 Let (X, p) be a complete partial metric space and let T : X → X be
an (α − ψ)-type K-contraction. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) T is continuous.

Then there exists u ∈ X such that T u = u and p(u, u) = 0.
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Proof On account of the condition (ii), there exists x0 ∈ X such that α(x0, T x0) ≥
1. We shall construct an iterative sequence {xn} in X by

xn+1 = T xn for all n ≥ 0.

Observe that if xn0 = xn0+1 for some n0, then u = xn0 is a fixed point of T . Thus,
throughout the proof, we shall assume that xn �= xn+1 for all n. Regarding that T is
α-admissible, we have

α(x0, x1) = α(x0, T x0) ≥ 1 ⇒ α(T x0, T x1) = α(x1, x2) ≥ 1.

Inductively, we find

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . (1.12)

Due to (1.10) and (1.77), it follows, for all n ≥ 1, that

p(xn+1, xn) = p(T xn, T xn−1) ≤ α(xn, xn−1)p(T xn, T xn−1) ≤ ψ(K(xn, xn−1)),

(1.13)
where

K(xn, xn−1) = a1p(xn, xn−1)+ a2p(xn, T xn)+ a3p(xn−1, T xn−1)

+a4[p(xn, T xn−1)+ p(xn−1, T xn)]
= a1p(xn, xn−1)+ a2p(xn, xn+1)+ a3p(xn−1, xn)

+a4[p(xn, xn)+ p(xn−1, xn+1)].

Taking (p4) into account, we derive that

p(xn−1, xn+1)+ p(xn, xn) ≤ p(xn, xn−1)+ p(xn, xn+1)

Hence,

K(xn, xn−1) = (a1 + a3 + a4)p(xn, xn−1)+ (a2 + a4)p(xn, xn+1).

If for some n ≥ 1, we have p(xn, xn−1) ≤ p(xn, xn+1), then we get

K(xn, xn−1) ≤ (a1 + a2 + a3 + 2a4)p(xn, xn+1) ≤ p(xn, xn+1), (1.14)

since a1 + a2 + a3 + a4 ≤ 1. By taking (1.14) in consideration together with the
fact that ψ is a nondecreasing function, we obtain from the inequality (1.13) that

p(xn+1, xn) ≤ ψ(K(xn, xn−1)) ≤ ψ(p(xn, xn+1)) < p(xn, xn+1),

a contradiction. Thus, for all n ≥ 1, we have

p(xn, xn+1) ≤ p(xn, xn−1). (1.15)
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Using (1.13) and (1.15), we get that

p(xn+1, xn) ≤ ψ(p(xn, xn−1)), (1.16)

for all n ≥ 1. By induction, we get

p(xn+1, xn) ≤ ψn(p(x1, x0)), for all n ≥ 1. (1.17)

Due to Lemma (1.17) (i), we find that

lim
n→∞p(xn+1, xn) = 0. (1.18)

Again by keeping the expression (1.17) in the mind, and by using the triangular
inequality (p4), for all k ≥ 1, we have

p(xn, xn+k) ≤ p(xn, xn+1)+ · · · + p(xn+k−1, xn+k)−
k−1∑
j=1

(
p(xn+j , xn+j )

)

≤
n+k−1∑
j=n

ψj (p(x1, x0))

≤
+∞∑
j=n
ψj (p(x1, x0))→ 0 as n→ ∞.

This implies that

lim
n→∞p(xn, xn+k) = 0,

and hence {xn} is a Cauchy sequence in (X, d). Since (X, p) is complete, there
exists u ∈ X such that

lim
n→∞p(xn, u) = 0 = lim

n→∞p(xn, xn+k) = p(u, u). (1.19)

Since T is continuous, by Definition 4, we conclude from (1.19) that

lim
n→∞p(xn+1, T u) = lim

n→∞p(T xn, T u) = 0. (1.20)

On account of Lemma 2 together with (1.19) and (1.89), we find that u is a fixed
point of T , that is, T u = u.

Definition 9 We say that a non-empty setX is regular if for each iterative sequence
{xn} is in X provides that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞,
then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.



12 E. Karapınar et al.

Theorem 4 Let (X, p) be a complete partial metric space and let T : X → X be
an (α − ψ)-type K-contraction. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0.

Proof As it is recognized easily, only the difference between Theorems 3 and 4 is
the condition (iii). By following the lines in the proof of Theorem 3, we find an
iterative sequence {xn} defined by xn+1 = T xn for all n ≥ 0, converges for some
u ∈ X. On account of (1.77) and the condition (iii) of Theorem 4, there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), u) ≥ 1 for all k. Applying (1.10), for
all k, we get that

p(xn(k)+1, T u) = p(T xn(k), T u) ≤ α(xn(k), u)p(T xn(k), T u)
≤ ψ(K(xn(k), u)) < K(xn(k), u), (1.21)

where

K(xn(k), u) = a1p(xn(k), u)+ a2p(xn(k), xn(k)+1)

+ a3p(u, T u)+ a4[p(xn(k), T u)+ p(u, xn(k)+1)].

Letting k → ∞ in the equality (1.21), we get that

p(u, T u) ≤ (a3 + a4)p(u, T u), (1.22)

which is a contradiction. Thus we have p(u, T u) = 0, that is, u = T u.

For the uniqueness of a fixed point derived in Theorems 3 and 4, we will consider
the following hypothesis. (U) For all u, v ∈ Fix(T ), then α(u, v) ≥ 1.

Theorem 5 Putting condition (U) to the statements of Theorem 3 (resp. Theo-
rem 4), we find that u is the unique fixed point of T .

Proof Let u, ν be two distinct fixed point of T and p(u, ν) > 0. Note that in
case p(u, ν) = 0, there is nothing to prove. Due to the property of ψ , we have
ψ(pu, ν)) > 0.

On account of the condition (U) and the assumption of Theorem 3 (resp.
Theorem 4)

p(u, ν) ≤ α(u, ν)p(T u, T ν)
≤ ψ(K(u, ν)) = ψ(p(u, ν))
< p(u, ν),

which is a contradiction. Thus, u = ν.
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Definition 10 Let T be a self-mapping defined on a partial metric space (X, p). We
say that T is an (α − ψ)-type N-contraction if there exist mappings α : X ×X →
[0,∞) and ψ ∈ � such that

α(x, y)p(T x, T y) ≤ ψ(N(x, y)) for all x, y ∈ X, (1.23)

where

N(x, y) := a1p(x, y)+ a2[p(x, T x)+ p(y, T y)] + a3[p(x, T y)+ p(y, T x)],
(1.24)

where 0 ≤ ai ≤ 1, i = 1, 2, 3, and a1 + 2a2 + 2a3 ≤ 1.

Theorem 6 Let (X, p) be a complete partial metric space and let T : X → X be
an (α − ψ)-type N-contraction. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0.

Since N(x, y) ≤ K(x, y) for all x, y ∈ X, the proof of Theorem 6 can be derived
as a consequence of Theorems 3 and 4.

On the other hand, for the uniqueness of a fixed point of the operator, defined in
of Theorem 6, we shall propose a weaker condition:

(H) For all x, y ∈ Fix(T ), there exists z ∈ X such that α(x, z) ≥ 1 and
α(y, z) ≥ 1,

where Fix(T ) denotes the set of fixed points of T .

Theorem 7 Adding condition (H) to the hypotheses of Theorem 6, we obtain that
u is the unique fixed point of T .

Proof Suppose that v is another fixed point of T . From (H), there exists z ∈ X such
that

α(u, z) ≥ 1 and α(v, z) ≥ 1. (1.25)

Since T is α-admissible and u, v are the fixed point of T , the inequalities in (1.25)
yield that

α(u, T nz) ≥ 1 and α(v, T nz) ≥ 1, for all n. (1.26)

We construct an iterative sequence {zn} in X by zn+1 = T zn for all n ≥ 0 and
z0 = z. From (1.26), for all n, we have

p(u, zn+1) = p(T u, T zn) ≤ α(u, zn)p(T u, T zn) ≤ ψ(K(u, zn)), (1.27)
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where

K(u, zn) = a1p(u, zn)+ a2p(u, T u)+ a3p(zn, T zn)

+a3[p(u, T zn)+ p(zn, T u)]
= a1p(u, zn)+ a2[p(u, u)+ p(zn, zn+1)] + a3[p(u, zn+1)+ p(zn, u)]
≤ a1p(u, zn)+ a2[p(u, zn+1)+ p(u, zn+1)− p(u, u)]

+a4[p(u, zn+1)+ p(zn, u)]
= (a1 + a2 + a2)p(u, zn)+ (a2 + a3d)(u, zn+1)+ .

Without loss of generality, we can suppose that p(u, zn) > 0 for all n. If we have
p(u, zn) ≤ p(u, zn+1), then due to the monotone property of ψ , and the inequality
(1.27), we find that

p(u, zn+1) ≤ ψ((a1 + 2a2 + 2a3)p(u, zn+1)), (1.28)

By keeping (1.27) and the monotone property of ψ in the mind, if
max{p(u, zn), p(u, zn+1)} = p(u, zn+1), we get that, for all n,

p(u, zn+1) ≤ ψ((a1 + 2a2 + 2a3)p(u, zn+1)) ≤ ψ(p(u, zn+1)) < p(u, zn+1),

which is a contradiction. Thus we have max{p(u, zn), p(u, zn+1)} = p(u, zn), and

p(u, zn+1) ≤ ψ(p(u, zn)),

for all n. This implies that

p(u, zn) ≤ ψn(p(u, z0)), for all n ≥ 1.

Letting n→ ∞ in the above inequality, we obtain

lim
n→∞p(zn, u) = 0. (1.29)

Similarly, one can show that

lim
n→∞p(zn, v) = 0. (1.30)

From (1.29) and (1.30), it follows that u = v. Thus we proved that u is the unique
fixed point of T .
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1.2.1 Some Immediate Consequences Due to Choice
of Coefficients a1, a2, a3, a4

The following results can be derived from Theorems 3 to 7 by choosing the distinct
coefficients a1, a2, a3, a4.

Theorem 8 Let (X, p) be a complete partial metric space and α : X×X → [0,∞)
and ψ ∈ Ψ Suppose that T : X → X fulfills

α(x, y)p(T x, T y) ≤ ψ(a1p(x, y)+ a2p(x, T x)+ a3p(y, T y)) for all x, y ∈ X,
(1.31)

where 0 ≤ ai ≤ 1, i = 1, 2, 3, and a1 + a2 + a3 ≤ 1. Assume also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (U) is satisfied, then u is the unique fixed point of T .

Proof It is evident that

a1p(x, y)+ a2p(x, T x)+ a3p(y, T y) ≤ K(x, y) for all x, y ∈ X.

On account of the property (�1), the desired results are observed from Theorem 5.

Theorem 9 Let (X, p) be a complete partial metric space and α : X×X → [0,∞)
and ψ ∈ Ψ Suppose that T : X → X fulfills

α(x, y)p(T x, T y) ≤ ψ(a1p(x, y)+ a2[p(x, T x)+ p(y, T y)]) for all x, y ∈ X,
(1.32)

where 0 ≤ ai ≤ 1, i = 1, 2, and a1 + 2a2 ≤ 1. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Proof It is clear that

a1p(x, y)+ a2[p(x, T x)+ p(y, T y)] ≤ N(x, y) for all x, y ∈ X.

Taking the property (�1) into account, the desired results are derived from
Theorem 7.
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Theorem 10 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞) and ψ ∈ Ψ Suppose that T : X → X fulfills

α(x, y)p(T x, T y) ≤ ψ(b1p(x, y)+ b2[p(x, T y)+ p(y, T x)]) for all x, y ∈ X,
(1.33)

where 0 ≤ bi ≤ 1, i = 1, 2, and b1 + 2b2 ≤ 1. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Proof Keeping the property (�1) in mind, together with the inequality below,

b1p(x, y)+ b2[p(x, T y)+ p(y, T x)] ≤ N(x, y) for all x, y ∈ X,

we conclude the desired result from Theorem 7.

Theorem 11 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞) and ψ ∈ Ψ Suppose that T : X → X fulfills

α(x, y)p(T x, T y) ≤ ψ
( [p(x, T x)+ p(y, T y)]

2

)
for all x, y ∈ X. (1.34)

Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Proof The result follows from Theorem 7 due to the property (�1) together with
the inequality below:

[p(x, T x)+ p(y, T y)]
2

≤ N(x, y) for all x, y ∈ X.

Theorem 12 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞) and ψ ∈ Ψ Suppose that T : X → X fulfills

α(x, y)p(T x, T y) ≤ ψ
(
p(x, T y)+ p(y, T x)

2

)
for all x, y ∈ X. (1.35)

Suppose also that
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(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Proof The result is derived from Theorem 7 due to the property (�1) and the
inequality below:

p(x, T y)+ p(y, T x)
2

≤ N(x, y) for all x, y ∈ X.

Theorem 13 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞) and ψ ∈ Ψ Suppose that T : X → X fulfills

α(x, y)p(T x, T y) ≤ ψ(p(x, y)) for all x, y ∈ X. (1.36)

Suppose also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Proof Keeping Theorem 7 in mind, the inequality

p(x, y) ≤ N(x, y) for all x, y ∈ X,

and the property (�1) yields the result.

Notice that, in this section, for the uniqueness of the fixed point, we use property
(U) only in Theorem 8. For the other theorems, we use property (H) instead of (U).
It is clear that the condition (U) is stronger than the condition (H).

1.2.2 Some Consequences Due to Choice of ψ

In this part, we list some consequences of Theorems 3–7 by choosingψ(t) = kt for
k ∈ [0, 1). Notice that the class of � is very wide and it is possible to derive more
consequences for different choice of ψ apart from ψ(t) = kt.
Theorem 14 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞). Suppose that T : X→ X fulfills
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α(x, y)p(T x, T y) ≤ a1p(x, y)+ a2p(x, T x)+ a3p(y, T y)

+ a4[p(x, T y)+ p(y, T x)] for all x, y ∈ X. (1.37)

where 0 ≤ ai, i = 1, 2, 3, 4, and a1 + a2 + a3 + 2a4 < 1. Suppose also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (U) is satisfied, then u is the unique fixed point of T .

The results follow from Theorems 3–5, by choosing ψ(t) = kt for k ∈ [0, 1).
Notice that the effect of k ∈ [0, 1) can be seen from the revised criteria
a1 + a2 + a3 + 2a4 < 1.

Theorem 15 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞). Suppose that T : X→ X fulfills

α(x, y)p(T x, T y) ≤ a1p(x, y)+ a2[p(x, T x)+ p(y, T y)]
+ a3[p(x, T y)+ p(y, T x)] for all x, y ∈ X. (1.38)

where 0 ≤ ai, i = 1, 2, 3, and a1 + 2a2 + 2a3 < 1. Suppose also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

We skip the proof of this theorem since Theorems 6 and 7, by choosing ψ(t) = kt
for k ∈ [0, 1). As in the consideration above, the criteria k ∈ [0, 1) makes an effect
on the conditions of 0 ≤ ai, i = 1, 2, 3, as a1 + 2a2 + 2a3 < 1.

Theorem 16 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞). Suppose that T : X→ X fulfills

α(x, y)p(T x, T y) ≤ a1p(x, y)+ a2p(x, T x)+ a3p(y, T y) for all x, y ∈ X.
(1.39)

where 0 ≤ ai, i = 1, 2, 3, and a1 + a2 + a3 < 1. Suppose also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (U) is satisfied, then u is the unique fixed point of T .
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Theorem 17 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞). Suppose that T : X→ X fulfills

α(x, y)p(T x, T y) ≤ a1p(x, y)+ a2[p(x, T x)+ p(y, T y)] for all x, y ∈ X.
(1.40)

where 0 ≤ ai, i = 1, 2, and a1 + 2a2 < 1. Suppose also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Theorem 18 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞). Suppose that T : X→ X fulfills

α(x, y)p(T x, T y) ≤ a1p(x, y)+ a3[p(x, T y)+ p(y, T x)] for all x, y ∈ X.
(1.41)

where 0 ≤ ai, i = 1, 3, and a1 + 2a3 < 1. Suppose also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Theorem 19 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞). Suppose that T : X→ X fulfills

α(x, y)p(T x, T y) ≤ a2[p(x, T x)+ p(y, T y)] for all x, y ∈ X. (1.42)

where 0 ≤ 2a2 < 1. Suppose also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Theorem 20 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞). Suppose that T : X→ X fulfills

α(x, y)p(T x, T y) ≤ a3[p(x, T y)+ p(y, T x)] for all x, y ∈ X. (1.43)

where 0 ≤ 2a3 < 1. Suppose also that
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(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

Theorem 21 Let (X, p) be a complete partial metric space and α : X × X →
[0,∞). Suppose that T : X→ X fulfills

α(x, y)p(T x, T y) ≤ a1p(x, y) for all x, y ∈ X. (1.44)

where 0 ≤ a1 < 1. Suppose also that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) either T is continuous or X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0. Additionally, if the
condition (H) is satisfied, then u is the unique fixed point of T .

1.2.3 Consequences in the Frame of Partial Metric Spaces with
a Partial Order

Existence of fixed point on metric spaces endowed with partial orders is one of the
recent trends of metric fixed point theory that was initiated by Turinici [123] in
1986. Following this pioneer work, Ran and Reurings in [103] give more interesting
results with an application to matrix equations.

Definition 11 Let (X,�) be a partially ordered set and T : X → X be a given
mapping. We say that T is nondecreasing with respect to � if

x, y ∈ X, x � y =⇒ T x � Ty.

Definition 12 Let (X,�) be a partially ordered set. A sequence {xn} ⊂ X is said
to be nondecreasing with respect to � if xn � xn+1 for all n.

Definition 13 Let (X,�) be a partially ordered set and d be a metric on X. We
say that (X,�, p) is regular if for every nondecreasing sequence {xn} ⊂ X such
that xn → x ∈ X as n → ∞, there exists a subsequence {xn(k)} of {xn} such that
xn(k) � x for all k.

We have the following result.

Theorem 22 Let (X,�) be a partially ordered set and p be a partial metric on X
such that (X, p) is complete. Let T : X → X be a nondecreasing mapping with
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respect to �. Suppose that there exists a function ψ ∈ Ψ such that

p(T x, Ty) ≤ ψ(K(x, y)),

for all x, y ∈ X with x � y, where K(x, y) is defined as in (1.11). Suppose also
that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � T x0;
(ii) T is continuous or (X,�, p) is regular.

Then T has a fixed point.

Proof We define the mapping α : X ×X→ [0,∞) by

α(x, y) =
{

1 if x � y or x � y,
0 otherwise.

It is evident that T is a (α − ψ)-type K-contraction, that is,

α(x, y)p(T x, T y) ≤ ψ(M(x, y)),

for all x, y ∈ X. On account of the condition (i), we have α(x0, T x0) ≥ 1.
Additionally, for all x, y ∈ X, from the monotone property of T , we have

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ T x � Ty or T x � Ty =⇒ α(T x, Ty) ≥ 1.

Hence, we find that T is α-admissible.
For the case, T is continuous, the existence of a fixed point can be derived from

Theorem 3.
Let us consider the other case. Assume that (X,�, p) is regular. Let {xn} be a

sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞.
From the regularity hypothesis, there exists a subsequence {xn(k)} of {xn} such that
xn(k) � x for all k. Keeping the definition of α in mind, we find that α(xn(k), x) ≥ 1
for all k. Consequently, the existence of a fixed point follows from Theorem 4.

Theorem 23 Let (X,�) be a partially ordered set and p be a partial metric on X
such that (X, p) is complete. Let T : X → X be a nondecreasing mapping with
respect to �. Suppose that there exists a function ψ ∈ Ψ such that

p(T x, Ty) ≤ ψ(N(x, y)),

for all x, y ∈ X with x � y, where K(x, y) is defined as in (1.24). Suppose also
that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � T x0;
(ii) T is continuous or (X,�, p) is regular.
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Then T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such that
x � z and y � z, we have uniqueness of the fixed point.

Proof By following the lines in the proof of Theorem 22, we guarantee the existence
of a fixed point of T .

Now we shall show the uniqueness of it. Let x, y ∈ X be fixed points of T . By
hypothesis, there exists z ∈ X such that x � z and y � z, which implies from the
definition of α that α(x, z) ≥ 1 and α(y, z) ≥ 1. Thus we deduce the uniqueness of
the fixed point by Theorem 7.

Remark 3 Note that the techniques, used in this section, can be applied to all other
results, Theorems 8–21. Regarding the analogy, we skip the state these results here.

1.2.4 Consequences in the Frame of Cyclic Contractive
Mappings

Existence and uniqueness of cyclic mappings have been investigated since the paper
of Kirk et al. [80] appeared. In this part, we consider some consequences of our
results in the setting of cyclic mappings.

Corollary 1 Let {Ai}2
i=1 be nonempty closed subsets of a complete partial metric

space (X, p) and T : Y → Y be a given mapping, where Y = A1 ∪ A2. Suppose
that the following conditions hold:

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;
(II) there exists a function ψ ∈ Ψ such that

p(T x, Ty) ≤ ψ(K(x, y)), for all (x, y) ∈ A1 ×A2,

where K(x, y) is defined as in (1.11).

Then T has a fixed point that belongs to A1 ∩ A2.

Proof First, we observe that (Y, p) is complete since A1 and A2 are closed subsets
of the complete partial metric space (X, p). Define the mapping α : Y×Y → [0,∞)
by

α(x, y) =
{

1 if (x, y) ∈ (A1 ×A2) ∪ (A2 ×A1),

0 otherwise.

Regarding (II) and the definition of α, we find that

α(x, y)p(T x, T y) ≤ ψ(M(x, y)),

for all x, y ∈ Y . Thus T is a (α − ψ)-type K-contraction.
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Let (x, y) ∈ Y × Y such that α(x, y) ≥ 1. If (x, y) ∈ A1 × A2, from (I),
(T x, T y) ∈ A2 ×A1, which yields that α(T x, Ty) ≥ 1. If (x, y) ∈ A2 ×A1, from
(I), (T x, T y) ∈ A1 × A2, which implies that α(T x, Ty) ≥ 1. Consequently, we
have α(T x, Ty) ≥ 1. Hence, we conclude that T is α-admissible.

Moreover, from (I), for any a ∈ A1, we have (a, T a) ∈ A1 × A2, which yields
that α(a, T a) ≥ 1.

Now, let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n→ ∞. On account of the definition of α that

(xn, xn+1) ∈ (A1 × A2) ∪ (A2 × A1), for all n.

Since (A1 × A2) ∪ (A2 × A1) is a closed set with respect to the Euclidean metric,
we get that

(x, x) ∈ (A1 × A2) ∪ (A2 × A1),

which implies that x ∈ A1 ∩ A2. Thus we get immediately from the definition of α
that α(xn, x) ≥ 1 for all n.

Corollary 2 Let {Ai}2
i=1 be nonempty closed subsets of a complete partial metric

space (X, d) and T : Y → Y be a given mapping, where Y = A1 ∪ A2. Suppose
that the following conditions hold:

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;
(II) there exists a function ψ ∈ Ψ such that

p(T x, Ty) ≤ ψ(N(x, y)), for all(x, y) ∈ A1 ×A2,

where K(x, y) is defined as in (1.24).

Then T has a unique fixed point that belongs to A1 ∩ A2.

Proof By following the proof of Theorem 1, we conclude the existence of a fixed
point of T . Now, we shall show the uniqueness of it. Let x, y be distinct fixed point
of T . Keeping (I) in mind, we find that x, y ∈ A1 ∩ A2. Thus, for any z ∈ Y , we
have α(x, z) ≥ 1 and α(y, z) ≥ 1. Hence, the condition (H) is satisfied.

Now, all the hypotheses of Theorem 7 are satisfied. Consequently, we obtain that
T has a unique fixed point that belongs to A1 ∩ A2 (from (I)).

Remark 4 As in the previous section, used techniques in this section can be repeated
for all other results, Theorems 8–21. We avoid to put all these results here, due to
analogy.
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1.2.5 More Consequences in the Frame of Standard Partial
Metric Spaces

By letting α(x, y) = 1 for all x, y ∈ X, in Theorems 3–7, we immediately get the
following fixed point theorems.

Theorem 24 Let (X, p) be a complete partial metric space and T : X → X be a
continuous mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x, T y) ≤ ψ(K(x, y)),

for all x, y ∈ X, where K(x, y) is defined as in (1.11). Then T has a unique fixed
point.

Theorem 25 Let (X, p) be a complete partial metric space and T : X → X be a
continuous mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x, T y) ≤ ψ(N(x, y)),

for all x, y ∈ X, where K(x, y) is defined as in (1.24). Then T has a unique fixed
point.

Theorem 26 Let (X, p) be a complete partial metric space and T : X → X be a
continuous mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x, T y) ≤ ψ(a1p(x, y)+ a2p(x, T x)+ a3p(y, T y)),

for all x, y ∈ X, where 0 ≤ ai, i = 1, 2, 3, and a1 + a2 + a3 < 1. Then T has a
unique fixed point.

Theorem 27 Let (X, p) be a complete partial metric space and T : X → X be a
continuous mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x, T y) ≤ ψ(a1p(x, y)+ a4[p(x, T y)+ p(y, T x)]),

for all x, y ∈ X, where 0 ≤ ai, i = 1, 4, and a1 + 2a4 < 1. Then T has a unique
fixed point.

Theorem 28 Let (X, p) be a complete partial metric space and T : X → X be a
continuous mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x, T y) ≤ ψ (b1p(x, y)+ b2[p(x, T x)+ p(y, T y)]) ,

for all x, y ∈ X, where 0 ≤ bi, i = 1, 2, and b1 + 2b2 < 1. Then T has a unique
fixed point.
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Theorem 29 Let (X, p) be a complete partial metric space and T : X → X be a
continuous mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x, T y) ≤ ψ
( [p(x, T x)+ p(y, T y)]

2

)
,

for all x, y ∈ X. Then T has a unique fixed point.

Theorem 30 Let (X, p) be a complete partial metric space and T : X → X be a
continuous mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x, T y) ≤ ψ
( [p(x, T y)+ p(y, T x)]

2

)
,

for all x, y ∈ X. Then T has a unique fixed point.

Observe that in the following theorems, we do not need to continuity of the
mapping T . Indeed, the contraction criteria necessarily provides the continuity of
T .

Theorem 31 Let (X, p) be a complete partial metric space and T : X → X be a
given mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x, T y) ≤ ψ(p(x, y)]),

for all x, y ∈ X. Then T has a unique fixed point.

Letting ψ(t) = kt with k ∈ [0, 1), we derived the analog of Banach Contraction
Mapping Principle in the setting of partial metric that was proved by Matthew [84,
85]

Theorem 32 Let (X, p) be a complete partial metric space and T : X → X be a
given mapping. Suppose that there exists a k ∈ [0, 1) such that

d(T x, T y) ≤ kp(x, y),

for all x, y ∈ X. Then T has a unique fixed point.

1.3 Fixed Point of Rational Type Contraction Mappings

Definition 14 Let T be a self-mapping defined on a partial metric space (X, p). We
say that T is an (α − ψ)-type R-contraction if there exist mappings α : X × X →
[0,∞) and ψ ∈ � such that

α(x, y)p(T x, T y) ≤ ψ(R(x, y)) for all x, y ∈ X, (1.45)
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where

R(x, y) := a1p(x, y)+ a2p(y, T y)
1 + p(x, T x)
1 + p(x, y) + a3p(y, T x)

1 + p(x, T y)
1 + p(x, y)

+a4p(x, T x)
1 + p(y, T y)
1 + p(x, y) + a5p(x, T y)

1 + p(y, T x)
1 + p(x, y)

(1.46)
where 0 ≤ ai ≤ 1, i = 1, 2, 3, 4, 5, and a1 + a2 + 2a3 + a4 + 2a5 ≤ 1.

Theorem 33 Let (X, p) be a complete partial metric space and let T : X → X be
an (α − ψ)-type R-contraction. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) T is continuous.

Then there exists u ∈ X such that T u = u and p(u, u) = 0.

Proof As in Theorem 3, we construct an iterative sequence, by starting the given
initial conditions at hypothesis (ii) of theorem. More precisely, based on (ii), we
built an iterative sequence {xn} in X by

xn+1 = T xn for all n ≥ 0.

Without loss of generality, we assume that xn �= xn+1 for all n. Indeed, if xn0 =
xn0+1 for some n0, then u = xn0 is a fixed point of T that terminates the proof.

Keeping (ii) in mind again, one can derive the following implications

α(x0, x1) = α(x0, T x0) ≥ 1 ⇒ α(T x0, T x1) = α(x1, x2) ≥ 1,

since T is α-admissible. Recursively, we find that

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . (1.47)

Combining (1.10) and (1.47), it follows, for all n ≥ 1, that

p(xn+1, xn) = p(T xn, T xn−1) ≤ α(xn, xn−1)p(T xn, T xn−1) ≤ ψ(R(xn, xn−1)),

(1.48)
where

R(xn, xn−1)

= a1p(xn, xn−1)+ a2p(xn−1, T xn−1)
1 + p(xn, T xn)
1 + p(xn, xn−1)

+a3p(xn−1, T xn)
1+p(xn,T xn−1)
1+p(xn,xn−1)
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+a4p(xn, T xn)
1 + p(xn−1, T xn−1)

1 + p(xn, xn−1)
+ a5p(xn, T xn−1)

1 + p(xn−1, T xn)

1 + p(xn, xn−1)

= a1p(xn, xn−1)+ a2p(xn−1, xn)
1 + p(xn, xn+1)

1 + p(xn, xn−1)

+a3p(xn−1, xn+1)
1 + p(xn, xn)

1 + p(xn, xn−1)

+a4p(xn, xn+1)
1 + p(xn−1, xn)

1 + p(xn, xn−1)
+ a5p(xn, xn)

1 + p(xn−1, xn+1)

1 + p(xn, xn−1)

≤ a1p(xn, xn−1)+ a2
p(xn−1, xn)+ p(xn−1, xn)p(xn, xn+1)

1 + p(xn, xn−1)

+a3[p(xn−1, xn)+ p(xn, xn+1)] + a4p(xn, xn+1)+ a5p(xn, xn+1)

Before further estimation of R(xn, xn−1), we clarify some steps on the above
evaluation. It is clear that there are no changes on the terms of the coefficients a1 and
a2. For the terms after the coefficient a3, we apply both (p2) and modified triangle
inequality (p4), that is

+a5p(xn, xn)
1 + p(xn−1, xn+1)

1 + p(xn, xn−1)

≤ p(xn−1, xn+1) (by (p2), that is, p(x, x) ≤ p(x, y))
≤ p(xn−1, xn)+ p(xn, xn+1)− p(xn, xn)
≤ p(xn−1, xn)+ p(xn, xn+1).

Finally, we shall examine how to get the expression after the coefficient a5:

p(xn, xn)
1 + p(xn−1, xn+1)

1 + p(xn, xn−1)
≤ p(xn, xn)1 + p(xn−1, xn)+p(xn, xn+1)− p(xn, xn)

1 + p(xn, xn−1)

≤ p(xn, xn)1 + p(xn−1, xn)+ p(xn, xn+1)

1 + p(xn, xn−1)

≤ p(xn, xn)1 + p(xn−1, xn)

1 + p(xn, xn−1)

p(xn, xn+1)

1 + p(xn, xn−1)

≤ p(xn, xn) p(xn, xn+1)

1 + p(xn, xn−1)

= p(xn, xn+1)
p(xn, xn)

1 + p(xn, xn−1)

≤ p(xn, xn+1)
p(xn, xn−1)

1 + p(xn, xn−1)

≤ p(xn, xn+1)

To refine the estimation of R(xn, xn−1), we need to compare the terms p(xn, xn+1)

and p(xn, xn−1). If for some n ≥ 1, we have p(xn, xn−1) ≤ p(xn+1, xn), then we
get
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R(xn, xn−1) ≤ [a1 + 2a3 + a4 + a5]p(xn, xn+1)

+a2
p(xn, xn+1)+ p(xn−1, xn)p(xn, xn+1)

1 + p(xn, xn−1)

= [a1 + 2a3 + a4 + a5]p(xn, xn+1)

+a2
p(xn, xn+1)[1 + p(xn−1, xn)]

1 + p(xn, xn−1)

≤ [a1 + a2 + 2a3 + a4 + a5]p(xn, xn+1)

≤ p(xn, xn+1)

(1.49)

since a1 + a2 + a3 + a4 + a5 ≤ 1.
On account of the inequalities (1.48), (1.49) together with the fact that ψ is

nondecreasing function, we find

p(xn+1, xn) ≤ ψ(R(xn, xn−1)) ≤ ψ(p(xn, xn+1)) < p(xn, xn+1), (1.50)

a contradiction. Thus, for all n ≥ 1, we have

p(xn, xn+1) ≤ p(xn, xn−1). (1.51)

Using (1.48) and (1.51), we get that

p(xn+1, xn) ≤ ψ(p(xn, xn−1)), (1.52)

for all n ≥ 1. By induction, we get

p(xn+1, xn) ≤ ψn(p(x1, x0)), for all n ≥ 1. (1.53)

The rest of the proof is verbatim of the corresponding part in the proof of Theorem 3.
Hence, we omit it the rest.

Theorem 34 Let (X, p) be a complete partial metric space and let T : X → X be
an (α − ψ)-type R-contraction. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) X is regular.

Then there exists u ∈ X such that T u = u and p(u, u) = 0.

Proof As in the lines in the proof of Theorem 33, we construct an iterative sequence,
{xn = T xn−1} for all n ≥ 0, converges for some u ∈ X with p(u, u) = 0. Due to
the condition (iii) of Theorem 34, there exists a subsequence {xn(k)} of {xn} such
that α(xn(k), u) ≥ 1 for all k. Applying (1.45), for all k, we get that

p
(
xn(k)+1, T u

) = p (T xn(k), T u) ≤ α (xn(k), u)p (T xn(k), T u)
≤ ψ (

R(xn(k), u)
)
< R

(
xn(k), u

)
,

(1.54)
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where

R(xn(k), u) = a1p(xn(k), u)+ a2p(u, T u)
1 + p (xn(k), T xn(k))

1 + p (xn(k), u)
+a3p

(
u, T xn(k)

) 1 + p(xn(k), T u)
1 + p(xn(k), u)

+a4p
(
xn(k), T xn(k)

) 1 + p(u, T u)
1 + p(xn(k), u)

+a5p
(
xn(k), T u

) 1 + p (u, T xn(k))
1 + p (xn(k), u)

Letting k → ∞ in the equality (1.54), we get that

p(u, T u) ≤ (a3 + a5)p(u, T u), (1.55)

a contradiction. Hence, we conclude p(u, T u) = 0, that is, u = T u.

As it is expected, we shall consider an additional condition to guarantee the
uniqueness of the fixed point.

Theorem 35 Putting condition (U) to the statements of Theorem 33 (resp. Theo-
rem 34), we find that u is the unique fixed point of T .

Proof Let u,w be two distinct fixed point of T , that is, p(u,w) > 0 and hence
ψ(pu,w)) > 0. Keeping the condition (U) in the mind, we derive that

p(u,w) ≤ α(u,w)p(T u, T w)
≤ ψ(K(u,w)) = ψ(p(u,w))
< p(u,w),

contradiction. Thus, u = w.

1.3.1 Remarks on the Immediate Consequences

As we demonstrate in Sect. 1.2, it is possible get a number of consequence of
Theorems 33–35, by choosing the coefficients ai, i = 1, 2, 3, 4, 5, the functions
ψ and α.

1.4 Common Fixed Point Results

Definition 15 Let (X, p) be a partial metric space and S, T be two self-mappings
on (X, p). A point z ∈ X is said to be common fixed point of S and T , if Sz =
T z = z.
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Let (X, p) be a partial metric space and denote the closure of the set {p(x, y) :
x, y ∈ X} by P and P 3 = P ×P ×P . A function φ : P 3 → R

+ is right continuous
if and only if

(S1) the sequences {an}, {bn}, {cn} decrease and converge to a, b, c ∈ P , respec-
tively, then

φ(an, bn, cn)→ φ(a, b, c).

The function φ is called symmetric if and only if

φ(a, b, c) = φ(b, a, c), for all (a, b, c) ∈ P 3.

In the spirit of Sehgal [118] we state the following definition for partial metric
spaces.

Definition 16 Let (X, p) be a partial metric space and S, T : X → X be two
mappings. The pair (S, T ) is said to satisfy Sehgal k-condition if and only if there
are maps IS : S × X → Z

+ and IT : T × X → Z
+ such that if r(x) = IS(S, x)

and q(x) = IT (T , x), then

p(Sr(x)x, T q(y)y) ≤ kφ(p(Sr(x)x, x), p(y, T q(y)y), p(x, y)) (1.56)

for all x, y ∈ X, where k ∈ R and φ is a symmetric right continuous. If 0 ≤ k < 1,
then we say that (S, T ) satisfy Sehgal contraction condition.

The following theorem extends the results of [118].

Theorem 36 Let (X, p) be a complete partial metric space. Suppose S, T : X →
X two mappings such that the pair (S, T ) satisfies Sehgal contraction.

(A) If φ(a, b, c) ≤ max{a, b, c}, for (a, b, c) ∈ P 3, then S and T have a unique
common fixed point in X, that is, Sr(z)z = T q(z)z = z.

Proof Let x0 ∈ X. Define the sequence {xn}∞n=1 in a way that x2 = T q(x1)x1 and
x1 = Sr(x0)x0 and inductively

x2n+2 = T q(x2n+1)x2n+1 and x2n+1 = Sr(x2n)x2n for n = 0, 1, 2, . . . .

If n is odd, due to (1.56), we have

p(xn+1, xn+2) = p(T xn, Sxn+1) ≤ kφ(p(xn, xn+1), p(xn+1, xn+2), p(xn, xn+1))

(1.57)
Regarding the assumption of (A),

p(xn+1, xn+2) = p(T xn, Sxn+1) ≤ kmax{p(xn, xn+1), p(xn+1, xn+2)} (1.58)
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If max{p(xn, xn+1), p(xn+1, xn+2)} = p(xn+1, xn+2) then the expression (1.58)
turns into

p(xn+1, xn+2) ≤ kp(xn+1, xn+2).

Since k < 1, this is impossible. Thus, we have

p(xn+1, xn+2) ≤ kp(xn, xn+1). (1.59)

If n is even, analogously we observe that p(xn+1, xn+2) ≤ kp(xn, xn+1). Observe
that {p(xn, xn+1)} is a non-negative, non-increasing sequence of reals. Regard-
ing (1.59) one can observe that

p(xn, xn+1) ≤ knp(x0, x1), ∀n = 0, 1, 2, . . . (1.60)

Letting n→ ∞, the right-hand side of (1.60) tends to zero.
Consider now

dp(xn+1, xn+2) = 2p(xn+1, xn+2)− p(xn+1, xn+1)− p(xn+2, xn+2)

≤ 2p(xn+1, xn+2)

≤ 2kn+1p(x0, x1). (1.61)

Hence, regarding (1.60), we have limn→∞ dp(xn+1, xn+2) = 0. Moreover,

dp(xn+1, xn+s ) ≤ dp(xn+s−1, xn+s )+ · · · + dp(xn+1, xn+2)

≤ 2kn+sp(x0, x1)+ · · · + 2kn+1p(x0, x1) (1.62)

which implies that {xn} is a Cauchy sequence in (X, dp) that is, dp(xn, xm) → 0.
Since (X, p) is complete, by Lemma 1, (X, dp) is complete and the sequence {xn}
is convergent in (X, dp), say z ∈ X.

By Lemma 1,

p(z, z) = lim
n→∞p(xn, z) = lim

n,m→∞p(xn, xm) (1.63)

Since {xn} is a Cauchy sequence in (X, dp), we have limn,m→∞ dp(xn, xm) = 0.
Since

max{p(xn, xn), p(xn+1, xn+1)} ≤ p(xn, xn+1) (1.64)

then by (1.60), it implies that

max{p(xn, xn), p(xn+1, xn+1)} ≤ kn+1p(x0, x1) (1.65)
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Thus from (1.60) and (1.65) the definition of dp we have limn,m→∞ p(xn, xm) = 0.
Therefore from (1.63) we have

p(z, z) = lim
n→∞p(xn, z) = lim

n,m→∞p(xn, xm) = 0. (1.66)

We assert that T q(z)z = z. Assume T q(z)z �= z, then p(z, T q(z)z) > 0. Let {x2n(i)}
be subsequence of {x2n} and hence {xn}. Due to (p4), we have

p(Sx2n(i), T
q(z)z) = p(Sx2n(i), T

q(z)z)

≤ kφ(p(x2n(i), x2n(i)+1), p(T
q(z)z, z), p(x2n(i), z) (1.67)

Letting n → ∞ and taking the assumption of (A) and (1.66) into account, we get
that

p(z, T q(z)z) ≤ kφ(0, p(T q(z)z, z), 0) ≤ kp(T q(z)z, z) (1.68)

Since k < 1, then p(T q(z)z, z) = 0. By Lemma 3, we get T q(z)z = z. By
considering the subsequence {x2n(i)+1} of {x2n+1}, we obtain that Sr(z)z = z.

Assume now there exists w ∈ X such that Sr(w) = T q(w)w = w. By (PM3)

p(z, z) ≤ p(z,w) and p(w,w) ≤ p(z,w) (1.69)

Regarding that the function φ satisfies the condition of (A) with (1.69), we get

p(z,w) = p(Sr(z)z, T q(w)w) ≤ kφ(p(z, Sr(z)z), p(T q(w)w,w), p(z,w))
≤ kφ(p(z, z), p(w,w), p(z,w))
≤ kp(z,w)

Since k < 1, it yields a contradiction.
Thus, p(z,w) = 0 and by Lemma 3 we have z = w.

Corollary 3 Let (X, p) be a complete partial metric space. Suppose IT and IS are
defined as above. S, T : X → X two mappings such that the pair (S, T ) satisfies
one of the following condition:

(A) p(Sr(x)x, T q(y)y) ≤ kmax{p(Sr(x)x, x), p(y, T q(y)y), p(x, y)} for some
0 ≤ k < 1,

(B) p(Sr(x)x, T q(y)y) ≤ αp(Sr(x)x, x) + βp(y, T q(y)y) + γp(x, y) for some
non-negative reals α, β, γ with α + β + γ < 1.

Then S and T have a unique common fixed point inX, that is, Sr(z)z = T q(z)z = z.
Proof For (A), we choose a function φ(a, b, c) = max{a, b, c} as in Theorem 36.
In case of (B), set k = α + β + γ . Then (A) implies (B).

Notice that this corollary generalizes also some results in [31–34].
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Corollary 4 Let (X, p) be a complete partial metric space. S, T : X → X two
mappings such that the pair (S, T ) satisfies the following condition:

p(Srx, T qy) ≤ kφ(p(Srx, x), p(y, T qy), p(x, y)) (1.70)

for all x, y ∈ X where 0 ≤ k < 1 and φ is symmetric right-continuous. If
φ(a, b, c) ≤ max{a, b, c}, then S and T have a unique common fixed point theorem.

Proof By Theorem 36, by taking the maps IT , IS as a constant, we get that Sr and
T q have a unique common fixed point, say z ∈ X. Now consider

Sq(Sz) = Sq+1z = S(Sqz) = Sz

which says that Sz is a fixed point of Sq . Since z is the unique fixed point of Sq ,
then Sz = z. Analogously, one can get T z = z.
Corollary 5 Let (X, p) be a complete partial metric space. S, T : X → X two
mappings such that the pair (S, T ) satisfies the following condition:

p(Srx, T qy) ≤ kmax{p(Srx, x), p(y, T qy), p(x, y)} (1.71)

for all x, y ∈ X where 0 ≤ k < 1 and φ is symmetric right-continuous. If
φ(a, b, c) ≤ max{a, b, c}, then S and T have a unique common fixed point theorem.

Corollary 6 Let (X, p) be a complete partial metric space. S, T : X → X two
mappings such that the pair (S, T ) satisfies the following condition:

p(Srx, T qy) ≤ αp(Srx, x)+ βp(y, T qy)+ γp(x, y) (1.72)

for all x, y ∈ X where for some non-negative reals α, β, γ with α + β + γ < 1.
0 ≤ k < 1 and φ is symmetric right-continuous. If φ(a, b, c) ≤ max{a, b, c}, then
S and T have a unique common fixed point theorem.

Remark 5 Consider Corollary 6 and take S = T .

1. If we set r = q in (1.72), then we get Reich type fixed point theorem (see, e.g.,
[12, 104]).

2. If we set r = q = 1 and γ = 0 in (1.72), we get Kannan type fixed point theorem
(see, e.g., [12, 65])

3. If we set r = q = 1 and α = β = 0 in (1.72), we get Banach type fixed point
theorem (see, e.g., [12, 27, 85, 92] also [31–34])

Example 4 Let X = [0, 1] and p(x, y) = max{x, y}. It is clear that (X, p) is
a partial metric spaces but not a metric. Suppose Sx = T x = x

2 and IS, IT are
constant mappings, such as r(x) = 2 = q(y). Take φ(a, b, c) = 1

3 [a + b + c]. Let
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p(x, y) = max{x, y} for all x, y ∈ X. For k3 the condition of Corollary 4 is satisfied.
Clearly, 0 is the common fixed point of S, T .

Example 5 Let X = [1, 15] and p(x, y) = max{x, y}. Here (X, p) is a complete

metric spaces. Define the self-mappings S, T : X → X as T x = x2

1+x and

Sx =
{

x
1+x if 1 < x ≤ 15

0 if 0 ≤ x ≤ 1
. Set φ(a, b, c) = 19

20 max{x, y}. Without loss of

generality, assume y < x. Thus, p(T x, x) = x, p(x, y) = x, p(Sy, y) = y

and p(T x, Sy) = x2

1+x . Clearly, p(T x, Sy) = x2

1+x ≤ φ(x, y, x) = 19
20x. Hence,

it satisfies the conditions of Corollary 1.71 for r = 1 and q = 1, and 0 is the unique
common fixed point of S and T .

1.4.1 Further Common Fixed Point Results

Let (X, p) be a partial metric space. Mappings S, T : X → X are called generalized
(α − ψ)-contractive pair, if there exist ψ ∈ � and α : X ×X → [0,∞) such that

α(x, y)p(T x, Sy) ≤ ψ(CS,T (x, y)) (1.73)

for any x, y ∈ X, where

CS,T (x, y) = a1p(x, y)+ a2p(T x, x)+ a3p(Sy, y)+ a4

2
[p(T x, y)+ p(Sy, x)]

(1.74)
with 0 ≤ ai ≤ 1, i = 1, 2, 3, 4, and a1 + a2 + a3 + 2a4 ≤ 1.

Theorem 37 Let (X, p) be a complete partial metric space and S, T : X → X be
generalized (α − ψ)-contractive pair. Suppose that

(i) (S, T ) is a generalized α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1 ;

(iii) α(T Sx, Sx) ≥ 1 for all x ∈ X;
(iv) S and T are continuous on (X, p).

Then there exists u ∈ X such that

p(u, T u) = p(T u, T u), p(u, Su) = p(Su, Su) and p(u, u) = 0. (1.75)

Assume in addition that

(v) α(z,w) ≥ 1 for all z,w ∈ C (S, T ), where C (S, T ) denotes the set of common
fixed points of S and T .

Then, u is a common fixed point of S and T , that is, u = T u = Su.
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Proof By assumption (ii), there exists a point x0 ∈ X such that α(x0, Sx0) ≥ 1.
Take x1 = Sx0 and x2 = T x1. By induction, we construct a sequence (xn) such that

x2n = T x2n−1 and x2n+1 = Sx2n ∀ n = 1, 2, . . . (1.76)

We have α(x0, x1) ≥ 1 and since (T , S) is a generalized α-admissible pair, so

α(x1, x2) = α(Sx0, T x1) ≥ 1 and

α(x2, x3) = α(T x1, Sx2) = α(T Sx0, ST x1) ≥ 1.

Similar to above, we obtain

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . . (1.77)

On the other hand, by (iii), we have

α(x2, x1) = α(T Sx0, Sx0) ≥ 1.

Applying again (iii)

α(x4, x3) = α(T Sx2, Sx2) ≥ 1.

Continuing the same process, we obtain

α(x2n, x2n−1) ≥ 1 for all n = 1, 2, . . . (1.78)

We claim that (xn) is a Cauchy sequence in (X, p). If k is odd, due to (1.73), we
have such that

p(xk+1, xk+2) ≤ α(xk+1, xk+2)p(T xk, Sxk+1) ≤ ψ(CS,T (xk, xk+1)) (1.79)

for any x, y ∈ X, where

CS,T (xk, xk+1) = a1p(xk, xk+1)+ a2p(T xk, xk)+ a3p(Sxk+1, xk+1)

+ a4

2
[p(T xk, xk+1)+ p(Sxk+1, xk)] (1.80)

with 0 ≤ ai ≤ 1, i = 1, 2, 3, 4, and a1 + a2 + a3 + 2a4 ≤ 1.
On account of modified triangle inequality (p4), we have

p(xk+1, xk+1)+ p(xk+2, xk) ≤ p(xk+2, xk+1)+ p(xk+1, xk). (1.81)

Thus, (1.80) turns into
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CS,T (xk, xk+1) = a1p(xk, xk+1)+ a2p(xk+1, xk)+ a3p(xk+2, xk+1),
a4
2 [p(xk+2, xk+1)+ p(xk+1, xk)]} (1.82)

If p(xk+1, xk) ≤ p(xk+2, xk+1), then (1.79) turns into

p(xk+1, xk+2) = p(T xk, Sxk+1) ≤ ψ(CS,T (xk, xk+1))

≤ ψ([a1 + a2 + a3 + 2a4]p(xk+1, xk+2))

≤ ψ(p(xk+1, xk+2)) since [a1 + a2 + a3 + 2a4] ≤ 1
< p(xk+1, xk+2) since φ(t) < t,

(1.83)

which is a contradiction.
Hence, we derive, from the inequality (1.79), that

p(xk+1, xk+2) ≤ ψ([a1+a2+a3+2a4]p(xk, xk+1))ψ(p(xk, xk+1)) < p(xk, xk+1).

(1.84)
Analogously, for the case k is even, we find that

p(xk+2, xk+1) ≤ ψ([a1 + a2 + a3 + 2a4]p(xk+1, xk)) ≤ ψ(p(xk+1, xk))

< p(xk+1, xk). (1.85)

We get that {p(xk, xk+1)} is a non-negative, decreasing sequence of reals. Regarding
(1.84) and (1.85) one gets

p(xk, xk+1) ≤ ψk(p(x0, x1)), ∀k = 0, 1, 2, . . . (1.86)

Following the related steps in the proof of Theorem 3, we conclude that the sequence
converges to u ∈ X with

p(u, u) = lim
k→∞p(xk, u) = lim

k,m→∞p(xk, xm) = 0. (1.87)

We shall show that T u = u. Since T is continuous, by Definition 4, we conclude
from (1.87) that

lim
k→∞p(x2k, T u) = lim

n→∞p(T x2k−1, T u) = 0. (1.88)

By Lemma 3, we get T u = u.
In a similar way, due to the continuity of S, we conclude from (1.87) that

lim
k→∞p(x2k+1, Su) = lim

n→∞p(Sx2k, Su) = 0. (1.89)

Hence, we conclude that T u = Su = u.
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As a last step, we shall show the uniqueness of the obtained common fixed point
of S and T . Suppose, on the contrary, that S and T have distinct common fixed
points u and w. On account of the condition (v), we have

p(u,w) = p(T uz, Sw) ≤ α(u,w)p(T u, Sw) ≤ ψ(CS,T (u,w)) (1.90)

where

CS,T (u,w) = a1p(u,w)+ a2p(T u, u)+ a3p(Sw,w)

+ a4

2
[p(T u,w)+ p(Sw, u)]

= a1p(u,w)+ a4

2
[p(u,w) + p(w, u)]

= (a1 + 2a4)p(w, u). (1.91)

Hence, the inequality (1.90) yields that

p(u,w) = p(T u, Sw) ≤ α(u,w)p(T u, Sw) ≤ ψ(CS,T (u,w))
≤ ψ((a1 + 2a4)p(w, u)) ≤ ψ(p(u,w)) < p(u,w). (1.92)

Hence, by Lemma 3, we get w = u.

Example 6 Let X = [0, 1] and p(x, y) = max{x, y} then (X, p) is a complete
partial metric space. Clearly, p is not a metric. Suppose S, T : X → X such that
Sx = T x = x

3 and ψ(t) = t
2 . Without loss of generality assume x ≥ y. Then

p(T x, Sy) = max
{x

3
,
y

3

}
= x

3
(1.93)

≤ 1

2
CS,T (x, y). (1.94)

where

CS,T (x, y) = a1x + a2x + a3y + a4

2

[
x + max

{
y,
x

3

}]
≤ [a1 + a2 + a3 + 2a4]x

Thus, the inequality (1.93) turns into

p(T x, Sy) = x

3
≤ 1

2
[a1 + a2 + a3 + 2a4]x ≤ x

2

for all x ∈ X. Hence, all conditions of the Theorem 37 are satisfied. Indeed, 0 is the
common fixed point of S, T .

Proposition 1 Let (X, p) be a complete partial metric space and S, T : X → X

be two self-mappings. Suppose there exists ψ ∈ Ψ and α : X × X → [0,∞) such



38 E. Karapınar et al.

that

α(x, y)p(T x, Sy) ≤ ψ(CSn,T m(x, y)) (1.95)

for any x, y ∈ X and some positive integers m,n, where

CSn,T m(x, y) = a1p(x, y)+ a2p(T
mx, x)+ a3p(S

ny, y)

+ a4

2

[
p(T mx, y)+ p(Sny, x)] (1.96)

with 0 ≤ ai ≤ 1, i = 1, 2, 3, 4, and a1 + a2 + a3 + 2a4 ≤ 1. Suppose also that

(i) (S, T ) is a generalized α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iii) α(T Sx, Sx) ≥ 1 for all x ∈ X;
(iv) S and T are continuous on (X, p).

Then there exists u ∈ X such that

p(u, T u) = p(T u, T u), p(u, Su) = p(Su, Su) and p(u, u) = 0. (1.97)

We, also, assume that

(v) α(z,w) ≥ 1 for all z,w ∈ C (Sn, T m), where C (Sn, T m) denotes the set of
common fixed points of S and T .

Then, u is a common fixed point of Sn and T m, that is, u = T mu = Snu.

Proof The proof is verbatim of the proof of Theorem 37 except the construction of
the sequence. Here, we define a sequence {xn}∞n=1 in a way that x2 = T mx1 and
x1 = Snx0 and inductively

x2k+2 = T mx2k+1 and x2k+1 = Snx2k for k = 0, 1, 2, . . . .

The rest is verbatim.

The following theorem is a generalization of a common fixed point theorem that
requires no commuting criteria (see, e.g., [26]).

Theorem 38 Assume in addition to Proposition 1

(v) α(T u, u) ≥ 1 and α(Su, u) ≥ 1 for all u ∈ C (Sn, T m).

Then, u is a common fixed point of S and T , that is, u = T mu = Snu.

Proof Note that Proposition 1 yields that

T mu = Snu = u. (1.98)
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We shall indicate that u is a common fixed point of S and T . Suppose, on the
contrary, that p(T u, u) > 0 and p(Su, u) > 0. By (1.95) and (1.98),

p(T u, u) ≤ α(T u, u)p(T u, u) = α(T u, u)p(T T mu, Snu)
= p(T mT u, Snu) ≤ ψ(CSn,T m(T u, u)) (1.99)

where

CSn,T m(T u, u) = a1p(T u, u)+ a2p(T
mT u, T u)+ a3p(S

nu, u)

+ a4

2

[
p(T mT u, u)+ p(Snu, T u)]

= a1p(T u, u)+ a2p(T u, T u)+ a3p(u, u)

+ a4

2
[p(T u, u)+ p(u, T u)]

≤ [a1 + a2 + a4]p(T u, u), dueto (p2). (1.100)

Hence, the expression (1.99) turns into

p(T u, u) ≤ ψ([a1 + a2 + a4]p(T u, u)) ≤ ψ(p(T u, u)) < p(T u, u)

which is a contradiction. Hence, we have p(T u, u) = 0 and by Lemma 3, we get
T u = u. Analogously, one can obtain Su = u. Hence, T u = Su = u.

For the uniqueness of the common fixed point u, assume the contrary. Suppose
w is another common fixed point of S and T . Then,

p(u,w) ≤ α(u,w)p(u,w) = α(u,w)p(T mu, Snw) ≤ ψ(CSn,T m(u,w)),
(1.101)

where, by the help of (p3),

CSn,T m(u,w) = a1p(u,w) + a2p(T
mu, u)+ a3p(S

nw,w)

+ a4

2

[
p(T mu,w)+ p(Snw, u)]

= a1p(u,w) + a2p(u, u)+ a3p(w,w) + a4
1

2
[p(u,w)+ p(w, u)]

= [a1 + a4]p(u,w) (1.102)

Therefore p(u,w) ≤ ψ([a1 + a4]p(u,w)) ≤ ψ(p(u,w)) < p(u,w), a
contradiction. Hence, we have p(u,w) = 0 which yields u = w by Lemma 3.
Hence, u is a unique common fixed point of S and T .
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As we discussed in Sect. 1.2, we are able to derive further results from Theo-
rems 37 and 38, by selecting the auxiliary functions α,ψ in a proper way, as well as
the coefficients a1, a2, a3, a4.

1.4.2 Immediate Consequences

The results given in this section can be considered just immediate consequence of
Theorem 37 by choosing the coefficients ai, i = 1, 2, 3, 4 in a proper way.

Theorem 39 Let (X, p) be a complete partial metric space and S, T : X → X be
given mapping. Suppose that there exists ψ ∈ Ψ and α : X × X → [0,∞) such
that

α(x, y)p(T x, Sy) ≤ ψ(a1p(x, y)+ a2p(T x, x)+ a3p(Sy, y)) (1.103)

for any x, y ∈ X, where 0 ≤ ai ≤ 1, i = 1, 2, 3, and a1 + a2 + a3 ≤ 1. Suppose
also that

(i) (S, T ) is a generalized α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1 ;

(iii) α(T Sx, Sx) ≥ 1 for all x ∈ X;
(iv) S and T are continuous on (X, p).

Then there exists u ∈ X such that

p(u, T u) = p(T u, T u), p(u, Su) = p(Su, Su) and p(u, u) = 0. (1.104)

Assume in addition that

(v) α(z,w) ≥ 1 for all z,w ∈ C (S, T ),where C (S, T ) denotes the set of common
fixed points of S and T .

Then, u is a common fixed point of S and T , that is, u = T u = Su.

Theorem 40 Let (X, p) be a complete partial metric space and S, T : X → X be
given mapping. Suppose that there exists ψ ∈ Ψ and α : X × X → [0,∞) such
that

α(x, y)p(T x, Sy) ≤ ψ
(
a1p(x, y)+ a4

2
[p(T x, y)+ p(Sy, x)]

)
(1.105)

for any x, y ∈ X, where 0 ≤ ai ≤ 1, i = 1, 4, and a1 + 2a4 ≤ 1. Suppose also
that

(i) (S, T ) is a generalized α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iii) α(T Sx, Sx) ≥ 1 for all x ∈ X;
(iv) S and T are continuous on (X, p).
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Then there exists u ∈ X such that

p(u, T u) = p(T u, T u), p(u, Su) = p(Su, Su) and p(u, u) = 0. (1.106)

Assume in addition that

(v) α(z,w) ≥ 1 for all z,w ∈ C (S, T ), where C (S, T ) denotes the set of common
fixed points of S and T .

Then, u is a common fixed point of S and T , that is, u = T u = Su.

Theorem 41 Let (X, p) be a complete partial metric space and S, T : X → X be
given mapping. Suppose that there exists ψ ∈ Ψ and α : X × X → [0,∞) such
that

α(x, y)p(T x, Sy) ≤ ψ(a4

2
[p(T x, y)+ p(Sy, x)]) (1.107)

for any x, y ∈ X, where 0 ≤ 2a4 ≤ 1. Suppose also that

(i) (S, T ) is a generalized α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iii) α(T Sx, Sx) ≥ 1 for all x ∈ X;
(iv) S and T are continuous on (X, p).

Then there exists u ∈ X such that

p(u, T u) = p(T u, T u), p(u, Su) = p(Su, Su) and p(u, u) = 0. (1.108)

Assume in addition that

(v) α(z,w) ≥ 1 for all z,w ∈ C (S, T ),where C (S, T ) denotes the set of common
fixed points of S and T .

Then, u is a common fixed point of S and T , that is, u = T u = Su.

Theorem 42 Let (X, p) be a complete partial metric space and S, T : X → X be
given mapping. Suppose that there exists ψ ∈ Ψ and α : X × X → [0,∞) such
that

α(x, y)p(T x, Sy) ≤ ψ(CS,T (x, y)) (1.109)

for any x, y ∈ X, where

CS,T (x, y) = a1p(x, y)+ a2p(T x, x)+ a3p(Sy, y)+ a4

2
[p(T x, y)+ p(Sy, x)]

(1.110)
with 0 ≤ ai ≤ 1, i = 2, 3 and a2 + a3 ≤ 1. Suppose also that

(i) (S, T ) is a generalized α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;
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(iii) α(T Sx, Sx) ≥ 1 for all x ∈ X;
(iv) S and T are continuous on (X, p).

Then there exists u ∈ X such that

p(u, T u) = p(T u, T u), p(u, Su) = p(Su, Su) and p(u, u) = 0. (1.111)

Assume in addition that

(v) α(z,w) ≥ 1 for all z,w ∈ C (S, T ), where C (S, T ) denotes the set of common
fixed points of S and T .

Then, u is a common fixed point of S and T , that is, u = T u = Su.

1.4.3 Common Fixed Point Results for Four Mappings

Theorem 43 Let (X, p) be a complete partial metric space. Suppose that T , S, F ,
and G are self-mappings on X, and each of F and G is continuous. Suppose also
that T , F and S, G are commuting pairs and that

T (X) ⊂ F(X), S(X) ⊂ G(X). (1.112)

If there exists ψ ∈ Ψ , and m, n in N such that

p(T x, Sy) ≤ ψ(M(x, y)) (1.113)

for any x, y in X where

M(x, y) = a1p(T x,Gx)+ a2p(Sy, Fy)+ 3ap(Gx, Fy)

+ a4

2
[p(T x, Fy)+ p(Sy,Gx)] , (1.114)

where 0 ≤ ai ≤ 1, i = 1, 2, 3, 4, and a1 + a2 + a3 + 2a4 ≤ 1. Then, T , S, F , and
G have a unique common fixed point z in X.

Proof Fix x0 ∈ X. Since T (X) ⊂ F(X) and S(X) ⊂ G(X), we can choose x1, x2
in X such that y1 = Fx1 = T x0 and y2 = Gx2 = Sx1. In general, we can choose
x2n−1, x2n in X such that

y2n−1 = Fx2n−1 = T x2n−2, y2n = Gx2n = Sx2n−1 n = 1, 2, . . . . (1.115)

We claim that the constructive sequence {yn} is a Cauchy sequence. By (1.113)
and (1.115),
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d(y2n+1, y2n+2) = d(Fx2n+1,Gx2n+2) = d(T x2n, Sx2n+1) ≤ ψ(M(x2n, x2n+1)),

(1.116)
where

M(x2n, x2n+1)

= a1p(T x2n,Gx2n)+ a2p(Sx2n+1 + a3Fx2n+1), p(Gx2n, Fx2n+1),

a4

2
[p(T x2n, Fx2n+1)+ p(Sx2n+1,Gx2n)]

}

= a1p(T x2n, Sx2n−1)+ a2p(Sx2n+1, T x2n)+ a3p(Sx2n−1, T x2n),

+ a4

2
[p(T x2n, T x2n)+ p(Sx2n+1, Sx2n−1)]

}

≤ a1p(T x2n, Sx2n−1)+ a2p(Sx2n+1, T x2n)+ a3p(Sx2n−1, T x2n)

+ a4

2
[p(Sx2n−1, T x2n)+ p(T x2n, Sx2n+1)]

(derived from the modified triangle inequality (p4)) (1.117)

But if p(Sx2n+1, T x2n) ≥ p(Sx2n−1, T x2n) then by (1.116)

p(Sx2n+1, T x2n) ≤ ψ(M(x2n, x2n+1))

ψ([a1 + a2 + a3 + 2a4]p(Sx2n+1, T x2n))

≤ ψ([a1 + a2 + a3 + 2a4]p(Sx2n+1, T x2n))

≤ ψ(p(Sx2n+1, T x2n))

< [a1 + a2 + a3 + 2a4]p(Sx2n+1, T x2n),

(1.118)

which is a contradiction. Hence, we have

p(Sx2n+1, T x2n) ≤ ψ(p(Sx2n−1, T x2n) < p(Sx2n+1, T x2n). (1.119)

Analogously, we derive that

p(Sx2n+1, T x2n+2) ≤ ψ(p(Sx2n+1, T x2n)) < p(Sx2n+1, T x2n). (1.120)

Consequently, we get that

p(yn+1, yn) ≤ ψ(p(yn, yn−1)) < p(yn, yn−1) for all n ∈ N.

By routine calculation as in the proof of Theorem 3, we conclude that the
constructed sequence {yn} is Cauchy. Since X is complete, the sequence {yn}
converges to a point z ∈ X. Consequently, the subsequences {T mx2n}, {Snx2n−1},
{Gx2n} and {Fx2n−1} converge to z.
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Regarding that T , F and S, G are commuting pairs and the continuity of
G and F , the sequences {FFx2n−1}, {SFx2n−1} tend to Fz, and the sequences
{GGx2n}, {TGx2n} tend to Gz, as n→ ∞.

Thus,

p(Gz, Fz) = lim
n→∞p(T Gx2n, SFx2n−1) ≤ r lim

n→∞M(Gx2n, Fx2n−1), (1.121)

where

M(Gx2n, Fx2n−1) = a1p(TGx2n,GGx2n)+ a2p(SFx2n−1, FFx2n−1)

+ a3p(GGx2n, FFx2n−1),

a4

2

[
p(TGx2n, FFx2n−1)+ p(GGx2n, S

nFx2n−1)
]
.

(1.122)

Since limn→∞M(Gx2n, Fx2n−1) = p(Gz, Fz), then p(Gz, Fz) ≤
ψ(p(Gz, Fz)) < p(Gz, Fz). It yields thatGz = Fz.

By repeating the same techniques, one can get

T z = Sz = Fz = Gz = z. (1.123)

We shall prove that z is unique. Suppose, on the contrary that, there is another
common fixed pointw �= z of S, T , F,G. Hence, p(z,w) = p(T z, Sw) > 0. Thus,
we have

p(z,w) = p(T z, Sw) ≤ ψ(M(z,w)),

where

M(z,w) = max {p(T z,Gz), p(Sw,Fw), p(Gz, Fw),
1

2
[p(T z, Fw)+ p(Sw,Gz)]

}

= max

{
p(z, z), p(w,w), p(z,w),

1

2
[p(z,w)+ p(w, z)]

}

= p(z,w). (1.124)

SinceM(z,w) = p(z,w),

p(z,w) ≤ ψ(p(z,w)) < p(z,w), (1.125)

a contradiction. Therefore p(z,w) = 0 and by Lemma 3, we have z = w. Hence z
is the unique common fixed point of S, T , F , and G.
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Theorem 44 Let (X, p) be a complete partial metric space. Suppose that T , S, F ,
and G are self-mappings on X, and each of F and G is continuous. Suppose also
that T , F and S, G are commuting pairs and that

T (X) ⊂ F(X), S(X) ⊂ G(X). (1.126)

If there exists k ∈ [0, 1), and m, n in N such that

p(T x, Sy) ≤ kM(x, y) (1.127)

for any x, y in X where

M(x, y) = a1p(T x,Gx)+ a2p(Sy, Fy)+ 3ap(Gx, Fy)

+ a4

2
[p(T x, Fy)+ p(Sy,Gx)] , (1.128)

where 0 ≤ ai ≤ 1, i = 1, 2, 3, 4, and a1 + a2 + a3 + 2a4 ≤ 1. Then, T , S, F , and
G have a unique common fixed point z in X.

Proof It is sufficient to take ψ(t) = kt , where k ∈ [0, 1) in Theorem 43.

Regarding the relation between Theorem 43, one concludes that the following
corollary from the previous theorem.

Corollary 7 Let (X, p) be a complete partial metric space. Suppose that A, B, F ,
and G are self-mappings on X, and each of F and G is continuous. Suppose also
that A, B and S, G are commuting pairs and that

A(X) ⊂ F(X), B(X) ⊂ G(X). (1.129)

If there exists r ∈ [0, 1), and m, n in N such that

p(Amx,Bny) ≤ rM(x, y) (1.130)

for any x, y in X where

M(x, y) = max

{
p(Amx,Gx), p(Bny, Fy), p(Gx, Fy),

1

2

[
p(Amx, Fy)+ p(Bny,Gx)]

}
, (1.131)

then A, B, F , andG have a unique common fixed point z in X.

Proof Due to Theorem 43

Amz = Bnz = Fz = Gz = z. (1.132)
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Indeed, if we follows the proof of the corresponding theorem for T = Am, S = Bn,
we get (1.123) which is equivalent to (1.132). Thus,Am,Bn, F , andG have a unique
common fixed point z in X.

We claim that

Az = Bz = z. (1.133)

By (1.130) and (1.132),

p(Az, z) = p(AAmz,Bnz) = p(AmAz,Bnz) ≤ r lim
n→∞M(Az, z), (1.134)

where

M(Az, z) = max

{
p(AmAz,GAz), p(Bnz, Fz), p(GAz, Fz),

1

2

[
p(AmAz, Fz)+ p(Bnz,GAz)]

}

= max

{
p(AAmz,AGz), p(z, z), p(AGz, z),

1

2

[
p(AAmz, z)+ p(z,AGz)]

}

= max

{
p(Az,Az), 0, p(Az, z),

1

2
[p(Az, z)+ p(z,Az)]

}

= p(Az, z). (1.135)

Hence, (1.134) is equivalent to p(Az, z) ≤ rp(Az, z) which yields that
p(Az, z) = 0, that is, Az = z. Analogously, one can get Bz = z. Thus, we observe

Az = Bz = z. (1.136)

Combining (1.133) and (1.136), we obtainGz = Fz = Az = Bz = z.

1.5 Ekeland Type Fixed Point Results

In this section, due to the relevance of Ekeland’s principle in the literature over
the last decades, the authors believe that extending this principle to the class of
partial metric spaces could be useful for developing various applications (see, e.g.,
[39, 122]). As a consequence of our results, we obtain some fixed point theorems of
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Caristi and Clarke types. These results are collected from the recent paper of Aydi
et al. [24].

Now, we state and prove the following theorem.

Theorem 45 Let (X, p) be a complete partial metric space and φ : X → R
+ be a

lower semi-continuous function. Let ε > 0 and x ∈ X be such that

φ(x) ≤ inf
t∈X φ(t)+ ε and inf

t∈X p(x, t) < 1. (1.137)

Then there exists some point y ∈ X such that

φ(y) ≤ φ(x), (1.138)

p(x, y) ≤ 1, (1.139)

∀ z ∈ X with z �= y, φ(z) > φ(y)− εp(y, z). (1.140)

Proof Let x ∈ X be such that (1.137) holds. Define a sequence {xn} inductively, in
the following way: for n = 1, take x1 := x so that φ(x1) ≤ φ(x) and p(x, x1) =
p(x, x) ≤ 1; for the other terms, assume that xn ∈ X, with φ(xn) ≤ φ(x) and
p(x, xn) ≤ 1, is known and one of the following cases occurs:

(a) φ(xn)− φ(z) < εp(xn, z), for all z �= xn;
(b) there exists z �= xn such that εp(xn, z) ≤ φ(xn)− φ(z).
In case (a), if we take y = xn, then (1.138)–(1.140) hold true trivially, since φ(y) =
φ(xn) ≤ φ(x).

On the other hand, let Sn be the set of all z ∈ X such that case (b) holds. Then
xn+1 ∈ Sn is chosen in a way that

φ(xn+1)− inf
t∈Sn

φ(t) ≤ 1

2

[
φ(xn)− inf

t∈Sn
φ(t)

]
. (1.141)

Consequently, one has

εp(xn, xn+1) ≤ φ(xn)− φ(xn+1), for all n ∈ N (1.142)

and, by using the triangle inequality, one can obtain (for all n ≤ m)

εp(xn, xm)

≤ ε[p(xn, xn+1)+ p(xn+1, xn+2)− p(xn+1, xn+1)]
+ε[p(xn+2, xn+3)+ p(xn+3, xn+4)− p(xn+3, xn+3)] + · · ·
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+ε[p(xm−2, xm−1)+ p(xm−1, xm)− p(xm−1, xm−1)]

≤ ε
m−1∑
k=n

p(xk, xk+1)

≤
m−1∑
k=n
(φ(xk)− φ(xk+1)) (1.143)

= φ(xn)− φ(xm).

By (1.142), the sequence {φ(xn)} is non-increasing in R
+ and bounded below by

zero. Thus, the sequence {φ(xn)} is convergent, which implies that the right-hand
side of (1.143) tends to zero, that is, p(xn, xm) tends to zero as n,m → +∞, so
{xn} is a Cauchy sequence in the complete partial metric space (X, p). By Lemma 1,
{xn} is Cauchy in the metric space (X, dp) (also, it is complete). Then, there exists
y ∈ X such that {xn} is convergent to y in (X, dp). Again by Lemma 1, we get

p(y, y) = lim
n→+∞p(xn, y) = lim

n,m→+∞p(xn, xm). (1.144)

Since lim
n,m→+∞p(xn, xm) = 0, therefore by (1.144) we have p(y, y) = 0.

We claim that y satisfies (1.138)–(1.140).
Due to (1.142), the sequence {φ(xn)} is non-increasing, that is

· · · ≤ φ(xn+1) ≤ φ(xn) ≤ · · · ≤ φ(x1) ≤ φ(x),

then (1.138) holds.
The inequality (1.139) is obtained by taking n = 1 in (1.143) and by

using (1.137). Indeed, we have

εp(x, xm) = εp(x1, xm)

≤ φ(x)− φ(xm)
≤ φ(x)− inf

t∈X φ(t) ≤ ε.

Hence, taking m→ +∞ it follows that p(x, y) ≤ 1.
The inequality (1.140) is observed by the method of reductio ad absurdum.

Assume (1.140) is not true, then there is z ∈ X with z �= y such that

φ(z) ≤ φ(y)− εp(y, z). (1.145)

Since p(y, z) > 0, we have

φ(z) < φ(y). (1.146)
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By (1.143), we get

φ(xm) ≤ φ(xn)− εp(xn, xm), for all n ≤ m.

Then, taking m→ +∞ in above inequality, one can obtain

φ(y) ≤ lim inf
m→+∞ φ(xm) ≤ φ(xn)− εp(xn, y). (1.147)

From (P4), we have

p(xn, z) ≤ p(xn, y)+ p(y, z)− p(y, y) = p(xn, y)+ p(y, z).

Next, using this inequality and (1.145), from (1.147) we get

φ(z) ≤ φ(y)− εp(y, z) ≤ φ(xn)− εp(xn, z),

which implies that z ∈ Sn, for all n ∈ N. Now, note that (1.141) can be written as

2φ(xn+1)− φ(xn) ≤ inf
t∈Sn

φ(t) ≤ φ(z). (1.148)

Therefore, having in mind that {φ(xn)} is a non-increasing sequence in R
+, there

exists L ≥ 0 such that

lim
n→+∞ φ(xn) = L.

Letting n → +∞ in the previous inequality, then we get L ≤ φ(z). On the other
hand, since φ is l.s.c, then we have

φ(y) ≤ lim inf
n→+∞ φ(xn) = L (1.149)

and so we get φ(y) ≤ φ(z), that is a contradiction with respect to (1.146).

Notice that if in Theorem 45 we do not assume that inft∈X p(x, t) < 1, then we
can (only) deduce that there exists y ∈ X such that (1.138) and (1.140) hold true.

Building on Theorem 45, we give the following result.

Theorem 46 Let (X, p) be a complete partial metric space and φ : X → R
+ be a

lower semi-continuous function. Given ε > 0, then there exists y ∈ X such that

φ(y) ≤ inf
t∈X φ(t)+ ε, (1.150)

∀ z ∈ X, φ(z) ≥ φ(y)− εp(y, z). (1.151)
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Proof The proof is clear. Indeed, recalling the fact that there is always some point
x such that φ(x) ≤ inf

t∈Xφ(t) + ε, then (1.150) and (1.151) follow from (1.138)

and (1.140), respectively.

Notice that Theorem 45 is stronger than Theorem 46. Precisely, the main
difference lies in inequality (1.137), which gives the whereabouts of point x in X,
and which has no counterpart in Theorem 46. Thus, Theorem 45 is said to be the
strong statement, and Theorem 46 is said to be the weak statement.

1.5.1 Caristi’s Fixed Point Theorem

The following theorem is an extension of the result of Caristi [42, Theorem 2.1]. We
note that this theorem corresponds to [66, Theorem 5]. Here, we shorten the proof.

Theorem 47 Let (X, p) be a complete partial metric space and let φ : X → R
+

be a lower semi-continuous function. Then any mapping T : X → X satisfying

p(x, T x) ≤ φ(x)− φ(T x), for each x ∈ X (1.152)

has a fixed point in X.

Proof We apply Theorem 46 (for ε = 1
2 ) to the function φ satisfying (1.152) (T ,

verifying (1.152), is called a Caristi mapping on (X, p)). Then, there exists some
point y ∈ X such that

∀t ∈ X, φ(t) ≥ φ(y)− 1

2
p(y, t).

This inequality holds also for t = Ty, therefore

φ(y)− φ(Ty) ≤ 1

2
p(y, T y).

Substituting x = y in the inequality (1.152), one can get

p(y, T y) ≤ φ(y)− φ(Ty).

Comparing the last inequalities, we deduce that

p(y, T y) ≤ 1

2
p(y, T y).

This holds unless p(y, T y) = 0 and so by Lemma 3.1, we have Ty = y, that is, T
has a fixed point.
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1.5.2 Clarke’s Fixed Point Theorem

In 1976, Clarke [48] extended the Banach contraction principle for directional
contractions (see condition (D) of Theorem 48) on closed convex subsets of Banach
spaces.

Theorem 48 Let X be a closed convex subset of a Banach space and let T : X →
X be a continuous mapping satisfying the following condition:

(D) there exists k ∈ (0, 1) such that corresponding to each u ∈ X, there exists
t ∈ (0, 1] for which ‖T (ut )−T (u)‖ ≤ k ‖ut −u‖, where ut = tT (u)+ (1− t)u
describes the line segment from u to T (u) as t runs from 0 to 1.

Then, T has a fixed point in X.

Proof The main difference with the proof of Ekeland [50] is that here the proof is
reposed on considering a partial metric (not a metric). First, we apply Theorem 46
to the functional ϕ : X→ R

+ given by

ϕ(w) = ‖w − T (w)‖ + b,

for all w ∈ X, where b > 0 is arbitrary and 0 < ε < 1 − k. Then, we define the
partial metric p : X ×X→ R

+ by

p(w, z) = ‖w − z‖ + b.

Clearly, p is not a metric since p(w,w) = b > 0. Moreover,

dp(w, z) = 2‖w − z‖

and so (X, p) is a complete partial metric space.
Since T : (X, ‖ · ‖)→ (X, ‖ · ‖) is continuous, then if wn → w in (X, ‖ · ‖), we

have T (wn)→ T (w) in (X, ‖ · ‖).
Note that ϕ(w) = p(w, T (w)). Now, let wn → w in (X, p), then

lim
n→+∞ p(wn,w) = p(w,w).

By definition of the partial metric p, we get that

lim
n→+∞‖wn − w‖ = 0.

Therefore lim
n→+∞‖T (wn)− T (w)‖ = 0. As a consequence, we have

lim
n→+∞‖wn − T (wn)‖ = ‖w − T (w)‖,
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that is,

lim
n→+∞ ϕ(wn) = ϕ(w).

We conclude that ϕ is continuous and so is l.s.c in X. Due to Theorem 46, there
exists some y ∈ X such that

∀w ∈ X, ϕ(w) ≥ ϕ(y)− εp(w, y)

that is,

‖w − T (w)‖ ≥ ‖y − T (y)‖ − ε(‖w − y‖ + b). (1.153)

By condition (D), there exist k ∈ (0, 1) and t ∈ (0, 1] such that

‖T (yt )− T (y)‖ ≤ k ‖yt − y‖ ≤ k t‖y − T (y)‖.

Writing w = yt into the inequality (1.153), we get

‖y − T (y)‖
≤ ‖yt − T (yt )‖ + ε(‖yt − y‖ + b)
≤ ‖yt − T (y)‖ + ‖T (y)− T (yt )‖ + ε(t‖y − T (y)‖ + b)
≤ ‖yt − T (y)‖ + k t‖y − T (y)‖ + ε(t‖y − T (y)‖ + b).

Now, since yt belongs to the line segment [y, T (y)], we have

‖y − T (y)‖ =‖y − yt‖ + ‖yt − T (y)‖
=t‖y − T (y)‖ + ‖yt − T (y)‖.

It follows easily that

t‖y − T (y)‖ ≤ (k + ε) t‖y − T (y)‖ + εb,

for each b > 0. Consequently, letting b→ 0, we derive that

t‖y − T (y)‖ ≤ (k + ε) t‖y − T (y)‖.

Since t > 0, we divide by t to obtain

‖y − T (y)‖ ≤ (k + ε)‖y − T (y)‖,

which holds unless that y = Ty, as k + ε < 1. Therefore, y is a fixed point of T .
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1.6 Nonunique Fixed Point Results

In this section, we prove some non-unique fixed point theorems for certain type of
self-maps in the context of partial metric spaces. In fact, the fixed point theorems
presented here can be considered as a continuation, in part, of the work of Ćirić
[45], that is, the given theorems investigate conditions only for the existence of
fixed points but not uniqueness. Our results generalize, enrich, and improve some
earlier results on the topic in the literature (see, e.g., [3, 45, 69, 93]). We also give
examples that show the advantages of using partial metric spaces instead of metric
spaces in this context. The results of this section are mainly recollected from [73].

Lemma 5 (See [73]) Let (X, p) be a partial metric space. A sequence {xn}n∈N in
X is a Cauchy sequence in (X, p) if and only if it satisfies the following condition:

(∗) for each ε > 0 there is n0 ∈ N such that p(xn, xm) − p(xn, xn) < ε

whenever n0 ≤ n ≤ m.
Proof. We first prove the “if” part. Let {xn}n∈N be a sequence in (X, p)

satisfying (∗). We shall show that then the sequence {p(xn, xn)}n∈N converges for
the Euclidean metric on R

+. Indeed, let ε = 1. Then, by (∗), there is n0 ∈ N such
that p(xn, xn) ≤ p(xn0, xn) < 1+p(xn0, xn0)whenever n ≥ n0. Thus, the sequence
{p(xn, xn)}n∈N is bounded in R

+, so it has a subsequence {p(xnk , xnk )}k∈N that
converges to an a ∈ R

+ for the Euclidean metric. Now choose an ε > 0. Then,
there is k0 ∈ N such that condition (∗) is satisfied whenever m ≥ n ≥ nk0, and
condition

∣∣p(xnk , xnk )− a∣∣ < ε also holds for all k ≥ k0. Take any n ≥ nk0 . Then,
we have

p(xn, xn)− a ≤ p(xn, xnk0 )− a < ε + p(xnk0 , xnk0 )− a < 2ε,

and for k ∈ N with nk ≥ n, we deduce that

a − p(xn, xn) < ε + p(xnk , xnk )− p(xn, xn) < 2ε.

Consequently limn→∞ p(xn, xn) = a. Then, by (∗), it immediately follows
that limn,m→∞ p(xn, xm) = a. We conclude that {xn}n∈N is a Cauchy sequence
in (X, p).

The converse follows from Lemma 1.

For our purposes, we need to recall the following notion

Definition 17 (See e.g. [73] cf. [45]) Let (X, p) be a partial metric space and T a
self-map of X.

1. T is called orbitally continuous if

lim
i,j→∞p(T

ni x, T nj x) = lim
i→∞p(T

ni x, z) = p(z, z), (1.154)
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implies

lim
i,j→∞p(T T

ni x, T T nj x) = lim
i→∞p(T T

ni x, T z) = p(T z, T z), (1.155)

for each x ∈ X.

Equivalently, T is orbitally continuous provided that if T ni x → zwith respect
to τdp , then T ni+1x → T z with respect to τdp , for each x ∈ X.

2. (X, p) is called orbitally complete if every Cauchy sequence of type {T ni x}i∈N
converges with respect to τdp , that is, if there is z ∈ X such that

lim
i,j→∞p(T

ni x, T nj x) = lim
i→∞p(T

ni x, z) = p(z, z). (1.156)

In this section we give some non-unique fixed point theorems for partial metric
spaces and present some examples illustrating our results.

Theorem 49 (See [73]) Let T be an orbitally continuous self-map of a T -orbitally
complete partial metric space (X, p). If there is k ∈ (0, 1) such that

min{p(T x, Ty), p(x, T x), p(y, T y)} − min{dpm(x, T y), dpm(T x, y)}
≤ k(p(x, y)− p(x, x))+ p(y, y), (1.157)

for all x, y ∈ X, then for each x0 ∈ X the sequence {T nx0}n∈ω converges with
respect to τdp to a fixed point of T .

Proof. Take an arbitrary point x0 ∈ X. We define the iterative sequence {xn}n∈ω
as follows:

xn+1 = T xn, n ∈ ω.

If there exists n0 ∈ ω such that xn0 = xn0+1, then xn0 is a fixed point of T . Assume
then that xn �= xn+1 for each n ∈ ω.

Substituting x = xn and y = xn+1 in (1.157) we find the inequality

min{p(xn+1, xn+2), p(xn, xn+1), p(xn+1, xn+2)}
− min{dpm(xn, xn+2), d

p
m(xn+1, xn+1)}

≤ k(p(xn, xn+1)− p(xn, xn))+ p(xn+1, xn+1),

Substituting now x = xn+1 and y = xn in (1.157), we obtain

min{p(xn+2, xn+1), p(xn+1, xn+2), p(xn, xn+1)}
− min{dpm(xn+1, xn+1), d

p
m(xn+2, xn)}

≤ k(p(xn+1, xn)− p(xn+1, xn+1))+ p(xn, xn),
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which imply that

min{p(xn, xn+1), p(xn+1, xn+2)}
≤ k(p(xn, xn+1)− p(xn, xn))+ p(xn+1, xn+1),

(1.158)

and

min{p(xn, xn+1), p(xn+1, xn+2)}
≤ k(p(xn, xn+1)− p(xn+1, xn+1))+ p(xn, xn). (1.159)

Suppose p(xn0 , xn0+1) ≤ p(xn0+1, xn0+2) for some n0 ∈ ω. Then, from the
preceding two inequalities we deduce that

(1 − k)p(xn0, xn0+1) ≤ min{p(xn0+1, xn0+1)− kp(xn0, xn0),

p(xn0 , xn0)− kp(xn0+1, xn0+1)}.

If, for instance, p(xn0+1, xn0+1) ≤ p(xn0, xn0), we have

(1 − k)p(xn0 , xn0+1) ≤ p(xn0+1, xn0+1)− kp(xn0, xn0)

≤ (1 − k)p(xn0+1, xn0+1)

≤ (1 − k)p(xn0, xn0),

so, by using (P2), p(xn0, xn0+1) = p(xn0 , xn0) = p(xn0+1, xn0+1), and hence
xn0 = xn0+1, a contradiction.

Therefore p(xn, xn+1) > p(xn+1, xn+2) for all n ∈ ω.
Hence, by (1.158) we get

p(xn+1, xn+2)− p(xn+1, xn+1) ≤ k(p(xn, xn+1)− p(xn, xn))
≤ k2(p(xn−1, xn)− p(xn−1, xn−1))

≤ . . . ≤ kn+1((p(x0, x1)− p(x0, x0)), (1.160)

for all n ∈ ω.
We shall show that {xn}n∈N is a Cauchy sequence in (X, p). Indeed, let n,m ∈ ω

with n < m. Then, by using (1.160) and (P4), we derive that

p(xn, xm)− p(xn, xn) ≤ p(xn, xn+1)+ · · · + p(xm−1, xm)−
m−1∑
k=n

p(xk, xk)

≤ (kn + · · · + km−1)p(x0, x1).
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Therefore, the sequence {xn}n∈ω satisfies condition (∗) of Lemma 5, so it is a
Cauchy sequence in (X, p). Since xn = T nx0 for all n, and (X, p) is T -orbitally
complete, there is z ∈ X such that xn → z with respect to τdp . By the orbital
continuity of T , we deduce that xn → T z with respect to τdp . Hence z = T z which
concludes the proof.

Corollary 8 ((See [73]) [45, Theorem 1]) Let T be an orbitally continuous self-
map of a T -orbitally complete metric space (X, d). If there is k ∈ (0, 1) such that

min{d(T x, T y), d(x, T x), d(y, T y)} − min{d(x, T y), d(T x, y)}
≤ kd(x, y), (1.161)

for all x, y ∈ X, then for each x0 ∈ X the sequence {T nx0}n∈ω converges to a fixed
point of T .

The following are examples where Theorem 49 can be applied but not Corollary 8
for the metrics dp and dpm, and p0, respectively.

Example 7 (See [73]) Let X = {0, 1, 2} and let p be the partial metric on X given
by p(x, y) = max{x, y} for all x, y ∈ X. Define T : X → X by T 0 = T 1 = 0 and
T 2 = 1. Since (X, p) is complete, then it is T -orbitally complete. Moreover, it is
obvious that T is orbitally continuous. An easy computation shows that

min{p(T x, Ty), p(x, T x), p(y, T y)} − min{dpm(x, T y), dpm(T x, y)}
≤ 1

2 (p(x, y)− p(x, x))+ p(y, y),

for all x, y ∈ X. So the conditions of Theorem 49 are satisfied. However,

min{dp(T 1, T 2), dp(1, T 1), dp(2, T 2)} − min{dp(1, T 2), dp(T 1, 2)}
= 1 − 0 = 1 > k = kdp(1, 2),

for any k ∈ (0, 1), so Corollary 8 cannot be applied to the complete metric space
(X, dp). In fact, it cannot be applied to (X, dpm), because dpm = dp, in this case.

Example 8 (See [73]) Let X = [1,∞) and let p be the partial metric on X given
by p(x, y) = max{x, y} for all x, y ∈ X. Define T : X → X by T x = (x + 1)/2
for all x ∈ X. Since (X, p) is complete, then it is T -orbitally complete. Obviously
T is continuous with respect to τdp , so it is orbitally continuous.

Next we show that T satisfies the contraction condition (1.157) for any k ∈ (0, 1).
We distinguish two cases for x, y ∈ X:
Case 1. x = y. Then

min{p(T x, Ty), p(x, T x), p(y, T y)} − min{dpm(x, T y), dpm(T x, y)}

= min

{
x + 1

2
, x, x

}
−
(
x − x + 1

2

)
= 1

≤ x = p(x, x) = k((p(x, y)− p(x, x))+ p(y, y).
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Case 2. x �= y.We assume without loss of generality that x > y.
If T x ≥ y, we have

min{p(T x, Ty), p(x, T x), p(y, T y)} − min{dpm(x, T y), dpm(T x, y)}

= min

{
x + 1

2
, x, y

}
− min

{
x − y + 1

2
,
x + 1

2
− y

}

= y −
(
x + 1

2
− y

)
= 2y − x + 1

2

≤ y = p(y, y) = k((p(x, y)− p(x, x))+ p(y, y).

If T x < y, we have

min{p(T x, Ty), p(x, T x), p(y, T y)} − min{dpm(x, T y), dpm(T x, y)}

= min

{
x + 1

2
, x, y

}
− min

{
x − y + 1

2
, y − x + 1

2

}

= x + 1

2
−
(
y − x + 1

2

)
= x + 1 − y

< y = p(y, y) = k((p(x, y)− p(x, x))+ p(y, y).

Therefore, the conditions of Theorem 49 are satisfied. In fact T has a (unique) fixed
point, x = 1.

Finally, we show that Corollary 8 cannot be applied to the self-map T and the
complete metric space (X, p0). Indeed, given k ∈ (0, 1), choose x > 1 such that
x + 1 > 2kx, and let y = T x. Then

min{p0(T x, T y), p0(x, T x), p0(y, T y)} − min{p0(x, T y), p0(T x, y)}

= min

{
x + 1

2
, x

}
− min{x, 0} = x + 1

2
> kx = kp0(x, y).

Hence, the contraction condition (1.161) is not satisfied.

Our next result extends [45, Theorem 3] to partial metric spaces.

Theorem 50 (See [73]) Let T be an orbitally continuous self-map of a partial
metric space (X, p). Suppose that T satisfies the inequality

min{p(T x, Ty), p(x, T x), p(y, T y)} − min{dpm(x, T y), dpm(T x, y)}
< p(x, y)− p(x, x)+ p(y, y), (1.162)

for all x, y ∈ X with x �= y. If for some x0 ∈ X the sequence {T nx0}n∈ω has a
cluster point z ∈ X with respect to τdp , then z is a fixed point of T .
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Proof. Let x0 ∈ X be such that the sequence {T nx0}n∈ω has a cluster point z ∈ X
with respect to τdp . Define the iterative sequence {xn}n∈ω as xn+1 = T xn, n ∈ ω.

If there exists n0 ∈ ω such that xn0 = xn0+1, then xn0 is a fixed point of T .
Assume then that xn �= xn+1 for each n ∈ ω.

As in the proof of Theorem 49, substituting x = xn and y = xn+1 in (1.162) we
find the inequality

min{p(xn, xn+1), p(xn+1, xn+2)} < p(xn, xn+1)− p(xn, xn)+ p(xn+1, xn+1),

and substituting x = xn+1 and y = xn in (1.162), we obtain

min{p(xn, xn+1), p(xn+1, xn+2)} < p(xn, xn+1)− p(xn+1, xn+1)+ p(xn, xn).

If p(xn0 , xn0+1) ≤ p(xn0+1, xn0+2) for some n0 ∈ ω, we deduce from the pre-
ceding two inequalities that p(xn0 , xn0) < p(xn0+1, xn0+1) and p(xn0+1, xn0+1) <

p(xn0 , xn0), respectively, a contradiction.

Consequently p(xn, xn+1) > p(xn+1, xn+2) for all n ∈ ω, and thus the
sequence {p(T nx0, T

n+1x0)}n∈ω is convergent. Since {T nx0}n∈ω has a cluster point
z ∈ X with respect to τdp , then there is a subsequence {T ni x0}i∈ω of {T nx0}n∈ω
which converges to z with respect to τdp . By the orbital continuity of T we have
T ni+1x0 → T z with respect to τdp, so we have

lim
i→∞p(T

ni x0, T
ni+1x0) = p(z, T z). (1.163)

Therefore

lim
n→∞p(T

nx0, T
n+1x0) = p(z, T z). (1.164)

Again, by the orbital continuity of T we have T ni+2x0 → T 2z with respect to
τdp and hence

lim
n→∞p(T

n+1x0, T
n+2x0) = p(T z, T 2z),

so

p(T z, T 2z) = p(z, T z). (1.165)

Assume T z �= z, that is, p(z, T z) > 0. So, one can replace x and y with z and
T z, respectively, in (1.162) to deduce that

min{p(z, T z), p(T z, T 2z)} < p(z, T z),

which yields that p(T z, T 2z) < p(z, T z). This contradicts the equality (1.165).
Thus, T z = z. The proof is complete.
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Motivated by Ćirić’s theorems [45], Pachpatte proved in [93, Theorem 1] that if
T is an orbitally continuous self-map of a T -orbitally complete metric space (X, d)
such that there is k ∈ (0, 1) with

min{[d(T x, T x)]2, d(x, y)d(T x, T y), [d(Ty, y)]2}
− min{d(x, T x)d(y, T y), d(x, T y)d(y, T x)}

≤ kd(x, T x)d(Ty, y) (1.166)

for all x, y ∈ X, then for each x0 ∈ X the sequence {T nx0}n∈ω converges to a fixed
point of T .

However, Pachpatte’s theorem has a very limited field of application since under
its conditions, if we denote by z any fixed point of T , it follows that for each y ∈ X,
Ty = z or Ty = y. Indeed, let y �= z and suppose Ty �= z. Then from

min{[d(T z, T y)]2, d(z, y)d(T z, T y), [d(y, T y)]2}
−min{d(z, T z)d(y, T y), d(z, T y)d(y, T z)}

≤ kd(z, T z)d(y, T y),

it follows

min{[d(z, T y)]2, d(z, y)d(z, T y), [d(y, T y)]2} = 0.

Hence d(y, T y) = 0, i.e., y = Ty.
In our next result we modify the contraction condition (1.166) and thus obtain a

new fixed point theorem that avoids the inconvenience indicated above. In fact, this
will be done in the more general setting of partial metric spaces and, to this end,
the following notation will be used: If p is a partial metric on a set X we denote by
p′ the function defined on X×X by p′(x, y) = p(x, y)− p(x, x) for all x, y ∈ X.
(Of course, p′ = p whenever p is a metric on X.)

Theorem 51 (See [73]) Let T be an orbitally continuous self-map of a T -orbitally
complete partial metric space (X, p). If there is k ∈ (0, 1) such that

min{[p′(x, T x)]2, p′(x, y)p′(T x, T y), [p′(y, T y)]2}
−min{dpm(x, T x)dpm(y, T y), dpm(x, T y)dpm(y, T x)}

≤ kmin{p′(x, T x)p′(y, T y), [p′(x, y)]2},
(1.167)

for all x, y ∈ X, then for each x0 ∈ X the sequence {T nx0}n∈ω converges with
respect to τdp to a fixed point of T .

Proof. As in the proof of Theorem 49, take an arbitrary point x0 ∈ X and define
the iterative sequence {xn}n∈ω as xn+1 = T xn, n ∈ ω.
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If there exists n0 ∈ ω such that xn0 = xn0+1, then xn0 is a fixed point of T .
Assume then that xn �= xn+1 for each n ∈ ω.

Substituting x = xn and y = xn+1 in (1.167) we find the inequality

min{[p′(xn, xn+1)]2, p′(xn, xn+1)p
′(xn+1, xn+2), [p′(xn+1, xn+2)]2}

≤ kmin{p′(xn, xn+1)p
′(xn+1, xn+2), [p′(xn, xn+1)]2}. (1.168)

By (1.168) we deduce that

min{[p′(xn, xn+1)]2, p′(xn, xn+1)p
′(xn+1, xn+2), [p′(xn+1, xn+2)]2}

= [p′(xn+1, xn+2)]2,

and hence

p′(xn+1, xn+2) ≤ kp′(xn, xn+1),

for all n ∈ ω. Therefore

p(xn, xn+1)− p(xn, xn) ≤ kn(p(x0, x1)− p(x0, x0)),

for all n ∈ N. As in the proof of Theorem 49, we deduce that the sequence {xn}n∈ω
is Cauchy in (X, p). Since xn = T nx0 for all n, and (X, p) is T -orbitally complete,
there is z ∈ X such that xn → z with respect to τdp . By the orbital continuity of T ,
we deduce that xn → T z with respect to τdp . Hence z = T z which concludes the
proof.

Corollary 9 (See [73]) Let T be an orbitally continuous self-map of a T -orbitally
complete metric space (X, d). If there is k ∈ (0, 1) such that

min{[d(x, T x)]2, d(x, y)d(T x, T y), [d(y, T y)]2}
− min{d(x, T x)d(y, T y), d(x, T y)d(y, T x)}

≤ kmin{d(x, T x)d(y, T y), [d(x, y)]2}, (1.169)

for all x, y ∈ X, then for each x0 ∈ X the sequence {T nx0}n∈ω converges to a fixed
point of T .

Remark 6 Note that if (X, p) is the complete partial metric space of Example 1,
then each orbitally continuous self-map T of X such that T x ≤ x for all x ∈ X
has a fixed point. Indeed, for such a T we have p′(x, T x) = 0 for all x ∈ X, so
condition (1.167) in Theorem 51 is trivially satisfied.

The following is an example where Theorem 51 can be applied but not
Corollary 9 for any of the metrics dp, d

p
m, and p0.
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Example 9 (See [73]) Let (X, p) be the partial metric space of Example 1. Define
T : X → X by T x = x − 1 if x ≥ 2 and T x = 0 if x < 1. Then T is orbitally
continuous because for each x ∈ X one has T nx → 0 with respect to τdp , and
T 0 = 0.Moreover, by Remark 6 the contraction condition (1.167) is also satisfied,
and thus all the conditions of Theorem 51 hold.

Now take x ≥ 3 and y = T x. Then x − y = 1, and y ≥ 2. Hence

min{[dp(x, T x)]2, dp(x, y)dp(T x, T y), [dp(y, T y)]2}
− min{dp(x, T x)dp(y, T y), dp(x, T y)dp(y, T x)}

= min{1, (x − y)2, 1} − 0 = 1

= min{dp(x, T x)dp(y, T y), [dp(x, y)]2}.

Therefore, condition (1.169) is not satisfied for any k ∈ (0, 1), so we cannot apply
Corollary 9 to (X, dp) (and thus to (X, dpm) and the self-map T .

Finally, given k ∈ (0, 1), choose x ≥ 3 with x > 1/(1 − k), and y = T x. Then

min{[p0(x, T x)]2, p0(x, y)p0(T x, T y), [p0(y, T y)]2}
− min{p0(x, T x)p0(y, T y), p0(x, T y)p0(y, T x)}

= min{x2, x(x − 1), (x − 1)2} − 0 = (x − 1)2 > kx(x − 1)

= kmin{p0(x, T x)p0(y, T y), [p0(x, y)]2}.

Therefore, we cannot apply Corollary 9 to (X, p0) and the self-map T (note that, in
fact, T is orbitally continuous for (X, p0)).
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Chapter 2
Fixed Point Results for Mixed
Multivalued Mappings of Feng-Liu Type
on Mb-Metric Spaces

Hakan Şahin, Ishak Altun, and Duran Türkoğlu

2.1 Introduction and Preliminaries

Let (X, d) be a metric space. We denote that C(X) is the family of all nonempty
closed subsets of X, CB(X) is the family of all nonempty closed and bounded
subsets of X. Pompeiu-Hausdorff metric is defined on CB(X) as follows; for all
A,B ∈ CB(X)

H(A,B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d(A, y)

}

(see [6]). Now, let T : X → CB(X). If there exists λ ∈ (0, 1) such that
H(T x, Ty) ≤ λd(x, y) for all x, y ∈ X, then T is called multivalued contraction.
In 1969, Nadler [13] who is the first person to think fixed point result for multivalued
mapping on metric space showed that if (X, d) is a complete metric space and T is a
multivalued contraction mapping, then T has a fixed point. That is, there exist z ∈ X
such that z ∈ T z. After Nadler, many researchers have improved fixed point theory
for multivalued mappings (see, for example, [3, 5, 7, 9, 14]). In a different way,
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Feng and Liu [10] generalized the Nadler’s result without using Pompeiu-Hausdorff
metric and by considering C(X) instead of CB(X) as follows:

Theorem 1 Let (X, d) be a complete metric space and T : X → C(X) be a
multivalued mapping. If for all x ∈ X there exists y ∈ Ixb satisfying

d(y, T y) ≤ cd(x, y),

where

Ixb = {y ∈ T x : bd(x, y) ≤ d(x, T x)}

then T has a fixed point in X provided that 0 < c < b < 1 and the function
f (x) = d(x, T x) is lower semicontinuous.

In 1994, Matthews [11] introduced the partial metric space as a generalization
of ordinary metric space and then fixed point theory for both single valued and
multivalued mappings on partial metric spaces has been studied by many authors [1,
8]. After that, to extend partial metric space, Asadi et al.[2] introduced the concept of
M-metric space and obtained some fixed point theorems for single valued mappings
onM-metric space. On the other hand, there is a different generalization of ordinary
metric space in the literature known as b-metric space [4].

Recently, taking into account both ofM-metric and b-metric on a nonempty set,
Mlaiki et al. [12] generated the concept of Mb-metric to extend both of M-metric
space and b-metric space as follows: Let X be a nonempty set and mb : X × X →
[0,∞) be function. Then mb is called an Mb-metric on X and (X,mb) is called an
Mb-metric space, if the following conditions are satisfied: for all x, y, z ∈ X,

(m1) mb(x, x) = mb(y, y) = mb(x, y)⇔ x = y,
(m2) mbxy ≤ mb(x, y), where mbxy = min{mb(x, x),mb(y, y)},
(m3) mb(x, y) = mb(y, x),
(m4) there exists a real number s ≥ 1 such that

mb(x, y)−mbxy ≤ s[mb(x, z)−mbxz +mb(z, y)−mbzy] −mb(z, z).

The number s is called the coefficient ofMb-metric.

Remark 1 Note that, as shown in [2], if m is anM-metric on X, then m(x, x) may
not be zero for x ∈ X. However, if we take x = y = z in the condition (m4) of the
definition of Mb-metric, we have 0 ≤ −mb(x, x). Since mb is nonnegative valued,
we obtain mb(x, x) = 0 for all x ∈ X. To overcome this problem, we propose the
following condition instead of (m4):

(m4)∗ for all x, y, z ∈ X, there exists a real number s ≥ 1 such that

mb(x, y)−mbxy ≤ s[mb(x, z)−mbxz +mb(z, y)−mbzy].
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The rest of this paper, we will use the conditions (m1), (m2), (m3), and (m4)∗
for the concept of Mb-metric. Therefore, it is clear that every M-metric and every
b-metric on a nonempty set X are alsoMb-metric.

Example 1 Let X = [0,∞) and define a mapping by mb(x, y) = min{xp, yp} +
|x − y|p, where p > 1. Thenmb is anMb-metric (in our sense) with coefficient s =
2p. Besides it is neither an M-metric nor b-metric on X. Also, since the condition
(m4) is not satisfied for x = y = z �= 0, then mb is not anMb-metric in the sense of
Mlaiki et al.

Let (X,mb) be an Mb-metric space, x ∈ X and r > 0. The open ball with
centered x ∈ X and radius r > 0 is denoted by

B(mb, x, r) = {y ∈ X : mb(x, y) < r +mbxy}.

Then, we call a subset U of X is open if and only if for all x ∈ U , there exists
r > 0 such that B(mb, x, r) ⊆ U. In this case, it can be shown that the family of
all open subsets of X is a topology on X, say τmb . Even though every partial metric
p is an Mb-metric on a nonempty set X and every partial metric p generates a T0
topology on X, the topology τmb may not be T0 topology. The following example
shows this fact.

Example 2 Let X = [0, 1] and mb(x, y) = min{x, y}, then mb is an Mb-metric on
X with coefficient s = 2. In this case for every ε > 0, we get

B(mb, x, ε) =
{
y ∈ X : mb(x, y) < mbxy + ε

}
= {y ∈ X : 0 < ε}
= X

for all x ∈ X. Therefore τmb = {∅,X} is not T0 topology.

Remark 2 Let (X,mb) be an Mb-metric space with the constant s ≥ 1. Then the
function defined by

bm(x, y) = mb(x, y)− 2mbxy +Mbxy
is a b-metric on X with the same constant s, where

Mbxy = max{mb(x, x),mb(y, y)}.

Remark 3 Let (X,mb) be an Mb-metric space, {xn} be a sequence in X and
x ∈ X. Then the sequence {xn} converges to x with respect to τmb if and only if

limn→∞(mb(xn, x) − mbxnx) = 0. Indeed, let xn
τmb→ x, and ε > 0. Then there

exists n0 ∈ N such that xn ∈ B(mb, x, ε) for all n ≥ n0. Therefore, for n ≥ n0
we have mb(xn, x) < ε + mbxnx and so

∣∣mb(xn, x)−mbxnx ∣∣ < ε. Thus we have
limn→∞(mb(xn, x)−mbxnx) = 0. Conversely, let limn→∞(mb(xn, x)−mbxnx) = 0
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and U ∈ τmb such that x ∈ U . Then there exist ε > 0 such that B(mb, x, ε) ⊆ U .
Since limn→∞(mb(xn, x) −mbxnx) = 0, there exist n0 ∈ N such that mb(xn, x)−
mbxnx < ε for all n ≥ n0. So that, xn ∈ B(mb, x, ε) ⊆ U for all n ≥ n0. Hence,
the sequence {xn} converges to x with respect to τmb on X. If the sequence {xn}
converges to x ∈ X with respect to τmb , we will call it asMb-convergence.

Definition 1 Let (X,mb) be anMb-metric space and {xn} be a sequence in X.

1. {xn} is said to beMb-Cauchy sequence if

lim
m,n→∞mb(xn, xm)

exist and finite.
2. (X,mb) is said to be Mb-complete if every Mb-Cauchy sequence in X is Mb-

convergent to a point x ∈ X such that

lim
n,m→∞mb(xn, xm) = mb(x, x).

Lemma 1 Let (X,mb) be an Mb-metric space and {xn} be a sequence in X.
Then:

1. {xn} isMb-Cauchy sequence if and only if it is a Cauchy sequence in the b-metric
space (X, bm).

2. (X,mb) is Mb-complete if and only if the b-metric space (X, bm) is complete.
Moreover,

lim
n→∞ bm(xn, x) = 0 ⇔

⎧⎨
⎩

limn→∞[mb(xn, x)−mbxnx] = 0
and

limn,m→∞mb(xn, xm) = mb(x, x)

⎫⎬
⎭

Proof Let {xn} be an Mb-Cauchy sequence in (X,mb). Then there exists a ∈ R

such that limn,k→∞mb(xn, xk) = a. Thus, limn→∞mb(xn, xn) = a. Therefore we
have

lim
n,k→∞ bm(xn, xk) = lim

n,k→∞
[
mb(xn, xk)− 2mbxnxk +Mbxnxk

] = 0,

that is, {xn} is a Cauchy sequence in (X, bm).
Conversely, let {xn} be a Cauchy sequence in (X, bm). Thus for ε = 1, there

exists n0 ∈ N such that bm(xn, xk) < 1 for all n, k ≥ n0. Therefore we have

mb(xn, xn) = mb(xn, xn)−mb(xn0, xn0)+mb(xn0, xn0)

≤ ∣∣mb(xn, xn)−mb(xn0, xn0)
∣∣+mb(xn0, xn0)

= Mbxnxn0
−mbxnxn0

+mb(xn0, xn0)

≤ bm(xn, xn0)+mb(xn0, xn0)

< 1 +mb(xn0, xn0).



2 Fixed Point Results for Multivalued Mappings of Feng-Liu Type 71

This shows that {mb(xn, xn)} is bounded sequence in R so there exists a ∈ R

such that the subsequence {mb(xnk , xnk )} converges to a. On the other hand, since
{xn} is a Cauchy sequence in (X, bm), given ε > 0, there exists n1 ∈ N such that

|mb(xn, xn)−mb(xk, xk)| ≤ bm(xn, xk) < ε

for all n, k ≥ n1. Thus {mb(xn, xn)} is a Cauchy sequence in R and so we get

lim
n→∞mb(xn, xn) = a = lim

n→∞mbxnxk = lim
n→∞Mbxnxk .

Now, since

|mb(xn, xk)− a| =
∣∣mb(xn, xk)− 2mbxnxk +Mbxnxk + 2mbxnxk −Mbxnxk − a

∣∣
≤ ∣∣mb(xn, xk)− 2mbxnxk +Mbxnxk

∣∣+ ∣∣2mbxnxk −Mbxnxk − a∣∣
= bm(xn, xk)+

∣∣2mbxnxk −Mbxnxk − a∣∣
we get limn,k→∞mb(xn, xk) = a. This shows that {xn} is anMb-Cauchy sequence
in (X,mb).

Now let (X,mb) be Mb-complete and {xn} be a Cauchy sequence in (X, bm).
Then it is anMb-Cauchy sequence in (X,mb) and so there exists x ∈ X such that

lim
n→∞

[
mb(xn, x)−mbxnx

] = 0

and

lim
n,m→∞mb(xn, xm) = mb(x, x).

Therefore we have

lim
n→∞ bm(xn, x) = lim

n→∞
[
mb(xn, x)− 2mbxnx +Mbxnx

]

= lim
n→∞

[
mb(xn, x)−mbxnx +Mbxnx −mbxnx

]
= 0.

Thus (X, bm) is complete b-metric space.
Conversely, let (X, bm) be a complete b-metric space and {xn} be anMb-Cauchy

sequence in (X,mb). Then it is a Cauchy sequence in (X, bm) and thus there exists
x ∈ X such that

lim
n→∞ bm(xn, x) = lim

n→∞
[
mb(xn, x)−mbxnx +Mbxnx −mbxnx

] = 0.

Therefore since bothmb(xn, x)−mbxnx andMbxnx −mbxnx are nonnegative, we
get limn→∞

[
mb(xn, x)−mbxnx

] = 0 and limn→∞
[
Mbxnx −mbxnx

] = 0. So that
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{xn} isMb-convergent to x. Since {xn} be anMb-Cauchy sequence in (X,mb), it is
sufficient to see that limn→∞mb(xn, xn) = mb(x, x). Furthermore, we get

0 = lim
n→∞

[
Mbxnx −mbxnx

]
= lim
n→∞ |mb(xn, xn)−mb(x, x)|

and so limn→∞mb(xn, xn) = mb(x, x).
In this article, we present Feng-Liu type fixed point results for multivalued

mappings on Mb-metric space (X,mb). We denote by C(X) the class of all

nonempty closed subsets of (X,mb) and by A
b

closure of A ⊆ X with respect
to τmb .

2.2 Main Result

We will begin this section with the following idea: Let (X, d) be a metric space and
T : X → C(X) be a multivalued mapping. By considering the Feng-Liu’s fixed
point theorem for T on X, we can generate a fixed point result for single valued
mapping. To do this, it is enough to take T x as singleton for all x ∈ X because
every singleton is closed set in metric space. But since the topology τmb may not
be T1 topology (even it may not be T0 topology as seen in Example 2), some single
point sets may not be closed. Therefore we cannot generate a fixed point result
for single valued mapping by the similar way. To overcome this problem, we will
consider the mapping T from an Mb-metric space X to the class X ∪ C(X) as in
[15]. For an Mb-metric space (X,mb), we will write T : X → X ∪ C(X) if T x is
singleton or T x ∈ C(X) for all x ∈ X. Since the mapping T is both single-valued
and multivalued, we will use mixed multivalued mapping for the mapping T as in
[15].

Now, let (X,mb) be an Mb-metric space. Let T : X → X ∪ C(X) be a mixed
multivalued mapping. For a positive constant k ∈ (0, 1) and x ∈ X, define a set

T xk (mb) = {y ∈ T x : kmb(x, y) ≤ mb(x, T x)} ,

where

mb(x, T x) = inf{mb(x, y) : y ∈ T x}.

Now, if |T x| = 1, then T xk (mb) is not empty. On the other hand, if |T x| > 1 and
mb(x, T x) > 0, then T xk (mb) is nonempty for all k ∈ (0, 1). But, if |T x| > 1 and
mb(x, T x) = 0, then T xk (mb) may be empty.

Example 3 Let X =
{

0,−1,−1 + 1
n
: n > 1, n ∈ N

}
and define an Mb-metric on

X with coefficient s = 5 as
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mb(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 , x = y ∈ X\{−1}
2 , x = y = −1
1 , x �= y ∈ {0,−1}

|x − y| , x �= y ∈ {−1,−1 + 1
2n , n > 1}

4 , otherwise

.

Besides, the mappingmb is notM-metric. Indeed, if we take x = 0, y = −1 + 1
2n ,

z = −1, the inequality mb(x, y) − mbxy ≤ [mb(x, z) − mbxz + mb(z, y) − mbzy]
which is condition ofM-metric is not satisfied. We define the mapping T as T x = X
for all x ∈ X. For x = −1, we getmb(x, T x) = 0 andmb(x, y) > 0 for all y ∈ T x.
Hence T xk (mb) = ∅ for all k ∈ (0, 1).

The following propositions are useful in the proof of main theorem.

Proposition 1 Let (X,mb) be an Mb-metric space, A ⊆ X and x ∈ X. If

mb(x,A) = 0 then x ∈ Ab.
Proof Let mb(x,A) = 0 and U ∈ τmb , x ∈ U . Then there exist ε > 0 such that
B(mb, x, ε) ⊆ U . Sincemb(x,A) = 0, there exists xε ∈ A such thatmb(x, xε) < ε.
So, mb(x, xε) < ε +mbxxε . In this case, since xε ∈ B(mb, x, ε) ⊆ U and xε ∈ A,

A ∩ U �= ∅. Thus, we get x ∈ Ab.
Proposition 2 Let (X,mb) be an Mb-metric space, A ⊆ X and x ∈ X. Then,

inf{mb(x, y)−mbxy : y ∈ A} = 0 if and only if x ∈ Ab.
Proof Let inf{mb(x, y) − mbxy : y ∈ A} = 0 and ε > 0. Thus, there exist yε ∈
A such that mb(x, yε) − mbxyε < ε. In this case, yε ∈ B(x, ε) and thus yε ∈
A ∩ B(x, ε). So, x ∈ Ab. Now, let x ∈ Ab. Then, there exists yk ∈ A such that
mb(x, yk) − mbxyk < 1

k
for all k ∈ N. Since inf{mb(x, y) − mbxy : y ∈ A} ≤

mb(x, yk)−mbxyk < 1
k

for all k ∈ N, we get that inf{mb(x, y)−mbxy : y ∈ A} = 0.

Before we prove our main result, we give the following new definition.

Definition 2 A mixed multivalued mapping T is called x-lower orbitally
continuous if |T x| = 1 and a sequence (xn) in X such that xn+1 ∈ T xn
for all n ∈ N and limn→∞mb(xn, x) = mb(x, x), then mb(T x, T x) ≤
lim infn→∞mb(xn, T x).

If T is an orbitally continuous at a point x, then it is lower orbitally
continuous at x. But reverse is not true. The following example shows this fact.

Example 4 Let X =
{

0,−1,−1 + 1
n
: n > 1, n ∈ N

}
and define an Mb-metric on

Xwith coefficient s = 5 asmb(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 , x = y ∈ X
1 , x �= y ∈ {0,−1}

|x − y| , x �= y ∈ {−1,−1 + 1
2n , n > 1}

4 , otherwise

.

Let T : X→ X ∪ C(X) satisfying
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T x =
{
X , x ∈ X\{−1}
{0} , x = −1

and (xn) = (−1 + 1
2n)n∈N. Clearly, xn+1 ∈ T xn = X for all n ∈ N and

limn→∞mb(xn,−1) = 0 = mb(−1,−1). On the other hand, it can
be seen that mb(T x, T x) = mb(0, 0) = 0 < lim infn→∞mb(xn, T x) =
lim infn→∞mb(xn, 0) = 4 for x = −1.

Theorem 2 Let (X,mb) be anMb-completeMb-metric space with coefficient s ≥ 1
and T : X → X ∪ C(X) be a mixed multivalued map. If there exist a constant
c ∈ (0, 1) and y ∈ T xk (mb) such that for all any x ∈ X with either mb(x, T x) > 0
and |T x| > 1 or |T x| = 1 satisfying

mb(y, T y) ≤ cmb(x, y).

and

mb(y, y) ≤ mb(x, y).

Then there exists z ∈ X such that mb(z, T z) = 0 provided that sc < k and the
function f (x) = mb(x, T x) is lower semicontinuous. Further, if |T z| > 1, then z is
a fixed point of T . If |T z| = 1 and T is lower orbitally continuous at z, then z is
a fixed point of T .

Proof We want to show that there exists a sequence (xn) in X such that xn+1 ∈
T xn,mb(xn, xn+1) ≤

(
c
k

)n
mb(x0, x1) andmb(xn, T xn) ≤

(
c
k

)n
mb(x0, T x0) for all

n ∈ N. Let x0 ∈ X be an arbitrary point. Now, we consider two conditions:
Case 1 : Let |T x0| = 1. In this case, there exist x1 ∈ X such that

kmb(x0, x1) ≤ mb(x0, T x0)

and

mb(x1, T x1) ≤ cmb(x0, x1).

Again, there are two conditions. According to the first condition, it may be
|T x1| = 1. From hypothesis, there exist x2 ∈ X such that

kmb(x1, x2) ≤ mb(x1, T x1)

and

mb(x2, T x2) ≤ cmb(x1, x2).

Another situation say that it may be |T x1| > 1. If mb(x1, T x1) = 0, then

x1 ∈ T x1
b = T x1. That is, x1 is a fixed point of T . Let mb(x1, T x1) > 0. From
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hypothesis there exist x2 ∈ X such that

kmb(x1, x2) ≤ mb(x1, T x1)

and

mb(x2, T x2) ≤ cmb(x1, x2).

Case 2 : Let |T x0| > 1. If mb(x0, T x0) = 0, then x0 ∈ T x0
b = T x0. That is, x0

is a fixed point of T . So, the proof ends. If mb(x0, T x0) > 0, then from hypothesis,
there exist x1 ∈ X such that

kmb(x0, x1) ≤ mb(x0, T x0)

and

mb(x1, T x1) ≤ cmb(x0, x1).

Similar to Case 1, it may be |T x1| = 1 or |T x1| > 1. Let |T x1| = 1. From
hypothesis, there exist x2 ∈ X such that

kmb(x1, x2) ≤ mb(x1, T x1)

and

mb(x2, T x2) ≤ cmb(x1, x2).

Now, we assume |T x1| > 1. If mb(x1, T x1) = 0, then x1 ∈ T x1
b = T x1. That

is, x1 is a fixed point of T . If mb(x1, T x1) > 0, then there exist x2 ∈ X such that

kmb(x1, x2) ≤ mb(x1, T x1)

and

mb(x2, T x2) ≤ cmb(x1, x2).

Keep going this process, we can generate a sequence {xn} in X such that xn+1 ∈
T xn,

kmb(xn, xn+1) ≤ mb(xn, T xn) (2.1)

and

mb(xn+1, T xn+1) ≤ cmb(xn, xn+1) (2.2)

for all n ∈ N. From (2.1) and (2.2), we can get

mb(xn, T xn) ≤
(c
k

)n
mb(x0, T x0) (2.3)
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and

mb(xn, xn+1) ≤
( c
k

)n
mb(x0, x1) (2.4)

for all n ∈ N.Moreover, from (2.3) and (2.4), we can get

lim
n→∞mb(xn, T xn) = lim

n→∞mb(xn, xn+1) = 0.

Then for m,n ∈ N with m > n, we have

mb(xn, xm)−mbxnxm ≤ s[(mb(xn, xn+1)−mbxnxn+1)

+(mb(xn+1, xm)−mbxn+1xm)]
≤ s(mb(xn, xn+1)−mbxnxn+1)

+s2[(mb(xn+1, xn+2)−mbxn+1xn+2)

+(mb(xn+2, xm)−mbxn+2xm)]
...

≤ s(mb(xn, xn+1)−mbxnxn+1)+ · · ·
+sm−n−1(mb(xm−1, xm)−mbxm−1xm)

≤ smb(xn, xn+1)+ · · · + sm−n−1mb(xm−1, xm)

≤
(c
k

)n
smb(x0, x1)+ · · · +

( c
k

)m−1
sm−nmb(x0, x1)

≤ s
( c
k

)n
mb(x0, x1)[1 + · · · +

( sc
k

)m−n−1]

≤ s
(
c
k

)n
1 − sc

k

mb(x0, x1).

Since c < k, we get

lim
n,m→∞

(
mb(xn, xm)−mbxnxm

) = 0. (2.5)

On the other hand,

0 ≤ lim
n→∞mb(xn+1, xn+1)

≤ lim
n→∞mb(xn, xn+1)

implies that
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lim
n,m→∞mb(xn, xm) = 0 (2.6)

From (2.5) and (2.6), we get that {xn} is an Mb-Cauchy sequence. Since X is Mb-
complete, there exist z ∈ X such that

lim
n→∞(mb(xn, z)−mbxnz) = 0,

that is, {xn} converges to z and

lim
n,m→∞mb(xn, xm) = mb(z, z). (2.7)

Now, we show that z is fixed point of T . From (2.3), we can say that the sequence
{mb(xn, T xn)} converges 0. Since f (x) = mb(x, T x) is lower semicontinuous, we
get

0 ≤ mb(z, T z) = f (z) ≤ lim inf
n→∞ f (xn) = lim inf

n→∞mb(xn, T xn) = 0,

that is, mb(z, T z) = 0.
If |T z| > 1, then z ∈ T zb = T z. Now, assume |T z| = 1 and T is lower orbitally

continuous at z. From (2.6) and (2.7), we can say mb(z, z) = 0. Now, it is enough
to show mb(T z, T z) = 0. Since limn→∞mb(xn, z) = mb(z, z) and T is lower
orbitally continuous at z, we can write

mb(T z, T z) ≤ lim inf
n→∞mb(xn, T z).

From the property of (m2), we can write

mb(xn, T z)−mbxnT z ≤ s {mb(xn, z)−mbxnz +mb(z, T z)−mbzT z}

lim
n→∞m(xn, T z)−mbxnT z ≤ s

{
lim
n→∞mb(xn, z)−mbxnz + lim

n→∞mb(z, T z)−mbzT z
}

0 ≤ mb(T z, T z) ≤ lim inf
n→∞mb(xn, T z) = 0.

From here, we can write

mb(T z, T z) = 0.

So that, we get z is fixed point of T .

Since every metric space, every partial metric space, every M-metric space are
Mb-metric space, we can get the following corollaries from Theorem 2.

Corollary 1 (Feng-Liu’s Fixed Point Theorem) Let (X, d) be a complete metric
space and T : X → C(X) be a multivalued mapping. If there exist a constant
c ∈ (0, 1) and y ∈ T xk (d) satisfying

d(y, T y) ≤ cd(x, y)
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for all x ∈ X. Then T has a fixed point in X provided that c < k and the function
f (x) = d(x, T x) is lower semicontinuous.

Proof Since usual metric topology has T1 property, we get X ∪ C(X) = C(X). In
this case the lower orbitally continuity of T is also satisfied. So, by Thereom 2,
we have the conclusion.

Corollary 2 Let (X, p) be a complete partial metric space and T : X→ X∪C(X)
be a mixed multivalued mapping. If there exist a constant c ∈ (0, 1) and y ∈ T xk (p)
such that for all x ∈ X with either p(x, T x) > 0 and |T x| > 1 or |T x| = 1
satisfying

p(y, T y) ≤ cp(x, y)

then T has a fixed point inX provided that c < k and the function f (x) = p(x, T x)
is lower semicontinuous.

Proof Let |T x| = 1 and consider a sequence (xn) in X such that xn+1 ∈ T xn for
all n ∈ N and limn→∞ p(xn, x) = p(x, x). Then, since p(T x, T x) ≤ p(x, T x),
we can get p(T x, T x) ≤ lim infn→∞ p(xn, T x) = p(x, T x). That is, T is lower
orbitally continuous at x. Then, by Thereom 2, we have the conclusion.

Corollary 3 Let (X,m) be an M-complete M-metric space and T : X → X ∪
C(X) be a mixed multivalued map. If there exist a constant c ∈ (0, 1) and y ∈
T xk (m) such that for all x ∈ X with either m(x, T x) > 0 and |T x| > 1 or |T x| = 1
satisfying

m(y, Ty) ≤ cm(x, y)

and

m(y, y) ≤ m(x, y)

then there exists z ∈ X such thatm(z, T z) = 0 provided that c < k and the function
f (x) = m(x, T x) is lower semicontinuous. Further, if |T z| > 1, then z is a fixed
point of T . If |T z| = 1 and T is lower orbitally continuous at z, then z is a fixed
point of T .

Now, we give two examples convenient to results.

Example 5 Let X = {0} ∪ [1, 2) ∪ (2,∞) and define a mappingmb by

mb(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 , x = y = 0
1 , x = y ∈ X\{0}
x+y

2 , x �= y ∈ [1, 2)
1 + |x − y| , x �= y ∈ {3, 3 + 1

n
: n > 1}

1.2 , otherwise
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for all x, y ∈ X. Then,mb is anMb-metric onX with coefficient s = 3, but is not an
M-metric space. Indeed, if we take x = 1.5, y = 1.7 and z ∈ (2,∞), the inequality
mb(x, y) − mbxy ≤ [mb(x, z) − mbxz + mb(z, y) − mbzy] which is condition of
M-metric is not satisfied. We can see that (X,mb) isMb-completeMb-metric space.
Now define mapping T : X → X ∪ C(X) as

T x =
⎧⎨
⎩
X , x = 3 + 1

2

{0} , otherwise
.

It is clear that the function f (x) = mb(x, T x) is lower semicontinuous with respect
to τmb . On the other hand, for all x ∈ X with either mb(x, T x) > 0 and |T x| > 1
or |T x| = 1 there exist y ∈ T x0,8(mb) such that

mb(y, T y) ≤ cmb(x, y) with c = 0, 1.

So that, since T is lower orbitally continuous at 0, then T has a fixed point in X
from Theorem 2.

Example 6 Let X = {0, 1} ∪
{

1
n
: n > 2, n ∈ N

}
and define mappingmb as

mb(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , x = y ∈ X\
{

1, 1
2n

}

1 , x = y = 1

1
2n , x = y ∈

{
1

2n : n > 1, n ∈ N

}

1
2n ,

[
x = 1andy ∈

{
1

2n : n > 1, n ∈ N

}]
or[

x ∈
{

1
2n : n > 1, n ∈ N

}
andy = 1

]

min{x, y} , x �= y ∈
{

1
2n : n > 1, n ∈ N

}

1
2 ,

[
x = 1

2m+1 , y = 1
2n : n > 1,m ≥ 1, n,m ∈ N

]
or[

x = 1
2n , y = 1

2m+1 : n > 1,m ≥ 1, n,m ∈ N

]

2 , otherwise

.

Then (X,mb) is complete Mb-metric space with coefficient s = 4, but is not a
M-metric space. Indeed, if we take x = 1, y = 1

2n+1 and z = 1
2m , the inequality
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mb(x, y)−mbxy ≤ [mb(x, z)−mbxz +mb(z, y)−mbzy]

which is condition of M-metric is not satisfied. Define a mapping T : X → X ∪
C(X) by

T x =
⎧⎨
⎩

{0} ∪ { 1
2n+1 : n ≥ 1, n ∈ N} , x = 0

{0} , otherwise
.

It is clear that the function f (x) = mb(x, T x) is lower semicontinuous with respect
to τmb . Besides, the mapping T is lower orbitally continuous. On the other hand,
for all x ∈ X with either mb(x, T x) > 0 and |T x| > 1 or |T x| = 1 there exist
y ∈ T x0,5(mb) such that

mb(y, T y) ≤ cmb(x, y)withc = 0, 1.

Hence, by applying Thereom 2, we can say that T has a fixed point in X.
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Chapter 3
Hyers-Ulam and Hyers-Ulam-Rassias
Stability for a Class
of Integro-Differential Equations

L. P. Castro and A. M. Simões

3.1 Introduction

The concept of stability for functional, differential, integral and integro-differential
equations has been studied in a quite extensive way during the last six decades
and has earned particular interest due to their great number of applications (see
[1, 3, 5, 6, 8–16, 18–23, 26] and the references therein). This occurs with particular
emphasis in the case of Hyers-Ulam and Hyers-Ulam-Rassias stabilities. These
stabilities were originated from a famous question raised by S. M. Ulam at the
University of Wisconsin in 1940: “When a solution of an equation differing slightly
from a given one must be somehow near to the solution of the given equation?” A
first partial answer to this question was given by D. H. Hyers, for Banach spaces, in
the case of an additive Cauchy equation. This is why the obtained result is nowadays
called the Hyers-Ulam stability. Different generalizations of that initial answer of
D. H. Hyers were obtained by T. Aoki [2], Z. Gajda [17] and Th.M. Rassias [25].
The interested reader can obtain a detailed description of these advances in [4].
Afterwards, new directions were introduced by Th.M. Rassias, see [24], introducing
therefore the so-called Hyers-Ulam-Rassias stability.
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In this paper, we study the Hyers-Ulam stability and the Hyers-Ulam-Rassias
stability for the following class of Volterra integro-differential equation,

y ′(x) = f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)
, y(a) = c ∈ R, (3.1)

with y ∈ C1([a, b]), for x ∈ [a, b] where, for starting, a and b are fixed real
numbers, f : [a, b] × C × C → C and k : [a, b] × [a, b] × C × C → C are
continuous functions, and α : [a, b] → [a, b] is a continuous delay function (i.e.,
fulfilling α(τ) ≤ τ for all τ ∈ [a, b]).

The formal definition of the above-mentioned stabilities are now introduced for
our integro-differential equation (3.1).

If for each function y satisfying

∣∣∣∣y ′(x)− f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)∣∣∣∣ ≤ θ, x ∈ [a, b], (3.2)

where θ ≥ 0, there is a solution y0 of the integro-differential equation and a constant
C > 0 independent of y and y0 such that

|y(x)− y0(x)| ≤ C θ, (3.3)

for all x ∈ [a, b], then we say that the integro-differential equation (3.1) has the
Hyers-Ulam stability.

If for each function y satisfying

∣∣∣∣y ′(x)− f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)∣∣∣∣ ≤ σ(x), x ∈ [a, b], (3.4)

where σ is a non-negative function, there is a solution y0 of the integro-differential
equation and a constant C > 0 independent of y and y0 such that

|y(x)− y0(x)| ≤ C σ(x), (3.5)

for all x ∈ [a, b], then we say that the integro-differential equation (3.1) has the
Hyers-Ulam-Rassias stability.

Some of the present techniques to study the stability of functional equations use a
combination of fixed point results with a generalized metric in appropriate settings.
In view of this, and just for the sake of completeness, let us recall the definition of a
generalized metric and the corresponding Banach Fixed Point Theorem.

Definition 1 Let X be a nonempty set. We say that a function d : X × X →
[0,+∞] is a generalized metric on X if:

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, z) ≤ d(x, y)+ d(y, z) for all x, y, z ∈ X.
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Theorem 1 Let (X, d) be a generalized complete metric space and T : X → X

a strictly contractive operator with a Lipschitz constant L < 1. If there exists a
non-negative integer k such that d(T k+1x, T kx) < ∞ for some x ∈ X, then the
following three propositions hold true:

1. the sequence (T nx)n∈N converges to a fixed point x∗ of T ;
2. x∗ is the unique fixed point of T in X∗ = {y ∈ X : d(T kx, y) <∞};
3. if y ∈ X∗, then

d(y, x∗) ≤ 1

1 − L d(Ty, y). (3.6)

3.2 Hyers-Ulam-Rassias Stability in the Finite Interval Case

In this section we will present sufficient conditions for the Hyers-Ulam-Rassias
stability of the integro-differential equation (3.1), where x ∈ [a, b], for some fixed
real numbers a and b.

We will consider the space of continuously differentiable functionsC1([a, b]) on
[a, b] endowed with a generalization of the Bielecki metric

d(u, v) = sup
x∈[a,b]

|u(x)− v(x)|
σ(x)

, (3.7)

where σ is a non-decreasing continuous function σ : [a, b] → (0,∞). We recall
that

(
C1([a, b]), d) is a complete metric spaces (cf., [7, 27]).

Theorem 2 Let α : [a, b] → [a, b] be a continuous delay function with α(t) ≤ t

for all t ∈ [a, b] and σ : [a, b] → (0,∞) a non-decreasing continuous function. In
addition, suppose that there is β ∈ [0, 1) such that

∫ x

a

σ (τ )dτ ≤ βσ(x), (3.8)

for all x ∈ [a, b]. Moreover, suppose that f : [a, b] × C× C → C is a continuous
function satisfying the Lipschitz condition

|f (x, u(x), g(x))− f (x, v(x), h(x))| ≤ M (|u(x)− v(x)| + |g(x)− h(x)|) (3.9)

withM > 0 and the kernel k : [a, b]×[a, b]×C×C → C is a continuous function
satisfying the Lipschitz condition

|k(x, t, u(t), u(α(t))) − k(x, t, v(t), v(α(t)))| ≤ L|u(α(t))− v(α(t))| (3.10)

with L > 0.
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If y ∈ C1([a, b]) is such that

∣∣∣∣y ′(x)− f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)∣∣∣∣ ≤ σ(x), x ∈ [a, b], (3.11)

andM
(
β + Lβ2

)
< 1, then there is a unique function y0 ∈ C1([a, b]) such that

y ′0(x) = f
(
x, y0(x),

∫ x

a

k(x, τ, y0(τ ), y0(α(τ )))dτ

)
(3.12)

and

|y(x)− y0(x)| ≤ β

1 −M (
β + Lβ2

) σ(x) (3.13)

for all x ∈ [a, b].
This means that under the above conditions, the integro-differential equa-

tion (3.1) has the Hyers-Ulam-Rassias stability.

Proof By integration we have that

y ′(x) = f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)
(3.14)

is equivalent to

y(x) = c +
∫ x

a

f

(
s, y(s),

∫ s

a

k(s, τ, y(τ ), y(α(τ )))dτ

)
ds. (3.15)

So, we will consider the operator T : C1([a, b])→ C1([a, b]), defined by

(T u) (x) = c +
∫ x

a

f

(
s, u(s),

∫ s

a

k(s, τ, u(τ ), u(α(τ )))dτ

)
ds, (3.16)

for all x ∈ [a, b] and u ∈ C1([a, b]).
Note that for any continuous function u, T u is also continuous. Indeed,

|(T u)(x)− (T u)(x0)|

=
∣∣∣∣
∫ x

a

f

(
s, u(s),

∫ s

a

k(s, τ, u(τ ), u(α(τ )))dτ

)
ds

−
∫ x0

a

f

(
s, u(s),

∫ s

a

k(s, τ, u(τ ), u(α(τ )))dτ

)
ds

∣∣∣∣
=

∣∣∣∣
∫ x0

x

f

(
s, u(s),

∫ s

a

k(s, τ, u(τ ), u(α(τ )))dτ

)
ds

∣∣∣∣ −→ 0 (3.17)

when x → x0.
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Under the present conditions, we will deduce that the operator T is strictly
contractive with respect to the metric (3.7). Indeed, for all u, v ∈ C1([a, b]), we
have

d (T u, T v) = sup
x∈[a,b]

|(T u) (x)− (T v) (x)|
σ(x)

≤M sup
x∈[a,b]

1

σ(x)

∫ x

a

|u(s)− v(s)| ds

+M sup
x∈[a,b]

1

σ(x)

∫ x

a

∫ s

a

|k(s, τ, u(τ ), u(α(τ )))−k(s, τ, v(τ ), v(α(τ )))| dτds

≤M sup
x∈[a,b]

1

σ(x)

∫ x

a

|u(s)− v(s)| ds

+ML sup
x∈[a,b]

1

σ(x)

∫ x

a

∫ s

a

|u(α(τ))− v(α(τ))| dτds

=M sup
x∈[a,b]

1

σ(x)

∫ x

a

σ (s)
|u(s)− v(s)|

σ(s)
ds

+ML sup
x∈[a,b]

1

σ(x)

∫ x

a

∫ s

a

σ (τ )
|u(α(τ))− v(α(τ))|

σ(τ)
dτds

≤M sup
s∈[a,b]

|u(s)− v(s)|
σ(s)

sup
x∈[a,b]

1

σ(x)

∫ x

a

σ (s)ds

+ML sup
τ∈[a,b]

|u(τ)− v(τ )|
σ(τ)

sup
x∈[a,b]

1

σ(x)

∫ x

a

∫ s

a

σ (τ )dτds

≤Md(u, v)β +MLd(u, v) sup
x∈[a,b]

β2σ(x)

σ (x)

=M
(
β + Lβ2

)
d(u, v).

(3.18)

Due to the fact that M
(
β + Lβ2

)
< 1 it follows that T is strictly contractive.

Thus, we can apply the above-mentioned Banach Fixed Point Theorem, which
ensures that we have the Hyers-Ulam-Rassias stability for the integro-differential
equation (3.1). Additionally, we can apply again the Banach Fixed Point Theorem,
which guarantees us that

d(y, y0) ≤ 1

1 −M (
β + Lβ2

) d(Ty, y). (3.19)
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From the definition of the metric d , (3.8) and (3.11) follows that

sup
x∈[a,b]

|y(x)− y0(x)|
σ(x)

≤ β

1 −M (
β + Lβ2

) (3.20)

and consequently (3.13) holds. ��

3.3 Hyers-Ulam Stability in the Finite Interval Case

In this section we will present sufficient conditions for the Hyers-Ulam stability of
the integro-differential equation (3.1).

Theorem 3 Let α : [a, b] → [a, b] be a continuous delay function with α(t) ≤ t

for all t ∈ [a, b] and σ : [a, b] → (0,∞) a non-decreasing continuous function. In
addition, suppose that there is β ∈ [0, 1) such that

∫ x

a

σ (τ )dτ ≤ βσ(x), (3.21)

for all x ∈ [a, b]. Moreover, suppose that f : [a, b] × C× C → C is a continuous
function satisfying the Lipschitz condition

|f (x, u(x), g(x))− f (x, v(x), h(x))| ≤ M (|u(x)− v(x)| + |g(x)− h(x)|) (3.22)

with M > 0 and k : [a, b] × [a, b] × C × C → C is a continuous kernel function
satisfying the Lipschitz condition

|k(x, t, u(t), u(α(t))) − k(x, t, v(t), v(α(t)))| ≤ L|u(α(t))− v(α(t))| (3.23)

with L > 0.
If y ∈ C1([a, b]) is such that

∣∣∣∣y ′(x)− f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)∣∣∣∣ ≤ θ, x ∈ [a, b], (3.24)

where θ > 0 andM
(
β + Lβ2

)
< 1, then there is a unique function y0 ∈ C1([a, b])

such that

y ′0(x) = f
(
x, y0(x),

∫ x

a

k(x, t, y0(t), y0(α(t)))dt

)
(3.25)

and
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|y(x)− y0(x)| ≤ (b − a)σ(b)[
1 −M (

β + Lβ2
)]
σ(a)

θ (3.26)

for all x ∈ [a, b].
This means that under the above conditions, the integro-differential equa-

tion (3.1) has the Hyers-Ulam stability.

This result can be obtained by using an analogous procedure as in the previous
theorem (and so the full details of its proof are here omitted). In particular, we may
consider the operator T : C1([a, b])→ C1([a, b]), defined by

(T u) (x) = c +
∫ x

a

f

(
s, u(s),

∫ s

a

k(s, τ, u(τ ), u(α(τ )))dτ

)
ds, (3.27)

for all x ∈ [a, b] and u ∈ C1([a, b]), and conclude that T is strictly contractive
with respect to the metric (3.7), due to the fact that M

(
β + Lβ2

)
< 1. Thus, we

can again apply the Banach Fixed Point Theorem, which in this case leads us to the
Hyers-Ulam stability for the integro-differential equation.

From (3.24) we have

− θ ≤ y ′(x)− f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)
≤ θ, x ∈ [a, b]. (3.28)

By integration in (3.28), we obtain

∣∣∣∣y(x)− c −
∫ x

a

f

(
s, y(s),

∫ s

a

k(s, τ, y(τ ), y(α(τ )))dτ

)
ds

∣∣∣∣ ≤
∫ x

a

θdτ (3.29)

for all x ∈ [a, b] and consequently

|y(x)− (T y) (x)| ≤ (b − a) θ, x ∈ [a, b]. (3.30)

By (3.6), the definition of the metric d and (3.30) it is easy to prove the
inequality (3.26).

3.4 Hyers-Ulam-Rassias Stability in the Infinite Interval
Case

In this section, we analyse the Hyers-Ulam-Rassias stability of the integro-
differential equation (3.1) but, instead of considering a finite interval [a, b] (with
a, b ∈ R), we will consider the infinite interval [a,∞), for some fixed a ∈ R.
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Thus, we will now be dealing with the integro-differential equation

y ′(x) = f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)
, y(a) = c ∈ R, (3.31)

with y ∈ C1([a,∞)), x ∈ [a,∞) where a is a fixed real number, f : [a,∞) ×
C × C → C and k : [a,∞) × [a,∞) × C × C → C are continuous functions,
and α : [a,∞) → [a,∞) is a continuous delay function which therefore fulfills
α(τ) ≤ τ for all τ ∈ [a,∞).

Our strategy will be based on a recurrence procedure due to the already obtained
result for the corresponding finite interval case.

Let us consider a fixed non-decreasing continuous function σ : [a,∞)→ (ε, ω),
for some ε, ω > 0 and the space C1

b ([a,∞)) of bounded differentiable functions
endowed with the metric

db(u, v) = sup
x∈[a,∞)

|u(x)− v(x)|
σ(x)

. (3.32)

Theorem 4 Let α : [a,∞)→ [a,∞) be a continuous delay function with α(t) ≤ t
for all t ∈ [a,∞) and σ : [a,∞) → (ε, ω), for some ε, ω > 0, a non-decreasing
continuous function. In addition, suppose that there is β ∈ [0, 1) such that

∫ x

a

σ (τ )dτ ≤ βσ(x), (3.33)

for all x ∈ [a,∞). Moreover, suppose that f : [a,∞)×C×C → C is a continuous
function satisfying the Lipschitz condition

|f (x, u(x), g(x))− f (x, v(x), h(x))| ≤ M (|u(x)− v(x)| + |g(x)− h(x)|) (3.34)

with M > 0 and the kernel k : [a,∞) × [a,∞) × C × C → C is a continuous
function so that

∫ x
a
k(x, τ, z(τ ), z(α(τ )))dτ is a bounded continuous function for

any bounded continuous function z. In addition, suppose that k satisfies the Lipschitz
condition

|k(x, t, u(t), u(α(t))) − k(x, t, v(t), v(α(t)))| ≤ L|u(α(t))− v(α(t))| (3.35)

with L > 0.
If y ∈ C1

b ([a,∞)) is such that

∣∣∣∣y ′(x)−f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)∣∣∣∣ ≤ σ(x), x∈[a,∞), (3.36)



3 Stabilities for a Class of Integro-Differential Equations 89

andM
(
β + Lβ2

)
< 1, then there is a unique function y0 ∈ C1

b ([a,∞)) such that

y ′0(x) = f
(
x, y0(x),

∫ x

a

k(x, τ, y0(τ ), y0(α(τ )))dτ

)
(3.37)

and

|y(x)− y0(x)| ≤ β

1 −M (
β + Lβ2

) σ(x) (3.38)

for all x ∈ [a,∞).
This means that under the above conditions, the integro-differential equa-

tion (3.31) has the Hyers-Ulam-Rassias stability.

Proof For any n ∈ N, we will define In = [a, a + n]. By Theorem 2, there exists a
unique bounded differentiable function y0,n : In → C such that

y0,n(x) = c +
∫ x

a

f

(
s, y0,n(s),

∫ s

a

k(s, τ, y0,n(τ ), y0,n(α(τ )))dτ

)
ds (3.39)

and

∣∣y(x)− y0,n(x)
∣∣ ≤ β

1 −M (
β + Lβ2

) σ(x) (3.40)

for all x ∈ In. The uniqueness of y0,n implies that if x ∈ In then

y0,n(x) = y0,n+1(x) = y0,n+2(x) = · · · . (3.41)

For any x ∈ [a,∞), let us define n(x) ∈ N as n(x) = min{n ∈ N : x ∈ In}. We
also define a function y0 : [a,∞)→ C by

y0(x) = y0,n(x)(x). (3.42)

For any x1 ∈ [a,∞), let n1 = n(x1). Then x1 ∈ Int In1+1 and there exists an ε > 0
such that y0(x) = y0,n1+1(x) for all x ∈ (x1 − ε, x1 + ε). By Theorem 2, y0,n1+1 is
continuous at x1, and so it is y0.

Now, we will prove that y0 satisfies

y0(x) = c +
∫ x

a

f

(
s, y0(s),

∫ s

a

k(s, τ, y0(τ ), y0(α(τ )))dτ

)
ds (3.43)



90 L. P. Castro and A. M. Simões

and (3.38). For an arbitrary x ∈ [a,∞) we choose n(x) such that x ∈ In(x).
By (3.39) and (3.42), we have

y0(x) = y0,n(x)(x)

= c +
∫ x

a

f

(
s, y0,n(x)(s),

∫ s

a

k(s, τ, y0,n(x)(τ ), y0,n(x)(α(τ )))dτ

)
ds

= c +
∫ x

a

f

(
s, y0(s),

∫ s

a

k(s, τ, y0(τ ), y0(α(τ )))dτ

)
ds. (3.44)

Note that n(τ) ≤ n(x), for any τ ∈ In(x), and it follows from (3.41) that y0(τ ) =
y0,n(τ )(τ ) = y0,n(x)(τ ), so, the last equality in (3.44) holds.

To prove (3.38), by (3.42) and (3.40), we have that for all x ∈ [a,∞),

|y(x)− y0(x)| =
∣∣y(x)− y0,n(x)(x)

∣∣ ≤ β

1 −M(β − Lβ2)
σ (x). (3.45)

Finally, we will prove the uniqueness of y0. Let us consider another bounded
differentiable function y1 which satisfies (3.37) and (3.38), for all x ∈ [a,∞).
By the uniqueness of the solution on In(x) for any n(x) ∈ N we have that
y0|In(x) = y0,n(x) and y1|In(x) satisfies (3.37) and (3.38) for all x ∈ In(x), so

y0(x) = y0|In(x) (x) = y1|In(x)(x) = y1(x). (3.46)

��
Remark 1 With the necessary adaptations, Theorem 4 also holds true for infinite
intervals of the type (−∞, b], with b ∈ R, as well as for (−∞,∞).

3.5 Examples

We will now present two concrete examples to illustrate the above presented results.

For a differentiable function y :
[
0, 2

5

]
→ R, let us consider the integro-

differential equation

y ′(x) = 1 + 2x − y(x)+
∫ x

0

(
x(1 + 2x)y(τ )eτ(x−τ )

)
dτ, x ∈

[
0,

2

5

]
, (3.47)

as well as the continuous function σ :
[
0, 2

5

]
→ (0,∞) defined by σ(x) = 3ex and

the continuous delay function α :
[
0, 2

5

]
→

[
0, 2

5

]
given by α(x) = x.
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We realize that all the conditions of Theorem 2 are here satisfied. In fact, α :[
0, 2

5

]
→

[
0, 2

5

]
defined by α(x) = x is a continuous function with α(x) ≤ x. For

β = 1/2 we realize that σ :
[
0, 2

5

]
→ [0,∞) defined by σ(x) = 3ex , a continuous

function, fulfills

∫ x

0
3eτdτ ≤ 3

2
ex = β σ(x), x ∈

[
0,

2

5

]
. (3.48)

Additionally f :
[
0, 2

5

]
× C× C → C defined by

f (x, y(x), g(x)) = 1 + 2x − y(x)+ g(x) (3.49)

is a continuous function which satisfies

|f (x, u(x), g(x))− f (x, v(x), h(x))| ≤ |u(x)− v(x)| + |g(x)− h(x)| (3.50)

for all x ∈
[
0, 2

5

]
, and so we may take the constantM considered in Theorem 2 to

be equal to 1.

The kernel k :
[
0, 2

5

]
×
[
0, 2

5

]
× C → C defined by

k(x, t, y(t), y(α(t))) = x(1 + 2x)y(t)et (x−t ) (3.51)

is a continuous function which fulfils the condition

|k(x, t, u(t), u(α(t)))− k(x, t, v(t), v(α(t)))| ≤ 18

25
e

1
25 |u(α(t)) − v(α(t))| (3.52)

for all t ∈ [0, x] and x ∈
[
0, 2

5

]
, where we are using the constant L = 18

25e
1
25 . Thus,

M(β + Lβ2) = 1
2 + 9

50 e
1/25 < 1.

If we choose y(x) = ex
2

0.3 , it follows

∣∣∣∣y ′(x)−f
(
x,y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)∣∣∣∣=
∣∣∣∣7

3
+ 14

3
x

∣∣∣∣≤σ(x), (3.53)

for all x ∈
[
0, 2

5

]
.

Therefore, this exhibits the Hyers-Ulam-Rassias stability of the integro-
differential equation (3.47).

Moreover, by using the exact solution y0(x) = ex2
we realize that
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|y(x)− y0(x)| =
∣∣∣∣∣
ex

2

0.3
− ex2

∣∣∣∣∣ ≤
3 ex

1 − 9
25 e

1/25
= β

1 −M(β + Lβ2)
σ (x) (3.54)

for all x ∈
[
0, 2

5

]
.

Let us now turn to a second example in which the Hyers-Ulam stability is
illustrated.

For differentiable functions y : [0, 1] → R, let us start by considering the
integro-differential equation

y ′(x) = (−2x − 4)ex/2 + 5y(x)+ ex/2
∫ x

0
((τ − x)y(α(τ ))) dτ, (3.55)

for all x ∈ [0, 1], as well as the continuous function σ : [0, 1] → (0,∞) defined by
σ(x) = 1.1e10x and the continuous delay function α : [0, 1] → [0, 1/2] given by
α(x) = x/2.

We have all the conditions of Theorem 3 being satisfied. In fact, such α :
[0, 1] → [0, 1/2] defined by α(x) = x/2 is a continuous function, and obviously
α(x) ≤ x. Moreover, for β = 1/10 we have that σ : [0, 1] → (0,∞) defined by
σ(x) = 1.1e10x is a continuous function fulfilling

∫ x

0
1.1e10τdτ ≤ 1.1

10
e10x = β σ(x), x ∈ [0, 1]. (3.56)

Additionally f : [0, 1] ×C×C → C defined by

f (x, y(x), g(x)) = (−2x − 4)ex/2 + 5y(x)+ ex/2g(x) (3.57)

is a continuous function which fulfills

|f (x, u(x), g(x))− f (x, v(x), h(x))| ≤ 5 (|u(x)− v(x)| + |g(x)− h(x)|) (3.58)

for all x ∈ [0, 1], and so the previous constantM is here taking the value 5.
The kernel k : [0, 1] × [0, 1] × C → C defined by

k(x, t, y(t), y(α(t))) = (t − x)y(α(t)) (3.59)

is a continuous function which fulfils the condition

|k(x, t, u(t), u(α(t))) − k(x, t, v(t), v(α(t)))| ≤
∣∣∣∣u
(
t

2

)
− v

(
t

2

)∣∣∣∣ (3.60)

for all t ∈ [0, x] and x ∈ [0, 1], where we may identify 1 as the constant previously
denoted by L. Thus,M(β + Lβ2) = 11/20 < 1.
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If we choose y(x) = 100 ex/99, it follows

∣∣∣∣y ′(x)−f
(
x, y(x),

∫ x

a

k(x, τ, y(τ ), y(α(τ )))dτ

)∣∣∣∣=
∣∣∣∣
(
− 2

99
x − 4

99

)
ex/2

∣∣∣∣≤θ (3.61)

for all x ∈ [0, 1] and where we consider θ := 0.1.
Therefore, from Theorem 3, we have the Hyers-Ulam stability of the integro-

differential equation (3.55).
In particular, having in mind the exact solution y0(x) = ex of (3.55), it follows

that

|y(x)− y0(x)| =
∣∣∣∣100

99
ex − ex

∣∣∣∣ ≤ 2

9
e10x = (b − a) σ(b)

[1 −M(β + Lβ2)] σ(a) θ (3.62)

for all x ∈ [0, 1].
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Chapter 4
Exact Solutions, Lie Symmetry Analysis
and Conservation Laws of the Time
Fractional Diffusion-Absorption
Equation

Mir Sajjad Hashemi, Zahra Balmeh, and Dumitru Baleanu

4.1 Introduction

A pioneering investigation of localization-extinction phenomena nonlinear degener-
ate parabolic partial differential equations(PDEs) was firstly performed by Kersner
in the 1960s–1970s. Key results about these PDEs, including equations from
diffusion-absorption theory, are reflected by Kalashnikov in [1]. Among the dis-
cussed models of Kalashnikov, the diffusion-absorption equation with the critical
absorption exponent:

vt =
(
vσ vx

)
x
− v1−σ , (4.1)

is a famous one, where σ is a positive parameter. It is well known in filtration theory
that the terms −v1−σ show the absorption and describe the seepage on a permeable
bed. Some explicit localized solutions of Eq. (4.1) were reported in [2]. From the
filtration theory, by introducing u = vσ , as pressure variable, we obtain a PDE with
quadratic differential operator and constant sink

ut = uuxx + 1

σ
(ux)

2 − σ. (4.2)

In recent years, fractional calculus plays a very significant role in several branches
of engineering and science [3, 4]. Many important phenomena, e.g. electro-
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magnetic, image processing, acoustics, electro-chemistry, and anomalous diffusion,
are motivated to model by fractional derivatives. One of the benefits of fractional
models is their better describing than integer ones and this motivates us to describe
a significant and applicable model, i.e. TFDA equation in the fractional aspect. In
general, it is difficult to find exact solutions of differential equations with fractional
derivatives and we remind that investigation of some properties of fractional
derivatives is very hard than the classical ones. Therefore, there is a huge motivation
to find the exact solutions, conservation laws, and Lie symmetries of a famous
equation like the TFDA equation. Time fractional version of Eq. (4.2) has the
following form:

∂αt u = uuxx + 1

σ
(ux)

2 − σ, α ∈ (0, 1), (4.3)

where ∂αt u := Dαt u stands for Riemann-Liouville derivative defined by [5]

Dαt u(x, t) =
{

1
Γ (m−α)

∂m

∂tm

∫ t
0

u(x,ξ)

(t−ξ)α−m+1 dξ, m− 1 < α < m,
∂mu
∂tm
, α = m ∈ N.

(4.4)

This paper is organized as follows: Some basic properties of Lie symmetry
analysis of the time fractional partial differential equations (FPDEs) are described in
Sect. 4.2. Lie symmetries and invariant solution of TFDA equation are discussed in
Sect. 4.3. Conservation laws of this equation by a generalized version of Ibragimov’s
method are obtained in Sect. 4.4. Exact solutions of Eq. (4.3) are discussed in
Sect. 4.5 by using the invariant subspace method. Concluding remarks are given
in the last section.

4.2 Lie Symmetry Analysis of FPDEs

Let us consider the Lie symmetry analysis of FPDEs [6–19]:

Δ := ∂αt u− F(x, t, u, ux, uxx) = 0, 0 < α < 1. (4.5)

The infinitesimal operator of the local Lie group of point transformations which are
admitted by Eq. (4.5) is:

X = τ (x, t, u) ∂
∂t

+ ξ(x, t, u) ∂
∂x

+ φ(x, t, u) ∂
∂u
. (4.6)

Applying Lie Theorem about an invariance condition concludes:

Pr(α,2)X(Δ)|Δ=0 = 0, Δ = ∂αt u− F, (4.7)
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where

Pr(α,2)X = X + φ0
α∂∂αt u + φx∂ux + φxx∂uxx , (4.8)

and

φx = Dx(φ)− uxDx(ξ)− utDx(τ ),
φxx = Dx(φx)− uxtDx(τ )− uxxDx(ξ),
φ0
α = Dαt (φ)+ ξDαt (ux)−Dαt (ξux)+Dαt (Dt (τ )u)−Dα+1

t (τu)+ τDα+1
t (u).

Since the lower limit of integral in Riemann-Liouville fractional derivative is fixed,
therefore it should be invariant with respect to the point transformations:

τ (x, t, u)|t=0 = 0, (4.9)

The αth extended infinitesimal has the form:

φ0
α = Dαt (φ)+ ξDαt (ux)−Dαt (ξux)+Dαt (Dt(τ )u)−Dα+1

t (τu)+ τDα+1
t (u),

(4.10)
whereDαt denotes the total fractional derivative. Let us remind the fractional Leibniz
rule:

Dαt
[
u(t)v(t)

] =
∞∑
n=0

(
α

n

)
Dα−nt u(t)Dnt v(t), (4.11)

where

(
α

n

)
= (−1)n−1αΓ (n− α)
Γ (1 − α)Γ (n+ 1)

. (4.12)

Thus from (4.11) we can rewrite (4.10) as follows:

φ0
α = −αDt (τ )∂

αu

∂tα
−

∞∑
n=1

(
α

n

)
Dnt (ξ)D

α−n
t (ux)+Dαt (φ)

−
∞∑
n=1

(
α

n+ 1

)
Dn+1
t (τ )Dα−nt (u). (4.13)

Also from the chain rule

dmf (g(t))

dtm
=

m∑
k=0

k∑
r=0

(
k

r

)
1

k! [−g(t)]
r d

m

dtm
[g(t)k−r ]d

kf (g)

dgk
(4.14)
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and setting f (t) = 1, we get

Dαt (φ) =
∂αφ

∂tα
+ φu ∂

αu

∂tα
− u∂

αφu

∂tα
+

∞∑
n=1

(
α

n

)
∂nφu

∂tn
Dα−nt (u)+ χ (4.15)

where

χ =
∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1

k!

× tn−α

Γ (n+ 1 − α) [−u]
r ∂

m

∂tm
[uk−r ] ∂

n−m+kφ
∂tn−m∂uk

. (4.16)

Therefore

φ0
α = ∂αφ

∂tα
+ (φu − αDt (τ )) ∂

αu

∂tα
− u∂

αφu

∂tα
+ χ

+
∞∑
n=1

[(
α

n

)
∂αφu

∂tα
−
(

α

n+ 1

)
Dn+1
t (τ )

]
Dα−nt (u)

−
∞∑
n=1

(
α

n

)
Dnt (ξ)D

α−n
t (ux).

4.3 Lie Symmetries and Invariant Solution of TFDA
Equation

An over determined system of partial linear differential equations can be extracted
by applying pr(α,2)X to Eq. (4.3) as follows:

τu = τx = ξt = ξu = φuu = 0,

−φ + 2uξx − αuτt = 0,

2σuφxu − σuξxx + 2φx = 0,

(1 − α)τtt + 2φtu = 0,

(2 − α)τtt t + 3φttu = 0,

φu + ατt − 2ξx = 0,

−uφxx − σφu + αστt − u∂αt φu + ∂αt φ = 0,
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∞∑
k=3

(
α

k

)
∂k+1

∂tk∂u
φ ×Dtα−k u

−
∞∑
k=3

(
α

k

)

1 + k
[
(k − α)Dtα−ku×Dt1+k τ + (k + 1)Dtα−kux ×Dtkξ

] = 0.

(4.17)

Solving Eq. (4.17), we obtain the following infinitesimals:

τ = c1 + tc2, ξ = c3 + xc4, φ = 2uc4 − αuc2, (4.18)

where c1, c2, c3, and c4 are arbitrary constants and therefore:

X1 = ∂

∂x
, X2 = t ∂

∂t
− αu ∂

∂u
, X3 = x ∂

∂x
+ 2u

∂

∂u
. (4.19)

Let us consider the invariant solution of Eq. (4.3) corresponding to the third vector
field X3. The similarity variable and similarity transformation corresponding to X3
take the following form:

u(x, t) = x2F(ζ ), ζ = t, (4.20)

where the function F(ζ ) satisfies the following FODE:

x2
(
∂αt F(ζ )− 2F2(ζ )− 4

σ
F2(ζ )

)
= −σ. (4.21)

Obviously, finding a general solution for Eq. (4.21) is not possible and we have to
solve it in a restricted domain. To do this, we impose the following condition to
Eq. (4.20):

∂αt F(ζ )−
(

2 + 4

σ

)
F2(ζ ) = −ζ−2α. (4.22)

Corresponding exact solution of Eq. (4.22) has the following form:

F(ζ ) = σΓ (1 − α)+
√
σ 2Γ (1 − α)2 + (8σ 2 + 16σ)Γ (1 − 2α)2

(σ + 2)Γ (1 − 2α)
ζ−α. (4.23)

Therefore, the invariant solution of Eq. (4.3) is

u(x, t) = σΓ (1 − α)+√
σ 2Γ (1 − α)2 + (8σ 2 + 16σ)Γ (1 − 2α)2

(σ + 2)Γ (1 − 2α)
t−αx2,

(4.24)
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Fig. 4.1 Exact solution of (4.24) with respect to σ = 1 and (a) α = 0.9, (b) α = 0.8, (c) α = 0.7,
(d) α = 0.6

provided that

x2t−2α = σ. (4.25)

Blue curves in Fig. 4.1a–d demonstrate the solution (4.24) in restricted
domain (4.25) with various fractional orders and σ = 1.
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4.4 Conservation Laws

In this section, we use Ibragimov method [20] for constructing the conservation
laws of Eq. (4.3). To do this, we recall some preliminaries including the fractional
derivatives and integrals that we use here. The Riemann-Liouville left-sided time-
fractional derivative can be written in the form:

Dαt = Dmt
(

0I
m−α
t u

)
, (4.26)

where Dt is differentiation operator with respect to t , m = [α] + 1, and 0I
m−α
t u is

the left-sided time-fractional integral of orderm− α defined by

(
0I
m−α
t u

)
(x, t) = 1

Γ (m− α)
∫ t

0

u(x, ξ)

(t − ξ)α−m+1 dξ. (4.27)

A vector field C = (
C t ,C x

)
is called a conserved vector for Eq. (4.3) if it satisfies

the following conservation law:

Dt(C
t )+Dx(C x) = 0. (4.28)

Formal Lagrangian of the TFDA equation can be written as:

L = v(x, t)
[
∂αt u− uuxx − 1

σ
u2
x + σ

]
, (4.29)

where v(x, t) denotes the dependent nonlocal variable. The Euler-Lagrange operator
with respect to u is as follows:

δ

δu
= ∂

∂u
+ (
Dαt

)∗ ∂

∂Dαt u
−Dx ∂

∂ux
+D2

x

∂

∂uxx
, (4.30)

where
(
Dαt

)∗ is the adjoint operator of Dαt which one can find as:

(
Dαt

)∗ = (−1)m tI
m−α
T

(
Dmt

) ≡ C
t D

α
T . (4.31)

Here Ct D
α
T is the Caputo right-sided fractional differential operator of order α and

(
t I
m−α
T ψ

)
(x, t) = 1

Γ (m− α)
∫ T

t

ψ(x, ξ)

(ξ − t)α−m+1 dξ. (4.32)

Now, we can construct the adjoint equation to the time-fractional diffusion-
absorbtion equation as Euler-Lagrange equation:

δL

δu
= (
Dαt

)∗
v − uvxx −

(
2

σ
− 2

)
(vux)x = 0. (4.33)
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Taking into account the case of the variables x, t , and u(x, t), we have

X +Dt(τ)I +Dx(ξ)I = W
δ

δu
+DtN t +DxN x, (4.34)

where I is the identity operator and N t , N x are Noether operators and

X = Pr(α,2)X, W = φ − τut − ξux. (4.35)

In Eq. (4.34), the operator N t takes the form:

N t = τI+
m−1∑
k=0

(−1)kDα−1−k
t (W )Dkt

∂

∂Dαt u
−(−1)mJ

(
W ,Dmt

∂

∂Dαt u

)
, (4.36)

where

J(�,�) = 1

Γ (m− α)
∫ t

0

∫ T

t

�(x,μ)�(x, η)

(η − μ)α+1−m dηdμ. (4.37)

Moreover, the operator N x has the following form:

N x = ξI +W

(
∂

∂ux
−Dx ∂

∂uxx

)
+Dx(W )

(
∂

∂uxx

)
. (4.38)

When Eq. (4.3) is valid, for any its corresponding generatorX we have:

Pr(α,2)L +Dt(τ)L +Dx(ξ)L = 0, (4.39)

which concludes the conservation law

Dt
(
N tL

)+Dx (N xL
) = 0. (4.40)

Therefore, the components of the conserved vectors for Eq. (4.3) are

C ti = vDα−1
t (Wi )+ J (Wi , vt ) , (4.41)

C xi = Wi

(
vxu+ (1 − 2

σ
)vux

)
− vuDx(Wi ), i = 1, 2, 3, (4.42)

where

W1 = −ux, W2 = −αu− tut , W3 = 2u− xux. (4.43)
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That is

C t1 = vDα−1
t (−ux)+ J (−ux, vt ) ,

C x1 = −ux
(
vxu+ (1 − 2

σ
)vux

)
+ vuuxx,

C t2 = −αvDα−1
t (u)−tvDα−1

t (ut )−(α − 1)vDα−2
t (ut )−αJ (u, vt )−J (tut , vt ) ,

C x2 = −(αu+ tut )
(
vxu+ (1 − 2

σ
)vux

)
+ vu(αux − tutx), (4.44)

and

C t3 = 2vDα−1
t (u)− xvDα−1

t (ux)+ 2J (u, vt )− J (xux, vt ) ,

C x3 = (2u− xux)
(
vxu+ (1 − 2

σ
)vux

)
− vuux + xvuuxx. (4.45)

4.5 Exact Solutions by Invariant Subspace Method

In this section, we briefly describe the invariant subspace method applicable to the
time FPDEs of the form [21–25]:

∂αt u = Ξ [u], α ∈ R+. (4.46)

Definition 1 A finite dimensional linear space Wn = span{ω1(x), ω2(x), · · · ,
ωn(x)} is said to be invariant subspace with respect to Ξ , if Ξ [Wn] ⊆ Wn.

Suppose that Eq. (4.46) admits an invariant subspace Wn. Then from the above
definition, there exist the expansion coefficient functions ψ1, ψ2, · · · , ψn such that

Ξ

[ n∑
i=1

λiωi(x)

]
=

n∑
i=1

ψi(λ1, λ2, · · · , λn)ωi(x), λi ∈ R. (4.47)

Hence

u(x, t) =
n∑
i=1

λi(t)ωi(x), (4.48)

is the solution of Eq. (4.46), if the expansion coefficients λi(t), i = 1, · · · , n,
satisfy a system of FODEs:
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⎧⎪⎨
⎪⎩
∂αt λ1(t) = ψ1(λ1(t), λ2(t), · · · , λn(t)),

...

∂αt λn(t) = ψn(λ1(t), λ2(t), · · · , λn(t)).
(4.49)

Now, in order to find the invariant subspace Wn of a given fractional equation, one
can use the following theorem [26].

Theorem 1 Let functions ωi, i = 1, · · · , n form the fundamental set of solutions
of a linear nth order ODE

L[y] ≡ y(n) + a1(x)y
(n−1) + · · · + an−1(x)y

′ + an(x)y = 0, (4.50)

and let Ξ be a smooth enough function. Then the subspace Wn = span{ω1(x),

ω2(x), · · · , ωn(x)} is invariant with respect to the operatorΞ of order k ≤ n− 1 if
and only if

L(Ξ [y])|L[y]=0 = 0. (4.51)

Moreover, dimension of the invariant subspace Wn for the kth order nonlinear ODE
operatorΞ [y] satisfies n ≤ 2k + 1.

Now, from Eqs. (4.3), (4.46) and Theorem 1 one can find that the dimension of
invariant subspace Wn for the operator Ξ [u], corresponding to Eq. (4.3), satisfies
n ≤ 2(2) + 1 = 5. After some calculations, we can find that W2 = span{1, x2} is
the invariant subspace of Ξ [u] = uuxx + 1

σ
(ux)

2 − σ , because

Ξ [λ1+λ2x
2] = ψ1(λ1, λ2)+ψ2(λ1, λ2)x

2 = 2λ1λ2−σ+2

(
1 + 2

σ

)
λ2

2x
2 ∈ W2.

(4.52)
Therefore, in order to find the exact solution of the form:

u(x, t) = λ1(t)+ λ2(t)x
2, (4.53)

it is sufficient to solve the system of FODEs

{
∂αt λ1(t) = ψ1(λ1(t), λ2(t)) = 2λ1(t)λ2(t)− σ,
∂αt λ2(t) = ψ2(λ1(t), λ2(t)) = 2

(
1 + 2

σ

)
λ2

2(t).
(4.54)

Solving the second equation of (4.54) concludes

λ2(t) = Γ (1 − α)t−α
2
(

1 + 2
σ

)
Γ (1 − 2α)

. (4.55)
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Substituting λ2(t) in the first equation of (4.54) and solving the obtained equation
yields

λ1(t) = σ(σ + 2)Γ (1 − 2α)tα

σΓ (1 − α)− (σ + 2)Γ (α + 1)Γ (1 − 2α)
. (4.56)

Therefore, from Eq. (4.53) we obtain

u(x, t) = σ(σ + 2)Γ (1 − 2α)tα

σΓ (1 − α)− (σ + 2)Γ (α + 1)Γ (1 − 2α)
+ Γ (1 − α)t−α

2
(

1 + 2
σ

)
Γ (1 − 2α)

x2.

(4.57)
Figure 4.2 demonstrates the exact solution (4.57) in different time levels and various
fractional orders.
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Fig. 4.2 Exact solution of (4.57) with respect to σ = 1 and various α in different values of time
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4.6 Conclusion

The symmetry properties of the TFDA equation and invariant solution in a restricted
domain were investigated. Motivated by the Ibragimov’s conservation laws theorem
we obtain the conserved vectors. Exact solution of the TFDA equation is extracted
by invariant subspace method.
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Chapter 5
Integral Balance Approach to 1-D
Space-Fractional Diffusion Models

Jordan Hristov

5.1 Introduction

5.1.1 The Superdiffusion Model

The description of anomalous transport processes often involves the use of frac-
tional scaling. Fractional differential equations (FDEs) are suitable for modelling
of anomalous diffusive processes such as subdiffusion (fractional in time) and
superdiffusion (fractional in space) in non-homogeneous porous media [15], plas-
mas [3], and turbulent transports [2]. Since most of the analytical solutions for FDEs
are difficult to obtain and most of them are approximate in nature [7, 15] resulting in
forms unsuitable for post-solution applications and engineering analysis, numerical
methods are most popular to solve FDEs [4, 9, 16, 29].

This chapter presents integral-balance solutions of the 1-D linear space-fractional
equation (5.1) of order 1 < β < 2 with three cases of diffusion coefficient:
(1) Constant (space-independent) diffusion coefficient Dβ = Dβ0, (2) power-law
diffusion coefficient (5.2), and potential power-law diffusion coefficient (termed
also as additive power-law relationship) (5.3):

∂u(x, t)

∂t
=RL Dβ0(x)

∂βu(x, t)

∂xβ
(5.1)

Dβ(x) = Dβ0x
α, α ≤ β, x ≥ 0 (5.2)
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Dβ(x) = Dβ0x
α + γxxα, α ≤ β, γx > 0, x ≥ 0, (5.3)

The fractional derivative ∂βu(x, t)/∂xβ in (5.1) is left-sided spatial derivative of
either Riemann–Liouville (RL) (5.4) or Caputo type (5.5) of order β (1 < β < 2)
[26, 27]

∂βu(x, t)

∂xβ
=RL D

x
β = 1

�(2 − β)
d2

dx2

∫ x

0

u(x, t)

(x − z)β−1 dz (5.4)

∂βu(x, t)

∂xβ
=C Dxβ = 1

�(2 − β)
∫ x

0

1

(x − z)β−1

d2u(x, t)

dx2 dz (5.5)

∂βu(x, t)

∂xβ
= ∂2u(x, t)

∂x2 , β = 2 (5.6)

The common approach in solution of (5.1) is to apply numerical methods such as
Galerking method [9, 29] and spectral-method [8], while analytical solutions are
rare [1, 26, 27]. In this context, the solution to the space-fractional equation (5.1)
with Dβ = Dβ0 has been developed by Huang and Liu [26] by Green functions
in terms of the similarity variable ξ = x/(Dt)(1/β). However, such solutions are
not suitable for physical and engineering applications and this is the main reason to
develop closed-form approximate solutions applying the integral-balance method.

5.1.2 The Coefficient Dβ(x) and Its Physically Correct Spatial
Correlation

The power-law superdiffusivityDβ(x) = Dβ0x
α, for instance, is commonly used in

numerical examples demonstrating various solution approaches to (5.1) [1, 26, 27].
However, at x = 0 we have Dβ(x = 0) = 0 and we see that Eq. (5.1) degenerates.
Therefore, calculating the flux q = −Dβ(0)[∂βu(0, t)/∂xβ ] at the boundary x = 0
the physical inadequacy appears immediately since the transport coefficient Dβ(x)
cannot be zero everywhere in the medium. To avoid this inadequacy the spatial
approximation of Dβ(x) was suggested in [24] as (5.7)

Dβ(x) = Dβ0 + γxxα ⇒ Dβ(x) = Dβ0(1 + kxxα), 0 ≤ x ≤ ∞ (5.7)

With (5.7) and x = 0 the model (5.1) is not yet a degenerate equation because
Dβ0 �= 0. The dimension of γx is xβ−α/s because the entire expression of Dβ(x)
should have a dimension mβ/s; respectively the dimension of kx = γx/Dβ0 is
1/mα. The functional relationship (5.7) (see also (5.3)) was conceived in [24] as a
correlation commonly used in integer-order models of diffusion and heat conduction
[6, 12, 14].
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The superdiffusivity in forms Dβ0x
α and Dβ(x) = Dβ0 + γxx

α with α >

0 describes media with increasing space-dependent diffusivity as the diffusant
penetrates into it. As a physical example, consider a underground water from a
deep source flowing to the surface when the soil permeability increases (enhanced
diffusion) in the direction from the source to the surface. In the opposite case, when
α < 0 the corresponding physical situation is a fluid infiltration into a soil with a
compactness increasing in depth. In terms of superdiffusivity these cases as: fast
spatial superdiffusivity (α > 0), slow spatial superdiffusivity (α < 0) and more
comments are available elsewhere [23, 24].

The chapter encompasses the main steps and results of approximate analytical
solutions of (5.1) with a constant diffusivity as well as the relationships presented
by (5.2) and (5.3), developed by the integral-balance approach [13, 17]. The
approach was successfully applied to models with time-fractional derivatives [18–
21, 25]. The Dirichlet problem is used as an example demonstrating the method of
solution.

5.2 The Integral Method

Consider the Dirichlet problem with initial and boundary condition

u(x, 0) = 0, u(0, t) = 1, u(∞, t) = 0, t ≥ 0 (5.8)

The integral-balance method [13, 17] uses the concept of a finite penetration
depth δ(t). This assumption defines a sharp front of the solution, thus separating the
medium of disturbed (u(x, t) �= 0) and undisturbed part (u(x, t) = 0) separated
by the position of δ(t) evolving in time. In a semi-infinite medium, this concept
requires the boundary condition u(∞, t) = 0 [see (5.8)] to be replaced by two new
conditions (Goodman’s conditions), namely: u(δ) = ∂u(δ, t)/∂x = 0.

5.2.1 Principle Integration Techniques

5.2.1.1 Single-Integration Method

The integral over the penetration depth with respect to the space co-ordinate x yields

∫ δ

0

∂u(x, t)

∂t
dx =

∫ δ

0
Dβ(x)

∂βu(x, t)

∂xβ
dx (5.9)

With the Lebnitz rule applied to left side of (5.9) we get

d

dt

∫ δ

0
u(x, t)dx =

∫ δ

0
Dβ(x)

∂βu(x, t)

∂xβ
dx (5.10)
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This method is known (when β = 2) as the Heat-Balance integral Method
(HBIM) of Goodman [13, 17].

5.2.1.2 Double-Integration Method

The first step of DIM is integration from x = 0 to δ [20, 21]

∫ x

0

∂u(x, t)

∂t
dx =

∫ x

0
Dβ(x)

∂βu(x, t)

∂xβ
dx (5.11)

Since the integral in (5.9) can be presented as
∫ δ

0 u(x, t)dx = ∫ x
0 u(x, t)dx +∫ δ

x u(x, t)dx [20, 21] we may subtract (5.11) from (5.9) that yields

∫ δ

x

∂u(x, t)

∂t
dx =

∫ δ

x

Dβ(x)
∂βu(x, t)

∂xβ
dx (5.12)

The second step of DIM is integration of (5.12) from 0 to δ [20, 21]. Then, applying
the Leibniz rule we get

d

dt

∫ δ

0

(∫ δ

x

u(x, t)dx

)
dx =

∫ δ

0

(∫ δ

x

Dβ(x)
∂βu(x, t)

∂xβ
dx

)
dx (5.13)

Equation (5.13) is the principle integral relation of DIM when space-fractional
derivatives are involved. Detailed analyses regarding the deficiencies of HBIM and
the advantages of DIM are available elsewhere [12, 17–24].

5.2.1.3 Assumed Profile

The integral-balance method, irrespective of the integration technique applied,
suggests replacement of the function u(x, t) by an assumed profile ua(x, δ(t)
expressed as function of the dimensionless space coordinate x/δ so that 0 < x/δ <
1. The profile may be of a polynomial type as in the classical application of HBIM
[13, 17] or a parabolic profile with stipulated or unspecified exponent[17]. The
approximate solutions encompassed by this chapter utilize a parabolic profile with
unspecified exponent [17–21, 25] defined as

ua(x, t) =
(

1 − x

δ

)n
, 0 < x < δ, n > 0 (5.14)

Therefore, the finite penetration depth concept (it means also a finite speed of the
diffusant) transforms the problem defined in a semi-infinite area to a two-point
problem by definition of the Goodman boundary conditions (5.9) at the front of
the diffusion layer. The definition of the assumed profile (5.14) is general, without
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definition of the functional relationship of δ to x, t , and n. The replacement of
u(x, t) by ua(x, δ(t) in the integral relations (5.10) or (5.13) results in an ordinary
differential equation about δ(t), thus completing the definition of the assumed
profile and the solution, too. However, if the exponent n is not stipulated and
cannot be defined by the boundary conditions, then by application of the least-square
method the optimal exponent could be defined (see further in the text) [19, 22–25].

5.3 Space-Independent Diffusion Coefficient

5.3.1 Rescaling of the Diffusion Term

We start with this simple case [22] since it is instructive about the initial rescaling of
the diffusion equation. Changing the variable in diffusion term of (5.1) as η = x/δ,
where 0 < η < 1, we get ua(x) ⇒ Ua(η) = (1 − η)n and the space-fractional
derivative of the assumed profile can be rescaled as:

∂βua

∂xβ
=
(

1

δ

)β
∂βUa(η)

∂xβ
(5.15)

5.3.2 Single-Integration Method (HBIM)

Further, changing the variable in the integral of RHS of (5.9) as x → η = x/δ we
get

Dβ0

∫ δ

0

∂βua(x)

∂xβ
dx = Dβ0δ

1−β
∫ 1

0

∂βUa(η)

∂ηβ
dη (5.16)

The integration in the left side (5.10) from 0 to δ, replacing u(x, t) by ua(x, t) yields

d

dt

∫ δ

x

ua(x, t)dx = 1

n+ 1

dδ

dt
(5.17)

Combining (5.17) with the result from the integration in (5.16) we get

1

n+ 1

dδ

dt
= Dβ0δ

1−βΦ1(n, β), Φ1(n, β) =
∫ 1

0

∂βUa(η)

∂ηβ
dη (5.18)

Therefore, the equation about δ [with time-independent term Φ1(n, β)] is

dδβ

dt
= Dβ0(n+ 1)Φ1(n, β) (5.19)
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With δ(t = 0) = 0 (no diffusion occurs at t = 0) the expression about δ(t) is
[22]

δ1(t) = (Dβ0t)
1
β [β(n+ 1)Φ1(n, β)]

1
β (5.20)

Here δ1 denotes the penetration depth developed by the single-integration technique
of HBIM. Since 1 < β < 2 when β → 2 we have Φ1(n, β)→ 1 and consequently
δ → √

Dβ0t . Hence, the dimension of Dβ0 changes from [mβ/s] to [m2/s] and δ1
reduces to the HBIM solution [13, 17] of the integer-order diffusion models.

5.3.3 Double-Integration Method (DIM)

With the re-scaled diffusion term (5.15) and changing the variables in the integrals
of (5.13) we have [22]

∫ δ

0

∫ δ

x

∂βua(x, t)

∂xβ
dxdx = Dβ0

∫ 1

0

∫ 1

η

δ2
(

1

δ

)β
∂βUa(η)

∂xβ
dηdη (5.21)

Therefore, the equation of the penetration depth δ2 is [22]

1

(n+ 1)(n+ 2

d(δ2)

dt
= Dβ0δ

2−βΦ2(n, β) (5.22)

Φ2(n, β) =
∫ 1

0

∫ 1

η

∂βUa(η)

∂xβ
dηdη (5.23)

The solution of (5.22) defines the penetration depth δ2

δ2(t) =
(
Dβ0t

) 1
β

[
β

2
(n+ 1)(n+ 2)

] 1
β

(5.24)

For β → 2 the scaling is δ2 → √
Dβ0t and the dimension of Dβ0 changes from

[mβ/s] to [m2/s], while for β → 2 the terms Φ2(n, β) → 1 and (5.24) reduce to
integer-order DIM solution classical diffusion equation [12, 20, 21].

5.3.4 Approximate Profiles

With developed functional relationships of δ1 and δ2 we may present the complete
expressions of the approximate solutions, namely
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5.3.4.1 Single-Integration Method

u1
a =

(
1 − ξ

N1(n, β)

)n
, ξ = x

(Dβ0t)1/β
(5.25)

N1(n, b) = [β(n+ 1)Φ1(n, β)]1/β (5.26)

5.3.4.2 Double-Integration Method

u2
a =

(
1 − ξ

N2(n, β)

)n
, ξ = x

(Dβ0t)1/β
, (5.27)

N2(n, b) =
[
β

2
(n+ 1)(n+ 2)Φ2(n, β)

]1/β

(5.28)

It is noteworthy that the approximate profiles define the non-Boltzmann similar-
ity variable ξ = x/(Dβ0t)

1/β in a natural way. The position of the front corresponds
to ua(ξ) = 0 for ξ = N1(nβ) or ξ = N2(nβ), while its rate is proportional to t1/β

and the characteristic diffusion length-scale is (Dβ0t)
1/β .

After the determination of δ1(t) and δ2(t) the only unresolved problems are the
numerical evaluation of the factor Φ1(n, β) and the approximate space derivative
∂βUa(η)/∂η

β . In the sequel it is explained how this could be done.

5.3.5 Evaluation of the Numerical Factors Φ1(n, β)

and Φ1(n, β)

The evaluation of Φ(n, β) and Φ(n, β) can be done by expansion as a convergent
series of Ua(η) = (1 − η)n [21], namely

Ua(η) = (1 − η)n ≈
K∑
j=0

mjη
j ,mj = U(j)(0)

�(j + 1)
, 0 < η < 1 (5.29)

The series (1 − η)n ≈ ∑K
j=0mjη

j converges rapidly (see [23] and the analysis
therein). Now, we have to evaluate the approximate space derivative of the assumed
profile and the space integral of it, depending on the integration technique applied.
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5.3.5.1 Single-Integration Method

Now, the fractional differentiation of the series (5.29) is

∂Ua(η)

∂η
=RL D

β
x ≈

K∑
j=0

mj

�(j − β + 1)
ηj−β = η−β

K∑
j=0

mj

�(j − β + 1)
ηj (5.30)

If the Caputo space derivative is considered, for instance, then operation in (5.30)
yields

∂Ua(η)

∂η
=C Dβx ≈

K∑
j=1

mj

�(j − β + 1)
ηj−β (5.31)

with only difference in the first term of (5.30)
Therefore, by integration of the series (5.30), from 0 to 1, the approximation of

Φ1(n, β) can be obtained, namely

Φ1(n, β) ≈
∫ 1

0

K∑
j=1

mj

�(j − β + 1)
ηj−βdη ≈

K∑
j=0

mj

�(j − β + 1)
(5.32)

5.3.5.2 Double-Integration Method

Applying the double integration to (5.30) the approximation of Φ2(n, β) is [22]

Φ2(N, β) ≈
K∑
j=0

(
1

�(2 + j − β) −
1

�(3 + j − β)
)

(5.33)

5.3.6 The Number of Terms in the Truncated Series Expansion
of Φ(n, β) and the Minimum Value of n

Now, the reasonable question is: How many terms of the truncated series (5.32)
and (5.33) are needed to assure the accuracy of the approximate integral-balance
solution? It was established in [22] and [23] that 9 numbers of the series expan-
sion (5.29) are enough (see more details and analysis in the original publications).
Moreover, it was established that this condition permits to evaluate the minimum
value of n assuring Φ1(n, β) > 0 and Φ2(n, β) > 0, which is mandatory since δ is
a physically defined variable with a dimension of length, decreases as the fractional
order β increases. The numerical simulations in Fig. 5.1 supports these comments.
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Fig. 5.1 Effect of the
exponent n on Φ1(n, α, β) for
α = 0 and β = 1.8 and the
number of terms of the
truncated expansions of the
assumed profile. Adapted
from [22] by courtesy of
Thermal Science

Table 5.1 Optimal exponents of the approximate profile [22]

β 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

nopt (HBIM) 4.869 4.899 4.929 5.015 5.125 5.355 5.565 5.705 5.975

nopt (DIM) 9.697 9.414 9.125 8.410 8.575 8.315 8.101 7.765 7.850

5.3.7 Optimal Exponent of the Approximate Solution

Applying the least-squares method to determine the undefined exponent n we have
to minimize the functional

EL(n, β, t) =
∫ δ

0

[
∂ua

∂t
−Dβ0

∂βua

∂xβ

]2

dx → minimum (5.34)

In the area where the integral-balance method is applied, this step is known as
Langford criterion [12, 17, 25, 28]. It was successfully applied to subdiffusion
equations [17, 19–21, 25]. In terms of the variable η (5.34) can be expressed as
[22]

EL(n, β, t) = 1

δ2β

∫ 1

0

[
n(1 − η)n−1ηδβ−1 dδ

dt
−Dβ0

∂βUa(η)

∂ηβ

]2

dη (5.35)

The minimization procedure determining the optimal values of the exponent
nopt is well described and we refer to [22–24] and [17, 25, 28] for details. It
was successfully applied to subdiffusion equations [17, 19–21, 25]. The optimal
exponents determined for the profiles (5.25) and (5.27) are summarized in Table 5.1.
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5.3.8 Benchmarking to Exact Solutions

The exact solution of Huang and Liu [26] to the model (5.1) in terms of Caputo
derivatives (here it is equivalent to the Riemann–Liouville derivative due to the zero
initial conditions) expressed through the similarity variable ξ = x/(Dβ0t)

1/β is:

uHL(x, t) = u(ξ) =
L

2−β
β (x)

L
2−β
β (x=0)

= G1,b(x,t)

L
2−β
β (x=0)

(5.36)

where

L
2−β
β (x=0) = 1

πβ

(
1

β

)
cos

[
(2 − β)π

2β

]
(5.37)

and

G1,β(x, t) = 1(
Dβt

) 1
β

L
2−β
β

⎛
⎝− x(

Dβt
) 1
β

⎞
⎠ , 1 < β ≤ 2 (5.38)

L
2−β
β (x) = 1

πx

∞∑
k=1

(−x)k
�
(

1 + k
β

)
n! sin

[
kπ

β
(1 − β)

]
, x > 0. (5.39)

Numerical simulations of these exact solutions are not easy tasks because the
calculations are very sensitive to the number of terms used in the approximations
(see detailed analysis in [22]). To avoid blow-ups the simulations used truncated
series of 500 terms [22] indicating that such exact solutions can be handled only as
textbook examples for simulations but, in fact,they are unpractical. The comparative
plots in Fig. 5.2 [22] reveal that the maximum pointwise errors of approximations
[compared to (5.36)] do not exceed 0.04, an error typical for integral-balance
solutions [12, 17, 19–21, 25]

5.4 Power-Law Diffusion Coefficient Dβ(x) = Dβ0x
β

5.4.1 Penetration Depth (HBIM)

With rescaled space-fractional derivative (5.15) and Dβ(x) = Dβ0x
α = Dβ0η

αδα

the diffusion term of (5.1) takes the form

Dβ0x
α

(
1

δ

)β ∂βUa(x)
∂ηβ

= Dβ0η
αδα−β

∂βUa(x)

∂ηβ
(5.40)
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Fig. 5.2 Approximate profiles compared to the exact ones (a, c, e) and pointwise errors (b, d, f)
for 1.4 < β < 1.7. Adapted from [22] by courtesy of Thermal Science

With the single integration of HBIM we get

1

n+ 1

dδ

dt
= Dβ0δ

1+α−βΦα1 (n, α, β) (5.41)

Φα1 (n, α, β) =
∫ 1

0
ηα
∂βUa(η)

∂ηβ
dη (5.42)

where Φα1 (n, α, β) is time-independent.
Further, from (5.41) we get [23]

1

β − α
dδβ−α

dt
= Dβ0(n+ 1)Φα1 (n, α, β) (5.43)

δp(t) = (Dβ0t)
1
β−α [(β − α)(n+ 1)Φα1 (n, α, β)]

1
β−α (5.44)

where the index p denotes power − law.
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For α = 0 this result reduces to δp = (Dβ0t)
1/β as it was developed for the

case of Dβ(x) = Dβ0 = const. Further, since 1 < β < 2, when β → 2 we
have δp(t) → (Dβ0t)

1/(2−α). Moreover, for α = 0 and β → 2 the penetration
depth scales as δp → √

Dt . Therefore, (5.44) reduces to all known versions of the
penetration depth expressions by a simple change in the parameters, that actuality
indicates its physical correctness, and the correctness of the solution, too. Besides,
the scaling defined by (5.44) defines the conditions β > α and 1/(β − α) > 0,
because, by definition, δ(t) should be a growing in time penetration depth .

Repeating the fractional differentiation of the approximated (by a series) space
derivative, the final form of the approximation of Φα1 (n, α, β) is

Φ1(n, α, β) =
K∑
j=0

mj

(j − β + α + 1)�(j − β + 1)
, ϕ1 = ηα ∂

βUa(η)

∂ηβ
(5.45)

Furthermore, the question about the number of term of the truncated series
approximating the assumed profile has the same answer, that is nine terms are
enough (see detailed discussion in [23]).

5.4.2 Approximate Profiles and Optimal Exponents

After determination of δp we may express the complete approximate solution as

ua−p =
⎛
⎝1 − x

(Dβ0t)
1
β−α Np

⎞
⎠
n

=
(

1 − ξp

Np

)n
(5.46)

Np = [(β − α)(n+ 1)Φ1(n, α, β)]
1
β−α (5.47)

We stress again on the fact that due to the construction of the assumed profile,
the approximate solution naturally defines the non-Boltzmann variable ξp =
x/(Dβ0t)

1/(β−α).
The next step is determination of the optimal exponent that requires minimization

of the following functional with respect to n

EL(n, α, β, n, t) =
∫ 1

0

(
n(1 − η)n−1 η

δ

dδ

dt
−Dβ(ηα)δ−β ∂

βUa(η)

∂ηβ

)
dη (5.48)

The optimization procedure developed in [23] indicated that the optimal expo-
nents are strongly dependent on β but are practically unaffected by α (see Fig. 5.3).
Numerical data are available elsewhere [23].
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Fig. 5.3 Three-dimensional
scattered diagram
nopt = f (α, β). Adapted
from [23]

Fig. 5.4 Approximate solutions. The order of arrangement of the profiles from left to right follows
the increase in β. (a) α = 0 (intermediate transport); (b) α = 0.1 (intermediate transport). See
comments on this regimes in Sect. 5.6

Approximate profiles as functions of the similarity variable ξp = 1/(Dβ0t)
1/(β−α)

are shown in Figs. 5.4 and 5.5. These profiles belong to two groups. Precisely, for
0 ≤ α ≤ 0.5 roughly, the profiles with large β propagate faster (Fig. 5.4a–c) while
for 0.5 ≤ α ≤ 1 the behavior is just the opposite. The group formations is on
the order of the arrangement of the profiles along the abscissa and the increase (or
decrease) of β.
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Fig. 5.5 Approximate solution. The order of arrangement of the profiles from left to right follows
the decrease in β. (a) α = 0.5 (turbulent (β < 1.5) and intermediate (β < 1.5) transport). (b)
α = 0.75 (turbulent (β < 1.8) and intermediate (β > 1.8) transport)

5.5 Potential Power-Law (Additive) Diffusion Coefficient

5.5.1 Rescaling and Penetration Depth

With Dβ(x) = Dβ0 + γxxα (5.3) the diffusion equation (5.1) can be presented as
[24]

∂u(x, t)

∂t
= Dβ0

∂βu(x, t)

∂xβ
+ γxxα ∂

βu(x, t)

∂xβ
(5.49)

With a change of the variable x −→ η we get

∂u(η)

∂t
= Dβ0δ

1−β ∂βFa(η)
∂ηβ

+ γxδα−βηα ∂
βFa(η)

∂ηβ
(5.50)

Now, applying HBIM (for the sake of simplicity) [24] we have

1

β(n+ 1)

dδβ

dt
= Dβ0Φ1(n, α, β)+ δαγxΦ2(n, α, β) (5.51)

Φ2(n, α, β) =
∫ 1

0
ηα
∂βFa(η)

∂ηβ
dη (5.52)

Now, with y = δβ ⇒ δα = yα/β we get a reduced Bernoulli equation

dy

dt
= a + byp, p = α

β
(5.53)
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a = Dβ0β(n+ 1)Φ1(n, α, β), b = γxβ(n+ 1)Φ2(n, α, β) (5.54)

The solutions of (5.53) [24] use the substitution y = δβ = λt and the result is

δ =
(
at + bλp

(1 + α/β) t
1+ α

β

) 1
β =⇒ δ = (at) 1

β

[
1 + b

a
λp

1

(1 + α/β) t
α
β

] 1
β

(5.55)

The scaling analysis of (5.55) resulted in the fact that λ = Dβ0. For b = 0 we get
the solution with the constant diffusion coefficient [22] presented earlier.

5.5.2 Time-Scales and Fractional Analogue of the Fourier
Number

The penetration depth δ(t) (5.55) has a dimension of length. Thus, the second
term in squared brackets of (5.55) should be dimensionless because the dimension
of (at)1/β is length. In detail, the ratio b/a = (γx/D

1−α/β
β0 )(Φ1/Φ0) is a scaled

characteristic time (with a dimension [sα/β ]) defined as [24]

t
α/β

1 =
(
D

1−α/β
β0 /γs

)
, t1 =

(
D

1−α/β
β0 /γs

)β/α
(5.56)

and the ratio

tα/β/t
α/β

1 = (b/a)λα/βtα/β/t0 =s Hr (5.57)

is a scaled fractional quasi-Fourier number sHr [24] which can be expressed as

sHr =
⎛
⎝ γx

D
1−α/β
β0

⎞
⎠

−β/α
(5.58)

where the lower prefix s means space
This result directly indicates that (5.3) and (5.7) are physically adequate defini-

tions of the diffusion coefficients.
Alternatively, as it was demonstrated in [24], there is a second definition of

characteristic diffusion time, namely

t2 =
(
Dβ0

γ 1−k
x

) 1
k = γ

β/α
x

D
(β−α)/α
β0

=
⎛
⎝ γ

β
x

D
(β−α)
β0

⎞
⎠

1
α

(5.59)
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As it was demonstrated in [24] that these are two identical definitions, because

sHr1

sHr2
= t2

t1
= γ xβ/α

D
β0
β/α − 1

= 1 (5.60)

5.5.2.1 Approximate Profiles (Solutions)

The result (5.55) allows two forms of the approximate profiles [24], namely

ua1 =
⎛
⎝1 − x

(Dβ0t)
1
β N1

⎞
⎠
n

=
(

1 − ξ1

N1

)n
(5.61)

N1 = [(β)(n+ 1)Φ0(n, α, β)]
1
β

[
1 + (sHr)

α
β
Ψ (n, α, β)

(1 + α/β)
] 1
β

(5.62)

Ψ (a, α, β) = Φ1(n, α, β)

Φ0(n, α, β)
(5.63)

and

ua2 =
(

1 − x

(γxt)
1
β−α N2

)n
(5.64)

N2 =
[
(β − α)Φ1(n, α, β)

1
β−α + (sHr)

−α
α−β (β − α)Φ0(n, α, β)

[1 − α/(β − α)]
] 1
β−α

(5.65)

The evaluations of Φ0(n, α, β) and Φ1(n, α, β) by expansion of Ua(η) = (1 −
η)n as series is the same as in the previous sections. We will only give the evaluation
of Ψ (n, α, β)

Ψ (n, α, β) =
K∑
j=0

mj

(j − β + α + 1)�(j − β + 1)

⎛
⎝ K∑
j=0

mj

�(2 + j − β)

⎞
⎠

−1

(5.66)
The determination of the optimal exponents of the profile requires minimization

of the least-square error of approximation with a residual function defined as

R(ua(x, t)) = n(1 − η)n−1 n

δ

dδ

dt
−Dβ0δ

−β ∂βFa(η)
∂ηβ

− γxδα−β ∂
βFa(η)

∂ηβ
(5.67)

The optimal exponents determined in [24] are practically independent of α but
decrease with increase in β, as it is illustrated in Fig. 5.6 (the same was observed
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Fig. 5.6 3-D scattered
diagram nopt = f (α, β).
Adapted from [23]

with the diffusion coefficient Dβ(x) = Dβ0x
α). In this context, the relationship

nopt = f (β) is practically linear and be approximated as nopt = 10 − 3.4β [24].
As with the integer-order models [17] and their time-fractional counterparts [18,

18–21, 25] the requirement to have a positive profile decaying in time impose the
condition n > 2. All optimal exponents corresponding to the models discussed here
satisfy this condition. Numerical data are available elsewhere [22–24].

5.6 Transport Regimes Modelled

5.6.1 Front Propagation and Effects of the Exponent α

The values of α and β control the diffusion process and as it was mentioned in
Sect. 5.1.2 two principal superdiffusion regimes could be defined: fast superdiffu-
sion and slow superdiffusion.

Fast Superdiffusion The results (5.44) and (5.64) where δ ≡ t 1
β−α strictly require

β > α because the penetration front is physically defined to be a growing in
time distance. If the value of β is stipulated, then with increase in α the exponent
1/(β − α) will increase too and consequently faster front propagation will take
place. Oppositely, when α is decreasing the speed controlling exponent 1/(β − α)
decreases and the diffusion decelerates, and vice versa.

Moreover, the speed of the front is dδ/dt ∝ (1/(β − α))t(1+α−β)/(β−α). With
1+α−β > 0, the general condition β > α leads to an increase in time speed of the
penetration front. In fact, this requires the condition α > β − 1 to be obeyed. For
example, if β = 1.2, this requirement defines a positive growth of the penetration
depth when 0.2 < α < 1. Similarly for β = 1.5, we need 0.5 < α < 1 to be
obeyed.
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However, if 1 + α − β < 0, then the front propagates with a speed decaying in
time. Precisely, the condition imposed in this case is α < β − 1. In addition, the
ratio (1−β)/β is always negative, and when α = 0 (constant diffusion coefficient),
for instance, the speed of the front is dδ/dt ∝ (1/β)t(1−β)/β , then the front will
propagate with a speed decaying in time.

For the intermediate case α = β − 1 we have δ(t) = (Dβ0t)(n + 1)Φ1(n, α, β)

and therefore the front propagates linearly in time and its speed does not change
because dδ/dt = Dβ0(n+ 1)Φ1(n, α, β)= const.

Slow Superdiffusion The expression (5.44), without loss of generality, for α < 0
and 1 < β < 2 can be written as

δp(t) = (Dβ0t)
1
β+α [(β + α)(n+ 1)Φ1(n, α, β)]

1
β+α (5.68)

For a given value of β, the exponent 1/(β + α) decreases when the absolute
value of α < 0 is increasing and therefore, the diffusion process decelerates. This
is a slow superdiffusion process. Referring again to the case with α = 0, when
the spatial damping effect depends only on the value of the fractional order β, we
have the case of slow spatial superdiffusion. Subsequently, with α > 0 (fast spatial
superdiffusion) the diffusant penetrates faster into the medium. Oppositely, for α <
0 (slow spatial superdiffusion) the diffusion will be slower than in the case with
α = 0.

5.6.2 Mean Square Displacement and General Rules

The mean square displacement can be generalized as [5, 10, 11]

〈x2〉 =
∫ δ

0
x2u(x, t)dx ∝ t

2
dw (5.69)

In general, the diffusion on fractal structure is defined with dw > 2, which means a
dispersive transport with reduced diffusion, i.e. subdiffusion process because 〈x2〉 ≡
t2/dw and 2/dw < 1. For dw = 2 we have the Fickian diffusion. When dw < 2 we
have enhanced diffusion with sub-cases: intermediate transport for 1 < dw < 2, a
ballistic transport for dw = 1 and a turbulent transport for dw < 1. With a defined
finite depth of the diffusion δ the mean squared displacement calculated with the
profile (5.14) is

〈x2〉 =
∫ δ

0
x2

(
1 − x

δ

)n
dx = 2δ2

(n+ 1)(n+ 2)
=⇒ 〈x2〉 ≡ δ2 ∝ t

2
(β−α) (5.70)
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Hence, the difference (β − α) controls the transport regime, as in the slow and
fast diffusion processes commented above. By definition we have 1 < β < 2 and
when α = 0, i.e. the diffusion coefficient is space-independent with δ2 ∝ t1/β

and all regimes are subdiffusive. Further, when the diffusivity is represented by a
power-lawDβ(x) = Dβ0x

α or as the additive function (5.7) we have δ ∝ t1/(β−α).

5.6.3 Regime Classification and Analysis of Two-Dimensional
Profiles

The solutions presented against the similarity variable, the plots in Fig. 5.7, clearly
demonstrate the effect of β on the arrangement of the curves from left to right but
the effect of α is not obvious. Hence, the question is: why the order of arrangements
the profiles changes in both sides of the point β − α = 1?

Fig. 5.7 Approximate two-dimensional profiles. Situations when the order of arrangement of the
profiles along the abscissa follows the decrease in the fractional order β corresponding to the
range 0 ≤ α ≤ 0.5. The case corresponds to intermediate and turbulent transport regimes (see the
comments in the text). Case of sHr = 1.0. (a) α = 0; (b) α = 0.1; (c) α = 0.25; (d) α = 0.5.
Adapted from [24]
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The case β − α < 2 encompasses all cases discussed here and therefore we have
enhanced diffusion with the following sub-cases [5, 10, 11], namely:

For (β − α) < 2 the transport regime is intermediate,
For (β − α) = 1 there is a ballistic transport and
For (β − α) < 1 a turbulent transport takes place.

The analysis in [24] (see the numerical data in Table 2 in this work) allows
identifying the regimes as follows:

For α = 0 and α = 0.1 we have 0 < (β−α) < 2 and all profiles are propagating
faster with increase in β thus corresponding to the intermediate transport regime.

For α = 1 in all cases 0 < (β − α) < 1 the profiles correspond to the turbulent
transport regime.

For intermediate values of α the change in the transport mechanism depends on
the value of β, namely

α = 0.25, 1.3 < β < 1.9 =⇒ 1 < (β − α) < 2 (5.71)

α = 0.5, 1.5 < β < 1.9 =⇒ 1.5 < (β − α) < 2 (5.72)

α = 0.75, 1.8 < β < 1.8 =⇒ 1 < (β − α) < 2 (5.73)

These estimations, developed in [24], demonstrate how with increase in α the
transport behavior shifts from intermediate to turbulent regime, and vice versa. In
addition, there exist two cases corresponding to (β − α) = 1 where the fronts
propagate with constant speeds [24]: for (α = 0.1 and β = 1.1) as well as for
(α = 0.5 and β = 1.5).

We especially refer to the case for α = 0.5, where the transport for β < 1.5
differs from that when β > 1.5, irrespective of the fact that the arrangement of the
curves follows the same order as when β − α < 1. In addition, for α = 0.75 and
α = 1 all regimes are turbulent.

Three-dimensional profiles and regime classification, where the approximate
solution ua = f (ξ, β, α = const.,s H

r = const.) was simulated (with optimal
exponent nopt approximated as nopt = 10−3.4β, see the comments in Sect. 5.5.2.1)
are analyzed in [24] and for details we refer to this work.
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Chapter 6
Fractional Order Filter Discretization
by Particle Swarm Optimization Method

Ozlem Imik, Baris Baykant Alagoz, Abdullah Ates, and Celaleddin Yeroglu

6.1 Introduction

In general, filters are used to obtain desired frequency selectivity property by
configuring amplitude response. They are mainly designed by shaping three types
of characteristic regions that are pass bands, stop bands and transition bands. In gen-
eral, stop bands are configured to reject frequency components of undesired signal
from the original information signal. Stop band performance of filters is particularly
important for filter applications that perform rejection of undesired signals such as
noise, interference, harmonic distortions etc. After digital systems began to play a
central role in daily life, digital filter design and implementation has turned into
a central topic of signal processing studies. Discrete Linear Time Invariant (LTI)
system models are employed in digital filter design and implementation. The design
of digital filters is simplified by obtaining filter coefficients that provide a desired
frequency selectivity in amplitude responses of discrete LTI systems.

Nowadays, due to their advantages to integer order counterparts, fractional-order
LTI systems have gained importance for applied science and engineering problems
[1–4]. Fractional-order continuous filter design includes the calculation of not only
coefficients of LTI system transfer functions but also determination of real values of
fractional orders. Adjustment of fractional orders gives more degree of freedom in
shaping frequency response and thus make amplitude response of fractional-order
filters more versatile compared to integer order counterparts that allow adjusting
only filter coefficients by real numbers. In fact, fractional-order filter function is
a more general form of filter function family, which includes the integer order
filter functions [5]. A major advantage of fractional order filter function is that
the slope of transition bands can be adjusted fractionally by using fractional orders
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[6]. Despite this advantages in filter response, digital realization of fractional-order
filters are more complicated than the realization of integer order filters because of
long memory effect of fractional order derivative operators. Fractional derivative of
a function depends on all past values of functions. In other words, fractional order
derivative is not localized to current value of function. For a fully approximation to
the response of fractional-order filters by using an integer order transfer function,
it may need infinite number of filter coefficients. For this reason, in practice,
several approximation methods are developed for approximate implementation of
fractional-order LTI systems by means of integer order functions in a certain degree
of accuracy in operating ranges of applications [7–12]. In order to improve integer
order approximation to fractional-order transfer functions, heuristic optimization
methods such as genetic algorithm [4], PSO [13], discrete stochastic optimization
[1] has been employed.

The current study focuses on stable IIR discrete filter designs to represent
frequency selectivity properties of fractional-order filters, particularly at stop bands.
Many analytical discretization methods do not ensure stability of resulting IIR
filters, and unstable filter solutions are not useful in practice. To deal with filter
stability problem and improve amplitude response fitting to fractional-order filter in
desired frequency ranges, heuristic optimization can be utilized. The PSO algorithm
is modified to obtain stable IIR filter coefficients that are approximating to amplitude
responses of fractional-order continuous filter functions. Stability of resulting IIR
discrete filters is ensured by setting very high cost values for particles resulting in
unstable IIR discrete filter solutions. Thus, particles in the swarm are forced to move
towards to search regions, where stable IIR filter solutions can exist. Illustrative
design examples are shown to evaluate performance of proposed method and results
are compared with the results of CFE approximation.

6.2 Theoretical Background

6.2.1 PSO Algorithm

PSO algorithm is an effective heuristic search algorithm that emulates swarm
intelligence. PSO algorithm imitates the collective behaviour of unsophisticated
agents that can interact locally and form a global coherence [14]. Performance of
PSO algorithm has been shown in diverse optimization problems such as control
system implementation [11], filter design [15].

Particle motion in multidimensional search space is modelled by particle position
xn[t] and particle velocity vn[t]. This motion is calculated by the following formulas,

vn [t + 1] = wvn [t] + c1r1
(
xL,n [t] − xn [t]

)+ c2r2
(
xG,n [t] − xn [t]

)
(6.1)

xn [t + 1] = xn [t] + vn [t + 1] (6.2)
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where, xLn[t] is the personal best position, which is the best fitting solution in the
current iteration, and xGn[t] is the global best position, which is the best fitting
solution of all iterations. Parameter c1 and c2 are personal learning coefficient and
global learning coefficient, respectively. Parameter w is the weight coefficient for
particle inertias. In order to decrease inertia of particles during iterations, a damping
rate ξ is applied as w[t + 1] = w[t] ξ [16]. Equation (6.1) determines the new
velocity vn[t + 1] of particles depending on particle inertia at the iteration time
(t) and then new positions of particles xn[t + 1] are updated by Eq. (6.2). During
the particle movements, the local best position and the global best position are
updated according to an objective function. Particle positions represent solutions
that are found during optimization process. Objective function evaluates fitness of
each particle position as a solution of problem. Hence, devising objective function
is important for success of optimization because objective functions determine the
character of solutions, for which optimization algorithm is looking.

The following section introduces the proposed objective function that is devised
for improvement of approximation performance at stop bands and stability of
resulting filters.

6.2.2 Problem Formulation and Application of PSO Algorithm

Fractional-order continuous LTI filters can be written in general form as,

Fc(s) =

k∑
i=0
cis

βi

m∑
i=0
disαi

(6.3)

By using sα = (jω)α = ωα(cos(απ /2) + jsin(απ /2)), amplitude response of
fractional-order filters are expressed in general form as,

|Fc (jω)| =

∣∣∣∣
k∑
i=0
ciω

βi
(
cos

(
π
2 βi

)+ j sin
(
π
2 βi

))∣∣∣∣∣∣∣∣
m∑
i=0
diωαi

(
cos

(
π
2 αi

)+ j sin
(
π
2 αi

))∣∣∣∣
(6.4)

Shaping amplitude responses of filter functions allows configuration of frequency
selectivity properties of filters. By considering Eq. (6.4), we can see that filter
coefficients {ci, di} and fractional orders {β i, αi} can be used to shape frequency
response by assigning real numbers to them. This provides more option in frequency
selectivity for filter functions compared to integer order counterparts that allow
only integer numbers for the order parameters. As known, integer order LTI filter
functions provide increments and decrements that can be multiples of 20 dB in
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amplitude response characteristics. However, fractional order LTI filter functions
also allow fractions of 20 dB in slopes of amplitude response characteristics. For
digital realization of the amplitude responses of filters, one needs the discretization
of filter function. In the current study, the proposed algorithm optimize amplitude
response of an initial randomly generated discrete IIR filter solution set to provide a
better fitting to amplitude response of the continuous fractional-order filter function
Fc(s). The discrete IIR filter Fd(s) can be expressed as,

Fd(z) =

l∑
i=0
aiz

i

p∑
i=0
bizi

(6.5)

Particles of the swarm move in the search space of filter coefficients and positions
of particles represent IIR filter solutions in this space. In other words, as particles
move in directions that minimizes the objective function, they also modify the
resulting discrete IIR filter functions according to the objective function, defined as:

f (a, b) = 1

L

∑
ωi∈(ωmin,ωmax)

(
20log10 |Fc (jωi)| − 20log10

∣∣∣Fd
(
a, b, ejωiTs

)∣∣∣)2

(6.6)

where, a = [a0 a1 a2 a3 ... al] and b = [b0 b1 b2 b3 ... bp] are IIR filter coefficients
to be optimized in the sampled frequency range ωi ε (ωmin, ωmax), i = 1, 2, 3, ... L
[2]. To calculate Eq. (6.6), z = ejωTs are used in Eq. (6.5). Parameter Ts denotes the
sampling period of discrete filter.

Positions of particles in the coefficient search space are expressed as,

xn = [
b0 b1 b2 b3 . . . bp a0 a1 a2 a3 . . . al

]
(6.7)

Decrease in values of objective functions allows approximation of amplitude
response of Fd(s) filter function to amplitude response of Fc(s) filter function. Since
phase response shaping does not require for filter applications, phase approximation
of filters is not considered in the objective function. The following two assets are
utilized for devising objective function for filter application.

1. Similarity of amplitude response is expressed by mean square of amplitude
responses in logarithmic scale: The logarithmic scaling of magnitude in decibel
results in compressing magnitudes and allows a finer optimization for very low
magnitudes in amplitude response of filters, which indeed improves approxima-
tion performance at stop bands of filters. This effect can be clearly observed in
frequency response data of example designs given in the following section.

2. Stability prevention is accomplished by assigning high value to objective func-
tion in case of unstable filter solution: In order to ensure stability of IIR filter
design, we set a very high cost value (fmax) to objective function for particles that
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results in unstable IIR filter solutions. The objective function with this stability
constraint can be expressed as,

f (a, b) =

⎧⎪⎨
⎪⎩

1
L

∑
ωi∈(ωmin,ωmax)

(
20log10 |Fc (jωi)| − 20log10

∣∣∣Fd
(
a, b, ejωiTs

)∣∣∣)2
stable

fmax unstable

(6.8)

Here, very high value setting to fmax leads to keep other particles away from
unstable filter solutions. This enforces particles to search for stable IIR filter
solutions. Steps of the proposed PSO algorithm can be summarized as follows,

Step 1: Set an initial values to position and velocity of particles randomly within the
search ranges.

Step 2: Find local best and global best positions according to objective function (Eq.
6.8).

Step 3: Update particle positions by using Eqs. (6.1) and (6.2), and determine
local best and global best positions by calculating costs of particles according
to objective function (Eq. 6.8).

Step 4: If the maximum number of iteration is reached, end optimization. Otherwise,
go to Step 3.

6.3 Illustrative Examples

In this section, we present stable IIR filter design examples that can approximate
to amplitude responses of fractional-order continuous filters. In PSO optimizations,
we configured the search range of coefficients as αi ε [−20, 20]. Population size
was set to 200 particles. Personal learning coefficients c1 and c2 were set to 1.5
and 2.0, respectively. The inertia weight (w) and damping rate (ξ) were set to 1
and 0.99, respectively. Sampling period for discrete filtering was assumed to 0.01 s,
which allowed maximum filtering frequency (ωmax) up to 314.15 rad/s according to
Nyquist sampling theorem.

Example 1 Let us obtain a discrete IIR filter implementation of the fractional-order
low pass filter given in [1] as,

Fc1(s) = 1

s0.5 + 1
(6.9)
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Fig. 6.1 Change of cost values during optimization by PSO algorithm

After 1000 iteration, optimized IIR filter function was obtained as,

Fd1(s) = 0.4887z4 + 0.5235z3 − 0.1822z2 − 1.316z+ 0.2847

15.38z4 − 10.99z3 − 6.78z2 − 1.131z+ 3.8
(6.10)

The IIR filter function, obtained by continuous CFE approximation with Tustin
discretization, can be written as,

Fcf e1(s) = 0.1116z4 − 0.4119z3 + 0.5651z2 − 0.3432z+ 0.07761

z4 − 3.884z3 + 5.656z2 − 3.658z+ 0.8869
(6.11)

Figure 6.1 shows the evolution of cost value during optimization of filter
coefficients by PSO algorithm. Decrease of the cost values infers decrease of
approximation errors of IIR filters during the optimization. The figure clearly
indicates convergence of optimization process during iterations. Figure 6.2 com-
pares the amplitude responses of continuous fractional-order filter function Fc1(s),
the obtained IIR filter function Fd1(s), continuous integer order filter function
approximation by CFE method and discrete IIR filter function approximation by
CFE method with Tustin discretization (CFE + Tustin). As seen in figures, CFE
method can provide better approximation at low frequency bands but it diverges
at mid and high frequency ranges. Table 6.1 lists cost values of each design. The
most of the magnitude error in CFE + Tustin discretization method comes from
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Fig. 6.2 Comparison of amplitude responses of continuous fractional-order filter, IIR filter
function by PSO, continuous integer order filter approximation by CFE and discrete IIR filter
function approximation by CFE + Tustin methods

Table 6.1 Mean squared
errors for amplitude
responses of IIR filter designs
in Example 1

IIR filter design methods Mean squared errors

PSO 0.0894
CFE + Tustin discretization 9.4034

high frequency parts of the spectrum. As known, stop band performance is more
substantial for band reject filters, for instance, noise filtering. For low pass filters,
stop band coincides to high frequency part of frequency spectrum. Since Fd1(s)
can provide better approximation at low magnitude values, which appear in high
frequency parts of low pass filter spectrums, PSO can improve discrete realizations
of low pass fractional-order filter functions in practice. Figure 6.3 shows time
response of discrete Fd1(s) and Fcfe1(s) filter functions for sinusoidal input signal
(sin(40t)) and the results show that both IIR filters are stable filters.

Example 2 Let us design a stable IIR filter approximating to the continuous
fractional-order Chebyshev low pass filters given in the form of [6],

Fc2(s) = a0

a1s1+α + a2sα + 1
(6.12)

for α = 0.2, a0 = 3, a1 = 3 and a2 = 5.
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Fig. 6.3 Time response of discrete filter functions for a sinusoidal input signal

After 1000 iteration, the optimized IIR filter function was obtained as,

Fd2(s) = −0.006286z4 − 0.004119z3 − 0.01841z2 + 0.02865z− 0.009169

19.95z4 − 4.422z3 − 15.4z2 + 2.839z− 2.908
(6.13)

The IIR filter function, obtained by CFE + Tustin method, can be written as,

Fcf e2(s) =
0.0007416z9 − 0.004903z8 − 0.01313z7 − 0.0169z6 + 0.006652z5

+ 0.01021z4 − 0.0169z3 + 0.0111z2 − 0.00363z+ 0.0004868

z9 − 8.666z8 + 33.36z7 − 74.9z6 + 108z5 − 103.9z4

+ 66.54z3 − 27.39z2 + 6.567z− 0.7009
(6.14)

Figure 6.4 shows the evolution of cost values. The figure confirms the conver-
gence of optimization process during iterations. Figure 6.5 compares the amplitude
responses of continuous fractional-order filter function Fc2(s), the obtained IIR
filter function Fd2(s), continuous integer order filter function approximation by CFE
method and discrete IIR filter function approximation by CFE with Tustin method.
Figure 6.6 shows a close view of high frequency part in Fig. 6.5. As seen in figures,
proposed PSO algorithm yields better approximation at stop band of the fractional-
order filter function. However, CFE method can provide superior approximation
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Fig. 6.6 A close view from high frequency part of amplitude response of filters

Table 6.2 Mean squared
errors for amplitude
responses of IIR filter designs
in Example 2

IIR filter design methods Mean squared errors

PSO 0.2627
CFE + Tustin discretization 76.2223

at low frequency region. Table 6.2 lists cost values of discrete filter designs by
PSO and CFE + Tustin method. Figure 6.7 shows time response of discrete Fd2(s)
and Fcfe2(s) filter functions for sinusoidal input signal (sin(40t)). Results reveal
that Fcfe2(s) filter is a not stable because CFE method does not ensure stability
of resulting filters. The proposed method enforces PSO to perform in the search
space resulting in stable filters. This is an important advantage for discrete filter
implementations.

6.4 Conclusions

This study presents application of PSO algorithm for fractional-order filter function
discretization for digital signal processing applications. The proposed method
contributes to digital filter design in two folds: (1) It enforces stability of optimized
IIR filters by configuring very high cost values for particles that represent instable
IIR filter solutions. This avoids movements of particle swarm towards the search
space of unstable filter solutions. (2) Logarithmic scaling of amplitude responses in
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Fig. 6.7 Time response of discrete filter functions for sinusoidal input signal

objective function increases optimization efforts of PSO algorithm at low magnitude
part of filter spectrum. This leads better approximation at stop bands of filters,
where amplitude response of filter takes very low values. Thus, it enables to better
presentation of stop bands of fractional-order filters by stable IIR filters.

These two assets make the proposed PSO method useful for realization of
fractional-order filter functions in digital system applications. Although, CFE
method can provide superior approximation to frequency response of fractional-
order transfer functions in low frequency region, it may not well represent the
system responses at high frequency regions. Therefore, CFE approximation method
is more suitable for low frequency applications, such as control system applications,
which require a good phase and amplitude response matching in low frequency
ranges. It should be noted that the proposed PSO method does not perform any
phase response approximation.
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Chapter 7
On the Existence of Solution for a Sum
Fractional Finite Difference Inclusion

Vahid Ghorbanian, Shahram Rezapour, and Saeid Salehi

7.1 Introduction

It has been published many works about the existence of solutions for some
fractional finite difference equations by using different views (see, for example,
[12–15, 18–21, 29, 30] and the references therein). One can find more details on
elementary notions of fractional finite difference equations in [1, 9, 10, 16, 22–
24, 28]. Also, there are many works on fractional differential inclusions (see for
example, [2–11, 17, 25, 26] and the references therein). Recently, appeared a work
on fractional finite difference inclusions [15]. We provide some preliminaries to
investigate the existence of solution for a fractional finite difference inclusion.

As you know, the Gamma function has some known properties as Γ (z + 1) =
zΓ (z) and Γ (n) = (n − 1)! for all n ∈ N. Define tν = Γ (t+1)

Γ (t+1−ν) for all t, ν ∈ R

whenever the right-hand side is defined. If t+1−ν is a pole of the Gamma function
and t+1 is not a pole, then we define tν = 0. Also, one can verify that νν = νν−1 =
Γ (ν+1) and tν+1 = (t−ν)tν . We use the notations Na = {a, a+1, a+2, . . . } for
all a ∈ R and N

b
a = {a, a + 1, a + 2, . . . , b} for all real numbers a and b whenever

b − a is a natural number. Let ν > 0 be such that m− 1 < ν ≤ m for some natural
numberm. Then the νth fractional sum of f based at a is defined by

Δ−ν
a f (t) =

1

Γ (ν)

t−ν∑
k=a
(t − σ(k))ν−1f (k)

for all t ∈ Na+ν . Similarly, we get Δνaf (t) = 1
Γ (−ν)

∑t+ν
k=a(t − σ(k))−ν−1f (k) for

all t ∈ Na+m−ν . We need the following result.
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Lemma 7.1.1 Let ν > 0 with m− 1 < ν ≤ m for some natural numberm. Then

Δνay(t)+
k∑
j=1

Δ
ν−j
a y(t − 1 + j) = Δν−ka y(t + k)

+
k∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a − 1 + i) (7.1)

for all k ∈ N
m−1
1 .

Proof Let k = 1. Then, we have

Δνay(t)+
1∑
j=1

Δ
ν−j
a y(t − 1 + j) = Δνay(t)+Δν−1

a y(t)

= 1

Γ (−ν)
t+ν∑
s=a
(t − σ(s))−ν−1y(s)+ 1

Γ (−ν + 1)

t+ν−1∑
s=a

(t − σ(s))−νy(s)

= 1

−νΓ (−ν)
t+ν∑
s=a
Δ(t − σ(s))−νy(s)+ 1

Γ (−ν + 1)

t+ν−1∑
s=a

(t − σ(s))−νy(s)

= 1

Γ (−ν + 1)

t+ν∑
s=a

[
(t + 1 − σ(s))−νy(s)− (t − σ(s))−νy(s)

]

+ 1

Γ (−ν + 1)

t+ν−1∑
s=a

(t − σ(s))−νy(s)

= 1

Γ (−ν + 1)

t+ν∑
s=a
(t + 1 − σ(s))−νy(s)− 1

Γ (−ν + 1)
(t − σ(t + ν))−νy(t + ν)

= 1

Γ (−ν + 1)

t+ν−1∑
s=a−1

(t + 1 − σ(s + 1))−νy(s + 1)− 0

= 1

Γ (−ν + 1)

t+ν−1∑
s=a−1

(t − σ(s))−νy(s + 1)

= 1

Γ (−ν + 1)

t+ν−1∑
s=a

(t − σ(s))−νy(s + 1)+ 1

Γ (−ν + 1)
(t − a)−νy(a)

= Δν−1
a y(t + 1)+ 1

Γ (−ν + 1)
(t − a)−νy(a).
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Now, suppose that

Δνay(t)+
n∑
j=1

Δ
ν−j
a y(t − 1+ j) = Δν−na y(t +n)+

n∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a− 1+ i)

holds for n ∈ N
m−2
2 . Then, we have

Δνay(t)+
n+1∑
j=1

Δ
ν−j
a y(t − 1 + j)

= Δνay(t)+
n∑
j=1

Δ
ν−j
a y(t − 1 + j)+Δν−n−1

a y(t + n)

= Δν−na y(t + n)+
n∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a − 1 + i)+Δν−n−1
a y(t + n)

=
n∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a − 1 + i)+ 1

Γ (−ν + n)
t+ν−n∑
s=a

(t − σ(s))−ν−1+ny(s + n)

+ 1

Γ (−ν + n+ 1)

t+ν−n−1∑
s=a

(t − σ(s))−ν+ny(s + n)

=
n∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a − 1 + i)

+ 1

Γ (−ν + n+ 1)

t+ν−n∑
s=a

Δ(t − σ(s))−ν+ny(s + n)

+ 1

Γ (−ν + n+ 1)

t+ν−n−1∑
s=a

(t − σ(s))−ν+ny(s + n)

=
n∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a − 1 + i)

+ 1

Γ (−ν + n+ 1)

t+ν−n∑
s=a

(t + 1 − σ(s))−ν+ny(s + n)

− 1

Γ (−ν + n+ 1)
(t − σ(t + ν − n))−ν+ny(s + n)

=
n∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a − 1 + i)
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+ 1

Γ (−ν + n+ 1)

t+ν−n−1∑
s=a−1

(t − σ(s))−ν+ny(s + 1 + n)− 0

=
n∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a − 1 + i)

+ 1

Γ (−ν + n+ 1)

t+ν−n−1∑
s=a

(t − σ(s))−ν+ny(s + 1 + n)

+ 1

Γ (−ν + n+ 1)
(t − a)−ν+ny(a + n)

= Δν−n−1
a y(t + n+ 1)+

n+1∑
i=1

(t − a)−ν−1+i

Γ (−ν + i) y(a − 1 + i).

Thus, (7.1) holds for all k ∈ N
m−1
1 .

The following Lemma plays an important role in the fractional finite difference field
(see [12]).

Lemma 7.1.2 Let h : N0 → R be a mapping andm−1 < ν ≤ m for some natural
numberm. The general solution of the equationΔνν−mx(t) = h(t) is given by

x(t) =
m∑
i=1

ci t
ν−i + 1

Γ (ν)

t−ν∑
s=0

(t − σ(s))ν−1h(s), (7.2)

where c1, · · · , cm are arbitrary real constants.

Let (X, d) be a metric space. Denote by P(X), 2X, Pc(X), and Pcp(X) the class of
all subsets, the class of all nonempty subsets, the class of all closed subsets, and the
class of all compact subsets of X, respectively. A mapping Q : X → 2X is called
a multifunction on X and u ∈ X is called a fixed point of Q whenever u ∈ Qu.
The (generalized) Pompeiu-Hausdorff metric Hd on Pc(X) is defined Hd(A,B) =
max

{
supa∈A d(a, B), supb∈B d(A, b)

}
, where d(A, b) = infa∈A d(a, b) (see

[8]). Let α : X × X → [0,∞) be a map and T : X → 2X a multifunction.
We say that X has the condition (Cα) whenever for each sequence {xn} in X with
α(xn, xn+1) ≥ 1 for all n and xn → x, there exists a subsequence {xnk } of {xn}
such that α(xnk , x) ≥ 1 for all k [27]. Also the operator T is called α-admissible
whenever for each x ∈ X and y ∈ T x with α(x, y) ≥ 1, we have α(y, z) ≥ 1 for all
z ∈ Ty [27]. Let � be the family of nondecreasing functions ψ : [0,∞)→ [0,∞)
such that

∑∞
n=1 ψ

n(t) < ∞ for all t > 0 (for more details see [27]). In 2013, next
result was proved by Mohammadi, Rezapour, and Shahzad (see [27]).
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Lemma 7.1.3 Let (X, d) be a complete metric space, α : X × X → [0,∞) a
map, ψ ∈ Ψ a strictly increasing map, and T : X → CB(X) an α-admissible
multifunction such that α(x, y)H(T x, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X, and
there exist x0 ∈ X and x1 ∈ T x0 with α(x0, x1) ≥ 1. If X has the condition (Cα),
then T has a fixed point.

7.2 Main Result

Now, we consider the fractional finite difference inclusion

Δνν−2x(t)+Δν−1
ν−2x(t)+Δν−2

ν−2x(t + 1)

∈ F(t, x(t),Δx(t),Δ2x(t),Δμx(t),Δγ x(t)) (7.3)

with the boundary conditions x(ν) = 0 and x(ν + b + 2) = 0, where 1 < γ ≤ 2,
0 < μ ≤ 1, 3 < ν ≤ 4, and F : N

b+ν+2
ν × R

5 → 2R is a compact valued
multifunction. First, we prove the following key result.

Lemma 7.2.1 Let y : Nb0 → R be a map and 3 < ν ≤ 4. Then x0 is a solution for
the fractional finite difference equation

Δνν−2x(t)+Δν−1
ν−2x(t)+Δν−2

ν−2x(t + 1) = y(t) (7.4)

with the boundary conditions x(ν) = 0 and x(ν + b + 2) = 0 if and only if x0 is a
solution for the fractional sum equation

x(t) =
b∑
s=0

G(t, s)

[
y(s)− (s − ν + 2)−ν

Γ (−ν + 1)
x(ν − 2)− (s − ν + 2)−ν+1

Γ (−ν + 2)
x(ν − 1)

]
,

where G(t, s) = 1
Γ (ν)

[
− (t − 2)ν−1

(ν + b)ν−1 (ν + b − σ(s))ν−1 + (t − 2 − σ(s))ν−1
]

whenever 0 ≤ s ≤ t − ν − 2 ≤ b and G(t, s) = 1
Γ (ν)

[
− (t − 2)ν−1

(ν + b)ν−1 (ν + b −

σ(s))ν−1
]

whenever 0 ≤ t − ν − 2 < s ≤ b.

Proof By using Lemma 7.1.1, the problem (7.4) is equivalent to the problem

Δν−2
ν−2x(t + 2)+ (t − ν + 2)−ν

Γ (−ν + 1)
x(ν − 2)+ (t − ν + 2)−ν+1

Γ (−ν + 2)
x(ν − 1) = y(t)

and so is equivalent to the problem

Δν−2
ν−2x(t + 2) = g(t), (7.5)
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where g(t) = y(t)− (t−ν+2)−ν
Γ (−ν+1) x(ν−2)− (t−ν+2)−ν+1

Γ (−ν+2) x(ν−1). Thus, x0 is a solution
for the problem (7.4) if and only if x0 is a solution for the problem (7.5). Let x0 be
a solution for the fractional finite difference equationΔν−2

ν−2x(t + 2) = g(t) with the
boundary conditions x(ν) = 0 and x(ν+b+2) = 0. By using Lemma 7.1.2, we get

x0(t + 2) = c1t
ν−1 + c2t

ν−2 + 1

Γ (ν)

t−ν∑
s=0

(t − σ(s))ν−1g(s).

By using the boundary condition x0(ν) = 0, we have

c1(ν − 2)ν−1 + c2(ν − 2)ν−2 + 1

Γ (ν)

−2∑
s=0

((ν − 2)− σ(s))ν−1g(s) = 0

and so c2 = 0. Since x0(ν + b + 2) = 0, we get

c1 = − 1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g(s).

Hence,

x0(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1g(s)

=
b∑
s=0

G(t, s)

[
y(s)− (s − ν + 2)−ν

Γ (−ν + 1)
x(ν − 2)

− (s − ν + 2)−ν+1

Γ (−ν + 2)
x(ν − 1)

]
.

Now let x0 be a solution for the equation

x(t) =
b∑
s=0

G(t, s)

[
y(s)− (s − ν + 2)−ν

Γ (−ν + 1)
x(ν − 2)− (s − ν + 2)−ν+1

Γ (−ν + 2)
x(ν − 1)

]
.

Then,
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x0(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1g(s).

Since (ν − 2)ν−1 = 0 and
∑−2
s=0(ν − 2 − σ(s))ν−1g(s) = 0, we obtain x0(ν) = 0.

By using a similar calculation, one can show that x0(ν + b + 2) = 0. On the other
hand, it is easy to see that

x0(t + 2) = c1t
ν−1 + c2t

ν−2 + 1

Γ (ν)

t−ν∑
s=0

(t − σ(s))ν−1g(s)

is a solution for the equationΔν−2
ν−2x(t + 2) = g(t). This implies that

Δνν−2x0(t)+Δν−1
ν−2x0(t)+Δν−2

ν−2x0(t + 1) = y(t).

This completes the proof.

A function x : Nb+ν+2
ν → R is a solution of the problem (7.3) whenever it satisfies

the boundary conditions and there exists a function y : Nb0 → R such that

y(t) ∈ F
(
t, x(t),Δx(t),Δ2x(t),Δμx(t),Δγ x(t)

)

for all t ∈ N
b+1
0 and

x(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1g(s).

Here, g(s) = y(s)− (s−ν+2)−ν
Γ (−ν+1) x(ν − 2)− (s−ν+2)−ν+1

Γ (−ν+2) x(ν − 1) (see [15]). Let X

be the set of all functions x : Nb+ν+2
ν → R endowed with the norm

‖x‖ = max
t∈Nb+ν+2

ν

|x(t)| + max
t∈Nb+ν+2

ν

|Δx(t)| + max
t∈Nb+ν+2

ν

|Δ2x(t)|

+ max
t∈Nb+ν+2

ν

|Δμx(t)| + max
t∈Nb+ν+2

ν

|Δγx(t)|.
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We show that (X , ‖.‖) is a Banach space. Let {xn} be a Cauchy sequence in X and
ε > 0 be given. Choose a natural numberN such that ‖xn− xm‖ < ε for allm,n >
N . Thus, we get max

t∈Nb+ν+2
ν

|xn(t)−xm(t)| < ε, max
t∈Nb+ν+2

ν
|Δxn(t)−Δxm(t)| <

ε, max
t∈Nb+ν+2

ν
|Δ2xn(t) − Δ2xm(t)| < ε, max

t∈Nb+ν+2
ν

|Δμxn(t) − Δμxm(t)| < ε
and max

t∈Nb+ν+2
ν

|Δγxn(t) − Δγxm(t)| < ε. Since R is complete, there are real
numbers x(t), z(t), w(t), p(t) and q(t) such that xn(t) → x(t), Δxn(t) → z(t),
Δ2xn(t) → w(t), Δμxn(t) → p(t) and Δγ xn(t) → q(t) for all t ∈ N

b+ν+2
ν . Note

thatΔxn(t) = xn(t+1)−xn(t) and soΔx(t) = x(t+1)−x(t) = z(t). Similarly, we
get Δ2x(t) = w(t). Also, we have Δμxn(t) = 1

Γ (−μ)
∑t+μ
s=0 (t − σ(s))−μ−1xn(s).

Since xn(s) → x(s), we get Δμx(t) = p(t). Similarly, we have Δγ x(t) = q(t).
This implies that there exists a natural number M such that |xn(t) − x(t)| < ε

5 ,
|Δxn(t) − Δx(t)| < ε

5 , |Δ2xn(t) − Δ2x(t)| < ε
5 , |Δμxn(t) − Δμx(t)| < ε

5 and
|Δγxn(t)−Δγ x(t)| < ε

5 for all t ∈ N
b+ν+2
ν and n > M . Thus,

‖xn − x‖ = max
t∈Nb+ν+2

ν

|xn(t)− x(t)| + max
t∈Nb+ν+2

ν

|Δxn(t)−Δx(t)|

+ max
t∈Nb+ν+2

ν

|Δ2xn(t)−Δ2x(t)| + max
t∈Nb+ν+2

ν

|Δμxn(t)−Δμx(t)|

+ max
t∈Nb+ν+2

ν

|Δγ xn(t)−Δγ x(t)| < ε

for all n > M . This shows that X is a Banach space. Let x ∈ X . Define the set of
selections of F by

SF,x =
{
y : Nb0 → R : y(t)

∈ F
(
t, x(t),Δx(t),Δ2x(t),Δμx(t),Δγ x(t)

)
for all t ∈ N

b
0

}
.

Since F

(
t, x(t),Δx(t),Δ2x(t),Δμx(t),Δγ x(t)

)
�= ∅, by using the selection

axiom we get SF,x is nonempty.

Theorem 7.2.2 Suppose that ψ ∈ Ψ and F : N
b+ν+2
ν × R

5 → Pcp(R) is

a multifunction such that Hd

(
F(t, x1, x2, x3, x4, x5), F (t, z1, z2, z3, z4, z5)

)
≤

ψ

(∑5
i=1 |xi − zi |

)
for all t ∈ N

b+ν+2
ν and x1, · · · , x5, z1, · · · , z5 ∈ R. Then

the fractional finite difference inclusion (7.3) has a solution.

Proof We know that SF,x is nonempty for all x ∈ X . Let y ∈ SF,x and
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h(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1g(s)

for all t ∈ N
ν+b+2
ν , where g(s) = y(s)− (s−ν+2)−ν

Γ (−ν+1) x(ν− 2)− (s−ν+2)−ν+1

Γ (−ν+2) x(ν− 1).
Thus, h ∈ X and so

{
h ∈ X : there exists y ∈ SF,x such that h(t) = w(t) for all t ∈ N

ν+b+2
ν

}

is nonempty, where

w(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1g(s).

Now, consider the operator T : X → 2X defined by

T (x) =
{
h ∈ X : there exists y ∈ SF,x such that h(t) = w(t) for all t ∈ N

ν+b+2
ν

}
.

First, we show that T (x) is a closed subset of X for all x ∈ X . Let x ∈ X and
{un}n≥1 be a sequence in T (x) with un → u. For each n, choose yn ∈ SF,x such
that

un(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1gn(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1gn(s)

for all t ∈ N
b+ν+2
ν and n ≥ 1, where

gn(s) = yn(s)− (s − ν + 2)−ν

Γ (−ν + 1)
x(ν − 2)− (s − ν + 2)−ν+1

Γ (−ν + 2)
x(ν − 1).
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Since F has compact values, {yn}n≥1 has a subsequence which converges to some
y : Nb0 → R. Denote the subsequence again by {yn}n≥1. It is easy to check that
y ∈ SF,x and

un(t)→ u(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1g(s).

This implies that u ∈ T (x) and so the multifunction T has closed values. Let
x, z ∈ X . Since T (x) is nonempty, for each h1 ∈ T (x) there exists y1 ∈ SF,x
such that

h1(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g1(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1g1(s)

for all t ∈ N
ν+b+2
ν , where g1(s) = y1(s)− (s−ν+2)−ν

Γ (−ν+1) x(ν−2)− (s−ν+2)−ν+1

Γ (−ν+2) x(ν−1).
Similarly, for each h2 ∈ T (z) there exists y2 ∈ SF,z such that

h2(t) = − (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1g2(s)

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1g2(s)

for all t ∈ N
ν+b+2
ν , where g2(s) = y2(s)− (s−ν+2)−ν

Γ (−ν+1) z(ν−2)− (s−ν+2)−ν+1

Γ (−ν+2) z(ν−1).
Since

Hd

(
F
(
t, x(t),Δx(t),Δ2x(t),Δμx(t),Δγ x(t)

)
,

F
(
t, z(t),Δz(t),Δ2z(t),Δμz(t),Δγ z(t)

))

≤ ψ
(
|x(t)− z(t)| + |Δx(t)−Δz(t)| + |Δ2x(t)−Δ2z(t)|

+ |Δμx(t)−Δμz(t)| + |Δγx(t)−Δγ z(t)|
)
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for all x, z ∈ X , we get

|y1(t)− y2(t)| ≤ ψ
(
|x(t)− z(t)| + |Δx(t)−Δz(t)| + |Δ2x(t)−Δ2z(t)|

+ |Δμx(t)−Δμz(t)| + |Δγ x(t)−Δγ z(t)|
)
.

for all t ∈ N
b
0. Now, put

Λi = max
t∈Nb+ν+2

ν

∣∣∣∣
b∑
s=0

(
(t − 2 − σ(s))ν−i
Γ (ν + 1 − i) − (t − 2)ν−i (ν + b − σ(s))ν−1

(ν + b)ν−1Γ (ν + 1 − i)
)∣∣∣∣

for i=1, 2, 3,Λ4=max
t∈Nb+ν+2

ν

∣∣∣∣∑b
s=0

(
(t−2−σ(s))ν−1−μ

Γ (ν−μ) − (t−2)ν−1−μ(ν+b−σ(s))ν−1

(ν+b)ν−1Γ (ν−μ)

)∣∣∣∣,

Λ5 = max
t∈Nb+ν+2

ν

∣∣∣∣
b∑
s=0

(
(t − 2 − σ(s))ν−1−γ

Γ (ν − γ ) − (t − 2)ν−1−γ (ν + b − σ(s))ν−1

(ν + b)ν−1Γ (ν − γ )
)∣∣∣∣

and

Ω = max
t∈Nb0

∣∣∣∣ (t − ν + 2)−ν

Γ (−ν + 1)
(x(ν − 2)− z(ν − 2))

+ (t − ν + 2)−ν+1

Γ (−ν + 2)
(x(ν − 1)− z(ν − 1))

∣∣∣∣.
Thus,

|h1(t)− h2(t)|

=
∣∣∣∣− (t − 2)ν−1

(ν + b)ν−1Γ (ν)

b∑
s=0

(ν + b − σ(s))ν−1(g1(s)− g2(s))

+ 1

Γ (ν)

t−2−ν∑
s=0

(t − 2 − σ(s))ν−1(g1(s)− g2(s))

∣∣∣∣

≤
∣∣∣∣
b∑
s=0

(
(t − 2 − σ(s))ν−1

Γ (ν)
− (t − 2)ν−1(ν + b − σ(s))ν−1

(ν + b)ν−1Γ (ν)

)
(g1(s)− g2(s))

∣∣∣∣
≤ max
t∈Nb0

|g1(t)− g2(t)|
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× max
t∈Nb+ν+2

ν

∣∣∣∣
b∑
s=0

(
(t − 2 − σ(s))ν−1

Γ (ν)
− (t − 2)ν−1(ν + b − σ(s))ν−1

(ν + b)ν−1Γ (ν)

)∣∣∣∣

= max
t∈Nb0

∣∣∣∣(y1(t)− y2(t))− (t − ν + 2)−ν

Γ (−ν + 1)
(x(ν − 2)− z(ν − 2))

− (t − ν + 2)−ν+1

Γ (−ν + 2)
(x(ν − 1)− z(ν − 1))

∣∣∣∣×Λ1

≤ max
t∈Nb0

∣∣∣∣(y1(t)− y2(t))

∣∣∣∣Λ1 + max
t∈Nb0

∣∣∣∣(t − ν + 2)−ν

Γ (−ν + 1)
(x(ν − 2)− z(ν − 2))

+ (t − ν + 2)−ν+1

Γ (−ν + 2)
(x(ν − 1)− z(ν − 1))

∣∣∣∣×Λ1

=
[

max
t∈Nb0

∣∣∣∣(y1(t)− y2(t))

∣∣∣∣+Ω
]
Λ1

≤
[
ψ

(
|x(t)− z(t)| + |Δx(t)−Δz(t)| + |Δ2x(t)−Δ2z(t)|

+ |Δμx(t)−Δμz(t)| + |Δγx(t)−Δγ z(t)|
)

+Ω
]
Λ1

for all t ∈ N
b
0. Since

Δh1(t) = − (t − 2)ν−2

(ν + b)ν−1Γ (ν − 1)

b∑
s=0

(ν + b − σ(s))ν−1g1(s)

+ 1

Γ (ν − 1)

t−3−ν∑
s=0

(t − 2 − σ(s))ν−2g1(s),

by a similar calculation we get

|Δh1(t)−Δh2(t)| ≤
[

max
t∈Nb0

∣∣∣∣(y1(t)− y2(t))

∣∣∣∣+Ω
]
Λ2

≤
[
ψ

(
|x(t)− z(t)| + |Δx(t)−Δz(t)| + |Δ2x(t)−Δ2z(t)|

+ |Δμx(t)−Δμz(t)| + |Δγ x(t)−Δγ z(t)|
)

+Ω
]
Λ2.
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Also, we have

|Δ2h1(t)−Δ2h2(t)| ≤
[

max
t∈Nb0

∣∣∣∣(y1(t)− y2(t))

∣∣∣∣+Ω
]
Λ3

≤
[
ψ

(
|x(t)− z(t)| + |Δx(t)−Δz(t)| + |Δ2x(t)−Δ2z(t)|

+ |Δμx(t)−Δμz(t)| + |Δγx(t)−Δγ z(t)|
)

+Ω
]
Λ3.

Since

Δμh1(t) = −(t − 2)ν−μ−1

(ν + b)ν−1Γ (ν − μ)
b∑
s=0

(ν + b − σ(s))ν−1g1(s)

+
t−2−ν−μ∑
s=0

(t − 2 − σ(s))ν−1−μ

Γ (ν − μ) g1(s),

by using a simple calculation we obtain

|Δμh1(t)−Δμh2(t)| ≤
[

max
t∈Nb0

∣∣∣∣(y1(t)− y2(t))

∣∣∣∣+Ω
]
Λ4

≤
[
ψ

(
|x(t)− z(t)| + |Δx(t)−Δz(t)| + |Δ2x(t)−Δ2z(t)|

+ |Δμx(t)−Δμz(t)| + |Δγ x(t)−Δγ z(t)|
)

+Ω
]
Λ4

and

|Δγh1(t)−Δγ h2(t)| ≤
[

max
t∈Nb0

∣∣∣∣(y1(t)− y2(t))

∣∣∣∣+Ω
]
Λ5

≤
[
ψ

(
|x(t)− z(t)|+|Δx(t)−Δz(t)| + |Δ2x(t)−Δ2z(t)|

+ |Δμx(t)−Δμz(t)| + |Δγx(t)−Δγ z(t)|
)

+Ω
]
Λ5.

Hence,

‖h1 − h2‖ = max
t∈Nb+2+ν

ν

|h1(t)− h2(t)| + max
t∈Nb+2+ν

ν

|Δh1(t)−Δh2(t)|

+ max
t∈Nb+2+ν

ν

|Δ2h1(t)−Δ2h2(t)|
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+ max
t∈Nb+2+ν

ν

|Δμh1(t)−Δμh2(t)| + max
t∈Nb+2+ν

ν

|Δγh1(t)−Δγ h2(t)|

≤
(
ψ(|x(t)− z(t)| + |Δx(t)−Δz(t)| + |Δ2x(t)−Δ2z(t)|

+ |Δμx(t)−Δμz(t)| + |Δγ x(t)−Δγ z(t)|)+Ω
)

× (Λ1 +Λ2 +Λ3 +Λ4 +Λ5)

≤ (Λ1 +Λ2 +Λ3 +Λ4 +Λ5)(ψ(‖x − z‖)+Ω),

for all x, z ∈ X , h1 ∈ T (x) and h2 ∈ T (z). This implies that

Hd(T (x),T (z)) ≤ (Λ1 +Λ2 +Λ3 +Λ4 +Λ5)(ψ(‖x − z‖)+Ω)

for all x, z ∈ X . Note that Ω is a non-negative real number. For each x, z ∈ X ,
choose λx,z ∈ [1,+∞) such thatΩ ≤ λx,zψ(‖x − z‖). Thus,

Hd(T (x),T (z)) ≤ (λx,z + 1)(Λ1 +Λ2 +Λ3 +Λ4 +Λ5)ψ(‖x − z‖)

for all x, z ∈ X . Now, define the map α : X ×X → [0,∞) by α(x, z) = 1 when-
everΛ1 +Λ2 +Λ3 +Λ4 +Λ5 ≤ 1

1+λx,z and α(x, z) = 1
(λx,z+1)(Λ1+Λ2+Λ3+Λ4+Λ5)

otherwise. Thus, we get α(x, z)Hd(T (x),T (z)) ≤ ψ(‖x − z‖) for all x, z ∈ X .
Since α(x, z) ≤ 1 for all x, z ∈ X , we get that X has the condition (Cα) and T is
α-admissible. By using Theorem 7.1.3, there exists x∗ ∈ X such that x∗ ∈ T (x∗).
It is easy to see that x∗ is a solution for the problem (7.3).

Example 7.2.1 Consider the fractional finite difference inclusion

2∑
j=0

Δ

√
10−j√
10−2

x(t − 1 + j !)

∈
[

0, 1 + sin x(t)

et
+ |Δx(t)|

4t
+ |Δ0.5x(t)| + √

3|Δ1.5x(t)|
t4

+ |Δ2x(t)|
cosh(3t)

]

with the boundary value conditions x(
√

10) = 0 and x(6+√
10) = 0. Put ν = √

10,

μ = 0.5, γ = 1.5, b = 4 and F(t, x1, x2, x3, x4, x5) =
[

0 , 1 + sinx1
et

+ |x2|
4t +

|x4|+
√

3|x5|
t4

+ |x3|
cosh(3t )

]
for all x1, x2, x3, x4, x5 ∈ R. Note that

1 + sin x1

et
+ |x2|

4t
+ |x4| +

√
3|x5|

t4
+ |x3|

cosh(3t)
> 0,
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et ≥ 10, 4t ≥ 10, t4√
3

≥ 10 and cosh(3t) ≥ 10 for all t ∈ N
6+√

10√
10

and

x1, x2, x3, x4, x5 ∈ R. Now, put ψ(z) = 1
10z for all z ≥ 0. Note that ψ ∈ �

and

Hd

(
F(t, x1, x2, x3, x4, x5), F (t, z1, z2, z3, z4, z5)

)

≤
∣∣∣∣ sin x1

et
+ |x2|

4t
+ |x4| +

√
3|x5|

t4
+ |x3|

cosh(3t)

− sin z1

et
− |z2|

4t
− |z4| +

√
3|z5|

t4
− |z3|

cosh(3t)

∣∣∣∣

≤ |x1 − z1| + |x2 − z2| + |x3 − z3| + |x4 − z4| + |x5 − z5|
10

= ψ(
5∑
i=1

|xi − zi |)

for all t ∈ N
6+√

10√
10

and x1, x2, x3, z1, z2, z3 ∈ R. By using Theorem 7.2.2, this

problem has at least one solution. Note that this problem is a special case for the
problem (7.3).
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Chapter 8
Comparison on Solving a Class of
Nonlinear Systems of Partial Differential
Equations and Multiple Solutions of
Second Order Differential Equations

Ali Akgül, Esra Karatas Akgül, Yasir Khan, and Dumitru Baleanu

8.1 Introduction

Many problems in science and engineering such as problems posed in solid
state physics, fluid mechanics, chemical physics, plasma physics, optics, etc. are
modelled as nonlinear partial differential equations (PDEs) or systems of nonlinear
PDEs. Nonlinear systems of PDEs have taken much interest in working evolution
equations. Many researchers have investigated the analytical and approximate
solutions of nonlinear systems of PDEs by utilizing different techniques [7].

In this paper, a general technique is shown in the reproducing kernel space for
searching the following class of nonlinear systems of PDEs:

A1(f1(η, τ )) = P1(η, τ, F (η, τ ))+M1(η, τ ),

. . . ,

Ak(fk(η, τ )) = Pk(η, τ, F (η, τ ))+Mk(η, τ ),
(η, τ ) ∈ Ω = [0, 1] × [0, 1]
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with the initial and boundary conditions

fi(η, τ ) = 0, for τ ≤ 0, (8.1)

fi(0, τ ) = 0, fi(1, τ ) = 0, for τ > 0. (8.2)

where Ai and Pi are linear and nonlinear differential operators for i = 1, 2, . . . , k.
Mi(η, τ ) are given functions and F(η, τ ) = [f1(η, τ ), f2(η, τ ), . . . , fk(η, τ )]T is
an unknown vector function to be determined. Suppose this equation is of one-
order derivative in τ , and has a unique solution. We only take into consideration
the homogeneous initial and boundary conditions, because the non-homogeneous
initial and boundary conditions can be easily transformed to the homogeneous ones.
The reproducing method has been implemented to several nonlinear problems [1].
For more details of this method, see [3, 6, 8].

We take into consideration the boundary value problems:

{
u′′(x) = λ exp(μu(x)), 0 ≤ x ≤ 1,

u(0) = u(1) = 0,
(8.3)

and

(
exp(x)v′(x)

)′ + | ln x| = 0,∀x ∈ (0,∞), x �= 1,Δv′ |x1=1= v2(1),

v(0) = 0, v(∞) = 0. (8.4)

The problem (8.3) shows up in implementations containing the diffusion of heat
produced by positive temperature-dependent sources. If μ = 1, it springs in the
analysis of Joule losses in electrically conducting solids, with λ returning the square
of constant current and exp(u) the temperature-dependent resistance, or frictional
heating with λ projecting the square of the constant shear stress and exp(u) the
temperature-dependent fluidity. In particular if λ = 1 and μ = −1 the boundary
value problem (8.3) has two solutions u1(x) and u2(x). Solution u1(x) drops below
up to −0.14050941 . . . and solution u2(x) up to −4.0916146 . . . .

Boundary value problem (8.4) has at least two positive solutions v1, v2 satisfying
0 ≤ ‖v1‖ ≤ 1

2 ≤ ‖v2‖.
This work is ordered as follows. Section 8.2 presents some useful reproducing

kernel functions. The representation of solutions and a related linear operator are
given in Sect. 8.3. This section shows the main results. Examples are shown in
Sect. 8.4. The final section contains some conclusions.
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8.2 Preliminaries

Definition 1 We presentG1
2[0, 1] by

G1
2[0, 1] = {f ∈ AC[0, 1] : f ′ ∈ L2[0, 1]}.

The inner product and the norm in G1
2[0, 1] are defined by

〈f, g〉G1
2
= f (0)g(0)+

∫ 1

0
f ′(η)g′(η)dη, f, g ∈ G1

2[0, 1]

and

‖f ‖G1
2
=

√
〈f, f 〉G1

2
, f ∈ G1

2[0, 1].

Theorem 1 Reproducing kernel function Q̃τ ofG1
2[0, 1] is obtained as:

Q̃τ (η) =
2∑
i=1

ci(τ )η
i−1, 0 ≤ η ≤ τ ≤ 1,

2∑
i=1

di(τ )η
i−1, 0 ≤ τ < η ≤ 1.

Proof By Definition 1, we have

〈
u, Q̃τ

〉
G1

2
= u(0)Q̃τ (0)+

∫ 1

0
u′(η)Q̃′

τ (η)dη, (8.5)

We get

〈
u, Q̃τ

〉
G1

2
= u(0)Q̃τ (0)+ u(1)Q̃′

τ (1)− u(0)Q̃′
τ (0)−

∫ 1

0
u(η)Q̃′′

τ (η)dη,

by integrating by parts. Note that property of the reproducing kernel is

〈u(η), Q̃′
τ (η)〉G1

2
= u(τ). (8.6)

If

{
Q̃τ (0)− Q̃′

τ (0) = 0,

Q̃′
τ (1) = 0,

(8.7)

then, we get

−Q̃′′
τ (η) = δ(η − τ ).
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If η �= τ , then we obtain

Q̃′′
τ (η) = 0.

Thus, we have

Q̃τ (η) =

⎧⎪⎪⎨
⎪⎪⎩
c1(τ )+ c2(τ )η, 0 ≤ η ≤ τ ≤ 1,

d1(τ )+ d2(τ )η, 0 ≤ τ < η ≤ 1.

(8.8)

Since

−Q̃′′
τ (η) = δ(η − τ ),

we get

Q̃τ+(τ ) = Q̃τ−(τ ) (8.9)

and

Q̃′
τ+(τ )− Q̃′

τ−(τ ) = −1. (8.10)

The unknown coefficients ci(τ ) and di(τ ) (i = 1, 2) can be obtained. Thus Q̃τ is
acquired as

Q̃τ (η) = 1 + η, 0 ≤ η ≤ τ ≤ 1, 1 + τ, 0 ≤ τ < η ≤ 1.

Definition 2 We present the space H 2
2 [0, 1] as:

H 2
2 [0, 1] = {f ∈ AC[0, 1] : f ′ ∈ AC[0, 1], f ′′ ∈ L2[0, 1], f (0) = 0}.

The inner product and the norm in H 2
2 [0, 1] are presented as:

〈f, g〉H 2
2
= f (0)g(0)+ f ′(0)g′(0)+

∫ 1

0
f ′′(η)g′′(η)dη, f, g ∈ H 2

2 [0, 1]

and

‖f ‖H 2
2
=
√
〈f, f 〉H 2

2
, f ∈ H 2

2 [0, 1].
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Theorem 2 Reproducing kernel function T̃τ of H 2
2 [0, 1] is obtained by:

T̃τ (η) =
4∑
i=1

ci(τ )η
i−1, 0 ≤ η ≤ τ ≤ 1,

4∑
i=1

di(τ )η
i−1, 0 ≤ τ < η ≤ 1.

Proof By Definition 2, we have

〈
f, T̃τ

〉
H 2

2
= f (0)T̃τ (0)+ f ′(0)T̃ ′

τ (0)+
∫ 1

0
f ′′(η)T̃ ′′

τ (η)dτ. (8.11)

Integrating this equation by parts two times, we get
〈
f, T̃τ

〉
H 2

2
= f (0)T̃τ (0)+ f ′(0)T̃ ′

τ (0)+ f ′(1)T̃ ′′
τ (1)− f ′(0)T̃ ′′

τ (0)

−f (1)T̃ ′′′
τ (1)+ f (0)T̃ ′′′

τ (0)+
∫ 1

0
f (η)T̃ (4)τ (η)dη.

We have

〈f (η), T̃τ (η)〉H 2
2
= f (τ) (8.12)

by reproducing property. Since T̃τ ∈ H 2
2 [0, 1], we have

T̃τ (0) = 0. (8.13)

If
⎧⎪⎪⎨
⎪⎪⎩
T̃ ′
τ (0)− T̃ ′′

τ (0) = 0,

T̃ ′′
τ (1) = 0,

T̃ ′′′
τ (1) = 0,

(8.14)

then, we get

T̃ (4)τ (η) = δ(η − τ ).

When η �= τ , we get

T̃ (4)τ (η) = 0.

Thus

Q̃τ (η) = c1(τ )+ c2(τ )η + c3(τ )η
2 ++c4(τ )η

3, 0 ≤ η ≤ τ ≤ 1,

d1(τ )+ d2(τ )η + d3(τ )η
2 + d4(τ )η

3, 0 ≤ τ < η ≤ 1.
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Since

T̃ (4)τ (η) = δ(η − τ ),

we obtain

T̃
(k)

τ+ (τ ) = T̃ (k)τ− (τ ), k = 0, 1, 2 (8.15)

and

T̃ ′′′
τ+(τ )− T̃ ′′′

τ−(τ ) = 1. (8.16)

The unknown coefficients ci(τ ) and di(τ ) (i = 1, 2, 3, 4) can be obtained. Thus T̃τ
is achieved as

T̃τ (η) = ητ + (η)(τ )2

2
+ (τ − η)3

6
− (τ )3

6
, 0 ≤ η ≤ τ ≤ 1,

ητ + (τ )(η)2

2
+ (η − τ )3

6
− (τ )3

6
, 0 ≤ τ < η ≤ 1.

Definition 3 We giveW 3
2 [0, 1] as:

W 3
2 [0, 1] = {f ∈ AC[0, 1] : f ′, f ′′ ∈ AC[0, 1], f (3) ∈ L2[0, 1],
f (0) = f (1) = 0}.

The inner product and the norm inW 3
2 [0, 1] are defined by

〈f, g〉W 3
2
=

2∑
i=0

f (i)(0)g(i)(0)+
∫ 1

0
f (3)(η)g(3)(η)dη, f, g ∈ W 3

2 [0, 1]

and

‖f ‖W 3
2
=

√
〈f, f 〉W 3

2
, f ∈ W 3

2 [0, 1].

Theorem 3 Reproducing kernel function Rτ ofW 3
2 [0, 1] is obtained as:

Rτ (η) =

⎧⎪⎪⎨
⎪⎪⎩

∑5
i=1 ci(τ )η

i, 0 ≤ η ≤ τ ≤ 1,

∑5
i=0 di(τ )η

i, 0 ≤ τ < η ≤ 1,

(8.17)
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where

c1(τ ) = − 1

156
τ 5 + 5

156
τ 4 − 5

78
τ 3 − 5

26
τ 2 + 3

13
τ,

c2(τ ) = − 1

624
τ 5 + 5

624
τ 4 − 5

312
τ 3 + 21

104
τ 2 − 5

26
τ,

c3(τ ) = − 1

1872
τ 5 + 5

1872
τ 4 − 5

936
τ 3 + 7

104
τ 2 − 5

78
τ,

c4(τ ) = 1

3744
τ 5 − 5

3744
τ 4 + 5

1872
τ 3 + 5

624
τ 2 − 1

104
τ,

c5(τ ) = − 1

18720
τ 5 + 1

3744
τ 4 − 1

1872
τ 3 − 1

624
τ 2 − 1

156
τ + 1

120
,

d0(τ ) = 1

120
τ 5,

d1(τ ) = − 1

156
τ 5 − 1

104
τ 4 − 5

78
τ 3 − 5

26
τ 2 + 3

13
τ,

d2(τ ) = − 1

624
τ 5 + 5

624
τ 4 + 7

104
τ 3 + 21

104
τ 2 − 5

26
τ,

d3(τ ) = − 1

1872
τ 5 + 5

1872
τ 4 − 5

936
τ 3 − 5

312
τ 2 − 5

78
τ,

d4(τ ) = 1

3744
τ 5 − 5

3744
τ 4 + 5

1872
τ 3 + 5

624
τ 2 + 5

156
τ,

d5(τ ) = − 1

18720
τ 5 + 1

3744
τ 4 − 1

1872
τ 3 − 1

624
τ 2 − 1

156
τ.

Proof Let f ∈ W 3
2 [0, 1] and 0 ≤ τ ≤ 1. Note that

R′
τ (η) =

⎧⎪⎪⎨
⎪⎪⎩

∑4
i=0(i + 1)ci+1(τ )η

i, 0 ≤ η < τ ≤ 1,

∑4
i=0(i + 1)di+1(τ )η

i, 0 ≤ τ < η ≤ 1,

R′′
τ (η) =

⎧⎪⎪⎨
⎪⎪⎩

∑3
i=0(i + 1)(i + 2)ci+2(τ )η

i, 0 ≤ η < τ ≤ 1,

∑3
i=0(i + 1)(i + 2)di+2(τ )η

i, 0 ≤ τ < η ≤ 1,

R(3)τ (η) =

⎧⎪⎪⎨
⎪⎪⎩

∑2
i=0(i + 1)(i + 2)(i + 3)ci+3(τ )η

i, 0 ≤ η < τ ≤ 1,

∑2
i=0(i + 1)(i + 2)(i + 3)di+3(τ )η

i, 0 ≤ τ < η ≤ 1,
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R(4)τ (η) =

⎧⎪⎪⎨
⎪⎪⎩

∑1
i=0(i + 1)(i + 2)(i + 3)(i + 4)ci+4(τ )η

i, 0 ≤ η < τ ≤ 1,

∑1
i=0(i + 1)(i + 2)(i + 3)(i + 4)di+4(τ )η

i, 0 ≤ τ < η ≤ 1,

and

R(5)τ (η) =

⎧⎪⎪⎨
⎪⎪⎩

120c5(τ ), 0 ≤ η < τ ≤ 1,

120d5(τ ), 0 ≤ τ < η ≤ 1.

By Definition 3 and integrating by parts, we obtain

〈f,Rτ 〉W 3
2
=

2∑
i=0

f (i)(0)R(i)τ (0)+
∫ 1

0
f (3)(η)R(3)τ (η)dη

= f ′(0)R′
τ (0)+ f ′′(0)R′′

τ (0)+ f ′′(1)R(3)τ (1)− f ′′(0)R(3)τ (0)

−f ′(1)R(4)τ (1)+ f ′(0)R(4)τ (0)+
∫ 1

0
f ′(η)R(5)τ (η)dη

= c1(τ )f
′(0)+ 2c2(y)f

′′(0)

+6(d3(τ )+ 4d4(τ )+ 10d5(τ ))f
′′(1)− 6c3(τ )f

′′(0)

−24(d4(τ )+ 5d5(τ ))f
′(1)+ 24c4(τ )f

′(0)

+
∫ τ

0
120c5(τ )f

′(η)dη +
∫ 1

τ

120d5(τ )f
′(η)dτ

= (c1(τ )+ 24c4(τ ))f
′(0)+ 2(c2(τ )− 3c3(τ ))f

′′(0)

+6(d3(τ )+ 4d4(τ )+ 10d5(τ ))f
′′(1)− 24(d4(τ )+ 5d5(τ ))f

′(1)

+120(c5(τ )− d5(τ ))f (τ )

= f (τ).

Definition 4 We give the binary spaceW(Ω) as:

W(Ω) =
{
f : ∂3f

∂η2∂t
∈ CC(Ω), ∂5f

∂η3∂t2
∈ L2(Ω),

f (η, 0) = f (0, t) = f (1, t) = 0} ,

where CC denotes the space of completely continuous functions. The inner product
and the norm inW(Ω) are obtained as:
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〈f, g〉W =
1∑
i=0

∫ 1

0

[
∂2

∂t2

∂i

∂ηi
u(0, t)

∂2

∂t2

∂i

∂ηi
g(0, t)

]
dt

+
1∑
j=0

〈
∂j

∂tj
f (·, 0), ∂

j

∂tj
g(·, 0)

〉
W 3

2

+
∫ 1

0

∫ 1

0

[
∂3

∂η3

∂2

∂t2
f (η, t)

∂3

∂η3

∂2

∂t2
g(η, t)

]
dtdη, f, g ∈ W(Ω)

and

‖g‖W = √〈g, g〉W , g ∈ W(Ω).

Lemma 1 (See [4, page 148]) Reproducing kernel function K(τ,s) of W(Ω) is
given by:

K(τ,s) = Rτ rs .

Definition 5 We define the binary space Ŵ (Ω) by

Ŵ (Ω) =
{
f ∈ CC(Ω) : ∂2f

∂η∂t
∈ L2(Ω)

}
.

The inner product and the norm in Ŵ(Ω) are obtained as:

〈f, g〉Ŵ =
∫ 1

0

[
∂

∂t
f (0, t)

∂

∂t
g(0, t)

]
dt + 〈f (·, 0), g(·, 0)〉G1

2

+
∫ 1

0

∫ 1

0

[
∂

∂η

∂

∂t
f (η, t)

∂

∂η

∂

∂t
g(η, t)

]
dtdη, f, g ∈ Ŵ (Ω)

and

‖g‖Ŵ = √〈g, g〉Ŵ , g ∈ Ŵ (Ω).

Lemma 2 (See [4, page 23]) Reproducing kernel function G(τ,s) of Ŵ (Ω) is
given as:

G(τ,s) = (Q̃τ )2.

Definition 6 We define the spaceW 1
2 [0, 1] by

W 1
2 [0, 1] = {u ∈ AC[0, 1] : u′ ∈ L2[0, 1]}.
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The inner product and the norm inW 1
2 [0, 1] are given as:

〈u, g〉W 1
2
=

∫ 1

0
u(x)g(x)+ u′(x)g′(x)dx, u, g ∈ G1

2[0, 1] (8.18)

and

‖u‖W 1
2
=

√
〈u, u〉W 1

2
, u ∈ W 1

2 [0, 1]. (8.19)

The space W 1
2 [0, 1] is a reproducing kernel space, and its reproducing kernel

function Tx is obtained as [4]

Tx(y)= 1

2 sinh(1)
[cosh(x + y − 1)+ cosh(|x − y| − 1)]. (8.20)

8.3 Analytical and Approximate Solutions

We consider

A1(f1(η, t)) = P1(η, t, F (η, t))+M1(η, t), (8.21)

where A1 : W(Ω) → Ŵ (Ω) is a bounded linear operator, P1 is a nonlinear opera-
tor,M1(η, t) is an arbitrary function, andF(η, t) = [f1(η, t), f2(η, t), . . . , fk(η, t)]T .
The spaces W(Ω) and Ŵ (Ω) are reproducing kernel spaces which are defined
according to the highest derivatives. We pick a countable dense subset {(ηj , tj )}∞j=1
in Ω, and describe ρj (η, t) = G(ηj ,tj )(η, t), ϑj1(η, t) = A∗

1ρj (η, t), where A∗
1 is

the adjoint operator of A1. It is simple to show that [2]

ϑj1(η, t) = A1K(τ,s)(η, t).

The solutions of (8.3) and (8.4) are considered in the reproducing kernel space
W 3

2 [0, 1]. On defining the linear operator L : W 3
2 [0, 1] → W 1

2 [0, 1] as

Lu(x) = u′′(x) (8.22)

the problem changes the form:

{
Lu = f (x, u), x ∈ [0, 1],
u(0) = u(1) = 0,

(8.23)

where f (x, u) = λ exp(μu(x)).
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In Eq. (8.23) since u(x) is sufficiently smooth L : W 3
2 [0, 1] → W 1

2 [0, 1] is a
bounded linear operator. For model problem (8.4) similar things can be done.

Theorem 4 Assume that {(ηj , tj )}∞j=1 is dense in Ω, then the solution of (8.21)
can be shown as

f1(η, t) =
∞∑
j=1

σj1ϑj1(η, t), (8.24)

where the σj1 are found by

Z1 × σj1 = [P1(η1, t1, F (η1, t1))+M1(η1, t1), P1(η2, t2, F (η2, t2))

+M1(η2, t2), . . .]T , (8.25)

Z1 = [A1ϑj1(η, t) |(η,t)=(ηi,ti )]i,j=1,2,..., σj1 = [σ11, σ21, . . .]T .

Proof {(ηj , tj )}∞j=1 is dense inΩ. Therefore, ϑj1(η, t) is complete system inW(Ω)
[2]. We get

〈
ϑi1 , ϑj1

〉
W(Ω)

= 〈
A∗

1ρi(η, t), ϑj1
〉
W(Ω)

= 〈
ρi(η, t), A1ϑj1

〉
Ŵ (Ω)

= A1ϑj1(η, t) =
〈
f1(η, t), ϑi1

〉
W(Ω)

= 〈
f1(η, t), A

∗
1ρi1

〉
W(Ω)

= 〈
A1f1(η, t), ρi1

〉
Ŵ (Ω)

= P1(ηi, ti , F (ηi , ti ))+M1(ηi , ti ).

This completes the proof.

Remark 1 If Pη(η, t, F (η, t)) = 0 for η = 1, 2, . . . , k, then the analytical solution
of each equation can be achieved and the approximate solution of each equation is
the m-term intercept of the analytical solution which can be obtained by solving
an m × m system of linear equations. If Pη(η, t, F (η, t)) �= 0, then we need to
construct an iterative method. We select the number of points m, the number of
iterations n and put the initial vector function F0,m(η, t) = [0, 0, . . . , 0]T . Then the
approximate solution is presented as:

Fn,m(η, t) = [fn,m,1(η, t), fn,m,2(η, t), . . . , fn,m,k(η, t)]T ,

where
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

fn,m,1(η, t) = ∑m
j=1 σj1ϑj1(η, t),

. . .

fn,m,k(η, t) = ∑m
j=1 σjkϑjk (η, t).
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Theorem 5 Suppose that {(ηj , tj )}∞j=1 is dense in Ω. Then the approximate
solution Fn,m(η, t) converges to the analytical solution F(η, t).

Proof We have

Aη(fn,m,η(ηj , tj )) = Pη(ηj , tj , Fn−1,m(ηj , tj ))+Mη(ηj , tj ) (8.26)

for

η = 1, 2, . . . , k, j = 1, 2, . . . ,m, and n = 1, 2, . . . .

There exists a convergent subsequence {fnε,m,η(η, t)}∞ε=1 of {fn,m,η(η, t)}∞n=1 such
that fnε ,m,η(η, t) → u# (η, t) as ε → ∞, m → ∞, for # = 1, 2, . . . , k. Then,
we acquire

A#(fnε ,m,# (ηj , tj )) = P#(ηj , tj , Fnε−1,m(ηj , tj ))+M#(ηj , tj ). (8.27)

The operators A# and P# are both continuous. Therefore it can be concluded
that F(η, t) = [f1(η, t), . . . , fk(η, t)]T is the analytical solution of (8.21) and
Fnε,m(η, t) = [fnε ,m,1(η, t), . . . , fnε ,m,k(η, t)]T is the approximate solution
of (8.21) after taking limit from both sides. This completes the proof.

It is obvious that L : W 3
2 [0, 1] → W 1

2 [0, 1] is a bounded linear operator. Put
ϕi(x) = Txi (x) and ψi(x) = L∗ϕi(x), where L∗ is conjugate operator of L. The
orthonormal system

{
Ψ̂i(x)

}∞
i=1 of W 3

2 [0, 1] can be obtained from Gram-Schmidt
orthogonalization process of {ψi(x)}∞i=1,

ψ̂i (x) =
i∑
k=1

βikψk(x), (βii > 0, i = 1, 2, . . .) (8.28)

Lemma 3 (See [5]) Let {xi}∞i=1 be dense in [0, 1] and ψi(x) = LyRx(y)
∣∣
y=xi .

Then the sequence {ψi(x)}∞i=1 is a complete system in W 3
2 [0, 1].

Theorem 6 If u1 and u2 are the exact solutions of (8.3), then

u1(x) =
∞∑
i=1

i∑
k=1

βikf (xk, u1k )Ψ̂i (x) (8.29)

and

u2(x) =
∞∑
i=1

i∑
j=1

γij f (xj , u2j )Ψ̂i(x), (8.30)

where {(xi)}∞i=1 is dense in [0, 1].
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Proof We have

u1(x) =
∞∑
i=1

〈
u1(x), Ψ̂i(x)

〉
W 3

2
Ψ̂i(x)

=
∞∑
i=1

i∑
k=1

βik 〈u1(x), Ψk(x)〉W 3
2
Ψ̂i(x)

=
∞∑
i=1

i∑
k=1

βik
〈
u1(x), L

∗ϕk(x)
〉
W 3

2
Ψ̂i(x)

=
∞∑
i=1

i∑
k=1

βik 〈Lu1(x), ϕk(x)〉W 1
2
Ψ̂i(x)

=
∞∑
i=1

i∑
k=1

βik
〈
f (x, u1), Txk

〉
W 1

2
Ψ̂i(x)

=
∞∑
i=1

i∑
k=1

βikf (xk, u1k )Ψ̂i(x).

Similar things can be done for u2.

The approximate solutions un(x) and um(x) can be acquired from the n and m
terms truncation of the exact solutions u1 and u2 as

un(x) =
n∑
i=1

i∑
k=1

βikf (xk, u1k )Ψ̂i(x), (8.31)

and

um(x) =
m∑
i=1

i∑
j=1

γij f (xk, u2j )Ψ̂i(x). (8.32)

Theorem 7 For any fixed u10(x) ∈ W 3
2 [0, 1] assume that the following conditions

are hold:

(i)

un(x) =
n∑
i=1

Aiψ̂i(x), (8.33)
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Ai =
i∑
k=1

βikf (xk, u1k−1(xk)), (8.34)

(ii) ‖un‖W 3
2

is bounded;

(iii) {xi}∞i=1 is dense in [0, 1];
(iv) f (x, u1) ∈W 1

2 [0, 1] for any u1(x) ∈ W 3
2 [0, 1].

Then un(x) converges to the exact solution of (8.3) inW 3
2 [0, 1] and

u1(x) =
∞∑
i=1

Aiψ̂i(x),

where Ai is given by (8.34).

Proof We will show the convergence of un(x). We get

un+1(x) = un(x)+ An+1Ψ̂n+1(x), (8.35)

from the orthonormality of {Ψ̂i}∞i=1, it follows that

‖un+1‖2 = ‖un‖2 + A2
n+1 = ‖un−1‖2 + A2

n + A2
n+1 = . . . =

n+1∑
i=1

A2
i , (8.36)

from boundedness of ‖un‖W 3
2
, we obtain

∞∑
i=1

A2
i <∞,

i.e.,

{Ai} ∈ l2 (i = 1, 2, . . .).

Let p > n, in view of
(
up − up−1

) ⊥ (
up−1 − up−2

) ⊥ . . . ⊥ (un+1 − un), it
follows that

∥∥up − un
∥∥2
W 3

2
= ∥∥up − up−1 + up−1 − up−2 + . . .+ un+1 − un

∥∥2
W 3

2

≤ ∥∥up − up−1
∥∥2
W 3

2
+ . . .+ ‖un+1 − un‖2

W 3
2

=
p∑

i=n+1

A2
i → 0, p, n→ ∞.
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Considering the completeness ofW 3
2 [0, 1], there exists u1(x) ∈ W 3

2 [0, 1], such that

un(x)→u1(x) as n→ ∞.
(ii) Taking limits,

u1(x) =
∞∑
i=1

Aiψ̂i(x).

Since

(Lu1)
(
xj
) =

∞∑
i=1

Ai
〈
Lψ̂i(x), ϕj (x)

〉
W 1

2
=

∞∑
i=1

Ai
〈
ψ̂i (x), L

∗ϕj (x)
〉
W 3

2

=
∞∑
i=1

Ai
〈
ψ̂i (x), ψj (x)

〉
W 3

2
,

it follows that

n∑
j=1

βnj (Lu1)(xj ) =
∞∑
i=1

Ai

〈
ψ̂i (x),

n∑
j=1

βnjψj (x)

〉

W 3
2

=
∞∑
i=1

Ai
〈
ψ̂i (x), ψ̂n(x)

〉
W 3

2
= An.

If n = 1, then

Lu1(x1) = f (x1, u10(x1)). (8.37)

If n = 2, then

β21(Lu1)(x1)+ β22(Lu1)(x2) = β21f (x1, u10(x1))+ β22f (x2, u11(x2)). (8.38)

From (8.37) and (8.38), we have

(Lu1)(x2) = f (x2, u11(x2)).

We get

(Lu1)(xj ) = f (xj , u1j−1(xj )), (8.39)

by induction. By the convergence of un(x) we get

(Lu1)(y) = f (y, u1(y)),
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that is, u1 (x) is the solution of (8.3) and

u1(x) =
∞∑
i=1

Aiψ̂i ,

where Ai are given by (8.34). It can be shown in a similar way that u2(x) is a
solution of (8.4).

Theorem 8 If u1 ∈ W 3
2 [0, 1], then

‖un − u1‖W 3
2
→ 0, n→ ∞.

Moreover a sequence ‖un − u1‖W 3
2

is monotonically decreasing in n.

Proof We have

‖un − u1‖W 3
2
=

∥∥∥∥∥
∞∑

i=n+1

i∑
k=1

βikf (xk, u1k )Ψ̂i

∥∥∥∥∥
W 3

2

.

Thus

‖un − u1‖W 3
2
→ 0, n→ ∞.

In addition

‖un − u1‖2
W 3

2
=

∥∥∥∥∥
∞∑

i=n+1

i∑
k=1

βikf (xk, u1k )Ψ̂i

∥∥∥∥∥
2

W 3
2

=
∞∑

i=n+1

(
i∑
k=1

βikf (xk, u1k )Ψ̂i

)2

.

Clearly, ‖un − u1‖W 3
2

is monotonically decreasing in n. In a similar way
‖um − u2‖W 3

2
is monotonically decreasing in m. This completes the proof.

Remark 2 Let us consider countable dense set {x1, x2, . . .} ∈ [0, 1] and define

ϕi = Txi , Ψi = L∗ϕi, Ψ̂i =
1∑
k=1

βikΨk.

Then βik coefficients can be found by
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β11 = 1

‖Ψ1‖ , βii = 1√‖Ψi‖2 −∑i−1
k=1 c

2
ik

,

βij = −∑i−1
k=j cikβkj√‖Ψi‖2 −∑i−1

k=1 c
2
ik

, cik = 〈
Ψi, Ψ̂k

〉
.

In a similar way γij can be defined by usingQxi .

8.4 Numerical Results

We conceive the following nonlinear system of partial differential equations by
RKM:

∂f

∂t
= α + 1

Re

∂

∂τ

(
μ(T )

∂f

∂τ

)
− Ha2

Re
f − R

Re
(f − fp),

∂fp

∂t
= 1

ReG
(f − fp),

∂T

∂t
= 1

RePr

∂

∂τ

(
K(T )

∂T

∂τ

)
+ Ec

Re
μ(T )

(
∂f

∂τ

)2

+Ec
Re
Ha2u2 + 2R

3Pr
(Tp − T ),

∂Tp

∂t
= −L(Tp − T ),

f (τ, t) = fp(τ, t) = T (τ, t) = Tp(τ, t) = 0, for t ≤ 0,

fp(0, t) = fp(1, t) = Tp(0, t) = T (0, t) = 0, for t > 0,

β
∂f

∂τ
= f, for τ = 0, 1, t > 0,

Tp(1, t) = T (1, t) = 1, for t > 0.

where

μ(T ) = exp(−aT ), K(T ) = exp(bT ),
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Fig. 8.1 Approximate solutions of up = fp for various β
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Fig. 8.2 Approximate solutions of up = fp for various t

R = 0.5, G = 0.8, α = 1, a = 1, b = 0.01, P r = 7.1,

Ec = 0.2, Re = 1, L = 0.7, β = 1, t = 10.

We obtained the numerical results and demonstrated them in Figs. 8.1, 8.2, 8.3,
8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15, 8.16, 8.17, and 8.18.
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Fig. 8.3 Approximate solutions of up = fp for various a
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Example 1 We now consider (8.3). If μλ < 0, the problem (8.3) has as many
solutions as the number of roots of the equation

θ = √
2|μλ| cosh

(
θ

4

)
,
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Fig. 8.5 Approximate solutions of u = f for different values of β
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also for each such θi

ui(x) = − 2

μ

{
ln

[
cosh

(
θi

2

(
x − 1

2

))]
− ln

[
cosh

(
θi

4

)]}
.

We obtain Tables 8.1, 8.2, 8.3, 8.4, 8.5, and 8.6 by RKM.

Example 2 We consider (8.4) for the second example. We obtain Tables 8.7, 8.8,
and 8.9 by RKM.
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8.5 Conclusion

We studied approximate solutions of nonlinear systems of partial differential
equations and multiple solutions of differential equations in the reproducing kernel
space in this paper. We demonstrated our results with Tables 8.1, 8.2, 8.3, 8.4, 8.5,
8.6, 8.7, 8.8, and 8.9 and Figs. 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11,
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8.12, 8.13, 8.14, 8.15, 8.16, 8.17, and 8.18. We proved that the reproducing kernel
method is an accurate technique for solving nonlinear systems of partial differential
equations and second order differential equations.
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Table 8.1 The numerical results of Example 1 for first solutions when θ = 1.51716, t1 = 1.389,
t2 = 8.362, λ = 1, and μ = −1

x Exact solution Approximate solution (m = 20)

0.1 −0.049846791242201656122 −0.049300593023852969510

0.2 −0.089189934623040384704 −0.088590959369428596421

0.3 −0.11760909576028070931 −0.11718659278945286749

0.4 −0.13479025387538511030 −0.13459000029373223235

0.5 −0.14053921439128292991 −0.14057905280854341332

0.6 −0.13479025387538511030 −0.13506729939580710291

0.7 −0.1176090957602807093 −0.11811210960560610009

0.8 −0.089189934623040384704 −0.089894391109067316779

0.9 −0.049846791242201656122 −0.050520853813557519252

x Approximate solution (m = 40)

0.1 −0.049615470754930670101

0.2 −0.08895586801468303565

0.3 −0.11742857480052264011

0.4 −0.1346979968120595907

0.5 −0.14054409043574415912

0.6 −0.134882969385795952

0.7 −0.11777439140332240699

0.8 −0.089415830538767154698

0.9 −0.050108239594912442539

Table 8.2 Absolute errors of Example 1 for first solutions when θ = 1.51716, t1 = 1.389,
t2 = 8.362, λ = 1, and μ = −1

x Absolute error (m = 20) Absolute error (m = 40)

0.1 0.000546198218348686612 0.000231320487270986021

0.2 0.000598975253611788283 0.000234066608357349054

0.3 0.00042250297082784182 0.0001805209597580692

0.4 0.00020025358165287795 0.00009225706332551960

0.5 0.00003983841726048341 0.0000048760444612292

0.6 0.00027704552042199261 0.0000927155104108417

0.7 0.00050301384532539078 0.00016529564304169768

0.8 0.000704456486026932075 0.000225895915726769994

0.9 0.00067406257135586313 0.000261448352710786417
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Table 8.3 Relative errors of Example 1 for first solutions when θ = 1.51716, t1 = 1.389, t2 =
8.362, λ = 1, and μ = −1

x Relative error (m = 20) Relative error (m = 40)

0.1 0.01095754018939257757 0.004640629446878895043

0.2 0.0067157270172172023205 0.0026243612504777277994

0.3 0.0035924344804845508337 0.0015349234563117461783

0.4 0.0014856681094911677931 0.00068444906566324999152

0.5 0.0002834683361013182336 0.000034695259129978821097

0.6 0.0020553824364640181301 0.00068785025434077810681

0.7 0.0042769978127428992563 0.0014054664902671738089

0.8 0.0078983854961246965039 0.0025327512199836777494

0.9 0.013522687309613288213 0.0052450387717120915581

Table 8.4 The numerical results of Example 1 for second solutions when θ = 10.9387, t1 =
2.247, t2 = 8.034, λ = 1, and μ = −1

x Exact solution Approximate solution (m = 20)

0.1 −1.0772733167967386889 −1.4723999999999999691

0.2 −2.1223923410527448670 −2.6175999999999998767

0.3 −3.0773951005699656976 −3.4355999999999997226

0.4 −3.8061519589366269394 −3.9263999999999995068

0.5 −4.0914672451371118790 −4.0899999999999992295

0.6 −3.8061519589366269394 −3.9263999999999988905

0.7 −3.0773951005699656976 −3.4355999999999984898

0.8 −2.1223923410527448670 −2.6175999999999980275

0.9 −1.0772733167967386889 −1.4723999999999975035

x Approximate solution (m = 40)

0.1 −1.4705999999999999679

0.2 −2.6143999999999998716

0.3 −3.4313999999999997114

0.4 −3.9215999999999994866

0.5 −4.0849999999999991979

0.6 −3.9215999999999988456

0.7 −3.4313999999999984283

0.8 −2.614399999999997947

0.9 −1.4705999999999974016
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Table 8.5 Absolute error of Example 1 for second solutions when θ = 10.9387, t1 = 2.247,
t2 = 8.034, λ = 1, and μ = −1

x Absolute error (m = 20) Absolute error (m = 40)

0.1 0.3951266832032612802 0.393326683203261279

0.2 0.4952076589472550097 0.4920076589472550046

0.3 0.358204899430034025 0.3540048994300340138

0.4 0.1202480410633725674 0.1154480410633725472

0.5 0.0014672451371126495 0.0064672451371126811

0.6 0.1202480410633719511 0.1154480410633719062

0.7 0.3582048994300327922 0.3540048994300327307

0.8 0.4952076589472531605 0.49200765894725308

0.9 0.3951266832032588146 0.3933266832032587127

Table 8.6 Relative error of Example 1 for second solutions when θ = 10.9387, t1 = 2.247,
t2 = 8.034, λ = 1, and μ = −1

x Relative error (m = 20) Relative error (m = 40)

0.1 0.36678406217111779588 0.36511317700953941112

0.2 0.23332521954994573834 0.23181748700770863839

0.3 0.11639873585412894767 0.11503394522350042442

0.4 0.031593074149611144625 0.030331957922044377369

0.5 0.00035861099434598545167 0.0015806664821279665282

0.6 0.031593074149610982703 0.030331957922044208957

0.7 0.11639873585412854707 0.11503394522350000748

0.8 0.23332521954994486706 0.23181748700770773158

0.9 0.36678406217111550714 0.3651131770095370289

Table 8.7 The first approximate solutions of Example 2 when t1 = 3.026, t2 = 17.629

x Approximate solution (m = 20) Approximate solution (m = 40)

0.10 0.046249255609840261107 0.047107959922349180118

0.20 0.067769610201103198051 0.069020525808629500991

0.25 0.072542992200350418849 0.073992569159451718608

0.30 0.074434206914517408745 0.076077916140538342689

0.40 0.071867699646151598001 0.07388068138764640163

0.50 0.063644001668100548478 0.065997331390535922972

0.60 0.052169172941129235241 0.054833380565893847229

0.70 0.039097646775136232426 0.042044528121172720677

0.75 0.03233520286288125028 0.035413465852768821882

0.80 0.02557036321912830349 0.02877375910539847071

0.90 0.012365702227148662923 0.015801844129696190555
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Table 8.8 The first
approximate solutions of
Example 2 when t1 = 3.026,
t2 = 17.629

x Approximate solution (m = 20 and m = 40)

1
8

0.053459133264424318687

0.054411793915706876268

3
8

0.073154996223772261394

0.075078284156485197160

5
8

0.048999016113865678553

0.051736471222444720848

7
8

0.01560460687454551774

0.018984660238594126715

Table 8.9 The second approximate solutions of Example 2 when t1 = 2.246, t2 = 8.642

x Approximate solution (m = 20) Approximate solution (m = 40)

1.01 0.99882359294951381045 0.99882235929452273651

1.02 0.99765900933602205292 0.99765655449537351669

1.03 0.99650625041189210164 0.99650258720875611371

1.04 0.99536531943327912521 0.99536046161080033598

1.05 0.99423622266201998919 0.99423018573252504798

1.06 0.99311897036752715301 0.99311177274480118408

1.07 0.99201357782868256676 0.99200524224331477294

1.08 0.99092006633573157252 0.99091062153352994887

1.09 0.98983846419217680040 0.98982794691565197597

1.1 0.98876880771667206865 0.98875726496959026110
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Chapter 9
Effect of Edge Deletion and Addition on
Zagreb Indices of Graphs

Muge Togan, Aysun Yurttas, Ahmet Sinan Cevik, and Ismail Naci Cangul

9.1 Introduction

Let G = (V ,E) be a simple graph with | V (G) |= n vertices and | E(G) |= m

edges. That means, we do not allow loops nor multiple edges. For a vertex v ∈
V (G), we denote the degree of v by dG(v). A vertex with degree one is called a
pendant vertex. Similarly, we shall use the term “pendant edge” for an edge having
a pendant vertex. As usual, we denote by Pn,Cn, Sn,Kn,Kr,s , and Tr,s the path,
cycle, star, complete, complete bipartite, and tadpole graphs, respectively.

Topological graph indices are defined and used in many areas to study several
properties of different objects such as atoms and molecules. Several topological
graph indices have been defined and studied by many mathematicians and chemists
as most graphs are generated from molecules by replacing atoms with vertices and
bonds with edges. Two of the most important topological graph indices are called
the first and second Zagreb indices denoted by

M1(G) =
∑

u∈V (G)
d2
G(u) and M2(G) =

∑
uv∈E(G)

dG(u)dG(v) (9.1)

respectively.
They were first defined in 1972 by Gutman and Trinajstic [1], and are referred to

due to their uses in QSAR and QSPR studies. In [2], some results on the first Zagreb
index together with some other indices are given. In [3], the multiplicative versions
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of these indices are studied. For graph operations, these indices are calculated in [4].
Some relations between Zagreb indices and some other indices such as ABC, GA,
and Randic indices are obtained in [5]. Zagreb indices of subdivision graphs were
studied in [6] and these were calculated for the line graphs of the subdivision graphs
in [7]. More generalized version of subdivision graphs is called r-subdivision graphs
and Zagreb indices of r-subdivision graphs are calculated in [8]. These indices are
calculated for several important graph classes in [9].

The authors recently studied the amount of change in the first and second Zagreb
indices when a new edge is added to any simple graph:

Theorem 1 ([10]) Let G be a simple graph. Let us add an edge e to form a larger
graphG+ {e}.
i) If the added edge e is a pendant edge connecting the vertex vi of degree di in G

with a new pendant vertex vn+1 of degree dn+1 = 1, then

M1(G+ {e}) = M1(G)+ 2(di + 1).

ii) If the added edge is not a pendant edge, in other words, any two vertices vi , vj
with degrees di , dj of the graphG, respectively, are connected by a new edge e,
then

M1(G+ {e}) = M1(G)+ 2(di + dj + 1).

Theorem 2 ([10]) Let G be a simple graph. Let us add the edge e to form a larger
graphG+ {e}.
i) If the added edge e is a pendant edge connecting the vertex vi of degree di in G

with a new vertex vn+1 of degree dn+1 = 1, then

M2(G+ {e}) = M2(G)+ d1 + d2 + · · · + dn + 1.

ii) Let G have m edges. If the added edge e is not a pendant edge, in other words,
if e connects two vertices of the graph G, let us say v1 and v2 with degrees d1
and d2, respectively, then

M2(G+ {e}) = M2(G)+ 2m+ d1d2 + 1.

As an application, the authors, in [10], considered six well-known graph types,
namely path Pn, cycle Cn, star Sn, complete Kn, complete bipartite Kr,s , tadpole
Tr,s , and calculate the increase in their first and second Zagreb indices after adding
an arbitrary edge e. As in the general case, there are different types of edges with
different vertex degrees. So the choice of the edge to be added is important and
effects the change in the Zagreb indices. Thus the amount of increases in each case
is given in an interval as in the following:
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4 ≤ M1(Pn + {e})−M1(Pn) ≤ 6 , 4 ≤ M2(Pn + {e})−M2(Pn) ≤ 7 ,

6 ≤ M1(Cn + {e})−M1(Cn) ≤ 10 , 7 ≤M2(Cn + {e})−M2(Cn) ≤ 17 ,

n2 − n+ 4 ≤ M1(Sn + {e})−M1(Sn) ≤ n2 + n ,
n2 − n+ 2 ≤ M2(Sn + {e})−M2(Sn) ≤ n2 ,

M1(Kn + {e})−M1(Kn) = 2n , M2(Kn + {e})−M2(Kn) = n2 − n+ 1 ,

4(r + s)+ 6 ≤ M1(Tr,s + {e})−M1(Tr,s) ≤ 4(r + s)+ 14 ,

4(r + s)+ 8 ≤ M2(Tr,s + {e})−M2(Tr,s) ≤ 4(r + s)+ 30 ,

M1(Kr,s + {e})−M1(Kr,s) = 2s + 2, M2(Kr,s + {e})−M2(Kr,s) = rs + s + 1.

In this paper, our aim is to obtain the change of the first and second Zagreb indices
of graphs when one or more edges are deleted. In this way, it is possible to obtain
recursively the Zagreb indices of graphs in terms of smaller graphs, and knowing
the Zagreb indices of some fundamental classes of graphs, it will be possible to
calculate the Zagreb indices of all graphs.

9.2 Deleting One Edge from a Graph

In this section, we will determine the amount of change in the first and second
Zagreb indices when one edge is deleted from any simple graph not necessarily
connected. Later, we shall generalize this to the case where any l edges are deleted
and calculate the change in the first Zagreb index.

Theorem 3 Let G be a simple graph. Let the edge e ∈ E(G) connect two vertices
vi , vj with degrees di , dj , respectively. Let us also denote by G − {e} the graph G
with the edge e is deleted. Then

M1(G)−M1(G− {e}) = 2(di + dj − 1) .

Proof Note thatM1(G) = ∑n
k=1 d

2
k can be re-arranged as

M1(G) =
n∑
k=1
k �=i,j

d2
k + d2

i + d2
j .
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If we delete the edge e, then only the degrees of each vertices vi and vj decreases
by 1. All other degrees remain the same. Therefore

M1(G− {e}) =
n∑
k=1
k �=i,j

d2
k + (di − 1)2 + (dj − 1)2

=
n∑
k=1
k �=i,j

d2
k − 2(di + dj − 1) =M1(G)− 2(di + dj − 1) .

Hence the result follows.

A special situation occurs when we delete a pendant edge.

Corollary 1 Let G be a simple graph. If e is a pendant edge which connects two
vertices vi , vj with degrees di and 1, respectively, then

M1(G)−M1(G− {e}) = 2di .

Proof It easily follows from the equationM1(G)−M1(G−{e}) = 2(di + dj − 1).

Secondly, let us consider the change in the second Zagreb index.

Theorem 4 Let G be a simple graph. Let e ∈ E(G) be an edge ofG to be deleted.
As the labeling of the vertices is not important, let us call this edge as e = v1v2.
Let the neighbors of v1 be called v3, v4, . . . , vk , and the neighbors of v2 be called
vk+1, vk+2, . . . , vt . Note that some of these vertices may be the same. Then

M2(G)−M2(G− {e}) = d1d2 +
t∑
j=3

dj .

Proof We know that

M2(G) = d1d2 + d1(d3 + d4 + · · · + dk)+ d2(dk+1 + dk+2 + · · · + dt )
+

∑
r,s∈E(G)
r,s �=1,2

drds

and

M2(G− {e}) = (d1 − 1)(d3 + d4 + · · · + dk)+ (d2 − 1)(dk+1 + dk+2 + · · · + dt )
+

∑
r,s∈E(G)
r,s �=1,2

drds .

Hence the result follows.

As a special case, we have
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Corollary 2 Let the deleted edge e = v1v2 be a pendant edge with degrees d1 and
1, respectively. Let v3, v4, . . . , vk be other neighbors of v1. Then

M2(G)−M2(G− {e}) = d1 + d3 + d4 + · · · + dk =
k∑
i=1

di − 1 .

Proof Taking d2 = 1 in Theorem 4, it follows.

9.3 Deleting Multiple Edges from a Graph

Now we give our interest to deletion of an arbitrary l edges from a simple graphG.
We shall denote the new graph by G− {e1, e2, . . . , el}. Then we can formulate the
change in the first Zagreb index as follows:

Theorem 5 Let e1, e2, . . . , em be the edges of a simple graph G. For i =
1, 2, . . . ,m, denote ei = vi1vi2 . If we delete l edges from G, then

M1(G)−M1(G− {e1, . . . , el}) ≤ DM1(e1, e2, . . . , el) ,

where l ≤ m, DM1(e1, . . . , el) = 2
(∑l

j=1(dj1 + dj2)− l
)

.

That is when l edges are deleted, the first Zagreb index decreases by at most two
times the sum of the degrees of the vertices connected by the deleted edges minus 2l.
Nevertheless, if the deleted edges have no common vertex, then equality holds.

Proof By Theorem 3, M1(G) decreases by 2
(
d11 + d12 − 1

)
when e1 is deleted.

Now we have the graphG− e1. If we delete e2 fromG− e1,M1(G− e1) decreases
further by 2

(
d21 + d22 − 1

)
. At l-th step, the total decrease inM1(G) when l edges

are deleted would be

DM1(e1, . . . , el) = 2
l∑
i=1

(
di1 + di2 − 1

)
.

But, we must note that this decrease is only valid when the deleted edges have no
common vertex. If there is at least one common vertex, then the decrease inM1(G)

will be less than or equal to DM1.

Example 1 Let G be the graph as given in Fig. 9.1.
If we delete e4, e6, e8 in any order, we have a new graph G − {e4, e6, e8} as in

Fig. 9.2.
In here, while M1(G) = 6 · 22 + 2 · 32 = 42 and M1(G − {e4, e6, e8}) =

4 · 12 + 4 · 22 = 20, the decrease is 22. Also DM1(e4, e6, e8) = 2((2 + 2)+ (3 +
3)+ (2 + 2)− 3) = 22 which is equal to the decrease inM1(G). Now let us delete
three edges at least two of which have a common vertex. For example, let us delete
e4, e5, and e8 fromG. Then we obtain the graph in Fig. 9.3.
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Fig. 9.1 The graph G
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Fig. 9.2 The graph with
deleted edges e4, e6, and e8
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Fig. 9.3 The graph with
deleted edges e4, e5, and e8
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In this new graph, whileM1(G− {e4, e5, e8}) = 3 · 12 + 3 · 22 + 1 · 32 = 24, the
decrease is 18. AlsoDM1(e4, e5, e8) = 2((2+2)+ (2+3)+ (2+2)−3)= 20 and

M1(G)−M1(G− {e4, e5, e8}) < DM1(e4, e5, e8) .

9.4 Deleting One Edge from Some Well-Known Graphs

In this section, by considering six well-known graph types, we will calculate the
change in their first and second Zagreb indices. Recall that if all degrees are the
same, then the graph is called regular. Similarly if each edge in a graph G has the
vertex degrees k and l, then we call the graph biregular. It is well known that all
regular graphs are also biregular. For example, Cn, Sn, Kn, and Kr,s are biregular
graph types. On the other hand, if a graph is biregular, then the edge to be deleted
is not important and the Zagreb indices will have the same change. Therefore, for
biregular graphs, there is only one possible value forMi(G−{e}), where i = 1, 2. If
a graph is not biregular, then there are different types of edges with different vertex
degrees. So the choice of the edge to be deleted is important and effects the change
in the Zagreb indices.
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Let us begin with path graphs Pn. There are two types of edges in Pn, two end
edges with vertex degrees 1 and 2, and n−3 middle edges with both vertex degrees 2.

If we delete one of the end edges, say e1, then

M1(Pn − {e1}) = 2 · 12 + 1 · 02 + (n− 3) · 22 = 4n− 10

and the decrease in the first Zagreb index is

M1(Pn)−M1(Pn − {e1}) = (4n− 6)− (4n− 10) = 4 .

If we delete one of the middle edges, say e2, then

M1(Pn − {e2}) = 4 · 12 + (n− 4) · 22 = 4n− 12

and the decrease in the first Zagreb index is

M1(Pn)−M1(Pn − {e2}) = (4n− 6)− (4n− 12) = 6 .

Therefore these arguments imply the following result.

Corollary 3 If any edge e is deleted from Pn, then

4n− 12 ≤M1(Pn − {e}) ≤ 4n− 10 .

Secondly, let us calculate the second Zagreb index for Pn − {e}. If e1 is one of
the end edges, then

M2(Pn − {e1}) = 2 · (1 · 2)+ (n− 4) · (2 · 2) = 4n− 12

and thereforeM2(Pn)−M2(Pn − {e1}) = 4. If e2 is one of the middle edges, then

M2(Pn − {e2}) = 4 · (1 · 2)+ (n− 6) · (2 · 2) = 4n− 16

which implies thatM2(Pn)−M2(Pn − {e2}) = 8. Hence we proved

Corollary 4 If any edge is deleted from Pn, then

4n− 16 ≤M2(Pn − {e}) ≤ 4n− 12 .

Now let us delete an arbitrary edge from Cn and then calculate the change in two
Zagreb indices. As Cn is regular (and biregular), we obtain a path graphPn and after
similar calculations, we get

Corollary 5

M1(Cn − {e}) = 4n− 6 and M2(Cn − {e}) = 4n− 8 .

HenceM1 decreases by 6, andM2 decreases by 8.
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Now let us delete an arbitrary edge from a star graph Sn. As Sn is biregular, all
edges have vertex degrees 1 and n− 1. Therefore

Corollary 6

M1(Sn − {e}) = n2 − 3n+ 2 and M2(Sn − {e}) = n2 − 4n+ 4 .

Hence, while the decrease in M1 is 2(n− 1), the decrease inM2 is 2n− 3.

For the complete graphsKn which are both regular and biregular, the changes in
the Zagreb indices are given in the following result:

Corollary 7

M1(Kn − {e}) = n3 − 2n2 − 3n+ 6

and

M2(Kn − {e}) = n4 − 3n3 − 3n2 + 15n− 10

2
.

Hence the decreases inM1 andM2 are 4n− 6 and 3n2 − 8n+ 5, respectively.

Proof Recall thatM1(Kn) = n(n−1)2 = n3−2n2+n andM2(Kn) =
(
n
2

)
(n−1)2 =

n4−3n3+3n2−n
2 . Now

M1(Kn − {e}) = 2 · (n− 2)2 + (n− 2) · (n− 1)2 = (n− 2) · (n2 − 3)

and

M2(Kn − {e}) =
(
n− 2

2

)
(n− 1) · (n− 1)+ 2 · (n− 2) · ((n− 1) · (n− 2))

= (n− 1) · (n− 2) · (n2 − 5)

2

and we proved the required results.

Now for the complete bipartite graphKr,s , we have the following result:

Corollary 8

M1(Kr,s − {e}) = (r + s)(rs − 2)+ 2

and

M2(Kr,s − {e}) = rs(rs − 3)+ r + s .
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Fig. 9.4 The graph with
deleted edge e1

Deleted

edge e1

Hence the decreases in M1 and M2 when an edge is deleted are 2(r + s − 1) and
3rs − r − s, respectively.

Finally, let us consider the tadpole graphs Tr,s . This time, the situation is a little
bit more complicated. There are five types of edges that give different effects on the
Zagreb indices when deleted. Let n = r + s. If we delete the unique pendant edge
given in Fig. 9.4, then

M1(Tr,s − {e1}) = 1 · 12 + 1 · 32 + (s − 2 + r − 1) · 22

= 4 · (r + s)− 2 = 4n− 2

and

M2(Tr,s − {e1}) = 1 · (1 · 2)+ 3 · (2 · 3)+ [s − 3 + r − 2] · (2 · 2)

= 4(r + s) = 4n

which means that both the first and second Zagreb indices decrease by 4.
If we delete the edge e2 next to the pendant edge, then we similarly get

M1(Tr,s − {e2}) = 3 · 12 + 1 · 32 + (s − 3 + r − 1) · 22

= 4 · (r + s)− 4 = 4n− 4

and

M2(Tr,s − {e2}) = 1 · (1 · 1)+ 1 · (1 · 2)+ 3 · (2 · 3)+ [s − 4 + r − 2] · (2 · 2)

= 4(r + s)− 3 = 4n− 3 .

Hence the first and second Zagreb indices decrease by 6, and 7, respectively.
Thirdly, we delete one of the three edges, say e3, incident to the vertex of degree

3. In this case

M1(Tr,s − {e3}) = 4n− 6 and M2(Tr,s − {e3}) = 4n− 8 .

Therefore the first and second Zagreb indices decrease by 8 and 12, respectively.
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Fourthly, if we delete one of the three edges, say e4, with vertex degrees 2 and 2,
which are next to the edges deleted in the previous step, then

M1(Tr,s − {e4}) = 4(r + s)− 4 = 4n− 4

and

M2(Tr,s − {e4}) = 4(r + s)− 5 = 4n− 5

which means that the first and second Zagreb indices decrease by 6 and 9,
respectively.

Finally, if we delete one of the remaining edges, say e5, then

M1(Tr,s − {e5}) = M2(Tr,s − {e5}) = 4n− 4

which means that the first and second Zagreb indices decrease by 6 and 8,
respectively.

All these give us the following result:

Corollary 9

4n− 6 ≤ M1(Tr,s − {e}) ≤ 4n− 2 and 4n− 8 ≤M2(Tr,s − {e}) ≤ 4n .

Example 2 Consider T5,6. We know that M1(T5,6) = 46 and M2(T5,6) = 48. Let
us delete an edge. As special cases, the upper bounds for M1 and M2 are obtained
when the pendant edge is deleted, and the lower bounds are attained when one of
the three edges incident to the vertex with degree three is deleted.
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Chapter 10
The Limit q-Bernstein Operators with
Varying q

Manal Mastafa Almesbahi, Sofiya Ostrovska, and Mehmet Turan

10.1 Introduction

The Bernstein polynomials introduced in [2] represent—without any doubt—one
of the greatest mathematical discoveries of the twentieth century. Their role and
applications are not restricted to the approximation theory or even mathematics.
These polynomials have been studied intensively and their connections with various
branches of analysis such as convex and numerical analysis, total positivity, and
the operator theory have been investigated. Due to the fact that the Bernstein
polynomials of a continuous function f on interval [0, 1] form an approximating
sequence of shape-preserving operators, these polynomials are an indispensable tool
of the computer-aided geometric design. It is a noteworthy fact that the DeCasteljeau
algorithm and Bezier curves—both based on the Bernstein basis—were discovered
in the research group of “Renault” concern. Currently, the bibliography on the Bern-
stein polynomials includes thousands of works, while new papers are constantly
coming out, and new applications and generalizations are being discovered.

The aim of emerging generalizations is to create appropriate tools for various
problems of analysis, differential equations, numerical analysis, and others. Due
to the intensive development of the q-calculus, quite a few generalizations of
Bernstein polynomials connected with the q-calculus have appeared. The most
popular q-analogue of the Bernstein polynomials belongs to Philips [9], who
proposed new polynomials known today as the q-Bernstein polynomials. This year
we celebrate 20 years of these polynomials. During these two decades, the area
attracted interest of many researches, produced a great number of interesting results,
revealed new phenomena, and rich interrelations with other disciplines. We refer
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to [3, 4, 8, 10, 11] and the references therein. Although some properties of the
q-Bernstein polynomials bear certain similarity to the properties of the classical
ones, the involvement of parameter q brings additional flexibility to their structure
and requires entirely different approaches of investigation. In this work, we study
problem which has no analogues in the classical case, namely the continuity of the
limit q-Bernstein operator with respect to parameter q .

We use the following standard notation (cf. [1, Ch. 10, §10.2]):

(x; q)0 := 1; (x; q)n :=
n−1∏
k=0

(1 − xqk); (x; q)∞ =
∞∏
k=0

(1 − xqk).

The entire function (x; q)∞, 0 < q < 1, plays an important role in the reasoning of
this paper. For the sake of convenience, we also denote it by:

ψq(x) := (x; q)∞. (10.1)

The Taylor expansions, both of ψq and 1/ψq, were first obtained by Euler (cf. [1,
Ch. 10, Cor. 10.2.2]):

ψq(x) =
∞∑
k=0

(−1)kqk(k−1)/2

(q; q)k xk (10.2)

and

1

ψq(x)
=

∞∑
k=0

xk

(q; q)k , |x| < 1. (10.3)

The main object of this study is the limit q-Bernstein operator, which has
appeared independently in several works from different approaches. See, for
example, [7].

Definition 1 Let q ∈ [0, 1]. The limit q-Bernstein operator is defined by f �→
Bqf as follows:

1. For q ∈ (0, 1),

(Bqf )(x) :=
{
ψq(x) ·∑∞

k=0
f (1−qk)xk
(q;q)k if x ∈ [0, 1),

f (1) if x = 1.

2. B0 := L, where (Lf )(x) := f (0)(1 − x)+ f (1)x.
3. B1 := I, the identity operator.

Whenever q ∈ (0, 1), it is convenient to introduce functions

pk(q; x) := ψq(x)x
k

(q; q)k for k = 0, 1, . . . , (10.4)
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so that the limit q-Bernstein operator can be written in the form

Bq(f ; x) =
∞∑
k=0

f (1 − qk)pk(q; x), x ∈ [0, 1).

By virtue of (10.3), it follows that

∞∑
k=0

pk(q; x) = 1 for x ∈ [0, 1). (10.5)

The series in (10.5) converges uniformly on any compact subset of [0, 1).
In the case q ∈ (0, 1), the operator Bq was introduced in [5] and its analytical

and geometric properties were studied in a number of papers afterwards. A
comprehensive review of the results on the limit q-Bernstein operator along with
an ample bibliography can be found in [7]. In this paper, new results on the limit q-
Bernstein operator are presented. To be more specific, the continuity of the mapping
q �→ Bqf with respect to q has been investigated both in the strong and uniform
operator topologies.

10.2 Statement of Results

Throughout the text, it is assumed that qn ∈ [0, 1], so that the corresponding
operators Bqn are well-defined on C[0, 1] equipped with the uniform norm. The
following definitions are taken from [6, Section 4.9, Definition 4.9-1].

Definition 2 A sequence {Tn} of operators on a Banach space X is said to be
strongly operator convergent if {Tnx} converges in the norm ofX for every x ∈ X.
Definition 3 A sequence {Tn} of operators on a Banach space X is said to be
uniformly operator convergent if {‖Tn − T ‖} → 0.

Theorem 1 Let qn → a ∈ [0, 1]. Then, for every f ∈ C[0, 1], one has

Bqn(f ; x)→ Ba(f ; x) as n→ ∞

uniformly on [0, 1]. In other words, Ba is the strong operator limit of Bqn.

Corollary 1 The map q �→ Bq is continuous in the strong operator topology on
C[0, 1] for q ∈ [0, 1].

The statement below demonstrates that the result of Theorem 1 cannot be
extended for the uniform operator topology. What is more, the map q �→ Bq is
discontinuous at every point q ∈ [0, 1].
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Theorem 2 For every distinct r, q ∈ [0, 1],

‖Bq − Br‖ ≥ 1

2
.

Corollary 2 With respect to the operator norm, the set {Bq : q ∈ [0, 1]} consists
of isolated points with the distance between any two distinct points being at least
1/2 and at most 2.

10.3 Auxiliary Results

Assumption From here on, whenever a ∈ (0, 1), it will be assumed without any
loss of generality that for some a1, a2 and all n ∈ N,

0 < qn < a1 < a2 < 1 and a < a1 < a2 < 1. (10.6)

Before the proofs of Theorems 1 and 2 are presented, we give some auxiliary
results. In what follows, by C with some index we denote a positive constant whose
value does not need to be specified. An index is used for numbering while the
dependence on parameter(s) is indicated in parentheses.

Lemma 1 The following inequalities are true:

(i) if |u| ≤ 1
2 , then | ln(1 + u)| ≤ 2|u|;

(ii) if | ln t| ≤ 1, then |t − 1| ≤ 3| ln(t)|.
Proof

(i) It is commonly known that ln(1 + u) ≤ u whenever u ≥ 0. Let u ∈ [−1/2, 0).
Applying the Mean Value Theorem, we obtain:

ln(1 + u)
u

= 1

1 + c , c ∈ (−1/2, 0),

which yields | ln(1 + u)| ≤ 2|u| for u ∈ [−1/2, 0).
(ii) Applying the Mean Value Theorem to the function f (x) = ex one has:

∣∣∣∣e
x − 1

x

∣∣∣∣ ≤ e < 3 for x ∈ [−1, 1].

Setting x = ln t, one derives the statement. ��
Lemma 2 The following estimate holds:

∣∣∣qjn − aj
∣∣∣ ≤ C1(a)a

j
2 |qn − a|,

where C1(a) is independent from j and n.



10 The Limit q-Bernstein Operators with Varying q 207

Proof Since qjn − aj = (qn − a)(qj−1
n + qj−2

n a + · · · + aj−1), we have with the
help of (10.6): ∣∣∣qjn − aj

∣∣∣ ≤ |qn − a|
∣∣∣aj−1

1 + aj−2
1 a1 + · · · + aj−1

1

∣∣∣

= |qn − a| (jaj−1
1 ) ≤ |qn − a| aj2

ja
j−1
1

a
j

2

.

Since the sequence

{
ja
j−1
1

a
j

2

}
is bounded, say, by C1(a), the statement follows. ��

Lemma 3 For all j ∈ N, the following estimate holds:∣∣∣∣∣
q
j
n − aj
1 − aj

∣∣∣∣∣ ≤ C2(a)a
j
2 |qn − a|,

where C2(a) is independent from j and n.

Proof With the help of Lemma 2,∣∣∣∣∣
q
j
n − aj
1 − aj

∣∣∣∣∣ ≤
∣∣∣qjn−aj

∣∣∣
1−a ≤ C1(a)a

j
2 |qn−a|

1−a := C2(a)a
j

2 |qn − a|.

��
Corollary 3 For all j ∈ N and x ∈ [0, 1], the following inequality is valid:∣∣∣∣∣

(q
j
n − aj )x
1 − ajx

∣∣∣∣∣ ≤ C2(a)xa
j
2 |qn − a|.

Lemma 4 Let {qn} → a < 1. Then, for n ∈ N, one has∣∣∣∣∣ln
(

1 + aj − qjn
1 − aj

)∣∣∣∣∣ ≤ C3(a)a
j

2 |qn − a| f or all j ∈ N.

Proof Take N1 ∈ N such that n > N1 implies |qn − a| ≤ 1
2C2(a)a2

. By using
Lemma 1, we derive that for n > N1∣∣∣∣∣ln

(
1 + aj − qjn

1 − aj
)∣∣∣∣∣ ≤ 2C2(a)a

j

2 |qn − a|,

and thence, ∣∣∣∣∣ln
(

1 + aj − qjn
1 − aj

)∣∣∣∣∣ ≤ C3(a)a
j
2 |qn − a| for all j ∈ N.

��
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Lemma 5 The following estimate holds for all n, k ∈ N :∣∣∣∣ 1

(qn; qn)k − 1

(a; a)k
∣∣∣∣ ≤ C4(a)|qn − a|, (10.7)

where C4(a) is independent from n and k.

Proof First, notice that by virtue of (10.6), (qn; qn)k > (a1; a1)k > (a1; a1)∞,
whence

0 <
1

(qn; qn)k <
1

(a1; a1)∞
.

Therefore,

∣∣∣∣ 1

(qn; qn)k − 1

(a; a)k
∣∣∣∣ = 1

(qn; qn)k
∣∣∣∣1 − (qn; qn)k

(a; a)k
∣∣∣∣

≤ 1

(a1; a1)∞

∣∣∣∣∣∣
k∏
j=1

1 − qjn
1 − aj − 1

∣∣∣∣∣∣

= 1

(a1; a1)∞

∣∣∣∣∣∣
k∏
j=1

(
1 + aj − qjn

1 − aj
)

− 1

∣∣∣∣∣∣ .

Set t := ∏k
j=1

(
1 + aj−qjn

1−aj
)

and consider

|ln t| =
∣∣∣∣∣∣
k∑
j=1

ln

(
1 + aj − qjn

1 − aj
)∣∣∣∣∣∣ .

By Lemma 4, one has, for n large enough,

|ln t| ≤
k∑
j=1

∣∣∣∣∣ln
(

1 + aj − qjn
1 − aj

)∣∣∣∣∣ ≤
k∑
j=1

C3(a)a
j
2 |qn − a|

≤ C3(a)|qn − a|
∞∑
j=0

a
j

2 = C3(a)

1 − a2
|qn − a|.

Thence, | ln t| ≤ 1 for n large enough and Lemma 1 implies that, for those n,

|t − 1| ≤ 3
C3(a)

1 − a2
|qn − a|.

This yields (10.7). ��
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Lemma 6 For all x ∈ [0, 1], the following estimate holds:

∣∣∣∣∣∣
∞∏
j=1

(1 − qjnx)−
∞∏
j=1

(1 − ajx)
∣∣∣∣∣∣ ≤ C5(a)x|qn − a|.

Proof First, notice that (1−qjnx) ≥ (1−aj1x) ≥ (1−aj1 ) for all n and all x ∈ [0, 1].
Hence,

∣∣∣∣∣∣
∞∏
j=1

(1 − qjnx)−
∞∏
j=1

(1 − ajx)
∣∣∣∣∣∣ ≤

1

(a1; a1)∞

∣∣∣∣∣∣
∞∏
j=1

(
1 + (aj − qjn)x

1 − aj
)

− 1

∣∣∣∣∣∣ .

As in the proof of Lemma 5, set:

t :=
∞∏
j=1

(
1 + (aj − qjn)x

1 − aj
)
,

and use Corollary 3 along with Lemma 4 to derive

| ln t| ≤
∞∑
j=1

∣∣∣∣∣ln
(

1 + (aj − qjn)x
1 − aj

)∣∣∣∣∣ ≤ C3(a)x|qn − a|

for n large enough. Finally, one obtains:

∣∣∣∣∣∣
∞∏
j=1

(1 − qjnx)−
∞∏
j=1

(1 − ajx)
∣∣∣∣∣∣ ≤

1

(a1; a1)∞
C3(a)x|qn − a| := C5(a)x|qn − a|.

��
Corollary 4 If {qn} → a ∈ (0, 1), then one has:

∞∏
j=1

(1 − qjnx)→
∞∏
j=1

(1 − ajx) as n→ ∞

uniformly on [0, 1].
Lemma 7 For every k ∈ N, the following estimate holds:

|pk(qn; x)− pk(a; x)| ≤ C6(a)|qn − a|,

where pk are defined by (10.4). Therefore, pk(qn; x) → pk(a; x) as n → ∞
uniformly on [0, 1].
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Proof

|pk(qn; x)− pk(a; x)|

= xk(1 − x)
∣∣∣∣∣∣

1

(qn; qn)k
∞∏
j=1

(
1 − qjnx

)
− 1

(a; a)k
∞∏
j=1

(
1 − ajx

)∣∣∣∣∣∣

≤
∣∣∣∣ 1

(qn; qn)k − 1

(a; a)k
∣∣∣∣

∞∏
j=1

(1 − qjnx)

+ 1

(a; a)k

∣∣∣∣∣∣
∞∏
j=1

(1 − qjnx)−
∞∏
j=1

(1 − ajx)
∣∣∣∣∣∣ .

Using the results of Lemmas 5 and 6, one obtains:

|pk(qn; x)− pk(a; x)| ≤ C4(a)|qn − a| + 1

(a; a)k C5(a)x|qn − a|

≤
(
C4(a)+ C5(a)

(a; a)∞
)
|qn − a| := C6(a)|qn − a|.

��
Corollary 5 For a fixed positive integerN, set:

SN (q; x) =
N∑
k=0

f (1 − qkn)pk(qn; x). (10.8)

Then, for any f ∈ C[0, 1], SN(qn; x)→ SN (a; x) as n→ ∞ uniformly on [0, 1].
Proof The conclusion follows from the fact that f (1 − qkn) → f (1 − ak) for each
k ∈ N0 and Lemma 7. ��
Lemma 8 Let SN be defined by (10.8). Then, the following estimate holds:

|SN(qn; x)− SN (a; x)| ≤ ωf (C1(a)|qn − a|)+ ‖f ‖(N + 1)C6(a)|qn − a|,

where ωf (·) is the modulus of continuity on [0, 1] and ‖ · ‖ is the uniform norm in
C[0, 1].
Proof Consider

|SN(qn; x)− SN(a; x)| ≤
∣∣∣∣∣
N∑
k=0

f (1 − qkn)pk(qn; x)−
N∑
k=0

f (1 − ak)pk(qn; x)
∣∣∣∣∣
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+
∣∣∣∣∣
N∑
k=0

f (1 − ak)pk(qn; x)−
N∑
k=0

f (1 − ak)pk(a; x)
∣∣∣∣∣

≤
N∑
k=0

|f (1 − qkn)− f (1 − ak)|pk(qn; x)

+‖f ‖
N∑
k=0

|pk(qn; x)− pk(a; x))| .

Evidently, |f (1 − qkn) − f (1 − ak)| ≤ ωf (|qkn − ak|) ≤ ωf (C1(a)|qn − a|) by
Lemma 2. With the help of Eq. (10.5) and Lemma 7, one concludes that

|SN (qn; x)− SN (a; x)| ≤ ωf (C1(a)|qn − a|)+ ‖f ‖(N + 1)C6(a)|qn − a|.

��
Remark 1 If f satisfies the Lipschitz condition on [0, 1], then

|SN(qn; x)− SN(a; x)| ≤ C7(a)|qn − a|.

10.4 Proofs of Main Results

Proof (Proof of Theorem 1)

Case 1 a ∈ (0, 1). Let ε > 0 be given. Since the limit q-Bernstein operator leaves
linear functions invariant [7, Theorem 26, formula (53)], it can be assumed without
loss of generality that f (0) = f (1) = 0. As f is uniformly continuous on [0, 1],
there exists δ > 0 such that |x − y| < δ implies |f (x) − f (y)| < ε for all x, y ∈
[0, 1]. Select N ∈ N in such a way that ak1 < δ for k > N. Clearly, the selection of
N depends only on the value of a1 and, therefore, on a. Then, for k ≥ N + 1, both
f (1 − qkn) < ε and f (1 − ak) < ε. Consequently,

∣∣Bqn(f ; x)− Ba(f ; x)∣∣ ≤ |SN(qn; x)− SN(a; x)| +
∣∣∣∣∣

∞∑
k=N+1

f (1 − qkn)pk(qn; x)
∣∣∣∣∣

+
∣∣∣∣∣

∞∑
k=N+1

f (1 − ak)pk(a; x)
∣∣∣∣∣

:= J1 + J2 + J3.
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By Lemma 5, we conclude that J1 < ε for n large enough. As for J2, we have
using (10.5):

J2 ≤
∞∑

k=N+1

|f (1 − qkn)|pk(qn; x) ≤ ε
∞∑

k=N+1

pk(qn; x) < ε.

The term J3 can be estimated in the same way. Finally, we obtain that, for n large
enough,

∣∣Bqn(f ; x)− Ba(f ; x)∣∣ < 3ε.

Case 2 a = 0, that is, {qn} → 0+. As before, it can be assumed without loss of
generality that f (0) = f (1) = 0 implying (B0f )(x) ≡ 0. Given ε > 0, there exists
a δ > 0 such that |f (x)| < ε when x ∈ [1 − δ, 1]. At the same time, there exists
N ∈ N such that 1 − qkn ∈ [1 − δ, 1] for all k ∈ N and n > N. As a result, for
n > N, one has:

|Bqn(f ; x)| ≤
∞∑
k=1

|f (1 − qkn)|pk(qn; x) < ε.

The statement is proved.

Case 3 a = 1. Here, we have to prove that, for every f ∈ C[0, 1],
{
Bqn(f ; x)

} → f (x) as {qn} → 1−. (10.9)

Since Bqn is a positive linear operator on C[0, 1] which reproduces linear functions,
by Korovkin’s Theorem it suffices to show that

{
Bqn(x

2; x)
}
→ x2 as {qn} → 1−.

Plain calculations [7, formula (42)] reveal that:

Bqn(x
2; x) = x2 + (1 − qn)x(1 − x),

yielding the needed conclusion.
The proof of the theorem is complete. ��

Proof (Proof of Theorem 2) To begin with, we notice that, for every q ∈ (0, 1) and
every ε > 0, there exist δ = δ(q, ε) and N = N(q, ε) satisfying:

N∑
k=1

pk(q; x) > 1 − ε for x ∈ [1 − δ, 1 − δ/2]. (10.10)
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Indeed, since p0(q; x) → 0 as x → 1−, there exists δ = δ(q, ε) > 0 such that
p0(q; x) < ε/2 when x ∈ [1−δ, 1].Apart from that, by (10.5),

∑∞
k=0 pk(q; x) = 1

and the convergence is uniform on each compact subset of [0, 1).Hence, there exists
N = N(q, ε) such that

N∑
k=0

pk(q; x) > 1 − ε/2 for x ∈ [1 − δ, 1 − δ/2],

which yields (10.10), because

N∑
k=1

pk(q; x) =
N∑
k=0

pk(q; x)− p0(q; x).

Next, assuming that 0 ≤ r < q ≤ 1, we split the proof into several parts.

1. If r = 0 and q = 1, then ‖B1 − B0‖ = 2 and there is nothing to prove.
2. Let r = 0 and q ∈ (0, 1) be fixed. Given ε > 0, choose N = N(q, ε) to

satisfy (10.10) and consider a function fN ∈ C[0, 1], ‖fN‖ = 1 satisfying the
conditions:

fN(1 − qk) = 1 for k = 1, 2, . . . , N,
fN(1 − qk) = 0 for k �= 1, 2, . . . , N.

Consequently ‖Bq − B0‖ ≥ 1 − ε for an arbitrary ε > 0, and thence
‖Bq − B0‖ ≥ 1.

3. Let q = 1, r ∈ (0, 1), and f ∈ C[0, 1] be chosen in such a way that ‖f ‖ = 1 and
f (1 − qk) = 0 for all k ∈ N0. Then Bqf = 0 and hence ‖Bq −B1‖ ≥ ‖f ‖ = 1.

4. Finally, comes the case 0 < r < q < 1. Here, exactly one of the following
situations occurs:

(i) qj �= rl for all j, l ∈ N;
(ii) qj = rl for some j, l ∈ N.

We consider these cases separately.

Case (i) As in previous arguments, given ε > 0, choose δ = δ(r, ε) > 0 and
N = N(r, ε) so that (10.10) is true. Now, let f ∈ C[0, 1] be a function with
‖f ‖ = 1, satisfying the conditions:

f (1 − rk) = 1 for k = 1, 2, . . . , N,
f (1 − rk) = 0 for k �= 1, 2, . . . , N,
f (1 − qk) = 0 for all k ∈ N0.

Clearly,

|(Bq − Br)(f ; x)| =
N∑
k=1

pk(r; x) > 1 − ε, x ∈ [1 − δ, 1 − δ/2].
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Since ‖f ‖ = 1, the latter implies that ‖Bq − Br‖ ≥ 1 − ε and, consequently,
‖Bq − Br‖ ≥ 1.

Case (ii) In this case, there exists an integer m ≥ 2 such that

{1 − rk}∞k=0 ∩ {1 − qk}∞k=0 = {1 − rmk}∞k=0.

Consider

∞∑
k=0

pmk(r; x) = (x; r)∞
∞∑
k=0

xmk

(r; r)mk <
(x; r)∞

(r; r)∞(1 − xm) → 1

m
as x → 1−.

Hence, for a given ε > 0, there exist δ1 = δ1(r, ε) > 0 such that

∞∑
k=0

pmk(r; x) ≤ 1

m
+ ε/2 on [1 − δ1, 1).

Using the last inequality and following the same line of reasoning as before, for
an arbitrary ε > 0, one may select δ > 0 and N ∈ N in such a way that

N∑
k=1,m�k

pk(r; x) =
N∑
k=0

pk(r; x)−
 N/m"∑
k=0

pmk(r; x)

≥ 1 − 1

m
− ε ≥ 1

2
− ε for x ∈ [1 − δ, 1 − δ/2].

Now, let f ∈ C[0, 1] be a function with ‖f ‖ = 1, satisfying the conditions:

f (1 − rk) = 1 for 1 ≤ k ≤ N,m � k

f (1 − rk) = 0 for 1 ≤ k ≤ N,m|k, or k > N,
f (1 − qk) = 0 for 1 − qk /∈ {1 − rj }∞j=0.

Then,

‖(Bq − Br)(f ; x)‖ = max
x∈[0,1]

N∑
k=1,m�k

pk(r; x) ≥ 1

2
− ε.

Thus, ‖Bq − Br‖ ≥ 1/2. The proof is complete. ��
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Chapter 11
Localization of the Spectral Expansions
Associated with the Partial Differential
Operators

Abdumalik Rakhimov

11.1 Introduction

The solutions of the engineering problems can be obtained with the application of
series or transformations depending on the domain, boundary, and initial conditions.
For example, investigations of the various vibration processes in the real interval
(finite, semi-finite or infinite) require application of the Fourier series and integrals.
The problems of this type are the main reason for the importance of studying
questions of convergence of the Fourier series and integrals in different topology.

Multidimensional case, in contrast to the one dimension, is involving various
methods of summations of the Fourier series and integrals. Note that some of the
summation methods are linked to the spectral theory of the partial differential oper-
ators. For example, a spherical partial sums of the multiple Fourier trigonometric
series coincides with the spectral expansions associated with the Laplace operator
on the torus.

The spectral expansions associated with the elliptic partial differential operators
in the spaces of the smooth functions are well studied in many papers. But many
phenomena in nature require for its description either “bad” functions or even
they cannot be described by regular functions. Therefore, one has to deal with the
distributions that describe only integral characteristics of phenomena.

Application of the spectral methods in the spaces of distributions leads to the
study of convergence and/or summability problems of the spectral expansions of the
linear continuous functional. We will study convergence and summability problems
of the spectral expansions of distributions in the classical means in the domains
where they coincide with the regular functions. We prove that the singularities of
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the distributions will effect negatively to the convergence and/or summability even
at regular points. For example, the Fourier trigonometric series of the Dirac function
diverges at a regular point due to the effect of the singularity at zero, although its
arithmetic means converge.

11.2 Summability of the Spectral Expansions of Distributions

LetΩ - an arbitraryN - dimensional domain. Consider a polynomial by ξ, ξ ∈ RN,
of order 2m with coefficients in C∞(Ω)

A(x, ξ) =
∑

|α|≤2m

aα(x)ξ
α, (11.1)

where α denotes a multi-index, i.e. N-dimensional vector with non-negative integer
components α = (α1, α2, . . . , αN), |α| = α1 + α2 + · · · + αN is called the length
of the multi-index α, ξα = ξα1

1 ξ
α
2 . . . ξ

α
N , here ξj—component of the vector ξ .

Denote

Dj = 1

i

∂

∂xi
andDα = Dα1

1 D
α2
2 . . .D

αN
N .

Differential operator

A(x,D) =
∑

|α|≤2m

aα(x)D
α, (11.2)

is called an elliptic operator of the order 2m, at the point x, if for any ξ ∈ RN

A0(x, ξ) =
∑

|α|=2m

aα(x)ξ
α ≥ c(x)|ξ |2m, c(x) > 0.

A(x,D) is called an elliptic operator in the domainΩ if it is elliptic in each point
of the domain.

Denote by C∞
0 (Ω) the space of all infinite differentiable functions in the domain

Ω with the compact support in Ω .
Let A be an operator in the Hilbert space L2(Ω) with the domain of definition

D(A) = C∞
0 (Ω), acting as Au(x) = A(x,D)u(x), u(x) ∈ C∞

0 (Ω). Let A be a
symmetric operator, i.e. for any u and v from C∞

0 (Ω)

(u, v) = (u,Av).
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Also suppose that A is semi-bounded which means there is a constant μ such
that for any u ∈ C∞

0 (Ω)

(u, u) ≥ μ(u, u).
From the Fredrix theorem [7] it follows that the operator A has at least one

self-adjoint extension Â with the same lower bound μ. By the John von Neumann
spectral theorem (see, for instance, in [32]) the operator Â can be represented as

Â =
∫ ∞

μ

λdEλ.

where projectors Eλ are integral operators

Eλf =
∫
Ω

Θ(x, y, λ)f (y)dy, f ∈ L2(Ω). (11.3)

The kernel Θ(x, y, λ) is called the spectral function of the operator Â and the
expression (11.3) is called the spectral expansions of f associated with the self-
adjoint operator Â.

Define the Riesz means of order s ≥ 0, of the spectral expansions Eλf as
follows:

Esλf =
∫ λ

μ

(
1 − t

λ

)s
dEt .

The operators Esλ, as well as Eλ, are integral operators with the kernels

Θs(x, y, λ) =
∫ λ

μ

(
1 − t

λ

)s
dΘ(x, y, t).

Note, from the Garding theorem [7] it follows that the function Θ(x, y, λ)
belongs toC∞(Ω×Ω) for each λ > 0. This allows to define the spectral expansions
of the distributions with the compact support.

Denote by E ′(Ω)—the space of the linear continuous functionals on C∞(Ω).
Then for any distribution f ∈ E ′(Ω) the Riesz means of its spectral expansions are
defined as follows:

Esλf (x) =< f,Θs(x, y, λ) >, (11.4)

where the functional f is acting on Θs(x, y, λ) with respect to the second variable.
Note that Esλf (x) ∈ C∞(Ω) for any distribution f from E ′(Ω), s ≥ 0, and λ > 0.

The relation (11.4) can also be considered in the classical sense on the domains
where f coincides with the locally integrable function.

For any integer % denote the Sobolev spaces H%(Ω) = W%
2 (Ω) [37].
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Theorem 1 Let f ∈ E ′(Ω)
⋂
H−%(Ω), % > 0. If s ≥ (N − 1)/2 + %, then

uniformly in any compactK from Ω \ suppf

lim
λ−→∞E

s
λf (x) = 0.

From the estimate of the spectral functionΘ(x, y, λ) (see [13, theorem 6.1]) we
get the following lemma.

Lemma 1 LetΩo be some sub-domainΩ0 ⊂ Ω and let f ∈ E ′(Ω)
⋂
H−%(Ω) be

such that suppf ⊂ Ωo. LetK be a compact set fromΩ \Ωo and s = (N−1)/2+%.
Then the estimate

|Esλf (x)| ≤ C‖f ‖−%, (11.5)

is valid uniformly with respect to x ∈ K .

The proof of the Theorem 1 follows from Lemma 1 and the fact that the space
C∞

0 (Ω) is dense in E ′(Ω)
⋂
H−%(Ω).

Theorem 2 Let % > 0 and let x0 a point in the domainΩ.
If s < (N − 1)/2+ %, then there exists a distribution f from E ′(Ω)

⋂
H−%(Ω),

such that x0 ∈ Ω \ suppf and

lim
λ−→∞E

s
λf (x0) = +∞.

Theorem 2 proves sharpness of the inequality s ≥ (N − 1)/2 + %, in the Theorem
1. It follows from the estimate of the spectral function from the bottom [13] and the
Banach–Steinhaus theorem.

Using the Hermander theorem [12] Theorem 1 can be extended as follows:

Theorem 3 Let % > 0 andΩ0—a sub-domain ofΩ. If s ≥ (N − 1)/2+ %, then for
any distribution f ∈ C(Ω) ∩ E ′(Ω) ∩ H−%(Ω), then uniformly on each compact
K from Ω0

lim
λ−→∞E

s
λf (x) = f (x).

Case p �= 2 is more complicated even for the spectral expansions of the smooth
functions. In this case we have the following results [24].

For any real number % byW−%
p (Ω) denote the Sobolev spaces [37].

Theorem 4 Let f ∈ E ′(Ω)
⋂
W−%
p (Ω), , % > 0, 1 < p ≤ 2. If s ≥ (N−1)/p+%,

then uniformly in any compactK from Ω \ suppf

lim
λ−→∞E

s
λf (x) = 0.
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A problem of the sharpness of the condition

s ≥ (N − 1)/p + %,

in Theorem 4 is complicated. This question is complicated even for the spectral
expansions associated with the Laplace operator in the arbitrary domain.

11.3 Localization and Uniform Convergence of the
Eigenfunction Expansions

Let Ω be a bounded domain in RN with the smooth boundary ∂Ω . Let Â be a self-
adjoint extension of a positive formally elliptic differential operator of order 2m
with the regular boundary conditions [7].

Denote by {un(x)} a complete orthonormal in L2(Ω) system of eigenfunctions
of the operator Â corresponding to the sequence of eigenvalues 0 < λ1 < λ2 <

· · · < λn → ∞. For any function f ∈ L2(Ω) we introduce the Riesz means of
order s of the partial sums of the Fourier series as follows:

Esλf (x) =
∑
λn<λ

(
1 − λn

λ

)s
fnun(x). (11.6)

Here λ > 0, fn = (f, un) are the Fourier coefficients of the function f with respect
to the system {un(x)}.

Note that if s = 0, then (11.6) is just the partial sum of the Fourier series of the
function f .

The precise conditions of the uniform convergence of Esλf (x) on the compact
subsets of the domainΩ are established by Il’in (see in [15]).

Theorem 5 If

α ≥ N − 1

2
, αp > N, p ≥ 1 (11.7)

then the Fourier series via the eigenfunctions of the Laplace operator of any function
with compact support belonging to the Sobolev spaceWα

p (Ω) converges uniformly
on any compact subset of the domainΩ .

Convergence of the Riesz means (11.6) of the smooth functions on the compact
subsets of the domain Ω requires a modification of the condition (11.7) in
Theorem 1 as follows:

α + s ≥ N − 1

2
, αp > N, s ≥ 0, p ≥ 1. (11.8)
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The sharpness of the first inequality in (11.8) for the eigenfunction expansions
associated with the Laplace operator is proved by Il’in (see in [15]). The preciseness
of the second inequality in (1.3) follows from the fact that the condition αp ≤ N

implies the existence of an unbounded function with the compact support belonging
to the appropriate Sobolev space for which its Fourier series cannot converge
uniformly.

Moreover, the conditions (11.8) are sufficient for the functions in the Nikol’skii
spaces Hαp (Ω). The last statement is proved in the case of expansions associated
with the eigenfunctions of the Laplace operator by Il’in and Alimov [16], in the
case of the expansions associated with the elliptic operators of the second order with
the variable coefficients by Il’in and Moiseev [17]. Finally, for the general elliptic
differential operators of order 2m Alimov is proved in [1] the following statement:

Theorem 6 If f belongs to the space H̊ αp (Ω) and has the compact support in Ω ,
then under the conditions (11.8) the Riesz means Esλf converge as λ → +∞ to f
uniformly on any compactK ⊂ Ω .

Here H̊ αp (Ω), (W̊
α
p (Ω)) is the closure of C∞

0 (Ω) with respect to the norm of the
Nikol’skii (Sobolev) space Hαp (Ω)(W

α
p (Ω)).

In the case in which the second condition in (11.8) is replaced by αp = N , it is
necessary to assume that the function f is continuous ( see [3]).

Theorem 7 Let Ω0 be an arbitrary open subset of Ω and let

α + s > N − 1

2
, αp = N, s ≥ 0, p ≥ 1. (11.9)

Then for any function f ∈ W̊α
p (Ω) continuous onΩ0

lim
λ→∞E

s
λf (x) = f (x) (11.10)

uniformly on any compact set K ⊂ Ω0.

The first condition α + s > N−1
2 in (11.9) is also precise [2].

Theorem 8 Let x0 be an arbitrary point of the domainΩ and let

α + s = N − 1

2
, αp = N, s ≥ 0, p ≥ 1. (11.11)

Then there exists a function f ∈ W̊α
p (Ω), which is continuous inΩ , and such that

lim
λ→∞E

s
λf (x0) = +∞. (11.12)

These results are extended to the Nikol’skii spaces in [19].
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11.4 Summability of the Multiple Fourier Series of the
Periodic Distributions

We denote by C∞(T N) the space of 2π periodic in each variable, infinitely
differentiable on RN functions, where T N = {x ∈ RN : −π < xj ≤ π}.

Let γ = (γ1, γ2, . . . , γN) denote a multi-index. The system of the semi-norms
Supx∈T N |Dγ f (x)| produces a locally convex topology in C∞(T N), where γ runs
over the set of all multi-indexes. We denote by E (T N) corresponding locally convex
topological space. Let E ′(T N) be the space of the periodic distributions, i.e. the
space of the continuous linear functionals on E (T N).

For any distribution f from E ′(T N) we define its Fourier coefficients fn as the

action of the distribution f on the test function (2π)−N
2 exp(−inx), where x ∈ T N

and n ∈ ZN is N dimensional vector with integer coordinates. Then f can be
represented by the Fourier series

f = (2π)−N
2
∑
n∈ZN

fn exp(inx), (11.13)

which always converges in the weak topology (see, for example, in [25]).
Consider the following polynomial:

Pm(n) =
⎛
⎝r+1∑
j=1

n2
j

⎞
⎠
m+1

+
⎛
⎝ N∑
j=r+2

n2
j

⎞
⎠
m⎛
⎝ N∑
j=1

n2
j

⎞
⎠ , (11.14)

where n = (n1, n2, . . . , nN ) ∈ ZN , m is a positive integer number and r =
0, 1, . . . , N − 1.

The polynomial Pm(n) is a homogeneous of degree 2(m+ 1), i.e.

Pm(λ · n) = λ2(m+1) · Pm(n)

and an elliptic, i.e.

Pm(n) > 0, n �= 0.

Thus a family of bounded sets

Λ(λ) = {n ∈ ZN : Pm(n) < λ}, λ ∈ R+}

enjoying the following properties:

(a) for any pairs (λ1, λ2) ∈ R+ × R+ there is λ ∈ R+, such
that Λ(λ1) ∪Λ(λ2) ⊂ Λ(λ).

(b)
⋃
λ∈R+ Λ(λ) = ZN.
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Let f ∈ E ′(T N). ThenΛ-partial sums of series (11.13) define by equality

Eλf (x) = (2π)−N
2
∑
Λ(λ)

fn exp(in · x). (11.15)

For any real s, s ≥ 0, we define the Riesz means of (11.15) by

Esλf (x) = (2π)
−N

2
∑
Λ(λ)

(
1 − Pm(n)

λ

)s
fn exp(inx). (11.16)

At s = 0 we obtain the partial sums (11.15).
Summability of the series (11.13), as well as its regularization (11.16), depends

on the power of singularity of f . In order to classify singularities of distributions,
we apply the periodic Liouville spaces Lαp(T

N), 1 < p ≤ ∞, α ∈ R [37].

Theorem 9 Let f ∈ L−α
p (T

N)
⋂

E ′(T N), 1 < p ≤ 2, α > 0, and coincides with

zero inΩ ⊂ T N . If

s > max

{
(N − r − 1)(1 − 1

2m)

p
+ r

2
,
N − 1

2

}
+ α (11.17)

then uniformly on any compact set K ⊂ Ω
lim
λ−→∞E

s
λf (x) = 0.

The Riesz means (11.16) can be written as

Esλf (x) =< f, Dsλ(x − y) >, (11.18)

where f acts on Dsλ(x − y) by y and Dsλ(x) is the Riesz means of Λ-partial sums
of the multiple Fourier series of the Delta function:

Dsλ(x) = (2π)
−N

2
∑
Λ(λ)

(
1 − Pm(n)

λ

)s
exp(inx). (11.19)

If r = N − 1, thenDsλ(x) is exactly the Riesz means of the Dirichlet kernel [35].
First, we estimate (11.19) in the norm of the positive Liouville spaces. In this,

we use the relation between the kernel (11.19) and the relevant kernel of Fourier
integrals. Such a relation known as the Poisson summation formula. The kernel for
the corresponding Fourier integrals can be described by the same polynomial Pm
replacing its argument range from n ∈ ZN to ξ ∈ RN :

Θsλ(x) = (2π)
−N

2

∫
Λ(λ)

(
1 − Pm(ξ)

λ

)s
exp(iξ · x)dξ, (11.20)

where in the definition of the domainΛ(λ) its range must be changed accordingly.
The following asymptotic formula is valid for the kernel (11.20) [9]:
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Lemma 2 Let x ∈ RN, x = (x ′, x ′′), x ′ ∈ Rr+1, x ′′ ∈ RN−r−1, 0 < δ0 <

|x ′|, μ = λ 1
2(m+1) . Then for |x ′′| < εμ−(1− 1

2m ), 0 < ε < 1
2 , and μ −→ ∞

Θsλ(x) =
cμN cos(μ|x ′| + ( r2 − s)π2 )

(μ|x ′|) r+2
2 +s+N−1−r

2m

×
(

1 +O
(

1

μ|x|
)

+O(|x ′′|μ1− 1
2m )

)

(11.21)

Using the Poisson summation formula the following relation between two kernel
can be established

Dsλ(x) = Θsλ(x)+Θs∗,λ(x), (11.22)

whereΘs∗,λ(x) defined as

Θs∗,λ(x) =
∑

n∈ZN, n�=0

Θsλ(x + 2πn). (11.23)

Then from Lemma 3 immediately obtain the following.

Lemma 3 Let ε > 0 an arbitrary small number and |xi | ≤ 2π − ε, for any i =
1, 2, 3, . . . , N. If s satisfies (11.17), then

Θs∗,λ(x) = O(λ
1

2(m+1) )N−s−1− r
2−N−1−r

2m (11.24)

Lemma 4 provides an estimate of the second term in the right-hand side of (11.23).
Moreover, if 0 < δ0 < |x ′|, then from (11.21) we obtain an estimation for the first
term in (11.23). Thus, we proved the following.

Lemma 4 Let ε > 0 an arbitrary small number and |x ′| > ε. If s satisfies
(11.17), then

Dsλ(x) = O(λ
1

2(m+1) )N−s−1− r
2−N−1−r

2m (11.25)

We have the following estimation (see [12, 13]):
Let K ⊂⊂ T N a compact set, then uniformly by x ∈ K

‖Dsλ(x − y)‖L2(F ) = O(λ
N−1−2s
4(m+1) ), (11.26)

where F an arbitrary domain in T N such that F
⋂
K = ∅.

Then using the Stein interpolation theorem for the analytical family of the linear
operators [34, 36] with q = ∞ (Lemma 5) and q = 2 (estimation (11.26)), obtain
the following estimate the kernel Dsλ(x) in the norm of Lq(T N)
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Lemma 5 Let s satisfy (11.17) and K ⊂⊂ T N an arbitrary compact set. Then
uniformly by x ∈ K

‖Dsλ(x − y)‖Lq(F ) = O(λ
1

2(m+1) )N−s−1− r
2−N−1−r

2m , (11.27)

where F an arbitrary domain in T N such that F
⋂
K = ∅, 2 ≤ q ≤ ∞.

Let a distribution f have a compact support and belong to the space L−α
p (T

N),

where 1 < p ≤ 2, α > 0. Let K be an arbitrary compact set from T N\suppf and
s satisfy (11.17). Then from (11.18) we get the following

|Esλf (x)| ≤ ‖f ‖−α,p‖Dsλ(x − y)‖α,q,F , (11.28)

where ‖ ‖−α,p means a norm in the space L−α
p (T

N) and ‖ ‖α,q,F means a norm in

the space Lαq (F ),
1
q
= 1 − 1

p
and suppf ⊂ F such that F

⋂
K = ∅.

Then from (11.28) and the Lemma 4.5 it follows

Esλf (x) = O(1)‖f ‖−α,p (11.29)

uniformly by x fromK . Then from (11.29) we get the statement of Theorem 9.

11.5 Spherical Partial Sum of the Multiple Fourier Series
and Equiconvergence with the Fourier Integral

For any distribution f ∈ E ′(T N) and any real number s ≥ 0 the Riesz means of
order s of the spherical partial sums of the series (11.13) is defined by

σ sλf (x) = (2π)
−N

2
∑
|n|<λ

(
1 − |n|2

λ2

)s
fn exp(inx). (11.30)

where fn is the value of the functional f on a “test” function (2π)−N
2 exp(−iyξ).

If s = 0 and f = δ, then from (11.31) we obtain the Direchlet kernel [8].
Let’s extend the distribution f to RN as

g =
{
f in T N,
0, in RN \ T N . (11.31)

Note that the distribution g belongs to the space E ′(RN). Denote by ĝ its Fourier
transformation. For example, for the Delta function we have δ̂(x) = 1. Then the
Bochner–Riesz means of order s of the Fourier integral of the Delta function is
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Θsλ(x) = (2π)
−N

2

∫
|y|<λ

(
1 − |y|2

λ2

)s
exp(iy · x)dy. (11.32)

Then we can define the Riesz means of the spherical partial sums of the Fourier
integral for any distribution g ∈ E ′(RN) as follows:

Rsλg(x) =< g, Θsλ(x − y) > . (11.33)

where g is acting on Θsλ(x − y) with respect to the variable y.
In the critical index s = N−1

2 , Bochner [10] proved that the localization for
(11.33) holds and at the same time it fails for the partial sum (11.30) in the class L1.
He also proved that the localization in the critical index is valid for both expansions
in L2. This result for the expansions in eigenfunctions of the Laplace operator is
proved by Levitan [20]. Below critical index N−1

2 the problem studied by Il’in (see
in [15]).

Summability of the spectral expansions of distributions is studied in [3]. In [3]
Alimov obtained precise conditions of the localization of the spectral expansions
associated with the Laplace operator. These questions for the Fourier series were
studied in [5] and for the Forier integral studied in [25].

Theorem 10 Let % > 0 and s = N−1
2 + %. Then for any f ∈ L−%

p (T
N) with

1 < p ≤ 2 and suppf ⊂ Ω ⊂⊂ T N

σ sλf (x) = RsλF (x)+O(1)‖f ‖−%,p,

where x ∈ T N \Ω and ‖ · ‖−%,p a norm in L−%
p (T

N) :

‖f ‖−%,p = (2π)−N
2 ‖(1 + |n|2)%/2fn exp(inx)‖p.

In case s < N−1
2 + % the statement of the Theorem 10 is not valid for any

distribution [25]. In case p = 2 the Theorem 10 is proved in [27].
Let Θs∗,λ(x) denote the following.

Θs∗,λ(x) =
∑

n∈ZN,n�=0

Θsλ(x + 2πn). (11.34)

Then we get

Lemma 6 Let % > 0, s = N−1
2 + %. Then uniformly on any compact set K ⊂ T N

|Θs∗,λ(x)| = O(λ−
%
4 ). (11.35)
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As in the previous section using the Poisson formula of summation we get the
following relation between expansions (11.30) and (11.33)

σ sλf (x)− RsλF (x) =< f,Θs∗,λ(x − y) > . (11.36)

Let Ω0 ⊂⊂ Ω and suppf ⊂ Ω0. Then from the Cauchy-Schwartz inequality,
taking into account that f ∈ L−%

p (T
N), obtain the following.

| < f,Θs∗,λ(x − y)| ≤ ‖f ‖−%,p‖Θs∗,λ(x − y)‖%,p,0 (11.37)

where ‖Θs∗,λ(x − y) > ‖%,p,0 is a norm of Θs∗,λ(x − y) in L%p(Ω0) via y ∈ Ω0.
From (11.37) and the Lemma 4.5 we get the following.

Lemma 7 Let s = N−1
2 + %, % > 0, f ∈ L−%

p (T
N) ∩ E ′(T N), 1 < p ≤ 2 and let

suppf ⊂ Ω ⊂⊂ T N .
Then uniformly on any compact set K ⊂ T N \Ω

< f,Θs∗,λ(x − y) >= O(1)‖f ‖−%,p
Then the statement of the Theorem 10 follows, in the standard way, from the

Lemma 5.3. This statement is proved in [27] in case p = 2 and in [31] for any p.

11.6 Uniform Convergence on Closed Domains

The uniform convergence of the Fourier series on the closed domainsΩ was studied
by Il’in (see [14]). In [14] for the eigenfunction expansions associated with the first,
second, and third boundary conditions for the Laplace operator it was proved that if

f ∈ W
N+2

2
p , p > 2N

N−1 and the functions f,Δf, . . . ,Δβf, up to a certain order β,
satisfy the appropriate boundary conditions, then the Fourier series of f converges
uniformly on the closed domainΩ .

For the elliptic differential operator of order 2m with the regular boundary
conditions Eskin (see [11]) proved that the eigenfunction expansion of a function

in W̊
2N−1

4 +ε
p with any ε > 0 converges uniformly on the closed domains.

Moiseev studied the problem for the elliptic operators of second order for the first
boundary value problem. In [21] it is proved that if f is a function with compact

support in the spaceW
N−1

2
p , p > 2N

N−1 , such that the series

∞∑
n=1

λ
N−1

2
n (ln λn)2+εf 2

n

converges, then its expansion via eigenfunctions converges uniformly on the closed
domainΩ .
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Moreover, it was proved in [21] that the following estimate

∑
|√λn−μ|≤1

u2
n(x) = O(μN−1 ln2 μ) (11.38)

is valid uniformly on the closed domainΩ .
In [4] uniform convergence of expansions via eigenfunctions of the elliptic

differential operator of order 2m with the Lopatinsky boundary condition was
studied and the following result is proved.

Theorem 11 Let f be an arbitrary continuous function with compact support in
Ω . Then the Riesz means Esλf (x) of order s > N

2 converge to f uniformly on the
closed domainΩ .

In [22] by using estimate (11.1) the condition s > N
2 in the Theorem 11 was

replaced by s > N−1
2 .

We mention also the following result (see [23]).

Theorem 12 Let

α + s > N − 1

2
, αp ≥ N, s ≥ 0, p ≥ 1. (11.39)

Then for any continuous function f ∈ H̊ αp (Ω) with the compact support in the

domainΩ uniformly onΩ

lim
λ→∞E

s
λf (x) = f (x). (11.40)

Note, from Theorem 8 it follows that in the case αp = N the condition α + s >
(N − 1)/2 is precise. In the case αp > N this problem is open. The question of the
summability on the closed domain in the spaces of the distributions is studied in [6].

Now we consider the problem of convergence of expansions via eigenfunctions
in the spaces with mixed norm.

The space of all measurable functions with finite norm

‖f ‖Lpq(RN ) = ‖‖f ‖Lp(Rk)‖Lq(RN−k)

is called the space with mixed normLpq(RN). If a function is defined in the domain
Ω then the corresponding space can be defined by extending a function by zero
outside of the domainΩ .

By Hαpq we denote the Banach space of all measurable functions with respect to
the norm

‖f ‖Hαpq (Ω) = ‖f ‖Lpq(Ω) +
∑
|k|=%

sup
z

|z|−κ‖Δ2
z∂
kf (y)‖Lpq(Ω|z|).
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Here α = % + κ, % is a nonnegative integer, 0 < κ ≤ 1, p, q ≥ 1, k =
(k1, k2, . . . , kn) multiindex. |k| = k1 + k2 + · · · + kn and ∂kf denotes the weak
derivative

∂kf (y) = ∂ |k|f (y)
∂y
k1
1 , ∂y

k2
2 , . . . , ∂y

kn
n

.

The symbolΔ2
z∂
kf (y) denotes the second difference of the function ∂kf (y) :

Δ2
z∂
kf (y) = ∂kf (y + z)− 2∂kf (y)+ ∂kf (y).

‖f ‖Lpq(Ω) denotes the norm in the space Lpq and, for h > 0, Ωh = {x ∈ Ω :
dist (x, ∂Ω) > h}.

By H̊ αpq(Ω) denote the closure of C∞
0 (Ω) with respect to the norm of the space

Hαpq(Ω).
Using the methods of [1, 2] for functions in the spaces with the mixed norm

appropriate theorems on convergence of the spectral expansions associated with the
Laplace operator on compact subsets of the domain were obtained in [33].

Theorem 13 Let f (x) be a continuous function with compact support in the
domainΩ belonging to the space H̊ αpq(Ω) and

α >
N − 1

2
− s, α = N − k

q
+ k

p
, 2 ≤ p < q, 0 < k < N. (11.41)

Then uniformly onΩ

lim
λ−→∞E

s
λf (x) = f (x).

This theorem in the spaces of distributions from the Sobolev spaces with the
mixed norm is proved in [28].

Note that Theorems 11 and 12 are obtained only for the eigenfunction expansions
associated with the first boundary problem for the Laplace operator. Analogue of
the theorem 6.2 in the generalized Sobolev spaces of distributions is proved in
[6]. Recently in [29] analogue of Theorem 12 in the generalized Sobolev spaces of
distributions is proved for the eigenfunction expansions associated with the Navie
boundary conditions for the bi-harmonic operator.

The problems of the convergence/summability of the Fourier series (spectral
expansions) on the closed domains remain open for any other boundary conditions
than first boundary condition (including second and third type boundary conditions)
even for the Laplace operator and other operators then the Laplace operator with
any boundary conditions.
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11.7 Spectral Expansions Associated with the Operators with
Singular Coefficients

In this section we consider the Schrodinger operator L = −Δ + q(x) with the
domain C∞

0 (R
N ), where q(x) is potential with singularity at 0 satisfies following

conditions ∣∣∣∣ ∂ |α|q(x)
∂α1x1∂α2x2 . . . ∂αN xN

∣∣∣∣ ≤ const |x|−1−α,

where α = (α1, α2, . . . , αN) is a multi-index.
From the Kato-Rellich theorem (see in [32, p. 185]) it follows that operator L is

essentially self-adjoin and bounded from the bottom with some constant μ.
Denote by L̂ its only self-adjoin extension (closure) in L2(R

N ). Let {Eλ} be the
corresponding spectral decomposition of unity. It is well known that the operators
Eλ are integral operators whose kernels Θ(x, y, λ) belong to the C∞(RN ) with
respect to the both variables x and y for any λ. The spectral decomposition of an
arbitrary function g ∈ L2(R

N) is defined by the formula

Eλg(x) =
∫
RN
g(y)Θ(x, y, λ)dy.

Let f ∈ E ′(RN ). Since Θ(x, y, λ) ∈ C∞(RN × RN), it follows that one can
define the spectral decomposition of f by the formula

Eλf (x) = 〈f,Θ(x, y, λ)〉,

where the functional f acts on Θ(x, y, λ) with respect to the second argument.
For any s ≥ 0, we introduce the Riesz means of the spectral decomposition of f

by the formula

Esλf (x) = 〈f,Θs(x, y, λ)〉,

whereΘs(x, y, λ) is the Riesz mean of order s of the spectral function,

Θs(x, y, λ) =
∫ λ

μ

(
λ− t
λ− μ

)s
dtΘ(x, y, t).

Theorem 14 Let % > 0, s ≥ 0, and f ∈ E ′(RN) ∩W−l
2 (R

N ). If s ≥ (N − l)/2 +
%, then

lim
λ→∞E

s
λf (x) = 0,

uniformly with the respect to x ∈ K for any compact subset K ⊂ RN \ supp(f )..
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Corollary 1 Let f ∈ E ′(RN) ∩ W−%
2 (RN ), % > 0, and let the distribution f

coincide with a continuous function g(x) in a domainD. If s ≥ (N − l)/2+ %, then

lim
λ→∞E

s
λf (x) = g(x)

uniformly on each compact set K ⊂ D.
Spectral expansions, associated with the Schrodinger operator are studied by

Khalmukhamedov in various functional spaces (see in [18]). In [26] localization
problem of expansions via eigenfunctions of the Schrodinger operator in the
bounded domain in the spaces of distributions is studied and the sharp conditions are
established. The summability problems of the eigenfunction expansions connected
with one Schrodinger operator on the closed domain with the smooth boundary are
studied in [30].
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Chapter 12
Energy Decay in a Quasilinear System
with Finite and Infinite Memories

Muhammad I. Mustafa

12.1 Introduction

In this paper, we are concerned with the following coupled quasilinear system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|ut |ρ utt −'u−'utt +
∫ t

0 g1(s)'u(t − s)ds + f1(u, v) = 0, in*× (0,∞)
|vt |ρ vtt −'v −'vtt +

∫∞
0 g2(s)'v(t − s)ds + f2(u, v) = 0, in*× (0,∞)

u = v = 0, on∂*× (0,∞)
u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ *
v(x,−t) = v0(x, t), vt (x, 0) = v1(x), x ∈ *, t ≥ 0,

(12.1)
where u and v denote the transverse displacements of waves, ρ > 0 and (n −
2)ρ ≤ 2, and * is an open bounded domain of IRn with a smooth boundary ∂*.
The relaxation functions g1, g2 and the nonlinearities f1, f2 will be specified later.

System (12.1) arises in the theory of viscoelasticity and describes the interaction
of two scalar fields. It can also be regarded as a generalization, in some sense, of the
well-known Klein–Gordon system

{
utt −'u+m1u+ k1uv

2 = 0
vtt −'v +m2v + k2u

2v = 0

which arises in the study of quantum field theory [37]. See also [19] for a
generalization of this system. A slightly more general system (on IRn) has been
also investigated by Zhang in [38].
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The problem with the viscoelastic effect described by finite-memory terms has
been studied by several authors. In [2], Andrade and Mognon considered a problem
with the nonlinearities

f1(u, v) = |u|p−2 u |v|p andf2(u, v) = |v|p−2 v |u|p

wherep > 1 if n = 1, 2 and 1 < p ≤ n−1
n−2 if n ≥ 3. They proved the well-posedness

for the problem under restrictive assumptions on the relaxation functions. In [36],
Santos considered the system

utt −'u+
∫ t

0
g1(t − τ )'u(τ)dτ + f1(u, v) = 0

vtt −'v +
∫ t

0
g2(t − τ )'v(τ)dτ + f2(u, v) = 0 (12.2)

and the coupling

f1(u, v) = a(u− v) and f2(u, v) = −a(u− v),

where a is a positive constant, and assumed that

−a1g
p
i (t) ≤ g′i (t) ≤ −a2g

p
i (t)

0 ≤ g′′i (t) ≤ γgpi (t), i = 1, 2,

for some 1 ≤ p < 2. He proved that when the kernels decay exponentially
(resp. polynomially) the first- and the second-order energy of the solution decays
exponentially (resp. polynomially). In [26], Messaoudi and Tatar considered the
following weaker conditions on the relaxation functions

g′i (t) ≤ −cigpii (t), i = 1, 2,

for some 1 ≤ p1, p2 < 3/2, and more general forms of nonlinearities. They
proved an exponential decay for (p1, p2) = (1, 1) and a polynomial decay for
(p1, p2) �= (1, 1). Liu [16] used the same hypothesis for a quasilinear system with
finite memories and established uniform decay results.

The problem, with a single viscoelastic equation, has been extensively discussed
by many authors. An abstract equation with infinite memory

utt + Au−
∫ ∞

0
g(s)Au(t − s)ds = 0

was initially studied by Dafermos [9]. He showed that the energy tends asymp-
totically to zero, but no decay rate was given. Under the condition that g decays
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exponentially, the exponential decay of solutions of this system was obtained by
Fabrizio and Lazzari [10], Giorgi et al. [11], Liu and Zheng [18], and Rivera
and Naso [29] (in different contexts and using different approaches). Also, in the
finite memory case, we refer to [4–6, 27, 28, 32] for subsequent results which
proved that the energy decays exponentially if the relaxation function g decays
exponentially and polynomially if g decays polynomially. Similarly, the uniform
decay of solutions was obtained by Rivera et al. [30, 31] for localized viscoelastic
damping.

The interaction between viscoelastic and frictional dampings was considered by
Cavalcanti and Oquendo [7] who looked into wave equation of the form

utt − k0'u+
∫ t

0
div[a(x)g(t − τ )∇u(τ)]dτ + b(x)h(ut)+ f (u) = 0,

and established exponential stability for g decaying exponentially and h linear and
polynomial stability for g decaying polynomially and h having a polynomial growth
near zero. We also refer to results in [8, 25] for viscoelastic equation with a frictional
damping acting on a part of the boundary.

Then, a natural question was raised: how does the energy behave as the kernel
function does not necessarily decay polynomially or exponentially? Messaoudi [20,
21] studied

utt −'u+
∫ t

0
g(t − τ )'u(τ)dτ = b |u|γ u

for b = 0 and b = 1 and considered relaxation functions satisfying

g′(t) ≤ −ξ(t)g(t), t ≥ 0 (12.3)

where ξ(t) : IR+ → IR+is a nonincreasing differentiable function with

∣∣∣∣ξ
′(t)
ξ(t)

∣∣∣∣ ≤ k (12.4)

for some constant k. He proved that the decay rate of the solution energy is
similar to that of the relaxation function which is not necessarily of exponential
or polynomial type. Han and Wang treated an abstract viscoelastic system in [13]
using the conditions (12.3) and (12.4). After that, Messaoudi and Mustafa [24, 34]
eliminated condition (12.4) and used only (12.3) to establish more general stability
results of viscoelastic Timoshenko beams. Similarly, (12.3) was used by Messaoudi
and Al-Gharabli [22] and Guesmia and Messaoudi [12] for nonlinear wave equation
with infinite memory, and Liu [15] for the equation

|ut |ρ utt −'u−'utt +
∫ t

0
g1(t − τ )'u(τ)dτ + α(t)h(ut ) = b |u|p−2 u
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to get more general decay rates. Another step forward is the work of Alabau-
Boussouira and Cannarsa [1] who considered wave equation with memory whose
relaxation function is satisfying

g′(t) ≤ −χ (g(t)) (12.5)

where χ is a nonnegative function, with χ(0) = χ ′(0) = 0, and χ is strictly
increasing and strictly convex on (0, k0], for some k0 > 0.They also required that

∫ k0

0

dx

χ(x)
= +∞,

∫ k0

0

xdx

χ(x)
< 1, lim inf

s→0+
χ(s)/s

χ ′(s)
>

1

2

and proved an energy decay result. In addition, if lim sup
s→0+

χ(s)/s
χ ′(s) < 1 and g′(t) =

−χ (g(t)), then, in this case, an explicit rate of decay is given. Here, a new theorem
was announced which was applied to some new examples giving optimal decay
rates. These assumptions imposed on χ do not appear intrinsic to the result claimed,
but rather to the method based on weighted energy inequalities with the use of
convexity. Later on, Mustafa and Messaoudi [35] and Lasiecka et al. [14] similarly
used (12.5) and provided another variant of that approach which was able to remove
some of the constraints imposed in [1] and obtain explicit and general decay rate
formulas.

Motivated by these works, Liu [17] imposed the conditions (12.3) and (12.4) on
g1, g2 in the coupled system (12.2) and improved the earlier result in [26]. After
that, Mustafa [33] treated (12.2) using only (12.3). Recently, the same was done
by Messaoudi and Al-Gharabli [23] who studied a similar system but with infinite
memories.

Our aim in this work is to investigate the asymptotic behavior of system (12.1)
and establish an explicit energy decay formula. We use weaker conditions on the
relaxation functions and provide more general decay rates for which the usual
exponential and polynomial rates are only special cases. The paper is organized as
follows. In Sect. 12.2, we present some notation and material needed for our work.
Some technical lemmas and the proof of our main result will be given in Sect. 12.3.

12.2 Preliminaries

We use the standard Lebesgue and Sobolev spaces with their usual scalar products
and norms. Throughout this paper, c is used to denote a generic positive constant.
We consider the following hypotheses

(H1) gi : IR+ → IR+ (for i = 1, 2) are differentiable functions such that

gi(0) > 0, 1 −
∞∫

0

gi(s)ds = li > 0, (12.6)
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and there exists a C1 function H : (0,∞) → (0,∞) which is linear or it is
strictly increasing and strictly convex C2 function on (0, r], r ≤ g(0), with
H(0) = H ′(0) = 0, such that

g′i (t) ≤ −H(gi(t)), (i = 1, 2) ∀t > 0.

(H2) fi : IR2 → IR (for i = 1, 2) are C1 functions and there exists a function F
such that

f1(x, y) = ∂F

∂x
, f2(x, y) = ∂F

∂y
,

F ≥ 0, xf1(x, y)+ yf2(x, y)− F(x, y) ≥ 0,

and
∣∣∣∣∂fi∂x (x, y)

∣∣∣∣+
∣∣∣∣∂fi∂y (x, y)

∣∣∣∣ ≤ q(1 + |x|βi1−1 + |y|βi2−1) ∀(x, y) ∈ IR2

(12.7)
for some constant q > 0 and βij ≥ 1, (n− 2)βij ≤ n for i, j = 1, 2.

(H3) The history function v0 ∈ L2(IR+;H 1
0 (*)).

(H4) ρ is a constant satisfying

ρ > 0, (n− 2)ρ ≤ 2

In the sequel we assume that system (12.1) has a unique solution

u, v ∈ L∞(IR+;H 2(*) ∩H 1
0 (*)) ∩W 1,∞(IR+;H 1

0 (*)) ∩W 2,∞(IR+;L2(*)).

This result can be proved, for initial data in suitable function spaces, using standard
arguments such as the Galerkin method (see [33]).

Now, we introduce the energy functional

E(t) := 1

ρ + 2

∫
*

|ut |ρ+2 dx + 1

2

(
1 −

∫ t

0
g1(s)ds

)∫
*

|∇u|2 dx

+1

2

∫
*

|∇ut |2 dx + 1

2
(g1 ◦ ∇u)(t)+ 1

ρ + 2

∫
*

|vt |ρ+2 dx

+ l2
2

∫
*

|∇v|2 dx + 1

2

∫
*

|∇vt |2 dx + 1

2
(g2 ◦ ∇v)(t) +

∫
*

F(u, v)dx,

where

(g1 ◦ w)(t) =
∫
*

∫ t

0
g1(t − s) |w(t) −w(s)|2 dsdx
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and

(g2 ◦ w)(t) =
∫
*

∫ ∞

0
g2(s) |w(t) −w(t − s)|2 dsdx.

Our main stability result is the following.

Theorem 12.2.1 Assume that (H1)–(H4) are satisfied. Then there exist positive
constants k1, k2, k3 and ε0 such that the solution of (12.1) satisfies

E(t) ≤ k3H
−1
1 (k1t + k2) ∀t ≥ 0, (12.8)

where

H1(t) =
∫ 1

t

1

sH ′
0(ε0s)

ds and H0(t) = H(D(t)

provided that D is a positive C1 function, with D(0) = 0, for which H0 is strictly
increasing and strictly convex C2 function on (0, r] and, for i = 1, 2,

∫ +∞

0

gi(s)

H−1
0 (−g′i (s))

ds < +∞. (12.9)

Moreover, if
∫ 1

0 H1(t)dt < +∞ for some choice of D, then we have the improved
estimate

E(t) ≤ k3G
−1(k1t + k2) where G(t) =

∫ 1

t

1

sH ′(ε0s)
ds. (12.10)

In particular, this last estimate is valid in the special case H(t) = ctp for 1 ≤ p <
2.

Remarks

1. Using the properties of H , one can show that the function H1 is strictly decreas-
ing and convex on (0, 1], with lim

t→0
H1(t) = +∞. Therefore, Theorem 12.2.1

ensures

lim
t→+∞E(t) = 0.

2. The condition g′i (t) ≤ −cgpi (t), 1 ≤ p < 2, assumes gi(t) ≤ ωe−ct when p = 1
and gi(t) ≤ ω

(t+1)
1
p−1

when 1 < p < 2. Our result allows relaxation functions

that are not necessarily of exponential or polynomial type decay. For instance, if

gi(t) = a exp(−tq), i = 1, 2
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for 0 < q < 1 and a chosen so that gi satisfies (12.6), then g′i (t) = −H(gi(t))
where, for t ∈ (0, r], r < a,

H(t) = qt

[ln(a/t)] 1
q−1

which satisfies hypothesis (H1). Also, by taking D(t) = tα , (12.9) is satisfied
for any α > 1. Therefore, if (H2)–(H4) are also satisfied, then we can use
Theorem 12.2.1 and do some calculations (see [35]) to deduce that the energy
decays at the rate

E(t) ≤ c exp(−ωtq).

4. The well-known Jensen’s inequality will be of essential use in establishing our
main result. If F is a convex function on [a, b], f : * → [a, b] and h are
integrable functions on *, h(x) ≥ 0, and

∫
*
h(x)dx = k > 0, then Jensen’s

inequality states that

F

[
1

k

∫
*

f (x)h(x)dx

]
≤ 1

k

∫
*

F [f (x)]h(x)dx.

5. By (H1), we easily deduce that lim
t→+∞gi(t) = 0. Similarly, assuming the

existence of the limit, we find that lim
t→+∞(−g

′
i (t)) = 0. Hence, there is t1 > 0

large enough such that gi(t1) > 0 and

max{gi(t),−g′i (t)} < min{r,H(r),H0(r)}, ( i = 1, 2) ∀t ≥ t1. (12.11)

As gi is nonincreasing, gi(0) > 0 and gi(t1) > 0, then gi(t) > 0 for any
t ∈ [0, t1] and

0 < gi(t1) ≤ gi(t) ≤ gi(0), ( i = 1, 2) ∀t ∈ [0, t1].

Therefore, since H is a positive continuous function, then

a ≤ H(gi(t)) ≤ b, ( i = 1, 2) ∀t ∈ [0, t1]

for some positive constants a and b. Consequently, for all t ∈ [0, t1],

g′i (t) ≤ −H(gi(t)) ≤ −a = − a

gi(0)
gi(0) ≤ − a

gi(0)
gi(t)

which gives, for some positive constant μ,

g′i (t) ≤ −μgi(t), ( i = 1, 2) ∀t ∈ [0, t1]. (12.12)
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6. If different functions H1 and H2 have the properties mentioned in (H1) such
that g′1(t) ≤ −H1(g1(t)) and g′2(t) ≤ −H2(g2(t)), then there is r < min{r1, r2}
small enough so that, say,H1(t) ≤ H2(t) on the interval (0, r]. Thus, the function
H(t) = H1(t) satisfies (H1) for both functions g1 and g2,∀ t ≥ t1.

7. We observe that assumption (12.7) gives, for some positive constant k, that

|fi(x, y)| ≤ k(|x| + |y| + |x|βi1 + |y|βi2) (12.13)

for all (x, y) ∈ IR2 and i = 1, 2. Using (12.13), instead of (12.7), is sufficient
to get the stability result obtained in Sect. 12.3, but (12.6) is necessary for the
well-posedness of the system, see [33].

8. We will also be using the embeddingH 1
0 (*) ↪→ Ls(*) for 2 ≤ s ≤ 2n/(n− 2)

if n ≥ 3 or s ≥ 2 if n = 1, 2; i.e., for any φ ∈ H 1
0 (*),

‖φ‖s ≤ c ‖∇φ‖2 . (12.14)

12.3 Proof of the Main Result

In this section we prove Theorem 12.2.1. For this purpose we establish several
lemmas.

Lemma 12.3.1 Let (u, v) be the solution of (12.1). Then the energy functional
satisfies

E′(t) = 1

2
(g′1 ◦ ∇u)− 1

2
g1(t)

∫
*

|∇u|2 dx + 1

2
(g′2 ◦ ∇v) ≤ 0. (12.15)

Proof By multiplying the first equation in (12.1) by ut and the second by vt ,
integrating over *, using integration by parts, hypotheses (H1)–(H4), and some
manipulations, we obtain (12.15).�

Using Cauchy–Schwarz and Poincaré’s inequalities, the proof of the following
Lemma is immediate.

Lemma 12.3.2 There exist constants c,c′ > 0 such that

∫
*

(∫ t

0
g1(s)(u(t)− u(t − s))ds

)2

dx ≤ c(g1 ◦ u)(t) ≤ c′(g1 ◦ ∇u)(t)

∫
*

(∫ ∞

0
g2(s)(v(t) − v(t − s))ds

)2

dx ≤ c(g2 ◦ v)(t) ≤ c′(g2 ◦ ∇v)(t)

Now we are going to construct a Lyapunov functional L equivalent to E. For
this, we define several functionals which allow us to obtain the needed estimates.
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Lemma 12.3.3 Under the assumptions (H1)–(H4), the functional I defined by

I (t) := 1

ρ + 1

∫
*

u |ut |ρ utdx +
∫
*

∇u · ∇utdx + 1

ρ + 1

∫
*

v |vt |ρ vtdx

+
∫
*

∇v · ∇vtdx

satisfies, along the solution, the estimate

I ′(t) ≤ − l1
2

∫
*

|∇u|2 dx +
∫
*

|∇ut |2 dx + 1

ρ + 1

∫
*

|ut |ρ+2 dx + c(g1 ◦ ∇u)(t)

− l2
2

∫
*

|∇v|2 dx +
∫
*

|∇vt |2 dx + 1

ρ + 1

∫
*

|vt |ρ+2 dx + c(g2 ◦ ∇v)(t)

−
∫
*

F(u, v)dx. (12.16)

Proof Direct computations, using (12.1), yield

I ′(t) = 1

ρ + 1

∫
*

|ut |ρ+2 dx −
∫
*

|∇u|2 dx +
∫
*

∇u ·
∫ t

0
g1(s)∇u(t − s)dsdx

+
∫
*

|∇ut |2 dx + 1

ρ + 1

∫
*

|vt |ρ+2 dx −
∫
*

|∇v|2 dx +
∫
*

|∇vt |2 dx

+
∫
*

∇v ·
∫ ∞

0
g2(s)∇v(t − s)dsdx −

∫
*

[uf1(u, v) + vf2(u, v)]dx

≤ 1

ρ + 1

∫
*

|ut |ρ+2 dx − l1
∫
*

|∇u|2 dx +
∫
*

∇u

·
∫ t

0
g1(s)(∇u(t − s)−∇u(t))dsdx

+
∫
*

|∇ut |2 dx + 1

ρ + 1

∫
*

|vt |ρ+2 dx − l2
∫
*

|∇v|2 dx +
∫
*

|∇vt |2 dx

+
∫
*

∇v ·
∫ ∞

0
g2(s)(∇v(t − s)−∇v(t))dsdx −

∫
*

F(u, v)dx. (12.17)

Now, using Young’s inequality and Lemma 12.3.2, we obtain, for any δ > 0,
∫
*

∇u ·
∫ t

0
g1(s)(∇u(t − s)−∇u(t))dsdx

≤ δ
∫
*

|∇u|2 dx + 1

4δ

∫
*

(∫ t

0
g1(s) |∇u(t − s)−∇u(t)| ds

)2

dx

≤ δ
∫
*

|∇u|2 dx + c

δ
(g1 ◦ ∇u)(t). (12.18)
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Similar calculations also yield

∫
*

∇v ·
∫ ∞

0
g2(s)(∇v(t − s)− ∇v(t))dsdx ≤ δ

∫
*

|∇v|2 dx + c

δ
(g2 ◦ ∇v)(t).

(12.19)
Combining (12.17)–(12.19) and choosing δ small enough give (12.16).�
Lemma 12.3.4 Under the assumptions (H1)–(H4), the functionalK defined by

K(t) = K1(t)+K2(t),

with

K1(t) :=
∫
*

(
'ut − |ut |ρ ut

ρ + 1

)∫ t

0
g1(s)(u(t)− u(t − s))dsdx

K2(t) :=
∫
*

(
'vt − |vt |ρ vt

ρ + 1

)∫ ∞

0
g2(s)(v(t) − v(t − s))dsdx,

satisfies, for any 0 < δ < 1 and for all t ≥ t1, the estimate

K ′(t) ≤ − g0

ρ + 1

∫
*

|ut |ρ+2 dx − g0

2

∫
*

|∇ut |2 dx + δc
∫
*

|∇u|2 dx

+ c

δ
(g1 ◦ ∇u)(t)− c(g′1 ◦ ∇u)(t)− g0

ρ + 1

∫
*

|vt |ρ+2 dx

− g0

2

∫
*

|∇vt |2 dx + δc
∫
*

|∇v|2 dx + c

δ
(g2 ◦ ∇v)(t) − c(g′2 ◦ ∇v)(t).

(12.20)

Here, g0 = min{∫ t10 g1(s)ds, 1 − l2} where t1 > 0 was introduced in (12.11).

Proof By exploiting Eq. (12.1) and integrating by parts, we have

K ′
1(t) =

(
1 −

∫ t

0
g1(s)ds

)∫
*

∇u ·
∫ t

0
g1(t − τ )(∇u(t)−∇u(τ))dτdx

+
∫
*

(∫ t

0
g1(t − τ ) |∇u(t)−∇u(τ)| dτ

)2

dx

+
∫
*

f1(u, v)

∫ t

0
g1(t − τ )(u(t)− u(τ))dτdx

−
∫
*

∇ut ·
∫ t

0
g′1(t − τ )(∇u(t)−∇u(τ))dτdx

−
(∫ t

0
g1(s)ds

)∫
*

|∇ut |2 dx
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−
∫
*

|ut |ρ ut
ρ + 1

∫ t

0
g′1(t − τ )(u(t)− u(τ))dτdx

−
(∫ t

0 g1(s)ds
)

ρ + 1

∫
*

|ut |ρ+2 dx. (12.21)

For K ′
2(t), it will be

(
1 − ∫∞

0 g2(s)ds
) = l2 and

(∫∞
0 g2(s)ds

) = 1 − l2. Using
Young’s inequality and Lemma 12.3.2, we obtain

(
1 −

∫ t

0
g1(s)ds

)∫
*

∇u ·
∫ t

0
g1(t − τ )(∇u(t)−∇u(τ))dτdx

+
∫
*

(∫ t

0
g1(t − τ ) |∇u(t)−∇u(τ)| dτ

)2

dx

≤ δ
∫
*

|∇u|2 dx + c

δ
(g1 ◦ ∇u)(t) (12.22)

and

−
∫
*

∇ut ·
∫ t

0
g′1(t−τ )(∇u(t)−∇u(τ))dτdx ≤ δ1

∫
*

|∇ut |2 dx− c

δ1
(g′1◦∇u)(t).

(12.23)
To estimate the third and sixth terms in the right-hand side of (12.21), we
use (12.13), (12.14), Lemma 12.3.2, and the fact that

l1 ‖∇u‖2
2 + ‖∇ut‖2

2 + l2 ‖∇v‖2
2 + ‖∇vt‖2

2 ≤ 2E(t) ≤ 2E(0)

to get

∫
*

f1(u, v)

∫ t

0
g1(t − τ )(u(t)− u(τ))dτdx

≤ δc
∫
*

(|u|2 + |v|2 + |u|2β11 + |v|2β12)dx

+c
δ

∫
*

(∫ t

0
g1(t − τ )(u(t)− u(τ))dτ

)2

dx

≤ δc(‖∇u‖2
2 + ‖∇v‖2

2 + ‖∇u‖2β11
2 + ‖∇v‖2β12

2 )+ c

δ
(g1 ◦ ∇u)(t)

= δc(‖∇u‖2
2 + ‖∇v‖2

2 + ‖∇u‖2(β11−1)
2 ‖∇u‖2

2 + ‖∇v‖2(β12−1)
2 ‖∇v‖2

2)

+c
δ
(g1 ◦ ∇u)(t)

≤ δc(‖∇u‖2
2 + ‖∇v‖2

2 + [2E(0)](β11−1) ‖∇u‖2
2 + [2E(0)](β12−1) ‖∇v‖2

2)
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+c
δ
(g1 ◦ ∇u)(t)

≤ δc ‖∇u‖2
2 + δc ‖∇v‖2

2 + c

δ
(g1 ◦ ∇u)(t). (12.24)

and

−
∫
*

|ut |ρ ut
ρ + 1

∫ t

0
g′1(t − τ )(u(t)− u(τ))dτdx

≤ δ1
∫
*

|ut |2(ρ+1) dx − c

δ1
(g′1 ◦ ∇u)(t)

≤ cδ1 ‖∇ut‖2(ρ+1)
2 − c

δ1
(g′1 ◦ ∇u)(t)

≤ cδ1[2E(0)]ρ ‖∇ut‖2
2 − c

δ1
(g′1 ◦ ∇u)(t). (12.25)

By combining (12.21)–(12.25), using −
(∫ t

0 g1(s)ds
)

≤ −g0 for all t ≥ t1, and

taking δ1 small enough, we obtain

K ′
1(t) ≤ − g0

ρ + 1

∫
*

|ut |ρ+2 dx − g0

2

∫
*

|∇ut |2 dx + δc
∫
*

|∇u|2 dx

+ c

δ
(g1 ◦ ∇u)(t)− c(g′1 ◦ ∇u)(t)

Since K2 can be dealt with similarly, (12.20) is established.�
Proof of Theorem 12.2.1 For N1 > 0, let

L(t) := N1E(t)+ 4

g0
K(t)+ I (t)

By combining (12.15), (12.16), (12.20), and taking δ = lg0
16c in (12.20), where l =

min{l1, l2}, we obtain, for all t ≥ t1,

L′(t) ≤ − l
4

∫
*

(|∇u|2 + |∇v|2)dx − 3

ρ + 1

∫
*

(|ut |ρ+2 + |vt |ρ+2)dx

−
∫
*

|∇ut |2 dx −
∫
*

|∇vt |2 dx −
∫
*

F(u, v)dx

+
(

64c2

lg2
0

+ c
)
[(g1 ◦ ∇u)(t)+ (g2 ◦ ∇v)(t)]

+
(

1

2
N1 − 4c

g0

)
[(g′1 ◦ ∇u)(t)+ (g′2 ◦ ∇v)(t)].



12 Energy Decay in a Quasilinear System with Finite and Infinite Memories 247

At this point, we choose N1 large enough so that

(
1

2
N1 − 4c

g0

)
> 0.

So, we arrive at

L′(t) ≤ − l
4

∫
*

(|∇u|2 + |∇v|2)dx − 3

ρ + 1

∫
*

(|ut |ρ+2 + |vt |ρ+2)dx

−
∫
*

|∇ut |2 dx −
∫
*

|∇vt |2 dx −
∫
*

F(u, v)dx

+c(g1 ◦ ∇u)(t)+ c(g2 ◦ ∇v)(t),

which yields

L′(t) ≤ −mE(t)+ c(g1 ◦ ∇u)(t)+ c(g2 ◦ ∇v)(t), for all t ≥ t1. (12.26)

On the other hand, we can choose N1 even larger so that

L(t) ∼ E(t)

which means that, for some constants a1, a2 > 0,

a1E(t) ≤ L(t) ≤ a2E(t).

Now, we use (12.12) and (12.15) to conclude that, for any t ≥ t1,

∫ t1

0
g1(s)

∫
*

|∇u(t)− ∇u(t − s)|2 dxds

+
∫ t1

0
g2(s)

∫
*

|∇v(t) −∇v(t − s)|2 dxds

≤ − 1

μ

∫ t1

0
g′1(s)

∫
*

|∇u(t)−∇u(t − s)|2 dxds

− 1

μ

∫ t1

0
g′2(s)

∫
*

|∇v(t) −∇v(t − s)|2 dxds

≤ −cE′(t). (12.27)

Next, we take F(t) = L(t) + cE(t), which is clearly equivalent to E(t), and
use (12.26) and (12.27), to get

F ′(t) ≤ −mE(t)+ c
∫ t

t1

g1(s)

∫
*

|∇u(t)−∇u(t − s)|2 dxds
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+c
∫ ∞

t1

g2(s)

∫
*

|∇v(t) −∇v(t − s)|2 dxds. (12.28)

(I) H(t) is linear: In this case, estimate (12.28) yields

F ′(t) ≤ −mE(t)−c(g′1◦∇u)(t)−c(g′2◦∇v)(t) ≤ −mE(t)−cE′(t), ∀t ≥ t1
which gives

(F + cE)′ (t) ≤ −mE(t).

Hence, using the fact that F + cE ∼ E, we easily obtain

E(t) ≤ k1e
−k2t .

(II) H(t) is nonlinear: We define I (t) by

I (t) :=
∫ t

t1

g1(s)

H−1
0 (−g′1(s))

∫
*

|∇u(t)−∇u(t − s)|2 dxds

where H0 is such that (12.9) is satisfied. Using (12.9), (12.15), and choosing
t1 even larger if needed, we deduce that, for all t ≥ t1,

I (t) ≤ 2
∫ t

t1

g1(s)

H−1
0 (−g′1(s))

∫
*

(|∇u(t)|2 + |∇u(t − s)|2)dxds

≤ cE(0)
∫ t

t1

g1(s)

H−1
0 (−g′1(s))

ds < 1 (12.29)

We also assume, without loss of generality, that I (t) > 0; otherwise, (12.28)
yields an exponential decay. In addition, we define ξ(t) by

ξ(t) := −
∫ t

t1

g′1(s)
g1(s)

H−1
0 (−g′1(s))

∫
*

|∇u(t)− ∇u(t − s)|2 dxds

and infer from (H1) and the properties of H0 and D that

gi(s)

H−1
0 (−g′i (s))

≤ gi(s)

H−1
0 (H(gi(s)))

= gi(s)

D−1(gi(s)))
≤ k0 ∀i = 1, 2,

for some positive constant k0. Then, using (12.15) and choosing t1 even larger
(if needed), one can easily see that ξ(t) satisfies, for all t ≥ t1,
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ξ(t) ≤ −k0

∫ t

t1

g′1(s)
∫
*

|∇u(t)− ∇u(t − s)|2 dxds

≤ −cE(0)
∫ t

t1

g′1(s) ≤ cg1(t1)

<
1

2
min{r,H(r),H0(r)}. (12.30)

Since H0 is strictly convex on (0, r] and H0(0) = 0, then

H0(θx) ≤ θH0(x)

provided 0 ≤ θ ≤ 1 and x ∈ (0, r]. The use of this fact, hypothesis
(H1), (12.11), (12.29), (12.30), and Jensen’s inequality leads to

ξ(t) = 1

I (t)

∫ t

t1

I (t)H0[H−1
0 (−g′1(s))]

g1(s)

H−1
0 (−g′1(s))

×
∫
*

|∇u(t)− ∇u(t − s)|2 dxds

≥ 1

I (t)

∫ t

t1

H0[I (t)H−1
0 (−g′1(s))]

g1(s)

H−1
0 (−g′1(s))

×
∫
*

|∇u(t)− ∇u(t − s)|2 dxds

≥ H0

(
1

I (t)

∫ t

t1

I (t)H−1
0 (−g′1(s))

g1(s)

H−1
0 (−g′1(s))

×
∫
*

|∇u(t)− ∇u(t − s)|2 dxds
)

= H0

(∫ t

t1

g1(s)

∫
*

|∇u(t)−∇u(t − s)|2 dxds
)

This implies that
∫ t

t1

g1(s)

∫
*

|∇u(t)−∇u(t − s)|2 dxds ≤ H−1
0 (ξ(t)). (12.31)

We also define

φ(t) :=
∫ ∞

t1

g2(s)

H−1
0 (−g′2(s))

∫
*

|∇v(t) −∇v(t − s)|2 dxds

χ(t) := −
∫ ∞

t1

g′2(s)
g2(s)

H−1
0 (−g′2(s))

∫
*

|∇v(t) −∇v(t − s)|2 dxds.
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We similarly deduce that

φ(t) < 1

and

χ(t) <
1

2
min{r,H(r),H0(r)}. (12.32)

Repeating the above steps, we arrive at

∫ ∞

t1

g2(s)

∫
*

|∇v(t)−∇v(t − s)|2 dxds ≤ H−1
0 (χ(t)). (12.33)

Then, inserting the estimates (12.31) and (12.33) into (12.28) and using the
properties of H0, we obtain

F ′(t) ≤ −mE(t)+ cH−1
0 (ξ(t))+H−1

0 (χ(t))

≤ −mE(t)+ cH−1
0 (ξ(t)+ χ(t)), ∀t ≥ t1. (12.34)

Now, for ε0 < r and c0 > 0, using (12.34), and the fact that E′ ≤ 0, H ′
0 >

0,H ′′
0 > 0 on (0, r], we find that the functional F1, defined by

F1(t) := H ′
0

(
ε0
E(t)

E(0)

)
F(t) + c0E(t)

satisfies, for some α1, α2 > 0,

α1F1(t) ≤ E(t) ≤ α2F1(t) (12.35)

and

F ′
1(t) = ε0

E′(t)
E(0)

H ′′
0

(
ε0
E(t)

E(0)

)
F(t)+H ′

0

(
ε0
E(t)

E(0)

)
F ′(t)+ c0E

′(t)

≤ −mE(t)H ′
0

(
ε0
E(t)

E(0)

)
+ cH ′

0

(
ε0
E(t)

E(0)

)
H−1

0 (ξ(t)+ χ(t))+ c0E
′(t).

(12.36)

LetH ∗
0 be the convex conjugate ofH0 in the sense of Young (see [3, pp. 61–

64]), then

H ∗
0 (s) = s(H ′

0)
−1(s)−H0[(H ′

0)
−1(s)], ifs ∈ (0,H ′

0(r)] (12.37)
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and H ∗
0 satisfies the following Young’s inequality

AB ≤ H ∗
0 (A)+H0(B), ifA ∈ (0,H ′

0(r)], B ∈ (0, r] (12.38)

With A = H ′
0

(
ε0
E(t)
E(0)

)
and B = H−1

0 (ξ(t) + χ(t)), using (12.15), (12.30),

(12.32), and (12.36)–(12.38), we arrive at

F ′
1(t) ≤ −mE(t)H ′

0

(
ε0
E(t)

E(0)

)
+ cH ∗

1

(
H ′

0

(
ε0
E(t)

E(0)

))

+ cξ(t)+ cχ(t)+ c0E
′(t)

≤ −mE(t)H ′
0

(
ε0
E(t)

E(0)

)
+ cε0

E(t)

E(0)
H ′

0

(
ε0
E(t)

E(0)

)
− cE′(t)+ c0E

′(t).

Consequently, with a suitable choice of ε0 and c0, we obtain

F ′
1(t) ≤ −τ

(
E(t)

E(0)

)
H ′

0

(
ε0
E(t)

E(0)

)
= −τH2

(
E(t)

E(0)

)
, (12.39)

whereH2(t) = tH ′
0(ε0t).

Since H ′
2(t) = H ′

0(ε0t) + ε0tH
′′
0 (ε0t), then, using the strict convexity of

H0 on (0, r], we find that H ′
2(t), H2(t) > 0 on (0, 1]. Thus, with

R(t) = ε α1F1(t)

E(0)
, 0 < ε < 1

taking into account (12.35) and (12.39), we have

R(t) ∼ E(t) (12.40)

and, for some k1 > 0,

R′(t) ≤ −εk1H2(R(t)).

Then, a simple integration and a suitable choice of ε yield, for some k2 > 0,

R(t) ≤ H−1
1 (k1t + k2). (12.41)

whereH1(t) =
∫ 1
t

1
H2(s)

ds.

Here, we used, based on the properties of H2, the fact that H1 is strictly
decreasing on (0, 1] and lim

t→0
H1(t) = +∞. Using (12.40)–(12.41) and by

virtue of continuity and boundedness of E, we obtain (12.8).
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Moreover, if
∫ 1

0 H1(t)dt < +∞, then
∫ +∞

0 H−1
1 (t)dt < +∞ =⇒

by (12.8)∫ +∞
0 E(t)dt < +∞. Then, using (H3), we have

∫ t

0

∫
*

|∇u(t)−∇u(t − s)|2 dxds +
∫ ∞

0

∫
*

|∇v(t) −∇v(t − s)|2 dxds

≤ 2
∫ t

0

∫
*

|∇u(t)|2 dxds + 2
∫ t

0

∫
*

|∇u(t − s)|2 dxds

+2
∫ ∞

0

∫
*

|∇v(t)|2 dxds + 2
∫ t

0

∫
*

|∇v(t − s)|2 dxds

+2
∫ ∞

0

∫
*

|∇v0(s)|2 dxds

≤ c
∫ ∞

0
E(s)ds + 2

∫ ∞

0

∫
*

|∇v0(s)|2 dxds
< +∞.

Therefore, we can repeat the same procedures with

I (t) :=
∫ t

t1

∫
*

|∇u(t)−∇u(t − s)|2 dxds,

φ(t) :=
∫ ∞

t1

∫
*

|∇v(t)−∇v(t − s)|2 dxds

and

ξ(t) := −
∫ t

t1

g′1(s)
∫
*

|∇u(t)− ∇u(t − s)|2 dxds,

χ(t) := −
∫ ∞

t1

g′2(s)
∫
*

|∇v(t)− ∇v(t − s)|2 dxds

to establish (12.10).
(III) H(t) = ctp where 1 < p < 2: This means that, for i = 1, 2,

gi(t) ≤ ω

(t + 1)
1
p−1

which we use with Holder’s inequality, for parameter q1 > p, and (H3) and
the fact that g2(t) and E(t) are decreasing to get

(g2 ◦ ∇v)(t)
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=
∫ ∞

0
g2(s)

∫
*

|∇v(t)− ∇v(t − s)|2 dxds

=
∫ ∞

0
g

p
q1
2 (s)g

1− p
q1

2 (s)

×
(
‖∇v(t)−∇v(t − s)‖2

) 1
q1
(
‖∇v(t) −∇v(t − s)‖2

)1− 1
q1 ds

≤
[∫ ∞

0
g
p

2 (s) ‖∇v(t) −∇v(t − s)‖2 ds

] 1
q1

×
[∫ ∞

0
g

q1−p
q1−1

2 (s) ‖∇v(t)− ∇v(t − s)‖2 ds

] q1−1
q1

≤
[
−c

∫ ∞

0
g′2(s) ‖∇v(t)−∇v(t − s)‖2 ds

] 1
q1

×
[

2
∫ ∞

0
g

q1−p
q1−1

2 (s)
(
‖∇v(t)‖2 + ‖∇v(t − s)‖2

)
ds

] q1−1
q1

≤ [−cE′(t)
] 1
q1

⎡
⎢⎢⎢⎣

2
∫∞

0 g

q1−p
q1−1

2 (s) ‖∇v(t)‖2 ds

+2
∫ t

0 g

q1−p
q1−1

2 (s) ‖∇v(t − s)‖2 dxds

+2g
q1−p
q1−1

2 (0)
∫∞

0 ‖∇v0(s)‖2 ds

⎤
⎥⎥⎥⎦

q1−1
q1

≤ [−cE′(t)
] 1
q1

⎡
⎣cE(0)

∫ ∞

0

(
ω

(s + 1)
1
p−1

) q1−p
q1−1

ds + c
⎤
⎦
q1−1
q1

.

Therefore, under the condition
[
1 − q1−p

(q1−1)(p−1) < 0
]

which requires

1

q1 − 1
<

2 − p
p − 1

,

we guarantee that

(g2 ◦ ∇v)(t) ≤ c [−E′(t)
] 1
q1 = cH−1

01 (−E′(t))

whereH01(t) = tq1 . Similarly, we get

(g1 ◦ ∇u)(t) ≤ cH−1
01 (−E′(t))
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which lead, as in case II above, to (12.8) giving the following energy decay
rates

E(t) ≤ c

(t + 1)
1

q1−1

.

Making use of this result gives, when s < t ,

‖∇v(t)‖2 + ‖∇v(t − s)‖2 ≤ c

(t + 1)
1

q1−1

+ c

(t − s + 1)
1

q1−1

and repeating the process with another parameter q2, where q1 > q2 ≥ p, we
similarly find

(g2 ◦ ∇v)(t)

≤ [−cE′(t)
] 1
q2

⎡
⎢⎢⎢⎣

2
∫∞

0 g

q2−p
q2−1

2 (s) ‖∇v(t)‖2 ds

+2
∫ t

0 g

q2−p
q2−1

2 (s) ‖∇v(t − s)‖2 dxds

+2g
q2−p
q2−1

2 (0)
∫∞

0 ‖∇v0(s)‖2 ds

⎤
⎥⎥⎥⎦

q2−1
q2

≤ [−cE′(t)
] 1
q2

⎡
⎣c

∫ ∞

0

(
ω

(s + 1)
1
p−1

) q2−p
q2−1

×
(

1

(t + 1)
1

q1−1

+ 1

(t − s + 1)
1

q1−1

)
ds + c

] q2−1
q2

≤ c [−E′(t)
] 1
q2 = cH−1

02 (−E′(t))

where H02(t) = tq2 provided that
[
1 − q2−p

(q2−1)(p−1) − 1
q1−1 < 0

]
which

requires

1

q2 − 1
<

1

q1 − 1
+ 2 − p
p − 1

< 2

(
2 − p
p − 1

)
.

This yields the following improved energy decay rate

E(t) ≤ c

(t + 1)
1

q2−1

.
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We continue this process and get a sequence (qn) with the requirement

1

qn − 1
<

1

qn−1 − 1
+ 2 − p
p − 1

<
1

qn−2 − 1
+2

(
2 − p
p − 1

)
< · · · < n

(
2 − p
p − 1

)

which allows to reach the optimal value qn = p in finitely many steps n
provided n > 1

2−p . In this case, we obtain, for p ∈ (1, 2), the optimal decay
rate

E(t) ≤ c

(t + 1)
1
p−1

. �
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Chapter 13
A Modified and Enhanced Ant Colony
Optimization Algorithm for Traveling
Salesman Problem

Leila Eskandari, Ahmad Jafarian, Parastoo Rahimloo, and Dumitru Baleanu

13.1 Introduction

The traveling salesman problem is one of the famous problems which has been
proposed in 1800 by W.R. Hamilton and T. Kirkman and then the common form of
this problem has been studied by the mathematicians like K. Menger from Harvard
and H. Whitney from Princeton University. This problem is explained as follows:
We have some cities and we know the cost of traveling between the cities. It needs to
be found the path with minimum cost which only visit the each city’s one time and
get back to the starting point. All the paths that could find for each problem in TSP
are calculated by this 1

2 (n − 1)! for n > 2 where n is the number of cities. Indeed,
this formula calculates the number of Hamiltonian cycles in a complete graph [10].

The TSP problem could be solved with various methods such as neural network
[1], mimetic computing, simulating annealing [6], Ga algorithm [3], PSO algorithm
[11], ACO algorithm [15], and other evolutionary algorithms. Among these
methods, ACO is mostly used for problems in which it needs to find the path and
minimize the cost for it, like the TSP problem. Recently proposed methods based on
the evolutionary algorithms are PSO-ACO [4], PSO-ACO-3Opt [9], and ACOBOA
[8]. In PSO-ACO, a novel combination has been introduced by using a PSO, which
is improved by the ACO algorithm. The PSO-ACO-3Opt is the another new hybrid
algorithm based on the particle swarm optimization, ant colony optimization, and
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k-opt (k = 3) method [2]. The PSO algorithm is used for finding proper values
of parameters α and β which are used for city selection operations in the ACO
algorithm and specifies significance of inter-city pheromone and distances. The 3-
Opt algorithm is used for the purpose of improving city selection operations, which
could not be improved due to falling in local minimums by the ACO algorithm
the performance. The novel hybrid algorithm ACOBOA finds the balance between
exploiting the optimal solution and enlarging the search space. This algorithm is
based on the ACO and Bean optimization algorithm (BOA) [14]. The results
of the experiments show that ACOBOA has better optimization performance and
efficiency than the general ant colony optimization algorithm and genetic algorithm.
In this study, the ACO algorithm has been used, but the modification has been
applied on updating the matrix of pheromones τ which helps in converging to the
best solution and not trap in local.

The rest of the paper is organized as follows: Sect. 13.2 illustrates the TSP
problem, Sect. 13.3 defines the ACO algorithm, Sect. 13.4 discusses the MEACO
algorithm, and Sect. 13.5 presents six benchmark TSP problems applied for the
experiments. Finally, the last section presents the concluding remarks.

13.2 Traveling Salesman Problem (TSP)

For solving traveling salesman problem each city has an integer number and the
real value coordination (x,y) where x and y ∈ R. The integer numbers permutation
shows the visiting order of city in traveling salesman problem and the coordination
is used for calculating the distance between city i and j by the following Euclidean
distance formula:

di,j =
√
(xi − xj )2 + (yi − yj )2 (13.1)

It needs to compute the distance between cities and stores it in the Matrix with
name of Distance matrix and uses it in calculating the sum of distance for specific
permutation which needs to be minimized by algorithm. For example, if we have 4
cities, then the permutation 2431 is the one probable solution for TSP problem. This
permutation means that the starting city is city 2, then goes to city 4, and at last city
1, then will come back to the starting point, city 2. The tour for this probable solution
is 2 → 4, 4 → 3, 3 → 1, and 1 → 2. The distance for this tour is computed from
distance matrix which has been computed before starting algorithm main iteration.
Figure 13.1 shows the example for TSP problem with 4 cities and the following
numerical example for distance matrix illustrates this problem:

D =

⎡
⎢⎢⎣

0 d12 d13 d14

d21 0 d23 d24

d31 d32 0 d34

d41 d42 d43 0

⎤
⎥⎥⎦ .
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Fig. 13.1 Simple graph for
TSP problem and the distance
between cities

Sum of distance for route 2 → 4, 4 → 3, 3 → 1, and 1 → 2 is calculated as
follows: = d24 + d43 + d31 + d14. Algorithm run for permutation of tour 59 (like
1342, 1234 and etc). until, it finds the tour which has minimum Sum of distance.

13.3 Ant Colony Optimization Algorithm

The ACO algorithm was one of the nature inspired algorithms which for the first
time was developed by Dorigo et al. [15] and it has been mimicked actual ant
colony behaviors. The research on the behavior of ants in real life shows that the
ants have the ability to find the shortest path between their nest and food source.
The most major feature in seeking the shortest path is the evaporation rate, chemical
matter of pheromone that ants drop on the route which they have chosen. Ants in
a colony mostly select a path where pheromone rate is high. Selection of city j, to
which an ant in the city i in iteration t will go, is made according to Eq. (13.2).

Pkij =
{ [τij (t)]α[ηij (t)]β∑[τij (t)]α[ηij (t)]β if j is the allowed city

0 otherwise
(13.2)

In Eq. (13.2), τij indicates the amount of pheromones between i and j cities, ηij
indicates information (1/dij ) pertaining to distance between i and j cities, and j
displays cities where kth ant can go. An ant chooses the city with the highest ratio
of Pij by making a greedy selection. Parameters α and β are used for determining
the significance between the amount of pheromones and distance inter-city. kth ant
completes one total tour by using Eq. (13.2). The above-mentioned operation is
repeated in t iteration for all ants that are present in the colony. The amount of
pheromones left by an ant on a route that it has used is determined according to
Eq. (13.3).

'kij (t, t + 1) =
{
Q

Lk
if (i, j) ∈ r out performed by the kth ant

0 otherwise
, (13.3)
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where Lk represents a distance of the tour, Q represents a constant number, and k
represents kth ant in the colony. The total amount of pheromones that ants, which are
present in the colony and use the route between cities i and j have left, is calculated
by using Eq. (13.4).

'kij (t, t + 1) =
n∑
k=1

'kij (t, t + 1) (13.4)

Amount of pheromones, which will be found in inter-city routes in iteration (t +
1), is determined as in Eq. (13.5) depending on the impact of evaporation as well.

τij (t + 1) = (1 − ρ)τij (t)+'kij (t, t + 1) (13.5)

In Eq. (13.5), ρ is the coefficient of evaporation and receives a value at intervals
[0 1]. When the maximum number of iterations is reached, the shortest tour length
obtained is regarded as the solution of the problem.

13.4 Proposed Method for TSP Problem

In solving the TSP problem with ACO algorithm, increasing the number of cities
in TSP problem causes to increase the complexity of the problem and ACO
parameters α and β need to adjust properly for reaching the optimum path. Like
the ACO algorithm, proposed method starts the procedure by the initialization of
the parameters, τ (pheromone matrix) and η (distance matrix) for the specific TSP
problem. After the initialization, algorithm enters to the main iteration and starts to
select a path base on the rate of pheromone on each path and same as the original
ACO, a new path has been created for antk and if the new path better than the
previous personal best path for that ant (antpbest

k ) then antpbest
k will update with

new path. By updating the personal best the algorithm find the better path base
on the previous personal experiences. The personal best of ant (antpbest

k ) is mutated
by mutation function (swap, insertion and reversion) [7] and the output (newsol)
compares with previous personal best. The mutation operators used in this method
are swap, insertion, and reversion which are randomly chosen and executed by
calling the mutation function. Figure 13.2 shows these operators and their effects
on probable solution. These operators are defined as follows:

• Swap: The position of selected positions 2 and position 5 in Fig. 13.2 are
exchanged (position refers to the array index).

• Reversion: In this operator, besides conducting swap, the positions located
between the swapped positions are reversed, too.

• Insertion: Select one position and insert it after another one. Other positions are
shifted to the right.
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Fig. 13.2 Mutation operators
in detailed view

If the mutation output is better than the previous best then it will update,
otherwise the algorithm ends this ant procedure and goes to the next one. After
finishing the each ant process, it is time to select Gbest from the population. The
Gbest is also entered as input to the mutation function and the output is compared
with the previous Gbest. If the new solution is better than Gbest, then it will set
as Gbest for this iteration. After the process of Gbest, algorithm reaches stopping
criteria and if it is satisfied it will end, otherwise it is going to start another iteration
for ants of the population. The algorithm for MEACO is as follows:

MEACO algorithm
1: Initialization (n (population size), τ , α, β, ρ, Q )
3: While ( criterion )
4: for k=1,2,. . . ,n do (k ant)
5: Determine the route for antk by Eq. (1)
5: Calculate the sum of distance (fitness) for route antk
6: Calculate β using Eq. (4).
7: Update the τ pheromone for route antk.
8: If (fitness(antk) < fitness(antpbestk )) then

9: ant
pbest

k = antk
13: end if
13: Apply mutation to antpbestk , newsol=mutate(antpbestk )

8: If (fitness(newsol)< fitness(antpbestk )) then

9: ant
pbest
k = newsol

8: If (fitness(antpbestk ) < fitness(Gbest)) then

8: Gbest= antpbestk

7: Update the τ pheromone for route Gbest.
13: end if
13: end if
15: end for k
14: Sort the population based on fitness and determine the Gbest
14: Apply mutation to Gbest, newsol=mutate(Gbest)
14: If (fitness(newsol)< fitness(Gbest)) then
14: Gbest=newsol
14: Update the τ pheromone for route Gbest.
13: end if
16: end while
17: Output the optimum route.
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Table 13.1 MEACO results for TSP benchmark problems

Problem BKS Best Mean Worst Std Time (s)

Bayas29 2020 2020 2541 2632 0.61 302.3

Berlin52 7542 7544 7598 7603 0.2 201.14

Dantzig42 699 679.2019 683.542 685.443 15.27 409.5

Eil51 426 432.5456 468.4586 472.4745 52.13 207.2

Kroa100 21,282 21,295 21,333 21,398 17.12 508.9

St70 675 693.4521 695.4538 696.1258 2.35 320.7

13.5 Experimental Result Ant Testing Setup

The proposed method has been tested on six TSP benchmark problems which are
accessible from this source [12]. The parameter setting for MEACO algorithm is
as follows: α = 2, β = 2, ρ = 0.02, Q=100 and the amount of pheromone
at the starting was set to 1 for each path from one city to another. The testing is
performed on the computer with the following features: CPU 2.1 GHZ, Ram 8 GB
and Matlab 2013 running on a computer with windows 10. The stopping criteria was
set to reach a Maximum iteration number max-iter=20,000. Table 13.1 shows the
result of benchmark TSP problems Bayas29, Berlin52, Dantzig42, Eil51, Kroa100
and St70 based on the Mean (average), Std (standard deviation), Worst, Best, and
Time. In this table optimum route cost for each problem has been presented besides
the MEACO results and it can be seen that MEACO could find proper results for
problems especially for Dantzig42 which has been shown in Fig. 13.3. The results
for other TSP problems are greatly minimized and MEACO could achieve best
performance in solving these problems. In Table 13.2, MEACO has been compared
with other famous algorithms PSO, GA, SA, ACO for problems Dantzig42 and
St70. The Friedman non-parametric test results [5] for these two problems show
that MEACO has better performance than the other algorithms in solving them
and scores the minimum rank among the other algorithms. The p-value shows the
difference between the mean results. The results for other algorithms in Table 13.2,
have been taken from reference [13]. Figure 13.4 depicts the optimum solution for
these TSP problems. The Dantzig42 TSP problem optimum tour is as follows:

11 → 12 → 23 → 22 → 17 → 16 → 13 → 14 → 15 → 18 → 19 → 20 →
21 → 28 → 29 → 30 → 31 → 32 → 33 → 34 → 35 → 36 → 37 → 38 →
39 → 40 → 41 → 42 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 →
25 → 26 → 27 → 24 → 11.

13.6 Conclusion

The ACO is one of the efficient nature inspired metaheuristic algorithms, which
has outperformed most of the algorithms in solving the various optimizing discreet
problems. In this paper, we have modified and enhanced the ACO algorithm to
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Fig. 13.3 Optimum Tour for TSP problem Dantzig42

Table 13.2 MEACO comparison with other famous algorithms for TSP benchmark problems
Dantzig 42 and St70

Problem PSO GA SA ACO MEACO

Dantzig42 Best 679.2019 679.2019 686.2082 703.8294 679.2019

Avg 699.8715 715.8312 722.8525 724.8758 683.542

Std 13.1413 22.0551 22.6387 10.5018 15.27

St70 Best 677.1945 692.4504 709.3605 699.2357 693.4521

Avg 717.7294 732.0563 781.5419 710.3917 695.4538

Std 22.7000 102.0129 33.9260 4.7699 2.35

Friedman test Rank 2.5 3.5 4.5 3.5 1

p-value 0.231

Statistic 5.6

design a new method for seeking the optimum path in TSP problem. The proposed
algorithm begins to search from the ACO algorithm and applies the mutation to
the personal best and global best, which are used in updating the ants’ tours. The
experiment based on benchmark TSP problems showed that proposed hybrid is
dominant than other famous algorithms and could find proper tours for each problem
and these results are better than ACO.
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Fig. 13.4 Optimum routes found by proposed method for benchmark TSP problems. (a) Bayas29.
(b) Berlin52. (c) Dantzig42. (d) Eil51. (e) Kroa100. (f) St70
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Chapter 14
A Note on the Upper Bound of Average
Distance via Irregularity Index

Nihat Akgunes, Ismail Naci Cangul, and Ahmet Sinan Cevik

14.1 Introduction and Preliminaries

LetG = (V ,E) be a simple, finite connected graph with the vertex set V = V (G) of
order n and the edge set E = E(G). The average distance μ(G) of G is defined as

μ(G) =
(
n

2

)−1 ∑
{u,v}⊆V (G)

dG(u, v),

where dG(u, v) denotes the distance (length of the shortest path) between two
vertices u, v ofG. The diameter diam(G) ofG is defined as the maximum distance
dG(u, v) over all pairs of vertices u and v inG. The degree degG(v) of a vertex v of
G is the number of vertices adjacent to v. Among all degrees, the minimum degree
of vertices is denoted by δ in graph G. We also have the degree sequence DS(G)
which is a sequence of degrees of vertices ofG. It has been defined a new parameter
for graphs by Mukwembi [10], namely the irregularity index of G and denoted by
t = t (G). In fact t is the number of distinct terms in DS(G). Although there exist
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very huge number of studies on the degree sequence of graphs [8, 9], there is very
limited number on the irregularity index (see, for instance, in [1, 10]).

In this paper we also need the concept average distance (or, equivalently, mean
distance) which was first introduced by Doyle and Graver in the paper [3]. This
important graph parameter is the measure of the compactness of a graph G. The
average distance had been found in so many application areas in nature science
such as in (telecommunications) network, architecture, inter-computer connections,
molecular structure, etc. We can refer [5, 7, 11, 12] for some of these depicted
applications and examples. However, another application of average distance was
given by Fajtlowicz and Waller [4] as a computer program GRAFFITI. This program
made the attractive conjecture that, for every δ-regular connected graph G (i.e.
connected graphs in which all vertices have the same degree δ) of order n,

μ(G) ≤ n

δ
. (14.1)

By considering any connected graph of order n with the minimum degree δ, an
asymptotically slightly stronger form of this conjecture was proved by Kouider and
Winkler [6] as

μ(G) ≤ n

δ + 1
+ 2. (14.2)

After that, by considering special trees, Dankelmann and Entringer [2] presented
the following bounds:

1. If T is a spanning tree, then μ(T ) ≤ n
δ
+ 5.

2. If G is triangle-free, then for a spanning tree T of G we have

μ(T ) ≤ 2

3

n

δ
+ 25

3
.

3. If G is the C4-free graph, then again for a spanning tree T of C4,

μ(T ) ≤ 5

3

n

δ2 − 2  δ/2" + 1
+ 29

3
,

where C4 is the cycle graph of length 4.

In the light of the results in papers [2, 4, 6], by considering the parameters t , n,
and δ, we will state and prove an upper bound (see Theorem 14.1 in below) for the
average distance of any simple connected graph in this paper. Furthermore we will
note that this bound is more stronger than the bounds given in (14.1), (14.2) and
(1)–(3) above (see Remark 14.1 in below).
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14.2 The Main Result

To prove our theorem, we need the following notation which can also be found, for
instance, in [5].

The neighbourhoodNG(x) of a vertex x ∈ V (G) is the set of all vertices adjacent
to x. The closed neighbourhood NG[x] of a vertex x ∈ V (G) contains NG(x)
and the vertex x itself. For a subset S ⊆ V , let us assume that G[S] denotes the
subgraph induced by S in G. Then the distance between a vertex x and S, denoted
by dG(x, S), is defined as minv∈S dG(x, v). The closed neighbourhood of S is the
set ∪x∈SNG[x] and denoted by NG[S]. The k-th power of G, denoted by Gk , is
the graph with the same vertex set as G in which two vertices u �= v ∈ V (G) are
adjacent if dG(u, v) ≤ k. For a subset A ⊆ V (G), the subgraph of Gk induced
by A is denoted by Gk[A]. For a positive integer k, a k-packing of G is a subset
A ⊆ V (G) with dG(a, b) > k for all a, b ∈ A.

The following lemma plays a central role in the proof of our main result.

Lemma 14.1 ([10]) LetG be a connected graph of order n, minimum degree δ and
diameter d , where d �= 3, 4. If A is maximal 2-packing set, then

|A| ≤ n− t + 1

δ + 1
.

Theorem 14.1 Let G be a simple, connected graph of order n with the minimum
degree δ and diameter d , where d �= 3, 4. Suppose that t is the irregularity index of
G. Then we have an upper bound

μ(G) ≤ n− t + 1

δ + 1
+ 1. (14.3)

Moreover, this inequality is essentially tight.

Proof Let DS(G) be the degree sequence of G having t distinct terms. In other
words, the irregularity index is t .

Firstly we find a maximal 2-packing A ⊆ V (G) of G using the following
procedure: For a chosen vertex v of V (G), let A = {v}. If there exists another
vertex u in V (G) having the condition dG(u,A) = 3, add u to A. After that add all
such these vertices u′ having the same condition dG(u′, A) = 3 to A until each of
the vertices not in A is within distance two of A.

As the next step, let T1 ≤ G be the forest with vertex set NG[A] and whose edge
set consists of all edges incident with a vertex in A. By our construction on A, there
exist |A| − 1 edges in G, each of them joining two neighbors of distinct elements
of A, whose addition to T1 yields a tree T2 ≤ G. Now every vertex u not in T2 is
adjacent to some vertex u′′ in T2.

Let T [A] be a spanning tree of G with the edge set E(T2) ∪
{
uu′′

∣∣ u ∈ V (G)−
V (T2)}. By our construction, T 3[A] is connected, and we have

μ(T [A]) ≤ 3μ(T 3[A]) (14.4)
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and

μ(T 3[A]) ≤ |A| + 1

3
. (14.5)

We note that the equality holds in both (14.4) and (14.5) if and only if T 3[A] is path
graph.

Now, by (14.4), (14.5) and Lemma 14.1, we clearly have

μ(T [A]) ≤ |A| + 1

which implies that

μ(T [A]) ≤ n− t + 1

δ + 1
+ 1.

However, since T [A] is a spanning tree of G, we finally get

μ(G) ≤ μ(T [A]) ≤ n− t + 1

δ + 1
+ 1.

Hence the result.

Remark 14.1 The bound obtained in (14.3) is the tightest bound among all other
bounds depicted in (14.1), (14.2) and (1)–(3) as in the previous section. By using
the definition of irregularity index and the fact of δ + 1 is a positive integer, we can
show it very basically as in the following:

t ≥ 1 ⇒ n ≥ 1 − t + n⇒ n

δ + 1
≥ n− t + 1

δ + 1

⇒ n

δ + 1
+ 2 ≥ n− t + 1

δ + 1
+ 2 ≥ n− t + 1

δ + 1
+ 1.

For an application of Theorem 14.1, we can present regular graphs. First of all,
since complete graphs Kn are the specific cases of the regular graphs, it is easy to
see that Theorem 14.1 satisfies forKn. Moreover, for any regular graphG, since t is
always equal to 1 by the meaning of regular graphs, we have the following corollary
as a consequence of Theorem 14.1.

Corollary 14.1 Let G be a δ-regular graph. Then the inequality

μ(G) ≤ n

δ + 1
+ 1

holds.
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Additive Cauchy equation, 81
α-admissible, 148, 149, 158
(α–ψ)-type K−contraction, 9, 12
(α–ψ)-type N−contraction, 13
(α–ψ)-type R−contraction, 25, 26
Analytical and approximate solutions, 172–176
βik coefficients, 176–177
bounded linear operator, 172
conjugate operator, 172
countable dense subset, 170
Gram-Schmidt orthogonalization process,

172
linear operator L, 170
m-term intercept, 171

Ant colony optimization (ACO) algorithm,
257, 259–260

Approximate solution, 119
Average distance, 267

B
Baire metric, 4
Ballistic transport, 130
Banach Contraction Mapping Principle, 4
Banach fixed point theorem, 9, 33, 82, 85, 87
Banach space, 81, 152
Banach–Steinhaus theorem, 220
Bean optimization algorithm (BOA), 258
Bernoulli equation, 124
Bernstein polynomials, 203–204
Bielecki metric, 83
Binary space, 168, 169
Biregular graph, 196

b-metric space, 8, 68
Boundary value problem, 162

C
Caputo space derivative, 118
Caristi mapping, 50
Caristi’s fixed point theorem, 50
Cauchy–Schwarz inequality, 228, 242–243
Cauchy sequence, 11, 31, 35, 42, 48, 54–56,

152
Clarke’s fixed point theorem, 51–52
Connected graph, 269
Conservation laws, 103–105
Conserved vectors, 103, 104
Constant (space-independent) diffusion

coefficient, 111
Continuous delay function, 83, 88, 90, 92
Continuous fractional-order Chebyshev low

pass filters, 139–143
Continuous function, 84, 86, 88, 90–92
Continuous kernel function, 86
Continuous mapping, 24, 51
Contractive mapping, 8
Critical absorption exponent, 97

D
Dantzig42 TSP problem, 262
Diffusion-absorption equation, 97
Diffusion on fractal structure, 128
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E
Edge deletion

multiple edges from graph, 195–196
one edge from graph, 193–195
well-known graph types, 196–200

Eigenfunction expansion, 221–222
Ekeland type fixed point results, 46–50

Caristi’s fixed point theorem, 50
Clarke’s fixed point theorem, 51–52

Elliptic operator in the domain *, 218
Elliptic operator of the order 2m, 218
Energy decay, see Quasilinear system
Euclidean distance formula, 258
Euclidean metric, 23, 53
Euler-Lagrange equation, 103
Exact solutions, 105–107, 120, 121

F
Fast superdiffusion, 127–128
Feng-Liu type fixed point theorem

lower orbitally continuous, 73, 74, 77–80
mixed multivalued mapping, 72–80
single valued mapping, 72

Fickian diffusion, 128
First and second Zagreb indices, 191–193
Fixed point theory, partial metric spaces
α-admissible, 8
α-orbital admissible, 9
Banach fixed point theorem, 9
basic fixed point results, 9–14

consequences in standard partial metric
space, 24–25

consequences of ψ selection, 17–20
cyclic contractive mappings, 22–23
distinct coefficients, immediate

consequences, 15–17
with partial order, 20–22

b-metric space, 8
common fixed point results, 29–40

for four mappings, 42–46
immediate consequences, 40–42

(c)-comparison functions, 8
contractive mapping, 8
Ekeland type fixed point results, 46–50

Caristi’s fixed point theorem, 50
Clarke’s fixed point theorem, 51–52

iterative sequence, 10–13
mapping, 7
M-metric space, 68
nonunique fixed point results, 53–61
rational type contraction mappings, 25–29

self-mapping, 8
uniqueness, 9, 12, 13, 17, 22, 23, 29, 37, 39

FODE, 101, 105, 106
Fourier integral, 226–228
Fourier number, 125–127
Fourier series, see Partial differential operators
FPDEs, see Time fractional partial differential

equations
Fractional calculus, 97
Fractional differential equations (FDEs), 111
Fractional finite difference inclusions,

146–148, 152–158
α-admissible, 148, 149, 158
Banach space, 152
with boundary conditions, 149–151, 158
Cauchy sequence, 152
Gamma function, 145
Pompeiu-Hausdorff metric, 148

Fractional Leibniz rules, 99
Fractional-order continuous LTI filters, 135
Fractional-order filters

advantage, 133–134
frequency selectivity properties, 134
integer order filter functions, 133
PSO algorithm

diverse optimization problems, 134
global learning coefficient, 135
multidimensional search space, particle

motion in, 134–135
personal learning coefficient, 135
problem formulation and application,

135–137
swarm intelligence, 134

stable IIR discrete filter designs, 134
continuous fractional-order Chebyshev

low pass filters, 139–143
damping rate, 137
fractional-order low pass filter, 137–140
inertia weight, 137
sampling period, discrete filtering, 137

Fractional-order low pass filter, 137–140
Fractional-order LTI systems, 133, 134
Fractional scaling, 111

G
Galerking method, 112
Gbest, 261
Generalized (α–ψ)-contractive pair, 34
Goodman boundary conditions, 114
Gram-Schmidt orthogonalization process, 172
Green functions, 112
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H
Heat-balance integral method (HBIM), 114
Holder’s inequality, 252–255
Hyers-Ulam-Rassias stability, 81

in finite interval case, 83–86
in infinite interval case, 87–90
integro-differential equation, 82, 87–91

Hyers-Ulam stability, 81
in finite interval case, 86–87
integro-differential equation, 82, 86–87, 92,

93

I
Ibragimov method, 103–105
Integer-order diffusion models, 116
Integer order functions, 134
Integral-balance method

assumed profile, 114–115
double-integration method, 114
finite penetration depth, 113, 114
Langford criterion, 119
single-integration method, 113–114

Integro-differential equation, 82, 90–93
Intermediate transport regime, 130
Invariant subspace method, 105–107
Irregularity index

average distance, 267
computer program GRAFFITI, 268
degree sequence, 267
upper bound

closed neighbourhood, 269
edge set, 269–270
equality, 270
inequality, 270
maximal 2-packing, 269
neighbourhood, 269
parameters, 268
spanning tree, 269–270
subgraph, 269
vertex set, 269

Iterative sequence, 10–13, 26, 28, 54, 59

J
Jensen’s inequality, 241
Joule losses, 162

K
Kannan type fixed point theorem, 33
Kernel functions, 161, 163–170
Klein–Gordon system, 235

L
Langford criterion, 119
Laplace operator, 227
Least-square error, 126
Lebnitz rule, 113, 114
Length of the multi-index α, 218
Lie symmetries

FPDEs, 98–100
and invariant solution, 100–102

Limit q-Bernstein operator, 204–205
Linear functions, 211–212
Linear time invariant (LTI), 133
Lipschitz constant, 83, 86, 88
Localization, 221–222

M
Mb-metric space

Cauchy sequence, 70–72
coefficient, 68, 69
definition, 68
Feng-Liu type fixed point results (see

Feng-Liu type fixed point theorem)
Mb-convergence, 70
on nonempty set, 69

M-complete M-metric space, 78
MEACO algorithm, 261–263
Mean square displacement, 128–129
Mean Value Theorem, 206
Metric space

definition, 3
distance function, 4
L-space, 3
multivalued mapping, 67–68
partial (see Partial metric spaces)
Pompeiu-Hausdorff metric, 67

M-metric space, 68
Modified triangle inequality, 35, 43
Multivalued contraction, 67
Multivalued contraction mapping, 67
Multivalued mapping, 67–68, 72–80

N
Nikol’skii spaces, 222
Non-Boltzmann similarity variable, 117
Non-Boltzmann variable, 122
Non-decreasing continuous function, 83, 86
Nondecreasing mapping, 20, 21
Nonlinear partial differential equations (PDEs)

analytical and approximate solutions,
172–176

βik coefficients, 176–177
bounded linear operator, 172
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Nonlinear partial differential equations (PDEs)
(cont.)

conjugate operator, 172
countable dense subset, 170
Gram-Schmidt orthogonalization

process, 172
linear operator L, 170
m-term intercept, 171

numerical results, 177–190
reproducing kernel space, 161, 163–170

Nyquist sampling theorem, 137

O
1-D space-fractional diffusion models

diffusion coefficients, 111–113
Green functions, 112
integral-balance method

assumed profile, 114–115
double-integration method, 114
finite penetration depth, 113, 114
single-integration method, 113–114

potential power-law (additive) diffusion
coefficient

rescaling and penetration depth,
124–125

time-scales and fractional analogue,
Fourier number, 125–127

power-law diffusion coefficient
approximate profiles and optimal

exponents, 122–124
penetration depth, 120–122

space-independent diffusion coefficient
approximate profiles, 116–117
benchmarking to exact solutions, 120,

121
diffusion equation rescaling, 115
double-integration method (DIM), 116
minimum value of n, 118, 119
number of terms, truncated series

expansion, 118, 119
numerical factors evaluation, 117–118
optimal exponent, approximate solution,

119
single-integration method, 115–116

transport regimes modelled
fast superdiffusion, 127–128
mean square displacement and general

rules, 128–129
regime classification and two-

dimensional profiles, 129–130
slow superdiffusion, 128

Optimal exponents, 119
Orbitally complete metric space, 54, 56, 59, 60
Orbitally continuous self-map, 53–54, 56, 57,

59, 60

P
Pachpatte’s theorem, 59
Parabolic partial differential equations, 97
Partial differential equations (PDEs)

nonlinear systems, 161–162
parabolic, 97
with quadratic differential operator and

constant sink, 97
Partial differential operators

eigenfunction expansion, 221–222
periodic distributions

equality, 224
Liouville spaces, 224
multi-index, 223
Poisson summation formula, 224–225
properties, 223
Stein interpolation theorem, 225–226

spectral expansion, summability
elliptic operator, 218
Hermander theorem, 220–221
Hilbert space, 218
John von Neumann spectral theorem,

219
Kato-Rellich theorem, 231
length of the multi-index α, 218
locally integrable function, 219
Riesz means, 219
Schrodinger operator, 231
semi-bounded, 219
Sobolev spaces, 219–220
spectral decomposition, 231–232
spectral function of the operator, 219

spherical partial sums, 226–228
uniform convergence on closed domains,

228–230
Partial linear differential equations, 100–101
Partial metric spaces

Cauchy sequence, 7
complete partial metric space, 5, 13
convergent sequence, 7
definition, 5, 6
equality, 6
Euclidean metric, 6
fixed point theory (see Fixed point theory,

partial metric spaces)
multivalued mappings, 68
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non-zero self-distance, 4
self-mapping, 6
single valued mappings, 68
superfluous axiom, 4

Particle swarm optimization algorithm
diverse optimization problems, 134
global learning coefficient, 135
multidimensional search space, particle

motion in, 134–135
personal learning coefficient, 135
problem formulation and application

amplitude response, 135, 136
fractional-order continuous LTI filters,

135
logarithmic scaling of magnitude, 136
objective function, 136
particle positions, 136
phase response approximation, 136
shape frequency response, 135
stability prevention, 136–137

swarm intelligence, 134
Pass bands, 133
Pendant edge, 194–195, 199
Pendant vertex, 191
Penetration depth

finite, 113, 114
power-law diffusion coefficient, 120–122
rescaling and, 124–125

Periodic distribution
equality, 224
Fourier series, 223
Liouville spaces, 224
multi-index, 223
Poisson summation formula, 224–225
properties, 223
Stein interpolation theorem, 225–226

Poincaré’s inequalities, 242–243
Poisson summation formula, 224–225
Pompeiu-Hausdorff metric, 67, 148
Potential power-law diffusion coefficient, 111
Potential power-law (additive) diffusion

coefficient
rescaling and penetration depth, 124–125
time-scales and fractional analogue, Fourier

number, 125–127
Power-law diffusion coefficient, 111

approximate profiles and optimal
exponents, 122–124

penetration depth, 120–122
Power-law superdiffusivity, 112–113
PSO algorithm, see Particle swarm

optimization algorithm

Q
q-Bernstein operator

auxiliary results, 206–211
Bernstein polynomials, 203–204
Korovkin’s Theorem, 212
limit q-Bernstein operator, 204–205
q-calculus, 203
strong operator topology, 205–206,

211–212
Taylor expansions, 204
uniform operator topology, 205, 212–214

Quasilinear system
Cauchy–Schwarz inequalities, 242–243
energy function, 239–240
explicit and general decay rate, 238
frictional damping, 237
Holder’s inequality, 252–255
Jensen’s inequality, 241
Klein–Gordon system, 235
linear and nonlinear, 248–249
Poincaré’s inequalities, 242–243
viscoelastic damping, 237
viscoelastic effect, 236
Young’s inequality, 243–246, 249, 251

R
Regime classification

three-dimensional profiles, 130
two-dimensional profiles, 129–130

Regular graph, 196, 270
Reich type fixed point theorem, 33
Residual function, 126
Riemann–Liouville derivative, 98, 99,

103, 120
r-subdivision graphs, 192

S
Scaled characteristic time, 125
Scaled fractional quasi-Fourier number, 125
Sehgal contraction condition, 30
Slow superdiffusion, 128
Space-independent diffusion coefficient

approximate profiles, 116–117
benchmarking to exact solutions, 120, 121
diffusion equation rescaling, 115
double-integration method (DIM), 116
minimum value of n, 118, 119
number of terms, truncated series

expansion, 118, 119
numerical factors evaluation, 117–118
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Space-independent diffusion coefficient (cont.)
optimal exponent, approximate solution,

119
single-integration method, 115–116

Space with mixed norm, 229
Spatial superdiffusivity, 113
Spectral expansion

elliptic operator, 218
Hermander theorem, 220–221
Hilbert space, 218
John von Neumann spectral theorem, 219
Kato-Rellich theorem, 231
length of the multi-index, 218
locally integrable function, 219
Riesz means, 219
Schrodinger operator, 231
semi-bounded, 219
Sobolev spaces, 219–220
spectral decomposition, 231–232
spectral function of the operator Â, 219

Spectral-method, 112
Stable IIR discrete filter designs, 134

continuous fractional-order Chebyshev low
pass filters, 139–143

fractional-order low pass filter, 137–140
sampling period, discrete filtering, 137

Stop bands, 133
Subdiffusion process, 111, 119, 128
Superdiffusion model, 111–112

T
TFDA equation, see Time fractional

diffusion-absorption equation
Time fractional diffusion-absorption equation

conservation laws, 103–105
exact solutions by invariant subspace

method, 105–107
Lie symmetries

FPDEs, 98–100
and invariant solution, 100–102

Riemann-Liouville derivative, 98

Time fractional partial differential equations
(FPDEs), 98–100

Topological graph, 191
Transition bands, 133
Traveling salesman problem (TSP)

ACO algorithm, 257, 259–260
distance matrix, 258, 259
Euclidean distance formula, 258
MEACO algorithm, 261–263
mutation operators, 260, 261
PSO algorithm, 258

Turbulent transport regime, 130
Tustin discretization, 138–139

U
Uniform convergence, 221
Uniqueness, fixed point, 9, 12, 13, 17, 22, 23,

29, 37, 39

V
Volterra integro-differential equation, 82

Y
Young’s inequality, 243–246, 249, 251

Z
Zagreb indices

edge deletion
multiple edges from graph, 195–196
one edge from graph, 193–195
well-known graph types, 196–200

first and second indices, 191–193
QSAR and QSPR studies, 191
r-subdivision graphs, 192
simple graph, 192–193
topological graph, 191
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