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Chapter 1
Introduction

Marilyn E. Strutchens, Rongjin Huang, Despina Potari
and Leticia Losano

Keywords Field experiences � Prospective Teachers Knowledge
Teachnologies � Tools and resources � Prospective Teachers Professional Identities

During topic study group 48 on Pre-service Mathematics Education of Secondary
Teachers regular sessions, significant new trends and developments in research and
practice on the mathematics education of prospective secondary teachers were dis-
cussed. An overview of the current state-of-the-art and recent research reports from
an international perspective were provided. In keeping with the call for papers,
presentations focused on similarities and differences related to the development of
mathematics content and pedagogical content knowledge of teachers; models and
routes of teacher education, curricula of mathematics teacher education; the devel-
opment of professional identities as prospective mathematics teachers and a variety
of factors that influence these different aspects; field experiences and their impact on
prospective secondary mathematics teachers’ development of the craft of teaching;
the impact of the increasing availability of various technological devices and
resources on preparing prospective secondary mathematics teachers; and others.
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We received fifty-four 4-page submissions to TSG 48. From the submissions, 20
papers were selected for presentations during the regular meetings. Each of these 20
papers was scheduled in one of the following TSG sessions based on the topic of
the paper: (1) Field Experiences (two sessions); (2) Prospective Teachers
Knowledge (two sessions); (3) Technologies, Tools and Resources (one session);
and (4) Prospective Teachers Professional Identities (one session). Also, we invited
four speakers to submit an extended article, one for each of the major themes:
Blake E. Peterson and Keith R. Leatham (field experiences), João Pedro da Ponte
(teachers’ knowledge), Rose Zbiek (tools, technologies, and resources), and Márcia
Cristina de Costa Trindade Cyrino (teachers’ identities). Thus, 24 papers were
scheduled for the TSG 48 regular meetings.

In this monograph, we provide a subset of the papers presented during the con-
ference. Each of the sixteen papers were extended by the authors and reviewed by the
editors of this monograph and the authors of other papers. We have divided the
monograph into four sections according to the four major themes from the TSG 48
mentioned above. Moreover, this monograph serves as an excellent companion to the
Topical Survey: The Mathematics Education of Prospective Secondary Teachers
Around the World (Strutchens et al., 2017), which synthesizes and discusses signif-
icant new trends and developments in research and practices related to various aspects
of preparing prospective secondary mathematics teachers from 2005 to 2015.

As mentioned previously, this monograph is divided into four sections which are
representative of the four themes from the topic study group 48 on Pre-service
Mathematics Education of Secondary Teachers. Part I focuses on field experiences.
While university coursework can provide knowledge about content and about
teaching strategies, it is during clinical experiences that prospective teachers develop
the craft of teaching—for instance, the ability to design lessons that involve important
mathematical ideas, design or select tasks that will help students to access those ideas,
and implement instructional strategies to successfully execute the lesson. Moreover,
the Association of Mathematics Teacher Educators (2017) states the following:

An effective mathematics teacher preparation program includes clinical experiences that are
guided on the basis of a shared vision of high-quality mathematics instruction and have
sufficient support structures and personnel to provide coherent, developmentally appro-
priate opportunities for candidates to teach and to learn from their own teaching and the
teaching of others. (p. 26)

In part I, Peterson and Leatham describe how restructuring their program’s
student teaching experience from a traditional one student teacher per mentor
teacher model to a paired placement model with two student teachers paired with
one mentor teacher and how the new model impacted their student teachers’
growth. Martin and Strutchens illustrate the power of the Mathematics Teacher
Education Partnership’s networked improvement community approach, by sharing
the work of the clinical experience research action cluster which has employed
improvement science methods to developed resources that support improved
models for both student teaching and early field experiences, as well as professional
development for mentor teachers. Kilic examines affording pre-service mathematics
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teachers with the opportunity to work with a pair of students for a semester and
reflect on their own practices and students’ performances. Mohr-Schroeder,
Jackson, Cavalcanti, and Delaney examine how a robotics course in an educator
preparation program that required a field experience in an informal learning envi-
ronment impacted its participants. Heinrich analyze how prospective teachers
implemented diagnosis and adaptive planning competences during field
experiences.

Part II focuses on technologies, tools and resources. Although the use of various
technologies in promoting mathematics learning in classrooms has been recom-
mended for decades (e.g., International Society for Technology in Education, 2000;
NCTM, 2014), how to prepare prospective teachers to teach mathematics using
technologies effectively is still a challenging task (Huang & Zbiek, 2017). In this
part, three chapters examine various aspects about how to prepare PSMT’s use of
technology. Building on extensive literature reviews, Zbiek propose and describe a
blend of three conceptual tools to frame integrated and dynamic ways of preparing
secondary mathematics teachers. These three conceptual tools frame what knowl-
edge and skills in each of technology, content, and pedagogy PSMTs should have,
and how they should acquire them through multiple venues. Moreno and Llinares
explore prospective secondary mathematics teachers’ perspectives on the role that
technological resources play in supporting students’ learning. Akcay and Boston
focus on pre-service teachers’ ability to integrate technology into instructional
activities in ways that support students’ mathematical thinking and reasoning, using
the Instructional Quality Assessment to assess the cognitive demand of: (a) in-
structional tasks, (b) description of how tasks would be implemented or were
implemented during the lesson, and (c) level of response expected from or produced
by students.

In part III, the main focus is on teacher knowledge. Teacher knowledge has been
considered as an important resource for mathematics teaching. The special features
of this knowledge have been widely discussed and studied during the last two
decades, and different theoretical frameworks have been developed. Many of which
are related to the work of Shulman (1986), as for example the notion of mathe-
matics knowledge for teaching of Ball, Thames, and Phelps (2008). Many studies
have been undertaken in the area of prospective secondary mathematics teacher
knowledge focusing on the measurement of this knowledge and on the process of
its development (see Potari & Ponte, 2017). In the papers discussed in this part the
emphasis is placed on how this knowledge can be developed in the context of
teacher education.

For example, Potari and Psycharis examine the structure and quality of
prospective mathematics teachers (PMTs)’ argumentation when identifying and
interpreting critical incidents from their initial field experiences. The study offers an
analytical framework on the basis of argumentation structures and classification of
warrants and backing to trace PSMTs noticing and the resources including
knowledge on which this is framed. Lin, Yang, and Chang provide one example of
PSMTs’ survey study in one complete learning cycle, and summarize several cri-
teria of evaluating how PSMTs conduct a study to understand students’
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mathematical thinking in a holistic perspective. Manouchehri, Yao, and Saglam
investigate prospective secondary school teachers’ knowledge of mathematical
modeling and its development through especially designed instructional units in
teacher education. Arnal-Bailera, Cid, Muñoz-Escolano, and Oller-Marcén explore
prospective secondary school mathematics teachers’ marking practices of students’
work and implement teacher education activities aiming to develop these practices.
The study of Ölmez focuses on how prospective middle school mathematics
teachers reason with quantitative definitions for multiplication and fractions about
proportional relationships.

Part IV focuses on teacher professional identities. Teachers’ professional iden-
tities, as well as other related concepts such as self-perceptions, attitudes and
beliefs, are a relevant area of study within mathematics teacher education research.
According to Sachs (2005), “teacher professional identity stands at the core of the
teaching profession. It provides a framework for teachers to construct their own
ideas of ʽhow to beʼ, ʽhow to act,ʼ and ʽhow to understandʼ their work and their
place in society” (p. 15). In this way, the professional identity of a prospective
teacher is a complex notion since it addresses the complex and mutual relationships
between the prospective teacher, the institutions involved in her pre-service edu-
cation (universities, schools) and the society where she lives (Losano & Cyrino,
2017). Since professional identities “are not only an answer to the question ʽWho
am I at this moment?ʼ, but also an answer to the question ʽWho do I want to
become?ʼ” (Beijaard et al., 2004, p. 122) analyzing how PSMTs develop their
identities in the spaces and moments offered and promoted by pre-service education
is an important issue. This is the direction taken by the articles included in this part.

Cyrino examines how the analysis of a multimedia case featuring one mathe-
matics teacher’s practice supported prospective mathematics teachers in the con-
struction of their professional identity. Hine investigates prospective secondary
teachers’ self-perceptions concerning their readiness to assume a full-time mathe-
matics teaching position at schools. Durandt and Jacobs analyzes the convictions
and mindsets of prospective mathematics teachers towards modelling based on their
initial engagement with a modelling task.

The sixteen studies presented in this monograph provide the field with models
for studying and preparing secondary mathematics teachers. Many of the practices
presented are innovative and have the potential to move the field forward. Much
like the studies in Strutchens et al. (2017), most of the studies presented are
qualitative in nature, providing the readers with thick descriptions of the context
and conditions under which prospective secondary mathematics teachers are being
prepared.

4 M. E. Strutchens et al.
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Chapter 2
The Structure of Student Teaching Can
Change the Focus to Students’
Mathematical Thinking

Blake E. Peterson and Keith R. Leatham

Abstract This paper describes our efforts to change the focus of our student
teaching experience by altering the structure of that experience. We provide evi-
dence that the restructuring accomplished its purposes and, in so doing, addressed a
number of problems with the traditional structure it replaced. In particular, we
achieved less focus on issues of classroom management and student behavior, more
focus on students’ mathematics, and substantial opportunity to grapple with the
elicitation, interpretation and use of student mathematical thinking during class
discussion. Although there is still room for improvement, our model provides an
existence proof that the focus of the student teaching experience can indeed be
altered and improved.

Keywords Paired student teaching � Student mathematics � Field experience
Learning to teach

Field experiences are a common element of teacher preparation throughout the
world (White & Forgasz, 2016). These experiences range from classroom obser-
vations early in a teacher preparation program to student teaching—a
full-immersion experience where the prospective teacher teaches a full load of
classes daily for several weeks. For many decades, student teaching has been the
culminating experience for United States mathematics teacher education programs.
Traditionally, this capstone experience places one student teacher (ST) in the
classroom of one cooperating teacher (CT) for 10–15 weeks. In this setting, the ST
observes the teaching of the CT for a few days and then begins to take on the
responsibility of teaching some of the CT’s classes. Within a few weeks the ST
typically takes over most or all of the CT’s load and responsibility. To oversee the
student teaching experience, the university assigns a professor or graduate student,

B. E. Peterson (&) � K. R. Leatham
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referred to as a university supervisor (US), to observe the student teacher 3–4 times
during the 15-week experience. Although the university oversees student teaching,
the infrequent visits of the US leads to an experience that is dictated primarily by
each individual CT, who may receive minimal compensation for his or her time and
is primarily serving on a voluntary basis.

Although research has consistently documented that the student teaching experi-
ence is viewed as extremely valuable by both preservice teachers (Anderson &
Stillman, 2013; Guyton & McIntyre, 1990) and teacher educators (Metcalf, 1991;
Valencia, Martin, Place, & Grossman, 2009), the actual educative value of student
teaching depends a great deal on the quality of that experience (Ronfeldt &Reininger,
2012), which varies considerably (Anderson & Stillman, 2013). Thus, the research
community has long documented the problematic nature of the traditional student
teaching experience (Brouwer & Korthagen, 2005; Feiman-Nemser & Buchmann,
1985; Greenberg, Pomerance, & Walsh, 2011). Although much of the literature just
cited is focused on student teaching in general, we found it to be consistent with the
problems we had seen in our experience working with student teachers who were
being prepared specifically to teach mathematics in grades 7–12 (ages 12–18). In our
paper, Purposefully Designing Student Teaching to Focus on Students’Mathematical
Thinking (Leatham & Peterson, 2010a), we outlined some of those problems as
discussed in the literature, argued that many aspects of these problems were a product
of the existing structure of student teaching, and then proposed a new structure
designed to address those problems. In this paperwe summarize that argument, briefly
describe the revised student teaching structure, and then focus on reporting what we
have learned over the past decade by analyzing data from initial implementation of the
structure.We discusswhere the evidence suggests we should go next and implications
our work has for others who desire to improve their student teaching experience.

2.1 The Need to Restructure Student Teaching

In Leatham and Peterson (2010a) we argued that the traditional structure of student
teaching contributed to five problems with the quality of the student teaching
experience:

1. Lackluster outcomes—the traditional student teaching structure lacks clearly
delineated learning goals, which tends to lead to an “experience for experience
sake” mindset by those involved and thus huge variation in the nature and
quality of learning.

2. Survival over technique—the traditional student teaching structure tends to turn
over to the student teacher the entire job of the cooperating teacher, and to do so
relatively quickly, which puts STs in a “sink or swim” situation where they
necessarily focus on surviving to live another day moreso than planning,
enacting and reflecting on quality instructional activities. This focus on survival
tends to emphasize classroom management.

10 B. E. Peterson and K. R. Leatham



3. Focus on self—the pressures and structure of traditional student teaching, with
its focus on taking on the “job” of a teacher, turn STs inward moreso than
outward, which often causes them to be more concerned about their own actions
than those of their students.

4. Isolation—the structure of traditional student teaching mirrors the structure of
traditional classrooms. Such classrooms are often more isolating than collabo-
rative, and STs come to view teaching as work that is done primarily alone.
Even collaboration with the cooperating teaching can often be more reactive
than proactive depending on the role the CT chooses to play.

5. A class with no teacher—the traditional structure of student teaching places a
majority of the learning experiences of the STs in the hands of CTs, who tend to
see themselves more as experienced colleagues than as teacher educators. This
lack of guidance leads to haphazard, unfocused learning and, again, “experience
for experience sake.”

Overall, the traditional structure of student teaching tends to focus STs more on
managing students than on facilitating student learning (Anderson&Stillman, 2013).
That is, the structure itself seems to inhibit STs from focusing on what is arguably the
most important aspect of their role—helping students come to understand content.

Prior to restructuring our student teaching experience, we felt like our structure
was very much a traditional structure with the accompanying problems just
delineated. Before overhauling the structure, however, we decided to gather more
evidence. Thus, in order to gain a better understanding of the structure and purpose
of our own student teaching experience, we examined how CTs viewed this pur-
pose (Leatham & Peterson, 2010b). We surveyed 45 of our previous CTs and found
that most of them saw the primary purposes as giving STs an opportunity both to
experience real classrooms with real students and to work with real teachers in
learning how to manage these classrooms, thus confirming that our structure had
created an environment where our CTs viewed student teaching as primarily
experience for experience sake (Feiman-Nemser & Buchmann, 1985). With respect
to survival, many CTs indicated that learning about classroom management was a
primary purpose of student teaching. Furthermore, when asked “specific to math-
ematics teaching, what do you feel is the most significant contribution you make to
the success of a student teacher?” half of the CT respondents made no mention of
mathematics (Leatham & Peterson, 2010b). This finding seemed to indicate that
they saw the purpose of student teaching to be primarily about teaching in general
as opposed to teaching mathematics in particular. This view contrasted dramatically
from our view, where student mathematical thinking was an integral part of the
learning-to-teach experience. Thus, these CTs did not see our student teaching
program as being about learning to craft and carry out mathematics lessons that
effectively anticipated, elicited, and built on students’ mathematical thinking—our
desired purpose. Finally, our student teaching experience was determined almost
completely by individual CTs, whose goals varied substantially. In addition, many
CTs did not see themselves as teacher educators but saw their role as just providing
a space for the student teaching experience to occur. Hence, we had a class with no
teacher (Leatham & Peterson, 2010b) which contributed, in part, to the STs
focusing on self and on survival over technique (Leatham & Peterson, 2010b).
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2.2 Restructuring Student Teaching

In order to try to address the problems that we had identified in our existing student
teaching experience, we began by discussing and then explicitly articulating our
primary purpose for the experience: to learn how to anticipate, elicit and use stu-
dents’ mathematical thinking. Based on our own experiences with variations on the
structure of student teaching (Peterson, 2005; Wilson, Anderson, Leatham, Lovin,
& Sanchez, 1999) we discussed how we could alter the current structure of the
experience in ways that would both address the problems and support our desired
purpose. In this section, we describe the resulting revised structure; in the section
that follows we present a theoretical argument for these choices.

In the new model, two STs are placed together with one CT for the 14-week
experience. Two or three student teaching pairs from neighboring schools form a
cluster, and all STs in a cluster are supervised by the same university supervisor
(US). Figure 2.1 gives a basic outline of how the revised student teaching expe-
rience was structured (see Leatham & Peterson, 2010a for a full description of and
rationale for the new structure). During each of weeks 3–5, each pair of STs jointly
plans and then individually teaches a single lesson. The teaching of these first
lessons are observed by the other members of the cluster, the US and CT. The
observers take note of the students’ mathematical thinking that emerges during the
lesson and make that thinking and how it related to the goals of the lesson the focus
of the post-lesson reflection meeting. We refer to this sequence of activities as the
Teach/Observe/Reflect process.

In addition to preparing, teaching, reflecting on and observing lessons during
those first five weeks, STs do several other learning-to-teach activities: observe their
CT and other experienced teachers in the school and write reflection papers about
these observations; complete a daily journal wherein they record goals for their
day’s observations, keep a record of their day’s activities, and make note of stu-
dents’ mathematical thinking they observed and found to be of particular interest;
and conduct student interviews, wherein they probe students with regard to their
mathematical understanding on problems from a recent homework, quiz or test,

Week Learning-to-teach Activities

1 Become familiar with classroom & students
Focused Observations 

Daily Journal 

Student Interviews

2 Observe experienced teachers and write reflections

3-5 Teach/Observe/Reflect

6-13 Teach “full” (half) load

14 Teach/Observe/Reflect

Fig. 2.1 Outline of the new student teaching structure

12 B. E. Peterson and K. R. Leatham



then write a reflection paper about these interviews. The work produced from these
learning-to-teach activities is submitted to the US to be reviewed and can be used as
fodder for subsequent discussions with the ST.

After the first five weeks, the learning-to-teach activities described in the pre-
vious paragraph are suspended and the CT’s full load of teaching is split between
the two STs in the classroom. Each ST takes on the full responsibility of each of
their assigned classes for the next 8 weeks of student teaching. During the final
week of student teaching, the STs begin to turn teaching responsibility back to the
CT and engage one last time in the Teach/Observe/Reflect process. The planning of
lessons throughout the experience is done as a collaboration between the pair of
student teachers, with feedback from the CT. The US observes the teaching of each
ST every 1–2 weeks for the remaining 9 weeks of the student teaching experience,
providing formative feedback following each observation.

2.3 How the New Structure Addresses the Problems

Our biggest disappointment with student teaching had been that there seemed to be
too much focus on learning about classroom management and how to deal with
student behavior problems and too little focus on learning about crafting quality
mathematics lessons and how to deal with student mathematical thinking. As
described above, we suspected (see Leatham & Peterson, 2010a) that there were
structural elements of student teaching that contributed to this focus imbalance. So,
we altered the structure in order to provide the space and support for a change of
focus. Furthermore, through changing this focus, we hoped to change the outcome.
Because of the results of the survey study (Leatham & Peterson, 2010b), we were
deliberate in making our desired purpose explicit in the new structure. We wanted
student mathematical thinking to become an integral part of the experience, for STs,
CTs and USs to see mathematics, its teaching and its learning as problematic and
something worthy of discussing rather than something that was taken for granted
and in the background. We created a detailed syllabus that described the overall
structure and purpose of the student teaching experience and took care to familiarize
the STs, CTs and USs with their roles within that structure. In so doing we
attempted to make more explicit and transparent the teaching role of both the CTs
and the USs. We paired and clustered STs in order to decrease isolation and a focus
on survival and increase space for conversation and reflection about mathematics
teaching, particularly the practices of eliciting, interpreting and using student
mathematical thinking. Bullough et al. (2003) argued based on their own imple-
mentation of student teaching pair, “If to learn to teach is to learn to manage… then
partnership teaching has an obvious disadvantage. However, if student teaching’s
primary purpose is to … expand one’s knowledge of methods and of children …
then partnership teaching has an advantage” (p. 71). The learning-to-teach activities
explicitly focused STs on their students’ mathematical thinking. This focus was
intended to facilitate our overall purpose as well as to decenter the STs away from a
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focus on self and toward a focus on their students, thus encouraging them to adopt
their students’ perspective (Arcavi & Isoda, 2007).

Having provided this focus and the space for conversation and reflection, we
asked the following questions: By altering the structure of student teaching can we
alter its focus away from classroom management and onto student mathematics?
When given a structure that privileged mathematics, students’ mathematics and the
pedagogy of crafting and orchestrating good mathematics lessons, did such issues
fill the provided space? If so, what does that focus look like and to what extent does
it give STs the opportunity to reflect on issues of engaging students in meaningful
mathematical activity?

2.4 Data Collection and Analysis

We collected data during the first two fall semesters of the implementation of the
new structure. The participants during Fall 2006 consisted of a cluster of 3 pairs of
STs, their 3 CTs and the US (the first author of this paper). The participants during
Fall 2007 consisted of 2 clusters of 2 pairs of STs each, their 4 CTs (one of whom
had been a CT the previous year as well) and two USs (one of whom is the second
author of this paper). Data included the STs’ daily journals, interviews with the STs
and their CTs, audio-recordings of unstructured ST-CT conversations, and
video-recordings of reflection meetings at the end of each Teach/Observe/Reflect
process. Here we describe the nature of each of these types of data and the analysis
of each data type used for this paper. We note that because this analysis is of data
collected from the first two years of implementation and analyzed from various
perspectives over the course of a decade, the results we report are not the product of
years of fine tuning this new structure, and thus more likely the product of the
structure itself.

Daily Journals: One of the learning-to-teach activities in which the STs par-
ticipated was the keeping of a daily journal almost every day for 4–5 weeks at the
beginning of the student teaching experience. Each day they were asked to list their
learning goals and then plan what they would do each period, from observing their
CT to observing another teacher in the school to planning a lesson. At the end of the
day, they would then briefly report their thoughts and impressions from each of
those activities. The most critical part of the daily journals was responding to the
following prompt:

Describe observed mathematical thinking where a student was either frustrated or appeared
to have misconceptions. If you were to work with this student what questions would you
ask and when would you ask them? If you were to use this student’s thinking as part of a
class discussion, how would you use it?

We analyzed STs’ responses to this prompt by focusing on the nature of the
student mathematics they identified and the ways the STs talked about how they
might use that thinking.
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Interviews: During the course of the student teaching experience, the STs and the
CTs were all interviewed three times: once at the beginning of the semester, once
after the completion of the first 5 weeks and once at the end of the semester. The
focus of these interviews was to determine the participants’ perceptions of the
student teaching experience. The questions ranged from a general inventory of what
aspects of the experience helped them grow as a teacher to the positives and
negatives of specific aspects of student teaching (e.g., observing peers, keeping a
journal, conducting student interviews). For the purposes of this paper we focused
on inferring the STs’ and CTs’ views of the pairing aspect of the structure. We did
so by qualitatively analyzing statements they made about the affordances and
constraints of the pairing.

Reflection Meetings and Unstructured Conversations: The revised structure
created the space for two different types of reflective conversations to occur. One
type was the structured post-lesson reflection meeting that occurred each time a
cluster of STs observed one of their peers teach. The other type was the unstruc-
tured, periodic conversation that happened whenever the pair of STs and the CT
visited for more than 5 min. In order to get a sense of the extent to which these
conversations did as was desired—privileged mathematics, students’ mathematics
and the pedagogy of crafting and orchestrating good mathematics lessons over
issues of classroom management—we analyzed the nature of both types of
reflective conversations. We used a statement (which was typically a sentence) as
the unit of analysis. Using context as needed, each identified statement was coded
for whether it related to (a) pedagogy (P), referring to the circumstances of the
classroom or to specific pedagogical moves; (b) students (S), referring to student
thinking or actions, either as an entire class or as individuals; (c) mathematics (M),
referring specifically to mathematical content, topics or ideas; and (d) behavior (B),
referring to issues of classroom management, student discipline and administrivia.
As expected, many statements received multiple codes. For example, the ST
statement “I really liked what Katherine said, ‘Well, if I take my string and I
measure my circumference first, then I can figure out my radius’” received an S
because of the reference to what the student Katherine had said, and an M because
of the reference to the relationship between the circumference and radius of a circle.
There are no pedagogical or behavioral references in the statement, so it would be
coded as SM. An example of a statement coded as PSM occurred when the STs
were discussing a situation where the written mathematical sentence was
15 = 7 + 8, but when a student had come to the board she had written the sentence
as 7 + 8 = 15. In the reflection meeting a ST asked, “Is there a reason you didn’t
focus on that? I mean did you want to make a statement about that at all, because I
think that’s an interesting idea that a student would bring up: you can just switch the
things on the equals sign and it means the same thing. But then also that she has to
rewrite it for her to make sense. Does that make sense?” This statement is coded
with an S and M because they are talking about the mathematics that a student
wrote on the board. This statement was also coded with a P because of the focus on
the pedagogical decision around the student mathematics.
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Having analyzed the reflection meeting data, we wondered whether these dis-
cussions really did differ from those that had occurred before we implemented our
structure. Although we did not have reflection meeting data from before the
implementation of the structure, we did have recorded unstructured conversations
between CTs and STs from about a decade earlier (see Peterson & Williams, 2008).
We applied the P, S, M, and B coding to the unstructured conversations from the
earlier study and from our new structure and compared.

To better understand the nature of these conversations, both in the reflection
meetings and in the unstructured conversations, we had two graduate students, who
themselves, as undergraduate students, had student taught under the new structure,
delve a bit deeper into the original data in two different ways. In a first approach, we
took a closer look at the PSM-coded statements (all statements coded with P, S and
M regardless of whether the B code was also applied) in the unstructured con-
versation data (The details of this approach can be found in Franc, 2013). We chose
representative samples of PSM-coded statements from the two sets of unstructured
conversation data and analyzed the statements for the extent to which they seemed
to be aligned more with traditional or ambitious perspectives of students, pedagogy,
and mathematics. Ambitious instruction occurs when students are engaged in
problem-solving activities and teachers respond to student thinking generated in
this setting (Kazemi, Franke, & Lampert, 2009). Ambitious teaching also aligns
with the strands of mathematical proficiency outlined by Kilpatrick and his col-
leagues (National Research Council, 2001). Traditional instruction, on the other
hand, promotes teacher-centered classrooms that use lectures and examples to teach
mathematics. Such views place the teacher as the mathematical authority in the
classroom and students as the recipients of mathematical knowledge disseminated
by the teacher.

To gain a sense of how statements were coded as either ambitious or traditional
we offer a few examples here relative to pedagogy. The statement “I felt like I got
my message across better in 5th period because—did you see I did two examples
for them?” was coded as traditional with respect to pedagogy because it was
focused on the teacher presenting clear examples. The statement “Have them dis-
cuss their thoughts [on why rules of exponents work] with their partner before you
have a class discussion so they’ve had someone validate their ideas,” on the other
hand, was coded as ambitious with respect to pedagogy because it was focused on
the teacher encouraging students to use their own reasoning to develop under-
standing. The statement “Don’t move on until their questions are answered because
they’re going to have a lot of questions on [classifying functions]” was coded as
neutral relative to pedagogy because there is no clear indication of how the student
questions were to be answered. Similar reasoning was used to code statements as
ambitious, traditional, or neutral relative to students and mathematics.

Statements that were coded as ambitious relative to pedagogy were often also
coded as ambitious relative to both students and mathematics. The same was true
for both the traditional and neutral codes. The coding scheme, however, was
designed to allow the same statement to be coded differently relative to pedagogy,
students, and mathematics. To further understand this coding variation, we offer an
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example of the coding of one such statement relative to pedagogy, students, and
mathematics. As just mentioned, the statement “Don’t move on until their questions
are answered because they’re going to have a lot of questions on [classifying
functions]” was given a neutral code for its message about pedagogy because it is
implying that teachers need to respond to students in some way, which is reasoning
common to both ambitious and traditional teaching (although the nature of the
response might be very different). It was also given a neutral code for mathematics
because of the message that learning mathematics is not always easy—a message
unique to neither ambitious nor traditional teaching. This same statement, however,
was given an ambitious code for its message about students because it sends the
message that student thinking should influence what happens in the classroom.

In a second approach to looking more closely at the reflection meetings we
moved beyond an analysis of sentences (Leatham & Peterson, 2013) to a unit of
analysis of conversation pieces (referred to as “chunks”) formed by major topic
changes (The details of this approach can be found in Divis, 2016). The length of
the resulting 209 chunks ranged from a few sentences to several pages of transcript.
Our desire here was to capture the extent to which these conversations focused on
mathematics, students’ mathematics and the pedagogy of crafting and orchestrating
good mathematics lessons. Although these data were gathered in 2006 and 2007,
we felt that Principles to Action (PtoA) (NCTM, 2014) was consistent with the
vision we had when the new student teaching structure was implemented and
provided detailed descriptions of important principles of effective mathematics
instruction, including a list of teacher or student actions associated with each
principle. Therefore, we coded these chunks according to the actions associated
with each of the eight principles of effective teaching and learning (NCTM, 2014)
(referred to hereafter as the PtoA Principles).

2.5 Results

We organize our results around three major outcomes of the new student teaching
structure: (a) less focus on students’ behavior problems; (b) more focus on students’
mathematics; and (c) a focus on the practice of eliciting, interpreting and using
student mathematical thinking. As we discuss these outcomes, we also highlight
how they address the five problems of traditional student teaching mentioned
earlier.

2.6 Less Focus on Behavior

Table 2.1 shows the results of our coding of the reflection meetings and of the
unstructured conversations from the new structure and from the decade before it
was implemented using the P, S, M, and B codes. As can be seen in the table, the
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percentage of statements receiving the behavior code dropped dramatically in the
new structure from about 1 in 5 comments to only about 1 in 20 comments.
Although conversations about student behavior still took place, they were clearly
not a major focus.

During the first lessons of the semester (the ones followed by a reflection
meeting), there were at least five adults in the classroom observing the lesson being
taught, which we feel contributed to the decrease in student behavior issues and
corresponding decrease in conversations about behavior in the reflection meetings.
The researchers’ presence is another likely influence on the conversation topics in
these reflection meetings. It is interesting to note, however, that the decreased focus
on behavior continued in the subsequent unstructured conversations where only the
CT and STs were present. This result was a bit surprising given there was no
instruction given regarding the expected focus of these conversations. We
hypothesize a couple of possible contributing factors to the continued small
emphasis on student behavior. One feature of the student teaching structure that
may have contributed to this phenomenon of fewer conversations about student
behavior is that the reflection meeting conversations set the pattern for the nature of
conversations throughout the student teaching experience. A second feature of the
structure that may have contributed to the minimal student behavior conversations
was that, again, there may have been an actual decrease in student misbehaviors
because of the presence of other adults (in this case a student teaching partner and
the CT) in the classroom throughout the student teaching experience. Taken
together, this decreased conversational emphasis on student behavior is an indi-
cation that the STs were less worried about survival—one of our goals with the
restructure of the student teaching experience (Leatham & Peterson, 2010a).

With ST pairing being a possible contributor to decreased focus on issues of
student discipline, we now examine the STs’ perception of being paired. Our
analysis of the interview data revealed that participants’ perceptions of being paired
were overwhelmingly positive. In fact, when ranking the value of the various
learning-to-teach activities in which they engaged, being paired was by far the
highest ranked overall. Having someone to talk to was the primary justification for
liking the paired situation. This justification offered by the STs is evidence that the
new structure met one of our goals of reducing the isolation of teaching (Leatham &
Peterson, 2010a). The STs identified several different aspects of the dialog with
their peers that were advantageous, namely preparing lessons together, observing
someone else’s teaching style, and just having someone to talk to who was having a

Table 2.1 Percentages of
statements receiving
pedagogy, students,
mathematics or behavior
codes (each statement could
receive more than one of the
P, S, M, or B codes.)

Conversations Reflection meetings

Code 1998 2006–2007 2006–2007

Pedagogy 87 82 71

Students 48 46 56

Mathematics 28 63 59

Behavior 18 5 4
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similar experience. Some STs indicated that their lessons were better because they
were prepared in collaboration. We suspect that these better-prepared lessons may
have also contributed to a decrease in problems with classroom management.

The participants identified a few negative aspects of being paired, but these
aspects seemed unavoidable when seeking the benefits of being paired. For
example, several STs mentioned the challenge of planning a lesson with someone
else. Another aspect related to learning to run the classroom. Specifically, the STs
mentioned that because they had less time in front of the class they had fewer
opportunities to deal with classroom management issues on their own. (Although
some saw this aspect as negative, we saw their comments as further evidence that
the pairing did indeed contribute to a decrease in focus on classroom management.)
We see all of these perceived negatives as a small price to pay for the positives that
were identified, particularly because the positives could not occur otherwise.

2.7 More Focus on Students’ Mathematics

As shown in Table 2.1, the percentage of statements receiving the mathematics
code more than doubled under the new structure, and from less than a third of the
statements to more than half. These statements, however, were not typically about
mathematics only (see Fig. 2.2). Although purely mathematical conversations (M
codes) did increase under the new structure, the big gains were in conversations
combining mathematics with students and/or pedagogy (PM, SM, and PSM codes).
PSM-coded statements tripled in frequency. These gains in mathematics codes
came primarily from a decrease in P and PS codes. In the unstructured conversa-
tions prior to the change in structure over 65% of the statements received P or PS
with no reference to mathematics. After the change in structure, only about 35% of
the statements received the P or PS codes. Since statements with a P or PS code are
about what the teacher does generally or what the teacher does relative to the
students without considering the student mathematical thinking, we believe that this
decrease in the number of statements receiving P or PS codes is an indication of
progress in the STs moving away from a focus on themselves—another of our goals
in the restructuring of student teaching (Leatham & Peterson, 2010a). Furthermore,
because the behavior codes were overwhelmingly applied to statements that were
coded as P or PS, these data provide further evidence of a decreased focus on
survival and an increased focus on the technique of using student mathematical
thinking.

Analysis of the 2006–2007 journal data lends further insights into just how the
STs in the new structure focused on students’ mathematics. In an analysis of the
nature of the mathematics they noticed, each response was coded as either having a
conceptual (the reasoning behind the students’ struggles) or a procedural (the details
of the procedure with which they were struggling) focus. The ratio of overall
responses coded as conceptual compared to procedural was about 24:5.
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Fig. 2.2 Percentages of P, S
and M code combinations
across the various types of
conversations

20 B. E. Peterson and K. R. Leatham



The emphasis of the STs on the conceptual understanding of the students is further
evidence of how the student teaching structure provided space for the STs to focus
on students’ mathematics, and to do so in productive ways.

2.8 A Focus on Eliciting, Interpreting and Using Student
Mathematics

Analysis of the journal data also provides insights into how the STs thought about
using student mathematics. The way in which the STs talked about using the
student thinking fell overwhelmingly in two categories—engaging students in a
discussion about the students’ thinking or explaining the students’ thinking for the
class. The specific ways in which they talked about engaging the class in the
discussion involved asking students to make sense of the student thinking, char-
acteristic of ambitious teaching. The teacher explanations included reteaching
definitions, clarifying misconceptions, and creating new examples, characteristic of
traditional teaching, as in these teacher explanations, it was the teacher rather than
the students who was doing the cognitive work. The STs talked about discussing
the student thinking about three times as often as they talked about explaining the
thinking. This tendency toward engagement over explanation is evidence of the
focus of the student teaching structure on eliciting and using students’ mathematical
thinking.

Our deeper analysis of the unstructured conversations provides further evidence
that the structure was indeed focused on issues of engaging students in meaningful
mathematical activity. We took a closer look at the statements in the unstructured
conversation data that received P, S, and M codes (again, whether or not they
received the B code) because, although these PSM-coded statements occurred more
than three times as often in the newer structure, we wondered whether the nature of
these statements were basically the same, just more common, or whether they were
actually qualitatively different. As mentioned before, we analyzed the statements for
the extent to which they seemed to be aligned more with traditional or ambitious
perspectives of students, pedagogy, and mathematics. We found the results to be
quite striking (see Fig. 2.3). Under the revised structure the unstructured conver-
sations in which our STs engaged were overwhelmingly ambitious in nature. In
addition to being less traditional in nature, they were also far less neutral as well.
Our students were receiving much clearer messages about the nature of mathe-
matics and of mathematics learning and teaching, and those messages were much
more in line with the messages we wanted them to have the opportunity to hear. We
also note that, although pairing STs in the new structure requires half as many CTs
as before, many of the new-structure CTs were still rather traditional in their
approaches to teaching. This fact provides further evidence of the influence of the
structure itself on the nature of the student teaching experience. We believe that this
increased emphasis on eliciting and using students’ mathematical thinking as well
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Pedagogy    

Students 

Mathematics

Fig. 2.3 The traditional, ambitious or neutral nature of PSM-coded statements from unstructured
conversations before and after the restructuring of student teaching
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as the focus on ambitious teaching found in the unstructured conversations is
evidence that the problem of lackluster outcomes has been partially overcome by
the new structure.

Our deeper analysis of the reflection meetings also provides evidence that the
structure was indeed focused on issues of engaging students in meaningful math-
ematical activity. Looking across the last two reflection meetings for all of the
cluster groups, we examined chunks of conversation (as defined earlier) to deter-
mine if they were or were not focused on one of the principles in PtoA. In deciding
whether a given principle was commonly discussed we looked not only at the
frequency of chunks that received a certain sub-code but looked also at the length of
chunks (as measured by a word count) and whether all three cluster groups had
chunks receiving this code. In doing so, we found that seven of the eight PtoA
principles were a significant focus of these conversations. The seven PtoA princi-
ples are (a) Establish Mathematics Goals to Focus Learning, (b) Implement Tasks
That Promote Reasoning and Problem Solving, (c) Use and Connect Mathematical
Representations, (d) Facilitate Meaningful Discourse, (e) Pose Purposeful
Questions, (f) Support Productive Struggle in Learning Mathematics, (g) Elicit and
Use Evidence of Student Thinking. The one principle that was only minimally
discussed in the reflection meeting conversations was Build Procedural Fluency
from Conceptual Understanding. The principle that was overwhelmingly the most
commonly discussed was Elicit and Use Evidence of Student Thinking. These
results provide evidence that making students’ mathematical thinking the focus of
conversation naturally led to a focus on mathematics teaching consistent with the
PtoA Principles. The underlying “productive beliefs” (NCTM, 2014, p 11) of PtoA
are about conceptual understanding, reasoning and sense making. Thus, putting STs
in a position to reason about and make sense of student mathematical thinking also
positioned them to be thinking about those students’ conceptual understanding,
reasoning and sense making—foundational ideas behind the PtoA Principles.

In addition to the chunks that were coded according to the NCTM principles,
there were several internal codes that emerged from the data. The three most
common internal codes were Mathematical Pedagogy, Student Teacher
Mathematics and Managing Student Behavior. Although classroom management
issues were discussed, they made up only a small portion of all of the conversations.
Looking across the coding of all of the chunks it seemed clear that (a) the STs spent
a significant amount of time talking about using student thinking; (b) they talked
about mathematics from both pedagogical and personal perspectives; and (c) their
discussions of managing student behavior were minimal.

2.9 Lessons Learned

We have been very pleased with how the restructuring of our student teaching
program has played out over the past 10 years. Our own experience and the results
of our data analysis have led us to conclude that the changes were for the better. Of
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the five common problems in mathematics student teaching outlined at the begin-
ning of the paper, we believe we have made significant progress on four of them. As
we have mentioned previously, our data have provided evidence that we have
overcome lackluster outcomes, increased emphasis on technique over survival,
decreased isolation and decreased a focus on self. Although we believe the structure
itself begins to address the problem of a class with no teacher, we do not have
evidence that more of the CTs view themselves as a teacher of their ST. This result
is a limitation of the data we chose to gather.

With all of the positive results, we still see room for improvement. There are two
areas, in particular, where we see the potential for productive change. First,
although the structure creates much collaboration between paired STs, it does not
create adequate CT-ST collaboration. In fact, although CTs saw many positive
elements of the STs being paired, one CT noticed that “there’s not as much com-
munication between the cooperating teacher and the two student teachers” as there
has been in the past, which was seen as a negative aspect of the paired STs. Because
of this feedback, we would like to build into the structure the need for the STs to
work more with the CT as they create and revise their lessons, particularly during
the early weeks of student teaching. Second, the structure allowed us to elicit from
the STs important ideas related to productive use of student mathematical thinking,
but it did not necessarily create adequate space for us to leverage those ideas
sufficiently to improve ST learning. For example, although the daily journals eli-
cited important ideas related to students’ mathematical thinking and how it might be
used in classroom mathematics discourse, the structure does not capitalize on this
observational focus. The journals were read weekly by the US, but there were no
organized discussions of the STs’ observations. Similarly, although the structure of
the reflection meetings allowed important ideas to surface, the structure actually
discouraged the CT and US from capitalizing on promising teaching opportunities
at the moment they occur during these reflection meetings. For example, in order to
encourage the STs to engage in a discussion among themselves about their
observations, the CT and US were asked to withhold their comments until after the
STs had asked their questions and made their comments. However, this structure
prevented the CT or US from capitalizing on in-the-moment opportunities to
engage the STs in considering in more detail some of the points they were dis-
cussing. (For documentation of a similar issue in the area of language arts, see
Valencia, Martin, Place & Grossman, 2009.) Finding ways to maintain the current
improvements while creating space for more deliberate use of STs’ emerging ideas
by the CT and US would likely make the restructured student teaching experience
even more rich and rewarding for all involved.
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Chapter 3
Improving Secondary Mathematics
Teacher Preparation Via a Networked
Improvement Community: Focus On
Clinical Experiences

W. Gary Martin and Marilyn E. Strutchens

Abstract The Mathematics Teacher Education Partnership is a consortium of over
90 U.S. universities and colleges, along with partner school districts, focused on
improving the initial preparation of secondary mathematics teachers. The
Partnership uses a Networked Improvement Community design that incorporates
improvement cycles to develop adaptable interventions across contexts, as well to
scale interventions across the Partnership to support comprehensive program
improvement. Rather than addressing a single dimension of a secondary mathe-
matics program, the Partnership is undertaking parallel lines of research in multiple
areas. To illustrate the power of the approach, this chapter will more deeply explore
one of those lines of research related to clinical experiences: A “research action
cluster” (RAC) consisting of representatives of 24 university-led teams is working
to improve the clinical experiences of secondary mathematics teacher candidates.
This RAC has employed improvement science methods to developed resources that
support improved models for both student teaching and early field experiences, as
well as professional development for mentor teachers.

Keywords Mathematics education � Teacher preparation � Clinical experiences
Secondary mathematics � Improvement science

W. G. Martin (&) � M. E. Strutchens
Auburn University, 5040 Haley Center, Auburn, AL 36849, USA
e-mail: wgarymartin@auburn.edu

M. E. Strutchens
e-mail: strutme@auburn.edu

© Springer International Publishing AG, part of Springer Nature 2018
M. E. Strutchens et al. (eds.), Educating Prospective Secondary Mathematics
Teachers, ICME-13 Monographs, https://doi.org/10.1007/978-3-319-91059-8_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91059-8_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91059-8_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91059-8_3&amp;domain=pdf


3.1 Introduction

3.1.1 Rationale

The U.S. continues to struggle to ensure that its students have the mathematical
preparation needed for future success. For example, in the 2015 National
Assessment of Education Progress, which periodically “measures students’
knowledge and skills in mathematics and students’ ability to apply their knowledge
in problem-solving situations” (The Nation’s Report Card, 2017), only 25% of
twelfth-grade students demonstrated a level of proficiency needed for future suc-
cess. Moreover, there has been little improvement in scores over the past decade
(The Nation’s Report Card, 2017). A similar result can be seen in results from the
Programme for International Student Assessment in 2015, in which only 20% of
U.S. 15-year old students exceeded the third proficiency level of six, and the U.S.
average score fell in the bottom half of industrialized nations (National Center for
Educational Statistics [NCES], 2017).

One explanation for the inadequate preparation of U.S. students in mathematics
may be found in the significant shortage of well-prepared secondary mathematics
teachers in the country. More than 1 in 6 secondary schools report “serious diffi-
culties” in filling vacant mathematics teaching positions (Ingersoll & Perda, 2010).
According to the NCES (Keigher, 2010), 1 in 12 secondary mathematics teachers
leave the profession every year. The attrition rate is particularly high for beginning
mathematics teachers; almost 1 in 7 leave teaching after their first year (Ingersoll,
Merrill, & May, 2012). Moreover, quality of mathematics instruction continues to
be a concern, as seen in two national surveys of practicing secondary mathematics
teachers (Banilower et al., 2013; Markow, Macia, & Lee, 2012): only half reported
using instructional practices and goals aligned with the Common Core State
Standards for Mathematics (CCSSM) (National Governors Association Center for
Best Practices & Council of Chief State School Officers, 2010).

Thus, the preparation of secondary mathematics teachers in the U.S. requires
addressing the interlocking issues of the quantity and quality of those entering the
profession. The systemic nature of these issues is illustrated in Fig. 3.1, which
depicts a downward cycle in mathematics teacher preparation in the U.S., adapted
from Wilson (2011). The cycle begins at the top with the inadequate preparation of
U.S. students in mathematics; note that K–12 denotes students in precollege edu-
cation from kindergarten (K) through grade 12, the final grade in U.S. precollege
education. Moving to the right, this implies that the pool of students who are
adequately prepared to enter mathematics teaching as a career is quite small;
moreover, well-prepared students have many options and so may not choose to
enter teaching. Continuing to the lower right of the cycle, mathematics teacher
preparation programs often do not provide candidates with the mathematics
knowledge needed for teaching (cf. Ball, Thames, & Phelps, 2008). At the bottom
of the cycle, candidates may not have clinical experiences that support their
development of effective teaching practices (Horn & Campbell, 2015).
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Those candidates who enter the teaching profession, lower left of the cycle, often
have little support for their continuing growth (Horn & Campbell, 2015), with the
result that many talented teachers leave the profession. And we return to the top of
the cycle, where many students continue to receive an inadequate preparation in
mathematics.

3.1.2 Formation of the Partnership

To address the challenge presented in this downward cycle—the undersupply of
new secondary mathematics teachers who are well prepared to help their students
attain the goals of the CCSSM and other rigorous state mathematics standards—the
Association of Public and Land-grant Universities (APLU) formed the Mathematics
Teacher Education Partnership (MTE-Partnership), a national consortium of over
90 universities and over 100 school systems, as a project within its Science and
Mathematics Teaching Imperative (SMTI), which focuses more generally on
improving mathematics and science teaching. APLU is an organization of major
state universities within the U.S., particularly focused on addressing issues related
to higher education and its leadership.

The initial concept for the Partnership was formed at the 2011 SMTI Annual
Conference, which focused on how higher education might respond to the
just-released CCSSM, including necessary changes in teacher preparation. A group
of attendees submitted a white paper to the SMTI executive committee proposing

Fig. 3.1 The downward cycle in mathematics teacher preparation (adapted from Wilson, 2011)
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the formation of the project, and a planning team was formed to organize the
Partnership. Funding from the National Science Foundation (#1147987) supported
the development and launch of the network in Spring 2012, and subsequent grants
from the Leona M. and Harry B. Helmsley Charitable Trust have supported its
continuing development.

The goal of the Partnership is to “transform secondary mathematics teacher
preparation” (MTE-Partnership, 2014, p. 1). University programs participate in the
Partnership as a part of teams that include K–12 school districts and other partners
involved in secondary mathematics teacher preparation, with a requirement that
teams engage mathematics teacher educators, mathematicians, and K–12 personnel
in their activities. The inclusion of multiple stakeholders in the efforts reflects the
focus of the partnership on “develop[ing] and promot[ing] a common vision and
goals for how to best prepare teacher candidates who can promote student success
in mathematics” within a program, as well as engaging in mutual learning and
sharing responsibility across the Partnership (MTE-Partnership, 2014, p. 2). There
are currently 39 partnership teams across 31 states in the U.S. (see Fig. 3.2).

3.1.3 Research Design

About a year after its formation, the MTE-Partnership adopted the Networked
Improvement Community (NIC) model developed and used by the Carnegie

Fig. 3.2 Participation in the MTE-Partnership. Large stars represent lead institutions for a team,
and small stars represent other participating universities and colleges
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Foundation for the Advancement of Teaching in response to several design chal-
lenges identified by the planning team, including (a) the need to maintain the
engagement of the teams in the work of the Partnership and (b) the need to maintain
a focus on disciplined inquiry consistent with the mission of universities (Martin &
Gobstein, 2015). This design supports active collaboration by the partnership teams
to address significant issues in secondary mathematics teacher preparation using
improvement science to ensure fidelity to academic standards of inquiry. While no
explicit theoretical stance was adopted in the work, as its focus is more on building
solutions to problems than on building theory, the emphasis on collaborative
building of knowledge is consistent with social constructivism (Ernest, 1991).

NICs are distinguished by four essential characteristics (Bryk, Gomez, Brunow,
& LeMahieu, 2015); each characteristic is described in the following, along with
how the Partnership addressed that characteristic.

• Focused on a specified common aim: The Partnership is focused on the twin
aims of producing mathematics teacher candidates who meet a “gold standard”
of preparedness to address the Common Core and of increasing the quantity of
well-prepared candidates by Partnership programs by 40% by 2020, as depicted
in the left-most column of Fig. 3.3. Note that the improvement target was set
through a collaborative process of collecting data from the individual teams and
programs. Further information on the measures used to assess candidate quality
is given in a later section of this chapter.

Fig. 3.3 The MTE-Partnership driver diagram (Martin & Gobstein, 2016)

3 Improving Secondary Mathematics Teacher Preparation … 31



• Guided by a deep understanding of the problem and the system that pro-
duces it: Over a period of nearly a year, the membership teams worked together
to develop a shared vision for the Partnership, which is reflected in its Guiding
Principles for Secondary Mathematics Teacher Preparation (MTE-Partnership,
2014). This document then formed the based for identifying challenges in
secondary mathematics teacher preparation. A multi-step process described by
Martin and Strutchens (2014) led to the identification of four significant problem
areas of primary importance to the Partnership. In the second column of
Fig. 3.3, these problems are restated in the positive as primary drivers, the
Partnership’s main areas of influence necessary to promote movement towards
achieving the aim (Bryk et al., 2015). Note that these primary drivers are
well-aligned with the Standards for Program Characteristics and Qualities in the
Standards for the Preparation of Teachers of Mathematics released by the
Association of Mathematics Teacher Educators (AMTE) (2017).

• Disciplined by the rigor of improvement science: The use of evidence to
guide the development of interventions ensures that the changes being proposed
are actually improvements. Moreover, use of an iterative cycle of prototyping,
testing, and refining interventions, as seen in Fig. 3.4, has the potential to lead to
timely solutions to important problems (Bryk et al., 2015). “Research action
clusters” (RACs) have been organized to carry out the development of inter-
ventions. The current RACs are summarized in the third column of Fig. 3.3.
More detail is provided in the following section.

• Networked to accelerate the development, testing, and refinement of
interventions and their effective integration into varied educational con-
texts: Rather than trying to “control” variation, as typical in traditional

Fig. 3.4 The
Plan-Do-Study-Act (PDSA)
cycle (adapted from Langley
et al., 2009)
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educational research, the Partnership’s design embraces variation to study how
interventions need to be adapted to respond to the differing conditions under
which they are used. As they are tested and refined, interventions can gradually
spread across the network, supporting scale up (Bryk et al., 2015). Thus, rather
than developing a “treatment” that is tested against a control group, the initial
development and testing of an intervention begins in a small number of settings.
As its efficacy is demonstrated, it is tested in an increasing number of settings,
noting adaptations that are needed due to differences in the context. Eventually,
the interventions designed should be useful by teams across the
Partnership. Further note that the structure of the network allows a “divide and
conquer” approach in which subsets of teams can address different problem
areas, providing teams access to a wider range of interventions as the work of
the RACs progresses.

3.2 Areas of Inquiry

3.2.1 Formation of Research Action Clusters

Working groups, each including teams from across the MTE-Partnership, were
formed to further analyze the four primary drivers described in Fig. 3.3. In addition
to conducting reviews of existing literature related to the driver diagram, a survey of
Partnership teams provided more detail about particular challenges they faced in
each area. This analysis resulted in a series of white papers that have guided the
continuing work of the Partnership. Each working group proposed potential areas of
action or “change ideas” for achieving their respective primary drivers. Across the
working groups, an initial set of 13 proposed change ideas were put forward. Based
on further analyses of priority and interest by the teams, this set was pared down to
five. A “research action cluster” (RAC) was established by the Partnership to begin
work on each of these change ideas. Partnership teams were invited to join these
RACs in fall 2013; each team generally joined one or two RACs.

Note that one RAC was later disbanded due to its inability to form a clear plan of
action, and an additional RAC was formed summer 2015 to address an emergent
area of concern, induction of candidates into the profession. An additional working
group is currently working to build the foundations for a new RAC that considers
how programs can integrate findings from the existing RACs to support overall
program transformation, with a focus on institutional change. Thus, the network is
evolving based on the needs of its partner institutions. Each RAC incorporates the
NIC design, using improvement cycles to develop interventions addressing an
identified aim.

Figure 3.3 represents the present structure of the Partnership, including the
current set of five RACs, how they are related to primary drivers identified for the
Partnership, and the overall aim for the Partnership. Note that none of the change
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ideas related to Creating a Vision were initially addressed by a RAC; however,
most of the other RACs indirectly address this primary driver, and the new RAC
addressing program transformation may more directly address it. A brief summary
of each of the RACs follows:

• The Marketing to Attract Teacher Hopefuls (MATH) RAC is developing mar-
keting strategies to attract students to consider secondary mathematics teaching
as a career.

• The Actively Learning Mathematics (ALM) RAC is focusing on improving the
content preparation of candidates in introductory university mathematics clas-
ses, precalculus through calculus 2, using “active learning” strategies (Freeman
et al., 2014) and incorporating the use of learning assistants (Webb, Stade, &
Grover, 2014).

• The Mathematics of Doing, Understanding, Learning and Educating for
Secondary Schools [MODULE(S2)] RAC is producing modules or courses
specifically aimed at developing mathematical knowledge for teaching (cf. Ball
et al., 2008) in alignment with the recommendations of the Mathematics
Education of Teachers II report (Conference Board of Mathematical Sciences,
2012). Initial development work has begun in the areas of transformational
geometry, modeling, and statistics.

• The Clinical Experiences RAC is focusing on improving clinical experiences,
including experimenting with new models for both student teaching (cf.
Leatham and Peterson, 2010b) and early field experiences, as well as profes-
sional development for mentor teachers.

• The Secondary Teacher Retention and Induction in Diverse Educational Settings
(STRIDES) RAC is considering ways to increase the number of years that early
career secondary mathematics teachers completing Partnership programs remain
in the field.

3.2.2 Collective Impact of the Research Action Clusters

In support of the MTE-Partnership aim and drivers, each RAC has developed its
own aim and driver diagram for its area of concern. In essence, each RAC forms a
NIC within the broader NIC, and in some cases subgroups within the RACs have
further focused in on particular issues, thus creating a nested structure of
improvement work. Collectively, these RACs address the downward cycle dis-
cussed at the start of this paper; Fig. 3.5 depicts the contribution of each RAC.

While the RACs are progressing at different rates, interventions found effective
by the RACs in addressing significant problems in secondary mathematics teacher
preparation are beginning to emerge and can be adopted by additional Partnership
teams not involved in their development. For example, based on its research, the
MATH RAC has produced the Secondary Mathematics Teacher Recruitment
Campaign Implementation Guide (MTE-Partnership, 2015) which is designed to
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“help faculty members and others within mathematics or STEM teacher education
programs maximize their impact on teacher candidate recruitment” (Overview
Module, p. 2). The RAC is also collecting specific examples of how the guide can be
adapted in various contexts. The Actively Learning Mathematics RAC has devel-
oped professional development materials for instructors, a series of activities, and
other supports for promoting active learning in introductory college mathematics.
The MODULE(S2) RAC has produced modules that instructors can use to increase
the knowledge of geometry and statistics needed by secondary teachers; these
materials are being tested by faculty members across the Partnership. The Clinical
Experiences RAC has developed professional development and other materials to
support the implementation of innovative approaches to early field experiences and
to full-time internship experiences; more detail is provided later in the chapter.

3.2.3 Measures

The activities of the MTE-Partnership are designed to support progress towards
meeting the aim established in the NIC design, and a suite of measures has been
devised to track progress towards the overall MTE-Partnership aims. A measures
working group, which includes members from each of the RACs, was established to
guide this effort. To address the first aim of the Partnership to increase the supply of
new secondary mathematics candidates, the group collects data on the production of
teacher candidates by membership teams on an annual basis. Baseline data sug-
gested that the Partnership produces about 15% of the supply of secondary math-
ematics teachers in the U.S. Teams also provided targets for increasing their
candidate production, which led the MTE-Partnership to establish a target of
increasing candidate production by 40% from 2014 to 2020, which would be about
20% of the national supply, assuming steady demand for teachers.

Fig. 3.5 Addressing the downward cycle in mathematics teacher preparation
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The measures working group is also identifying or developing measures that can
be used to track progress towards the second Partnership aim of improving the
quality of candidates graduated. Given that programs have existing measures in
place, often required by certifying agencies, establishing common measures across
the Partnership has been particularly challenging. A common observation protocol,
the Mathematics Classroom Observation Protocol for Practices (MCOP2) (Gleason,
Livers, & Zelkowski, 2015) was selected for use across Partnership programs.
While programs may not be able to replace the protocols they currently use, they
are being asked to use the MCOP2 with a sample of teacher candidates at the
conclusion of their culminating student teaching experience as a common data point
across programs. The MCOP2 is additionally used by several RACs to track their
progress towards their specific RAC aims.

The measures working group has also developed a survey for teacher candidates
completing Partnership programs to self-assess their preparedness as they begin
their careers as secondary mathematics teachers based on the Guiding Principles
(MTE-Partnership, 2014) and the Mathematics Teaching Practices (NCTM, 2014).
In addition, the measures group oversees an annual program survey in which team
leaders self-assess the effectiveness of their program in preparing candidates in
alignment with the Guiding Principles (MTE-Partnership, 2014).

While each measure in isolation provides a limited picture of the quality of the
candidates being produced by Partnership programs, triangulating the data across
the measures may provide more complete evidence of programs’ success in
ensuring the quality of the teachers they produce. Additional measures are being
considered to garner input about candidate quality from additional sources, such as
candidates’ eventual employers, and to address additional dimensions of candidate
quality, such as mathematical knowledge for teaching. Such measures will add both
depth and breadth in understanding the quality of candidates prepared by
Partnership programs.

Finally, measures are central to the work of each of the RACs. Each RAC
develops, adopts, or adapts measures that can be used to track progress as
improvement cycles are implemented and guide decisions about changes that need
to be made in the next improvement cycle. Moreover, as testing of the improve-
ments scales up to additional sites, the evidence that is gathered across the range of
contexts helps to document specific adaptations that may be needed to address
various contextual factors. This ensures that the interventions can be scaled with
integrity across the Partnership.

3.3 Research on Clinical Experiences

We now turn our attention to the research action cluster focused on clinical
experiences. This is meant to serve as an example of how the MTE-Partnership
design has supported the work in one particular research focus, as well as to provide
information about the progress made in this research area.
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3.3.1 Contextualizing Clinical Experiences

Clinical experiences of secondary teacher candidates, along with content knowl-
edge and the quality of the prospective teachers, have been dubbed as the aspects of
teacher preparation that are likely to have the strongest effects on outcomes for
students (National Research Council [NRC], 2010). In addition, the Report of the
Blue Ribbon Panel on Clinical Preparation and Partnerships for Improved Student
Learning commissioned by the National Council for Accreditation of Teacher
Education [NCATE] (2010) in the U.S. suggests a “clinically based preparation for
prospective teachers, which fully integrates content, pedagogy, and professional
coursework around a core of clinical experiences” (p. 8). Moreover, NCATE (2010)
suggests that prospective teachers experience a clinical experience continuum in
which a developmental sequence of teaching experiences during the teacher edu-
cation program is delineated with experiences moving from the simplest, such as
learning names, recording grades, and counting the number of students who will eat
lunch prepared by the cafeteria or who brought their lunch from home, to the most
complex, such as differentiating instruction, developing assessments, and designing
and implementing unit plans. These experiences begin in a pre-teaching experience
(mainly observational), next a practicum (perhaps teaching a lesson or working with
small groups of students) connected to a methods course, and then finally an
internship/student teaching experience (gradually taking on teaching responsibili-
ties until the candidate is teaching a full load of classes and then gradually gives the
classes back to the cooperating teacher).

In addition, teachers feel that clinical experiences are beneficial to their pro-
fessional development:

Study after study shows that experienced and newly certified teachers alike see clinical
experiences (including student teaching) as a powerful—sometimes the single most pow-
erful—component of teacher preparation. Whether that power enhances the quality of
teacher preparation, however, may depend on the specific characteristics of the field
experience. (Wilson, Floden, & Ferrrini-Mundy, 2001, p. 17)

During clinical experiences, prospective secondary mathematics teachers
(PSMTs) develop the craft of teaching—the ability to design lessons that involve
important mathematical ideas, design tasks that will help students to access those
ideas, and to successfully carry out the lesson. This may include effectively
launching the lesson, facilitating student engagement with the task, orchestrating
meaningful mathematical discussions, and helping to make explicit the mathe-
matical understanding students are constructing (Leatham & Peterson, 2010a,
p. 115).

Even though it is desirable for prospective teachers to develop the craft of
teaching as described, teacher preparation programs in the U.S. and many other
countries find it difficult to place PSMTs with cooperating teachers who are pre-
pared to foster their growth due to many cooperating teachers’ lack of proficiency
with this approach to teaching, which is in alignment with the National Council of
Teachers of Mathematics [NCTM] (1989, 1991, 1995, 2000, 2014) standards
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documents and other calls (Boykin, 2014; Horn & Campbell, 2015) for
inquiry-based and problem- and student-centered instruction. The cooperating
teachers’ lack of proficiency in using an inquiry approach to teaching may be
attributed to their beliefs systems or lack of professional development related to the
approach, or a combination of these factors and others.

Furthermore, a bidirectional relationship needs to exist between teacher prepa-
ration programs and school partners in which clinical experiences take place. This
relationship should reflect a common vision and shared commitment to
inquiry-based practices and other issues related to mathematics teaching and
learning. Borko, Peressini, Romagnano, Knuth, and Willis (2004) asserted that
compatibility of methods courses and student teaching experiences in which
PSMTs participate on several key dimensions is essential for the settings to rein-
force each other’s messages, and thus work in conjunction, rather than in opposi-
tion, to prepare reform-minded teachers.

The Clinical Experiences RAC (CERAC) consists of 24 university led teams,
each consisting of at least one mathematics teacher educator, a mathematician, and
a school partner. Within the different partner-teams the relationship among the team
members may vary. For example, for one team the mathematician is able to observe
teacher candidates and participate in debriefings; the mentor teacher works well
with the interns and the university supervisor, both in mentoring the teacher can-
didates and in providing information about the implementation of the
paired-placement student teaching model in her classroom; and the university
supervisor is a program faculty member who is heavily involved in the
MTE-Partnership. In this case, the cooperating/mentor teacher does not receive a
stipend for her role. The RAC is currently developing and testing models for
clinical experiences following the NIC model in alignment with the
MTE-Partnership’s guiding principles (2014). This work includes fostering part-
nerships between institutions of higher education, schools and districts, and other
stakeholders, in order to prepare teacher candidates who promote student success in
mathematics, as described in the CCSSM and other college- and career-ready
standards. Higher education faculty and partnering school districts and schools
work together to actively recruit, develop, and support inservice master secondary
mathematics teachers who can serve as mentors across the teacher development
continuum from preservice to beginning teachers. Moreover, this RAC helps to
ensure that teacher candidates have the knowledge, skills, and dispositions needed
to implement educational practices (NCTM, 2014) found to be effective in sup-
porting all secondary students’ success in mathematics.

We are addressing a two-fold problem: (1) There is an inadequate supply of
quality mentor teachers to oversee field experiences, particularly those who are well
versed in implementing the CCSSM, including embedding the standards for
mathematical practice into their teaching. (2) For most universities and their school
partners a bidirectional relationship does not exist between the teacher preparation
programs and school partners in which clinical experiences take place. Bidirectional
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relationships between universities and their school partners need to be built and
should reflect a common vision and shared commitment to the vision of CCSSM
and other issues in mathematics teaching and learning.

3.3.2 Structure of the Clinical Experiences RAC

CERAC is divided into three Sub-RACs, each focused on a particular model for
clinical experiences: Methods, Paired Placement, and Co-planning and Co-teaching
(CPCT). The Methods Sub-RAC focuses on aligning what is taught to teacher
candidates during the coursework and the practicum work in K–12 schools with
mentor teachers. Mentor teachers provide teacher candidates with opportunities to
experience the authentic work of expert teachers. Furthermore, supervising teacher
candidates can encourage the professional growth of mentor teachers
(Feiman-Nemser, 1998; Rhodes & Wilson, 2009). Helping to name mentor teacher
actions and talk with language used in the theoretical underpinnings more familiar
to teacher educators and teacher candidates can better leverage the expertise of the
mentor teachers as well as further develop their understanding of the theoretical and
mathematical support behind their work. The paired placement model is a student
teaching approach in which two prospective teachers are paired with a single
cooperating teacher. The cooperating teacher provides purposeful coaching and
mentoring, and the two pre-service teachers offer each other feedback, mentoring,
and support (Mau, 2013). CPCT is a pedagogical approach that promotes the
collaboration and communication between teacher candidates and mentor teachers
who share a common space in the planning, implementation, and assessment of
instruction (Bacharch, Heck, & Dahlberg, 2010).

In addition to the partnership’s aim and driver diagram, each RAC has its own
aim and driver diagram. The aim of the Clinical Experience RAC is as follows:

During student teaching, teacher candidates (TCs) will use each of the eight
mathematics teaching practices (NCTM, 2014) at least once a week during full time
teaching. Below is a list of the mathematics teaching practices (NCTM, 2014,
p. 10):

1. Establish mathematics goals to focus learning.
2. Implement tasks that promote reasoning and problem solving.
3. Use and connect mathematical representations.
4. Facilitate meaningful mathematical discourse.
5. Pose purposeful questions.
6. Build procedural fluency from conceptual understanding.
7. Support productive struggle in learning mathematics.
8. Elicit and use evidence of student thinking.
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The primary drivers for the Clinical experience RAC are:

(1) Transparent and coherent system of mentor selection and support (coop-
erating teachers and university supervisors), which is done within partner-
ships between school districts and universities focusing on professional
development and program specific guidelines;

(2) Interdependency of methods course and early field experiences, which
focus on embedding the standards for mathematical practice in instruction that
utilizes the eight mathematics teaching practices to ensure that each and every
student has access to meaningful mathematics learning;

(3) Student teaching as clinical training, which ensures that requirements for
student teaching and feedback during student teaching emphasize the respon-
sibility of teacher candidates to advance mathematics learning among sec-
ondary students through collaboration with more expert mentors in use of
mathematics teaching practices;

(4) Shared vision about teacher development, which is designed to ensure that
there is mutual agreement between district(s) and universities about what
quality teaching of secondary mathematics looks like and how to further skills
of all teachers (including teacher candidates) and see mentor teaching as part of
career ladder;

(5) Focus on access and equity, which includes both quality of experiences and
opportunities to learn for the students and the teacher candidates. The prepa-
ration of each new teacher of secondary mathematics represents an opportunity
to disrupt long-standing teaching practices that contribute to inequities in
learning outcomes.

Each Sub-RAC is implementing PDSA cycles based on their goals and objec-
tives. There are overlapping areas that focus the RAC as a whole, such as NCTM’s
mathematics teaching practices, professional development for mentors around the
CCSSM, mentoring mathematics teacher candidates, and outcome measures. There
are also specific goals to be attained within each of the Sub-RACs, and each
Sub-RAC is addressing specific research questions. The three Sub-RACs are using
a set of common measures, including:

(1) the MCOP2 (Gleason, Livers, & Zelkowski, 2015), also used as a core measure
by the Partnership;

(2) a survey of program completers designed by the MTE-Partnership to show how
well prepared the teacher candidates feel based on the experiences that they had
in their programs; and

(3) the Mathematics Teaching Practices Survey designed by the RAC to determine
the level at which prospective secondary teachers are engaged with NCTM’s
(2014) Mathematics Teaching Practices.

Each sub-RAC is developing modules and tools that will enable other programs
to implement the different approaches to field experiences that they are designing,
including: Syllabus and Orientation Session for the Paired Placement Model,
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Mathematics Teaching Practice Survey, CPCT Workshops, CPCT Survey, and
Standards for Mathematical Practice Module for Methods Courses with Pre- and
Post-course Survey.

3.3.3 Paired Placement Sub-RAC

We now take a closer look at one of the Sub-RACs in order to better understand the
work of the MTE-Partnership. The Paired Placement Sub-RAC is comprised of
members representing five institutions and their school partners. The Sub-RAC
focuses on the paired placement model for student teaching in which two
prospective teachers are paired with a single cooperating teacher. The cooperating
teacher provides purposeful coaching and mentoring, and the two pre-service
teachers offer each other feedback, mentoring, and support (Leatham & Peterson,
2010b; Mau, 2013). As a Sub-RAC, we read articles (Goodnough, Osmond,
Dibbon, Glassman, & Stevens, 2009; Leatham & Peterson, 2010a, b; Mau, 2013) to
learn about the model. The research questions that guided the study are:

(1) What are the successes and challenges of implementation of the
paired-placement model for clinical experiences at each different university?

(2) How do the successes and challenges of the paired-placement model compare
across the various institutions involved in the study?

(3) What are attributes across the institutions that contributed to the successes of
the paired-placement model?

(4) What are attributes across the institutions that contributed to the challenges of
the paired-placement model?

One team implemented the model fall 2013 and reported to the other teams about
its findings. Two additional teams used this information along with information
from the literature to prepare mentor teachers and candidates for the experience
Spring 2014. Teams also worked with their participants to adjust the model within
their context utilizing PDSA cycles and monitored the process throughout the
semester. Teams met via a conference call to discuss the results of the imple-
mentations and what they would do differently. During Fall 2014, teams built on
these experiences to create professional development modules, syllabi, and mea-
sures. These materials were implemented during Spring 2015, utilizing suggested
improvements from previous iterations. Teams implemented additional paired
placements the following year: one during fall 2015, and six during spring semester
2016.

Through PDSA cycles and data collected from participants, we are learning
much about the model. We have found that it allows teacher candidates to really
focus on student learning and the craft of teaching. Teacher candidates and mentor
teachers who have experienced this model believe that it benefits all of their growth
in teaching as well as the students’ growth in learning mathematics. They also
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stated that the model has helped them to become more collaborative. Our goal is to
continue to refine the workshops and syllabi so that they can be adapted to different
contexts.

3.4 Conclusions and Next Steps

3.4.1 Progress

The MTE-Partnership has made significant strides in defining a common vision for
secondary mathematics teacher preparation, identifying major problems impeding
progress towards the vision, developing interventions to address those problems,
and identifying measures to track progress. The Partnership’s design has under-
girded this process. NICs combine the disciplined inquiry of improvement science
with the power of networking to accelerate improvement (Bryk et al., 2015). Use of
improvement cycles by the RACs has helped to ensure interventions are not just
changes, but improvements, and the network provides opportunities to test them
across multiple contexts to see how they may need to be adapted to be most
effective.

In the case of the Clinical Experiences RAC, all of the members have found the
NIC to be helpful in improving their field experiences for secondary mathematics
teachers and have seen growth in the secondary mathematics teacher candidates
based on the changes that have been implemented. The challenge will be to see how
well the tools work in other settings with people who were not engaged in the
development process.

The full power of the MTE-Partnership NIC, however, can be seen in the breadth
of the network it has established. First, given the number of institutions involved,
the network provides the capacity to simultaneously address multiple problems of
practice through its set of five RACs. Second, while each team generally only has
the capacity to directly participate in the research of one or two RACs, the network
provides the opportunity for teams to learn from the efforts of the other RACs in
which they are not participating. Thus, the network provides a rich collection of
resources to which Partnership teams can contribute and from which they can draw
in improving their programs. No single institution could hope to address such a
broad scope of improvement efforts.

3.4.2 Challenges and Next Steps

There are, however, significant challenges in harnessing the network to achieve the
MTE-Partnership’s goal of transforming secondary mathematics. First, there have
been continuing challenges in maintaining the Partnership. As Martin and Gobstein
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(2015) note, “There has sometimes been competition between building participant
identification with the overall MTE-Partnership network and the individual RACs
in which they participate” (p. 488). Maintaining effective leadership structures
within and across the RACs require continuing attention, along with ensuring
effective communications strategies.

Second, a growing concern for the MTE-Partnership is how to effectively
manage the knowledge that is being generated by the RACs so that it is accessible
by non-RAC teams. This requires maintaining an accessible repository of current
materials as well as access to relevant training and support. In addition, teams using
the interventions collect relevant data so that their experiences with the interven-
tions can be incorporated into the knowledge that is being generated. Some RACs
are beginning to experiment with how to best manage that process, but a more
general approach across the Partnership is needed.

Third, teams may not have the needed resources and supports to simultaneously
implement the findings across the multiple dimensions of improvement. Their
initial focus was likely on one or two RACs in whose development they partici-
pated, and they may not have the personnel, time, or resources needed to incor-
porate findings that are emerging from the other RACs. This has led to the
establishment of a new Partnership focus on developing approaches to support
teams in establishing “strategic pathways for improvement” to manage the overall
process of improvement. Teams will need to prioritize the improvements they can
address based on their needs and available resources. This will also involve
increasing awareness of and support for secondary mathematics teacher preparation,
such as building “buy in” of institutional leaders, recruiting additional faculty
members to participate in the effort, and shoring up relationship with school dis-
tricts to better collaborate with field experiences. We are working to launch a new
RAC to build approaches for addressing this challenge.

Finally, equity and social justice are highlighted within the Guiding Principles
(MTE-Partnership, 2014) as well within the aims of each of the RACs. However, a
survey of participants in the Partnership revealed that there is some concern about
whether these issues are receiving consistent focus and attention. Thus, the planning
team has formed a working group to explore how we can better ensure that equity
and social justice issues are effectively interwoven into the fabric of the
MTE-Partnership research efforts.

These challenges point to the need for the Partnership to continually change and
evolve to meet changing circumstances and needs. Even the foundational docu-
ments need to be revisited. For example, the release of AMTE’s (2017) Standards
for the Preparation of Teachers of Mathematics raises the question of whether the
Guiding Principles should be revisited to ensure that they adequately capture the
best wisdom of the field. New priorities, such as the focus on program transfor-
mation and issues of equity and social justice, suggest that the Partnership’s aim
and driver diagram may need to be revisited to ensure they effectively capture the
Partnership’s most current thinking. The set of RACs has evolved over the past
years, and it is likely that additional changes will occur as some RACs conclude
their development of particular interventions, and as new needs are identified.
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Moreover, new ways of interacting may be needed as the focus of teams moves
beyond working with a RAC to improve some aspect of the program to overall
program transformation.

3.4.3 Concluding Remarks

In conclusion, the NIC design has been very useful in framing the efforts of the
MTE-Partnership to address significant problems related to the inadequate number
of secondary mathematics teacher candidates who are prepared to support their
students’ success in mathematics. The Clinical Experiences RAC members have
found working in a NIC to be beneficial in many ways, including identifying and
solving problems of practice, collaborating on research projects and publications,
and improving the relationships between school and district partners. We realized
that even though our contexts may differ in subtle ways, we have enough issues and
challenges in common to utilize PDSA cycles and common measures that could
lead to transforming our programs. Indeed, we feel that the NIC model offers great
potential in mobilizing networks of different types to address common problems in
mathematics education and beyond.
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Chapter 4
Pre-service Teachers’ Reflections
on Their Teaching

Hulya Kilic

Abstract The aim of this study was to afford pre-service mathematics teachers
with the opportunity to work with a pair of students for a semester and reflect on
their own practices and students’ performances. Seven pre-service teachers were
matched with seven pairs of sixth graders, and they worked with them for
12 weeks. The data was collected through pre and post interviews with pre-service
teachers, videos of their interactions with students, and their written reflections on
these interactions. The analysis of videos and written reflections revealed that
pre-service teachers benefitted from this setting such that they got better in com-
municating with students, estimating students’ performances and providing
appropriate scaffolding for students’ understanding. During the post interviews
pre-service teachers also noted that working closely with students helped them to
learn about students’ mathematical thinking and understanding as well as improve
their teaching skills.

Keywords Pre-service � Reflection � Pedagogical content knowledge
Scaffolding � Middle school

4.1 Introduction

Teachers’ professional knowledge and skills play an important role in students’
learning (Darling-Hammond, 2010). For effective instruction, teachers need to
facilitate and encourage students’ understanding by paying attention to their cog-
nitive needs and using appropriate teaching strategies (Sowder, 2007). The studies
revealed that pre-service and novice teachers’ knowledge and skills, specifically
their pedagogical content knowledge (PCK) is immature (Morris, Hiebert, &
Spitzer, 2009) however, having them to work with students, examine students’
work or analyze lesson videos and reflect on them contributes to the development of
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their PCK (Llinares & Valls, 2010; Stockero, 2008). Therefore, teacher training
programs should enable pre-service teachers (PSTs) to have more teaching expe-
riences and reflect on their practices to support their professional growth (Chamoso,
Caceres, & Azcarate, 2012; Weiland, Hudson, & Amador, 2014).

Many scholars agreed that reflecting on one’s teaching is important for effective
teaching such that teachers have opportunity to observe how their teaching practices
influence students’ understanding and reshape their instruction accordingly
(Goldman & Grimbeek, 2015; Lee, 2005; Wagner, 2006). Furthermore, the depth of
such reflection is related to teachers’ knowledge and experiences (Lee, 2005) such
that PSTs’ reflections on their own or others’ practices are mostly the description of
what happened during the lesson without making comments about or drawing
conclusions from those instances (Chamoso et al., 2012; Goldman & Grimbeek,
2015). However, PSTs could be trained to become reflective through special
methods courses or field experiences. The studies showed that such interventions
contributed to PSTs’ reflection as well as their PCK, thus, they began to pay more
attention to students’ thinking and consider how to facilitate students’ learning and
understanding (Santagata, Zannoni, & Stigler, 2007; Weiland et al., 2014).

In this study, we analyzed PSTs’ interactions with a pair of sixth graders in terms
of their noticing of students’ mathematical thinking, scaffolding students’ under-
standing and reflecting on their own practices and students’ performances. We
aimed to investigate how working closely with students would contribute to the
development of PSTs’ PCK, specifically their noticing skills, scaffolding, and
reflective practices as well as how PSTs would evaluate the effects of this expe-
rience on their professional development. In this paper, I discussed the nature of
PSTs’ oral and written reflections on their interactions with students to exemplify
possible contributions of this study to their PCK and also presented PSTs’ views
about such an experience to discuss perceived effects of this study to their PCK.

4.2 Theoretical Framework

Reflection and reflective practices of teachers and their roles in teachers’ profes-
sional development have been discussed and studied by many scholars for decades
after Dewey (1933) and Schön (1983) first mentioned about these terms (Sowder,
2007). Although scholars might have different views about the definition of
reflection (Mewborn, 1999), it can be identified as a cyclic process of thinking
about and thinking of own practices based on multiple perspectives (Ward &
McCotter, 2004). In other words, reflection not only entails thinking about what
happened but also planning and acting for the next step, so called reflective prac-
tices (Bergman, 2015; Mewborn, 1999; Zimmerman, 2002).

Rodgers (2002) proposed four phases of reflection as experience, description,
analysis and experiment. She explained the first phase as learning to see where
teachers are expected to be aware of significant instances in the learning environ-
ment and respond to them appropriately. She identified the second phase as
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learning to describe and differentiate where teachers are on the action just after
recognition of that significant instance. She described the third phase as thinking
about the instance critically from multiple perspectives and creating a theory about
that instance and the last phase as taking an intelligent action based on previous
phases (see for further details, Rodgers, 2002). That is, reflective teachers are
expected to both think about their instructional actions, such as planning the lesson,
developing materials and tasks, interacting with students and also how those actions
influence their students’ learning (Bergman, 2015). For instance, students’ failure in
understanding a particular concept might be an impetus (experience) for a teacher to
think about (description) his teaching strategies. Then, he may think of and search
for effective ways of teaching that concept (analysis) and then try out a new strategy
in his class (experiment). After implementation, he again evaluates the effectiveness
of that new strategy on students’ understanding (cyclic process).

Although reflection seems to be a natural practice for teachers, developing a
habit of reflection is not an easy task for many teachers (Mewborn, 1999). It entails
cautious attention to what happens in classrooms and sustained efforts to promote
students’ learning and understanding and improve professional skills as teachers
(Chamoso et al., 2012; Wagner, 2006). In order for effective teaching to occur,
teachers need to be aware of how their instruction supports students’ understanding
and to take necessary precautions to improve students’ learning (Darling-
Hammond, 2010; Jansen & Spitzer, 2009), both in-service teachers and
pre-service teachers should be given support to be reflective.

Indeed, teachers’ awareness of students’ understanding and reflective practices
inform teachers’ professional knowledge and skills, specifically their PCK because
PCK involves knowing what teaching strategies and examples are more appropriate
for students, which strategies or tools are more effective to teach a particular subject
matter and how to address students’ difficulties and misconceptions (Hill, Ball, &
Schilling, 2008). When a teacher recognizes a significant issue about students’
understanding, his reflective practices in terms of identifying the gap in students’
thinking and using alternative ways to scaffold students’ understanding mostly
emerge from his knowledge of content and students and knowledge of content and
teaching (Hill et al., 2008). Moreover, teachers’ reflective practices and their
noticing skills are interrelated because noticing entails paying attention to students’
thinking, interpreting it, and making decision about how to respond to it (van Es &
Sherin, 2008) where whole reflection process is about “seeing learning, differen-
tiating its parts, giving it meaning, and responding intelligently” (Rodgers, 2002,
p. 235). That is, once teachers begin to notice students’ understanding, they begin to
reflect on their earlier practices as well as think of their next actions (van Es &
Sherin, 2008). Therefore, teachers’ reflections on their teaching both help to
evaluate teachers’ PCK, including their noticing skills and also to improve their
PCK (Chamoso et al., 2012; Goldman & Grimbeek, 2015). In this study, we
accepted that PSTs’ practices and reflections not only informed their reflective skills
but also their noticing skills and PCK. However, in this paper, I will mainly focus
on PSTs’ reflections on students’ understanding and their own scaffolding practices;
and I also discuss how their reflections informed their PCK (Hill et al., 2008).
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Because development of a habit requires more time (Sowder, 2007), PSTs could
be given opportunities to be reflective during teacher education programs through
several practices. The field experiences, methods courses or some other specialized
courses have some potential to provide opportunities for PSTs to be reflective. In
those courses, PSTs might be asked to take comprehensive field notes or watch their
own or others’ videos of teaching and then make comments on the teacher’s and
students’ practices as well as students’ understanding by providing justifications for
their comments. The studies revealed that PSTs’ practices contributed to their PCK
to some extent in terms of their reflective thinking and noticing skills (Mewborn,
1999; Jansen & Spitzer, 2009; van Es & Sherin, 2008). Therefore, we offered an
elective course for PSTs where they would work with a pair of students for a
semester, videotape their interactions with students, analyze their own videos and
write reflection paper for each interaction. For the reflection paper, we gave them a
list of items to address, as done in other studies (e.g., Bergman, 2015; Chamoso
et al., 2012), therefore, we did not use a holistic approach to analyze reflection
papers but analyzed them item by item. However, in this paper, I will only present
the findings of the items which specifically asked for PSTs’ reflections on their own
practices and students’ understanding.

4.3 Methodology

4.3.1 Research Setting and Participants

This study was designed as a 14-week course in Spring 2014, aiming to provide
opportunities for PSTs to improve their PCK as a part of a university-school col-
laboration program in a large university in Istanbul, Turkey. Because teaching
experiences contribute more to development of PSTs’ PCK (e.g., Hiebert, Morris,
Berk, & Jansen, 2007) we set up an environment for PSTs where they could work
with students. Seven female PSTs took the course, and each PST was matched with
a pair of sixth graders from the collaboration school. They worked with the students
once a week for 1-h period on the given tasks for 12 weeks. Four of the PSTs (PST
A, PST B, PST C and PST G) were seniors and the others (PST D, PST E and PST
F) were junior undergraduate students. They all took general pedagogy and
mathematics courses prior to this study.

In the first week, we informed the PSTs about the study, their duties and
responsibilities. We also interviewed them about their formal/informal teaching
experiences, their expectations from the study, etc. For the rest of the study, the
group (the research team and the PSTs) met before the implementation of the tasks
and discussed how students might perform on the tasks and how to scaffold their
understanding and eliminate their misconceptions. After the implementations, the
group met again for oral reflection such that we asked PSTs to share whether they
experienced any significant instances about students’ performances, what inferences
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they made about students’ understanding and how they addressed those significant
instances. For 10-week period, PSTs worked on the tasks prepared by the research
team, and they videotaped their interactions with students. They let students work
individually first, then as a pair, and then they asked them what they did in order to
scaffold their understanding and learning. After each implementation, PSTs wrote a
reflection paper after watching their own videos and looking at students’ work. The
purpose of oral reflection sessions was to gather data about PSTs’ noticing skills
and reflective practices such that we wanted to compare whether the depth of oral
reflections and the written reflections differed after watching their own videos or
not. In their written reflections, we asked them to evaluate their own scaffolding
practices as well as to write about the process of task implementation, students’
performances on tasks, and their overall thoughts about the implementation by
providing justifications for their comments. Briefly, in this research setting, we
attempted to provide an opportunity for PSTs to experience all phases of reflection
(Rodgers, 2002) and gathered data about their reflective skills through oral and
written reflections.

As different from field experiences or methods courses, in this research setting,
the PSTs had more opportunity to reflect on their own teaching because they just
worked with a pair of students for 12 weeks. Thus, they were able to learn about
their students’ characteristics and capabilities after a couple of weeks, and also they
had enough time to improve their reflection skills (Sowder, 2007). Moreover, PSTs
videotaped all implementations and wrote their reflection reports after watching
their videos rather than just reflecting based on their memories. Thus, they had
opportunity to analyze themselves and students as an outsider, re-watch videos
when necessary, and realize some instances that they did not pay attention to during
implementations (Stockero, 2008).

We set up this study as an after-school program for the 6th grade students of the
partner school. Therefore, we followed the same order of the topics in the mathe-
matics curriculum such that the content of the tasks for the weeks 1–4 was numbers
and geometry, for weeks 5–7 it was algebra and for weeks 8–10 it was fractions.
Ten weeks later, we asked PSTs to prepare tasks for their own groups and
implement them. They also videotaped the implementations and wrote reflections.
In the last week, we asked them to make a presentation to summarize their expe-
riences throughout the semester. Finally, we interviewed them regarding their
thoughts about the study.

4.3.2 Data Analysis

We transcribed the videos of task implementations and pre and post reflection
discussions. The PSTs’ videos were transcribed and coded in terms of their ability
to catch significant instances related to students’ thinking and their scaffolding
practices. Although some scholars developed coding schemes for the depth of the
reflection (e.g., Chamoso et al., 2012; Lee, 2005; Ward & McCotter, 2004), they
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were not directly applicable to our context. Therefore, we developed our own
coding scheme for PSTs’ oral and written reflections about the implementations.

We focused on the depth of their reflection on the students’ performance and
their practices. The coding scheme for the reflections was as follows: (0) Do not
make clear comments about students’ understanding and her scaffolding practices
(1) Makes valid comments students’ understanding and her scaffolding but do not
justify her reasoning (descriptive) (2) Makes valid comments about students’
understanding and her scaffolding and justifies her reasoning (exploratory). For
instance, we coded a statement like “One of my students did well but the other one
did not” as Level 0 because the PST did not tell what the student did or did not do
well. We coded a comment like “They had difficulty in dividing a whole number by
a fraction … I told them to use fraction tiles …” as Level 1 because the PST did not
tell more about the reasoning behind students’ difficulty or her scaffolding. And
finally, we coded the following comment “I realized that one of my students wrote
that 2/3 = 9/10. I thought that she looked at the difference between numerator and
denominator of given fraction and made her decision accordingly … Indeed, she
explained her reasoning in a way that I already guessed so. Then, I …” as Level 2
because PST provide justification for her comments about students’ understanding
and her scaffolding. We came up with 90% or more agreement for each PST’s
reflection. We mostly had difficulty to differentiate Level 1 and Level 2 such that
whether PSTs provided enough justifications for their comments or not. Later, we
discussed the discrepancies and achieved a consensus in coding.

We also transcribed pre and post interviews to compare whether their thoughts
about teaching and learning mathematics as well as their own knowledge and
capabilities about teaching had changed over time or not. We used interview data to
discuss PSTs’ perceived gains from this study.

4.4 Findings

4.4.1 The Nature of Oral and Written Reflections

The results of the coding for oral and written reflections for 10 weeks are given in
Table 4.1. The PSTs’ written reflections on students’ understanding were
explanatory such that they mostly provided justifications for their comments by
giving samples from students’ work or short vignette between the students and
themselves (L(2); 61%). However, their comments about their own scaffolding was
mostly descriptive such that they did not write about the reasoning behind their
scaffolding (L(1); 61%).

For instance, in one of the algebra tasks during the 7th week PST A’s male
student had difficulty in writing an equation for a given problem statement. The task
was as follows: Ali began a new diet program accompanied with an exercise
program. Therefore, he is jogging in the park for three or four days in a week. This
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week he went jogging for three days. Each day he ran 3 km more than the previous
day. If he ran 15 km totally in this week, how many kilometers did he run in the
second day? The student estimated how much he ran each day as 2, 5, and 8 and
then wrote the equation as k � 3þ 3 ¼ 15 and solved it as k � 3 ¼ 12 12 : 2 ¼
6 6� k ¼ 5 as shown in Fig. 4.1.

In her written reflection, PST A provided the following short vignette about the
discussion of this solution.

PST A: What did you think about this problem?
Student: I guessed the answer.
PST A: OK. But if you are given larger numbers [in the problem], it might be

hard to estimate the answer. So, tell me what did you do here? [pointed to
his equation]

Student: Because each day he ran 3 km more, I wrote +3.
PST A: Why did you write 3 here? [pointed to 3 in k � 3]
Student: Because he ran 3 km more; like 3, 6, 9.
PST A: Do you need to write 3k for that?
Student: 3 km plus 3 days, times?? [He puzzled] I guess, it is wrong.
PST A: OK, let’s read the problem and think about it again

Because the student estimated the answer immediately it was evident that he
understood the problem statement. However, she asked about the equation he wrote
and the solution of the equation. During the discussion, he realized his mistakes and

Table 4.1 Levels of pre-service teachers’ oral and written reflections in weekly basis

Oral reflection Written reflection

Assumptions about
students’ performance
(pre-discussion)

Reflections on
implementations
(post-discussion)

Students’
performance

Own practices

L(0) L(1) L(2) L(0) L(1) L(2) L(1) L(2) L(1) L(2)

Weeks 1–4 18 9 3 21 3 10 16 11 15

Weeks 5–7 5 7 9 7 5 9 8 12 14 6

Weeks 8–10 5 8 8 1 11 9 8 12 15 5

Total 28
(40%)

24
(35%)

17
(25%)

11
(16%)

37
(54%)

21
(30%)

26
(39%)

40
(61%)

40
(61%)

26
(39%)

Note PST G was absent during one of the oral reflections. She also submitted only six written reflections

Fig. 4.1 PST A’s student’s answer for algebra task
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set up the correct equation through PST A’s prompting questions. PST A wrote the
followings about the student’s performance in her report:

As inferred from the dialogue between us, he realized his mistakes when I asked about what
his equation represented for. Later on, although he set up x for the first day, x + 3 for the
second day and x + 3 + 3 for the third day, he initially could not figure out what to do with
these expressions. When I read the problem statement again, he recognized that the sum of
these expressions will be 15. However, he was not sure about how to add these terms. Then,
he experienced difficulties in solving the equation. Although he was able to re-explain the
solution to me at the end, I am not sure that he will not repeat the similar mistakes again…
His failure in this task was not mainly because of his lack of knowledge but his misun-
derstandings of algebraic expressions and equations. He did not pay attention for what
unknown value he is assigning a letter for and then set up an equation accordingly. He felt
that he needs to set up an equation somehow by using the given information in the problem.
Hence, he wrote k � 3 for “3 days”, +3 for “3 km more” and 15 for “to put something the
other side of the equation.” He did the similar things in the previous problems. When we
finished the discussion of the tasks I made him work on simple examples but I think he
needs to be re-taught about variables, algebraic expressions, setting up and solving equa-
tions from the beginning.

The analysis of student’s previous performances on algebra tasks supported PST
A’s comments about her students’ mathematical understanding. Furthermore, dur-
ing the pre-discussion, she said that the student had difficulty in writing and
evaluating algebraic expressions and might fail to solve the given tasks. In terms of
evaluation of her own scaffolding practices, she wrote the followings:

I knew that he had some problems in algebra because he had some misunderstandings about
algebraic expressions and equations. I suppressed my feelings about re-teaching of algebra,
and I tried to guide him through questioning. I tried to help him to figure out what was
unknown and how to set up an equation by reading the problem statement again. He
answered all my questions and solved the tasks eventually, but I felt that he needs to do
some exercises about rewriting verbal expressions as algebraic expressions and vice versa
to understand it better.

PST A noted the student did not know much about writing and solving equa-
tions, and she tried to help him through questioning but she did not write much
about the questions she asked him and why she asked such questions. During the
post-discussion, PST A did not tell much about the student’s performance but noted
that he performed poorly as she expected. Similarly, most of the time, PSTs
described what happened during the implementations in the post-discussions (54%)
without giving the details about the students’ performances or their scaffolding.
Moreover, in some cases they did not tell much how their students performed on the
tasks or what they did during the interactions but confirmed their peers’ comments
about the implementations such as “My students also solved the problem in that
way” or “I agree with her”, etc.

As shown in Table 4.1, as PSTs got to know the students they got better in
making assumptions about their performances. In the first four weeks, they were not
able to make clear comments about students’ possible performances on the tasks
(L(0) = 18) but in later weeks, they began to provide justifications for their
assumptions (L(2) = 9 and L(2) = 8, respectively). Because in this setting we
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arranged three sets of tasks about the same content for weeks 5–7 and weeks 8–10,
after the initial tasks of that particular content they were able to estimate students’
performance better. As described above, PST A was able to estimate her student’s
performance on the problem solving tasks based on her earlier observations of that
student on previous algebra tasks. That is, those sequential tasks contributed to
development of PSTs’ knowledge of content and students because they began to
recognize what is difficult or confusing for students to understand in algebra or in
fractions (Hill et al., 2008).

Furthermore, based on students’ earlier performances, the PSTs tried to plan how
to act during next implementations. For instance, in one of the fraction tasks of the
10th week, students were asked to fairly share 3 sandwiches between 6 children and
2 sandwiches between 3 children, etc. PST C said that her students could divide 3
sandwiches into halves for 6 children but they would write that each child would eat
1/6 of a sandwich rather than 1/2 of it because there would be a total of 6 pieces of
sandwiches. She said that when it would be the case she would ask them what 1/6
represented as a fraction to make them realize their mistakes. Indeed, her students
answered that problem in the way that PST C estimated, and she addressed that
mistake in a way that she planned for as follows:

PST C: What does 1/6 represent for?
Student: One out of six.
PST C: How many sandwiches do you have?
Student: 3.
PST C: Is this [pointed out one of the rectangular shapes] a whole sandwich or is

it a piece of it?
Student: Whole.
PST C: Then, you have 3 whole sandwiches. Do you get 3 [whole], if each child

takes 1/6 [of whole]?
Student: No. [silence] This piece [pointed out one of the pieces in the rectangular

shape] is 1/2 of the whole sandwich.
PST C: Right!

However, in some cases the PSTs had to handle unexpected situations and make
new decisions immediately. For instance, one of PST G’s student used “x” ran-
domly while solving algebra tasks during the 7th week. For the task that was given
as an example above, he wrote the followings: 1st day: 6x + 3x = 9 km = 9x, 2nd
day: 9x + 3x = 12 km = 12x, 3rd day: 12x + 3x = 15 km = 15x. The student
attempted to solve the other tasks in this fashion, too. During the oral reflection
session, PST G said that she did not expect such solution from the student however
she asked him what “x” and “3x” stood for in those equations. The student realized
his mistake but he could not correct it. PST G noted that she talked about algebraic
expressions and solving equations by giving simple examples. Then she asked him
to solve the given tasks by setting up appropriate equations. She tried to guide him
by reading the problem statement in a step by step manner and asking him what to
do in each step. Although PSTs mostly preferred to ask students to tell what they
did and then scaffold their understanding through prompting questions, as in PST
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G’s case, when they realized that there were major gaps in students’ understanding
of the given subject matter they preferred telling and showing type of scaffolding.
That is, students’ mathematical capabilities and earlier performances encouraged
PSTs to think about and try out appropriate and effective ways of addressing
students’ mathematical understanding which is an indicator for PSTs’ knowledge of
content and teaching (Hill et al., 2008) as well as their reflective skills (Rodgers,
2002; Ward & McCotter, 2004). However, because of some restrictions of the
research setting such that PSTs had to implement the tasks prepared by the research
team and they were asked to avoid teaching the content but attempt to support
students’ understanding through questioning and manipulatives, they did not have
much flexibility in deciding how to act in terms of what examples, representations
or tools to use to teach particular content.

4.4.2 Pre-service Teachers’ Perceived Gains

Because reflection is a cyclic process involving thinking about one’s own actions
and planning for next steps (Rodgers, 2002; Ward & McCotter, 2004), we recog-
nized that not only PSTs’ views about teaching and learning mathematics and their
reflections mutually influence each other (Cavanagh & Garvey, 2012; Mewborn,
1999) but also their inferences about their own teaching shape their reflective
practices (Bergman, 2015). Therefore, we wanted to analyze PSTs’ perceived gains
from this intervention study to validate contributions of this study to their PCK,
specifically to changes in their actions during each phases (experience, description,
analysis and experiment) of reflection (Rodgers, 2002).

During the pre-interview, I asked for PSTs’ previous tutoring and practicum
experiences, their views about the reasoning behind students’ difficulties in math-
ematics, their knowledge about use of manipulatives in teaching mathematics and
their expectations from this study. All of them had some tutoring experiences with
students from different grade levels. Except PST D and PST E, they were going to
schools for the field experiences in the semester that this study took place. They all
agreed that students had some prejudices about mathematics such that it was hard
and abstract. PST A and PST E also noted that the students gave up working on
mathematics when they struggled with understanding the concept or the procedures.
Students neither put much effort to understand mathematical concepts nor made
practice of mathematical procedures. All PSTs emphasized that concrete materials
should be used to teach some abstract mathematical concepts in middle schools.
PST C said that she frequently used concrete materials while tutoring and her
students understood the subject matter or problem better and did not forget it. That
is, prior to study, all PSTs agreed that students struggled with mathematics but
using concrete materials might help them to understand it.

The PSTs’ major expectation from this intervention was to learn how to com-
municate with students. They wanted to learn about effective questioning and
scaffolding. PST A and PST G also noted that they hoped to learn about students’
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difficulties and misconceptions and how to address them effectively. PST C, PST E
and PST F told that they were not patient persons in general, therefore they wanted
to learn to be more patient to the students.

During the post-interview, I asked what they learned from this intervention, how
it was similar or different from their earlier teaching experiences, and whether their
expectations from this study was satisfied or not. The PSTs noted that one-to-one
interactions with students contributed to their professional knowledge more than
field experiences. During the field experiences they mostly observe teachers such
that they teach once or twice in a semester. Furthermore, PSTs compared their gains
from this intervention with their tutoring experiences. They said that watching the
videos of their interactions with students and writing a reflection on these forced
them to think about and reshape their teaching practices as well as the way of their
communicating with students. For instance, PST C said the followings:

Initially, I was thinking that they could finish the given tasks immediately and I would just
ask them to explain what they did and then rephrase their explanations. However, it was not
the case. When they could not do the tasks, I began to be concerned about how to help
them. When I watched the videos, I realized that I could not give appropriate examples and
I mostly attempted to tell how to solve the task. As I got to know my students, I began to
make better estimations about what might be difficult or confusing for them and I got ready
for what to do when it happened…I also learned how to ask questions to students. They did
not want to talk when I ask “why” and “how” types of questions directly. Therefore, I
learned how to rephrase my questions without using “why” or “how” but still get the
answers that I looked for.

As similar to PST C’s comments, other PSTs also noted that their expectations
from this intervention were mostly satisfied such that they began to feel more
confident about how to communicate with students, their repertoire of students’
difficulties or misconceptions in mathematics improved, and they learned how to
scaffold students’ mathematical understanding. In addition, PST C and PST E noted
that they recognized how manipulatives facilitate students’ understanding and
increase their motivation. For instance PST E said the followings:

I initially did not know much about how to use manipulatives but I witnessed that students
understood how to compare fractions or add them up by using fraction strips. I also
observed that one of my students was more active when use of manipulatives [were]
involved in the task. I believe that concrete materials should be used in mathematics lessons
because they motivate students to learn mathematics as well as help them to understand it.

Based on post-interview data, we inferred that having PSTs to work with a pair
of students for a semester and then to reflect on the process contributed to their
reflective skills because they had to pay attention to students’ practices, think about
how to address students’ difficulties, assess the effectiveness of their scaffolding and
plan for the next implementation. That is, they passed through all phases of
reflection (Rodgers, 2002). Furthermore, PSTs’ self-evaluation could be counted as
an indicator of improvement in their PCK, specifically in their knowledge of content
and students because they learned more about what was easy or difficult for stu-
dents to understand in mathematics (Hill et al., 2008).
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PSTs also noted that preparing tasks for their own students was a beneficial
practice and even more, they said that the number of such practices should be
increased. Although they mostly had positive feelings about the intervention, they
complained about managing the time commitment. They were taking six or seven
other courses in that semester, and they were not able to write the reflections as
detailed as they wished to do so.

4.5 Discussion and Conclusion

In this study, we accepted that reflection, noticing skills and scaffolding practices
are involved in teachers’ PCK. Any actions aiming to improve or assess teachers’
reflective skills, noticing or scaffolding would eventually contribute to or inform
our understanding of teachers’ PCK. Therefore, we designed a research setting that
enabled us to learn about PSTs’ PCK through their reflections, noticing and scaf-
folding practices. In this paper, I attempted to present findings about PSTs’
reflections as they emerged from their one-to-one interactions with students and
analysis of their own videos of those interactions.

The findings of this study revealed that PSTs’ professional knowledge and skills
could be improved through special courses where PSTs are given opportunity to
make practice of teaching and reflect on their practices (Chamoso et al., 2012;
Jansen & Spitzer, 2009; Llinares & Valls, 2010). The PSTs were asked to write
reflection papers after watching their own videos and provide some justifications for
their comments about students’ performances and their own practices. The analysis
of PSTs’ written reflection revealed that use of videos of their own teaching helped
them to analyze students’ mathematical thinking and their own practices (Jansen &
Spitzer, 2009; Stockero, 2008; Sun & van Es, 2015). They were able to detect the
gaps in students’ mathematical understanding correctly such that they provided
evidences from their interactions with students and students’ written work, as in
PST A’s reflection on the algebra tasks. PSTs’ interpretations of students’ thinking
could be counted as a sign for their reflection skills (Goldman & Grimbeek, 2015;
Rodgers, 2002; Ward & McCotter, 2004) as well as their PCK, because under-
standing and anticipating students’ mathematics are involved in PCK (Hill et al.,
2008).

Furthermore, the PSTs attempted to explain their actions and scaffolding prac-
tices in their written reflections which can be counted as a sign for their reflective
skills since reflection entails critical analysis of own actions (Rodgers, 2002; Ward
& McCotter, 2004) Although they did not give much details about the reasoning
behind their actions, we could infer from the videos that they tried to facilitate
students’ understanding of mathematical concepts and procedures through ques-
tioning (Goldman & Grimbeek, 2015). PSTs’ attempts also provided evidence of
their PCK in terms of choosing appropriate examples, representations or tools to
help students’ understanding (Hill et al., 2008). Moreover, during the
post-interview PSTs noted that this intervention contributed to their professional

58 H. Kilic



knowledge more than their field experiences because they had opportunity to
observe their own teaching and how their comments and behaviors influence stu-
dents’ understanding. On the other hand, PSTs did not say much about their
interactions during the oral reflections with respect to the written reflections. It
might be because of external factors such as limited time given for oral reflections
or internal factors such as lack of experiences that enable them to evaluate students’
mathematics in-action.

The PSTs’ perceived gains from this intervention in terms of learning about
students’ difficulties and misconceptions were compatible with what we found out
in their oral and written reflections. As PSTs learned about their students’ mathe-
matical capabilities, they were able to make better estimations about their perfor-
mances (Weiland et al., 2014). Furthermore, their comments about students’
thinking were mostly valid as we elicited from students’ written work and inter-
action videos. Therefore, in terms of enlarging the repertoire of students’ possible
difficulties and misconceptions in mathematics (Hill et al., 2008), we could con-
clude that this intervention contributed to PSTs’ PCK, specifically to their knowl-
edge of content and students.

During the post-interviews the PSTs noted that they began to feel better in
communicating with students because they learned about the characteristics and the
needs’ of their students. It was evident both from implementation videos and PSTs’
assumptions about students’ performances on the tasks as given in the Table 4.1
and as discussed in PST C’s assumptions about fraction task. Furthermore, they
noted that they learned how to use manipulatives and how those manipulatives help
students’ learning and understanding. Hence, in terms of learning about instruc-
tional tools and how to use those tools, this intervention addressed their PCK,
specifically their knowledge of content and teaching (Hill et al., 2008).

On the other hand, there were some limitations of this study such that the PSTs
were taking several other courses therefore, in some weeks their written reflections
were not as detailed or satisfactory as it was expected. For instance, they did not
give the reasoning behind their scaffolding practices but preferred to describe what
they did during the implementations. Therefore, we could not ensure that such
intervention could yield a linear increasing pattern in terms of the depth of reflection
or not. A further study might be conducted with a group of PSTs who do not have
much work load to eliminate the possible “time barrier” for writing reflection
papers. Furthermore, PSTs might be asked to prepare and implement their own
tasks to provide more opportunity for analysis and experiment phases of reflection
(Rodgers, 2002) as well as to improve their knowledge of content and teaching
(Hill et al., 2008).
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Chapter 5
Gaining Valuable Field Experience
Through the Use of Informal Learning
Environments

Margaret J. Mohr-Schroeder, Christa D. Jackson,
Maureen Cavalcanti and Ashley Delaney

Abstract Informal field experiences can be a powerful mechanism for exposing
preservice and inservice teachers to unique opportunities to experience content in
ways different than how they were trained and/or different than how their current
environment supports it. Additionally, they provide a low-stakes environment to
practice and hone important teaching skills and knowledge. In this qualitative study,
we examine how a robotics course in an educator preparation program that required
a field experience in an informal learning environment impacted its participants.
Three themes emerged from their reflections and interviews: (a) development of a
better understanding of STEM; (b) increased knowledge and enlightenment of
instructional practices, especially the importance of asking good questions; and
(c) students’ increased interest and excitement in learning STEM content. Through
participation in the robotics course and the required informal field experience,
teachers learned more about classroom instruction, students, classroom manage-
ment, and what sustained engagement looked like through this low-stakes authentic
experience. Additionally, they saw firsthand the importance and necessity of cre-
ating a positive classroom community (e.g., growth mindset).
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5.1 Introduction

Informal learning experiences provide opportunities for preservice and in-service
teachers to apply what they learned in coursework in an authentic environment
outside of the classroom (Jackson, Mohr-Schroeder, & Little, 2014). With this
experience, teachers have an opportunity to reflect on their experiences and sub-
sequently apply the lessons in ways that will transform education (Swick, 2001).
Research suggests pedagogy rooted in informal learning environments, such as
experiential pedagogy, grounds the learning in experience (Dewey, 1938; Root,
1997) for preservice and in-service teachers. The See Blue STEM Camp
(Mohr-Schroeder et al., 2014) is one such informal learning environment where
teachers can engage in authentic tasks that will increase their STEM literacy and
help them become more effective STEM teachers. For preservice STEM teachers,
participation in the informal learning experience exists within a broader context of a
robotics course. Per the recommendations of widely cited research over the past
40 years, the robotics course offers a model that marries field experiences with
methods courses (e.g., Darling-Hammond, 1994; Feiman-Nemser & Buchmann,
1983; Grossman, Hammerness, & McDonald, 2009) and provides varied learning
environments (Wade & Yarbrough, 1996) for preservice teachers to bridge
knowledge of teaching across content, theory, and field experiences. Additionally,
the robotics course allows preservice STEM teachers to practice the application of
this newfound knowledge of teaching with students in a field experience housed
within an informal learning environment. The purpose of this paper is to share the
knowledge gained by the preservice teachers’ participation in a robotics course,
offered by the College of Engineering, that included a field experience within an
informal learning environment in a teacher preparation program.

5.2 Review of Literature

5.2.1 Informal Learning Environments

Informal learning environments include multiple settings including museums,
libraries, camps, family adventures, after school programs, and daily activities such
as cooking and gardening (National Research Council, 2009). Central to defining
informal learning is its contrast to the formal learning that typically occurs in
schools. “[Informal learning] is not typically classroom-based or highly structured,
and control of the learning rests primarily in the hands of the learner” (Marsick &
Watkins, 1990 p. 12). In other words, it is deliberate and purposeful, but not
directed. Resting the locus of control within the learner helps minimize institutional
agendas and systemic inequities to engage disenfranchised youth (Rahm & Ash,
2008) and adults (Marsick & Watkins, 2001). Informal learning is one of three
essential pieces (the K–12 system and higher education, the other two) for
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successful integrating and implementing STEM education into U.S. schools (U.S.
Department of Education, 2007) and teacher education (National Science Board,
2007). Learning environments beyond the walls of traditional education better
situate learning into authentic contexts which helps facilitate the processes of
application and generalization (Choi & Hannafin, 1995). Learning in such envi-
ronments is shown to increase community involvement and activism as well as
confidence and long-term success in adult learners (McGivney, 1999). The goals
and skills (i.e. self-regulation) students engage in through informal learning expe-
riences should complement their formal learning experiences (Boekaerts &
Minnaert, 1999). Students of all ages benefit most when formal and informal
environments complement each other providing rich and varied opportunities to
learn (Eshach, 2007).

5.2.2 Informal Learning Environments as Field
Experiences for Preservice Teachers

Informal field experiences for preservice teachers include field experiences that occur
outside traditional clinical field experiences (Chambers & Lavery, 2012;
Darling-Hammond, 2006; Tuchman & Isaacs, 2011). Traditionally, preservice
teachers work with a cooperating teacher in a classroom during the school day
observing and teaching a group of students. A focus on such environments for pre-
service teacher education still appears to dominate research. Although there is some
research on informal learning environments such as museums and aquarium visits
(e.g., Leinhardt, Crowley, & Knutson, 2003; Ramey-Gassert & Walberg, 1994), and
tutoring (e.g.,Worthy&Patterson, 2001), there is a dearth of literature on informalfield
experiences for preservice educators in STEM, with the exception of Jackson et al.
(2014), Jackson et al. (2018), and Pop, Dixon, & Grove (2010). Research studies on
informal learning environments have expanded to include ways preservice and
inservice teachers can engage in such environments (e.g., Popovic&Lederman, 2015).

Informal learning environments allow the application of theory to practice
(Bates, 2009; Jackson et al., 2014; Meredith, 2010; Olson, Cox-Petersen, &
McComas, 2001) and provide an avenue for preservice teachers to be reflective
(Meredith, 2010). Participation in informal learning environments as part of a
teacher education program has largely existed within an academic school year (e.g.,
Olson et al., 2001). The effect of informal learning environments on preservice
teachers include knowledge of content and teaching; awareness of strategies for
providing inclusive, multicultural education; and preservice teachers’ conceptual-
ization of their future classroom. In addition, the design of informal learning
environments has also been considered, including the importance of providing
authentic contexts (Baldwin, Buchanan, & Rudisill, 2007; Boyle-Baise & Sleeter,
1998; Deering & Stanutz, 1995) and how the structure of informal learning envi-
ronments as a field experience influence preservice teachers’ beliefs and future
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practice. However, studies of informal learning environments as a field experience
during the summer have not been documented.

Informal learning environments offer a setting for preservice teachers to gain
different strategies, such as engaging the community (e.g., LaMasters, 2001) and
one-on-one instructional planning (e.g., Worthy & Patterson, 2001), when com-
pared to traditional field experiences. The goal of most field experiences is to
provide preservice teachers an authentic environment of their future profession
(Rethlefsen & Park, 2011). However, preservice teachers can view traditional field
experiences as inauthentic, especially because they are always a visitor in the
classroom (Alsup, Conard-Salvo, & Peters, 2008). Traditional field experiences are
often limited to the encounters in the classroom during the regular school day.
While this allows preservice teachers to engage with valuable situations that arise in
the classroom setting (Brannon & Fiene, 2013), it creates uneven experiences due to
the variations in quality of the cooperating teachers (LaMaster, 2001). These
variations in quality are important because of the field experience’s influence on
preservice teachers’ future teaching practices. New teachers are most likely to use
practices they liked as students or implement practices of their cooperating teachers
(Alsup et al., 2008). Therefore, research related to informal learning environments
as a field experience, namely an informal field experience, for preservice teachers
provides a low-stakes opportunity to examine how it can contribute to preparing
future educators.

There are potential outcomes from participating in informal field experiences.
For example, such experiences may strengthen content and pedagogical knowledge
amongst participants. Klanderman, Webster Moore, Maxwell, and Robbert (2013)
investigated the impact of college students’ (i.e., elementary education majors,
secondary mathematics education majors, and mathematics majors) participation in
a single day Math Triathlon event for grades 7–8. They found the college students
showed stronger knowledge of content and mathematics standards and better
understanding of mathematics instruction after participating in the event. Other
studies examining preservice teachers outside of the classroom setting revealed
similar increases in content knowledge. Popovic and Lederman (2015) found that
inservice secondary mathematics teachers identified overt examples of mathematics
in exhibits (e.g., numbers, shapes, figures) at a museum. However, over time, the
teachers moved to viewing the exhibits in terms of abstract mathematical concepts,
and they made connections between the mathematics and science.

Preservice teachers’ participation in an informal field experience may also
inform their future teacher practice (Jackson et al., 2018; Johnson & Chandler,
2009). Johnson and Chandler (2009) found there were several advantages of par-
ticipating in an informal learning environment as a field experience. The teachers in
their study reported the informal field experience was a change from traditional
classroom routines, and it provided more hands-on learning and an opportunity to
vary instruction for diverse learners. Moreover, tutoring is a potential avenue for
preservice teachers to engage in differentiation and learn how to meet the needs of
individual students. Jackson et al. (2018) examined the way after school tutoring
helped preservice mathematics teachers acquire knowledge and confidence to help
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students who struggle in mathematics. The implications of this work suggest ways
field experiences in informal settings can provide preservice teachers with a more
comprehensive understanding of teaching as a profession and the advantages of
supporting learning in authentic contexts.

Informal learning environments and informal field experiences provide an
opportunity for preservice teachers to engage in solving real world problems in
authentic settings (e.g., Jackson et al., 2014; Popovic & Lederman, 2015). Everhart
and McKethan (2004) suggest that utilization of field experiences promote more
opportunities for preservice teachers to plan for teaching and to work with students.
This increased opportunity is better promoted by integrating field experiences with
preservice teacher training and experiences, especially those found within an
informal learning environment. Olson et al. (2001) highlighted the importance of
such integration, as a “desire to prepare teachers who not only understand research
about the use of informal environments, but who actually implement recommen-
dations by effectively using informal settings” (p. 169).

Finally, connections not only between STEM disciplines, but also between
content and practice can arise through experiential learning in the field. While
beneficial to students, nontraditional field experiences are additionally beneficial for
preservice teachers developing skills beyond the traditional teaching methods found
in a classroom setting such as lecture (Djonko-Moore & Joseph, 2016). STEM
fields are not always represented to a great degree in lower and middle grade level
instruction and content. To address this deficit, there is a need for preservice
teachers to gain practical knowledge of how to integrate field experiences into their
instruction for their own efficacy and to strengthen student learning in these areas of
STEM (Kisiel, 2013). The existing literature does not extend the impact of informal
learning environments and informal field experiences on preservice teachers more
broadly to an integrated perspective on STEM rather than a siloed approach (Bybee,
2010; Hurd, 1998). Treating STEM as transdisciplinary subject of its own is
important for understanding ways informal learning environments can support
STEM literacy for preservice teachers.

5.3 STEM Literacy as a Theoretical Framework

An integrated approach to STEM education is needed to prepare STEM teachers to
teach students in the 21st century. Traditionally, teacher preparation programs use
field experiences as an important component of teacher education programs (He,
Means, & Lin, 2006). However, teacher education coursework and classroom field
experiences often do not align in their practices (Alsup et al., 2008), especially
when focusing on integrating subjects. Effective teacher education programs require
more extensive field experiences so that preservice teachers have opportunities to
concurrently apply concepts they are learning about in coursework with teachers
who model similar instructional strategies (Darling-Hammond, 2006).
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By synthesizing perspectives on literacy within and across STEM disciplines,
Cavalcanti (2017, p. 65–66) defined STEM literacy as the

conceptual understandings and procedural skills and abilities for individuals to address
STEM-related personal, social, and global issues” (Bybee, 2010, p. 31); the ability to
engage in STEM specific discourse; a positive disposition toward STEM (e.g., Wilkins,
2000, 2010, 2015), including a willingness to engage and persist in STEM-related areas 66
(e.g., Wilkins, 2000, 2010, 2015); an understanding of the utility of applying STEM
concepts to solve real world problems; and, an appreciation of how the processes and
practices of STEM areas change as technologies and demands of modern society change.

It involves and is nestled in the transdisciplinary integration of STEM disciplines
and the tools and knowledge necessary to apply STEM concepts to solve complex
problems (Balka, 2011). An understanding of STEM literacy as a unique tool set to
create and use knowledge of and across disciplines arises from applying the concept
of literacy to disciplines individually and holistically (Mohr-Schroeder, Cavalcanti,
& Blyman, 2015). For example, prospective and in-service teachers who have
opportunities to experience and apply an integrative pedagogy develop a broader
meaning of STEM and hone their STEM literacy skills than those who have a
degree in a single STEM discipline. As a consequence, they can plan for varied
STEM learning experiences which reflect diverse backgrounds of the students they
serve. While research exists on how using an integrated approach to teach STEM
subjects can increase student motivation and achievement, limited research exists
on ways to support teacher development that integrates STEM disciplines (Honey,
Pearson, & Schweingruber, 2014). Kisiel (2013) notes the importance of and shift
toward integrating field experiences in providing unique instruction that integrates
the content of a STEM discipline into a nontraditional learning environment.

5.4 Methodology

This project utilized qualitative methods to answer the following research question:
How does a course within an education program that utilizes informal learning
experiences as a field experience impact participants?

5.4.1 Population

The 38 participants in the study were undergraduate (n = 3) and graduate students
(n = 20) seeking certification in mathematics or science education (grades 8–12),
graduate students (n = 11) in a STEM Education doctoral program, and
college-credit seeking high school students (n = 4) from a local STEAM (science,
technology, engineering, arts, and mathematics) high school program. All partici-
pants were enrolled in a 4-week long hybrid (some face-to-face sessions in addition
to asynchronous online modules) summer introduction to robotics course, offered
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by the College of Engineering and co-taught by an engineering professor and
STEM education professor, at a large public university in the southeast region of
the United States. Throughout the course, participants (a) gained familiarity with
the interdisciplinary field of robotics and its growing impact on society; (b) devel-
oped the ability to direct robots using computer languages for communication;
(c) gained familiarity with widely-used computer programming constructs includ-
ing variables, assignment, looping, and conditional statements; (d) gained aptitude
in understanding, designing, and evaluating patterns of logic and reasoning
expressed as algorithms; (e) learned to practice argumentation and reflection on
topics related to disciplinary content, including and especially ethics; and (f) be-
came more comfortable and effective working in a team setting, particularly in
analyzing and communicating logical and computational ideas with others.

Additionally, participants explored robots, engineering concepts, engineering
design, and K–12 robotic curricular materials as they learned about basic robotics
communication and programming. The EV3 Mindstorm Lego Robots were used for
the course because most of the participants in the course had ties to K12 students,
and the state in which this course took place hosted and regularly supported First
Lego League competitions in which a majority of school districts participate in each
year. EV3 Mindstorm Robots are made and sold by Lego Education. They are an
easy-to-learn robot, using the Lego building concept and attaching a computer brick
that can be programmed through their drag and drop software. Students begin with
drag and drop programming and then, as they master building and programming
processes, can move into more advanced algorithms. After building the EV3 robots,
students were required to program their robots to meet various challenges. The early
challenges (such as drawing a square) required students to use “blocks” to program
their robot to move forward, backward, and turn. “Loops” and “switches” were
used for more challenging tasks to incorporate the use of sensors (e.g., program
robot to sense when it was 11 in. from the wall, and then turn and return to the
original position).

5.4.2 See Blue STEM Camp

In order to apply what they learned in the first 3 weeks of the course, the course
contained a field experience in an informal learning environment, the See
Blue STEM Camp, during the final week. The See Blue STEM Camp
(Mohr-Schroeder et al., 2014) is a week-long (5 days) summer day camp for rising
middle level students (incoming grades 5–8). The middle grades students are
recruited from area middle schools with a focus on female and students of color
making up at least 50% of the camp population. The camp population between
2014 and 2016, when this study occurred, ranged between 144 and 240 students.
The students who participated in camp did not necessarily like science, technology,
engineering or mathematics, but rather, needed a positive, out of school experience
with STEM and/or were provided the chance to participate in a summer camp.
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The camp focuses on authentic hands-on sessions where students are given
opportunities to engage in a variety of STEM fields. Additionally, during the camp
the students participate in a daily session of Lego Robotics. Opposite Lego
Robotics, students attend sessions focused on STEM content in authentic learning
environments. For example, students go to the biology lab to learn about
drysopholia (fruit flies) from a biology professor and his graduate students. All the
topics and content in See Blue STEM Camp focus on the eight Standards of
Mathematical Practice (Council of Chief State School Officers [CCSSO], 2010)
from the Common Core State Standards for Mathematics and the eight science and
engineering practices (NRC, 2011) from the Next Generation Science Standards
(see Table 5.1).

The language of the standards for mathematical practice and the science and
engineering practices reveal an extensive overlap to support students solving
complex problems and participating in authentic learning experiences, thereby
increasing their STEM literacy. Additionally, bridging these standards sets a
foundation for integrating more interdisciplinary practice and teaching through
informal field experiences within participating teachers’ future practice.

Robotics course participants’ roles in the STEM Camp were as “teacher leaders”.
As teacher leaders, they were assigned to one of four student groups; each group
had 36 students. They traveled with the group all day, gaining exposure to STEM
content during the STEM content session and then applying their robotics course
knowledge the other half of the day during the robotics session. In their role as
teacher leaders, participants were expected to practice their classroom management
skills and help guide middle grades students through the STEM content investi-
gations and robotics challenges using scaffolded questioning. The emphasis was on
teacher leader as a facilitator, not as a presenter. Participants were also expected to
help with managerial tasks such as keeping track of students, collecting daily

Table 5.1 Mathematical practices (CCSSO, 2010) and science and engineering practices (NRC,
2011)

Mathematical practices Science and engineering practices

1. Make sense of problems and persevere in
solving them

1. Asking questions and defining
problems

2. Reason abstractly and quantitatively 2. Developing and using models

3. Construct viable arguments and critique the
reasoning of others

3. Planning and carrying out
investigations

4. Model with mathematics 4. Analyzing and interpreting data

5. Use appropriate tools strategically 5. Using mathematics and computational
thinking

6. Attend to precision 6. Constructing explanations and
designing solutions

7. Look for and make use of structure 7. Engaging in arguments from evidence

8. Look for and express regularity and repeated
reasoning

8. Obtaining, evaluating, and
communicating information
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surveys, assisting with lunch time, conflict resolution, etc. The 5-day field expe-
rience, which counted towards teacher education program requirements, totaled
40 h. At the end of each day, participants completed a daily reflection.

5.4.3 Data Collection and Analysis

Data were collected over three summers (2014–2016) throughout participants’
(henceforth, referred to as teachers given their role in the camp) participation in the
See Blue STEMCamp via their robotics course. The teachers were asked to complete
daily reflections at the end of each day for the first four days of STEM Camp. The
reflection prompts focused on (a) what they learned at the camp, (b) what they liked
about what they learned, (c) what they did not like about what they learned, and
(d) what they would like to learn more about. At the end of the camp, the teachers
reflected and synthesized their growth and learning in a two-page written final
reflection. In addition, the teachers participated in a semi-structured interview about
their experiences working and participating in the See Blue STEM Camp.

The data (written daily reflections, final reflection, and interviews) were analyzed
using open coding to discover themes that directly emerged from the data (Strauss
& Corbin, 1998). We first read through the daily reflections, final reflections, and
interviews and wrote analytic memos (Maxwell, 2005) on the teachers’ responses
and grouped them together using a constant comparative method (Charmaz, 2006;
Glaser, 1965; Glaser & Strauss, 1967). We then discussed how we grouped the
responses and created themes based on the data. All disagreements were discussed
until a consensus was reached. Once a consensus was obtained, we reviewed the
themes and supporting data and identified three prominent themes that emerged
from the data. All discrepancies were resolved during the final development of the
overall themes.

5.5 Results and Discussion

Friends and family wondered what on earth a Lego Robotics class would do to help me
become a teacher, but every day in class and all throughout STEM Camp I learned so much
about teaching strategies and how to be an effective instructor. (Teacher Reflection 2016)

As the teachers participated in the informal field experience of the See
Blue STEM Camp via the robotics course, three prominent themes emerged from
their reflections and interviews: (a) the teachers developed a better understanding of
STEM; (b) teachers’ instructional practices were enlightened; and (c) students’
interest and excitement increased, which all positively influenced the teachers’
development as future STEM teachers.
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5.5.1 Understanding STEM

Prior to participating in the robotics course, most of the teachers did not have a clear
understanding of STEM and what it looked like when students actively engaged in
STEM activities. All of the teachers articulated that STEM was an acronym for
science, technology, engineering, and mathematics. However, it was not until after
they participated in the See Blue STEM Camp via the robotics course did they
come to realize the true meaning of STEM. For example, one teacher stated,
“They’re really are all interconnected and kinda [sic] go together” (Teacher
Interview 2015). Another teacher further elaborated that STEM is “interdisciplinary
education” involving the four disciplines of science, technology, mathematics, and
engineering, and you do not teach each discipline in isolation. Many of the teachers
enrolled in the robotics course expressed they were extremely comfortable in their
mathematics abilities (as current and future mathematics teachers), but they were
not confident in their science and engineering abilities.

All I am really good at (or really familiar with, I should say) is the mathematics part of
STEM. The traditional mathematics classroom is what I was familiar with because that is all
I had really ever seen. So needless to say I was a little nervous about stepping into a class
and camp that dealt more with science and technology than mathematics. But now I’ve
been through the class and camp, I see that they are all intertwined and I love it! (Teacher
Final Reflection 2014)

Another teacher stated he was also confident in his mathematics skills as a future
mathematics teacher, but he had not taken any science classes since high school and
felt he had limited abilities in engineering and technology. But, he now felt “more
connected to all of the disciplines.”

Since many of the teachers were primarily only confident in their mathematics
abilities (all but five were mathematics concentration) they deepened their content
knowledge in various STEM disciplines as they participated in the informal field
experience—See Blue STEM Camp. In one session that focused on energy, the
teachers were surprised to discover that cement acts like a glue to hold concrete
together. The teachers had the misconception that cement dries and that is why it
hardens. They were shocked to discover this in fact was not true. Instead, the
cement undergoes a chemical reaction, hence why cement needs to sit untouched
while it cures.

The teachers’ understanding of STEM was broadened not only from the STEM
content sessions, but also from the middle level students participating in the camp,
particularly during the robotics sessions. One teacher stated, “I didn’t truly grasp the
programming side until camp actually started. I would say the kids in the camp
helped me more with understanding complex programming on the EV3s than
anything else did” (Teacher Final Reflection 2014). One teacher felt uncomfortable
knowing the students were able to pick up on the technology faster than he could.
He confessed, “It made me feel a little inept because of how long it took me to
program the robots to do a square compared to how quickly the students could do
it” (Teacher Reflection 2014). But, a majority of the teachers were not intimidated
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by the students’ knowledge. In fact, teachers were simply amazed at what the
students could do and how quickly they picked up the programming language.
Teacher knowledge deepened through their hands-on experience with the students.
In fact, one teacher selected a pair of students and followed them through the
process of programming to modeling their robots programming functions. He
learned that “each robots’ programming was slightly different in the number of
increments increasing and decreasing based on the programming function they were
attempting for their robots” (Teacher Reflection 2014). Another teacher stated she
learned a lot helping students code their robots.

I learned you can manually rotate a motor to see how many degrees it is turning. Also, the
order in which the motor ports are selected in the code makes a difference. I’m not sure if
this is also true for the EV3, but the NXT will not turn correctly if the ports are selected in
the order opposite to the previous block in the code. (Teacher Reflection 2014)

The teachers recognized that not only were they teaching the students, the stu-
dents were teaching them. “This is something that I think is very important for all
future teachers to realize. Students will teach you just as much as you teach them”
(Teacher Final Reflection 2014).

The many varied STEM experiences helped teachers better understand STEM.
Subsequently, they became excited about the different ways they could take what
they learned into their classrooms. The teachers were involved in activities ranging
from extracting DNA, interacting with human organs, sending a magnetic ball
through PVC and a copper pipe, and geocaching and mapping using Google Earth.
They exclaimed how they would like to use all of the activities from STEM Camp
in their classrooms. A teacher voiced some hesitation, but realized the importance
of it.

As a mathematician, we enjoy knowing a specific algorithm to solve a given problem. As a
STEM educator and student, we must embrace several methods and different attempts to
reach a certain result. I am nervous about working across disciplines because I am not an
out of the box thinker. Recognizing this now is beneficial to my growth. (Teacher Final
Reflection 2014)

In the preceding excerpt, the teacher distinguished between being a mathematics
and being a STEM educator. The perspective the teacher shared reflects what many
of the teachers realized; namely that STEM was more about the integration of the
four subjects. Even more, the activities they participated in via the robotics course
and the See Blue STEM Camp broadened their view of STEM. A teacher stated, “I
have learned some great ways to introduce integrated STEM activities to students
for engineering, robotics and many other content shifts” (Teacher Reflection 2015).
A teacher summed it up by saying, “I love seeing STEM in action, not just theory”
(Teacher Reflection 2015).
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5.5.2 Instructional Practices

The majority of the teachers discussed the importance of including hands-on
activities to keep students engaged in the lesson. While they had learned and been
exposed to hands-on activities during their teacher preparation program, they saw
limited formal classroom enactment of such tasks. From their experience with the
camp, they recognized students learned more through hands-on tasks and that the
tasks sustained student engagement with the topic. A teacher stated, “It seems like
everyone had a lot of fun with the interactive stations. It is such a simple way to get
students engaged, which is something I hope to bring to my classroom in the
future” (Teacher Reflection 2014).

The potential for supporting implementation of hands-on activities with the use
of questioning was effectively modeled during the sessions. Consequently, teachers
were able to observe questioning as an effective instructional practice. Though the
teachers had learned in their teacher preparation program the power of asking
effective questions to push and challenge students’ thinking, they had the oppor-
tunity to witness first-hand how a question sparked discussion, engaged students,
and deepened students’ understanding. For example, during one session of camp
focused on modeling the systems of the human body, the presenter asked the
students “what it felt like to be out of breath” and what was happening to the body
during this time. The preservice teacher commented in his final reflection that this
particular question generated a powerful discussion. The preservice teacher
remarked, “Seeing this idea in practice was encouraging and made me realize even
more why that is a good method of instruction, especially in teaching science”
(Teacher Reflection 2016). However, some teachers were not accustomed to having
students think for themselves and solve a task. They were used to being the sole
source of knowledge; they found themselves having to refrain from giving students
answers to STEM tasks. A teacher realized that he needed to work on his ques-
tioning strategies and let the students figure out the task for themselves so they
could learn it.

Sometimes it is best to have them walk you through the process and give some positive
encouragement for what they did right. Usually having the students vocalize what they did
gives them a way to hear when they actually missed a step. You can guide them with good
questions if they still can’t figure it out. There is a difference in giving the answer directly
and asking probing questions to check for understanding. (Teacher Reflection 2014)

In addition to questioning, the teachers saw the importance of differentiating
instruction to meet the needs of all of the students. A teacher articulated, “The thing
for me to remember was that there are many different personalities and ability
levels, each with their own learning style and needs, and a teacher has to recognize
them and treat them accordingly” (Teacher Reflection 2016). One way the teachers
voiced this could be accomplished is to provide students multiple methods and/or
strategies to solve a task. A teacher commented, “There are multiple ways to learn a
topic, and therefore as a future teacher, it shows me how important it is to explain
something to my kids in different ways to best meet their learning [needs]”
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(Teacher Reflection 2014). Moreover, a teacher argued that some students may
need additional scaffolding to help them solve a task, while others may be able to
coach themselves through the task without any support. As one of the teachers was
working with some students who were struggling on a robotics task, she informed
them that students “who solve problems easily don’t learn anything, while the ones
who struggle to solve even one problem learn so much more and get so much more
out of it” (Teacher Reflection 2016).

The teachers also gained first-hand experience on what it meant for a teacher to
be flexible. They learned the importance of adapting their instruction in the
moment. During STEM Camp one of the robotics instructors had to adapt his
instruction due to materials not being assembled. The teachers were glad they had
the opportunity to see how to handle situations when the lesson did not go as
planned. “I gained insight in how to adapt to things not going right. [The instructor]
was really good at adapting the plan and it is something that I would like to develop
as a teacher” (Teacher Reflection 2014). One teacher realized he has to be more
flexible in how he thinks about his own teaching. He remarked, “I have had a very
rigid view of mathematics and unfortunately that has influenced the way I teach.
Math does not always have to be black and white, right or wrong, although there are
occasions for that. I need to allow for flexibility” (Teacher Final Reflection 2014).

Teachers recounted how participation in the informal field experience allowed
them to observe the implementation of effective instructional practices and the
importance of differentiation and flexibility in achieving instructional goals.

5.5.3 Students’ Excitement

The teachers had an opportunity to witness students’ excitement when learning
STEM content. They expressed that seeing students’ enthusiasm in these disciplines
was rare. “I liked seeing students excited about learning! We do not see students
interested in education and learning everyday, especially math” (Teacher Reflection
2014). Many of the teachers did not expect students to be so engaged in learning
and enthusiastic about learning STEM concepts, especially since many of the
students did not enroll in the camp because they enjoyed the STEM disciplines. One
teacher commented, “I didn’t expect them to be this excited, to be honest” (Teacher
Interview 2015).

With the excitement, the teachers noticed how persistent the students were and
refused to give up even when they were unsuccessful completing various tasks. The
teachers were impressed by how the students “threw themselves with reckless
abandon at some of the problems they faced” (Teacher Reflection 2016). In fact,
one teacher articulated, “I was impressed with the persistence of many of the
groups. Even when some kids got frustrated, they refused to give up. It was
awesome to see!” (Teacher Reflection 2014). Another teacher commented,

5 Gaining Valuable Field Experience Through the Use of Informal … 75



My blue group started the Green City Challenge today and everyone (including myself)
seemed overwhelmed with all of the different tasks they could try with their robot at first.
But, after a while the students were getting the hang of it and learning to take the pro-
gramming step by step. They were getting so into it and it was great to see them cheering
when they accomplished something new. (Teacher Reflection 2015)

The teachers were amazed at how the students took ownership of their learning.
They stated the students would ask for help, but then would say, “never mind, I’ve
got it.” The students realized they did not need the assistance of the teachers to
complete the task. They recognized they could figure it out on their own. Therefore,
after the students’ successful completion of each task, the teachers noticed they
would jump up and down, smile, cheer, and take a “walk of victory.”

Through this informal field experience the teachers recognized that not only
were they teaching the students, the students were also teaching them. One teacher
remarked, “While I was teaching, I was also learning, and while the kids were
learning, they were also teaching me. This is something that I think is very
important for all future teachers to realize. Students will teach you just as much as
you teach them” (Teacher Final Reflection 2014). Another teacher further expres-
sed, “The amazing thing is I learned even more from the students during STEM
camp. They were pointing things out to me that I didn’t even know existed, so I feel
confident in my knowledge both of the robots and the programming as well”
(Teacher Final Reflection 2014). To sum it up, a teacher concluded, “The neat thing
is that I have learned so much more about programming from watching, and talking
to the kids; obuchenie (teacher and students learning from each other)” (Teacher
Reflection 2015).

5.5.4 Applying What Was Learned in Practice

I could point out dozens of little incidents and moments all throughout the camp, but they
can best be summarized as this: teaching is a wonderful burden. It has its triumphs and
setbacks, endless frustrations and moments of sheer joy. The days are long but never quite
long enough. The students are both the cause and the relief of your headaches, and you will
curse them while you thank the Creator for each last one of them. (Teacher Reflection
2016)

Looking specifically at the preservice and inservice teachers included in this
study (n = 23), the teachers stated that while they loved what they experienced in
terms of instruction and integrated content during the robotics course and STEM
camp, they find it difficult to integrate into their daily mathematics instruction.

… yeah we made gak, and I really want to do that in class one day or maybe if we could
have him come in or have someone come into do it just so they could see some hands on
stuff, but it always ends up falling through because like we map tested for the past two days,
I have to give a final next week, I have to give a test next week in my other classes; so it’s
really hard to plan …. (Teacher Interview 2016)
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Although the teachers found it challenging to do some of the hands-on activities
they experienced during STEM Camp, they were able to implement several
instructional strategies they learned about and reflected on.

I’m able to bring in a lot more examples from outside. So before, especially with the older
staff here, it’s just very straightforward, but then now [sic] I’m able to kind of talk about
some of the stuff where programming comes in;… sometimes I’ll try and bring in questions
like “where do you think this could come from” or how this could be useful where you
would see it and so some of the students who have done the stem camp can go “oh yeah,
we’ve done this before”; uh, especially when we start talking about rotations with graphing
and everything like that; … so it’s kinda those extension questions to bring on and then it
kinda peaks the interest of the students that haven’t done it like “oh, what are you talking
about”; and then we have a robotics course uh through electives that a lot of the students
take; I don’t know if it’s just a robotics course, but they get out the robots and do things
with them; so it kinda makes those nice connections between their elective course and their
core classes. (Teacher Interview 2016)

Unlike the teachers who taught mathematics, the STEAM teacher regularly
integrated the content learned from the course and STEM Camp.

Yeah, um since I’ve transferred to STEAM, I’ve strived to take a focus of project based
learning and the whole idea of STEM camp is to engage students in different projects and
different problems um instead of just worksheets of math and science and technology, just
problems after problems, more of like real world problems where they have to assemble,
disassemble and assemble a robot for instance. Or uh build a dam that can support so much
water. So those kinds of problems are problems that we actually face um as people. We’re
changing the emphasis more towards just doing the content to applying the content in a real
world setting. (Teacher Interview 2016)

School structure impacts feasibility of implementation of integrated content
(Chiu, Price, & Ovrahim, 2015; Honey et al., 2014), which is evident in these two
school settings. It is important to note that the largest impact of the camp was on all
the teachers’ instructional practices. The teachers voiced they were planning and
implementing engaging lessons and asking purposeful questions. The teachers
noticed and were surprised by how they asked questions to their students, which
they attributed to being a participant in the camp.

… I do a lot more scaffolding with my instruction, as well as get the students up a moving
around to get them awake and their brain working at full capacity. (Teacher Interview 2016)

While the data collection methods do not offer a big picture regarding classroom
impact, it does offer some direction towards how we can better support participants’
integration of what they learned from the informal field experience.

5.6 Limitations

Although this course counted towards requirements for degree completion at the
university, it was not a required course taken by all preservice and inservice
teachers in our programs. Teachers who enrolled in the course self-selected into the
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course and had some sort of desire to learn more about robotics and STEM. Further,
the data from this study included self-report data.

5.7 Conclusions and Implications

5.7.1 Conclusions

The See Blue STEM Camp was an informal learning environment in which teachers
meaningfully engaged in as a field experience requirement in the robotics course
they took in the summer. The teachers expressed that through participating in the
informal field experience they learned more about classroom instruction, students,
classroom management, and what engagement looked like through this authentic
experience. They also saw firsthand the importance and necessity of creating a
positive classroom community.

I think my biggest take away [sic] from this course is the mindset that the students were
allowed to have while completing assignments and practicing with their robots. (Teacher
Reflection 2016)

I was amazed by the engagement and motivation of the middle-school students whenever
they were faced with challenges. The students definitely learned more than robotics in this
camp; they also learned life lessons such as patience, determination, perseverance, and
teamwork. (Teacher Reflection 2016)

Teachers expressed the students worked well together, especially surprising to
most of the teachers since a majority of the students did not previously know one
another. One teacher commented, “Pretty much everyone was getting along with
their partners … more people [are] becoming friends” (Teacher Reflection 2015).

Through the informal field experience, teachers were exposed to and engaged in
a transdisciplinary STEM experience that provided them with a low-stakes envi-
ronment to hone their teaching skills and knowledge. The traditional field experi-
ence in siloed (e.g., mathematics, biology) classrooms continue to prohibit teachers
from developing their own STEM literacy as teachers and learners. The informal
field experience via the robotics course the teachers engaged in were aimed at
providing an embedded pedagogy to increase STEM literacy and learning in con-
text intended to influence the delivery of STEM learning in their classrooms.
Informal field experiences, and informal learning environments in general, can be
an important tool for providing preservice and inservice teachers with unique
opportunities to experience content in ways different than how they were trained
and/or different than how their school currently supports it. As one teacher pro-
claimed, “I’ve had very limited experiences with STEM in general, so everything
I’ve been learning has been new” (Teacher Interview 2015). As educators, we need
to engage teachers in experiences that foster their STEM literacy, which will ulti-
mately support STEM teaching and learning. When the learning experiences inte-
grate STEM-related content, gains are possible to support STEM teaching and
learning.
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The course was great. I enjoyed my time in it and have taken away many things from it, not
only in programming and robotics, but in other important areas like classroom practice.
I would certainly encourage other … students to enroll in this course because the benefits
are multifaceted and far reaching. Truly, it’s a unique experience …. (Teacher Reflection
2016)

The course increased my confidence about working in STEM environments and stimulating
scientific thinking in students. That confidence was built during STEM camp with the skills
I developed from the classroom/online portion of the course. It was all about asking the
right questions of the students, to stretch their thought process. (Teacher Reflection 2016)

After EGR 599 and STEM Camp, I have gained confidence in my ability to work across the
STEM disciplines. The sessions showed me how diverse the STEM field can be and how
each particular discipline contributes to learning and exploring the others. The professors
did an excellent job of explaining their fields and how they fit into the interconnected idea
of STEM. I feel that I have a better sense of the broad scope of applications of STEM. I also
feel better prepared to help students understand the relevance and importance of developing
a deeper understanding in each of the STEM components in order to become a
well-rounded scientist or engineer or doctor. (Teacher Reflection 2016).

Overall, teachers consistently expressed surprise that they learned as much from
the students as they learned from the session leaders. They were impressed by the
students’ knowledge, persistence, and ability to learn quickly. Teachers also
expressed surprise in the relationships and camaraderie the campers formed. These
observations are counter to the social stereotypes of STEM because the camper’s
demographics are more representative of the current U.S. population instead of the
white, male, Einstein-like image that most envision for a scientist or STEM-person
(Chambers, 1983; Picker & Berry, 2000). Teachers recognized the value of dif-
ferentiation based on readiness as well as their environment. Facilitating student
connections to their lives instead of forcing the teachers’ ideas of right and wrong is
a powerful shift in teaching practices toward an equity lens. This study did not
examine teachers’ conceptions of traditionally underrepresented populations in
STEM. However, literature from other fields (Baldwin et al., 2007; Boyle-Baise &
Sleeter, 1998; Deering & Stanutz, 1995) discusses the power of informal learning
environments on teaching for social justice and equity. Research into how teachers
encourage and promote STEM to underrepresented groups is needed and an
essential area of further examination.
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Chapter 6
Diagnosis-Based Adaptations
of Mathematics Lessons: Analysis
of the Implementation by Prospective
Teachers During Practical Phases

Matthias Heinrich

Abstract What conclusions do prospective teachers draw from their students’
current learning level for their own lesson planning? Why do they draw these
conclusions? Within an empirical-qualitative study, 15 prospective teachers planned
a mathematics lesson during their practical phase. They were asked to diagnose the
learning level of their students and then modify the planned lesson, if they thought it
to be necessary. First, a system of categories was developed, describing their
interpretations of the diagnosis, the modifications of the planned lessons and their
justifications. Afterwards, eight different, recurrent types of decisions were identi-
fied. With these results it was possible to generate a process model, which helps to
understand how the prospective teachers came to their decisions.

Keywords Adaptive teaching � Diagnosis � Empirical-qualitative study
Mathematics lessons � Prospective teachers

6.1 Introduction

Planning lessons is an essential component of a teacher’s professional duties
(Baumert & Kunter, 2006). Due to the fact that there usually is heterogeneity within
a class (Baumert et al., 2001) diagnosis as well as individual improvement, which
can be implemented in the form of adaptive teaching, have gained in importance
over the past few years. Furthermore, the importance of diagnostic competences on
the part of the teaching staff has long been empirically proven (e.g. Karing, Pfost, &
Artelt, 2011). Effective as well as lasting teaching and learning processes may be
initiated by tying in with individual learning levels (Hußmann & Selter, 2013).
Politics and society demand that prospective teachers should already be capable of
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diagnosing learning levels and using particular improvement measures at the end of
their education (Sekretariat der Ständigen Konferenz der Kultusminister der Länder
in der Bundesrepublik Deutschland, 2004). In Germany, the principles of these two
educational aspects—diagnosis and adaptive teaching—which are taught at uni-
versities, must already be executed by the prospective teachers during the two
practical phases of their education. During each practical phase, they gather
experiences as a teacher for about five to seven weeks at a school.

The examination of this topic—the implementation of diagnosis and adaptive
teaching by the prospective teachers during their practical phases—can be profitable
because of a variety of reasons: The research of teachers’ competences in the scope
of diagnosis and the planning of adaptive lessons comprises a wide range of nec-
essary skills. These include amongst others: planning lessons in general, evaluating
the learning difficulties of a topic, appraising the students’ prior knowledge and
considering this prior knowledge while planning lessons. All of these skills must be
combined when planning adaptive lessons (Heinrich, 2017). Thus, it is important to
examine the adaptive planning competences of prospective teachers and to expand
our comprehension of these. Furthermore, diagnosis and adaptive teaching are
primarily theoretically developed concepts (Moser Opitz, 2010; Schwarzer &
Steinhagen, 1975), whose implementation in actual classes has not been investi-
gated yet. Finally, not only the planning of lessons, but also the diagnosis of the
students’ learning level were defined as a significant duty of the teacher education
by the education ministers of the German federal states (Sekretariat der Ständigen
Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland,
2004).

The main concern of this study is the following question: How do prospective
teachers implement diagnosis and adaptive teaching in their practical phases? This
scientific contribution addresses especially the following research questions: Which
conclusions do prospective teachers draw from their students’ current learning level
for their own lessons? How do they justify these conclusions? Which argument
types, each consisting of an interpretation of the diagnosis, a consequence for the
lesson and its justification, can be identified? How can the process from a diagnosis
to the adaptation of a lesson, which focuses on uncovered prior knowledge, be
theoretically and empirically modelled?

6.2 Theoretical Framework

School education, which aims to support the learning processes of each individual
student, requires the adjustment of lessons and the level of difficulty of questions
and exercises to the students’ individual learning conditions (Helmke, 2014). This
teaching approach is based on the assumption that a person learns an ability, such as
multiplication, better with a teaching method that is suitable for him or her than
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with another method, which is per se just as good (Cronbach, 1975). The individual
learning processes of the students are considerably too diverse and multilayered, so
that the use of one certain teaching method cannot achieve a learning success with
all members of a heterogeneous group (Beck et al., 2008). But such an adaptive
education needs a precise diagnosis of these conditions, so that the improvement
measures are suitable for each individual student (Hesse & Latzko, 2011). If the
individual’s learning conditions have not been unearthed, it is not possible to adjust
lessons to that individual’s needs. Therefore, teachers must be amongst others
competent in diagnosing students’ learning conditions.

The notion of diagnostic competence “(that, in English, might have some
medical connotations) is used for conceptualizing a teacher’s competence to
analyse (sic!) and understand student thinking and learning processes without
immediately grading them” (Prediger, 2010, p. 76). In general, there are different
reasons to conduct a diagnosis. Usually they are used at the end of a certain subject
to evaluate the students’ learning gains. However, diagnoses can also be conducted
to unearth the students’ current learning level to optimize lessons. In this case the
diagnosis is used either at the beginning of or during the covering of a specific
subject. This second type of diagnosis is the one that is addressed in this study.
Many authors and organizations attach great significance to the skill of diagnosing
students’ learning levels, for example the National Council of Teachers of
Mathematics in its Standards and Principles: “Effective mathematics teaching
requires understanding what students know and need to learn and then challenging
and supporting them to learn it well” (NCTM, 2000).

Adaptive planning and adaptive teaching is another significant competence of
teachers in this matter (Beck et al., 2008). This is the competence, which enables
one to tie in with the individual learning conditions of the students. Overall,
teachers have a lot of possibilities to react to the differences in their students’
learning conditions (König, Buchholtz, & Dohmen, 2015). Ignoring these differ-
ences, which is the passive reaction form, could lead to an increase of these dis-
crepancies. The substitutive reaction form describes organizational courses of
action, which are supposed to lead to a homogenization of a learning group, such as
the repetition of a grade or external differentiation. Here, the students are adjusted to
the lessons. An adjustment of the lessons to the students seems to be more
preferable. According to König et al. (2015) this is executed in the active reaction
form. The lessons are adjusted to the students’ needs and learning differences and
this is what adaptive teaching is about.

Corno and Snow (1986) describe that adaptive teaching can be implemented on
two different levels. They distinguish between micro- and macro-adaptations. The
short-term adjustments teachers make during their lessons are called
micro-adaptations. Usually these emerge from observations and subjective judge-
ments (Schrader, 2013)—which are among implicit forms of diagnosis—because
teachers have to analyze the learning conditions, the learning success as well as the
learning difficulties of their students throughout the implementation of a lesson
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(Schrader & Helmke, 2001). This is different when making far-reaching, long-term
decisions, so called macro-adaptations, for an entire lesson or teaching unit. Here,
teachers have enough time to conduct an explicit diagnosis of their students’
learning conditions (ibid.).

So far has been discussed that in order to adjust a lesson to the individual
students’ needs teachers need to be competent in diagnosis their students’ learning
levels as well as in adaptive planning and teaching. In addition, teachers must be
able to clarify the mathematical content. This is necessary to get an overview of
what the students should learn during the lesson or unit and to already get an idea of
the possible learning difficulties. Teachers also need to know how to identify the
necessary subject-related learning conditions of the lesson to be planned, because
these are the aspects that have to be looked at during the diagnosis. Figure 6.1
shows a theoretical modeling of the modification process of a lesson to the students’
learning conditions. Of course the second step—planning a lesson—need not be
executed before the diagnosis. Especially experienced teachers might be able to
skip it. However, it is presumed that it is easier for prospective teachers to diagnose
the needed learning conditions for a particular lesson that has already been planned
than for a vaguely envisaged learning process.

The principles for the steps discussed above are all taught at the University of
Oldenburg, where this study took place—this includes principles for teaching
mathematics in general, but not for adaptive teaching specifically. But does this
mean that prospective teachers automatically succeed when they try to implement
these theoretically developed principles during their practical phases? According to
Patry (2014) this is very unlikely. He states that scientific theories are usually broad
and therefore rarely concrete. This means, there exists a gap between theoretical
principles and practical implementation. This gap must be closed by the prospective
teachers. Furthermore, they also need to pursue several goals at once, which are
addressed in different theories, and they must revert to multiple of their own beliefs.
In addition, acting adequately is very specific to each individual situation. In other
words: Prospective teachers must react appropriately to a specific given situation,
while they pursue a variety of goals. Thus, multiple action-guiding beliefs are
activated in their minds, which they must cope, while they can only resort to very
few theoretically developed principles that must be adapted to the specific situation.
This means that a direct translation into an action is not possible without additional
effort.

To sum up, prospective teachers are supposed to be able to diagnose the learning
level of their students and react to it accordingly by the end of their education. To
do so they need to possess a variety of competences, such as diagnostic or adaptive
teaching competences. The problem is that it is not sufficient, if they only know the
theoretical principles of these aspects. These theoretical considerations lead to the
main concern of this study: How do prospective teachers implement diagnosis and
adaptive teaching in their practical phases?
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Fig. 6.1 Theoretical modeling of the modification process of a lesson to the students’ learning
conditions
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6.3 Research Design

The presented research questions already indicate that the pursued issue is the
comprehension of the individual actions and argumentations of prospective
teachers when adjusting a lesson to their students’ learning conditions. Therefore,
an empirical-qualitative research approach was used (Mayring, 2014). The research
of the implementation of adaptive teaching in practical phases by prospective
mathematics teachers has to date not occurred (e.g. König et al., 2015). Hence, it
was appropriate to use an explorative research design, which allows to develop new
hypotheses in a relatively unexplored area, or to establish theoretical or conceptual
requirements, so it is possible to formulate initial hypotheses (Bortz & Döhring,
2006). Below will be described what the participants of this study had to do and
then the sample will be characterized.

The assignment addressed itself to prospective teachers, who were at that time
about to start a practical phase at a secondary school, which lasted five to seven
weeks. During this time they had one week to get to know the school, to observe
some teachers in their classes and to decide in which classes they wanted to teach.
In the second week they started to teach about one or two lessons per day. The
prospective teachers worked on the following assignment in a class and a grade of
their choice during the second or third week of their practical phase.

First the prospective teachers chose a specific mathematics lesson for this
assignment. Then they began to plan it. During this step they were supposed to
already think about the necessary subject-related learning conditions that the stu-
dents needed to have in order to reach the goals of the lesson. Afterwards the
prospective teachers designed a few diagnostic math problems to determine the
learning level of their students in school. A few days before the implementation of
the planned lesson they gave these diagnostic math problems to their students,
which worked on them during a prior math lesson. After the prospective teachers
collected the students’ answers, they analyzed the students work and interpreted the
results of the diagnosis. Then they were asked to modify their planned lesson with
regard to the diagnostic results, if they thought this to be necessary. The last step
was to implement the (possibly modified) lesson. During these steps the prospective
teachers were not supervised and they were not allowed to accept any help from the
experienced math teachers.

In addition, an open, partially standardized, guided interview was conducted
after the implementation of the lesson, in which the prospective teachers’ thoughts
and decisions were put into focus. Here they talked about their interpretations of the
students’ learning level as well as their reasons for the chosen modifications. These
interviews were videotaped and then transliterated by the author. Overall the fol-
lowing data was collected: the first teaching plan, the developed diagnostic tool
including the students’ work, the modified teaching plan and the interview tran-
scripts. The research design and the research focus are shown in Fig. 6.2.
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In February 2013, 15 prospective mathematics teachers participated in this study.
Seven of them were female and eight were male. All prospective teachers studied
mathematics to become a secondary school mathematics teacher. At the time twelve
participants were in their seventh semester, three in their ninth (standard period of
study in Germany: ten semesters). So, all of the prospective teachers had attended a
lecture, which broached the issue of fundamental mathematics education. This
included the justification and legitimation of mathematics as a part of the general
education, reflections of the specifics of mathematical work, psychological princi-
ples of individual learning and social learning processes as well as consequences for
the improvement of mathematical learning in the context of mathematics instruc-
tion. In addition, ten of them had gone to a lecture, which aimed to deepen their
didactical understanding of either stochastics and analysis or geometry and algebra.
Moreover, five prospective teachers already had participated in a seminar with an
emphasis on diagnosis. Here they were taught how to develop diagnostic math
problems and how to analyze students’ answers. The fact that only five prospective
teachers anticipated in this seminar led to the decision that all 15 prospective
teachers had to attend a further seminar before entering the practical phase. In the
course of the seminar they were shown criteria for “good” diagnostic math prob-
lems, they practiced developing such problems and how to analyze students’
responses. However, the issue of adaptive teaching was not broached.

Still, it was—of course—possible that the prospective teachers identified the
wrong learning conditions of the planned lesson or that they developed inadequate
diagnostic math problems or that they analyzed the students’ answers incorrectly or
that they interpreted the results of the diagnosis wrong. This would be very
unfortunate, but it does not affect the results of this study, because the focus is put
on the decision process from the interpretation of the diagnostic results to the
modifications of the planned lessons (see Fig. 6.2). At the end of the second step of
the theoretical modeling of the modification process (see Fig. 6.1) the prospective
teachers thought they had unearthed their students’ learning conditions and this
study wanted to understand what conclusions they drew from these. So at this point
it does not matter, whether they identified the learning conditions correctly—of
course for the implementation and the learning process of the students it makes a
huge difference.

Fig. 6.2 Graphical representation of the empirical research design and the research focus
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6.4 Analysis Method

Below the used methods of analysis are described. Here, the focus lies both on the
approach of the collected data and the typification of arguments, because the used
procedures were strongly adapted. However, the formation of the system of cate-
gories will not be depicted in detail, since Mayring’s (2014) approach was
implemented one-to-one.

6.4.1 Approach to the Collected Data

With a view to the collected data rose the question, how it could be compressed. This
question came up because of two reasons: On the one hand, the data of the 15
prospective teachers was quite extensive. On the other hand, the participants of the
study expressed many comments, which partly repeated themselves or were formu-
lated in a different way—for example in the modified lesson plan and later during the
interview. Here, it was the duty of the researcher to extract the statement that devel-
oped itself from these comments (Klein, 1980). The data was coded by the author of
this contribution as well as another person with a mathematics education background.

For this purpose several procedures by Mayring (2014), which he proposed in the
course of his Qualitative Content Analysis, were utilized. First of all a selection
criterion was defined, which was determined by the theoretically derived subject of
the creation of categories meaning the research questions of this study. This selection
criterion allowed ignoring unimportant from the topic deviating text passages. The
research questions suggested that only those statements were of interest, which
addressed the results of the diagnosis, the prospective teachers’ interpretations of the
diagnosis results, the consequences for the planned lessons and the justifications for
these consequences. All further comments were disregarded.

Hereupon the data set wasworked through line by line (Mayring, 2014). As soon as
a text passage complied with the selection criterion, which means that it could be
assigned to one of the four described aspects above (result, interpretation, conse-
quence, justification), it was color-coded and finally written out. Afterwards these
commentswere paraphrased. This included the elimination of all text components that
lacked of content as well as the translation of all the remaining text components to a
homogenous language level. For example, George’s comment “However, it is also
noticeable that a few students have problems to calculate the area of rectangles” was
translated into the paraphrase “A few students have problems to calculate the area of
rectangles”. George expressed this in his second lesson plan. As he talked about the
same diagnosticmath problemduring the interview, hementioned “A few of themhad
difficulties with the calculations”. This comment was also translated into the above
paraphrase. Subsequently the originated paraphrases were reduced by combining
those, which broached the same or at least a similar matter (Mayring, 2014). So from
George’s two comments, inwhich onewas given inwriting and the other one verbally,
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derived with this procedure the above paraphrase. According to Klein (1980) this
paraphrase represents a statement, which George expressed using different comments
—as shown above.All of the text passages that were extracted from the data set during
the first cycle were treated in this way.

During the last step of the reduction of the collected data the statements of the
prospective teachers were grouped according to the four aspects of the selection
criterion, before another cycle of the data set was used to search for connections
among these arguments. This enabled the graphic representation of which conse-
quences deduced with which justification from which interpretation of which diag-
nosis result. Thus at this point so called argument trees (Klein, 1980) were utilized,
which visualized not only the individual statements of the prospective teachers, but
also how these statements formed an argument with one another (see Fig. 6.3). These
argument treesmade it possible to see all of the prospective teachers’ diagnosis results,
interpretations, consequences and justifications on a single page.

Afterwards an inductive system of categories was developed from the data set on
hand. For this process further techniques of the Qualitative Content Analysis by
Mayring (2014) were resorted to. Here especially his technique Summarization and
Inductive Category Formation was used to form categories in the following three
dimensions: the interpretation of a diagnosis result, the consequence for the planned
lesson and the justification for this consequence. A full display of the taken steps
during the development of the inductive category systems would go beyond the
scope of this contribution, especially because the steps were implemented just like
Mayring (2014) suggests them. However, Fig. 6.4. will give an overview of the
analysis steps.

Fig. 6.3 Argument trees of George

6 Diagnosis-Based Adaptations of Mathematics Lessons … 91



Fig. 6.4 Steps of inductive
category development; based
on Mayring (2014)
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6.4.2 Typification

Below, how argument types were generated with the aid of the developed system of
categories will be described. Overall this analysis procedure was oriented towards
typification methods described by Kelle and Kluge (2010), but considerations of
Mayring’s (2014) type-building content analysis were partly taken into account as
well. Kelle and Kluge (2010) formulate that a typology is the result of a grouping
process. Thereby it is crucial that at the end internal homogeneity on the level of the
type as well as external heterogeneity on the level of the typology is given. This
means on the one hand that the individual components of a type should be quite
similar, while on the other hand the types themselves should be very different from
each other. Kelle and Kluge (2010) distinguish between one-dimensional typolo-
gies, which can be developed with regard to one single attribute, and multidi-
mensional typologies, which are generated from a combination of attributes. In the
second case the essential categories are combined and thereby an attribute space is
created. This process can be illustrated clearly with the help of cross tables.

First of all, according to Mayring (2014) it is necessary to define the typification
dimension plus the related specifications in order to work through the data set. In
the study on hand, argument types were composed, which consist of a prospective
teacher’s interpretation of a diagnosis result, a consequence for the planned lesson
and its justification. Consequently, the goal was not to assign a complete
prospective teacher to one type of argument, but his or her arguments. So it was
possible that the arguments of one prospective teacher would be allocated to
multiple types. Thus, the typification dimension and its specifications were defined
with the just mentioned aspects. A new cycle of the original data was not required,
since the constructed argument trees already gave an excellent overview of all the
existing arguments.

A typification process can be divided into four phases (Kelle & Kluge, 2010),
which were all executed in the course of this study. First it was necessary to create
relevant comparative dimensions, so that it was possible for categories to originate.
These categories were needed both to identify similarities and differences between
the arguments as well as to describe the developed types. This phase is similar to the
above mentioned first step of Mayring (2014) and was already completed with the
formation of the inductive category system.

During the second phase, the prospective teachers’ arguments were grouped and
empirical regularities analyzed. For this purpose the prospective teachers’ state-
ments were classified using the comparative dimension and the already developed
categories. Via the use of multidimensional cross tables and the utilization of
attribute spaces it was possible to determine all potentially appearing combinations
of the categories as well as the actual frequency distribution of these combinations.
The contrasting of arguments was also a part of this phase. This meant that argu-
ments, which consisted of a certain combination of categories, were compared with
one another to verify the above mentioned internal homogeneity of the originated
types. In addition, it is essential to compare the types with each other to check if the
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external heterogeneity is fulfilled, because the diversity of the data set should be
represented in the developed argument types.

The analysis of the content-related context was the focus of the third phase. The
goal of the typification is not just to describe the appeared frequencies, but also to
understand and explain the prospective teachers’ arguments. Again, both the
individual arguments within a type and the types themselves were compared and
contrasted. The result of this analysis was that (a) arguments were moved to dif-
ferent types, because they were more similar to the arguments there, (b) peculiar
arguments were for the time being ignored and later examined separately and
(c) multiple types were combined, because they were similar to one another. This
led to a reduction of the attribute space and hence to a decrease of the number of
appearing combinations of attributes.

In the concluding fourth phase, the developed types of arguments were char-
acterized on the basis their combinations of attributes as well as the identified and
reconstructed content-related contexts. Kelle and Kluge (2010) note that many
researchers would forget that this phase is an independent analysis step and yet the
characterization is essential for the copious description of the individual types and
for the further classification of other arguments. But one should also have in mind
when describing similarities that the elements of a type are not identical. They are
only similar. Both Mayring (2014) as well as Kelle and Kluge (2010) recommend to
choose an illustrative prototype, which resembles the respective type especially.

6.5 Results of the Empirical-Qualitative Study

Below, the results of this study will be illustrated. First, the categories of two of
the three dimensions—consequences and justifications—are explicated. Second, the
eight identified argument types are depicted. Third, the empirical modeling of
the modification process is described.

6.5.1 Consequences for the Lesson Planning

First of all, the consequences that prospective teachers deduced from their diagnosis
for their planned lessons are presented. The analysis of the data set indicated the
following five categories in the dimension consequences for the planned lesson:

1. no modifications
2. modifications of the subject-related content
3. modifications of a teaching step
4. adding support for or simplifying of a math problem
5. adding a learning objective
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A total of 51 statements were classified in this dimension. Most of the time the
prospective teachers came to the conclusion that the diagnosis results indicated that
no modification was necessary. The second category includes modifications such as
removing subject-related content from the current topic, illustrating the link
between two mathematical concepts, establishing the relationship to everyday life
or adding a revision, in which subject-related content from past topics is supposed
to be reactivated in the students’ minds. The consequences that were assigned to the
third category refer to adding exercise sheets, changing the group classification or
the educational reserve, or adding or changing the teaching step of securing the
results. Modifications like adding solution cards, aid cards, written or oral hints, or
diagrams, which are to support the solving process of math problems, fall into the
fourth category. In addition, simplifying math problems is also a modification in
terms of the fourth category. Only one statement was classified into the fifth cat-
egory, but it is highly probable that the other prospective teachers pursued addi-
tional learning objectives with their modifications as well—however, they did not
express this explicitly.

Overall, the data showed a broad scope of lesson modifications by the
prospective teachers. It is possible to understand their planning decisions, if these
modifications are linked to the correspondent justifications and the interpretations of
the diagnosis results. Moreover, this could lead to further considerations regarding
the difficulties, with which the prospective teachers are confronted, and which
planning decisions are preferable or rather critical. For this purpose it is necessary to
examine the justifications for the consequences first.

6.5.2 Justifications for the Consequences

The analysis of the data led to three different categories in the dimension justifi-
cation for the consequences, whereby the third category also has seven subcate-
gories (see Table 6.1):

1. no or little deficits resp. good planning
2. diagnosis results are irrelevant for the lesson
3. diagnosis results are relevant for the lesson

All in all, it was possible to assign 80 statements to the ten categories and
subcategories. Statements, which addressed that (a) an aspect of the lesson was
already well planned, (b) a problematic diagnostic task did not reveal any infor-
mation about the students’ learning level or (c) the students had the necessary
competences available, were assigned to the first category. The prospective
teachers’ justifications, which were classified into the second category, broached the
irrelevance of uncovered competences or deficits. These are, for example, only
needed for one of many possible solution approaches or for the derivation of a
theorem, but not its application. Furthermore, the prospective teachers argued that
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either the knowledge gaps were uncovered accidently or the tested aspect was
supposedly easier implemented in the planned lesson. If the prospective teachers
stated that the availability or the absence of a diagnosed competence was prob-
lematic for the planned lesson, because it was needed, for instance, for the used
worksheet, the assigned tasks or the application of a theorem, these statements were
grouped into the third category. It also includes statements, which attributed the
examined deficits gaps certain relevance, because the students would probably not
have been able to understand the content of the lesson or to solve the given math
problems due to their knowledge gaps.

Usually further statements, which justified the consequences more precisely,
followed the conclusion of the diagnosis results’ relevance. These statements were
summarized into the seven subcategories of the third category. In the course of the
first subcategories the prospective teachers concluded that they would be able to
either cover more content than they had anticipated or less. The second subcategory
comprised statements, which referred to the fact that dealing with a certain topic to
the given time was not appropriate according to the core curriculum or that the topic
was already broached extensively. An example for this subcategory is the justifi-
cation that the planned lesson focused on the link between two mathematical
concepts, so the prospective teacher had to act on the assumption that the students
had comprehended these two concepts. The statements of the third subcategory
addressed the necessity of clarifying or establishing a link or a transition between
two mathematical expressions, representations or concepts. Other statements of this
subcategory emphasize the need to broach the prior knowledge or the everyday
experience of the students more intensively.

When the prospective teachers argued that the solution process of a math
problem was at that time too difficult for the students and therefore the task had to
be changed, so that, for instance, the strategy development is easier and less open,
their statements were assigned to the fourth subcategory. The fifth subcategory

Table 6.1 Subcategories of category 3 and their anchor examples

Subcategories of category 3 Anchor examples

3.1. Too much or too little was planned “We will not get that far during the lesson.”

3.2. Content has already been taught “This topic has already been covered
thoroughly. That is nothing new.”

3.3. Links should be illustrated or established “The difference between addition and
multiplication of fractions should be clarified.”

3.4. Math problem is too difficult “The problems must be simplified. Finding the
correct strategy should be easier and less open.”

3.5. Prior knowledge should be reactivated “Previous knowledge should be reactivated
respectively recalled.”

3.6. Partner or group work as a solution “The students will solve the problems in
groups, so they can supplement their
knowledge.”

3.7. Joint start resp. joint accomplishment of
goals

“I want everyone to be on the same level.”
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contains justifications, which adverted to the necessity of reactivating prior
knowledge in the students’ minds. The statements of the sixth subcategory are again
more multifaceted. Here, the prospective teachers brought forward the argument
that the top-performing students would intercept the knowledge gaps by helping the
under-performing ones due to the already implemented partner or group work.
Further examples are the prospective teachers’ assumptions that the students could
solve the given tasks together, that the prior knowledge gaps could be closed or that
the student could supplement their knowledge during the group work. All state-
ments, which brought up the wish that all students should be at the same level or
that they should have the correct solutions in their notebooks, were summarized
into the seventh subcategory. The statements of this subcategory could also refer to
the need that all students, and not only the top-performing ones, should accomplish
certain goals of the lesson.

Consequently, similar to the consequences of the planned lessons, there was a
grand variety of justifications for these consequences. As already mentioned the
examination of the connection of all three dimensions—interpretation, consequence
and justification—is important in order to comprehend the prospective teachers’
planning decisions. Therefore these connections will first be illustrated in summary
and then be more closely analyzed below.

6.5.3 Types of Arguments

A total of 104 arguments, each consisting of an interpretation of a diagnosis result, a
consequence for the planned lesson as well as its justification, could be classified
into eight different types (also see Fig. 6.5):

1. no modification due to problems with the diagnosis
2. no modification due to existing prior knowledge
3. no modification due to the irrelevance of the knowledge gap
4. no modification due to already planned group work
5. modification of the subject-related content to clarify a link
6. modification of the subject-related content to reactive prior knowledge
7. modification of a teaching step to establish similarities
8. simplification of math problems or adding support

In the course of the first argument type, the prospective teachers established that
the negatively regarded results of the diagnosis had to be explained by problems
with the diagnosis itself. Due to the fact that the prospective teachers were not able
to determine their students’ learning level, they did not modify the planned lesson at
this specific point. The second type of argument occurred most often. A diagnostic
task uncovered the availability of necessary, subject-related competences, so the
prospective teachers did not make any modifications. The arguments of the third
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type did also not lead to any modifications although the diagnosis detected
knowledge gaps; however, these were appraised to be irrelevant due to several
reasons. In the fourth type, the prospective teachers concluded that a small or a
large part of the class did not possess the necessary, subject-related competences.
Still, they did not modify the planned lesson, because the given tasks were to be
solved in partner or group work, so the prospective teachers assumed that the
knowledge gaps would be—in whatever form—intercepted by this teaching
method.

The diagnosis of the fifth argument type referred to the problem that the students
either did not know the link between two mathematical concepts or they confused
them with one another. With the justification that the link between these concepts
should be established or clarified, the prospective teachers modified the

Fig. 6.5 Overview of the identified types of argument (T. step = teaching step; entries in the cells
indicate the number of arguments that were contributed by the number of prospective teachers, for
instance, “12 from 8” means that twelve different arguments from eight different prospective
teachers were assigned to the correspondent argument type)
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subject-related content of their lesson. The sixth argument type is characterized by a
negatively interpreted diagnosis result as well as the conviction that the missing
prior knowledge was already covered and therefore must be reactivated in the
students’ minds. Again, these considerations led to modifications of the
subject-related content—usually broaching the prior knowledge in the course of a
revision. Uncovered knowledge gaps were also the starting point of the seventh
type of argument. Here, the prospective teachers took the decision to modify a
teaching step of the planned lesson, such as additionally securing the results during
the lesson, to ensure that all students accomplish a certain goal together. Both
simplifying tasks and adding support for their solution process, for instance, by
giving short oral or written hints, were the consequences of the eighth argument
type to the absence of prior knowledge. The prospective teachers argued that the
used math problems were too difficult for the students with regard to their learning
level.

To this point the argument types were illustrated. Next, a part of the deeper
analysis will be presented; whereby the focus is placed on the argument types 5
through 8. First, it can be observed that 13 of the 15 prospective teachers con-
tributed at least one argument that was assigned to one of these four types. Hence,
almost every prospective teacher actually decided to modify his or her lesson in
some way. This is to be welcomed, since the reaction to an uncovered knowledge
gap per se is something positive in general. It is satisfying that the prospective
teachers recognize the need for action after they appraised the diagnosed deficits to
be relevant. So in the case of the argument types 5 through 8 it is possible to speak
of the implementation of adaptive teaching—at least to some extent.

If the arguments of the eighth type of argument, which address adding support
for the solution process of exercises, are examined, one might think that the
argument types 6 and 8 are quite similar, but this is not the case. The consequences
of the sixth type wanted to intensively broach again the issue of basic concepts,
such as relative frequencies, whereas the conclusion of argument type 8 aimed to
remind the students of minor aspects. An example for the latter is the reminder of
the scale factor, when the students were supposed to determine the equation of a
parabola. The essential difference between the argument types 5 and 6 is that the
prospective teachers whose arguments were assigned to type 5 did not only uncover
and reactivate missing knowledge, but attributed it to the lack of knowledge of
missing links or the confusion of concepts and reacted to this discovery.

Consequently, it can be positively mentioned that some of the prospective
teachers actually distinguish between different kinds of mistakes and also react
differently to those. If they diagnose the missing comprehension of a mathematical
concept, they provide the needed knowledge instructively. However, if they come
to the conclusion that their students confuse two concepts or are not aware of a link
between them, they tackled these problems accordingly as well. Depending on the
diagnosis result the prospective teachers recognize the need to build bridges (type
5), to close gaps (type 6), to establish a common ground (type 7) or to simplify or
help with the given tasks (type 8).
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Of course, there is always the danger to over- or underestimate the diagnosis
results, especially the uncovered knowledge gaps, when modifying a planned les-
son on the basis of diagnosis. This is due to the fact that the diagnosis is analyzed
and interpreted by novices. Depending on how confident a prospective teacher feels
relating to the own lesson planning as well as the content and the pedagogical
content knowledge, the reaction to the results could be either insufficient or
excessive. Both cases can be problematic. On the one hand, if the prospective
teachers underestimate their students’ knowledge gaps they might encounter the
same problem like Bryan. His students were—according to his own statement—
totally overstrained with the derivation of the formula for calculating angles
between vectors in the three-dimensional space, because he underestimated the
impact of their deficits. On the other hand, if the prospective teachers overestimate
their student’s knowledge gaps, they might have to make the same experiences as
Paul. He had planned an extensive revision of the concepts of relative and absolute
frequencies and had designed an exercise sheet as well. Later during the imple-
mentation of the lesson he realized that his students did not have deepened diffi-
culties with the comprehension of the concepts themselves. They had only forgotten
the word or the term for these concepts. In Bryan’s case the students did not learn
much during the lesson, while in Paul’s case the lesson became less effective,
because a lot of time was spent on an unnecessary revision.

6.5.4 Empirical Modeling of the Modification Process

A goal of the study on hand was also to empirically model the process, which leads
from a diagnosis to adaptations of a lesson to the students’ current learning level.
Below, the used evaluation method are briefly illustrated, because due to the strong
dependency of the exact approach on the developed system of categories as well as
the identified types of arguments this illustration could not be given earlier.
Afterwards, the results of these analyses are presented.

In the first step of the analysis the justifications of each argument type were
examined more closely. During the process was checked whether these justifica-
tions were assigned to the same category or if they partly originated from different
ones. In the first case the justification was converted into a polar question, which
allowed the conclusion to the underlying justification. The second case was checked
if the procedure of the first case was possible or if multiple polar questions had to be
generated, so that the entire scope of the justification was still reflected. An example
for the first case is the first argument type: no modifications due to problems with
the diagnosis. The examination of the prospective teachers’ justifications showed
clearly that they asked themselves, whether their observed negative diagnosis
results had to be attributed to problems with the diagnostic tasks or the imple-
mentation of the diagnosis. So, at this point the following polar question was
developed: Were there any problems with the diagnosis? The third type of argu-
ment, no modification due to the irrelevance of the knowledge gap, is an example
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for the second case. Most of the given justifications addressed the irrelevance of a
knowledge gap by expressing that they did not belong to the prior knowledge that
was needed for the lesson. These justifications led to the polar question: Are the
results relevant for the planned lesson? However, some prospective teachers argued
that the planned lesson already intercepts the uncovered deficits, which meant that
they were irrelevant due to another reason. Therefore a further polar question was
necessary: Does the lesson already react to the results?

During the second step of the analysis the developed polar questions were
brought into an appropriate and conclusive order. For instance, it would not have
been reasonable that the prospective teachers first asked themselves if the imple-
mented group work already reacts to a knowledge gap and then consider whether
this knowledge gap has to be attributed to problems with the diagnosis.

In the third step an empirical model was generated, which illustrates the decision
process of the prospective teachers from the interpretation of the diagnosis results to
the modification of their planned lesson. It shows the polar questions that the
prospective teachers asked themselves and also to what conclusion the affirmation
or the negation of certain questions led. So, the result of the empirical modeling is a
process model (see Fig. 6.6), which reflects the 104 arguments of the participants of
this study. It consists of ten different ways, because the argument types 3 and 4
allowed respectively two action-guiding motives.

First the prospective teachers seemed to ask themselves if the results of a
diagnostic task were to be regarded positive. Here, there is reason to presume that
they compared the results of the diagnosis to their expected learning difficulties or
the necessary, subject-related prior knowledge. If this question was affirmed by the
prospective teachers they had to clarify if there were still some students, who did
not have the needed competences—or at least parts of them—available. If this was
not the case, the planned lesson was not modified due to the reason that no deficits
have been discovered (cf. type 2). However, if there were students with some
knowledge gaps, even though the diagnosis results were appraised to be positive,

Fig. 6.6 Empirical modeling of the modification process; arrow thickness represents frequency

6 Diagnosis-Based Adaptations of Mathematics Lessons … 101



the planned lesson was nevertheless under no circumstances adapted. This decision
was justified by stating that the already planned partner or group work would
intercept these deficits (cf. type 4). All in all this implies that a positively appraised
diagnosis result never led to a modification of the lesson, even if there were stu-
dents, who did not possess the competences that were necessary to reach the
lesson’s goals.

In the case that the first question was answered in the negative—so the diagnosis
results were not to be regarded as positive—the prospective teachers asked them-
selves, if the results were caused by problems with the implementation of the
diagnosis or the used diagnostic tasks. If this was true, they concluded that the
students’ learning level could not be determined and therefore they were not able to
adapt the lesson to their students’ needs (cf. type 1). Could the negative diagnosis
results not be attributed to problems with the diagnosis the prospective teachers
contemplated, if the results were actually relevant for their planned lesson. If this
was not the case the lesson was not modified either (cf. type 3). Were the uncovered
knowledge gaps generally relevant for the lesson the prospective teachers consid-
ered, whether the lesson already intercepted these. An affirmation of this question
did also not lead to an adaptation of the lesson (cf. type 3, again). The last question,
whose affirmation resulted in the fact that no modifications were made, asked, if the
already planned partner or group work could intercept the deficits of the students
(cf. type 4).

If this was not true, the prospective teachers came to the conclusion that the
initial lesson plan should be adapted on the basis of the diagnosis results.
Depending on their motive, they (a) modified the subject-related content, (b) added
support or simplified tasks or (c) adapted a teaching step. The wish to clarify or
establish a link between two mathematical subjects (cf. type 5) or to reactivate prior
knowledge (cf. type 6) always led to modifications of the subject-related content. If
the prospective teachers wanted to accomplish goals or to start from the same initial
point with the whole class, they adapted teaching steps (cf. type 7). Finally the
awareness that the contemplated tasks were too difficult for the students resulted in
adding support or simplifying tasks (cf. type 8).

Of course the model above neither claims that all students teachers have asked
themselves all of these questions nor that they have done so in the suggested order.
The goal was to develop a model that describes the appeared phenomena of this
empirical-qualitative study. It makes it possible to recognize, for instance, how
many polar questions have to be answered in a certain way so that the prospective
teachers actually decided to modify their lessons on the basis of the diagnosis. Only
when a diagnosis result was to be regarded positive, could not be attributed to
problems with the diagnosis and was relevant for the planned lesson and when
neither the planned lesson nor the planned partner or group work reacted to the
results, the prospective teachers adapted their lessons to their students’ needs. This
phenomenon cannot be explained by the collected data, but many possible expla-
nations are conceivable of which four will be addressed here.
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1. The prospective teachers ponder thoroughly, whether an adaptation of the
planned lesson would actually improve it. If they come to the conclusion that
this is not the case, they look for an explanation or a justification with which
they neglect the diagnosis results.

2. The prospective teachers concentrate on the (from their perspective) most
essential prior knowledge gap. Other, less important gaps are, for instance,
sourced out into the group work or described as irrelevant.

3. The prospective teachers do not know how they can or should react to the results
of the diagnosis and therefore look for a justification, which explains why they
do not react.

4. The quality of the prospective teachers’ diagnoses is on such a low level that, on
the one hand, there actually are problems with them and, on the other hand, they
accidently uncover knowledge gaps, which are indeed irrelevant.

6.6 Conclusion and Outlook

Thus, the central results of this study were presented. The conclusion of this chapter
begins with the explication of possible implications for the teacher education. Then
an outlook will be given, which focuses on continuative research questions.

In summary, it was possible to show that the prospective teachers implement
many of the single steps of the diagnosis and modification process to some extent
well. However, it became also clear that the execution of the individual steps as
well as the entirety of the process was partly problematic. The explanation
approaches for the lack of reaction to some diagnosis results and the non-existent
development of differentiating modifications, which were developed in the course
of the empirical modeling of the modification process (see Fig. 6.6), give a first
impression of the possible underlying difficulties. The question at this point is,
whether the prospective teachers only lack practical experiences and exercises or
indeed theoretical elements of knowledge as well. Either way, it therefore follows
that first the individual steps of the modification process should be placed into
focus. This means that both diagnosis and the differentiating, adaptive planning of
lessons should be discussed and practiced separately, before the combination of
these is tackled.

It is assumed that the theoretical level as well as the practical one is essential to
learn the adaptive planning of lessons. On the one hand, various possibilities for
differentiation and planning should be introduced in the theoretical part of the
teacher education, whereupon their advantages and disadvantages should be dis-
cussed. On the other hand, diverse action alternatives should be talked about with
the aid of concrete situations during the practical phases. The results of this study
provide indications for this purpose. For example, the fourth type of argument,
which does not modify the lesson due to already planned group work, leads to the
opportunity to broach the issue of group work with the prospective teachers. When
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is this teaching method suitable? Which advantages does it possess? Which dis-
advantages or dangers does it implicate? What is the best way to implement it? A
goal of group work is, for instance, to combine subject-related and social learning
(Barzel, Büchter, & Leuders, 2011). In order for this to be achieved, it is necessary
to lay the needed foundations. In particular the point of this teaching method is that
different solution approaches are pursued by the individual members of a group and
later discussed by the whole group. However, Barzel et al. (2011) do not explicitly
mention that the purpose of group work is to have the top-performing students fill in
the knowledge gaps of the weaker ones. In similar ways it should be discussed with
the prospective teachers, in which cases it is appropriate to repeat already covered
knowledge, to simplify math problems, to add support for the solution process of
math problems or to clarify links between two mathematical concepts.

The following focuses on the outlook of this study. First of all it should be
mentioned, that the collected data itself allows many continuative research ques-
tions. The initial lesson plan could be analyzed with regard to the used teaching
methods, the selected math problems or other, similar aspects. Furthermore, it is
possible to investigate, whether the participants of the study identified the neces-
sary, subject-related learning conditions of their lesson correctly. The developed
diagnostic tasks could also be a subject of an examination. Here could be checked,
if the prospective teachers tested all of their identified learning conditions or to what
extend the used math problems meet the criteria for diagnostic tasks (e.g.
Dannenhauer, Debray, Kliemann, & Thien, 2008). In addition, the students’ solu-
tions of the diagnostic tasks are available. With these it would be possible to survey,
whether the prospective teachers analyzed their data correctly.

The examined sample of 15 prospective teachers of the Carl von Ossietzky
University of Oldenburg is in view of the preconditions, to which they resorted
during their practical phase, relatively homogeneous because the department of
mathematics education puts emphasis on diagnosis and improvement. Though the
data indicated a few critical aspects during the implementation of the given task by
the prospective teachers, it also showed a variety of positive issues, such as their
competence-oriented perspective on the diagnosis results. But the question is which
results would be received, if the research design was used to study prospective
teachers from another university, which focuses on other issues within the teacher
education. It is also conceivable that one would get very different results, if the
prospective teachers’ task is given to experienced teachers.

Moreover, all the aspects that have been revealed by the qualitative-explorative
study at hand, whose surface has only just been scratched, should be researched
more deeply. For instance, it was possible to unearth the prospective teachers’
justifications for their selected consequences. But it was not discovered, for what
reasons they dismissed alternative planning possibilities. Furthermore, the second
type of argument, for example, which does not modify the planned lesson due to
existing prior knowledge, raises the question, if the role of this available knowledge
changes in the consciousness of the prospective teachers. Does its importance
increase, because they know that they can rely on it or does it decrease, because
they concentrate on the knowledge gaps instead?
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To conclude, it should be noted that the design is not only suitable for research
purposes, but also for the education of prospective teachers. As already mentioned
above, at first it is important to address and practice all the single steps that are
necessary to planning a lesson, which considers the students’ learning conditions,
individually. Afterwards prospective teachers could be asked to implement the task
of the research design in their practical phase in order to try the entirety of the
process. Combined with a close supervision, which proposes ideas for improvement
from a mathematics education point of view, this could initiate effective learning
processes.
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Part II
Use of Technologies and Tools



Chapter 7
Contemporary Framing of Technology
in Mathematics Teaching

Rose Mary Zbiek

Abstract Many types of powerful digital technologies have been part of secondary
school mathematics classrooms and mathematics teacher education in many places
for decades. However, research on technology in teacher preparation continues to
be sparse and challenging to synthesize. To organize and probe ideas, researchers
and practitioners need better ways to frame their work. In this chapter, a blend of
three conceptual tools is connected to existing literature to describe prospective
secondary mathematics teachers’ (PMSTs’) professional growth in technology,
content, and pedagogy in integrated and dynamic ways. The blending of
Technological, Pedagogical, and Content Knowledge (TPACK); Mathematical
Understanding for Secondary Teaching (MUST); and Play, Use, Recommend,
Incorporate, and Assess (PURIA) perspectives underscores the complexity of
learning to teach mathematics with technology.

Keywords Teacher knowledge � Technology use � Secondary mathematics
Mathematics teaching

7.1 Introduction

In research and practice, technology is both an object of learning and a pedagogical
tool in the education of prospective secondary mathematics teachers (PSMTs) as
PSMTs learn of technology and learn with technology. Diversity of technology
leads to a body of literature that is challenging to synthesize in the interest of
framing future studies and of informing practice. This chapter is not a research
synthesis or another way to frame what PSMTs need to know and do with tech-
nology. The goal of this chapter is to integrate existing frameworks to better
understand research and practice around technology as both object and tools in the
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education of PSMTs. Underlying the integration is an assumption that PSMTs enter
their preparation programs knowing something about each of technology, mathe-
matics content, and pedagogy. Articulation and integration of the frameworks
precedes a discussion of the implications of the amalgamated perspective.

7.2 Technology Opportunities and Options

In 2017, technology refers to an amazing array of products. Although it takes many
forms, for the purposes of this chapter, “technology” refers to digital resources.
Technology in mathematics education could be technology used for mathematical
purposes, such as computer algebra systems, or for communication purposes, such
as word processing packages and social media, or for other purposes, such as video
analysis software that can be used by PSMTs to play and mark excerpts in the study
of their classroom practice. Dick and Hollebrands (2011) refer to the first type of
technology as “mathematical action technologies” (e.g., computer algebra system,
dynamic geometry, graphics calculator, spreadsheet, online applets) and under-
score, as do others, that not all of these products were developed initially for
educational purposes. Bowers and Stephens (2011) refer to the second type of
technology as “communication and visualization technology”. PSMTs might enter
teacher education programs with varying experience with one or more products in
each of these general genres.

Technological tools exist in many different physical forms and can serve a
variety of mathematical, pedagogical, or communicative purposes. Tools with very
similar purposes can exist in different media. For example, graphing utilities can be
found as phone applets, programs on laptop, and features of handheld calculators.
Moreover, one tool might be used for different purposes. One example is the
difference between a computer algebra system (CAS) used while solving a math-
ematics problem and the same CAS used to create a file in which a tutorial or
assessment is embedded. As these nuances imply, one improvement in conducting,
reporting, and synthesizing research and practice is to be attentive and clear about
the technology being used and its mathematical, pedagogical, or communicative
purpose.

7.3 Work of Educating Prospective Mathematics Teachers

As practitioners, mathematics educators prepare PSMTs to be the best possible
teachers that they can be. As researchers, mathematics educators seek to understand
not only how PSMTs develop their practice but also the nature of their knowledge,
beliefs, identities, and other personal characteristics. PSMT preparation happens
within the contexts of universities and schools and across mathematics content
courses, pedagogy courses, and practical experiences in schools or in other
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educational venues. Accounts of technology use in secondary mathematics teacher
education often fall in the important but sometimes challenging to defend overlap
between a faculty member’s research and the courses or programs in which the
faculty member teaches.

In content courses, pedagogy courses, and practical experiences, discussions of
technology can focus on PSMTs as learners with technology as the object of
instruction or as individuals whose learning about other things is supported by
technology. PSMT educators include a broad group of all who contribute to a
teacher’s development, such as, in a typical teacher education program, mathe-
matics and statistics instructors, pedagogy course instructors, and field supervisors.
The genres and specific pieces of technology PSMT educators choose to use and
how they use those technologies can vary greatly. Pedagogy courses and practica
also address the use of technology by the secondary school students whom the
PSMTs instruct.

Although experiences are often spread across content courses, pedagogy cour-
ses, and practical venues, PSMTs must connect ideas across content, pedagogy, and
practice to make sense of their preparation and to act on it in their own practice. For
this reason, a body of technology-related literature, such as that referenced by
Huang and Zbiek (2017), should be revisited in terms of what it reveals about how
PSMTs develop understandings of content, pedagogy, and technology based upon
what they know as they enter their teacher education programs—and how the
PSMTs integrate new ideas and understandings.

Huang and Zbiek (2017) describe the process that led to the 18 articles they
synthesize. Their multi-layered process for selection of the articles ensured that the
cited studies were reported in detail in journal articles appearing in internationally
circulated venues, were clear in their identification of technology, and were studies
that focused specifically on prospective secondary mathematics teachers. The cited
studies would ostensibly be useful in addressing fundamental questions that should
be asked about the literature regarding technology and teacher preparation and how
PSMTs develop understandings and improve their teaching practices. The task of
posing such questions is problematic, however, in (at least) three ways. First, the
very definition of technology is elusive. Second, mathematics teacher educators use
a wide range of tools within the three contexts. Third, the secondary school student
can be either an active user of the technology or a learner who benefits from the
teacher’s use of the tools.

A contrast of two of the 18 studies underscores the complexity of synthesizing
the literature. For example, both Davis (2011) and Star and Strickland (2007)
conducted their studies in the context of PSMTs developing their understanding of
pedagogy. However, the two studies differed greatly in the technology used. Davis
used computer algebra systems; Star and Strickland used video recordings of les-
sons. The two studies also differed in the aspects of pedagogy they targeted. Davis
considered textbooks; Star and Strickland studied professional noticing. The
mathematics content foci also differed. Davis’ PSMTs considered the algebra and
function strand across many lessons in a textbook; Star and Strickland’s PSMTs
viewed recorded lessons on angles, arc lengths, secants, and tangents. In Star and
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Strickland’s work, the secondary school students were not active users of the video.
In Davis’ work, secondary school students were expected to engage actively with
the computer algebra systems.

As the comparison of Davis (2011) and Star and Strickland (2007) suggests, the
literature on technology in secondary mathematics teacher education can be chal-
lenging to synthesize, but it can be synthesized. Huang and Zbiek (2017) chose to
organize it around mathematics content courses, pedagogy courses, and practica.
That parsing of the literature is useful in applying the results of the research to
teacher education programs and course instruction. The same literature might be
organized differently by attending less to the three typical venues of teacher edu-
cation and more to PSMTs’ learning, asking a question: In general, of technology
tools, mathematics content, and pedagogy, which is novel to PSMTs? Asking this
question synthesizes literature in a spirit of understanding and support of PSMTs
continued development.

7.4 Probing the Literature About Technology
and Teacher Preparation

A synthesis of literature used either to conceptualize new studies or to inform
practice requires more than a collection of descriptive paragraphs of findings from
individual studies. It requires having conceptual tools to frame and explain what
existing studies offer. Because PSMTs are differently experienced with any one tool
and its uses, and it is important to recognize what part of the experience is new to
the PSMT, each of the following sections assumes that one of the three elements—
technology, content, or pedagogy—is a novel piece for PSMTs. Each section then
describes a conceptual tool that can be used to explore and describe in depth the
subtleties and the nuances of the technology, the content, or the pedagogy. In a later
section, the three conceptual tools are considered collectively.

7.4.1 When the Technology Is the Novelty

When digital technologies exploded in the late twentieth century, the tools were the
novelty in classrooms for practicing teachers and also in teacher preparation. This is
the setting, for example, during which technology became available for use in
education. The Technological, Pedagogical, and Content Knowledge (TPCK or
TPACK) framework (Mishra & Koehler, 2006) emerged as a useful conceptual tool
to describe and support teacher development. Building from Shulman’s (1986)
seminal work around Pedagogy and Content Knowledge (PCK), Mishra and
Koehler develop TPACK to capture the kinds of knowledge needed by a teacher to
integrate technology into classroom practice. The framework includes
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Technological Knowledge (TK), Technological Content Knowledge (TCK), and
Technological, Pedagogical, and Content Knowledge (TPACK).

Bowers and Stephens (2011) call mathematics teacher educators to interpret
TPACK as “an orientation that views technology as a critical tool for identifying
mathematical relationships” (p. 290). The view of TPACK as orientation followed
the prolonged attempts of these researchers to identify a set of skills and knowledge
at the center of technology, content, and pedagogy that would be the skills and
knowledge identified as TPACK. Bowers and Stephens began to ask a different
question: “What factors do affect prospective teachers’ development of a TPACK
orientation?” (p. 290). The factors they identified included such things as a teaching
style rich in “what if questions”. Bowers and Stephens’ identification of such
factors led them to their conclusion that orientation rather than knowledge was
critical. An improvement in discussions of technology as a novel agent in PSMT
preparation is to recognize orientation as well as knowledge. Orientations, beliefs,
and knowledge must be acknowledged and leveraged in teaching mathematics and
in preparing PSMTs.

For situations in which technology is the novel element, mathematics teacher
educators need to emphasize orientation as well as knowledge. Research that
illuminates not only what orientations, knowledge, and beliefs PSMTs have but
also how to address and leverage these things in teaching mathematics is critical.
TPACK was explicitly explored in six of the 18 works cited by Huang and Zbiek
(2017). The other 12 cited works were situated in content courses, pedagogy
courses, and practical experiences but did not address exclusively, if at all, PSMTs’
knowledge related to technology, pedagogy, and mathematics. For example, Davis
(2015) considered how PSMTs read, evaluated, and adapted a textbook lesson that
used computer algebra systems. In Davis’ study, pedagogy was the novelty, while
the technology and the mathematics content were more familiar.

7.4.2 When the Content Is the Novelty

Technology is not always that novel element for PSMTs, although it might be novel
to the mathematics educators who work in PSMT preparation. Technology allows
PSMTs to learn unfamiliar mathematics content and to learn new things about
familiar mathematics content, making the mathematics content the novel element.
Examples include such things as how PSMTs might understand and compose
transformations of the plane differently after working with figures in dynamic
geometry environments or with graphs in a Cartesian coordinate context. Another
example might be how simulations and manipulations of samples in a dynamic
statistics setting affects how PSMTs conceptualize and describe sampling
distributions.

PSMTs learn not only new content but also have new opportunities to engage in
mathematics. For example, PSMTs likely are familiar with exponential functions
and their graphs. They might, however, not anticipate certain actions, such as
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noticing that the graphs of f(x) = 3ex and g(x) = e(x+1) appear to be nearly identical,
as in Fig. 7.1. This technology-based observation gives cause for a justification of
whether these two graphs coincide. The observation also prompts the question of
whether there are other pairs of functions of the form f(x) = aex and g(x) = e(x+b) that
have nearly the same graph. There is opportunity here to engage in the mathe-
matical activity of noticing of the structure of mathematical systems. The structure
of the symbolic representations is in contrast to the structure of transformations.
Both graphs can be seen as transformations of the basic function, p(x) = ex, with the
non-trivial caveat that two transformations seem to map the basic function to the
same graph—as shown in Fig. 7.1—but the transformations themselves are not
equivalent. PSMTs engage in Mathematical Reasoning in terms of both Justifying/
Proving and Reasoning When Conjecturing and Generalizing as PSMTs generalize
their initial observations, test their claims, and symbolically verify their results.

As TPACK helps to sorts out different types of knowledge or orientations when
technology is the new element, the conceptual tool does not allow nuances in
mathematics content and action to be readily acknowledged. A framing different
from TPACK—a tool that captures mathematical content, activities and the context
of teaching—is needed. Mathematical Understanding for Secondary Teaching
framework (MUST) (Heid & Wilson, 2015) is one such tool designed exclusively
for mathematical knowledge for secondary mathematics education.

MUST is relevant to study and practice of secondary mathematics teacher
education because it is based on the work of secondary school mathematics
teachers. The emphasis on mathematics that is useful in teaching is a key point of
the framework. Technology used for content development in teacher preparation
serves well to extend and connect ideas that are common to school mathematics.
The MUST framework captures the mathematics in Situations that were developed
around incidents that happened in classroom settings and other venues of the daily
work of teaching. The inspirational incident is what the MUST researchers called
the Prompt. For example, consider the Prompt from the Division Involving Zero
Situation, as shown in Fig. 7.2. The Situation is relevant to discussion of tech-
nology in secondary mathematics teacher preparation because not only might one

Fig. 7.1 Nearly the same
graphs of f(x) = 3ex and g(x) =
ex+1
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use a variety of digital tools to explain the three indicated divisions in the Prompt
but also one might encounter the situation within a classroom.

What might teachers use to address this Prompt? The answer to that question for
a Prompt is found in the Foci. For example, two of the five foci for the Division
Involving Zero Situation are the following:

• Mathematical Focus 2. One can find the value of whole number division
expressions by finding either the number of objects in a group (a partitive view
of division) or the number of groups (a quotitive view of division).

• Mathematical Focus 3. The mathematical meaning of a/b (for real numbers a and
b and sometimes, but not always, with b 6¼ 0) arises in several different
mathematical settings, including slope of a line, direct proportion, Cartesian
product, factor pairs, and area of rectangles. The meaning of a/b for real numbers
a and b should be consistent within any one mathematical setting.

The robustness of MUST relies on the quality of the Foci. The Foci for each
Situation were created by a team of researchers from Penn State University and the
University of Georgia and reviewed by another team of researchers from the two
institutions. The Foci were also reviewed by groups of mathematics education
researchers, of mathematicians, of mathematics teachers, and of mathematics
supervisors at specified project meetings and public gatherings.

Qualitative analysis of hundreds of Foci produced in this way led to identifi-
cation of three perspectives on mathematical understanding: Mathematical
Proficiency, Mathematical Activity, and Mathematical Context of Teaching. The
perspective of Mathematical Proficiency includes six aspects: conceptual under-
standing, procedural fluency, strategic competence, adaptive reasoning, productive
disposition, and historical and cultural knowledge. That is, Mathematical
Proficiency was well captured by approximately six elements that echo the strands
of mathematical proficiency in Adding It Up (National Research Council, 2001),
with the addition of a strand of historical and cultural knowledge. The use of
labeling from Adding It Up with slightly different descriptions was intentionally
done both to allow for a connection between primary school and secondary school
settings and to avoid offering a set of similar categories differently named.

The perspective of Mathematical Activity includes ideas offered under a variety
of labels, such as mathematical practices (Common Core State Standards Initiative,

On the first day of class, preservice middle school teachers were asked to evaluate 
2/0, 0/0, and 0/2 and to explain their answers. 

There was some disagreement among their answers for 0/0 (potentially 0, 1, 
undefined, and impossible) and quite a bit of disagreement among their explanations:

• Because any number over 0 is undefined;

• Because you cannot divide by 0;

• Because 0 cannot be in the denominator;

• Because 0 divided by anything is 0; and

• Because a number divided by itself is 1.

Fig. 7.2 Text for prompt
from the division involving
zero situation (adapted from
Heid & Wilson, 2015, p. 95)
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2010), process standards (National Council of Teachers of Mathematics, 2000),
habits of mind (Cuoco, Goldenberg, & Mark, 1996), and specific areas such as
mathematical modeling (Organisation for Economic Co-operation and
Development, 2013). It extends to such things as symbolic insight (e.g., Bowers &
Stephens, 2011). It includes Mathematical Noticing, Mathematical Reasoning,
Mathematical Creating, and Integrating Strands of Mathematical Activity. Its first
three areas can be further subdivided. For example, Mathematical Reasoning
includes Justifying/Proving, Reasoning when Conjecturing and Generalizing, and
Constraining and Extending.

Interestingly, in terms of technology in secondary mathematics teacher preparation,
relatively little research is found in the first two MUST Perspectives. For example,
Huang andZbiek (2017) cite only two studies (Cory&Garofalo, 2011; Zengin&Tatar,
2015) that focus on Mathematical Proficiency. Both studies address conceptual
understanding. A similar observation might be made about works related to
Mathematical Activity. Notably, Huang and Zbiek cite only one study that addresses
any formofMathematicalActivity. Zembat (2008) considersMathematical Reasoning.

The small number of items related to Mathematical Proficiency and
Mathematical Activity among the works cited by Huang and Zbiek (2017) might
reflect the landscape of the 18 papers. Mathematical Context of Teaching, the third
MUST perspective, is a view of the context for mathematical content in the MUST
framework and might best be considered with Content issues. However, the details
of the studies seem to fit better with pedagogy, for perhaps reasons that reveal both
questions about research in the field and concerns about a dichotomy regarding
technology use in secondary mathematics teacher preparation.

7.4.3 When the Pedagogy Is the Novelty

The main assumptions in Sects. 7.4.1 and 7.4.2 respectively, are that technology is
the novel element in the teacher’s practice and that mathematics is the novel ele-
ment. These assumptions often work well in professional development with
experienced mathematics teachers but they are not the totality of what is needed in
work with PSMTs. PSMTs likely are digital natives who are familiar with school
mathematics content and with a variety of mathematics, communication, or other
technologies. For them, pedagogy is the new and intriguing piece.

As the third MUST perspective, Mathematical Context of Teaching considers
mathematical work directly connected to the teaching of mathematics. The strands
of this perspective are: Probe Mathematical Ideas, Access and Understand the
Mathematical Thinking of Learners, Know and Use the Curriculum, Assess the
Mathematical Knowledge of Learners, and Reflect on the Mathematics of Practice.

Works cited by Huang and Zbiek (2017) fell into only two of these categories.
Two works addressed accessing the mathematical knowledge of learners (Akkoç,
2015; Santagata, Zannoni, & Stigler, 2007), and five of them explored accessing and
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understanding the mathematical thinking of learners (Hähkiöniemi & Leppäaho,
2011; Lee, 2005; Rhine, Harrington, & Olszewski, 2015; Star & Strickland, 2007;
Wilson, Lee, & Hollebrands, 2011). The evidence suggests the need for mathematics
teacher educators to help PSMTs to develop some aspects of mathematics under-
standings for secondary teaching (e.g., questioning, student thinking) and perhaps
work with particular genres of technologies (e.g., video) of communication and
collaboration technology. Using MUST to frame content issues within research and
practice suggests there are aspects of mathematical understanding for teaching that
need attention as they relate to pedagogy, especially in terms of technology.

It is important to keep inmind that in thinking about pedagogy the attention is not on
the teachers (the PSMTs in this case) and their characteristics but on their teaching. An
analysis of the current published studies about technology in teacher education from the
sources used by Huang and Zbiek (2017) suggest that there is a growing body of
literature about the use of digital video to capture, present, and study teaching.

In a synthesis of the research literature on technology, Zbiek and Hollebrands
(2008) probe the literature about technology in the teaching and learning of
mathematics to answer the question of how one learns to teach with technology—a
question that essentially places pedagogy as the novel element in the teacher’s
practice. The curious answer to that question in a word is PURIA—a path to
teaching with technology based in name and in spirit on Beaudin and Bowers’
(1997) discussion of how teachers become proficient in using computer algebra
systems. PURIA is an acronym representing modes (Play, Use, Recommend,
Incorporate, Assess) through which Beaudin and Bower claimed teachers must pass
in order to become highly proficient classroom technology users.

Although they located no studies that explicitly generated or tested the theory/
framework at the time, Zbiek and Hollebrands (2008) argue that the literature to that
date indicates that teachers do grow pedagogically (and technologically?) across
these five realms. First, a person must Play with the technology and Use the
technology for personal purposes. Although use of the word “Play” might give a
different impression, the idea is that a person typically begins with open-ended
opportunities to try what the technology can do.

Regarding mathematics technology, consider the introduction of computer
algebra systems into a school. The person might attend a CAS workshop and be
handed a CAS-capable calculator. The person’s first instinct might be to Play with
the device, figuring out how to turn it on, type some garble, enter an arbitrary
function rule to see what a graph looks like. In these actions the person is not trying
to do mathematical work, but rather attempting to see how the technology works
and what it might do. Later that day, the person might then think about how the
device might be used to solve a system of equations by graphing and then sym-
bolically. Although he or she may fumble with keystrokes and menu options, the
person is now working with a mathematical purpose and his or her intent it to Use
the technology for personal mathematical purposes.

An example of the integration of a communication/collaboration tool might start
with the mathematics teacher educator who Plays by drawing silly faces and saves
and erases them when he or she first encounters an interactive white board. The next
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week, the mathematics teacher educator might Use it to draw and save a geometric
diagram to show the class and have students mark as they work on proving a
particular theorem. In this way, the mathematics teacher educator as the teacher of
the lesson is making the interactive white board as a pedagogical tool for his or her
own use but not yet making the interactive white board something to be learned by
his or her PSMTs. In essence, the Play and Use phases seem indicative of oppor-
tunities for teachers (including teacher educators) to develop TK.

Following Play and Use, the person is prepared to Recommend use of the tech-
nology to others, Incorporate the technology into practice, andAssess students’ use of
the technology. These are the phases in which the person engages with others—and
especially with students, as we might see by the continuations of the interactive
whiteboard (IWB) and computer algebra system (CAS) examples in the next two
paragraphs.

The individual who has begun to use CAS for his or her own purposes might
next Recommend it to others. For example, the teacher might give it to a small
group of students so they can learn how to produce solutions to the systems on their
way to answering the question: “How many solutions can a system of two linear
equations in two unknowns have?” The teacher would observe what happens and
have some idea of how CAS was helpful—or not—for the students. A next move
might be for the teacher to Incorporate the technology into a lesson on the number
of solutions of a system so that all students might use it, and then the teacher might
use it in other lessons as she or he Incorporates the technology into her or his
practice. With reflection on these classroom experiences to Assess the technology’s
use and potential, he or she might conclude that the use is productive and then
refine how he or she employs it in similar lessons.

Themathematics teacher educatorwho has started to use an interactive white board
(IWB) as an instructor might next Recommend its use to a small group who is
preparing a presentation for their class. The Incorporate move might then be the
mathematics teacher educator offering a lesson in which all PSMTs or groups in the
class have to use the IWB as part of their work, perhaps in lieu of a non-interactive
presentation tool (e.g., PowerPoint or Prezi projected on a standard screen). The
Assess piece might come with reflection upon whether and how the PSMTs used the
IWB to enhance their presentations and to engage their classmates in the conversation.

Two points need to be made about PURIA before a discussion of how it might
be integrated with MUST and TPACK. First, the framework as proposed by
Beaudin and Bower (1997) has not been tested as a model of learning. Such
empirical verification, though desirable, would be a long-term, demanding research
effort that would likely involve more than one study. Zbiek and Hollebrands (2008)
examined existing literature and noted how the compiled findings of the literature,
at that time, supported PURIA as a framework for how teachers—including PSMTs
—move from gaining initial knowledge of technology to developing classroom
practice and pedagogy around the technology. Implicit in the following section is
the observation that recent research in technology in teacher education also supports
the PURIA framework.
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7.5 Conceptual Tools to Inform Practice and Inspire
Research

The blending of TPACK, MUST, and PURIA underscores the complexity of
learning to teach mathematics with technology. The extent to which particular
mathematics, specific technology, or pedagogy is the most novel and critical ele-
ment depends on the individual PSMT.

To illustrate how the three conceptual tools are useful in understanding how
PSMTs develop as teachers of mathematics with technology, consider a report by
Bowers and Stephens (2011). The researchers argue that four of the resulting cat-
egories (TK, TCK, TPK, and TPACK) could be conceived as levels. Although one
might be skeptical about whether these four TPACK orientation categories truly are
levels in the classic sense of a level theory, connecting Bowers and Stephens’ work
to MUST and PURIA is enlightening, and perhaps fortifies their argument that the
four categories are indeed levels.

Bowers and Stephens’ bar graph in Fig. 7.3 illustrates the number of PSMTs that
the researchers coded as being in each of four TPACK orientations. Although the
numbers are small, the data invites the question of not only why are more of the
PSMTs seeming yet to reach TPACK—the unspoken highest level—but also what
might be the trajectory of their learning. The PSMTs arguably had some course
experience with technology, so the claim here is not that this is a natural

Fig. 7.3 Bowers and Stephens’ (2011) coding results with banners representing focus on
technology, content, and pedagogy
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progression but rather it is a progression that agrees with multiple conceptual tools.
A first look at the data suggests the relative prominence of technology, the moderate
role of content, and the lesser role of pedagogy, in terms of what dominates the
PSMTs’ orientations. The horizontal arrows in Fig. 7.3 visually convey these rel-
ative roles.

Suppose the Technology, Content, and Pedagogy labels in Fig. 7.3 are replaced
by “Play with Technology,” “Use as Tool,” and “Recommend/Implement,”
respectively, as shown in Fig. 7.4. This move, which might seem arbitrary at first,
yields a revelation. Technology was present in all of the orientations—perhaps due
to choices that Bowers and Stephens made. Replacing “Technology” with “Play
with Technology” means the longest horizontal arrow could represent the devel-
opment of technology orientations experienced through their teacher preparation
program or by virtue of being digital natives. “Use as Tool,” which replaces
“Content,” could be the use of tool to learn new mathematics or to understand
familiar technology better. It also might be to learn about teaching and pedagogy
through technology. Perhaps the orientation towards content follows from attention
to PSMTs experience with technology as Use as Tool. The replacement of
“Pedagogy” with “Recommend/Implement” might suggest that pedagogy-related
orientations build on technology, which is part of all four orientations. In addition,
the smaller number of PSMTs coded with TPK than coded with TCK might be a
sign that Technology and Content orientations naturally and/or more productively
precede Pedagogy orientations.

Fig. 7.4 Bowers and Stephens’ (2011) coding results matched with PURIA modes
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Researchers and practitioners interested in the development of PSMTs have
provided some pools of related literature among a collection of studies that are
largely descriptive of PSMTs and disparate in terms of the types of technology
used. Examples of this tendency of existing literature are the studies cited by Huang
and Zbiek (2017), as well as the earlier studies considered by Zbiek and
Hollebrands (2008). Interesting work yet to be done, in addition to connecting the
pieces of the current literature landscape, could undertake the overarching question
of along what trajectory(-ies) do the technology, content, and pedagogy under-
standings and orientations of PSMTs develop and co-evolve. The claims stated in
the previous paragraph are tentative. They raise a number of questions and suggest
a number of subsequent studies aimed at exploring further how prospective teachers
develop knowledge and orientations and integrate technology into their emerging
classroom practices. Yet, the way in which components of the TPACK framework
and those of the PURIA framework align provide support for both frameworks as
feasible ways to look at PSMT development.

The reader might be wondering how MUST then fits into the framework picture
with PURIA and TPACK. First, MUST as a way to refine how we look at
Mathematical Proficiency and Mathematical Activity can be used to determine the
extent to which technology is used for particular mathematical purposes. MUST’s
Mathematical Context of Teaching perspective touches on skills and actions often
associated with pedagogy. For example, student thinking, school curriculum, and
assessment—which correspond to Access and Understand the Mathematical
Thinking of Learners, Know and Use the Curriculum, and Assess the Mathematical
Knowledge of Learners—are common topics in many pedagogy courses. The
implementation of these moves often fit within education but the corresponding
mathematical understandings needed to execute these things are often left unad-
dressed in both content and pedagogy courses. They perhaps surface in practica as
PSMTs must react to student thinking and assessment in authentic, open-ended
ways. Use of MUST could help to focus both technology use and research ques-
tions about technology use in mathematics pedagogy courses and practical
experiences.

Another point about MUST is that if technology is used for all of the elements of
Mathematical Proficiency and Mathematical Activity, it seems that mathematics
technology has the potential to be used for more than answer checking or the
execution of basic procedures (a criticism often offered regarding the use of tech-
nology in mathematics instruction). Attention to the Mathematical Context of
Teaching seems to allow for the blended use of mathematics tools and
communication/collaboration tools. Focusing mathematics education research on
both the type of mathematical work in which people engage and the nuances of
pedagogy might be a productive way to simulate key aspects of the related work of
teaching in pedagogy courses and of studying and improving practice in practica.

The final point regards connecting Figs. 7.3 and 7.4. The TPACK elements
shown in Fig. 7.3 and the PURIA aspects shown in Fig. 7.4 are not necessarily
mathematics-specific. While MUST aspects of mathematical understanding do not
appear explicitly in Figs. 7.3 and 7.4, these figures are consistent with the idea of
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PSMTs as learners coming to terms with particular technologies as tools for doing
mathematics—and perhaps as tools for teaching mathematics—in the spirit of what
Guin and Trouche (1999) name instrumental genesis. Instrumental genesis suggests
that the PSMTs would have their ideas within each MUST perspective influenced
by what technology offers and that they would begin to tamper with their tools to
adjust the technology to their mathematical and pedagogical purposes.
Integrating MUST, PURIA, and TPACK to the extent that PSMTs draw fluidly
upon ideas within each of technology, content, and pedagogy and across these
areas, using technology as a tool for both mathematics and pedagogy and to do so in
reflective practice might be the ideal for which secondary mathematics teacher
education research could reveal insights and secondary mathematics education
practice could aspire to achieve and disseminate.

7.6 Implications

The extent to which different conceptual tools such as MUST, PURIA, and TPACK
co-inform the work of teaching mathematics with technology in mutually com-
plementary ways is an indicator of how robust they might be as tools to concep-
tualize and report research and inform and improve practice. Past and current
literatures suggest that technology work with PSMTs happen around content
courses, pedagogy courses, and practical experiences. Bowers and Stephens’ (2011)
data provide a rough snapshot of where a group of PSMTs are in their developing
not simply knowledge but orientations towards technology use in the teaching of
mathematics. Evidence from this chapter’s compilation of empirical findings, lit-
erature, and theory—and perhaps the author’s and reader’s practice—indicate that
informal experiences with technology (Play) and then work with technology to do
mathematics (Use) precede use of the technology with others in small ways
(Recommend) and then in major ways (Incorporate). The observation suggests that
PSMTs should encounter multiple forms of technology in all venues of their
preparation, including mathematics courses, pedagogy courses, and practica and
have time to work with these tools and provide time for PSMTs to develop the
technology as their own tools and incorporate them into their daily work.
Technology needs to be incorporated in teacher preparation in comprehensive ways
for learning and for teaching. Importantly, mathematics teacher educators cannot
assume that technology—or mathematics content, or pedagogy is the novel element
for PSMTs—an assumption that was valid and necessary at the time that TPACK
first emerged. The observations about the extent to which MUST’s Mathematical
Context of Teaching overlaps with pedagogy are indicators that more could be done
in terms of how technology might serve to help PSMTs weave together their
understandings of mathematics and technology.

The seemingly low number of studies located by Huang and Zbiek (2017),
which amounted to less than two articles per year, raises several questions. First,
where is the research on technology in secondary mathematics teacher preparation?
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Is it not being submitted? Not being accepted? Or, is it shared more readily in
venues other than journal articles? International norms and experiences with journal
editing suggest each of these three questions raises a serious issue. Now is the time
to contribute to the ongoing investigation of PSMTs’ knowledge and skill in and
across content, pedagogy, and technology and to the needed exploration of how
PSMTs develop practice that incorporates technology as a full partner with content
and pedagogy.
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Chapter 8
Prospective Mathematics Teachers’
Perspectives on Technology

Mar Moreno and Salvador Llinares

Abstract This chapter examined prospective secondary mathematics teachers’
perspectives on the role that technological resources play in supporting students’
learning. In particular, we study prospective teachers’ pedagogical reasoning in
order to understand their decisions about the use of technology and their effects on
students’ mathematics learning. We analysed prospective secondary teachers’ les-
son plans on teaching mathematics through problem solving by integrating tech-
nology. Prospective secondary mathematics teachers’ perspectives on the use of
technology for supporting students’ mathematical learning varied in two dimen-
sions: (i) how technological resources are used, and (ii) what mathematical activity
that prospective teachers should present to support students’ learning. These
dimensions are related to the idea of instrumental integration that is used to describe
how teachers organize the conditions for instrumental genesis. We identified three
ways of integrating technological resources.

Keywords Technology � Instrumentalisation � Mathematical activity
Teachers’ perspective

8.1 Introduction

This research focuses on prospective secondary mathematics teachers’ learning
when using and integrating technology to support students’ mathematics learning
and reasoning (Goos, 2008; Niess, 2005; Tondeur, van Braak, Sang, Voogt, Fisser,
& Ottenbreit-Leftwich, 2012; Wilson, Lee, & Hollebrands, 2011). Reviews on
technological pedagogical content knowledge (Voogt, Fisser, Pareja Roblin,
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Tondeur, & Van Braak, 2012) show that pedagogical beliefs affect how teachers
integrate technology. Within teacher education contexts, it is necessary to study
prospective teachers’ pedagogical reasoning in order to understand their decisions
about the use of technology, and how prospective teachers’ technological reasoning
affects their decision making while using technology (Yigit, 2014). Technology, in
this study, refers to the use of applets and dynamic geometry software to design
dynamic representations of tasks. Using technology resources in teaching is related
to the increasing emphasis on how prospective teachers can learn to engage students
in meaningful mathematics tasks using technological tools (Stohl, 2005).
Technology resources are tools that can help prospective teachers enact their per-
spectives on teaching and learning in lesson planning. This can be done if
prospective teachers unpack mathematical contents into their constituent parts to
define learning goals in their lessons (Morris, Hiebert, & Spitzert, 2009).

During lesson planning, prospective teachers’ pedagogical reasoning can come
up within the context of learning how to use technology resources to engage
students in meaningful mathematical tasks. When prospective teachers are doing
lesson planning, they should make decisions about how to use technological
resources and have to determine the nature of the problem solving activity they aim
to achieve. Lesson planning, as an activity in teacher education programs, involves
a psychological process in which prospective teachers visualize the future, inven-
tories means and ends, anticipate students’ strategies, and constructs a framework to
guide their future actions (Santos-Trigo & Camacho-Machín, 2009; Schoenfeld,
2011), and also a phenomenological approach in which they tell us what they plan
to do. In the activity of lesson planning, prospective teachers should design
instructional activities to address different mathematical contents by aligning
instructional activities with learning goals, anticipating students’ responses, think-
ing about assessment tasks to determine if students understand the learning
concepts.

The use of technology for teaching through problem solving, underlines some
aspects of the mathematical activity such as visualization, representations, formu-
lation and conjectures, and generalization (Moreno-Armella & Santos-Trigo, 2016)
that should be taken into account in lesson planning. These aspects are different
from the mathematical activity generated on “paper and pencil” problem solving
(Santos-Trigo, 2007; Santos-Trigo & Camacho-Machín, 2009). The transformation
of mathematical problems that aims at creating learning opportunities for students
to learn mathematics is a context in which the prospective teachers’ approach
toward technology appears. For this reason, lesson planning is an adequate context
to study prospective teachers’ pedagogical reasoning and how they learn to teach
(Morris et al., 2009).

Therefore, the goal of this research is to identify prospective secondary math-
ematics teachers’ perspectives on the role that technological resources play in
supporting students’ learning, when they planning a lesson that integrates tech-
nology through problem solving.
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8.2 Theoretical Framework

Research on prospective teachers’ learning attempts to explain how they acquire
knowledge, beliefs, values and attitudes of their profession. Nowadays, the attempts
to introduce technological resources in mathematics teaching raise new challenges
for teachers and teaching (Goos et al., 2010). Using technology in teaching can
imply using new kinds of mathematical tasks, modifying the nature of mathematical
activities in classroom based on a set of pedagogical principles. From a teacher
learning’s perspective, the way in which prospective teachers learn to integrate
technological resources in mathematics teaching could be mediated by their beliefs
about the nature of mathematics, mathematics learning and mathematics teaching.
So, learning to teach mathematics when digital tools are presented should make
prospective teachers rethink the nature of the mathematical activity during problem
solving and they should reflect on the role played by the teacher. In this study, we
bring together two aspects of work that address how prospective teachers learn to
integrate technological resources in mathematics teaching. The first one focuses on
how prospective teachers’ perspective can condition their learning to teach. The
second focuses on the process of how prospective teachers organize the conditions
for instrumental genesis of the technology (Chai, Koh, & Tsai, 2013).

From this perspective, learning to use technological resources in mathematics
teaching may show different “prospective secondary teachers’ perspectives” about
teaching and learning. These perspectives could be considered as cognitive refer-
ences through which prospective teachers learn to make decisions on teaching
(Simon & Tzur, 1999). Simon and colleagues (Simon & Tzur, 1999; Tzur, Simon,
Heinz, & Kinzel, 2001) conceptualise the expression “teachers’ perspective” as a
structure of pedagogical conceptions—knowledge and beliefs, which are responsible
for organizing some aspects of their practice. Teachers’ perspectives influence their
learning and their cognitive references to make sense of learning contexts. In our
study, we focused on the perspectives underlying prospective mathematics teachers’
activity in lesson planning. For designing activities that integrate technological
resources in their lesson planning, prospective teachers need to anticipate informa-
tion about students’ understanding. When prospective teachers anticipate students’
answers, they might adjust learning opportunities. Regarding prospective teachers’
activities in lesson planning to introduce technological resources, we consider that it
is possible to identify aspects related to traditional, perception-based, and
conception-based perspectives characterized in a different context (Tzur et al., 2001).
Tzur et al. (2001) point out that from a traditional perspective teaching could be
characterized by teachers’ attempt to transmit particular mathematical ideas to stu-
dents. While from a conception-based perspective, teachers attempt to orchestrate
conditions that engage students in actively seeing and connecting those ideas, seeing
mathematics as a web of conceptions that students abstract through reflection (Olive,
Makar, Hoyos, Kor, Kosheleva, & Sträßer, 2010).

Secondly, prospective teachers’ who are learning to use technology to support
student’s mathematical understanding and to develop problem solving skills could
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be placed in the intersection of research on how prospective teachers organize the
conditions for instrumental genesis of the technology proposed to the students and
the extent to which mathematics learning is fostered through instrumental genesis.
In this study, instrumental genesis is understood to be the shaping of thinking by the
tool in the construction of mental schemes and instrumentalisation as analogous to
activities that involve the shaping of the tool by users (Goos et al., 2010; Healy &
Lagrange, 2010).

The way in which an artefact becomes part of an instrument in the hands of a
student is called instrumental genesis (Drijvers, Kieran, & Mariotti, 2010). In this
case, the way in which prospective teachers design students’ learning opportunities
by integrating technological resources could support or not students’ instrumental
genesis. The role played by the prospective teachers’ lesson plan in sharpening the
instrumental genesis (in its double role of instrumentation as the way the applets—
as an example of artefact—affect students’ behaviour and thinking, and instru-
mentalisation concerns the way the students’ thinking affects the use of applets) will
define these students’ learning opportunities. Since instrumental genesis consists in
developing students’ cognitive schemes and techniques, prospective teachers’
perspective on the nature of mathematical knowledge and the role of technological
resources in the teaching and learning of mathematics, reflected in lesson planning,
will define opportunities to interrelate technical and conceptual elements during
problem solving. Furthermore, when prospective teachers anticipate key moments
in problem solving situations in which students interrelate technical and conceptual
elements, they could define the institutional conditions to support the enhancement
of instrumental genesis. The way in which prospective teachers consider the
interrelation between technical and conceptual elements, in their lesson plans, the
interaction between the techniques involved in using the applets—as an artefact—
and the students’ mathematical thinking becomes apparent. Additionally, when
prospective teachers had to think about key moments in problem solving situations
to orchestrate students’ collective instrumentation, they had to anticipate ways of
didactic configurations (additional tasks, type of questions, and so) considering the
various stages of a mathematical situation. These aspects define the ways
prospective teachers could orchestrate students’ collective instrumentation
(Bueno-Ravel & Gueudet, 2009).

8.3 Method

8.3.1 Participants and Context

The participants were 25 prospective secondary school mathematics teachers
enrolled in a course on mathematics teaching in a postgraduate teacher education
program. The prospective teachers were graduates in mathematics, engineering, and
—computer sciences. They had different levels of knowledge about the use of
technology as resources for teaching.
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The postgraduate program granted them the qualifications required to teach
mathematics in Secondary Education and included courses of mathematics edu-
cation, mathematics, pedagogical studies—psychological and sociological studies
—and eight weeks of teaching practices in secondary school classrooms. The
mathematics education subjects represented 30% of the program’s workload.
Courses in mathematics education are designed to provide prospective teachers with
the knowledge of teaching and learning mathematics.

The course on mathematics teaching and technology (a mathematics education
course) lasted 50 h (four hours per week for 13 weeks). In this course, prospective
mathematics teachers analysed curricular standards, tasks and lessons from math-
ematics textbooks, they also had the opportunity to explore applets for teaching
mathematics, discussed class-teaching situations (teaching cases) in which tech-
nology was integrated and analysed the consequences on students’ mathematical
activity when technology was integrated into mathematics teaching which focused
on problem solving. Geogebra was a technological resource introduced during
some of these sessions. In these sessions, prospective teachers engaged in exploring
different mathematics contents with applets to understand the opportunities and
constraints that could be likely to create whilst using technology in mathematics
teaching and learning. When they had to plan a lesson, using technology that
focused on problem solving, they needed to understand how technology resources
offered opportunities and constraints to students’ learning. Prospective teachers read
and discuss several research papers related to mathematics teaching and technology
(Santos-Trigo & Camacho-Machín, 2009; Stein, Engle, Smith, & Hughes, 2008).

8.3.2 Instrument

As an assessment task at the end of the course, every prospective secondary
mathematics teacher was asked to select a problem from a secondary mathematics
textbook and modify it to plan a lesson focused on problem solving and integrating
the use of technology. Prospective teachers had to modify the problem to create
opportunities that favoured students’ instrumental genesis to support aspects of the
mathematical activity such as making and proving conjectures, using multiple
representations, facilitating experimentation and particularization, generating con-
nections and generalization. Prospective teachers are required to use some tech-
nological resources (applets or dynamic geometry) in their lesson plans to support
students’ mathematical activity. They had to anticipate students’ answers. For this
purpose, prospective teachers had to highlight the learning goals of the lesson, and
solve the problem. Prospective teachers used the following template:

1. Anticipate ways in which students could solve the problem to examine if they
were aligned with the achievement of the goals.
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2. Identify features of mathematical activity (specialize? particularize, making
conjectures and testing conjectures, ways of communicating, etc.) and possible
evidence of students’ learning.

3. Anticipate key moments in the resolution process to pose new challenges to
students. Prospective teachers had to anticipate mathematical processes, which
could be enacted during problem resolution, to identify the strengths and lim-
itations involved in using the various representations and consequently plan how
to encourage students to formulate and pursue questions in an attempt to
establish mathematical relations.

4. Anticipate which students’ answers could reflect different understanding and
provide comments on the type of help to students, and indicate additional tasks
and intentional and systematic organization of the various artefacts in guiding
students’ instrumental geneses, through instrumental orchestration.

8.3.3 Analysis

We analysed the lesson plans by attending to: (1) learning goals defined by the
mathematical activity, which prospective teachers expected to develop, (2) how
technology was used, and (3) how students’ instrumental genesis was considered,
including their arguments for using technology and the implications of its use.

The problem in the lesson plan was classified with regard to its cognitive
demand, as high-level or low-level in relation to the mathematical activity that
prospective teachers were expected to generate. Problems were classified with a
high level cognitive demand when the questions required students to make con-
nections between multiple representations engaged students in the conceptual ideas
underlying the procedures, provided a context to go from specification—to gen-
eralization (Stein, Grover, & Henningsen, 1996). This type of problem could
require that students experiment to make a conjecture and prove it. In this case,
prospective teachers used the problem to support the students’ reflections about
relations between different mathematics concepts and representation registers.
Problems used in this type of lesson plans and how they were described allowed
students to set goals and engage in activities to solve them. We infer from these
features a conception-based perspective in which mathematics is “thought as a web
of conceptions that humans abstract through reflection” (Tzur et al., 2001). This
approach underlines the interrelation between technical and conceptual elements as
evidence of instrumental genesis defining the teacher’s intention to support the
interactions between the students and the artefact with a particular learning goal in
mind. Prospective teachers who designed this type of lesson underscored the clo-
sely related co-emergence of the technical and conceptual aspects during the
problem solving.

On the other hand, a problem in the lesson plan was classified with low-level
cognitive demand when it only required students to reproduce previously learned
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facts, using a procedure to calculate, without providing any explanation. This
approach defines the use of technological resources as a tool to only “display” the
mathematical subject matter. This perspective does not take into account the stu-
dents’ understanding neither the potential of different technological tools, like
dragging or visualizing relations between different types of registers
(analytical-algebraic and geometrical).

Furthermore, the way in which prospective secondary teachers used technology
affordances, like dragging objects, using sliders and quantify parameters, informed
us about their ideas on how to promote students’ mathematical activity and the role
played by technological resources (that is to say, how the genesis of instrumen-
talisation is handled by prospective teachers in lesson planning). We focused on the
arguments given by prospective teachers to justify the role of technological
resources, during lesson planning, on problem solving in relation to students’
learning (the relation between tools and mathematics learning). That is to say, how
prospective teachers considered the use of digital resources with a mathematical
intention (the instrumentation). We compared the descriptions of how prospective
teachers proposed to use technological resources, during the lesson, to identify the
reasons for using a given technological resource. This focus allowed us to infer the
relation between the technological resources introduced during problem solving, the
learning objective defined, and how they anticipated the students’ answers.

Finally, prospective teachers’ pedagogical reasoning in lesson planning were
compared in an attempt to identify the differences and similarities of possible
pattern groups in the data provided by prospective teachers.

8.4 Results

Based on these lesson plans, we identified three groups of prospective teachers
taking into account two dimensions to characterize their perspectives. The first
dimension is related to the way prospective secondary teachers considered the
mathematical activity when students are engaged in problem solving using tech-
nology: ways of supporting mathematical relations, mathematical properties that
could be emphasised using technology, using particular cases to make conjectures
and so on. The second dimension is linked to how technology is used. That is to
say, how the genesis of instrumentalisation is handled by prospective teachers in
justifying the lesson plan. In other words, how prospective teachers orient students
towards the use of an artefact (instrumentalisation) and towards the problem solving
(the instrumentation). The way in which the use of technological resources was
planned allows us to relate prospective teachers’ reasoning based on the nature of
the mathematical activity proposed to students. We present below three cases to
show the different perspectives of prospective teachers.
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G1—Technological resources to “display”

In the first group (n = 13 prospective teachers), the use of technological
resources in the lesson plan of problem solving was anecdotic. Prospective teachers
in this group used the technology resource only to present some aspects of the
problem without being related to the nature of mathematical activity that could be
generated. The prospective teachers used the technological resource only as a tool
for illustrating the problem but not for reasoning with it. For example Jesus, one of
the prospective teachers in this group, planned to use the technological resources to
“illustrate” the topic that had previously been introduced in his explanations. Jesus’
problem was suitable for a class of 14–15 year-old students. His goal was to
“illustrate” how to calculate areas and perimeters of a 2D-shape (Fig. 8.1)
(Calculate the area in which a tied horse could eat grass if there were two stakes that
conditioned the horse’s movements).

Jesus planned to use Geogebra to draw the geometrical figure that defined the
horse’ grazing field and to verify the calculations previously made by hand. For this
prospective secondary teacher, the use of technology did not influence the nature of
the student’s mathematical activity and went on to solve the problem without
technology. He justified his lesson plan by defining technology as an “illustrating
and proving” tool.

Jesus stated:

As we can see, the maximum area in which the horse could move along is delimited by
these two sectors of circles, the pink one with radius equals seven and the blues one with
radius equals two. Therefore, the total amount of grass that the horse is likely to eat is the
sum of the interior circular sectors. Using algebra, the areas of each sector would be the
pink sector area = (3/4) * π * (72) and the blue sector area = (1/4) * π * (22), and the total
area would be the sum of the two sectors’ area, approximately, 118.59 m2. If we use
dynamic software like Geogebra, it is easy to see and verify that the result is the same!
(Added emphasis)

Fig. 8.1 Representation of
Jesus’ horse problem
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When Jesus anticipated students’ responses to exemplify difficulties in achieving
the goals, he identified technical and procedural difficulties without indicating other
high-level mathematical activities such as conjecturing, testing, particularizing and
generalization:

May be students have difficulties imagining the conditions of situations – how to go from
one circumference to another, or how to consider the relation between the wall and the rope,
… We could try to unlock these difficulties by posing questions like…:

1. Imagine that you are tied to a rope and you try to turn the corner, what happens?
2. What is the radius of the small circumference?

For a possible generalization:

1. Would it always be the same if I put the horse on any other vertex?

To generate learning opportunities for students, prospective teachers in this
group used the problems in their lesson plans without recognizing the potential of
technological resources to modify students’ mathematical activity. This feature
makes transparent the potential of technological resources to visually represent
geometrical invariants amidst simultaneous variations induced by, for example,
dragging activities. So, for these prospective teachers, it was not possible to con-
sider the utilities of Geogebra in interrelating the hypothetical mathematical con-
ceptions that could have been developed (the question in the problems could be
solved without the use of the technological resources). Consequently, it was not
possible to talk of instrumental genesis. For example, Jesus focused on procedural
aspects to calculate the areas and Geogebra was a tool used to validate the results
previously obtained by a “paper and pencil solution”:

The purpose of this activity is to correctly represent and calculate the areas. The action
followed by the teacher was to guide them to discover the steps that should be followed.
This strategy is the most optimal. Thus, in situations that require such representations and
calculations, students will know how to proceed. Even to use Geogebra to validate results.

G2—Initiating the design of learning opportunities to support instrumental
genesis

A second group of prospective teachers (n = 6 prospective teachers) planned to
use technological resources to create learning opportunities for students to generate
a mathematical activity that focused on the variability and relations between rep-
resentation modes. These prospective teachers used sliders and dragging object as a
means to discover mathematical relations. The problem used as a key element in the
lesson plan generated a context in which the students’ instrumental action would
favour students’ reflection about the relation between the action and the conceptual
elements involved. These prospective teachers took advantage of potential offered
by technological tools and provided the context for students to experiment and be
able to relate solutions to different modes of representation or discover properties.
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For example, David presented a modelling problem from an applet with
Geogebra in which students (14–15 years old) had to connect the description of the
situation with the use of an applet (Fig. 8.2) in a trigonometric lesson (isoptic, set of
all the points from which a segment AB is seen under a given angle).

David initially proposed solving the problem without technology, and using
technology to validate the calculations

(With Geogebra, using the algebraic menu to get the values. Check the values obtained in
the previous section with Geogebra.)

(With Geogebra, use the algebraic menu to get the values)
1. Check that the values you got in the previous section correspond to what Geogebra

shows?
How much are a (purple angle), b (blue angle), and c (brown angle)? And its sum?

2. Change the values of α and find the value for which the problem is as simple as 
possible (it is not worth the Space Debris to be on top of one of the satellites)
a) How much are angles a (purple angle), b (blue angle) and c (brown angle)? And

its sum?
b) How much is now Ye? And Xe?
c) How much is the difference between α angle and the Space Debris angle? 

3. Leaving α fixed, change the Space Debris angle
a) Is there any other value for which you get the same result as in the previous 

case? What is the difference between these two angles?
b) Is there any other value of the Space Debris angle for which you get the same Xe

(ignoring the sign)? What is the relationship between these angles?
c) And for Ye angle? What is the relationship between those angles?

Fig. 8.2 Some questions in the David’s problem to support the experimentation and the
connection between representations, using sliders to make conjecture
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He proposed to use the applet to generate a learning context to go beyond
calculating. Using the Geogebra menu, he represented geometrical invariants from
simultaneous variations induced by dragging. This prospective teacher introduced
conditions in his lesson plan to generate opportunities to generate a “more or less
stable sequence of interaction between the user and the artefact with a particular
goal” (Drijvers, Kieran, & Mariotti, 2010, p. 109). In this case: modify values and
notice the relation between new values. The goal of this sequence of questions in
the lesson plan is: to identify invariants in the situation as a way of making
mathematical conceptions emerge (in this example the mathematical notion of
isoptic curve: for a given curve C, consider the locus of point P from where the
tangents from P to C meet at a fixed given angle). The goal of the instrumented
action scheme is to make the student notice the relation between the variability of
parameters in the situation and the pattern that emerges from the mathematical
conception in organizing this situation. The applet is designed to facilitate that
student observe the connections between the graphical representation of the situa-
tion and the analytical expressions of the mathematical equations. Furthermore, the
prospective teacher uses sliders to create a context to conjecture new relations
between given values. This pedagogical use of sliders added a new aspect to the
student’s mathematical activity, conjecturing relationships between variables to
modify the given values. The use of the applet create new learning situations for
students enhancing mathematics activities as conjecturing relations between the
given values that are not presented when the problem is enacted without
technology.

However, when prospective teachers in this group anticipated students’
responses, they only considered a procedural perspective of the students’ mathe-
matical activity. For example, when David anticipated students’ answers he focused
his attention only on identifying the equations, on the difficulties in solving systems
of equations, and in handling the applet. This prospective teacher indicated the
following as possible difficulties:

* Set the equation of the first triangle (data + a + 90° = 180°)

* Set the equation of the second triangle (b + 90° + e = 180°)

* Identify the congruence of angles in isosceles triangle (c = d)

* Set the equation of arc capable (a + b + c = 90°)

That is to say, while David could conceptualize a teaching situation through
problem solving with the support of an applet, favouring certain mathematical
processes as conjecturing, noticing the invariable in the situation, and setting
connections between representations, he was only able to anticipate difficulties in
identifying equations, in solving systems of equations and technical difficulties in
handling the applet. When he indicated the student’s difficulties, he focused on
procedural elements but not on conceptual elements. In this case, the prospective
teacher does not rely on the capacities of technological resources to generate
learning opportunities in relation to the meaning of the capable arc and the prop-
erties of the angles inscribed on a circumference spanning the same arc.
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This is apparent in the prospective teacher’s behaviour: based on the different
perspectives of his lesson plan, he anticipated students’ mathematical thinking to be
independent from the mathematical knowledge considered in the lesson. In this
context, for example, Lourdes, a prospective teacher modified a problem of first and
second grade equations to introduce Geogebra to facilitate the connections between
different solutions. The problem is addressed to define a difference variable from the
experimentation about particular cases

• Calculate the length of the side of a square, if by increasing its length by two cen-
timetres, its area increases by 24 cm2

• Construct the difference function of areas, represent it and obtain the solution
• Relate the dynamic model to the graphical representation of the function.

She guided the construction of the square and proposed to use sliders to
approach the resolution of the problem (Fig. 8.3).

Lourdes use the technological resources to link different representation modes,

We can take advantage of the potential of this program [Geogebra] to link the algebraic
expression of the area difference function and the equation corresponding to the problem, as
well as to establish connections between different resolutions.

This prospective teacher’s approach to students’ mathematical activities allows
for the possibility of establishing connections between algebra and geometry.

Step 5: Create the difference variable
Create the variable dif= polygon2-plygon1, which gives us the difference between 
the areas of the enlarged square and the original square.
Step 6: We move the slider until we find the solution to the problem, which will be 
the value that the slider takes when, dif = 24. The solution is X = 5
Therefore, the side of the original square measures 5 cm and its area is 25 cm2,
while the side of the enlarged square measures 7 cm and its area is 49 cm2 

Fig. 8.3 Part of the Lourdes’ square problem
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In addition, it creates opportunities for students to guess the difference between
areas by increasing the side length of the square. However, when she anticipated
students’ activity and the possible difficulties that students could face, her focus
concentrated on the procedural aspects, not clearly explaining how to establish the
relationship between the representation registers and the properties of the area
function:

Some students may correctly perform the resolution using the dynamic model, but do not
reach the same solution from the graphical representation of the function of the difference
of areas. Students may find the cut-off point of the graph of the function with the vertical
line x = 24, instead of the point of intersection with the horizontal line y = 24. As the point
of intersection is (24,100), the student would say that the side of the initial square measures
100 cm, which is the ordinate of that point. This indicates that the student has a good
understanding of the geometric elements, but not the concept of function or the graphical
representation of functions.

Therefore, it interchanges the meaning of the coordinates of the points in the represented
graph. In this situation, I would pose the following question:

What do the points on the graph represent?

I would ask him about the meaning of different particular points, so that he would arrive at
the general idea. Then I would ask him for the meaning of the abscissa point 24, so that he
would realize his error.

Finally, I would ask: What point will give us the answer to the problem?

This prospective teacher focused exclusively on the meaning of ordered pairs did
not take advantage of the potential of the relationship between the geometric screen,
the graphical representation of the area function and the possibility of generating a
table of values. This potential of the technological resource would have helped
students to deduce the functional relation and the effect of the change of the value of
the variables in the area of the square.

Prospective teachers in this group plan a lesson in which to integrate the
potential of technological resources to favour the student’s instrumental genesis.
The problems used and their justifications of how to modify the cognitive demand
of the problem are aimed at developing schemes and techniques. In particular, they
were able to generate learning opportunities to identify invariant organization in a
given situation. For that reason, they consider the conditions required for students to
generate sequence of interactions using applets with a particular goal. With these
characteristics of the lesson plans, prospective teachers support the co-emerge of
technical and conceptual aspects; orchestrate conditions to engage students in
seeing patterns and connecting ideas. However, this focus on the instrumental
genesis in the lesson plan disappears when anticipating students’ strategies and
difficulties. When focusing on student’s mathematical activity prospective teachers’
perspective shifts to students’ abilities to execute mathematical procedures. This
difference between the perspective on the lesson plan and on student’s activity
reflects a dichotomy in how prospective teachers learn to integrate the technological
resources when learning to teach.
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G3—Integrating an epistemological stance about mathematical knowledge and
students’ mathematical activity

Finally, there is a third group of prospective teachers (n = 6 prospective
teachers) that integrate their epistemological stance about mathematical knowledge
in the lesson plan and how to anticipate students’ mathematical activity. This
approach showed an integrated perspective on the way of approaching mathemat-
ical activities with the support of technological resources and the cognitive stance
on students’ learning. For instance, Pablo a prospective teacher in this group chose
a problem, in his lesson plan (for 14–15 years old students), which consisted of
sub-problems from a particular case to general case:

Calculate the length of the median in an equilateral triangle and the radius of inscribed and
circumscribed circles to the triangle. Starting with an equilateral triangle (the length of the
side is 10

ffiffiffi

3
p

cm) and then with an isosceles triangle with the length of the different side is
12 cm.

Pablo’s lesson plan is based on generating a mathematical situation, to support
secondary school students in identifying the properties of mathematical objects and
anticipate definitions. Pablo posed the problem, identified key moments of the
resolution, which could be useful in getting over students’ obstacles and difficulties,
to generalize properties (Santos-Trigo & Camacho-Machín, 2009). For example,
when Pablo anticipated the students’ answers, he pointed out that some students
would think that the property for the equilateral triangles works for all triangles. He
identified relations between the mathematical contents and limitations of the
properties that could be mobilised in resolving the problem (Fig. 8.4):

In the hypothetical situation, a secondary school student would use the property, which is
valid for equilateral triangles, with isosceles triangles, “I will ask him to argue his answer
and after then, he should make the construction. For me, it is a key moment for
generating conflict and contradiction. If I supposed that the student shows me a good
construction, which works, I would vary the length of one side and things began to fall
down.”

Fig. 8.4 Particular constructions that show limitations of the properties
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Pablo anticipated possible challenges and difficulties for secondary students. He
knew the difference between a geometrical construction and a simple representation
or drawing. Dynamic software like Geogebra offers the possibility of taking
advantage of its dynamism to enhance mathematical activity. For this reason, it is
very important to consider the justification and argumentation that demonstrate
what someone is exposing. Pablo indicated in his report that it is necessary that
students realize that there are properties that only met some types of triangles. Pablo
argued that point using the following figures constructed with Geogebra. Pablo
displayed this fact modifying the lengths of the triangle sides.

For Pablo, using dynamic software could be suitable for learning mathematics
and problem solving and let secondary students establish the differences between
what it is a simple drawing and a “geometrical construction of mathematical
objects”. That fact underlines the role of technology in helping secondary school
students to go more in depth into the knowledge of geometrical thinking (in this
particular case, providing sense of the idea of geometric construction). It is
exemplified by Pablo, in the particular case of an isosceles triangle whose con-
struction coincides with the equilateral triangle when Pablo modifies the length of
the side AC from 10√3 to 11, it shows that the construction is not correct and
students will have to look for other properties in constructing the circumscribed
circle.

The characteristic of this lesson plan is that Pablo uses the technological resource
to generate situations in which students can reflect on many particular cases to
abstract the mathematical conception. The possibility of generating cognitive
conflict when the generalization of a mathematical relation is not fulfilled is con-
sidered as a context that supports the student’s reflection. In Pablo’s lesson plan,
Geogebra supports the generalization processes from sets of particular cases.
Furthermore, when Pablo anticipates students’ answers to the problem, he considers
the potential of the dragging tool in Geogebra to represent geometrical invariants to
induce visually the abstraction of the mathematical conceptions.

8.5 Discussion and Conclusion

This study examines how prospective secondary school mathematics teachers use
technology resources, like applets and software of dynamic geometry as Geogebra
and technological affordances as dragging objects, to quantify parameters and use
sliders to support students’ mathematics learning. The study uses Simon and Tzur’s
(1999) theoretical construct “teacher’s perspective” to focus on how technology is
used in a lesson plan and documented different ways in which prospective teachers
use technology. These prospective teachers’ perspectives are cognitive references
through which they make decisions on teaching and it allows us to relate their
epistemological stance about school mathematics (what type of mathematics
activity could be supported) and what is the focus of students’ mathematics
learning.
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We use two dimensions to define prospective teachers’ perspectives. These
dimensions take into account the nature of the student’s mathematical activity that
could be supported by the technological resources and how the prospective teachers
plan to use the technological resources in problem solving. These dimensions are
related to the idea of instrumental integration used to describe “how the teacher
organize the conditions for instrumental genesis of the technology proposed to
students and to what extent (s) he fosters mathematics learning through instrumental
genesis” (Goos et al., 2010). We have characterized three ways in which techno-
logical resources, when integrated in prospective teachers’ perspectives, show how
they plan a lesson and anticipate students’ mathematical activity.

Some prospective teachers pay more attention to the results than to the process
of solution, and attach less importance to the students’ mathematical activity such
as conjecturing, proving, arguing, and connecting different representation modes.
These prospective teachers turned technological resources into an end for itself and
its use was anecdotic throughout the development of the mathematical activity and
problem solution. On the other hand, some prospective teachers organised their
lesson plan considering the mathematical activity generated by taking advantage of
the potentials of the technological resource and by identifying key moments during
problem solution. The prospective teachers’ lesson plan is based on dragging
objects, quantifying parameters and using sliders to support students’ mathematical
activity as conjecturing and testing, identifying properties and so on. For example,
the identification of key moments in the problem solving process allowed
prospective teachers to focus on the study of particular cases as an initial step in the
search of properties, facilitating the connection between ways of representations
and looking for problem alternative solution. However, other prospective teachers
transformed problems in their lesson plans by using dynamic representations of
problems to support mathematical relations, but when they anticipated students’
mathematical activity they only took into account procedural mathematical aspects.
These prospective teachers could be considered as those who have not yet estab-
lished a bridge between the discipline’s epistemological stance and the students’
cognitive dimensions in learning to use the technological resources to support the
mathematical learning in problem solving context (Santos-Trigo, Moreno-Armella,
& Camacho-Machin, 2016).

These results suggest that learning to integrate technology in mathematics
teaching aimed at promoting the development of the mathematical activity is a
complex process. The different ways in which prospective teachers may consider
technology as a pedagogical resource to support students’ learning provide means
of tracing learning trajectories of how prospective teachers learn about mathematics
teaching (Stohl, 2005). Furthermore, we argue that the variability in which
prospective teachers thought about technology and the role played by technology in
problem solving could also be explained by the prospective teachers’ beliefs about
learning (Lin, 2008), and the nature of the mathematical task. This last issue
emphasizes the need to carry out more research on the relations between knowl-
edge, beliefs, and nature of the task in the lesson about how to use technology to
support students’ mathematics learning.

140 M. Moreno and S. Llinares



Acknowledgements We acknowledge the support received from the Spanish Projects: I+D+i,
EDU2011-29328 and EDU2014-54526-R from the Minister of Sciences and Innovation, Spain.

References

Bueno-Ravel, L., & Gueudet, G. (2009). Online resources in mathematics, teachers’ geneses and
didactical techniques. International Journal of Computers for Mathematical Learning, 14(1),
1–20.

Chai, C.-S., Koh, J. H.-L., & Tsai, C. C. (2013). A review of technological pedagogical content
knowledge. Educational Technology & Society, 16(2), 31–51.

Drijvers, P., Kieran, C., & Mariotti, M. (2010). Integrating technology into mathematics education:
Theoretical perspectives. In C. Hoyles & J. B. Lagrange (Eds.), Mathematics education and
technology—Rethinking the terrain: The 17th ICMI Study (pp. 89–132). London: Springer.

Goos, M. (2008). A sociocultural analysis of the development of pre-service and beginning
teachers’ pedagogical identities as users of technology. Journal of Mathematics Teacher
Education, 8(1), 35–59.

Goos, M., Soury-Lavergne, S., Assude, T., Brown, J., Kong, C. M., Glover, D., et al. (2010).
Teachers and teaching: Theoretical perspectives and issues concerning classroom implemen-
tation. In C. Hoyles & J. B. Lagrange (Eds.), Mathematics education and technology—
Rethinking the terrain: The 17th ICMI Study (pp. 311–328). London: Springer.

Healy, L., & Lagrange, J. B. (2010). Introduction to section 3: Teachers and technology. In C.
Hoyles & J. B. Lagrange (Eds.), Mathematics education and technology—Rethinking the
terrain: The 17th ICMI Study (pp. 287–292). London: Springer.

Lin, C. (2008). Beliefs about using technology in the mathematics classroom: Interviews with
preservice elementary teachers. Eurasia Journal of Mathematics, Science and Technology
Education, 4(2), 135–142.

Moreno-Armella, L., & Santos-Trigo, M. (2016). The use of digital technology in mathematical
practices: Reconciling traditional and emerging approaches. In L. D. English & D. Kirshner
(Eds.), Handbook of international research in mathematics education (3rd ed., pp. 595–616).
London: Routledge, Taylor & Francis Group.

Morris, A. K., Hiebert, J., & Spitzert, S. (2009). Mathematical knowledge for teaching in planning
and evaluating instruction: What can preservice teachers learn? Journal for Research in
Mathematics Education, 40, 491–529.

Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology;
developing a technology pedagogical content knowledge. Teaching and Teacher Education,
21, 509–523.

Olive, J., Makar, K., Hoyos, V., Kor, L. K., Kosheleva, O., & Sträßer, R. (2010). Mathematical
knowledge and practices resulting from access to digital technologies. In C. Hoyles &
J. B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The
17th ICMI Study (pp. 133–177). London: Springer.

Santos-Trigo, M. (2007). Mathematical problem solving: An evolving research and practice
domain. ZDM Mathematics Education, 39, 523–536.

Santos-Trigo, M., & Camacho-Machín, M. (2009). Towards the construction of a framework to
deal with routine problems to foster mathematical inquiry. PRIMUS, 19(3), 260–279.

Santos-Trigo, M., Moreno-Armella, L., & Camacho-Machin, M. (2016). Problem solving and the
use of digital technologies within the mathematical working space framework. ZDM
Mathematics Education, 48, 827–842.

Schoenfeld, A. H. (2001). Toward professional development for teachers grounded in a theory of
decision making. ZDM Mathematics Education, 43, 457–469. https://doi.org/10.1007/s11858-
011-0307-8.

8 Prospective Mathematics Teachers’ Perspectives on Technology 141

https://doi.org/10.1007/s11858-011-0307-8
https://doi.org/10.1007/s11858-011-0307-8


Simon, M., & Tzur, R. (1999). Explicating the teacher’s perspective from the researchers’
perspectives: Generating accounts of mathematics teachers’ practice. Journal for Research in
Mathematics Education, 30, 252–264.

Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive
mathematical discussions: Five practices for helping teachers move beyond show and tell.
Mathematical Thinking and Learning, 10(4), 313–340.

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for
mathematical thinking and reasoning: An analysis of mathematical tasks used in reform
classrooms. American Educational Research Journal, 33(2), 455–488.

Stohl, H. (2005). Facilitating students’ problem solving in a technological contexts: Prospective
teachers’ learning trajectory. Journal of Mathematics Teacher Education, 8, 223–254.

Tondeur, J., van Braak, J., Sang, G., Voogt, J., Fisser, P., & Ottenbreit-Leftwich, A. (2012).
Preparing pre-service teachers to integrate technology in education: A synthesis of qualitative
evidence. Computers & Education, 59, 134–144.

Tzur, R., Simon, M., Heinz, K., & Kinzel, M. (2001). An account of a teacher’s perspective on
learning and teaching mathematics: Implications for teacher development. Journal of
Mathematics Teacher Education, 4(3), 227–254.

Voogt, J., Fisser, P., Pareja, Roblin N., Tondeur, J., & Van Braak, J. (2012). Technological
pedagogical content knowledge—A review of the literature. Journal of Computer Assisted
learning, 29(2), 109–121.

Wilson, P. H., Lee, H. S., & Hollebrands, K. F. (2011). Understanding prospective mathematics
teachers’ processes for making sense of students’ work with technology. Journal for Research
in Mathematics Education, 42(1), 39–64.

Yigit, M. (2014). A review of the literature: How pre-service mathematics teachers develop their
technological, pedagogical, ad content Knowledge. International Journal of Education in
Mathematics, Science and Technology, 2(1), 26–35.

142 M. Moreno and S. Llinares



Chapter 9
Preservice Mathematics Teachers’
Effective Use of Technology:
Analyzing the Cognitive Demands
of Technology-Based Instructional
Activities

Ahmet Oguz Akcay and Melissa D. Boston

Abstract This study examined pre-service teachers’ (PST) ability to integrate
technology into instructional activities in ways that support students’ mathematical
thinking and reasoning, using the Instructional Quality Assessment to assess the
cognitive demand of: (a) instructional tasks, (b) description of how tasks would be
implemented or were implemented during the lesson, and (c) level of response
expected from or produced by students. Results show that PSTs designed technology-
based instructional activities with high-level cognitive demands and aimed to main-
tain high-level implementation and student response. Results suggest that focusing on
cognitive demands of tasks and implementation may be productive for supporting
PSTs to incorporate technology inways that enhance students’mathematical learning.

Keywords Pre-service teachers �Mathematics � Technology � Cognitive demands
Instructional activities

9.1 Introduction

Technology has been used for decades in K-12 teaching and learning environments
and higher education. In mathematics education, the use of instructional technology
has great potential. Technology can increase the quality of mathematical
investigations, portray meaningful mathematics ideas to students and teachers from
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multiple perspectives, and change traditional ways of doing mathematics (NCTM,
2000, 2014). In fact, the National Council of Teachers of Mathematics
(NCTM) asserts in Principles to Actions: Ensuring Mathematical Success for All
(NCTM, 2014): “An excellent mathematics program integrates the use of mathe-
matical tools and technology as essential resources to help students learn and make
sense of mathematical ideas, reason mathematically, and communicate their
mathematical thinking” (p. 78).

The United States Department of Education’s (USDE) Preparing Tomorrows
Teachers to Teach with Technology (PT3) program has supported 441 grants since
1999 (see http://www2.ed.gov/programs/teachtech/index.html), and provided mil-
lions of dollars to educational institutions to better prepare in-service teachers and
pre-service teachers (PSTs) to integrate technology effectively in education (Polly,
Mims, Shepherd, & Inan, 2010). National organizations and educational researchers
agree that technology must be a central focus of courses preparing PSTs for the
classroom (International Society for Technology in Education, 2000; Niess et al.,
2009; Thompson, Schmidt, & Davis, 2003; USDE, 2010). Many teacher education
programs offer technology courses for PSTs to improve their skills in integrating
technology (Polly et al., 2010); however, these courses often feature only basic
technology skills (Kay, 2006). Research also indicates that, while PSTs can
improve their technology integration skills from field experiences and student
teaching (Chen, 2010), PSTs often incorporate technology into the field or student
teaching classroom in superficial ways (e.g., presentation technology) that do not
serve to enhance students’ learning (Johnston, 2012). In mathematics classrooms,
this would include using technology for presentation, computation, or in other such
ways as an amplifier (e.g., using technology to support previous ways of teaching
mathematics), but not using technology as a reorganizer to significantly restructure
students’ engagement with or learning of mathematics (Sherman, 2011, 2014). In
fact, studies show that mathematics PSTs use technology most frequently as a
presentation or demonstration tool and least frequently to support students’
reasoning and problem solving (Johnston, 2012).

The purpose of this study is to explore pre-service teachers’ ability to design
mathematics lesson activities that integrate technology in ways that support students’
learning of mathematics. The PSTs in this study all participated in mathematics
methods courses that emphasized the level of cognitive demand ofmathematical tasks
and task implementation (e.g., Stein, Smith, Henningsen, & Silver, 2009; Stein,
Grover, & Henningsen, 1996) in planning, teaching, and reflecting on mathematics
instruction. In this study, we analyze the cognitive demands of technology-based
instructional activities created and/or used by pre-service teachers as a measure of the
effectiveness of the activities in supporting students’ learning of mathematics. In the
next section, we describe how cognitive demand serves as a framework for this study
and provides a pedagogical structure to support PSTs’ integration of technology into
instructional activities in the specific content area of mathematics. While our work
centers exclusively on PSTs in mathematics, we posit that a cognitive demand
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perspective can be generalized beyond PSTs and beyond mathematics to support and
assess PSTs’ and inservice teachers’ use of technology to enhance students’ learning
in other content areas, as well.

9.2 Theoretical Background

In preparing PSTs to use technology, teacher educators must consider how to
enhance PSTs’ knowledge and practices in using technology, content, and peda-
gogy concurrently. Specifically, we must prepare prospective teachers to use
technology in ways that support students’ learning in specific content areas.
Decades of research in mathematics education have identified the importance of the
cognitive demand of instructional tasks and task implementation in supporting
students’ learning of mathematics (e.g., listed chronologically: Doyle, 1988; Stein
et al., 1996; Boaler & Staples, 2008; Boston & Wilhelm, 2015). Hence, in this
study, we utilize research on the impact of cognitive demand on students’ learning
of mathematics as the underlying theoretical basis for analyzing PSTs’ effective use
of technology to teach mathematics.

9.2.1 Cognitive Demand Perspective

Drawing on the work of Stein and colleagues (1996, 2009), we define a mathe-
matical task as a single complex problem or set of problems that focuses students’
attention on a particular mathematical idea, and we define cognitive demand as the
level and type of thinking required to solve a task. Stein and colleagues delineate
four levels of cognitive demand in tasks and task implementation: (1) memorization
or stating previously learned facts or definitions; (2) procedures without connec-
tions to meaning or understanding (e.g., applying rote computations or algorithms);
(3) procedures with connections to meaning and sense-making; and (4) doing
mathematics (e.g., mathematical problem solving). Tasks at the level of memo-
rization and procedures without connections place only low-level cognitive
demands on students’ thinking; tasks classified as procedures with connections and
doing mathematics engage students in high-level thinking and reasoning.

Empirical research consistently indicates a positive association between stu-
dents’ engagement with high cognitive demand tasks and higher student achieve-
ment and learning in mathematics (Boaler & Staples, 2008; Boston & Smith, 2009;
Stein & Lane, 1996; Tarr et al., 2008). Similarly, mathematics curricula inten-
tionally designed to contain high-level tasks have been shown to increase students’
mathematical achievement, reasoning, and problem-solving at the elementary level
(e.g., Schoenfeld, 2002; Sztajn, Confrey, Wilson, & Edgington, 2012), middle
school level (e.g., Cai, Wang, Moyer, Wang, & Nie, 2011; Post et al., 2008), and
high school level (e.g., Grouws et al., 2013; Schoen, Cebulla, Finn, & Fi, 2003).
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This body of evidence supports the importance of the cognitive demand of math-
ematical tasks in providing students opportunities to learn mathematics. Equally
important is the implementation of those tasks throughout the instructional episode.
Stein and colleagues’ work (Stein et al., 1996, 2009) indicated that the cognitive
demands of tasks can be altered throughout a lesson, and they developed the
Mathematical Tasks Framework (MTF) to identify key points at which these
alterations are likely to occur. From an analysis of over 300 mathematics lessons,
Stein and colleagues convey in the MTF that task demands are frequently altered
from: (1) the task as written in the textbook or curricula; to (2) the task as set-up or
introduced by the teacher; to (3) the task as implemented by the teacher and
students throughout the lesson. Lessons in which high cognitive demands were
maintained throughout the lesson were associated with the greatest gains in stu-
dents’ learning (Stein & Lane, 1996).

Drawing on this work, we consider the cognitive demands of instructional tasks
and task implementation in technology-based instructional activities created by
PSTs as an indicator of PSTs’ ability to effectively use technology to enhance
students’ learning of mathematics. Stein and colleagues’ levels of cognitive demand
and Mathematical Tasks Framework (Stein et al., 1996, 2009) served as a central
frame: (1) in the teacher preparation courses (in elementary, middle level, and
secondary mathematics) taken by PSTs; (2) in our analysis of PSTs’ use of tech-
nology in ways that support students’ learning of mathematics; and (3) in the
research tool (Boston, 2012) used to analyze technology activities created by PSTs.

Supporting PSTs to select and implement tasks with high cognitive demands in a
specific content area (mathematics) requires enhancing their pedagogical content
knowledge (Ball, Thames, & Phelps, 2008; Shulman, 1986). Supporting PSTs to
select and implement technology-based instructional activities that support stu-
dents’ learning in a specific content area requires enhancing their technological
pedagogical content knowledge (Koehler & Mishra, 2009), discussed in the
following section.

9.2.2 PSTs’ Knowledge of Technology, Pedagogy
and Content

Technological pedagogical content knowledge (TPACK) (Koehler & Mishra, 2009)
stems from the idea of pedagogical content knowledge (PCK) originally described
by Shulman (1986). At the intersection of pedagogy and content, PCK describes
teachers’ knowledge of pedagogical strategies and students’ ways of thinking and
reasoning specific to the discipline. In mathematics, Ball et al. (2008) delineate
additional components of content knowledge (common content knowledge, spe-
cialized content knowledge, and horizon content knowledge) and pedagogical
content knowledge (knowledge of content and students, knowledge of content and
curriculum, and knowledge of content and teaching) to highlight the domains of
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mathematical knowledge for teaching (MKT). Shulman’s general PCK model and
Ball’s specific domains of MKT elevate the importance of teachers’ knowledge of
pedagogical strategies capable of supporting students’ learning within a specific
discipline. The TPACK model (Fig. 9.1) adds knowledge of technology to the key
components of PCK. The center of the model represents teachers’ knowledge of
technological tools that could be used to support discipline-specific pedagogical
strategies and students’ learning.

Grandgenett (2008) determined that mathematics teachers with a strong back-
ground in TPACK positively impacted students’ learning of mathematics. Research
has also identified relationships between PSTs’ training and preparation to use
technology and their actual use of technology (computer and Internet) in the
classroom (U.S. Department of Education, 2010). Hence, teacher education pro-
grams should provide PSTs with opportunities to build instructional technology
skills, in addition to content knowledge and pedagogical practices (Koehler &
Mishra, 2009).

In this investigation, we take the stance that pre-service mathematics teacher
education should develop PSTs’ knowledge of specific pedagogical strategies
empirically shown to support students’ learning of mathematics. Such strategies
(e.g., questioning techniques, use of cognitively demanding tasks) have been
identified as “non-negotiable,” effective mathematics teaching practices (NCTM,
2014) and thus represent essential components of PSTs’ pedagogical content
knowledge (PCK). By adding technology to these components of PCK, we define
TPACK specific to mathematics teaching and learning as PSTs’ knowledge of
instructional strategies incorporating technology that serve to support students’
learning of mathematics. Specifically, we consider the level of cognitive demand of

Fig. 9.1 TPACK model. Retrieved from http://mkoehler.educ.msu.edu/tpack/what-is-tpack/
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tasks and task implementation in technology-based instructional activities as an
indicator of PSTs’ effective use of technology to support students’ learning of
mathematics.

9.2.3 Prior Research on Technology and Cognitive
Demands

Previous research has examined the level of cognitive demand of technology-based
instructional activities. Sherman (2011) grouped teachers’ use of technology into
two main categories: (1) an amplifier, where “technology allows for more efficient
execution of by-hand procedures,” and (2) a reorganizer, where technology “has the
potential to change the cognitive focus of the task, for example, by giving students
access to mathematical concepts, representations, or behaviors that might otherwise
be difficult or impossible” (p. 121). Sherman observed and interviewed four sec-
ondary mathematics teachers (three high school, one 6th grade; all third-year
teachers) and collected samples of students’ work. All four teachers graduated from
a teacher preparation program strongly focused on selecting and implementing
cognitively challenging instructional tasks. Sherman found that 23 of 48 (47.9%)
tasks using technology at set-up (i.e., in the beginning or “launch” of the lesson)
had high-level cognitive demands. However, only 7 of 56 tasks (12.5%) using
technology in implementation (i.e., lesson activities) maintained high-level
demands throughout the lesson. Low-level mathematical tasks were often associ-
ated with technology serving as an amplifier, which generally “had little or no
influence on the cognitive demand of the task” (p. 292) and did not induce thinking
or reasoning on the part of the students. Using technology as a reorganizer, or as
both reorganizer and amplifier within the same implementation, was associated with
students’ engagement in cognitively demanding mathematical work and thinking.

Johnston (2012) collected mathematics lesson plans and reflective documents
from 35 PSTs. Johnson categorized technology lesson plans into four types: display
(21; 64.3%), student exploration (7; 17.9%), review and practice (6; 14.3%), and
productivity (1; 3.6%). Johnson reports that 15 of the 35 (42.9%) pre-service ele-
mentary teachers selected to use the SmartBoard, which was the most popular
choice of technology in their lesson plans. Hence, the majority of PSTs in
Johnson’s study planned lessons that used technology in limited ways and did not
engage students in high-level thinking and reasoning (e.g., using technology for
display or review and practice). Johnson’s framework attends to how technology
was being used by the teacher, rather than the impact of technology on students’
learning. Similarly, recent work by Hollebrands, McCulloch and Lee (2016) con-
siders how technology is positioned in PST’s lesson plans (e.g., for mathematics
versus for display) and whether the use of technology is teacher-centered or
student-centered.
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In this investigation, we highlight the use of technology to support students’
learning of mathematics using the lens of cognitive demand. By considering the
cognitive demands in a technology-based instructional activity, we switch the focus
of technology use from the role of the teacher to the impact on the student. Hence,
this study adds to previous research by considering how PSTs use technology to
support students’ learning of mathematics. In this way, this study sits at the
intersection of PCK and effective use of instructional technology; in other words, in
the TPACK space. This study addressed the following research question:

When pre-service mathematics teachers create technology-based instructional activities
during a mathematics methods course and/or for use during student teaching, what are the
cognitive demands of: a) the instructional tasks; b) the implementation of the instructional
tasks; and c) the level of students’ response?

In the next section, we describe the context and methodology of the study.

9.3 Method

The purpose of this study is to explore how pre-service teachers design mathematics
lesson activities that integrate technology. Specifically, we analyzed the level of
cognitive demands of technology-based instructional activities: (1) created by PSTs
for an assignment in their elementary, middle level, and/or secondary mathematics
methods course, and (2) created and used by secondary mathematics PSTs during
student teaching. While this monograph has secondary PSTs as its focus, we
include data on elementary and middle level PSTs for comparisons.

9.3.1 Participants

Participants in this study were PSTs (n = 80) in the elementary (grades PK-4;
n = 41), Middle Level (grades 4–8; n = 17), or Secondary Mathematics (grades 7–
12; n = 22) certification programs during the 2014–2015 school year in a mid-size
private university in the northeast U.S. Most participants (74/80; 92.5%) were
undergraduates in the first semester of their senior year in Fall 2014 and engaged in
student teaching in Spring 2015, though 6 participants (7.5%) were in
post-baccalaureate programs obtaining their initial teaching certification and
engaged in student teaching in Fall 2014 or Spring 2015. All PSTs in this study
completed a mathematics methods course appropriate to their certification level in
Fall 2014 or Spring 2015, taught by the second author and/or another mathematics
education faculty member at the University. The first author described the study to
PSTs in person during class sessions of the mathematics methods courses. The
course instructors did not know who decided to participate in the study until after
course grades had been finalized.
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9.3.2 Context of the Methods Course and Technology
Activities

Each mathematics methods course was organized around: (1) a developmental,
social-constructivist view of teaching and learning mathematics, using texts such as,
“Elementary and Middle School Mathematics: Teaching Developmentally” (Van de
Walle, Karp, & Bay-Williams, 2007); and (2) a task-focused approach to lessons
planning (Smith, Stein, Arbaugh, Brown, & Mossgrove, 2004), mathematical dis-
cussions (Smith & Stein, 2011), and reflection (Stein et al., 2009). As such, each
course emphasized selecting and implementing cognitively challenging mathe-
matical tasks. PSTs in each course engaged in a “Task Sort” activity (Smith et al.,
2004) to learn to identify the cognitive demands of mathematical tasks. PSTs also
analyzed curricula, justified the level of cognitive demand of tasks used in their own
lesson plans, and had frequent opportunities to explain why tasks used in class had
high-level demands. PSTs also analyzed narrative and video cases of mathematics
instruction, samples of student work, peer teaching during the course, and their own
teaching of mathematics lessons (in K-12 classrooms and to their peers). In these
analyses, PSTs considered whether (and how) high-level cognitive demands were
maintained throughout the lesson.

Each methods course includes a Technology Assignment, where PSTs design
technology-based instructional activities. In the elementary mathematics methods
course, PSTs investigated the teaching and learning of mathematics in grades PK-4.
PSTs produce lesson plans for whole number operations, fractions, and geometry at
specified grade levels. For the Technology Assignment, PSTs created technology
activities for grades PK-4 in the mathematical topics of algebraic thinking and
statistics (data or probability). In the middle level methods course, pair/groups of
2–3 PSTs planned units of instruction (e.g., series of consecutive lessons around a
specific mathematical topic), to engage middle school students in learning mathe-
matics. The Technology Assignment required middle-level PSTs to design
technology-based instructional activities aligned with the mathematical content of
their unit plans. In the secondary mathematics methods course, PSTs investigated
curricula and planned lessons in algebra, geometry, trigonometry, statistics, or
calculus. Each PST created three lesson plans: (1) algebra, (2) geometry, and
(3) any higher-level mathematics course. For the Technology Assignment, PSTs
planned technology activities that addressed important mathematical content at the
high school level (e.g., algebra and beyond).

In each course, the Technology Assignment occurred toward the end of the
semester. While the Technology Assignment required PSTs to use technology to
teach specific mathematical content (aligned with the PSTs’ certification level), the
Technology Assignment did not explicitly indicate that PSTs should select or create
a cognitively challenging instructional task. PSTs were expected to find a tech-
nology resource (e.g., an applet, graphing calculator application, or web-based
game, software, or animation) and create an instructional activity using that
resource. For the Technology Assignment, participants provided screenshots or
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copies of the task, descriptions of how they would use the task in an instructional
activity to teach mathematics, and their expectations for students.

During student teaching, PSTs completed a “Showcase Portfolio” containing at
least three examples of their impact on students’ learning. Each example contains
artifacts from a lesson or series of lessons (e.g., lesson plans, copies of instructional
tasks, assessments) and samples of students’ work (with students’ names removed).
Secondary mathematics PSTs were required to include a technology-based instruc-
tional activity in their Showcase Portfolio. As described in the next section, the
Technology Assignments and Showcase Portfolios served as data in this study.

9.3.3 Data and Coding

Data include 68 instructional activities from Technology Assignments in the methods
courses (41 elementary level, 19middle level, and 8 secondary levelmathematics) and
14 instructional activities from secondary mathematics PSTs’ Showcase Portfolios.
The Instructional Quality Assessment (IQA) (Boston, 2012) was used to assess the
cognitive demand of each technology activity, based on three indicators:

(a) Potential of the Task: the level of cognitive demand of the instructional task
portrayed by the technology resource, as displayed on screen, including any
directions included within the task display itself, but not including any addi-
tional directions or instructional activities for using the task created or described
by the PST;

(b) (Described) Implementation: the level of cognitive processes elicited by the
instructional activities surrounding the technology resource, including addi-
tional directions or instructional activities created and/or described by the PST.
In the Technology Assignments, the description of how the task would be
implemented in the lesson activity (Described Implementation); in the
Showcase Portfolios, how the task was actually implemented in the
student-teaching classroom (Implementation);

(c) (Expected) Student-Response: the elaborateness of student-responses (or
products) required by the task display, task directions, and any additional
instructional activities created and/or described by the PST. In the Technology
Assignments, the level of response expected from students (Expected Student
Response); in the Showcase Portfolios, the level of response actually produced
by students (Student Response) in the student-teaching classroom (based on
student-work samples).

The rubrics for Potential of the Task and (Expected) Student Response are
provided in Fig. 9.2. The Implementation (or Described Implementation) rubric
(summarized in Fig. 9.3) parallels Potential of the Task, with “lesson activity”
replacing “task” in each score level and the verb changing to past tense for
Showcase Portfolio activities (since the lesson activity was actually implemented in
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Potential of the Task (Expected) Student Response

4 

The task has the potential to engage students in 
exploring and understanding the nature of 
mathematical concepts, procedures, and/or 
relationships, such as (from Stein et al. 2009):
• Doing mathematics: using complex and non-

algorithmic thinking (i.e., there is not a predictable, 
well-rehearsed approach or pathway explicitly 
suggested by the task, task instructions, or a worked-
out example); or

• Procedures with connections: applying a broad 
general procedure that remains closely connected to 
mathematical concepts.

The task must explicitly prompt for evidence of 
students’ reasoning and understanding. For example, 
the task MAY require students to:  
• solve a genuine, challenging problem for which 

students’ reasoning is evident in their work on the 
task;

• develop an explanation for why formulas or 
procedures work; 

• identify patterns;…justify generalizations based on 
these patterns;…

The (expected) student response 
provides evidence of students’ 
mathematical thinking and reasoning 
(such as multiple representations or 
strategies, diagrams, etc.) AND an 
explanation is explicitly required. 

3 

The task has the potential to engage students in 
complex thinking or in creating meaning for 
mathematical concepts, procedures, and/or 
relationships. However, the task does not warrant a 
“4” because: 
• the task does not explicitly prompt for evidence of 

students’ reasoning and understanding.
• students may need to identify patterns but are not 

pressed to form or justify generalizations;
• students may be asked to use multiple strategies or 

representations but the task does not explicitly 
prompt students to develop connections between 
them;…

The (expected) student response 
provides evidence of students’ 
mathematical thinking and reasoning 
(such as multiple representations or 
strategies, diagrams, etc.) BUT no
explanation is required. 

2 

The potential of the task is limited to engaging 
students in using a procedure that is either specifically 
called for or its use is evident based on prior 
instruction, experience, or placement of the task…. 
The task does not require students to make 
connections to the concepts or meaning underlying the 
procedure being used… (e.g., practicing a 
computational algorithm).

The (expected) student response is a 
computation or procedure,…or 
procedural explanation such as “Show 
your work.”

Students are not required to 
demonstrate connections to 
mathematical concepts in their 
response to the task, even if task itself 
provided opportunities for 
connections.

1 

The potential of the task is limited to engaging 
students in memorizing or reproducing facts, rules, 
formulae, or definitions…

Students (are asked to) provide brief 
numerical or one-word answers (e.g., 
fill in blanks, provide only the result 
or answer).

Fig. 9.2 Coding rubrics for potential of the task and (expected) student response
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the student-teaching classroom). A score of 0 indicates that the Technology
Assignment or Showcase Portfolio activity did not include a mathematical task,
require students’ engagement with a mathematical task, and/or expect a student
response (e.g., technology used for presentation or display). Scores of 1–2 indicate
low-level cognitive demands (e.g., memorization, rote procedures or procedures
without connections) and scores of 3–4 represent high-level cognitive demands
(e.g., procedures with connections to meaning and sense-making, and doing
mathematics or problem-solving).

In this study, the first author scored all data and the second author scored 20% of
randomly selected tasks from the 68 method course activities and from the 14
Showcase portfolio activities to determine reliability. Exact-point agreement
between the two authors was good to excellent: 94% for Potential of the Task, 82%
for the Implementation and Described Implementation, and 88% for the Students
Response and Expected Student Response. All coding questions were discussed
between raters until reaching consensus.

Figure 9.4 provides examples of technology tasks (as they appear on screen) at
each level of the Potential of the Task rubric. The “Parts of a Circle” task in
Fig. 9.4a receives a score of 1 for Potential of the Task, because students only need
to recognize a vocabulary term to solve the task correctly. The task does not require
students to draw a diagram, perform a procedure, or explain the result.

The “Plotting Points” example in Fig. 9.4b is a game activity in which students
control a bug on a coordinate plane starting at (0, 0), with the goal of finding
specified coordinates from all four quadrants using left, right, below, and above
arrows. The Potential of the Task receives a score of 2, because identifying points
on a coordinate grid requires a standard procedure.

Implementation of the Task (Boston, 2012) 

4 Students engage in using complex and non-algorithmic thinking or by exploring and understanding 
the nature of mathematical concepts, procedures, and/or relationships.*  

3

Students engage in complex thinking or in creating meaning for mathematical procedures and 
concepts BUT the problems, concepts, or procedures do not require the extent of complex thinking as 
a “4”; OR The “potential of the task” was rated as a 4 but students only moderately engage with the 
high-level demands of the task.* 

2

Students engage with the task at a procedural level. Students apply a demonstrated or prescribed 
procedure. Students may be required to show or state the steps of their procedure, but are not required 
to explain or support their ideas. Students focus on correctly executing a procedure to obtain a correct 
answer.  

1

Students engage with the task at a memorization level. Students are required to recall facts, formulas, 
or rules (e.g., students provide answers only). 
OR 
The task requires no mathematical activity.  

N/A Reason:  

*Refer to descriptors in Potential of the Task rubric. 

Fig. 9.3 Summary of coding rubric for (described) implementation
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The “Nets of 3-D shapes” activity in Fig. 9.4c requires students to explore 3-D
shapes (cubes, tetrahedrons, or dodecahedrons) and how the shapes relate to 2-D nets.
Students explore faces, edges, and vertices of shapes to understand the 3-D forms. The
task directions (“For any polyhedron, what is the relationship between the number of

(a) Parts of a Circle 

Potential of the Task: 1

Retrieved from 
https://www.ixl.com/math/geometry/
parts-of-a-circle

(b) Plotting Points

Potential of the Task: 2

Retrieved from
http://resources.oswego.org/games/Bi
llyBug2/bug2.html

(c) Nets of 3-D Shapes

Potential of the Task: 3

Retrieved from 
http://illuminations.nctm.org/Activit
y.aspx?id=3521 

(d) Quadratic Transformer

Potential of the Task: 4
Retrieved from 
http://seeingmath.concord.org/resour
ces_files/QuadraticGeneral.html

Fig. 9.4 Examples of score levels for potential of the task
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faces, vertices, and edges?”) provide opportunities for students to identify mathe-
matical relationships, but do not require explanations or justifications; hence the
Potential of the Task scores 3.

The aim of the Quadratic Transformer activity in Fig. 9.4d is to help students to
make sense of the parent graph and transformations of quadratic functions by
considering connections between the graphic and symbolic representations. The
task directions state, “How does the number you chose for the coefficient of x2

(the letter a) change the shape of a parabola? Write your conclusions and explain
your reasoning.” This activity requires an explanation of the effect of changing a in
f xð Þ ¼ ax2 þ bxþ c, and the values of b and c with the location of the vertex.
Potential of the Task scores a 4, because the task explicitly asks students to explain
their reasoning.

WhilePotential of the Task scores indicate the cognitive demand of the technology
activity as it appears on screen or in print, the (Described) Implementation and
(Expected) Student Response are both scored on how the instructional activity was
designed and/or conducted by the PST. For example, the Expected Student Response
of the original “Nets of 3-D Shapes” task (Fig. 9.4c) scores a 3, because student are
required to find relationship between faces, edges, and vertices (corners) of each
shape. Students must look for patterns and relationships, and they are required to
produce more than a rote procedure or calculation (score 2). However, they are not
asked to produce an explanation or generalization for why the relationships occur
(score 4). If the PST included directions in the Technology Assignment or Showcase
Portfolio that explicitly prompted students to explain the relationship between the
faces, edges and vertices of each shape or why those relationships occur, the Expected
Student Response would be 4. Conversely, if the teacher’s directions only asked
students, “Find the number of faces, vertices, and edges of each shape,” instead of
asking about the relationships between them,Expected Student Responsewould score
a 2. Similarly, the “Plotting Points” task in Fig. 9.4b scores a 2 for Potential of the
Task, since the purpose of the activity is plotting points on a coordinate graph.
However, if the task was used as a tool to promote thinking and reasoning, the
Described Implementation could score a 3 or 4.

In summary, each Technology Assignment received three IQA scores: Potential
of the Task, Described Implementation, and Expected Student Response. Similarly,
Showcase Portfolios (accompanied by student work samples) from PSTs’ student
teaching classrooms were scored for Potential of the Task, Implementation, and
Student Response. Note that each technology activity in the student teaching
Showcase Portfolio contained at least 4 samples of students’ work. A set of student
work was scored by considering the level of implementation and student responses
provided by the majority of students.
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9.3.4 Analyses

In this report, we present overall data on all 80 PSTs in the study. Data from PSTs
in the elementary and middle level programs are included to provide points of
comparison with data from secondary mathematics PSTs. Means, medians, per-
centages and the frequency of technology activities at each IQA score level are
reported in frequency tables, in order to describe the level of cognitive demand of
PSTs’ technology activities, allow for comparisons between rubrics, and to provide
an indication of PSTs’ ability to plan lessons that incorporate technology in ways
that supports students’ learning. A one-way analysis of variance (ANOVA) was
used to evaluate differences between PSTs at different certification levels for each of
the IQA rubrics. Non-parametric t-tests for independent samples were used to make
comparisons between the technology activities designed for the method class and
the technology activities used during student teaching, as an indication of whether
ideas from the methods class would be evident in PSTs’ classroom practices during
student teaching.

9.4 Results

9.4.1 Technology Assignments

Table 9.1 provides the results for PSTs’ “Technology Assignments” overall and
delineated by certification level. Overall results indicate that PSTs overwhelmingly
selected instructional tasks with high-level cognitive demands (scores of 3 or 4 for
Potential of the Task; 52/68; 76.5%), created instructional activities to engage
students in cognitively challenging mathematical work and thinking (scores of 3 or
4 for Described Implementation; 57/68; 83.8%), and expected high-level student-
responses and products (scores of 3 or 4 for Expected Student Response; 55/68;
80.9%). In five technology activities, PSTs created high-level instructional activities
(e.g., score of 3 or 4 for Described Implementation) from tasks that originally
(in print or on screen) had low-level cognitive demands. PST modified five tasks
with low-level demands into technology activities that required high-level cognitive
demands for Expected Student Response; however, in two cases, scores declined
from high-level Potential of the Task to low-level Expected Student Response
(resulting in a net change of 3). Overall scores of 4 indicate that 17.5% of tasks,
30.8% of instructional activities, and 32.4% of expected student responses required
students to explain their mathematical thinking and reasoning.
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Within each certification level, data indicate a greater number of high-level
scores and/or scores of 4 for Described Implementation or Expected Student
Response compared to Potential of the Task. For example, for secondary mathe-
matics PSTs, we see a shift from no tasks scoring a 4 for Potential of the Task to
three lesson activities scoring a 4 for Described Implementation. Similarly, PSTs
designed lesson activities with high-level demands (e.g. score of 3 or 4 for
Described Implementation and Expected Student Response) from two tasks that
began with low-level demands (e.g., score of 2 for Potential of the Task).

A one-way analysis of variance (ANOVA) indicated a statistically significant
differences between certification levels for each of the IQA rubrics: Potential of the
Task (F[2,65] = 6.695; p = .002), Described Implementation (F[2,65] = 5.593;
p = .006), and Expected Student Response (F[2,65] = 4.013; p = .023). Follow-up
tests identified significant difference between middle level and elementary level,
with the middle level means significantly lower than elementary level means for all
IQA rubrics. No significant differences were found between secondary level versus
middle level or secondary level versus elementary level for any of the IQA rubrics.

Table 9.1 IQA scores for technology activities by certification level

IQA rubric Mean Median Number (%) at each score level

1 2 3 4

Elementary (PK-4) (n = 41)

Potential of the task 3.15 3 0 (0%) 2 (5%) 31 (75.5%) 8 (19.5%)

Described implementation 3.30 3 0 (0%) 2 (5%) 25 (61%) 14 (34%)

Expected student responses 3.22 3 1 (2.5%) 3 (7.5%) 23 (56%) 14 (34%)

Middle level (grades 4–8) (n = 19)

Potential of the task 2.58 2 0 (0%) 12 (63.1%) 3 (15.8%) 4 (21.1%)

Described implementation 2.74 3 0 (0%) 9 (47.3%) 6 (31.6%) 4 (21.1%)

Expected student responses 2.63 3 3 (15.8%) 6 (31.6%) 5 (26.3%) 5 (26.3%)

Secondary (grades 7–12) (n = 8)

Potential of the task 2.75 3 0 (0%) 2 (25%) 6 (75%) 0 (0%)

Described implementation 3.38 3 0 (0%) 0 (0%) 5 (62.5%) 3 (37.5%)

Expected student responses 3.38 3 0 (0%) 0 (0%) 5 (62.5%) 3 (37.5%)

Overall (n = 68)

Potential of the task 3.00 3 0 (0%) 16 (23.5%) 40 (59%) 12 (17.5%)

Described implementation 3.18 3 0 (0%) 11 (16.2%) 36 (53%) 21 (30.8%)

Expected student responses 3.10 3 4 (5.9%) 9 (13.2%) 33 (48.5%) 22 (32.4%)
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9.4.2 Showcase Portfolios

Table 9.2 provides data for the 14 technology-based instructional activities in the
Showcase Portfolios from secondary mathematics PSTs. The majority of Tasks (13/
14; 93%), Implementation (11/14; 78.6%), and Student Responses (10/14; 71.4%)
had high-level cognitive demands. However, three (21.4%) technology activities
beginning with high-level tasks (e.g., Potential of the Task score of 3 or 4) declined
in cognitive demand for Implementation and/or Student Response.

An independent samples t-test indicated a statistically significant difference
between activities in the Technology Assignments and Showcase Portfolios for
only Potential of the Task (t [80] = −2.095; p = .039). The mean score of the tasks
for the Technology Assignments from the methods courses (M = 2.96, SD = .66) is
significantly lower than the mean score of the tasks in the Showcase Portfolios
(M = 3.36, SD = .63). The test was not significant for Implementation (t
[80] = .742; p = .461) or Student Response (t[80] = .857; p = .394).

9.5 Discussion

In this study, we examined technology-based instructional activities created by
PSTs for a Technology Assignment in their mathematics methods courses or for
their Showcase Portfolios during student teaching.

9.5.1 Technology Assignments

9.5.1.1 Elementary PSTs

Almost all elementary level PSTs selected or designed technology-based instruc-
tional activities with cognitively demanding tasks (95%), implementation (95%),
and expected student responses (90%). Hence, elementary level PSTs demonstrated
the ability to effectively integrate technology in ways that support students’ learning

Table 9.2 IQA scores for showcase portfolios (n = 14)

IQA rubric Mean Median Number (%) at each score level

1 2 3 4

Potential of the task 3.36 3 0 (0%) 1 (7%) 7 (50%) 6 (43%)

Implementation 3.00 3 0 (0%) 3 (21.4%) 8 (57.2%) 3 (21.4%)

Student responses 2.86 3 0 (0%) 4 (28.6%) 8 (57.2%) 2 (14.2%)
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of mathematics. Elementary PSTs’ success at designing technology activities with
high cognitive demands might have been impacted by the methods course
instructors’ frequent use of the National Council of Teachers of Mathematics
(NCTM) Illuminations site and the National Library of Virtual Manipulatives
(NLVM)] site during the course to support PSTs’ own learning of mathematics and
as resources PSTs might use to support their students’ learning of mathematics. The
nature of the web-based virtual manipulatives, tools, and resources featured on
these websites may have provided PSTs with an easily accessible source of
high-level technology-based tasks. Even so, elementary PSTs in the study
demonstrated the ability to: (1) identify high-level tasks provided by the websites,
and (2) design high-level instructional activities using the technology resources
provided by the websites. Hence, elementary PSTs in this study identified resources
and designed activities that would provide students in elementary schools oppor-
tunities to actively engage with mathematics using technology.

9.5.1.2 Middle Level PSTs

While the majority of middle level PSTs selected technology tasks with low-level
cognitive demands (63.1%), the majority were then able to design technology-based
instructional activities that could engage students in high-level thinking and rea-
soning (52.7%). The Potential of the Task median score of 2 for middle level PSTs
is the only median score below a 3 across all IQA rubrics and certification areas.
Interestingly, middle level PSTs posted higher mean scores for Described
Implementation and Expected Student Response than Potential of the Task, indi-
cating that middle level PSTs designed instructional activities and expected
responses that increased the demands of the original tasks in print or on screen. In
many large-scale studies of mathematics teachers’ use of tasks during instruction,
tasks typically have higher cognitive demands than implementation and discussion
(Boston & Wilhelm, 2015). In other words, teachers do not often design or
implement instructional activities with higher demands than the original tasks
themselves. Middle level PSTs may have selected fewer high-demand tasks at the
outset because of the context of the Technology Assignment given in the middle
level methods course. While the directions were the same as those given to ele-
mentary and secondary PSTs, middle level PSTs had to choose technology tasks
that promoted students’ learning of a specific mathematical topic aligned to a unit of
instruction they were planning in the course. For this reason, middle level PSTs
may have searched for technology tasks based on mathematical topics (rather than
level of cognitive demand) and then adapted those tasks to create instructional
activities with higher-level demands.
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9.5.1.3 Secondary Mathematics PSTs

Secondary level PSTs selected technology resources with high-level cognitive
demands (75%) and designed technology-based instructional activities that main-
tained or/and increased the level of cognitive demands of these tasks (e.g., 100% of
Described Implementation and Expected Student Response at a score of 3 or 4).
Hence, they successfully demonstrated the ability to design technology-based
instructional activities and to adapt low-demand tasks into high-demand instruc-
tional activities. This ability may be due to the fact that secondary level PSTs took
methods courses with a focus on cognitive demands during two consecutive
semesters, and this experience may have helped them to design technology-based
instructional activities with high-demand mathematics tasks.

9.5.1.4 Overall Results

Overall, many of the technology-based tasks selected by PSTs scored high-level
(52/68; 76.5%). PSTs planned instructional activities integrating technology-based
tasks where students would have opportunities to engage in complex thinking and
reasoning (score 3) and also provide explanations and justifications (score 4). This
is important because setting up a lesson with high-level cognitive demand tasks is
key to encouraging students’ thinking and reasoning throughout the lesson
(Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013; Stein et al., 1996). Research
on mathematics teachers’ use of high-demand tasks rarely shows an increase from
task potential to task implementation, and studies using the IQA also find that
scores of 4 occur in very low percentages across all IQA rubrics (Boston &
Wilhelm, 2015). In this study, the overall means for Described Implementation and
Expected Student Response were higher than the overall mean for Potential of the
Task for all grade levels, and approximately 30% of Described Implementation and
Expected Student Response scored at level 4. These results indicate that PSTs
designed activities that would enhance students’ opportunities for thinking and
reasoning beyond what was present in the original tasks (in print or on screen), and
frequently required students to provide explanations and justifications.

For example, Fig. 9.5 illustrates a Technology Assignment submitted by a
secondary mathematics PST in which the cognitive demands of the original task
were increased from a score of 3 for Potential of the Task to a score of 4 for
Described Implementation and Expected Student Response. The task requires stu-
dents to use Algebra tiles to solve linear equations. The PST selected the applet
from the NCTM Illuminations website (http://illuminations.nctm.org/activity.aspx?
id=3482), stating, “this Internet applet is great for students because it gives them a
chance to use technology for a mathematical concept instead of using pencil and
paper, and allows the students to visually see what they are doing to solve an
equation.”

The directions provided by the website include: “Build your model. Solve the
equation.” The website also provides a list of what students can do with applet:
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“Use tiles to represent variables and constants, learn how to represent and solve
algebra problem. Solve equations, substitute in variable expressions, and expand
and factor. Flip tiles, remove zero pairs, copy and arrange, and make your way
toward a better understanding of algebra.” The Potential of the Task scores a 3,

1. Start with an equation.

2. Use the pointer tool and place the correct 
pieces in the workspace. After you build the 
model of the given problem, check your answer 
to move on to the next step. Only tile type, tile 
quantity, and workspace area are checked, not 
the way in which tiles are arranged.

3. Try eliminating the necessary tiles to create 
zero pairs.  Remember, what you do to one side, 
you must do to the other side! 

4. After you solve the problem, check your 
answer.

5. Practice: Solve the following equations using the Algebra tiles:
         a) 4x – 1 = 2x + 3  c) 4x – 3 = 5 
         b) 2x + 2 = 4   d) 5x – 5 = 4x + 2 

Fig. 9.5 Example of a high-level task and instructional activity
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since the task has the potential to engage students in creating meaning for math-
ematical concepts and procedures by asking students to use a representation and
build a model for solving equations. In the Technology Assignment, the PST
described the implementation of the activity step by step (see Fig. 9.5).
Furthermore, the PST planned to ask three additional questions:

(1) What is the goal for solving equations?
(2) How do the Algebra tiles allow you to better visualize the concept of zero

pairs?
(3) Explain the phrase “whatever you do to one side, you must do the exact same

thing to the other side”?

Hence, the Described Implementation score is 4, because students are required to
explain and understand the process of solving linear equations using multiple
strategies and making connections between representations. Expected Student
Response also scores 4, because students are explicitly asked to explain their
mathematical thinking and reasoning. The cognitive demands of the original task
were high level (score of 3), and the Described Implementation and Expected
Student Response in the PSTs’ instructional activity maintained and increased the
high-level demands to a score of 4.

While ANOVA tests identified significant differences between elementary and
middle level PSTs on all three rubrics, with elementary PSTs outperforming
middle-level PSTs, no significant differences existed between secondary mathe-
matics PSTs and either elementary or middle level PSTs. Interestingly, the TPCK
model might suggest that secondary mathematics PSTs would outperform their
counterparts due to greater content knowledge and technological content knowl-
edge, as secondary mathematics PSTs would have encountered more mathematics
and perhaps utilized more technology as learners of mathematics. We contend that
similarities in pedagogical knowledge and PCK amongst participants in the study
may have supported PSTs at all levels to design technology activities that support
students’ mathematical thinking and reasoning. Specifically, we consider PSTs’
experiences during methods courses in attending to the cognitive demands of
mathematical tasks and designing lessons to foster students’ high-level engagement
as paramount in enabling PSTs at all certification levels to select tasks and design
lesson activities in ways that promote students’ learning of mathematics.

9.5.2 Showcase Portfolios

In secondary mathematics PSTs’ Showcase Portfolios, almost all tasks (13/14;
93%) scored 3 or 4, indicating that PSTs selected tasks for technology-based
instructional activities that could provide students opportunities to engage in
complex mathematical thinking and reasoning, use multiple representations, and
provide explanations (score of 4; 43%). It is highly likely that PSTs selected their
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best activities for the Showcase Portfolio, because Showcase Portfolios are used by
the University teacher educators to evaluate PSTs’ performance during student
teaching. Even so, the results provide evidence that during student teaching, sec-
ondary mathematics PSTs could identify technology-based tasks with high-level
cognitive demands and could design and implement instructional activities that
maintained students’ high-level thinking and reasoning. In other words, the ideas
and instructional strategies prevalent in the methods courses were also evident in
instructional materials created by secondary mathematics PSTS’ for their student
teaching classroom.

In the Showcase Portfolios, a few tasks rated as high-level for Potential of the
Task received a score of 2 for Implementation and/or Student Response. Of 13 tasks
with the potential to elicit high-level thinking and reasoning, 11 maintained
high-level thinking during Implementation and 10 maintained high-level demands
in Students’ Responses. In these few cases where PSTs did not maintain high-level
cognitive demands and/or students’ responses, the student-work samples included
in the Showcase Portfolio displayed only computations or procedures (score of 2).
Similarly, of six tasks with the potential to elicit a score of 4, only three were
maintained for Implementation and two were maintained for Students’ Responses.
In these cases, even though the original task explicitly asked for an explanation
(score of 4), students did not actually provide explanations in their written work.
Instead, students may have used multiple representations or engaged in
problem-solving without explaining or justifying their work (score of 3), or they
may have only demonstrated procedures or computations (score of 2). Hence, PSTs
experienced some difficulty maintaining high-level cognitive demands when tech-
nology activities were actually implemented with students in the classroom.
However, the percentages of instructional activities maintained at a high-level and
at a score of 4 exceed the findings of previous research (e.g., Boston & Wilhelm,
2015; Johnston, 2012; Sherman, 2014). For example, mathematics teachers
observed by Sherman (2014) and the lesson plans of PSTs analyzed by Johnston
(2012) identified technology tasks and technology-based lessons with low cognitive
demands in far greater percentages than identified in this study.

9.6 Conclusion

In this study, PSTs designed technology-based mathematics instructional activities
with high-level cognitive demands and frequently maintained or increased the
cognitive demands of the original tasks. We hypothesize that PSTs’ overall success
in selecting and designing cognitively demanding technology-based instructional
activities is due to a strong focus on the cognitive demands of tasks and task
implementation throughout each of the methods courses. The coherent focus on
cognitive demands in planning, implementing, and reflecting on mathematics
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instruction throughout the methods courses may have enabled PSTs to design and
implement technology-based instructional activities that could support students’
learning of mathematics.

Limitations to this study include the fact that PSTs’ instructional activities were
being evaluated for a course assignment or for their student teaching, and may not
reflect the nature of instructional activities the PSTs would create on their own. Also,
while we could examine PSTs’ ability to design technology-based instructional
activities that supported students’ learning, we could not make generalizations about
PSTs’ typical practice over time. Additional work is needed to examine the types of
technology-based instructional activities PSTs use to teach mathematics over exten-
ded periods of time and the impact of these activities on students’ learning.

Given these limitations, the results of this study remain important because they
suggest that focusing on the cognitive demands of instructional tasks may be a
productive pathway for supporting PSTs to use technology in ways that enhance
students’ learning in a specific content area. While our focus was PSTs in mathe-
matics, the results generalize to other content areas and from pre-service teacher
education to inservice teacher professional development. By connecting technology
to effective pedagogy (e.g., maintaining high-level cognitive demands) in a specific
content area, our approach engages all facets of PSTs’ (or teachers’) TPCK in
effectively integrating technology to support students’ learning.
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Chapter 10
Prospective Mathematics Teacher
Argumentation While Interpreting
Classroom Incidents

Despina Potari and Giorgos Psycharis

Abstract This paper aims to analyze the structure and quality of prospective
mathematics teachers’ (PMTs)’ argumentation when identifying and interpreting
critical incidents from their initial field experiences. We use Toulmin’s model and
recent elaborations of it to analyze the discussions that took place at the university
where PMTs reflected on their recent classroom experiences. Our aim is to identify
the structure of the argumentation and characterize the emerging warrants,
backings, and rebuttals. Results indicate different argumentation structures and
types of warrants, backings, and rebuttals in the process of PMTs’ interpretations of
students’ mathematical activity. We discuss these findings from the perspective of
noticing to identify shifts at the level of PMTs’ interpretations.

Keywords Teacher argumentation � Argumentation structures � Warrants
Noticing � Critical incidents

10.1 Introduction

Current approaches in research in mathematics teacher education acknowledge the
importance of noticing as a construct to study what and how prospective mathe-
matics teachers (PMTs) attend to when observing, analyzing, and interpreting
teaching (Scherer & Steinbring, 2006). Noticing has been considered as a complex
action that involves teachers in identifying what is significant in a classroom
interaction, interpreting this noteworthy incident on the basis of their knowledge
and experiences, and linking these with broader principles of teaching and learning
(van Es & Sherin, 2010). Moreover, at the level of teacher education and in
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collaborative contexts, interpreting teaching phenomena is a joint action that
involves the development of claims, conjectures, and arguments. Studying teachers’
argumentation is a means of understanding the resources upon which teachers base
their interpretations. As regards PMTs, a challenge is to gain insight into the nature
and structure of argumentation in relation to their multiple experiences from school,
teacher education courses, and field experiences. Steele (2005) points out that
pedagogical argumentation has a diverse and fragile knowledge base and thus, “It is
difficult to access and agree upon fundamental elements of a pedagogical argument”
(p. 296). He also considers teaching as an interpretive act that is highly contextu-
alized and dependent on teachers’ experiences in the educational culture. Therefore,
we consider pedagogical argumentation as a lens to have access to PMTs’ inter-
pretive acts of teaching and to the sources upon which they base their
interpretations.

In this paper, we focus on PMTs’ argumentation in the process of selecting and
interpreting critical classroom incidents as part of their fieldwork activities. The
study took place in the context of a 14-week undergraduate mathematics education
course with the philosophy of linking theory-driven instruction on the teaching and
learning of secondary school math with actual mathematics teaching in classroom
settings. In a recent paper based on this context (Potari & Psycharis, Submitted), we
used critical incidents as a structure to facilitate PMTs’ reflection and study their
conceptualizations of mathematics teaching and learning. The analysis showed
PMTs’ shifts from observing teaching to questioning aspects of it and conceiving it
in a relational way. It also brought to the fore a richness of arguments developed by
PMTs as they supported their claims or challenged their peers’ interpretations. In
this paper, we use Toulmin’s model of argumentation and recent elaborations of it
to analyze the quality of PMTs’ argumentation and its development while identi-
fying and interpreting critical incidents. The research questions are:

• What is the structure of PMTs’ argumentation while interpreting classroom
incidents?

• What are the sources upon which PMTs base their interpretations of critical
incidents?

• How do the PMTs’ interpretations evolve in the context of the course?

10.2 Theoretical Framework

10.2.1 Teacher Noticing and Critical Incidents

Noticing has been introduced to mathematics teacher education to study shifts in the
structure of teachers’ attention and, through this, address different levels of
awareness in mathematics and in mathematics teaching (Mason, 2002). In reso-
nance with a number of current research approaches (c.f., Jansen & Spitzer, 2009;
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Scherer & Steinbring, 2006), noticing is an activity involving description, analysis,
and interpretation of teaching practice. According to van Es and Sherin (2002),
noticing is a more complicated action than just observing teaching. Rather, it
requires teachers to identify significant teaching and learning incidents, to interpret
them on the basis of their knowledge and experiences, and to link these with
broader principles of teaching and learning. Further, van Es and Sherin also
highlighted the importance of interpreting classroom interactions as a way of
informing teachers’ pedagogical decisions. Therefore, promoting teachers’ noticing
includes, “to first notice what is significant in a classroom interaction, then interpret
that event, and then use those interpretations to inform pedagogical decisions”
(p. 575).

Researchers have been concerned about the introduction of sufficient structures for
making the act of teacher noticing more concrete. Critical incidents are an example of
a structured framework for reflection on classroom episodes. A critical incident can be
considered as an everyday classroom event that has significance for the teachers,
makes them question their practice, and seems to provide an entry for their better
understanding of teaching-learning situations (Hole & McEntee, 1999). Critical
incidents have been used in mathematics education for analytical and developmental
purposes (Goodell, 2006; Skott, 2001). For example, Skott (2001) used the term
“critical incidents of practice” to describe moments of a teacher’s decision-making in
which multiple and possibly conflicting motives of their activity evolved that chal-
lenged the teacher’s own school mathematics images and provided learning oppor-
tunities for students. Goodell (2006) used critical incidents to promote PMTs’
noticing, as well as to address her own development as a mathematics teacher edu-
cator. The issues raised by PMTs in her study included: teaching and classroom
management; student factors; relationships with colleagues, parents and students; and
school policies and procedures. She also identified that PMTs fruitfully addressed
important aspects of mathematics teaching that supported students’ understanding.
Similar to Goodell’s study, our research has a developmental character as it aims to
address the quality of PMTs’ argumentation and its development while identifying
and interpreting critical incidents. While Goodell investigates PMTs’ learning
through the analysis of their written reports of critical incidents, we focus on PMTs’
discussions in the context of a teacher education course while sharing their reflections
with their peers and the teacher educator. In this paper, our focus is on PMTs’
interpretation of their selected classroom incidents and in particular on their argu-
mentation when analyzing and interpreting them.

10.2.2 Teacher Argumentation and Toulmin’s Model

In the mathematics education field, teacher argumentation has been studied in the
context of the classroom (Knipping & Reid, 2015), in teacher education programs
(Metaxas, Potari, & Zachariades, 2016), as well as in teachers’ responses in
hypothetical scenarios (Nardi, Biza, & Zachariades, 2012). Toulmin’s theory has
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been the basis of most studies in the analysis of teacher argumentation and in
particular its model for the layout of arguments (Toulmin, 1958). His model (see
Fig. 10.1) consists of six basic elements: the claim (C) is the position or claim being
argued for; the data (D) are the foundation or supporting evidence on which the
argument is based; the warrant (W) is a general rule of inference that authorizes
the step from the data to the claim; the backing (B) supports the legitimacy of the
warrant; the modal qualifier (Q) represents the degree of force or strength that the
data confer on a claim in virtue of the warrant; and the rebuttal (R) consists of
exceptions to the applicability of the warrant.

Toulmin’s model has often been combined with other frameworks so as to
address not only the structure, but also the quality of argumentation. For example,
Metaxas et al. (2016) used argumentation schemes to analyze the internal coherence
of mathematics teachers’ arguments in the context of a master’s course, while Nardi
et al. (2012) adopted Freeman’s framework to identify the different types of war-
rants mathematics teachers use to support their claims when they interpret hypo-
thetical classroom scenarios. Nardi et al. (2012) address the quality of teachers’
argumentation by placing their arguments in relation to teacher considerations and
priorities—pedagogical, curricular, professional, and personal. In particular, they
distinguish seven types of warrants in teachers’ arguments: a priori-epistemological
and a priori-pedagogical (based on mathematical or pedagogical principles);
empirical-professional and empirical-personal (based on their teaching or learning
experiences); institutional-epistemological and institutional-curricular (based on
practices for the mathematics community or on curriculum and textbook
recommendations/requirements); and evaluative (based on a personally held view/
value/belief). This categorization helped Nardi et al. (2012) to analyze teachers’
warrants and to identify the sources on which they based their arguments. In our
study, we adopted the same categorization to analyze PMTs’ warrants, backings,
and rebuttals as we considered all indicators of the sources of PMTs’ argumenta-
tion. Since our study refers to PMTs, we considered their professional experiences
stemming from their fieldwork practices and other personal teaching experiences
they had.

Fig. 10.1 A representation of Toulmin’s model
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Moreover, Knipping and Reid (2015) distinguished local from global arguments
to study proving processes in the mathematics classroom. Local arguments repre-
sent a step of an argument that can be analyzed by Toulmin’s model. Global
arguments lay out the structure of interconnected local arguments indicating the
structure of an argumentation process as a whole. Knipping and Reid also identified
different types of global argumentation structures (e.g., source-structure, spiral-
structure) as constructs to address differences in the argumentative process. To
explain these differences, they considered the nature of local arguments that make
up global structures. While both source and spiral structures have several similar
characteristic features (e.g., parallel arguments, argumentation steps with more than
one datum, refutations), they differ in the way these features appear in the global
structure. Spiral structures involve parallel arguments leading directly to the final
conclusion, whereas in the source structure the parallel arguments lead to different
data that provide a basis for another argumentation step supporting the conclusion.
Furthermore, in the spiral structure more refutations are used to oppose the main
claim. These structures emerged from the study of proving processes in upper
secondary mathematical classrooms. We adopt this framework to study PMTs’
argumentation in the teacher education context.

Taking into account the theoretical constructs discussed above, in our study, we
use Toulmin’s model, the classification of the warrants proposed by Nardi et al.
(2012) and the structures developed by Knipping and Reid (2015) to analyze
PMTs’ interpretations of critical incidents they identified when reflecting on lessons
observed and/or taught. Toulmin’s model provides a structure to analyze PMTs’
local arguments and relates to our first research question. Knipping and Reid’s
elaborations allow us to compare different argumentative processes to address
potential shifts in PMTs’ interpretations of classroom phenomena. This helps us to
answer our first and third research questions. Nardi et al.’s approach helps us to
characterize the sources of warrants, backings, and rebuttals and address our second
and third research questions. The combined use of these approaches offers us a tool
to address the quality of PMTs’ argumentation.

10.3 Methodology

10.3.1 Context of the Study and Participants

Prior to enrolling in the course which provided the context of the present study,
PMTs had a background of undertaking at least four other mathematics education
courses as a part of their teacher education program at the university. In parallel to
their university studies, most PMTs were helping school students on a private basis
with their math homework. The course aim was to engage PMTs in critical con-
sideration of aspects of mathematics teaching as these emerged from the complexity
of teaching practice in schools. Every second week (for the entire semester) PMTs
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were asked to participate in a number of field activities in secondary schools (over
six field activity-weeks) while each week following the activities in schools
included a 3-h meeting at the university. We note that in Greece students enter
secondary education (Grades 7–12) at the age of 13 after six years of primary
education. PMTs’ field activities consisted of observing other teachers’ mathe-
matics teaching for 6 h in total (first three field activity-weeks) and designing and
teaching lessons for the whole class for three teaching hours (fourth, fifth, and sixth
field activity-weeks).

During their fieldwork in schools, the 22 PMTs (9 males, 13 females) who
served as participants in this study, were asked to: (a) identify the specific content of
a lesson in the curriculum and to trace it throughout the different grades; (b) look for
possible research evidence related to potential students’ difficulties; (c) make a
lesson plan describing the main tasks and their rationale; (d) keep systematic notes
from and/or record the lessons; (e) select critical incidents and provide a reflective
account on the basis of justifying their selection, interpreting them, and proposing
potential teaching actions. The PMTs were divided into pairs and carried out col-
laboratively the field activities under the supervision of eight mentors (postgraduate
students of mathematics education). The mentors accompanied the PMTs to schools
and supported them in their fieldwork activities by providing feedback on the
PMTs’ designs and discussing with them events from the lessons. Before the
beginning of the course, the group of mentors met twice with the teacher educators
to discuss the course philosophy and the PMTs’ responsibilities. The mentors had
access to the course materials and participated in the university meetings.

Instructional practice in the university sessions aimed to support PMTs’
reflection on their recent field experiences and link emergent issues with existing
mathematics education research in order to develop deeper levels of awareness.
Typical activities in which the PMTs were engaged in the university meetings were:
(a) to present critical events they had identified in their observations and in the
analysis of their own teaching; (b) to discuss and question emerging issues; (c) to
present their analyses of transcriptions of events with the aim of interpreting their
criticality and linking them to their research readings; and finally, (d) to propose
alternative teaching actions.

The teacher educator (first author) facilitated the discussion, but also challenged
the PMTs to justify their selection of critical incidents, provide evidence of their
claims, make interpretations, and describe their potential teaching decisions. The
teacher educator also enriched the discussion by offering research—informed input.
The second author participated in the university meetings as a participant observer
and provided input during the discussions with the aim of promoting PMTs’
reflections. The researchers took into account ethical issues related to PMTs’
consent to participate in the research study. To avoid biases related to the dual role
of teacher educator (as teacher and researcher), the second author had the main role
in the data collection and discussed with her conflicting issues emerging in data
analysis.
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10.3.2 Research Design and Data Collection

Noticing critical incidents from mathematics classrooms and questioning aspects of
mathematics teaching was a rather new practice for PMTs. It was supported through
the discussions in the university meetings and the field activities. We considered
critical incidents as a methodological tool for triggering PMTs’ reflection on
teaching practice. In the first two university meetings, the teacher educator intro-
duced PMTs to the idea of critical incidents through (a) a brief presentation of
Goodell’s (2006) study (including the meaning of critical incidents, the classifi-
cation of them, and examples from PMTs’ written reports) and (b) analysis of
lesson transcripts to identify critical incidents and discuss/justify in the class their
criticality. In all subsequent meetings, the pairs of PMTs were asked to select and
present in the next session a critical incident that they had experienced during their
fieldwork activities.

We collected the data for this study over the entire semester, which consisted of:
(a) PMTs’ personal portfolios, including their written accounts of critical incidents
and material related to the design, implementation, and presentation of the field
activities in the classroom (e.g., worksheets, lesson plans, presentationfiles); (b) video
recordings of all meetings at the university (eight in total); and (c) researchers’ field
notes. We base the present paper on the analysis of the transcripts of the university
meetings.

10.3.3 Data Analysis

Under a grounded theory perspective and open coding (Strauss & Corbin, 1998),
we identified four themes of critical incidents discussed in the meetings (i.e. stu-
dents’ activity, epistemological issues, lesson planning and classroom management,
and wider contextual and social factors). Within each theme, we conducted a
fine-grained analysis of the data in terms of the three dimensions of van Es and
Sherin’s (2002) description of teachers’ noticing (i.e. what they observed, how they
interpreted it, and how this informed their pedagogical decisions). Next, we used
our combined theoretical approach described above to analyze the PMTs’ argu-
mentations developed when interpreting critical incidents related to each theme. In
particular, for each theme we identified the claims that the PMTs made while
reflecting on classroom observations and their own teaching, the data on which they
based their claims, the warrants and backings they used to support them, and the
rebuttals they provided when the validity of the conclusions was under question.
Then, we focused on the interrelationships among the arguments related to the
specific theme throughout the university meetings. Our purpose in this part of the
analysis was to describe argumentation structures and to trace their progressive
development in order to identify shifts in PMTs’ interpretations. Finally, we ana-
lyzed the warrants, backings, and rebuttals to identify the sources on which PMTs
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based their arguments following Nardi et al.’s (2012) classification. In this paper,
our focus is on PMTs’ argumentation concerning the theme “students’ activity” and
in particular the construction of mathematical meaning that appeared to be domi-
nant in what PMTs’ noticed.

10.4 Results

From the initial sessions, PMTs’ noticing of students’ activity focused primarily on
students’ difficulties. However, our grounded analysis of the discussions in the
meetings revealed that towards the end of the course, PMTs’ selection and inter-
pretation of critical incidents regarding students’ mathematical learning was pro-
gressively enriched. In particular, the PMTs’ interpretations were justified by
relating students’ activity to a multiplicity of factors acting as warrants for their
claims. For example, PMTs interrelated teachers’ actions, the nature of tasks, the
classroom communication, and the use of language with students’ mathematical
learning (e.g., classroom interaction, norms). They also offered backings based on
research in mathematics education, as this was targeted in the course. For example,
PMTs appeared to: identify different forms of mathematical thinking and under-
standing (e.g., formal versus informal, procedural versus conceptual, understanding
versus memorization); value students’ mathematical ideas; consider epistemological
aspects underlying students’ learning; and appreciate the role of affective issues in
the process of learning mathematics.

To illustrate the above findings, we analyzed transcripts of discussions of nearly
the same length related to the theme of students’ activity in two university meetings.
The first meeting took place at the beginning of the course, after PMTs’ initial
experiences with classroom observations, and the second towards the end of it, after
the completion of PMTs’ own teaching. Our focus is on the structure of PMTs’
argumentation and the resources upon which they based their arguments to high-
light and trace the quality of their interpretations throughout the course.

10.4.1 Argumentation in the Third University Meeting

The structure of argumentation

The teacher educator encouraged PMTs to report on critical incidents they had
identified during their first classroom observation. A main issue discussed in this
meeting was the construction of mathematical meaning. Initially, the focus was on
students’ mistakes emerging primarily from their difficulties with connecting
algorithmic procedures to the underlying concepts and properties. For example,
PMT’s discussed different arithmetic and algebraic mistakes in the meeting. The
teacher educator challenged the PMTs to interpret why these mistakes appeared and
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what they revealed about the students’ conceptual understanding. At that point, the
PMTs identified a number of factors they considered relevant for explaining stu-
dents’ difficulties, such as the language and the use of symbols, the classroom
norms, and the students’ lack of motivation.

The main claim (C1) developed in the discussion was that students face diffi-
culties in moving beyond a surface understanding to a deeper conceptualization of
the underlying concepts and properties. PMTs used a number of different data
sources upon which they based their claim. These sources came from their class-
room observations and concerned students’ difficulty in transforming a fraction to
an equivalent one, using the algebraic properties to solve a first-degree equation, or
simplifying an arithmetic or algebraic expression.

For example, the data (D1) a PMT reported was about a classroom interaction
between two students concerning the transformation of the fraction 7

5 to its equiv-
alent with 30 as the denominator. The first student completed the transformation by
multiplying both terms of the fraction by 6. Then, the second student wondered why
their classmate had not used a technique taught traditionally in the Greek primary
schools. According to this technique, the quotient of the division of the least
common multiple of the denominators by the denominator of each fraction is placed
over each numerator and then it is multiplied by both nominator and denominator
for each fraction. The students usually follow the procedure without understanding
why they do this. The prospective teacher interpreted the phenomenon by con-
sidering this technique as a “picture” in the student’s mind that might provide a
barrier to conceptual understanding: “The second student seems to have clear in
their mind a picture without knowing why this method works, the essence of the
method” (Kostas) (W1).

Another PMT (Petros) brought data (D2) from his fieldwork observation
regarding how the teacher managed a similar situation in the context of algebra.
Instead of stressing the rule “change side, change sign” commonly used in solving
algebraic equations, the schoolteacher emphasized the properties involved in the
solution process. Petros found this approach fascinating as it was beyond his own
experiences.

A third PMT, Orestis, brought the data (D3) related to students’ difficulties with
simplifying arithmetic or algebraic expressions and referred to his observation in an
8th grade classroom:

While solving an equation of two fractional expressions with numerical denominators, the
students transformed them into equivalent fractions but they did not change the nominators.
Then, they equated the two nominators without understanding their mistake. (Orestis)

After encouragement from the teacher educator (“What does it mean for you that
the students use techniques without understanding? How do you explain this?”), the
PMTs started to provide justifications for their arguments. Orestis interpreted stu-
dents’ difficulty with conceptualizing mathematical ideas with the warrant that in
school textbooks mathematics loses its meaning:
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We use terms or expressions that have nothing to do with mathematics. For instance, the
Rule of Three,1 central in school textbooks at primary level, is a technique, rather than a
mathematical method. (W2)

Another PMT, Leonidas, offered a new warrant by referring to the different
meaning of symbols in arithmetic and algebraic expressions in the school text-
books. He mentioned that:

In some cases, 3½ is a mixed number, while 3x where x is 1
2 is a product. These two different

meanings of similar representations come one after the other in the textbook. (W3)

In a subsequent phase, PMTs’ attention moved to what students bring into the
lesson and how this influences teaching. The new claim (C2) they were formulating
concerned the important role of students’ contributions to the lesson. The argu-
mentation was enriched by other data coming from classroom observations.

For example, the PMT Irene described a critical incident as it emerged in a 9th
grade classroom during a geometry lesson on congruency of triangles concerning
the fact that some students brought pieces of knowledge that had not yet been
taught in the classroom:

One student mentioned the term ‘adjacent angles’ that had not been taught. The classroom
teacher responded by saying, “We have not said anything yet about adjacent angles here,”
and she continued the lesson. I initially thought that the student might have read it in the
textbook. But the word ‘adjacent’ is rather difficult for students to remember even at the
upper secondary school level. Finally, I think that this knowledge came from private
lessons. Sometimes this knowledge does not empower the students as I had expected from
giving private lessons myself. In contrast, it constrains the classroom interaction as I see it
now from the classroom teacher’s perspective.

Other PMTs brought similar examples from their classroom observations. For
instance, Marina mentioned a case where the teacher introduced the concept of angles
in the 7th grade, but the students referred to its measure that they had encountered in
primary school: “When the teacher asked, ‘What is an angle?,’ one student said,
‘degrees.’ The teacher commented that, ‘We have not discussed that yet.’”

In the above two extracts, Irene and Marina bring new data (D4 and D5) to
support the claim. Irene offers also as a warrant that the students have private
lessons (W4) while the discussion follows Marina’s observation that, “The pupils
have already met the same concepts in primary school” (W5). In this way, PMTs
started to identify factors related to curriculum and to wider cultural context that
interfere with teachers’ attempts to promote conceptual understanding. In their
attempts to support the warrant W4, PMTs offered the following backings: “They
[school students] take private tuition because parents do not have the knowledge or
the time to help their children with their homework” (B1); “The requirements of

1The Rule of Three is a mechanical method for solving proportions. Briefly, it says that if we know
three numbers a, b, and c, and want to find d such that a/b = c/d then d = cb/a. Algebraically, one
can multiply the equation (proportion) by bd, giving ad = bc and then divide by a.
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school mathematics are increasing so students need help in order to be successful”
(B2); “The national examinations are rather demanding” (B3); and “The students
need more individualized teaching” (B4).

In the realm of this discussion, Orestis expressed a rebuttal by questioning the
tendency to support students to become good at mathematics through continuous
guidance:

It is not necessary for every child to be successful in mathematics. So, close guidance does
not allow students to take decisions for their future according to their interests. (R1)

Anta referred to her own experience with her parents who had always helped her
at home “although they had worked all day” (R2).

Towards the end of the meeting, the PMTs brought new data from their class-
room observation about students’ algebraic mistakes coming back to the initial
claim (C1):

In the 7th grade classroom that I observed, the teacher assigned the task to explore if
22 � 3 � 52 is a multiple of 90 expressed in the form 2 � 32 � 5. The students wanted to make
the calculations first and then check if 22 � 3 � 52 is a multiple of 90. When the teacher asked
them if 547 � 90 is a multiple of 90, they did not respond. They wanted to do the calcu-
lations again. (Thenia) (D6)

The teacher gave the task of simplifying the expression 2þ 4 2xþ 1ð Þ and one student
wrote 4 � 3x. Although the teacher reminded the students about the distributive law, some of
them provided a wrong answer. (Thenia, D7)

Here, the PMTs started to identify elements of students’ mathematical thinking
by offering as a warrant that, “The students conceive the distributive rule visually as
a picture in their minds and use it without understanding its meaning” (Anta, W6).
They also started to provide justifications with reference to the classroom norms
established by the teacher. For instance, Irene interpreted D7 by arguing that:

The student might be embarrassed to ask again although she had not understood. The
teacher’s authority could possibly be an obstacle. Thus, the student pretended that she had
understood. This is what we used to do as students. (W7)

Orestis offered a new rebuttal (R3) to Irene’s warrant by interpreting the incident
through taking into account students’ motives, “The students might prefer to be out
of the classroom and playing, but they are obliged to respect the rules and pretend
that they understand.”

Focusing on the interrelationships of arguments, we recognized a number of
argumentation steps based on different data sources (D1, D2, D3, D6 and D7) that
appeared at the beginning and at the end of the discussion. These steps indicated the
existence of parallel arguments supporting the claim C1 concerning students’ dif-
ficulty in developing mathematical meaning in algebra. For the claim C2, new data
sources appeared (D4, D5) that provided the basis of new argumentation steps.
Warrants and backings (W1–W7, B1–B4) were used to support both claims, while
emerging rebuttals (R1, R2, and R3) challenged claims and warrants. We could
possibly argue that the argumentation structure that emerged in PMTs’ initial
attempt to address students’ construction of mathematical meaning followed
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characteristic features of what Knipping and Reid (2015) named as source-structure,
where the emphasis is more on collecting information (data and conclusions) than
on the connections between the different argumentation steps (see Fig. 10.2 the
argumentation structure of the claim C1, and Fig. 10.3 for an explanation of the
symbols used in the diagrams).

The sources of PMTs’ interpretations

In this part of the discussion, the PMTs grounded their warrants, backings, and
rebuttals mainly on their broader views about teaching and learning (evaluative), as
well as on recommendations of the curriculum and the textbooks (institutional-
curricular). PMTs’ personal experiences as learners (empirical-personal), held
pedagogical principles (a priori-pedagogical), and practices of the mathematics
community (institutional-epistemological) emerged as sources in PMTs argumen-
tation. In Table 10.1, we summarize our classification according to the framework
of Nardi et al. (2012).

Fig. 10.2 Argumentation
structure of C1 (3rd university
meeting)

Data or Claims 

Warrants or Backings

Target Claims

Intermediate Claims

Refutations 

Fig. 10.3 Symbols used in
the argumentation structure
diagrams
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10.4.2 Argumentation in the Eighth University Meeting

The structure of argumentation

At this meeting, the PMTs presented critical incidents selected from their own
teaching and provided transcripts from the classroom interaction related to the
incidents. This process had started in the sixth meeting. Here, the focus of the
discussion was on a critical incident reported by two PMTs, Anna, and Marina.
The incident that constituted the data (D1) for the subsequent argumentative pro-
cess concerned the difficulty that a student had with linking the algebraic identity
aþ bð Þ2¼ a2 þ 2abþ b2 and its geometrical representation. The students had been
given a model representing the design of a square shaped house with side
(a + b) divided into rooms with areas a2, ab, ab, and b2. Both Anna and Marina
referred to a case of a student that although he was encouraged by the teacher to
work with the geometrical model and then to recognize the algebraic identity, he
only recalled the algebraic formula that he had already known. The main claim (C1)
in the discussion was the students’ difficulty with connecting different representa-
tions of mathematical knowledge, such as algebraic and geometrical.

Different PMTs expressed their interpretations about this incident. Marina
reflected on her own experience as a school student to interpret the student’s
reaction:

Actually, the student offered a safe answer! I also used to do the same as a student at school.
When the teacher asked me something that I did not know, I provided a formula I could
relate to the question. This is what the student did here.

In her comment, Marina refuted the initial claim (R1) and provided as a warrant
that, “the student offered a safe answer” (W1). She further supported her warrant by
implicitly referring to existing norms in the classroom where a student feels obliged
to give an answer to any question (B1). She brought data from her own experience
as a learner (D2).

Sofia offered as a warrant the students’ difficulty with applying their prior formal
knowledge to an open task (W2) and brought new data from similar cases that she
had met in her classroom teaching to back it up, “We met similar incidents many
times in our teaching (D3). Often students’ prior knowledge was an obstacle to
engaging them in an activity” (B2). Then, Irene and Anta refuted the initial claim by
arguing that the student might have been able to make the connections very fast
(R2, R3). Anna provided further evidence from her interaction with the student and
offered data from another incident, “In a similar task of connecting the identity of

Table 10.1 Classification of
warrants, backings, and
rebuttals in the third meeting

A priori-pedagogical B4

Institutional-epistemological W2

Institutional-curricular W3, W4, W5

Empirical-personal W7, R2

Evaluative W1, B1, B2, B3, R1, W6
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aþ bð Þ3 with the volume of a solid, the student made the same mistake” (D4).
Similarly, Marina brought more data from the student’s attempts to link the areas of
the decomposed rectangles and squares to the algebraic identity (D5).

In the following excerpt, Leonidas supported the main claim by referring to the
student’s use of language in the excerpt provided by Anna and Marina, “The
student used the word ‘solution’ to refer to the algebraic identity” (D6). He offered
as a warrant that the student, “cannot see the equivalence of the two parts of the
identity, but he considers it as a procedure that needs to be followed” (W3). In this
phase of the discussion, the PMTs provided multiple warrants. These warrants
referred to classroom norms (Efi and Leonidas offered as a warrant that the student
provided an algebraic answer because the lesson was on algebra and not on
geometry, W4 and W5), the curriculum (four PMTs offered as a warrant that the
curriculum did not connect algebra and geometry, W6–W9), and students’ attitudes
(preference to algebra over geometry, W10). Irene brought another warrant, which
recognized that linking algebra and geometry was not a simple task even for PMTs:
“This connection is too difficult for the students” (W11), “It is difficult even for us
to see how a geometrical situation can be expressed by algebraic symbols and
operations” (B3). Here, the warrant was backed by PMTs’ similar difficulties as
learners at the university. In this case, Irene’s experience at the university operated
as a new source of data (D7). Later in the discussion, after the challenge from the
teacher educator (“Can you interpret this incident based on what you have learned
in mathematics education courses?”), PMTs enriched their interpretation of this
specific incident by bringing data from research and theory of mathematics edu-
cation (D8). Irene offered as a warrant that, “The students are used to applying the
mathematical content to exercises” (W12). She supported it further by offering a
backing that included the qualifier “I think” (Q1) and it was influenced by her
research readings in the course. She said, “I think that this has to do with the
didactic contract and the social norms of the classroom” (B4). Alexandros refuted
W12, saying that, “The children are more creative than adults” (R4) and offered a
warrant for this: “For the kids to use models to form algebraic relations is like
playing a game, so they are successful” (W13). He referred to his experience at the
university (D9) and used this as data to back W13: “We [as university students]
tend to follow complicated solutions. Our minds are not used to seeing the simple
solution” (B5). Irene and Anta referred to the critical role of representations in the
construction of mathematical meaning in algebra (W14, W15), while Kostas
referred to geometry and the dominant role of prototypical figures to further support
Irene and Anta’s argument (B6). Kostas also offered another warrant for students’
difficulty with conceptualizing the meaning of the equal sign in algebra (W16).

A second critical incident that Anna and Marina brought concerned once again a
student’s difficulty with conceptualizing the identity aþ bð Þ3¼ a3 þ 3a2bþ
3ab2 þ b3 in a similar geometrical context involving the decomposition of the volume
of a cube with side (a + b) into other solids. The main problem that the PMTs
addressed was that the student could not relate the concept of volume with the space
occupied by the solid. The PMTs offered new data from their teaching (D10) and the
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formulated claim was that conceptual understanding is a complex process (C2). The
discussion initially centered on the teacher’s role and classroom management issues.
Then the students’ activity was once more the main focus. Anna and Marina brought
data from the transcript of their lessons about two unexpected incidents. In the first
one, Dina, a student who had appeared not to participate in the interaction between
Dimitris (a competent student) and the teacher (D11), provided the correct answer.
Anna offered as a warrant with a qualifier, “probably” (Q2), that “Dina was thinking
differently from Dimitris. Probably, she was not constrained by the existing formal
knowledge, thus she had an open mind without reproducing mechanically taught
methods” (W17). Irene further supported this warrant: “Her thinking does not follow a
specific channel. Students like this can approach mathematical concepts in a more
global way and see the meaning behind them” (B7). Irene also added an affective
dimension to explain Dina’s response, “As she was not interacting with the teacher at
that time, she was not as anxious to provide a correct answer as Dimitris was, so she
felt free to express her thinking” (W18).

In the second incident, the students easily recognized the algebraic identity (square
difference) by transforming area manipulatives provided by the PMTs (D12).
Concerning this incident, the PMTs offered warrants to support their expectation that
the task would be difficult for the students and indicated the validity of the claim C2.
Therefore, Anna argued that, “Even my friends could not visualize the identity”
(W19), while Marina admitted that, “I had no idea how to rearrange the tiles to form a
rectangle” (W20). Backings to these warrants were based on PMTs learning experi-
ences at school and at university. As Anta put it, “Our thinking is highly constrained
by the formal knowledge at school and at university so that we cannot think in a
simpler way” (B8). Irene offered another backing by arguing that, “The children
engage easily in playing with bricks, puzzles, and constructions and use their imag-
ination. But we are far away from this” (B9).

In terms of the argumentation structure, PMTs made two main claims (C1, C2),
as well as a number of warrants and backings in parallel argumentation steps that
led to the support of the main claims based on different sources of data (D1–D12).
In this process, we also observed the presence of refutations (R1, R2, R3, R4) in the
argumentation structure, claims that were supported by a multiplicity of warrants
(W1–W20) and backings (B1–B9), as well as the use of qualifiers (Q1, Q2) in
PMTs’ attempts to consider the claims from different viewpoints. This structure has
similar features as the spiral argumentation structure of Knipping and Reid (2015).
This is because it involves parallel arguments that could stand alone leading to the
final claims, warrants, and backings that adequately justify the claims, and refu-
tations of the main claims (See the argumentation structure of C1 in Fig. 10.4).

The sources of PMTs’ interpretations

In this part of the discussion, the PMTs grounded their warrants, backings, and
rebuttals mainly on the theory and research on mathematics education (a
priori-pedagogical) their personal experiences as learners at school and at the
university (empirical-personal), and their broader views about teaching and learning
(evaluative). They also based their interpretations on their current teaching
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experiences (empirical-professional), as well as on curriculum and textbook rec-
ommendations (institutional-curricular). In Table 10.2, we summarize our classifi-
cation according to the framework of Nardi et al. (2012).

Warrants, backings, and rebuttals are based on a multiplicity of sources. The
co-existence of a priori-pedagogical, empirical-personal, and evaluative types
indicated that PMTs had started to interpret students’ activity in different ways. For
example, they combined research findings and theories they had encountered at the
university with their personal experiences as learners and with their broad views
about teaching and learning. These connections indicated a reflective stance
towards classroom phenomena and a development of awareness of the complex
interrelationships that underlie these phenomena.

Fig. 10.4 Argumentation structure of C1 (8th university meeting)

Table 10.2 Classification of warrants, backings, and rebuttals in the eighth meeting

A priori-pedagogical W3, W11, B4, W13, W14, W15, W16, B6

Institutional-curricular W6, W7, W8, W9

Empirical-professional W2, B2, W4, W5

Empirical-personal W1, B1, B3, B5, W19, W20, B8, B9, R1

Evaluative R2, R3, W10, W12, R4, W17, B7, W18
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10.4.3 Comparing Argumentation in the Two Meetings

The analysis of the discussions in the two university meetings showed shifts in the
process of interpreting students’ activity through different argumentation structures
and types of warrants, backings, and rebuttals. While observing other teachers’
teaching PMTs’ argumentation was based on different data they brought from their
observations with a small number of warrants, backings, and rebuttals. The
emphasis then was on collecting data and conclusions without making connections
between them and warrants or backings. In contrast, the PMTs’ argumentation
based on their actual teaching was enriched by a large number of warrants, back-
ings, and rebuttals, as well as by qualifiers. In this case, the emphasis was on the
connections between data and conclusions based on justified arguments that could
support the final claims in different independent ways.

Through the analysis of the types of warrants, backings, and rebuttals, we
identified a balanced distribution of them in the categories of Nardi et al. (2012).
Evaluative arguments, evident in both university meetings, indicated the role of
personal views and beliefs about learning and teaching mathematics in the process
of interpreting classroom incidents and noticing in general. However, the presence
of a priori pedagogical arguments in the second case revealed the research-based
character of arguments that strongly related to the aims of the course and the PMTs’
experiences in their university studies. At the same time, the reflective stance
promoted in the course seemed to play a unifying role between the experiences that
PMTs brought from research, personal learning histories and views, and current
teaching practices.

10.5 Conclusions

For interpreting students’ activity, the PMTs used different sources of data based on
their prior school experiences, current university studies, and fieldwork. In partic-
ular, they made links between students’ conceptualizations and their own experi-
ences as learners at school and university and they looked for evidence in their
classroom observations and teaching. The analysis of the discussions about stu-
dents’ activity in the two university meetings showed different argumentation
structures in terms of the use of warrants, backings, and rebuttals and their inter-
relations. The structure that emerged from the analysis of PMTs’ reflections on their
classroom observations (third university meeting) involved parallel arguments,
warrants, and backings without rich connections between them. Conversely,
towards the end of the course while PMTs reflected on their own teaching (eighth
university meeting) their argumentation was based on argumentation steps con-
sisting of a large number of warrants, backings, and rebuttals that targeted the final
claim. Using Knipping and Reid’s (2015) framework in a teacher education context,
we identified similar argumentation structures in the pedagogical discourse.
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However, in both structures that we identified, the argumentation steps seemed to
lead directly to the main claim. Thus, in our case the difference between the two
structures related to the number of warrants, backings, and rebuttals that were richer
in the second case. This indicated that the PMTs had developed deeper and justified
interpretations.

Using Nardi et al.’s (2012) approach in analyzing PMTs’ warrants, backings,
and rebuttals, we identified a multiplicity of sources on which PMTs grounded their
interpretations. Towards the end of the course, it was more evident that PMTs had
developed justifications balancing sources from theory and research in mathematics
education, from personal views about learning and teaching mathematics, and from
their experiences as learners and teachers.

The differences between PMTs’ interpretations of incidents selected when
observing other teachers’ teaching and their own teaching can be explained from
different points of view. First, existing research (e.g., Stockero, 2008) shows that
PMTs’ experiences in analyzing other teachers’ lessons can enhance deeper levels
of reflection on their own teaching. Another explanation could be that towards the
end of the course, PMTs started to have examples from their own teaching as a
basis for reflection. This experience seemed to have facilitated their progress in
realizing interrelationships between teaching and learning. Also, the use of critical
incidents as a teacher education strategy in the course seemed to have supported
PMTs’ in reconstructing prior experiences about teaching and learning mathematics
in the light of new experiences in the teacher education context.

Our study offers an analytical framework (argumentation structures and classi-
fication of warrants and backings) that can contribute to the field of research in
teachers’ noticing. First, by analyzing the argumentation structures, we relate
noticing to PMTs’ justification of their claims. According to Mason (2002), this is
an indication of their awareness of mathematics teaching that constitutes an
important aspect of noticing. Second, our approach allows researchers to address
the sources upon which PMTs base their interpretations. Although existing research
has emphasized the important role that PMT’s prior learning experience, beliefs and
orientations play in noticing (Ding & Dominguez, 2016), our study provides a lens
to analyze how PMTs’ experiences (personal learning, fieldwork, university cour-
ses) influence the process of noticing. Finally, our analysis of the types of warrants
and backings in PMTs’ argumentation makes it possible to address the develop-
mental trajectory of noticing. According to van Es (2011), teachers’ transition to
higher levels of “how they notice” is characterized by their ability to make con-
nections between events and principles of teaching and learning and to propose
alternative pedagogical solutions based on their interpretations. Our findings show
that PMTs reached higher levels of noticing indicated by their making of con-
nections between events and research on teaching and learning. Therefore, the
analysis of the warrants and backings allows us to identify the shifts in PMTs’
interpretations. Further research is needed in order to address the potential of this
approach to mathematics teachers’ noticing.
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Chapter 11
Designing a Competence-Based Entry
Course for Prospective Secondary
Mathematics Teachers

Fou-Lai Lin, Kai-Lin Yang and Yu-Ping Chang

Abstract The goal of this study aims at introducing an entry course of a 3-year
sequential courses module for a secondary mathematics teacher education program
in Taiwan. This module is a reformed teacher education curriculum planned for
Prospective Secondary Mathematics Teachers (PSMTs) to learn how to teach with
the field-study approach. The field-study approach provides abundant opportunities
for PSMTs to cultivate their competencies in teaching. In this chapter, we take the
first year course to deliberate why the Psychology of Mathematics Learning is
selected as an entry course for the teacher education program and how it works.
Considering the importance to raise PSMTs’ awareness of students’ mathematical
thinking and to cultivate their competencies of sensitizing students’ mathematical
thinking, and ultimately to bear the competencies as the habitus in their future
teaching professional, the mission of the course focuses on PSMTs’ learning of
understanding students’ mathematical thinking through the process of cyclic
learning. The quality of PSMTs dynamic learning in the field study can be eval-
uated by their study work. This chapter provides one example of PSMTs’ survey
study in one complete learning cycle, and summarizes several criteria of evaluating
how PSMTs conduct a study to understand students’ mathematical thinking in a
holistic perspective.
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11.1 Background

11.1.1 Emergent Teacher Education Issues

The goals of teacher education program diverse among countries and societies and
change in recent decades. For example, there are goals focusing on teachers per-
ceiving knowledge and the proficiency of teaching skills (e.g. Cochran, DeRuiter,
& King, 1993; Shulman, 1986), and goals focusing on their thinking or reasoning
process when learning (e.g. Putnam & Borko, 2000; Shulman, 1987). Analogizing
the continual problem of in-service teachers’ professional development (Cooney,
2001), i.e. the sustainable effectiveness of professional development program
(Zehetmeier & Krainer, 2011), the continuity of what teachers learned in teacher
education program to their future teaching professional, is a potential yet chal-
lenging issue (Lin & Rowland, 2016) for teacher education.

Zeichner (1983) traces back to the philosophical and epistemological perspec-
tives and lists four commonly seen paradigms of teacher education through ori-
enting prospective teachers in viewing teaching contents as received or they are
reflexive (active) participants, and in viewing teacher education and schooling
contexts as problematic or certain. One of the paradigm, inquiry-oriented teacher
education, points out the important variations about teaching methods and teaching
contexts, and therefore the development of teaching in teacher education should not
only emphasize on the knowledge or skills but the competencies in teaching. Being
aware of oneself teaching with active reflection and viewing teaching contexts as
dynamic and varied become crucial.

The abstraction of mathematics makes teaching more complex than other sub-
jects. For example, students’ mathematical misconceptions, learning difficulties,
anxiety in mathematics, etc. make the teaching contexts even challenging for
teachers to deal with. To cultivate a mathematics teacher to be reflexive on math-
ematics contents and consider the pedagogical situation as problematic rather than
certain, the inquiry-oriented paradigm seems to be valuable to inducing more
interactions between teacher and students.

11.1.2 Micro Reform of Teacher Education Curriculum

Teaching is usually viewed as delivering knowledge to students (e.g. Hill, Rowan,
& Ball, 2005), and a teacher’s subject-matter content knowledge or former learning
experiences are therefore considered as significant and influential factors in his/her
teaching (Darling-Hammond, 2006). The international comparative study of pri-
mary and secondary mathematics teacher education, the Teacher Education and
Development Study in Mathematics (TEDS-M), provides an outlook on prospective
mathematics teachers’ knowledge in mathematics and its pedagogy (Blömeke,
Hsieh, Kaier, & Schmidt, 2014). Though the prospective mathematics teachers in
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Taiwan showed their outstanding performances in this comparative study, begin-
ning mathematics teachers often claimed that they cannot directly use what they
have learned in university to their teaching practice in their early career when they
came back university to attend seminars (group discussions, 2013, 2014, 2015,
2016). Therefore, it pushes us to inspect how the teacher education programs
influence prospective mathematics teachers learning how to teach. Conventionally,
the courses of the teacher education program at the National Taiwan Normal
University (NTNU) are provided with a structure of 9 course units (incl. required
and optional) in three years, from the sophomore to the senior year, for prospective
secondary mathematics teachers’ (PSMT) professional development. Such teacher
education program is even unique in Taiwan.

In considering the lasting learning efficacy for prospective mathematics teachers
and the specific needs of mathematics teachers in Taiwan, one reformed curriculum
is designed as a 3-year course module to strengthen mainly the PSMTs’ compe-
tencies in how to teach mathematics rather than to increase mostly their mathe-
matical knowledge and teaching skills. This course module is proposed with the
conjecture that once prospective teachers are equipped with the competencies, they
can deal with the cognitive and affective issues of teaching and learning mathe-
matics, especially students’ mathematical thinking, in all mathematical topics. The
designed course module is composed of 6 course units: the Psychology of
Mathematics Learning (I & II) for the first two semesters, the Instructional
Materials and Methods for Mathematics and the Study of the Instructional Materials
and Methods for Mathematics for the third and fourth semesters, and the
Mathematics Teaching Practicum (I & II) for the last two semesters. Only the
Psychology of Mathematics Learning (entry course; 2 course units) is the optional
course for PSMTs in this course module. All these units were scheduled sequen-
tially for the PSMTs at NTNU from years 2013 to 2016. It is noted that the entry
course of the first year was piloted one year in 2013.

11.1.3 Competencies for Prospective Mathematics
Teachers to Learn

After reflecting upon what teachers should learn for a changing world
(Darling-Hammond & Bransford, 2005), we consider that future mathematics
teachers need (1) to understand students’ learning processes and needs, (2) to
understand curriculum contents and goals, (3) to understand teaching skills, and
(4) to develop productive disposition of teaching and learning. Hence, it can make
the effort to improve the teaching effectively and efficaciously. Furthermore, we
consider that the primitive image (of learning) influences a lot on a learner’s fol-
lowing learning, the entry course of this module then plays a crucial role to cultivate
a teacher’s profession in the beginning of their teacher education learning. The
inquiry-oriented teacher education provides abundant opportunities for prospective
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teachers to develop themselves as an action researcher (Corey, 1953), as an inno-
vator (Joyce, 1969), as an inquirer (Bagenstos, 1975), as a self-monitoring teacher
(Elliot, 1976), as a participant observer (Salzillo & van Fleet, 1977), etc. in teacher
education program. However, not all prospective mathematics teachers orient
themselves toward the above mentioned roles. How to design an entry course for
the inquiry-oriented teacher education for prospective mathematics teachers learn-
ing how to teach is still an unsolved issue. In the following sections, we first present
how we design the entry course for PSMTs’ effective learning in this module by
describing its goals, learning approach, learning contents and resources, and
learning cycle. Second, we provide one example of PSMTs’ field study with a
complete learning cycle. Last, we conclude with the criteria of evaluating PSMTs’
learning with field-study approach to understanding students’ mathematical
thinking.

11.2 The Entry Course Design

Taking the importance of primitive image in learning and the habitus of teaching
into consideration, we believe that the opportunity to experience students’ various
learning in mathematics may provide prospective mathematics teachers rich
viewpoints on teaching in reality. Even though these PSMTs performed at the
87.59th percentile of the national college entrance examination in 2013, they have
almost no experiences of students’ misconceptions or learning difficulties in
learning mathematics. Therefore, raising their awareness of students’ mathematical
thinking (Llinares & Krainer, 2006) becomes a priority of the entry course design.
In addition, the cultivation of the cognitive sensitivity to students (Jaworski, 1994)
may provide a more active function in predicting students’ performances before a
teacher makes a pedagogical decision. Consequently, understanding students’
mathematical thinking is then the focal competence we hope prospective mathe-
matics teachers can develop. Hence, in the entry course, we take the prior mission
to develop the PSMTs’ sensitivity to students’ cognitive thinking in mathematics by
supporting them various mathematical contents, theories (incl. plentiful empirical
studies) and opportunities to practice with peers, and provide them guidance from
experienced mathematics teacher educator-researchers (MTE-R), i.e. the instructors
of the course. In order to record the performances of PSMTs, all the lessons of the
interactions between instructors and PSMTs were videotaped and PSMTs’
assignments, written reflections on the course, and attitudes (interviews and ques-
tionnaire survey) were collected as either digital files or written papers for tracing
their development longitudinally.
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11.2.1 The Goals of the Course

The entry course is a competence-based design which aims mainly to develop
PSMTs’ competencies of pedagogical reasoning in students’ hypothetical learning
trajectory (Simon, 1995), i.e. understanding students’ mathematical thinking, and at
the same time to consider strengthening their positive beliefs in mathematical
pedagogy. To reach this aim, the course assigns tasks to PSMTs to conduct 2–3
field studies in each semester, with the guidance from the instructors. The assign-
ments of these field studies are to provide opportunities for PSMTs (1) to com-
prehend students’ mathematical thinking via studying their cognitive and affective
performances in learning mathematics, i.e. the learning of knowledge, skills, (2) to
cultivate their experiences of exploration and practice in comprehending students’
mathematical thinking via the actions of recognizing, analyzing and interpreting
students’ performances, and (3) to develop a positive belief of their learning pro-
cesses of this course as a foundation of teaching and learning mathematics.

In addition, this course positions PSMTs as creators (higher level) or re-pro-
ducers (basic requirement) rather than receivers of knowledge (Ebby, 2000;
Hiebert, Marris, & Glass, 2003; Stein, Engle, Smith, & Hughes, 2008) in the
process of conducting field studies. Moreover, PSMTs learn not only through
theories, but also through practice and reflection on theories, and through collab-
orative learning with others (Korthagen, Loughran, & Russell, 2006), i.e. their peers
and the instructors.

In brief, in designing the course, three learning goals are set for PSMTs to
achieve: (1) learn different methods to explore students’ mathematical thinking,
(2) have the (takeaway) competencies of recognizing, analyzing and interpreting
students’ mathematical thinking after the entry course learning, and (3) accumulate
generic examples of students’ representative performances through continuous
practice of field study and constant reflection on and dialogue with the theories
(esp. the national survey data).

11.2.2 The Design Principles

Taking the consideration of long-term influences of the entry course on PSMTs’
following courses of the teacher education program and their teaching professional,
two principles are seriously concerned in designing and conducting the entry
course. One is that the course should convince PSMTs the usefulness of the course
through their enactment (Clarke & Hollingsworth, 2002) of the field trial practice,
i.e. enhance PSMTs’ engagement in the course. The other is that the course should
help PSMTs to reflect in action/enactment and reflect on action/enactment, through
the process of interacting (incl. the preparation of field trial and the report pre-
sentation) between theories and practices, i.e. be a reflective practitioner (Clarke &
Hollingsworth, 2002; Schön, 1983, 1987).
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11.2.3 The Field-Study Approach to Learning
How to Teach

Thinking through the possible variations of teacher education, Kansanen (2006)
takes the interactions between two significant factors into account: the ways of
organizing activities (inductive vs. deductive) and the pedagogical thinking (intu-
itive vs. rational), to structure the possible teacher education approaches. He dis-
cerns four different approaches of teacher education program from this structure:
(1) school-based, (2) research-based, (3) experiential and personal, and (4) case
approach and problem-based. Considering our rationale in cultivating mathematics
teachers, the pedagogical thinking needs more rational decision rather than intuitive
judgement. The two approaches “case approach and problem-based” which is
inductively organizing activities and applies rational pedagogical thinking, and
“research-based approach” which is deductively organizing activities and applies
rational pedagogical thinking, are closed to the process of inquiry-oriented teaching
(see Sect. 11.1.1).

In teacher education program, the two approaches can provide rich opportunities
for prospective mathematics teachers to practice their knowledge and skills, and be
aware of the lack of pedagogical competencies in teacher education program. In
order to fulfill the rich learning of inquiry-oriented teaching, we therefore device an
approach called field-study approach which integrates the problem-based and case
approach and research-based approach. The field-study approach seeks to make
teacher education to be practical in linking theories and practices.

To concrete the essential features of the course in preparing mathematics
teachers, we adapted the idea of learning by doing from Schoenfeld (1996),
emphasizing on the importance of a situation that can increase PSMTs’ authentic
appreciation for, and understanding of the content being learned (Barab & Duffy,
2000), as the fundamental consideration of creating a learning environment for
PSMTs. In this learning environment, PSMTs are motivated to conduct field
studies, either interview or survey, on students’ mathematics learning. The research
methods regarding interview skills and survey are delivering as the additional
learning contents for PSMTs.

To start a field study, they should choose one topic they are interested with and
start to pose their research questions regarding to its pedagogical issues in math-
ematics, especially the cognitive perspectives. By conducting studies, they need to
strive to connect the relationship between the learned theoretical knowledge and the
practical challenge they meet, which is not easily to achieve if they only view
learning how to teach is to absorb theoretical knowledge in the course. During the
process of conducting studies, they have to continue raising conjectures underlying
subjects’ performances to adjust their interview questions or to interpret the survey
results that went far from their predictions. Therefore, in conducting their studies,
they need to treat the subjects as the ones they are going to learn with. To conclude
one round of the field study, they are required to report the complete study to their
peers. Sharing the results with their peers drives them to re-organize the study and
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the data. During this process, their peers are not only listeners but also criticizers.
This mentioned procedure to work with field-study can be viewed as one learning
cycle (see Sect. 11.2.5).

11.2.4 The Learning Contents and Resources

School mathematics is no doubt a good start for prospective mathematics teachers
to learn how to teach (Cooney, 2001; Davis, 1999; Gerdes, 1998; Presmeg, 1998)
for that the contents of perceived predetermined mathematics is familiar to the
prospective mathematics teachers and can help them acquire pedagogical skills
from their former learning experiences quickly. Therefore, the contents of the entry
course focus on the range of school mathematics especially the secondary school
mathematics.

According to the five strands of mathematical proficiency raised by Kilpatrick,
Swafford, and Findell (2001): (1) conceptual understanding, (2) procedural flu-
ency, (3) strategic competence, (4) adaptive reasoning, and (5) productive dispo-
sition, we consider that these strands of proficiency can have parallel contribution to
prospective mathematics teachers’ learning. In order to discriminate the learning
contents and inclination to learn how to teach for PSMTs, we therefore adapt them
into four essential contents as part of our content structure and the productive
disposition is intended to embed in the content structure to raise their engagement
and attitudes towards the course (see Lin, Yang, Chang, & Hsu, 2014). Moreover,
many studies of students’ problematic mathematics learning show the close con-
nection to students’ intuition (e.g. Fischbein, 1982) and can be found in almost
every mathematical topics, we then include it as one necessary content in the
content structure for PSMTs to learn.

After reflecting on the theories and research of teaching and learning mathe-
matics, five imperative categories of learning contents are considered necessity for
PSMTs to learn in this entry course. When giving the introduction of these cate-
gories, different mathematical content topics are selected as examples to introduce.
They are: (1) mathematics intuitive rules: more A more B and same A same B
(Stavy & Tirosh, 1996, 2000; Tirosh & Stavy, 1999), (2) mathematics conceptual
understanding, (3) students’ procedural knowledge, (4) students’ strategies and
thinking of problem solving, and (5) reasoning and argumentation. The field studies
are therefore conducted based on each of these five content issues in two semesters.

Furthermore, the national survey studies on Taiwanese school students’
(esp. those from the secondary schools) conceptual understanding in various
mathematical topics from serial projects during 1980s and 2000s, are selected
according to students’ common performances to provide for PSMTs as their
learning resources. The topics include, for example, the ratio and proportion from
ages 13 to 15, the fraction from ages 11 to 14, and the algebraic operations, the
algebraic argumentation, the geometric shapes, of adolescents etc. (see Lin, 1988,
1991). Though these empirical results released decades ago, they play an important
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role to provide a holistic view of local students’ cognitive development in math-
ematics systematically and as well referential models for conducting field studies. In
addition to the national survey studies, the classical literatures of several classifi-
cations are also provided to them to consolidate their theoretical knowledge. These
classifications include the individual’s development (e.g. stages of cognitive
development, and scientific concept development), understanding (e.g. instrumental
and relational understanding, and understanding (the process of) understanding
mathematics), concepts and knowledge (e.g. conceptual and procedural knowledge,
concept image, and concept definition), thinking (mathematical intuition, geomet-
rical reasoning, and algebraic thinking), and problem solving. With these resources,
they can meet closer to students’ thinking and have a dialogue when they con-
ducting a field study and analyzing and interpreting their results.

11.2.5 The Learning Cycle

A cyclic learning cycle is intentionally designed for PSMTs to experience in order
to cultivate their learning habitus via several rounds of practice with the learning
cycle on the instructors’ assigned missions. Since this chapter discuss the first year
of the course in which the practice is set for PSMTs to conduct the field research
after learning the theories and the empirical study results in the beginning of the
course, the PSMTs have to practice how to conduct research. Before they start their
practice, they are asked to group 2–3 peers by themselves. This group is a com-
munity of practice with the same research interests. In this way, the PSMTs within
the group should communicate and discuss to each other to have the consensus of
the research topic through several rounds of discussion. Then, they have to present
and share their research plan to the whole class which is viewed as a social learning
community and the community needs to provide the critical suggestions to the
corresponding plan. In brief, each group has two rounds of practice, either quan-
titatively or qualitatively and they have to first choose the study topic and discuss
their conjectures and possible results of students’ mathematical thinking with their
group peers and then discuss with the whole class. The instructors will provide
interventions on and supports to their presentation of each group. Additionally, the
instructors have their rich background of research experiences and acquaintance
with theories. Then the PSMTs start to design their study and implement it in real
situation, i.e. interviewing students or conducting a survey in classes. Finally, they
have to reflect on the data they collected and report it to the whole class. In their
report, they need to have a dialogue with the theories and the whole class.

In brief, this cyclic learning cycle can be summarized in three phases (Fig. 11.1):
(1) Initiation: conjecturing the possible performances of students and making
confirmation with theories, and peers and instructors, (2) Conduct: finalizing the
design of study and implementing it, and (3) Reflection: reporting the results and
leading the communication within the learning community.
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11.3 Influences of the Entry Course: The Example
of One Field Study

This entry course is designed not for temporal learning but for a long-term con-
sideration of professional development, therefore, the evaluation of its effectiveness
cannot ignore the PSMTs’ performances in learning chronologically of the module
courses. To consider the connection among the entry course, the course module,
and teachers’ future teaching, we consider four crucial stages to examine the effect
on PSMTs’ learning of the entry course: (1) the immediate performances in the
entry course, i.e. PSMTs’ performances in each research practice, which are viewed
as the preliminary learning effect of the entry course, (2) the transitional perfor-
mances in the courses of the second and third year in linking theories and their
teaching practices, (3) the performances in their practicum as the extended effect of
the entry course and the course module, and (4) the performances of their teaching
practice in their beginning career, which can be examined in their future profes-
sional development, as the lasting effect of the entry course and the course module.

The PSMTs’ practice in field study can mostly contribute to mathematics edu-
cators to evaluate their immediate performances. Moreover, conducting one field
study needs to process one round of learning cycle. Therefore, we choose two
PSMTs’ field study work in one of their research practice as an example to provide
a broad view of how one learning cycle functions and present their preliminary
learning effect by the entry course. Below shows one group’s immediate perfor-
mances of conducting the study in surveying junior high school (grades 7–9) stu-
dents’ fractional and proportional notions. The group is composed of Jay and Zed.
Their performances in the study are discussed in one learning cycle of three phases:
(1) discuss the emergence of the study, especially how they generated the research
questions, and how they designed and revised the study, (2) conduct the survey, and
(3) reflect on their findings.

initiation
(1)(1)

initiation
(1)

initiation
(1)

initiation(3)
reflection

(2)  
conduct

(2)  
conduct

(3)
reflection

(3)
reflection

(3)
reflection

(2)  
conduct

(2)  
conduct

Fig. 11.1 The field study-based cyclic learning cycle

11 Designing a Competence-Based Entry Course for Prospective … 197



11.3.1 Phase 1: Design and Revise the Study

Starting from setting research aim and questions. In selecting mathematics contents
for the field study, Jay and Zed first considered negative numbers, fractions, and
proportions which are three unfamiliar notions/topics for 7th graders learning
mathematics. However, they considered fractions and proportions are two topics
closely connected to daily life. Moreover, they were eager to know whether the
intervention of guiding students to think fraction and proportion can enhance their
learning (Zed’s written report, 2013). Therefore, they selected fraction and pro-
portion as contents to design two test sheets: one with guidance and the other
without, of the same content. Both test sheets are composed of 4 sets of serial
questions which are revised from items of the national survey study (i.e. the
learning resources provided in the entry course), and intended to induce students’
understanding and learning difficulties in fraction and proportions based on their
unjustified conjectures.

Revising the design. Before they conducted their survey, they discuss their
designed questions one by one within the learning community (including the course
instructor) to review whether their design can connect their (unjustified) conjectures
of students’ possible performances/outcomes and the theoretical knowledge. The
resources of the national survey results on students’ thinking of fractions and
proportions play an important role during the discussion. Moreover, since the serial
questions of their original design were intentionally designed to guide students to
answer/solve, the logic of the serial questions also discussed a lot. After the dis-
cussion, Zed noted the reason why they revised the numerals from their first serial
questions regarding proportion in his report, “the first and second questions are
based on the conjecture that students can use folding (halving) and iterating
strategies (according to the results of national study, see Table 11.1), however, in
the (our) original design the iterating strategy is the only used strategy, therefore
the numbers are revised to …”. From Zed’s record, it is obvious that the discussion
within the learning community helped them to revise their original test sheets with
the assistance of empirical and theoretical supports.

11.3.2 Phase 2: Conduct the Survey

In order to investigate their research, Jay and Zed conducted their survey with 4
different classes including 7th, 8th, and 9th graders, total 127 students (13–15 yrs)
in the same school. After collecting students’ responses from the survey, they
analyzed the collected data and finalized their report with findings and their
reflections on the whole survey (see Sect. 11.3.3. Phase 3).

This field study was the second study assignment given to the PSMTs in the
entry course and was followed the introduction of one national survey study of
adolescents’ proportional thinking in Taiwan. In their first study, Jay and Zed chose
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to interview students’ intuition in geometry content. Therefore, they planned to set a
challenge for themselves in the second study by applying a different method.
Though the method of their survey study was not rigor enough, especially the
implementation process and also the variates control (e.g. the arrangement of stu-
dents’ in responding two versions of test sheet: with/without intervention), it is not
the main issue to be concerned in the entry course. Therefore, the instructor spent
less time on discussing the rigor of their experiment design. They were asked to
spend more time on the contents of their research design and the interpretation of
their results. However, the situation in conducting an interview will be completely
different from a survey study. The interview skills and further questions to probe
students’ mathematical thinking are concerned as a key competence to evaluate. In
the last section of this chapter, we summarize the criteria of how we evaluate
PSMTs’ interview ability in their study of investigating students’ mathematical
thinking.

11.3.3 Phase 3: Reflect on the Study

The PSMTs were asked to report their study in the final step of one learning cycle
(initiation-conduct-reflection) and hand in a written report of the whole study. Their
reports were guided with a format which was provided as one course material. The
structure of this format is composed of five categories:

1. The background of the study: title of the study, the involving mathematical
topics and contents, and key words of the study

Table 11.1 Students’ hierarchical levels of proportion and the corresponding features

Levels Difficulty
(%)

Characteristics Correctness
(%)

Item#

I 65–85 No needs for ratio. The easy multiple concepts of
2 times, 3 times, half, etc.

73 1(1) i

77 1(1) ii

66 3(1)

II 51–60 Easy ratio. Applying the method of halving and
iterating, such as 2:3, 2:5, etc.

60 1(2) i

59 1(2) ii

51 3(2)

III 34–50 Needs for ratio. Involving the calculation of
fraction or (finite) decimals

50 4

35 5(1)

41 8(5)

IV 19–32 Needs for proportion expression. The relation
among variates is more significant than finding a
ratio

24 3(3)

19 5(2)
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2. Involved design materials: questioning design (for interview study) or ques-
tionnaire design (for survey study), predictions of students’ responses and
interpretations, analysis of students’ outcomes or individual student’s responses

3. Step 1 of design: PSMTs’ (learning) expectations of the study, predictions of
students’ difficulties in understanding and learning within this topic, the con-
jectures of possible factors prompting those difficulties, and the goal of the
design

4. Step 2 of design: according to students’ difficulties listed in step 1, what kind of
questions or problems cannot be completed by students themselves? What if
students are stuck with your question, what kinds of further questions or
sub-questions can you give? Is there any other related questions or problems can
be used to check students’ difficulties? Do the above mentioned questions
correspond to your goal of the design? If not, what are you going to adjust, e.g.
goal of design, missions, tasks, further questions or sub-questions?

5. Analysis and interpretation of the interview or survey results.

Therefore, PSMTs’ reflections on their study can be guided with the orientation
from the structure of this report format.

Connecting the study to learned theoretical knowledge. In Jay and Zed’s
exploratory study, they presented their ability in connecting research results to what
they learned in the entry course in two perspectives. First, they interpreted the
survey results with similar representation of the national survey study (course
materials), for example, they analyzed students’ answers by categorizing their
solution strategies, e.g. halving and iterating, adding up, subtraction, etc., item by
item. The various solution strategies are introduced in the entry course with
examples. Second, they interpreted the survey results with the former national
survey results, i.e. use proportional thinking level in Table 11.1 developed/used in
the national survey study (Lin, Kuo, & Lin, 1985) as theoretical knowledge to
interpret students’ problematic items.

Reflecting on the unexpected results rather than the holistic study. Jay and Zed
spent many spaces in presenting the distributions of students’ outcomes in their
presentation. They pointed out that in their study, students treat the serial questions
of one set as disjointed questions to solve which was unexpected to them. Their
reflection was guided by students’ performances rather than their set target. That is
to say, they did not reflect on their research between their research goal (i.e. whether
the intervention of guiding students to think fraction and proportion can enhance
their performances) and the findings. Though after the discussion of the learning
community, Zed recorded this point in his report, he mentioned that they (he and
Jay) recognized that their goal is to investigate whether the intervention of guiding
students to think helps them to solve fractional and proportional problems, he still
could not answer it for the restriction of their study. Though they found unexpected
findings in their study, they still could not guarantee whether their guiding design
had no influence on students’ answers. Therefore, he proposed an alternative
solution to consider to devise the further instructional research for this unexpected
result.
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11.4 Final Remarks

When analyzing and categorizing all participating PSMTs’ works regarding to
conducting field studies (research practice), it is found that field-study approach
brought challenges to them and was not easy to tackle with. In preparing the plans
of field study, most of their research designs, conjectures on subjects’ performances,
findings, and reflections on the study are not well-organized nor innovative, even
though the formats of reports, related theoretical knowledge, and instruction have
been already provided and instructed to them before they started their field studies.

To provide a general view on how we systematically analyze all PSMTs’
immediate performances in conducting an interview study of understanding stu-
dents’ mathematical thinking, we crystalize the criteria of evaluating their works
and summarize them in brief according to our reviews on their work.

1. The designs of PSMTs’ study can be categorize to three: (1) the imitations of the
learning resources (see Sect. 11.2.4), (2) the revisions of the learning resources,
and (3) the inventions of a new study. Their designs show their ambition to
conduct a study. However, these three categories cannot guarantee the quality of
their field study.

2. The variety of conjectures of students’ anticipated thinking regarding the
mathematics contents raised by PSMTs contributes to their research design,
depth of interview, and interpretation of results.

3. The interview results expose different treatments of further questions: (1) the
unexpected results: interviewers stop questioning for that (a) they cannot raise
any conjecture of the dilemma or (b) they try as many conjectures as they can
but in vein; (2) the expected results: (a) interviewers satisfied with interviewees’
immediate response without any further conjectures, (b) interviewers try to solve
the dilemma by interacting several rounds of conjecturing-questioning with
interviewees till they reach the expected responses.

4. The quality of reports can be generally categorized in three levels: (1) merely
describing the phenomenon, i.e. the description and record of the study pro-
cesses or results; (2) analyzing students’ mathematical thinking underlying their
outcomes or performances; and (3) reflecting on the findings and interpreting
students’ mathematical thinking according to the literatures or the results of the
national survey.

Moreover, the quantitative evidences from PSMTs’ perspectives (Lin et al.,
2014) show that this entry course provide opportunities for them to understand
students’ mathematical thinking, to cultivate the competencies of exploration and
practice, and to develop positive beliefs in learning how to teach mathematics. The
influences of this field-study approach, for PSMTs to learning how to teach, present
its potentials for inquiry-based teacher education. Last, this entry course and the
criteria of evaluating PSMTs’ learning can contribute mathematics teacher educa-
tors a model to deliver the complex course and to evaluate how PSMTs understand
students’ mathematical thinking.
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Chapter 12
Nurturing Knowledge of Mathematical
Modeling for Teaching

Azita Manouchehri, Xiangquan Yao and Yasemin Saglam

Abstract In this paper we will report results of our efforts towards providing
mathematical modeling experiences for a cohort of prospective secondary teachers.
Using a Teacher Development Experiment design, we traced the impact of these
experiences on teachers’ reported efficacy towards and knowledge about utilizing
modeling in their teaching. Analysis of results indicate that although teachers
maintained modeling to be an important skill to be developed in instruction,
absence of extensive experiences with mathematical modeling in the course of their
own mathematical preparation served as a barrier to their ability to access specific
pedagogical actions they believed could be used in their instruction.

Keywords Mathematical modeling � Prospective secondary mathematics teachers

12.1 Introduction

The demand that secondary mathematics teachers will infuse mathematical mod-
eling, as a content standard, in curriculum is now paramount in the educational
reform efforts in the US as pioneered by the Common Core State Standards of
Mathematics (CCSSM, 2010). Although the Standards document does not provide
detailed description of what this particular strand might entail or how teachers may
nurture the desired capacities among students they do offer topical examples of
tasks that students should be able to do. There is some evidence that due to absence
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of information teachers maintain misconceptions regarding the nature of mathe-
matical modeling as well as its associated pedagogies (Gould, 2013). Mathematics
teacher educators are naturally charged with the task of preparing teachers to realize
effective ways that mathematical modeling could be implemented in classrooms.
Due to paucity of reports (Cai et al., 2014), it remains unclear what type of
experiences might need to be designed and utilized in advancing teaching knowl-
edge in this area. The international community of researchers on teaching and
learning of mathematical modeling have stressed the need to explore models and
programs that might assist teachers to meet implementation challenges (Doerr &
Lesh, 2011), and to document potential impact of these efforts on teachers (Cai
et al., 2014). The current report aimed to address these two areas. Three questions
guided our data collection and analysis:

(1) What knowledge bases related to mathematical modeling do prospective sec-
ondary mathematics teachers bring to teacher education?

(2) How do prospective teachers characterize mathematical modeling process?
(3) What is the impact of a unit of instruction on prospective secondary mathe-

matics teachers’ knowledge about teaching and learning of mathematical
modeling in schools?

12.2 Context and Background

There is consensus within the research community that effective teaching of
mathematics hinges upon the teachers’ Mathematical Knowledge for Teaching
(MKT) characterized by various scholars to encompass a range of domains among
many include a deep understanding of the subject matter, curriculum and curricular
resources, children’ thinking and instructional tools that facilitate development of
mathematical cognition among learners (Ball & Bass, 2000; Rowland & Ruthven,
2011). Development of these domains of knowledge demands extensive time and
exposure to effective pedagogies modeled by both professors of content and ped-
agogy and best supported when efforts are collaborative (Anhalt & Cortez, 2016).
At the secondary teacher preparation level, however, common national trend con-
tinues to be the one in which the prospective teachers complete their coursework in
the disciplinary department and then engage in the study of pedagogy through
courses housed in the college of education (APLU, 2017; Hawkins, Stancavage, &
Dossey, 1998). Despite widespread, and longstanding lack of satisfaction with this
divide and the negative consequences it has on teachers’ development (Lingefjärd,
2007) breaking this mold has been difficult to achieve. Due to this, methods courses
designed for teachers continue to serve as prime places where teachers are granted
opportunities to develop deeper understanding of mathematical concepts but to also
learn techniques for effective practice (Monk, 1994). Addressing new competencies
identified by the Common Core Standards of Mathematics resides, for the most
part, within the prevue of methods courses. Such is the case at our institution.
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The research we report here is a part of an extensive program evaluation in
which we study growth and development of secondary mathematics teachers as
they complete the requirements for obtaining a teaching certificate. The goal of the
larger study is to trace ways in which program courses, collectively, influence the
candidates’ practices during their induction years. The current effort was a design
experiment aimed to explore how a course on methods of teaching secondary
school might be manipulated to accommodate for development of teachers’ MKT
specific to mathematical modeling.

Mathematical modeling as a disciplinary arena has its own intricate cognitive
demands (Doerr & Lesh, 2011). Skills needed for successful mathematical mod-
eling are different from other types of mathematical work since modeling demands
a great deal of decision making and reflection on the part of the modeler (Gould,
2013). Instruction aimed at improving modeling cognition among learners would
need to be sensitive to the unique and complex demands of modeling process.
Current conceptualization of mathematical knowledge for teaching has not yet
unpacked these particular demands and ways in which teachers’ knowledge may be
enhanced in this area. Due to this, our work while guided by theory surrounding
dimensions of mathematical knowledge for teaching and how they may be sup-
ported in teacher preparation, aimed to provide an understanding of the type of
knowledge needed for teaching mathematical modeling.

The methods course that served as the site for the current study is the second of a
sequence of two courses on methods of teaching high school mathematics. The
focus of the first course—STEM Math Method I—is on teaching of Algebra,
Calculus and number theory concepts. Using Principles of Inquiry Based Learning
and Teaching (Artigue & Blomhøj, 2013) the course draws attention to connections
between student thinking and instruction. In this course teaching candidates are also
introduced to the state and national curricular standards and expected to design
lessons and units of instruction that meet them.

For the purpose of the redesign, we set the overarching theme of the second
methods course to address reasoning and sense making (NCTM, 2000). Activities
were selected and/or developed to help the candidates develop an understanding of
how to assist school learners grow in their reasoning skills by drawing on various
concepts from targeted content areas such as Geometry, Measurement, Probability,
Statistic and Discrete Mathematics.1 Mathematical modeling strand was to be
addressed explicitly during three weeks of instruction. While some learning
objectives were considered based on the literature on teachers’ need pertaining to
learning about mathematical modeling (Doerr & Lesh, 2011), our final plans
resided in data obtained from the candidates using an extensive survey of knowl-
edge, and the specific needs they identified or appeared to be paramount in their

1The program requires the teacher candidates to take a course in Technology in STEM. An
additional course on Assessment is also required. These two courses cater to all teacher candidates
in mathematics and science education.
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responses. The survey was administered at the beginning of academic semester and
prior to development of the unit of instruction.

12.3 Participants

The participants consisted of 11 prospective secondary mathematics teachers
enrolled in a 7–12 teacher preparation program at a large research institution.2 The
participants had completed all prerequisite coursework towards a major in mathe-
matics (including but not limited to Calculus I, II and III; Geometry; Linear Algebra;
Abstract Algebra I, II; Real Analysis I, II; Discrete Mathematical Models;
Foundations of Higher Math; History of Mathematics) and were enrolled in the
second course of a sequence of two methods courses on teaching mathematics in
secondary schools. All participants were scheduled to commence their student
teaching phase during the subsequent academic semester. As enrolled in the
methods course all participants were also completing a field-experience that required
them to spend 10 h a week in schools for 16 weeks. The field experience is divided
into two eight weeks long parts where each part is completed at either a middle
school or a high school. Collectively, these two distinct experiences provide teachers
opportunities to observe 7–12 grades learners. During each part of the field expe-
riences, the candidates worked with two different teacher mentors, observe lessons,
work with individual or small group of learners, as assigned by the teachers.

12.4 Methodology

This study followed a Teacher Development Experiment (TDE) (Simon, 2000)
methodology. A TDE draws on the principles of constructivist teaching experiment
(Steffe, 1991) and capitalizes on improving how individuals learn mathematics
through a cycle of interaction and reflection by a researcher-teacher. Because
learning to teach mathematics involves more than learning mathematics content,
Simon (2000) describes an alternate view of a teaching experiment. A TDE is
concerned with how teachers develop in mathematical pedagogy in addition to
understanding mathematics content. The TDE process is similar to that of a
teaching experiment. The researcher-teacher interacts with teachers directly with the
goal of furthering their development in specific ways, reflects on and analyzes what
happened to determine any changes that may need to be made for the next cycle of
interaction.

2In the American school system, 6–8th grades is labeled as middle or junior high school whereas
9–12th grades is considered high school. The 7–12 teacher preparation program licenses candi-
dates to teach in these grade levels.
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In light of this methodology and following its guiding principles, our investi-
gation consisted of three phases. First, a survey of knowledge of mathematical
modeling for teaching was designed and administered to collect base line data on
the candidates’ assumptions about teaching mathematical modeling in schools.
Second, in light of the survey results and identification of areas that seemingly
needed development, a unit of instruction on mathematical modeling for teaching
was conceptualized and implemented during three course sessions (approximately
8 h). A post implementation survey was administered on the last session of the
academic semester to trace impact of the experiences provided for teacher candi-
dates as expressed by the participants. These are described in detail below.

12.5 Survey

Drawing from the literature on Teacher Knowledge (Rowland & Ruthven, 2011),
the survey consisted of 20 items and addressed four areas (see Appendix). The first
part of the survey collected biographical information from the candidates, the range
of mathematics courses they had completed, and their assessment of courses in
which they believed they had gained mathematical modeling experiences as
learners.

Four items addressed the participants’ claimed level of confidence with math-
ematical modeling, teaching it, and their assessment of the importance of modeling
for school learners. The decision to consider these various dimensions of teachers
affective and cognitive domains pertaining to teaching and learning of mathematical
modeling was due to two primary reasons. First, previous research has already
established that prospective teachers enter their teacher education program overly
confident about their ability to teach mathematical modeling (Darling-Hammond,
2010). Second, researchers have also posited that a high level of confidence in their
ability to teach impede prospective teachers from tending closely to the teaching
approaches promoted in their education coursework. We had hypothesized that an
increased knowledge of mathematical modeling and its complexity the prospective
teachers might become more sensitive to their own facility with mathematical
modeling and teaching it. Additionally, the prospective teacher participants were
asked to identify how frequently they had observed mathematical modeling
implemented in classrooms.

The third part of the survey consisted of open response items that collected data
on the candidates’ description of mathematical modeling, similarities and differ-
ences they observed between modeling tasks and other kinds of activities used in
classrooms, and processes they associated with mathematical modeling. The par-
ticipants were asked to provide illustrative examples in each part.

The last portion of the survey aimed to obtain specific data on the participants’
ability to identify suitable examples of modeling tasks to be used with middle and
high school students as well as how they envisioned gauging learners’ progress
when engaged in such tasks (Watson & Mason, 2005). We had anticipated that
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candidates’ responses to the last set of questions would allow us to more carefully
detail their knowledge related to modeling based curriculum and instruction.

The same survey was administered again during the last session of the academic
semester and upon conclusion of the experimental unit of instruction. The
post-implementation survey included two additional questions. These two questions
attempted to capture the participants’ assessment of they believed they had gained
from the course experiences. The goal was to gauge the success of our initiatives/
choices as judged by the prospective teachers themselves.

12.6 Course Design

In light of the results of the survey, we set four goals for our work with the
participants so to help them: (1) develop a deeper understanding of the mathe-
matical modelling process and its intricacies, (2) discriminate between mathemat-
ical modelling as a process and solving routine application problems, (3) learn
about suitable resources that could be used for simulating modelling tasks, and
(4) understand how student learning could be gauged using the modelling cycle
(Blum & Borromeo Ferri, 2009) as a platform for assessment. The candidates were
introduced to the modeling cycle during the first day of implementing the modeling
unit. The modeling cycle was revisited throughout the range of activities the can-
didates completed in class.

Each course session was divided into two parts. During the first part of the
session, the candidates worked on one or two modeling tasks, compared and
constructed their answers, and tried to refine their solutions (see Table 12.1 for

Table 12.1 Sample tasks and resources

Task and recourses Objectives

Cost Problem
Jensen (2007). Mathematical Modelling in Danish Schools
What is the cost of me?

Precision and accuracy
Full Modeling Cycle

Additional tasks and recourses
Modeling with Olympic Running Record
Selena Oswalt’s Thesis “Mathematical modeling in the high school classroom”
COMAP
Voting tendency problem from the book “Mathematics methods and modeling for Today’s
Mathematics Classroom” (p. 106)
Simulations
Dan Meyers’ three act teaching: https://docs.google.com/spreadsheets/d/1jXSt_
CoDzyDFeJimZxnhgwOVsWkTQEsfqouLWNNC6Z4/edit#gid=0
Math Modelling Lessons. Indiana University: http://www.indiana.edu/*iucme/
mathmodeling/lessons.htm
NRICH Mathematics: https://nrich.maths.org/5741
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examples of tasks used). Emphasis was placed on identifying variables, parameters
and how these variables and parameters shaped the mathematization of contexts
leading to a construction of a tentative model. In particular, candidates were asked
to consider how different mathematical tools and concepts could be used in the
model building stage. This portion of the session provided us the opportunity to
examine the candidates’ mathematical artifacts and make suggestions about how
they may refine their models. These discussions allowed us to introduce different
mathematical tools the participants may not had considered, either independently or
collectively, which could have been used to construct more robust models
(Approximately 3½ h in total).

The second part of the session was devoted to deliberations on how the same
tasks could be implemented in schools, the type of scaffolding that may need to be
provided, or ways in which new ideas could be introduced in tandem. The par-
ticipants were then introduced to specific resources they could use and available
simulations they could access and utilize in instruction to ground learners’ activities
(see Table 12.1 for a sample of resources introduced and used). Candidates were
encouraged to identify particular skills they could target with the use of specific
tasks they examined (approximately 3 h).

12.7 Data Analysis

Data analysis followed two phases. First phase involved coding the candidates’
responses to the pre-implementation survey. Descriptive statistics regarding the
outcomes of the multiple-choice items were produced. Analysis of open response
items followed a grounded theory model (Glaser, 2003). All responses were studied
first. Major themes that emerged were catalogues and labeled respectively.
A second review of the open response items was completed using the emergent
themes as analytical codes. This analysis informed the content and structure of the
unit of instruction.

Phase II of the analysis involved comparing the pre-post survey results. As a
starting point in coding the post implementation data the analytic framework
developed in Phase I was used to complete a sentence-by-sentence coding of the
open response items. New coding categories were developed and noted to capture
the range of responses the candidates provided. Lastly, similar to phase I,
descriptive statistics regarding the outcomes of the multiple-choice items were
produced. Comparison of pre-post results then followed. Findings from the analysis
are detailed in the next section.
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12.8 Findings

12.8.1 Phase I: What Teachers Claimed They Knew?

As described above, in an attempt to be responsive to the candidates’ particular
needs when designing modeling experiences for them they were asked to complete
a survey in which they provided data on their knowledge of mathematical mod-
eling. Results indicated that although the participants seemed aware of the differ-
ences between modeling activities and other types of tasks used in instruction, they
were less clear about unique features of modeling as a process, ways to gauge
student learning, or anchoring design of modeling tasks in 7–12 curriculum as
described below.

All 11 participants reported having had experience with mathematical modeling
in their Discrete Mathematics course. A half of the candidates reported having had
adequate exposure to modeling experiences in their calculus, differential equations,
and probability and statistics courses. Because of these experiences they felt con-
fident in their ability as mathematical modeler though unsure of how to teach it.
Only 3 (27%) candidates reported having observed classroom teachers who served
as their school based mentors implement mathematical modeling activities.

In describing mathematical modeling and its process, 7 (64%) candidates
characterized it as using mathematics to represent and analyze real world situations.
The participants’ responses however varied according to the amount of detail they
chose to include in outlining their thinking. For example, one candidate wrote
“mathematical modeling is the cyclic process of taking real world problem,
quantifying them mathematically, and refining and improving the mathematics used
to describe the problem”, while another one described mathematics modeling as
“the way that math concepts can be used to represent and analyze real-world
situations”. Three (27%) participants perceived mathematical modeling as using
manipulative, simulations or world problem to demonstrate a mathematical concept.

In explaining specific actions associated with modeling two common themes
emerged. One group equated mathematical modeling process with problem solving
(i.e. “read the information given to you. Write out your givens. Analyze what the
goal is.”) The second type of description concerned data modeling with a focus on
statistical context. None of the candidates’ referenced defining variables, setting
parameters, building a mathematical representation of the situation, interpreting and
refining the model (Blum & Leib, 2007) as part of the modeling process.

On the follow up question that asked the candidates to report how they would
assess school learners’ mathematical modeling progress, all but one participant
offered general descriptions that did not tend to unique features of mathematical
modeling. Further, to illustrate differences between modeling tasks and other types
of mathematical activities, candidates relied on phrases such as “open ended”,
“multiple approaches”, “multiple solutions” to describe their thinking. Although
only one candidate provided illustrative examples to distinguish modeling tasks
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from other types of activities, the participants’ overall descriptions indicated that
they were aware of the differences though unsure about how to articulate them.

12.8.2 Phase III: What Was Gained?

In tracing the impact of the course experiences on teacher candidates, we focused
our analysis on comparing their responses to a common question on pre and post
implementation survey. These are described below. Note that when including
illustrative examples from the candidates’ responses we opted to consider com-
ments from the same individuals whose answers were also depicted in Phase I
results section of this report.

Descriptions of mathematical modeling and its process: On both surveys the
candidates were asked to describe mathematical modeling and what they perceived
as specific processes involved in this sort of mathematical work. In the post
implementation survey, nine (82%) participants described mathematical modeling
as using mathematics to represent, analyze and solve real-world problems.
Comparing these responses to those on pre-implementation survey, their remarks
were more reflective of the nature of mathematical modeling as a process (Blum &
Leiß, 2006). Most frequently cited description of modeling included “creating a
useful model to represent an event of the real world, whether it be a symbolic
equation or a working ‘machine’.” “Mathematical modeling should incorporate
interpretation from the real world to the math world, and reinterpreted back to the
real world after the model carries out it course.” “Mathematical modeling is cyclic
process, so it does not stop after one loop.”

In the post implementation survey, when asked to outline actions that may be
involved in mathematical modeling process, eight (72%) candidates noted specific
cognitive actions (making sense of the situation, identifying/defining variables,
making assumptions, using mathematics to build a model, interpreting the model,
and revisiting the initial model). Compared to their responses to the same question
on the pre-implementation survey, these descriptions more closely match stages
depicted in the modeling cycle. Common responses cited a sequence of actions,
“interpret problem ! make assumptions ! make quantitative model ! find
solution ! validate model/solution ! revisit any previous steps as needed.”
2 (18%) of the candidates associated modeling with using manipulative or simu-
lation to demonstrate mathematical concepts.

Examples generating: In the post implementation survey, when asked to
illustrate the differences between modeling activities and other types of mathe-
matical activities, phrases such as “open ended”, “multiple representations”, “real
world connection”, “multiple approaches”, “a variety of directions”, “multiple entry
and exit points”, “minimal constraints”, “opportunity to define relevant variables”,
and “revisiting solutions” were referenced by all 11 candidates. Ten (91%) of the
candidates referenced “minima constraints”, “revisiting solutions”, and “define
relevant variables” to describe modeling tasks, which were not present in their
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responses in the pre-implementation survey. Table 12.2 offers a summary of the
types of examples of tasks the candidates listed as appropriate to be used in Middle
and High school grade bands as noted on pre and post implementation surveys.
Results indicate a shift in the quality of knowledge regarding modeling as a process
and the types of tasks that could motivate and elicit cognition.

The shift in responses is promising. As evident a larger number of tasks that
matched criteria for modeling situations as defined in the literature were identified
on the post implementation survey. More specifically, the contexts that the candi-
dates referenced drew on various content areas. Indeed, a majority of the contexts
they referenced typified content of a course in Discrete Mathematics. The candi-
dates also noted the activities used in the methods course as illustrative examples of
modeling tasks to be used with learners.

Assessing modeling progress: Compared to pre-implementation survey on
which none of the candidates appeared to have had a platform for gauging learners’
modeling progress on the post implementation survey 7 (64%) of the participates
offered specific plans relying on the language of modeling cycle for identifying
specific behaviors they would seek out. An illustrative example of commonly noted
description included, “I would assess students based on the assumptions they made
and how those assumptions lead the students to their answer.” Another participant
expressed “the process is where the assessment lives. It is not about the answer; it is
about how well they can work through the process to find an answer they feel is
acceptable.”

Self efficacy and beliefs of learning from the course: Figs. 12.1 and 12.2
summarize the candidates’ responses to the two additional questions listed on the
post implementation survey. The first question asked the participants to rate their

Table 12.2 Types of modeling tasks generated by participants

Exercises Building
physical
models or
simulations

Data
collection
and
analysis

Applications
resembling
textbook
contexts

Modeling
tasks
matching
the
descriptions
offered in
the literature

Optimization
tasks

Middle
School
(pre)

0 2 5 2 0 2

Middle
School
(post)

0 1 5 0 3 2

High
School
(pre)

0 0 3 5 1 2

High
school
(post)

0 0 3 1 4 3
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confidence in enacting each of 6 practices central to mathematical modeling
instruction. The second question asked them to rate their learning in each of these
domains as the result of course experiences.

In response to the first question nearly all candidates felt slight to moderate
levels of confidence in their ability to navigate demands of a modeling based
curriculum. Moderate confidence was most prominent in the areas of “selecting
mathematical tasks for learners,” “managing diverse student backgrounds” and
“utilizing students’ personal experiences.” The candidates felt most vulnerable
when assessing learners’ skills, facilitating students’ modelling work and designing
modelling tasks.

Fig. 12.1 Participants’ confidence level in enacting mathematical modeling instruction practices

Fig. 12.2 Participants’ perception of learning gains from the course
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In response to the second question, seven (64%) candidates stated that compared
to the beginning of the semester they felt more knowledgeable about designing
mathematical modeling tasks for learners; nine (82%) candidates moderately or
strongly agreed that compared to the beginning of the semester, they felt more
knowledgeable about selecting mathematical modeling tasks for learners. Eight
(73%) participants moderately or strongly agreed that compared to the beginning of
the semester, they felt more knowledgeable about how to assess mathematical
modeling skills of learners; Six (55%) students moderately or strongly agreed with
both the statements that they felt more knowledgeable about facilitating students’
modeling work and utilizing students’ personal experiences to facilitate mathe-
matical modeling in classroom. Five (45%) candidates claimed that compared to the
beginning of the semester they felt more knowledgeable about managing diverse
student backgrounds.

The results indicate that despite their positive reports the candidates remained
insecure about managing various aspects of instruction in presence of a modelling
curriculum.

12.9 Discussion

Previously Gould (2013) in her survey of approximately 270 teachers across the US
reported fragile understanding of mathematical modeling among K–12 teachers.
She offered that a majority of the teacher participants in her study perceived
mathematical modeling as “solving application problems,” “using manipulatives to
illustrate models,” and “encouraging multiple representations of concepts.”
Teachers in her study also felt confident in their ability to teach mathematical
modeling. Findings of our research concur with some of Gould’s findings.

A majority of the participants in our study did perceive mathematical modeling
as the process of using mathematics to solve real world based tasks and their
understanding of the complexities associated with teaching it increased. The can-
didates also believed modeling cognition to be difficult to nurture (Lingefjärd,
2007). Because of this, compared to teaching other content areas, they felt less
efficacious in helping children develop proficiency in the area. Two particular
challenges they articulated included how to effectively build on the learners’ extra
mathematical knowledge when engaging them in model building process as well as
managing diverse student backgrounds. These issues have not yet been adequately
addressed in the literature.

Analysis of the post implementation survey data revealed that although course
experiences did not have any significant impact on the teachers’ sense of efficacy
towards teaching mathematical modelling, their description of the modelling pro-
cess, knowledge of task design and resources available to use, along with ways they
could assess and monitor student progress towards establishing more sophisticated
mathematical models increased. Candidates felt vulnerable in gauging their own
instructional interventions in the course of learners’ modeling process. This is not
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surprising since development of knowledge of effective scaffolding techniques has
been identified as a particularly complex one to acquire (Blum, 2011) and one that
demands time and practice to mature.

Data also indicated that the candidates exhibited care when identifying modeling
activities suitable for the middle grades learners. Examples of instructional mod-
eling tasks they provided contained greater detail. The candidates were more pre-
cise when describing specific mathematical skills that could be taught or reinforced
with using the activities they had proposed. We note also that in providing illus-
trative examples of modeling tasks the participants made specific references to the
activities they had completed in the methods course. This point certainly supports
Niss, Blum, and Galbraith (2007) position that educational programs designed for
teachers must utilize modeling experiences that parallel those expected of them to
teach. We further highlight that the candidates’ past mathematical experiences
exerted tremendous influence on the types of modelling situations they were able to
reference. For instance, Discrete analysis course which had been identified as one in
which they had gained greatest exposure to mathematical modelling is one of the
most referenced context.

It would be ambitious of us to make serious claims to effectiveness of our
choices on advancing teachers’ mathematical modeling skills or their knowledge
about teaching it to children since the development of both domains demands
extensive time for reflection and contemplation, sustained exposure and experience,
and a practice of skills in an authentic way (Blum, 2011). It is reasonable however,
to argue that the course managed to provide the candidates with a language through
which they could articulate ideas about mathematical modeling and its form and
content. Even so, acquiring the language provides some evidence of learning.
Because of this we posit that while inclusion of experiences we designed appeared
to have familiarized the participants with some key issues and methodologies, they
were not by any means sufficient to have helped them reach a level of proficiency
that would need to be in place for effective implementation. Significant need exists
for additional scholarly reports on existing efforts aimed at improving modeling
specific pedagogical capacities among teachers.

Appendix: Survey

1. Degree Program

A. B.S.Ed.
B. M.Ed.
C. M.A.
D. M.S.
E. Ph.D.
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2. Area of specialization

A. Mathematics
B. Science
C. Engineering
D. Instructional Technology

3. Years of experience

A. None
B. 1–3
C. 4–10
D. >10

4. Mathematics courses you have completed in your program of study:

A. Calculus I
B. Calculus II
C. Linear Algebra and Matrix Theory
D. Discrete Mathematics
E. Differential Equations
F. Engineering Mathematics
G. Computing and programming
H. Probability and Stats
I. Geometry
J. College Algebra
K. History of Mathematics
L. Pre-calculus
M. Calculus based Physics

5. In which required courses for your program of study did you learn about
modeling? (The extent in which you believe you learned about how to use
mathematics to solve real life problems in each of the following courses
(if taken)).

A great deal Enough to learn Some exposure None

Calculus I ⃝ ⃝ ⃝ ⃝
Calculus II ⃝ ⃝ ⃝ ⃝
Linear Algebra And Matrix Theory ⃝ ⃝ ⃝ ⃝
Discrete Mathematics ⃝ ⃝ ⃝ ⃝
Differential Equations ⃝ ⃝ ⃝ ⃝
Engineering Mathematics ⃝ ⃝ ⃝ ⃝
Computing and Programming ⃝ ⃝ ⃝ ⃝
Probability and Stats ⃝ ⃝ ⃝ ⃝
Geometry ⃝ ⃝ ⃝ ⃝
College Algebra ⃝ ⃝ ⃝ ⃝

(continued)
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(continued)

A great deal Enough to learn Some exposure None

History of Mathematics ⃝ ⃝ ⃝ ⃝
Pre-calculus ⃝ ⃝ ⃝ ⃝
Calculus based Physics ⃝ ⃝ ⃝ ⃝

6. What does mathematical modeling, or modeling problems based on how it is
used in your discipline, mean to you?

7. How is mathematical modeling (or modeling tasks) different from other types
of activities (tasks) commonly used in classrooms (this may include exercises
or application type problems)? Give comparative examples to illustrate the
difference.

8. Describe what specific actions may be involved in the (mathematical) modeling
process? That is, are there specific stages involved in mathematical modeling
that may not be involved in other forms of mathematical activity? You may
draw a diagram to illustrate your thinking. Describe what specific actions may
be involved in the (mathematical) modeling process? That is, are there specific
stages involved in mathematical modeling that may not be involved in other
forms of mathematical activity? You may draw a diagram to illustrate your
thinking.

9. How do you envision using the process you described above to be used when
assessing students’ mathematical modeling progress?

10. Give an example of a modeling task suitable for elementary school students.
Explain why you consider this task suitable for children in that grade band.

11. Give an example of a modeling task suitable for middle school students.
Explain why you consider this task suitable for children in that grade band.

12. Give an example of a modeling task suitable for high school students. Explain
why you consider this task suitable for children in that grade band.

13. How experienced are you with doing mathematical modeling?

A. Very experienced (have had more than one course emphasizing mathe-
matical modeling AND/OR have done modeling in my previous career)

B. Fairly experienced (have had experiences it in different classes I have taken)
C. Not experienced (I have rarely experienced modeling in my education)
D. Not sure (I don’t know what mathematical modeling is)

14. How experienced are you with mathematical modeling as a teacher?

A. Very experienced (I feel quite confident about teaching modeling as a
content and helping learners acquire needed skills)

B. Fairly experienced (I think I know how to use modeling to teach different
concept)

C. Not experienced (I have never tried teaching modeling)
D. Not sure (I don’t know what mathematical modeling is)
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15. How often are modeling tasks used in classrooms you have observed or taught?

A. Daily
B. Weekly
C. Monthly
D. 3–4 times a year

16. How do you feel a modeling approach to teaching might compare to other
teaching approaches?

A. More challenging
B. About the same
C. Less challenging

17. How important do you believe development of modeling skills might be to
school learners?

A. Very important
B. Somewhat important
C. Not particularly important

18. Consider the following events. First, decide whether the context presents a
situation for mathematical modeling. Then decide where the context might be
suitable to be implemented for school learners’ explorations. If you believe the
context is not appropriate OR that it may be suitable to be used in different
subjects please provide an explanation for your choice.

A. Design a parking lot for a retail store.
Does the context present a situation for mathematical modeling?

• Yes, it is a modeling context
• No, it is not a modeling context
• I don’t know

B. A physicist is studying properties of light. She wants to understand the path
of a ray of light as it travels through the air into a smooth lake, particularly
at the interface of the two different media.
Does the context present a situation for mathematical modeling?

• Yes, it is a modeling context
• No, it is not a modeling context
• I don’t know
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C. Harry Smith is determined to write the next best-selling book.
Does the context present a situation for mathematical modeling?

• Yes, it is a modeling context
• No, it is not a modeling context
• I don’t know

D. A couple is trying to decide whether to buy or rent a house.
Does the context present a situation for mathematical modeling?

• Yes, it is a modeling context
• No, it is not a modeling context
• I don’t know

19. The scenarios below is vaguely stated. First state a problem worth studying.
Then identify what variables affect the behavior in the problem as you stated it
and state, in order of importance, at least four of the those most important.

A. A car rental company with distributorships in two different locations caters
to travel agents who arrange tourist activities in both cities. Consequently,
a tourist may choose to rent a car in one city and drop it off in the second
city. Tourists can begin their itinerary in either city. The company wants to
determine how much they should charge for the “drop-off” convenience.

• Problem to explore
• Variables
• Order of importance

B. A proportion of population of an island travels abroad and returns to
island infected with a disease.

• Problem to explore
• Variables
• Order of importance

20. Consider two species whose survival depends upon their mutual cooperation.
An example would be a species of bee that feeds primarily on the nectar of one
plant species and simultaneously pollinates that plant. Letting an and bn rep-
resent the bee and plant population levels, respectively, after n days, we have
the following model:
anþ 1 ¼ an � k1an þ k2anbn
bnþ 1 ¼ bn � k3bn þ k4anbn
Where the ki are positive constant.

• Discuss the meaning of each ki in terms of mutual cooperation.
• What assumptions are being made about growth of each species in the

absence of cooperation?

12 Nurturing Knowledge of Mathematical Modeling for Teaching 221



References

Anhalt, C. O., & Cortez, R. (2016). Developing understanding of mathematical modeling in
secondary teacher preparation. Journal of Mathematics Teacher Education, 19(6), 523–545.

Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics.
ZDM, 45(6), 797–810.

Association of Public Land-Ggrant Universities (2017). A SMART Approach to Student Success:
Feedback and Evaluation. http://www.aplu.org/library.

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to
teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on the
teaching and learning of mathematics (pp. 83–104). Westport, CT: Ablex.

Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research.
In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and
learning of mathematical modelling (pp. 15–30). Dordrecht: Springer.

Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt?
Journal of Mathematical Modelling and Application, 1(1), 45–58.

Blum, W., & Leiß, D. (2006). How do students and teachers deal with modelling problems?
In C. Haines, P. Galbraith, W. Blum and S. Khan (Eds.), Mathematical Modelling (ICTMA12):
Education, Engineering and Economics (pp. 222–231). Chichester: Horwood Publishing

Blum, W., & Leib, D. (2007). How do students and teachers deal with mathematical modelling
problems? The example “Filling up”. In C. Haines et al. (Eds.), Mathematical modelling
(ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.

Cai, J., Cirillo, M., Pelesko, L., Borromeo Ferri, R., Borba, M., Geiger, V., et al. (2014).
Mathematical modelling in school education: Mathematical, cognitive, curricular, instructional
and teacher education perspectives. In P. Linljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.),
Proceedings of the 38th Conference of the International Group for the Psychology of
Mathematics Education and the 36th Conference of the North American Chapter of the
Psychology of Mathematics Education (Vol. 1, pp. 145–172). Vancouver, Canada: PME.

Common Core State Standards Initiative. (2010). Common core state standards for mathematics.
Washington, DC: National Governors Association Center for Best Practices and the Council of
Chief State School Officers.

Darling-Hammond, L. (2010). Evaluating teacher effectiveness: How teacher performance
assessments can measure and improve teaching. Washington DC: Center for American
Progress.

Doerr, H. M., & Lesh, R. A. (2011). Models and modelling perspectives on teaching and learning
mathematics in the twenty-first century. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G.
Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 247–268).
Dordrecht: Springer.

Glaser, B. G. (2003). The grounded theory perspective II: Description’s remodeling of grounded
theory methodology. Mill Valley, CA: Sociology Press.

Gould, H. (2013). Teachers’ conceptions of mathematical modeling (Doctoral dissertation).
Columbia University, New York.

Hawkins, E. F., Stancavage, F. B., & Dossey, J. A. (1998). School policies and practices affecting
instruction in mathematics (NCES 98-495). Washington, DC: National Center for Education
Statistics.

Jensen, T. H. (2007). Assessing mathematical modelling competency. In 2007 Mathematical
Modeling (ICTMA 12): Education, Engineering and Economics (pp. 141–148).

Lingefjärd, T. (2007). Mathematical modelling in teacher education—Necessity or unnecessarily.
In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in
mathematics education (pp. 333–340). New York: Springer.

Monk, D. H. (1994). Subject area preparation of secondary mathematics and science teachers and
student achievement. Economics of Education Review, 13(2), 125–145.

222 A. Manouchehri et al.

http://www.aplu.org/library


National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for
school mathematics. Reston, VA: NCTM.

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.-W. Henn,
& M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3–32). New
York, NY: Springer.

Rowland, T., & Ruthven, K. (Eds.). (2011). Mathematical knowledge in teaching. Dordrecht, The
Netherlands: Springer.

Simon, M. A. (2000). Research on the development of mathematics teachers: The teacher
development experiment. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in
mathematics and science education (pp. 335–360). London: Routledge.

Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In E.
Von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 177–194).
Dordrecht, The Netherlands: Springer.

Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: Learners generating
examples. Mahwah, NJ: Erlbaum.

12 Nurturing Knowledge of Mathematical Modeling for Teaching 223



Chapter 13
Future Teachers’ Use of Multiplication
and Fractions When Expressing
Proportional Relationships

İbrahim Burak Ölmez

Abstract The purpose of this study was to investigate how six future middle
grades mathematics teachers used explicit, quantitative definitions for multiplica-
tion and for fractions when reasoning about proportional relationships. The future
teachers were recruited from a preparation program in the United States based on
their performance on a fractions survey. The data collection consisted of 1-hour
semi-structured interviews with each future teacher. An explanatory case study was
used to make comparisons across the future teachers. Results revealed that explicit
use of the quantitative definition of multiplication is a helpful organizing tool for
future teachers to generate and explain equations for proportional relationships.

Keywords Definition of multiplication � Definition for fractions
Future middle grades teachers � Proportional relationships � Algebraic equations

13.1 Introduction

One of the most central and difficult concepts of elementary and secondary math-
ematics education is ratios and proportional relationships (e.g., Kilpatrick,
Swafford, & Findell, 2001; Lamon, 2007; National Council of Teachers of
Mathematics, 2000). Lesh, Post, and Behr (1988) considered ratios and proportional
relationships to be the capstone of elementary mathematics and the cornerstone of
high school mathematics. Vergnaud (1983, 1988) described these relationships as
part of the multiplicative conceptual field—a web of interrelated ideas including
multiplication, division, fractions, and more. The National Mathematics Advisory
Panel (2008) stated that the interrelated ideas of ratios, proportional relationships,
and fractions are foundational for algebra.
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Past research on teachers’ understandings of the multiplicative conceptual field
has reported that in-service and future teachers have trouble when explaining the
product of two fractions or decimals embedded in problem situations despite their
correct computation of the algorithms (e.g., Ball, Lubienski, & Mewborn, 2001;
Izsák, 2008; Tirosh & Graeber, 1990). Past research has also acknowledged that
many teachers in the U.S. struggle explaining division (i.e., multiplication with an
unknown factor) when it is embedded in problem situations although they can
determine the quotient of two fractions or decimals (e.g., Armstrong & Bezuk,
1995; Jansen & Hohensee, 2016).

The relatively few studies that have examined how in-service and future teachers
reason about ratios and proportional relationships have demonstrated that teachers
have many of the same difficulties reported in the much larger literature on students’
reasoning about proportional relationships. In one of these studies, middle grades
teachers were found to show poor performance on test items that their students are
expected to solve (Post, Harel, Behr, & Lesh, 1991). In another study, Harel and
Behr (1995) reported that many teachers were not able to solve the problems
involving proportional relationships correctly. Rather, these teachers guessed at
operations by performing each of these operations on the quantities until reaching
out a reasonable solution or they searched for particular words (i.e., key words) in
the problems to decide which operation to use. In addition to these findings, past
research has documented that teachers can have a hard time distinguishing
missing-value problems that describe directly proportional relationships from ones
that do not (e.g., Cramer, Post, & Currier, 1993; Fisher, 1988; Izsák & Jacobson,
2017) and can struggle conceiving a ratio as a measure of a physical attribute, such
as steepness (e.g., Simon & Blume, 1994).

The purpose of this study was to examine how six future middle grades math-
ematics teachers used explicit, quantitative definitions for multiplication and for
fractions to develop equations that relate quantities in a proportional
relationship. Both definitions were introduced in content courses that the future
teachers were completing as part of a preparation program in the United States. The
following research question was addressed in this study:

• How do future middle grades mathematics teachers reason with quantitative
definitions for multiplication and for fractions when solving proportion
problems?

The study makes two contributions. First, existing studies have consistently
acknowledged that solving proportions involving whole-number multiples is easier
than solving proportions involving fraction multiples (e.g., Kaput & West, 1994;
Karplus, Pulos, & Stage, 1983), but no studies have examined how explicit,
quantitative definitions for multiplication and for fractions can support and con-
strain reasoning about proportional relationships. Second, the present study
demonstrates that the quantitative definition of multiplication is accessible to future
teachers in terms of generating and explaining appropriate equations that involve
proportional relationships.
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13.2 Theoretical Framework

The framework for this study is based on the quantitative definition of multipli-
cation explicated by Beckmann and Izsák (2015) as in Fig. 13.1. In the equation
M � N = P, the multiplier, M, is interpreted as the number of groups; the multi-
plicand, N, is the number of units in one group; and the product, P, is the number of
units in M groups.

This study is also based on a definition for fractions that is consistent with the
one found in the Common Core State Standards in the United States (CCSS)
(Common Core State Standards Initiative, 2010). A two-part definition for a frac-
tion is as follows:

(a) 1/b is the quantity formed by one part when a unit amount (or whole) is divided
into b equal parts; each part is 1/b of the unit amount.

(b) a/b is the quantity formed by a parts of size 1/b of the unit amount.

Beckmann and Izsák (2015) explained how maintaining distinct roles played by
the multiplier and multiplicand in Fig. 13.1 leads to two distinct perspectives on
proportional relationships, one termed the multiple batches perspective, which has
been studied widely, and the other termed the variable parts perspective, which has
been largely overlooked in mathematics education research.

For the present study, we focused on the variable parts perspective, which we
illustrate with the Jewelry Problem. The variable parts perspective, combined with a
drawn model called a strip diagram (Fig. 13.2) supports at least two different
solutions (Beckmann, Izsák, & Ölmez, 2015).

Fig. 13.1 A quantitative definition of multiplication

Fig. 13.2 A strip diagram for
the Jewelry Problem
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Jewelry Problem: A company makes jewelry using gold and copper. The
company uses different weights of gold and copper on different days, but always in
the same 7–5 ratio. Let G and C be some unspecified number of ounces of gold and
copper the company will use that same day. Please use a strip diagram to help you
explain the relationship between G and C.

One method future teachers can use to develop equations relating G ounces of
gold and C ounces of copper is the “how much in one part” method (Fig. 13.3).
With this method, future teachers can view the total amount of gold as one group
consisting of seven parts and the total amount of copper as one group consisting of
five parts. Here the number of parts is fixed and, by convention, all parts contain the
same number of ounces. At the same time, the number of ounces in each of the 12
parts can vary with the total amount of jewelry gold being made. Future teachers
can solve the problem by determining the number of ounces in one part, C/5 oz,
and by using the quantitative definition of multiplication to generate the following
equation:

7 groupsð Þ � C=5 ounces in one groupð Þ ¼ G ounces in 7 groupsð Þ

A second method future teachers can use is the “how many total amounts”
method (Fig. 13.4). With this method, future teachers can treat the copper strip as 1
group of C ounces. By asking how many groups of five parts are in seven parts and
applying the definition for fractions to the copper strip as unit amount or whole,
future teachers can see that the gold strip consists of 7 parts each containing the
same number of ounces as 1/5 of the copper strip, and the five parts copper strip fits
into the seven parts gold strip 7/5 times. Thus, future teachers can conclude that the
amount of gold, the G ounces, is 7/5 groups, and use the definition of multiplication
to generate the following equation:

7=5 groupsð Þ � C=5 ounces in one groupð Þ ¼ G ounces in 7/5 groupsð Þ

Past research on understanding teachers’ solutions to problems similar to the
Jewelry Problem has found that teachers tend to resort to cross-multiplication as a
rote computation algorithm without reasoning about the quantities and guess at

Fig. 13.3 “How much in one part” method (Variable Parts Perspective)
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operations (e.g., Fisher, 1988; Harel & Behr, 1995); have difficulty coordinating
two proportionally related quantities (e.g., Orrill & Brown, 2012); and rely on
additive relationships rather than multiplicative ones when reasoning about these
quantities (e.g., Ölmez, 2016). Moreover, current recommendations on middle
grades students suggest developing their conceptual understanding for solving these
problems before teaching cross-multiplication as an algorithm (Siegler et al., 2010)
and exposing these students to solve such problems using math drawings like strip
diagrams and double number lines (CCSS, 2010). To apply the current recom-
mendations for middle grades students, future middle grades teachers, as
prospective teachers of these students, should have capacities to reason about
proportionally-related quantities and connect their capacities within the multi-
plicative conceptual field. Therefore, the theoretical framework of this study is
consistent with the recommendations of The Mathematical Education of Teaching
II for middle grades teachers (Conference Board of the Mathematical Sciences,
2012, p. 39).

13.3 Methods

Data for this paper come from a larger on-going study of future middle grades
(grades 4–8) mathematics teachers’ multiplicative reasoning. At the time of the
study, the six future middle grades teachers were enrolled in a teacher education
program at a large university in the Southern United States. The future teachers had
already taken a first semester calculus course required by the program. As part of
the program, they also took a content course on number and operations in Fall 2014
and a content course on algebra in Spring 2015. The sequence of instruction in the
number and operations course were as follows: numbers, the base-ten system, the
definition of fractions, equivalent fractions, comparing fractions, fraction addition
and subtraction, the definition of multiplication, properties of multiplication,
applying properties of multiplication, fraction multiplication, division of whole
numbers, fraction division, and connecting division with fractions. The main focus
in this course was to develop a foundation for future teachers to use the quantitative

Fig. 13.4 “How many total amounts” method (Variable Parts Perspective)
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definitions for multiplication and for fractions. In addition, the sequence of
instruction in the algebra course followed identification of proportional relation-
ships, the multiple batches perspective, the variable parts perspective, developing
equations in two variables and developing equations of lines that come through the
origin. The main focus in this course was to introduce the two perspectives on
proportional relationships and strip diagrams.

A project team member was the instructor for both courses. Both content courses
were taught from Mathematics for Elementary Teachers with Activities (Beckmann,
2014). Each course met for three 50-min sessions each week for 16 weeks. Most
class sessions started with about 30 min of small group work on a set of problems
focused on a particular topic. During whole-class discussion, the future teachers
shared their solutions to problems that involved proportional relationships and
asked each other questions. The instructor wrapped up the discussion by high-
lighting the key ideas that emerged during the conversation.

The project team selected six future teachers from a class of 22 future middle
grades mathematics teachers who took the number and operations course in Fall
2014. The project team recruited future teachers who were mathematically diverse
based on their performance on a survey (Bradshaw, Izsák, Templin, & Jacobson,
2014) that assessed facility with multiplication and division of fractions in terms of
measured quantities. An explanatory case study was used because a case study is
appropriate when the aim is to investigate causal relationships (Yin, 1993). Another
project team member conducted six semi-structured hour-long cognitive interviews
with each future teacher during the two semesters in 2014–2015. During the
interviews, future teachers solved paper-and-pencil tasks similar to, but not the
same as, those used in their course work. They were each interviewed twice during
the numbers and operations course in Fall 2014 and four times during the algebra
course in Spring 2015. All interviews were videotaped and transcribed verbatim for
analysis.

Data for the present study consisted of future teachers’ interview videos, audio
transcripts, and a scanned copy of each future teacher’s written work for two tasks
that were given during the fourth interview, which was conducted through the
middle of the algebra course. Main goals of the previous three interviews were to
examine the extent to which future teachers identify groups, number of units in each
group, and product amount in their definitions of multiplication, and distinguish
distinct types of division in their definitions. The two interview tasks of the fourth
interview were as follows:

Task 1 “How do you interpret the meaning of 1/6 � X?”
Task 2 Jewelry Problem (the same Jewelry Problem discussed above)

At the time of the fourth interview, future teachers had studied the quantitative
definitions for multiplication and for fractions as described above during the
numbers and operations course and had received initial instruction on ratios and
proportional relationships during the algebra course, but they had not yet had
instruction in developing equations in two variables, such as 5/7 � G = C. Thus, the
interview was designed to probe students’ initial capacities to reason about the

230 İ. B. Ölmez



quantitative definitions for multiplication and fractions when developing equations
for proportional relationships before instruction.

The project team reviewed the data multiple times by placing interview tran-
scripts side-by-side with the videos, and examined future teachers’ words, gestures,
and inscriptions for evidence of their thinking processes. The future teachers’ initial
responses to the tasks, not follow-up questions, were analyzed to obtain their ideas
and ways of reasoning that they felt most comfortable with and confident in. To
analyze their responses, detailed summaries describing each future teacher’s
reasoning on each task were written. The team then analyzed each detailed sum-
mary to identify emerging themes such as ideas, concepts, and ways of reasoning
that the future teacher demonstrated as they worked on a task. Specifically, the team
focused on the future teachers’ use of key resources such as the definitions for
multiplication and for fractions, the use of the variable parts perspective, and the use
of strip diagrams. As more passes were taken through the data, it became
increasingly clear that there was a substantial diversity between future teachers’ use
of the definition of multiplication, and their ability to develop appropriate equations
for the Jewelry Problem.

13.4 Results

Table 13.1 provides a summary of the performance of all six future teachers in terms
of their use of the quantitative definitions for multiplication and for fractions while
working on Task 1 and Task 2, and their ability to generate correct equations in Task
2. According to the table, the future teachers who consistently used the definition of
multiplication during Task 1 and Task 2 (i.e., consistent with instruction),
also generated correct equations for the proportional relationship in Task 2. On the
other hand, the future teachers who did not make explicit use of the definition of
multiplication appeared to have a hard time developing correct equations.

Table 13.1 A summary table presenting the future teachers’ performance

Namesa Definition of
multiplication in
Task 1

Definition of
fractions in Task 1
or Task 2

Definition of
multiplication
equations in Task 2

Generating
correct in
Task 2

Alice No Not enough
evidence

No No

Jeff No Yes No No

Linda Yes Not enough
evidence

Yes Yes

Claire Yes Yes Yes Yes

Diana No Yes No No

Kelly Yes Yes Yes Yes
aAll names are pseudonyms
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13.4.1 Future Teachers’ Performance on Task 1

In response to Task 1, half of the future teachers (3 out of 6) did not use the
quantitative definition of multiplication consistently (see Table 13.1). Although
Alice used the definition of multiplication, her use was not appropriate and con-
sistent across the interview because her referent units lacked the precision with
which units were discussed in class. Instead of using the word “number” and an
explicit referent unit for each term in her equation, she used the phrase “how many”
and left out referent units for X and for the product (Fig. 13.5a). To express her
thinking in this task, she drew the strip diagram in Fig. 13.5b, but she interpreted
the 1 group as 1 part of the whole strip instead of 6 parts of the whole strip.

Alice: So, 1/6 is our number of groups, and X would be the size of each
group. So, we’re pretty much… X would be like contained in the 1/6
when you… if that makes sense. So, just multiplying 1/6 � X, which is
how many we have in 1 group, would equal how many we get in all
of the groups of 1/6 of X size.

Interviewer: Could you give a context or a drawing to sort of also communicate
that thinking?

Alice: I guess I would start with this, and we could cut it into 6 parts. So,
one of them would be 1/6, and that’ll be the size of the group (draws
Fig. 13.5b).

Interviewer: Maybe I didn’t hear it. This whole strip from here to here (points to
each end of the strip in Fig. 13.5b), what does this represent?

Alice: It’s just 6. I guess 6 parts. So, this is like one whole, 6 outta 6 (writes 6/
6), so one of these would be 1/6, and that’s what this is, too (writes 1/6
in the 1-part strip in Fig. 13.5b). And so, this is 1 group (points to the
1-part strip). And there’s like… I guess X is… there’s like X is a
number of some sort. So, say it’s like 2, there’s 2 parts in each of these
little things (writes 2 in five parts of the 6-part strip in Fig. 13.5b). It’s
hard to like come up with a drawing. So, we start with our how many
groups, and then the size of the group would be like 2. So, we have…
would have 1/6 � 2 equals how many would be in all of the groups, so
how many would be in this (points to the 1-part strip in Fig. 13.5b).

Fig. 13.5 a Alice’s equation in Task 1. b Alice’s representation of her equation

232 İ. B. Ölmez



The data demonstrate that Alice labeled some parts of her strip diagram with 1/6
and others with 2 as a specific value for X. After completing her strip diagram
drawing, she also acknowledged that for her to explain the definition of the
expression with a drawing was challenging (even though drawings were used
regularly in the content courses). Alice’s association of 2 with each part rather than
the entire strip indicated her incorrect coordination between units and groups.

Moreover, Jeff and Diana did not interpret 1/6 � X using the definition of mul-
tiplication in an appropriate way because they could not interpret 1/6 as the number
of groups. Jeff switched the order of the given multiplication, turning 1/6 from the
multiplier position into the multiplicand, as indicated in the strip diagram he drew
(Fig. 13.6a, b):

Jeff: So right here (points to Fig. 13.6a), I drew a strip or a bar, and
divided it into 6 equal parts, which gave me 1/6. And so, I see 1/6
times X as 1/6 times a certain amount of groups of 1/6. So, if it was X
equals 2, I would have 2 groups of 1/6. Or if X was 6, I would have 6
groups of 1/6, which would give us the 1.

Interviewer: If you had, say, 7 groups?
Jeff: I would just do the 1/6 seven times, and see that it was 7/6 (draws

Fig. 13.6b).
Interviewer: Where do you see the X in your diagram?
Jeff: Each part. So, 1, 2, 3, 4, 5, 6, 7 (counts each circle in Fig. 13.6b).
Interviewer: Each one of those circles is an X? Am I understanding you correctly?
Jeff: Okay. So, I see the X as, I shouldn’t have drawn all the circles (points

to Fig. 13.6b), I see the X as the whole 7 pieces of 1/6, because if
we’re saying X equals 7, so we have 7 groups of 1/6.

Interviewer: I think you said it, but can you tell me again… when you look at this
expression (points to Task 1), 1/6 � X, and can you just interpret it in
terms of the meaning of multiplication from class?

Jeff: Okay. So, I see it as 1/6 times a certain number of groups of 1/6. So
here (points to Fig. 13.6b) X is 7, so it is 7 groups of 1/6.

When Jeff discussed “do[ing] 1/6 seven times,” he used 7 as the number of
groups or multiplier, not 1/6, indicating his switch of the order of the multiplier and

Fig. 13.6 a Jeff’s view of the whole strip. b Jeff switches the order of 1/6 � X
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multiplicand. Although Jeff could not use the definition of multiplication consis-
tently as discussed above, his consideration of 7/6 as “7 groups of 1/6” indicated his
use of the definition for fractions. In contrast to Jeff and Diana’s misinterpretation of
1/6 � X, they used the definition of multiplication as “4 groups with X in each group”
when they were asked to interpret 4 � X. When the interviewer asked Jeff whether
his interpretations of 4 � X and 1/6 � X are same or not, Jeff seemed to be aware of
his different interpretations as follows:

Interviewer: Do you think that you’re using one interpretation of multiplication
for the original 1/6 � X problem and the new problem 4 � X, or do you
think that you’re using sort of different ways of thinking about
multiplication for each example?

Jeff: This one (points to 4 � X), I’m using the definition of multiplication
that I’m most common to in the class. This one (points to 1/6 � X), I
didn’t use that.

Interviewer: Why?
Jeff: I think just initially I switched the order, because it was hard for me

to see 1/6 as a number of groups… if that makes sense.

Jeff acknowledged that for him it was difficult to imagine 1/6 as the number of
groups in his drawing. That it is difficult for him to think of 1/6 as the number of
groups indicated his struggle of coordinating units and groups.

Of the future teachers who were able to use the quantitative definition of mul-
tiplication consistently (3 out of 6), all three maintained the distinct roles for the
multiplier and for the multiplicand (see Table 13.1). Although Linda initially
seemed to interpret 1/6 � X in a way different from class instruction by saying “1/6 is
the size of the group and X is the whole in the group,” later in the interview she
clarified that she meant “number of groups” when she said “size of the group.”

Interviewer: How do you interpret the meaning of 1/6 � X?
Linda: When I see 1/6 � X, I think of X being the whole and then dividing

that into 6 parts, and then taking one of those parts. And so, that
would be 1/6 � X where this is X (points to the whole drawing in
Fig. 13.7).

Interviewer: How would you use the meaning of multiplication that you’ve been
discussing in class to interpret that statement?

Linda: So, 1/6 would be like the size of the group and X would be like a…
the whole in the group. So, the whole would be X or 6/6, and then
we’re taking 1/6 of that whole.

Fig. 13.7 Linda’s
interpretation of 1/6
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The data make clear that she considered the unit for 1/6 (i.e., multiplier) as X and
she saw that X (i.e., multiplicand) as 1 whole group, indicating her coordination of
units and groups.

Furthermore, Claire used the definition of multiplication in an explicit and
consistent way by coordinating units and groups appropriately in the expression of
1/6 � X (Fig. 13.8).

Claire: The way I interpret it (points to 1/6 � X) is 1/6 � X is 1/6 groups of
X. Should I show you an example of what… like with a drawing?

Interviewer: That was my next question.
Claire: All right. Let’s say this drawing (draws Fig. 13.8) is X, we see that

there’s 1, 2, 3, 4, 5, 6 groups that make the whole. So, this is our
X (points to the whole drawing in Fig. 13.8). I’ll use a different color.
And, this (circles one part of the whole drawing with six parts in
Fig. 13.8) is one of 6 parts of X or 1/6 of X. So, this (points to the
circled part in Fig. 13.8) is 1/6 of group of the whole X.

Similarly, Kelly identified the referent units for each term, coordinated units and
groups in her use of the definition of multiplication for 1/6 � X, and also used the
definition for fractions (Fig. 13.9).

Kelly: We have 1/6th of a group. And in that group, it’s size X. And then
the product will be the total size of 1/6th of a group.

Interviewer: Could you give like a context and or drawing to explain that?
Kelly: Okay (draws Fig. 13.9). One group, the size of one group is X, so

there is X in one group but we want to know how much or how many
of X is in one 1/6th of a group. So, if I take this one group, divide it
into 6, each part is one part of 6 total parts, each part of 1/6th in size.
And if I just want to look at this 1/6th part of my one group, there
will be 1/6th of X inside it.

Fig. 13.8 Claire’s
interpretation of 1/6
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The data indicate that Kelly and Claire could coordinate the whole strip as the
multiplicand and the unit amount for the fraction 1/6 as multiplier. Their identifi-
cation of the units in the expression 1/6 � X and their association of the entire strip
as 1 group in their drawings indicated that they could coordinate units and groups
appropriately, at least for this task.

13.4.2 Future Teachers’ Performance on Task 2

In response to Task 2, which asks future teachers to use a strip diagram to explain
the relationship between the amounts of gold and copper that are in 7–5 ratio, Alice,
Jeff, and Diana did not generate an appropriate equation involving G and C (see
Table 13.1). In several cases, these future teachers’ interpretation of the equal sign
was inconsistent with normative usage, which in this task would equate the number
of ounces of gold and of copper. From the data, it is not clear if the future teachers
might have employed more normative usage of the equal sign in another situation
or if their interpretation of the equal sign caused problems when they tried to apply
the definition of multiplication in this task.

Alice did not form an equation that related the ounces of gold and copper
appropriately, despite writing separate equations with whole number multipliers 5 �
C/5 = ? for copper and 7 � G/7 = ? for gold. When she was reminded to produce an
equation that involves the ounces of gold and copper, she wrote 5 C = 7 G as
follows:

Fig. 13.9 Kelly’s
interpretation of the whole
strip
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Fig. 13.10 a Alice’s equation in Task 2. b Alice’s interpretation of the strip diagram

Interviewer: Could you produce an equation that had G and C in it?
Alice: My equation, I guess, would be 5 parts copper equals 7 parts gold

(writes the equation in Fig. 13.10a).
Interviewer: How are you thinking about that?
Alice: I guess for C would be how many parts are in each of these? So, if

like 5… if our size of the parts is 1, we would still be within that 5 to
7 ratio. So not necessarily that these are equal, but they’re
proportionate.

Interviewer: Yeah, I was going to ask you how you were thinking about the equal
sign. So, you’re saying it’s indicating that they’re proportionate.

Alice: Yes, because they aren’t equal. Because 5 and 7 aren’t equal, but …
they have this relationship of 5 to 7. Then, I go back to think that
C ounces and G ounces aren’t going to be the same. But when I think
about … each of these as like a G and each of these as C, I was like
… thinking about those as size of the parts then your proportional
relationship would be the same (puts G and C into each part in
Fig. 13.10b). But I don’t know how to think of it as like how G and
C are related.

Alice appeared to understand that G and C are in a 7 to 5 ratio, but she used the
equal sign to indicate certain amounts of gold and copper were associated with one
another, not to indicate that numbers of ounces of gold and copper would be the
same. In addition, she did not use the definition of multiplication to generate an
appropriate equation.

Moreover, Jeff did not succeed in generating an appropriate equation either. He
interpreted G as 7 oz and C as 5 oz in the given task, and he developed an incorrect
equation as 7 + 5 = 12 oz (Fig. 13.11).

Jeff: I’m thinking about setting up another equation (other than his current
Eq. 7 + 5 = 12 oz), but I’m having a hard time figuring out the parts
of the equation.

Interviewer: How are you interpreting the diagram that we provided (refers to the
given strip diagram in Task 2)? Walk me through kind of how you’re
interpreting it.

Jeff: I’m seeing the gold (points to G in the given diagram) as 7 oz. And
then this C ounces as 5.
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Although Jeff did not feel comfortable with his Eq. 7 + 5 = 12 oz and searched
for another equation, he acknowledged that he could not figure out the specific
terms that would form that equation. Jeff’s interpretation of G ounces and C ounces
as numeric values instead of variables (i.e., conflation of ounces and parts) indicated
that he was not coordinating units and groups appropriately. In addition, he did not
use the definition of multiplication to generate an appropriate equation that relate
ounces of gold and copper.

Diana produced incorrect equations as C = 5 � 1/7 and G = 7 � 1/5 with whole
number multipliers, and she interpreted the equations in terms of the definition for
fractions (i.e., “5 parts each of size 1/7 of G ounces” and “7 parts each of size 1/5 of
C ounces”), even though she was consistently reminded to use the definition of
multiplication.

Diana: Okay. So, I guess the relationship would be for every 7 oz of gold
there are 5 oz of copper or for every 7, I guess, G ounces there are 5
C ounces. Or, you could say the G ounces is 7 parts, each a size 1/5
of the C ounces or vice versa would be C ounces is equal to 5 parts,
each of size 1/7 of the G ounces.

Interviewer: So, what would you write for that? For either one of those
possibilities?

Diana: So, I guess G would be equal to 7 parts (I’d) say times 1/5 of C
ounces and then the other one would be C is equal to 5 parts each of
size 1/7 of G ounces (writes C = 5 � 1/7 and G = 7 � 1/5 in
Fig. 13.12).

Interviewer: Why are you writing the C ounces and the G ounces sort of down
below (points to her equations in Fig. 13.12)?

Diana: I guess just showing what 1/5 and 1/7 represents. So, like you see
like the number problem, but you see what each number means
below it.

Fig. 13.11 Jeff’s equation in
Task 2

Fig. 13.12 Diana’s equations
in Task 2
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Diana’s only use of the definition for fractions and her lack of reliance on use of the
definition of multiplication did not lead to generation of an appropriate equation in
this task. Moreover, her notations of “C ounces” and “G ounces” underneath her
equationsC = 5 � 1/7 andG = 7 � 1/5 in Fig. 13.12 and her explanation for her use of
such notations above provided evidence that she might interpret the equal sign as
association between the ounces of gold and copper instead of equality of these ounces.

On the other hand, Linda, Claire, and Kelly, who demonstrated solid under-
standing of the definition of multiplication in Task 1, continued using this definition
and succeeded in generating a correct equation in Task 2 (see Table 13.1). They all
produced an equation with a fraction multiplier, such asC = 5/7 �G, by perceiving 5/
7 as “the number of groups” in their strip diagram drawings. Linda, immediately,
indicated the relationship between the ounces of gold and copper as “copper is 5/7 of
gold” and “gold is 7/5 of copper,” and she generated correctlyC = 5/7 �G as follows:

Linda: So, copper is 5/7 of gold or gold is 7/5 of copper (points to the given
strip diagram drawing in Task 2). Copper equals 5/7 � G where G is
the whole and 5/7 is the size of the group (writes C = 5/7 � G).

Interviewer: How do you interpret the equal sign? You wrote an equal sign right
there (refers to her equation C = 5/7 � G). When you read that, what
are you thinking?

Linda: Copper equals 5/7 of gold… The number of ounces copper has.
Yeah, copper has 5/7 the number of ounces as gold.

The data show that Linda interpreted the equal sign as having the same number
of ounces of gold and copper rather than an association between them. Her use of
the definition of multiplication as “5/7 is the size of the group” (i.e., “the number of
groups” for her) and “G is the whole” appeared to regulate her thinking in gen-
erating the appropriate equation.

Furthermore, Kelly generated two correct equations of C = 5 � G/7 and C = 5/7 �
G and presented them in one equation as 5 � G/7 = 5/7 � G. She used the definition
of multiplication in both of her equations as “5 groups” and “G/7 in each group” for
C = 5 � G/7, and “5/7 groups” and “G in one group” for C = 5/7 � G. Her use of the
definition of multiplication seemed to help her develop appropriate equations.

Kelly: 5 groups, G/7 in each group (refers to the left hand side of her
equation in Fig. 13.13), so it’s like 5/7ths G of like, in terms of the
gold is in copper.

Interviewer: The left side and the right side are a little different, the way you’ve
written them. (refers to her equation in Fig. 13.13)

Kelly: I just combined them (refers to both sides of her equation in
Fig. 13.13).

Interviewer: Could you explain the meaning of multiplication in each of those
cases?

Kelly: There are 5 groups and each of the groups has G/7 in them (points to
the left hand side in Fig. 13.13) … For this 5/7th G (points to the
right hand side in Fig. 13.13), 5/7ths is my group because 7/7th
would be one group of gold. And the copper is 5/7th group, so we’re
looking at 5/7th of G, which is 7/7th or a whole.
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Finally, Claire kept the language used in definitions for multiplication and for
fractions distinct. She interpreted 5/7 � G = C from both definition of fractions (i.e.,
“5 parts each size 1/7 of the whole amount of gold”) and the definition of multi-
plication (i.e., “5/7 groups times the amount of ounces in 1 group is equal to the
amount of copper in 5/7 groups of gold”).

Interviewer: How would you explain the meaning of the equal sign (refers to her
Eq. 5/7 G = C in Fig. 13.14b)?

Claire: That means they’re equivalent or the same amount of ounces,
because the gold has like 7 parts versus the copper has 5 parts. But if
we take 5/7 of that gold, we’re going to have 5 of the 7 parts, which is
equivalent to the parts of copper (points to the strip diagram
accompanying Task 2). So, 5/7 of the amount of gold is equivalent or
the same amount of ounces as the total amount of copper we have.

Interviewer: Could you interpret the left hand side of this (points to her Eq. 5/7
G = C in Fig. 13.14b) for me using the meaning of multiplication?

Claire: I know two meanings, so… like I know… the fraction meaning, and
I also know the meaning of the multiplication. And you’re talking
about multiplication, right?

Interviewer: Tell me about both.
Claire: Well, with the fraction meaning 5/7 that means we have… the whole

unit is 7 parts and the amount of parts we have is 5 of that… those 7
parts or 5 of the whole unit. So it’s 5 parts each size 1/7. And with
the multiplication… So, 5/7 groups times the amount of gold that we
have is the amount of copper we have. So, it’s like 5/7 groups times
gold, which is the amount of ounces in 1 group or the amount of
gold, is equal to copper, which is total for the 5/7 groups of gold.

Claire exhibited solid performance based on an appropriate interpretation of the
equal sign, the definitions for multiplication and for fractions in addition to her
generation of single, correct equation. The given strip diagram appeared to support
her performance for perceiving the relationships between the ounces of gold and
copper.

Fig. 13.13 Kelly’s equation
in Task 2

Fig. 13.14 a Claire’s strip diagram in Task 2. b Claire’s equation in Task 2
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13.5 Conclusion and Discussion

The purpose of the present study was to examine how six future middle grades
mathematics teachers used quantitative definitions for multiplication and for frac-
tions when developing and explaining equations for proportional relationships. The
results revealed that future teachers’ use of explicit, quantitative definition of
multiplication in a consistent way co-occurred with their success when generating
and explaining equations that involve proportional relationships. In other words,
future teachers’ explicit use of the definition of multiplication facilitated their ability
to develop equations and to reason about proportional relationships. All three future
teachers (i.e., Linda, Claire, and Kelly), who demonstrated an explicit and con-
sistent use of the definition of multiplication, seemed to use this definition as an
organizing tool to regulate their reasoning process while working on the given
tasks. Their use of the definition as an organizing tool apparently enabled them to
coordinate units and groups appropriately, to keep distinct wording between the
definitions for multiplication and for fractions, and to generate and explain
appropriate equations for proportional relationships. In addition, their interpretation
of the equal sign was consistent with normative usage, which is to equate the
number of ounces of gold and of copper. Furthermore, when multipliers were
placed as fractions in the tasks, these future teachers were able to identify the
multiplier as the number of groups by viewing how many groups (or parts) of one
strip were in another strip in their drawings.

On the other hand, the remaining three future teachers (i.e., Alice, Jeff, and
Diana), who did not explicitly express the quantitative definition of multiplication,
had difficulties in generating equations and in reasoning about proportional rela-
tionships. These future teachers experienced consistent difficulties distinguishing
the different roles played by the multiplier and multiplicand, and coordinating units
and groups appropriately. Specifically, they had trouble identifying the multiplier as
the number of groups when multipliers were fractions, and this even caused some of
them to switch the order of multiplier and multiplicand so that the multipliers were
whole numbers. Moreover, the placement of fractions as multipliers in the tasks
caused these teachers to misuse phrasing from the definition for fractions when
applying the definition of multiplication. Thus, lack of the explicit use of the
definition of multiplication in a consistent way apparently contributed to these
future teachers’ blended wording from both definitions rather than keeping them
distinct, and to struggle with reasoning about proportional relationships. Moreover,
these future teachers’ interpretations of the equal sign were inconsistent with nor-
mative usage, at least for Task 2.

Given that developing algebraic equations is difficult and this study took place
before instruction on equations, it is important that three of the six future teachers
generated and explained appropriate equations that involve a proportional rela-
tionship by using the definition of multiplication. Therefore, the results of this study
suggest that explicit use of the quantitative definition of multiplication is helpful
organizing tool for future teachers in terms of developing equations and reasoning
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about proportional relationships. Furthermore, past research has documented
teachers’ difficulties with particular topics such as fraction multiplication and
multiplication with an unknown factor (e.g., Armstrong & Bezuk, 1995; Izsák,
2008). Regarding that past research has not examined the extent to which teachers’
facilities with multiplication and fractions can support and constrain their genera-
tion of equations and reasoning about proportional relationships, the present study
concludes that using the quantitative definition of multiplication to construct viable
arguments related to proportional relationships and equations is accessible to future
middle grades teachers. Robust arguments about proportional relationships and
equations depend in turn on the ability to keep distinct the definitions for multi-
plication and for fractions. In addition to stating the quantitative definition of
multiplication verbally, future teachers also need to visualize how many parts of
one strip are nested in another strip by viewing the relationships between the
multiplier and multiplicand in the strip diagrams.

As the main implication of this study, future teachers in middle grades programs
should be given opportunities to develop capacities for reasoning with quantitative
definitions for multiplication and for fractions across problem situations. Future
studies should continue, with larger samples and tasks, to evaluate the effects of
using explicit, quantitative definitions for multiplication and for fractions on both
teachers and students’ generation of equations and their reasoning about propor-
tional relationships. Additional research is also needed to compare the effects of
using these definitions for future middle grades mathematics teachers in developing
and explaining algebraic equations before and after class instruction.
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Chapter 14
Marking Mathematics Exams. A Tool
for Secondary Teacher Education

Alberto Arnal-Bailera, Eva Cid, José M. Muñoz-Escolano
and Antonio M. Oller-Marcén

Abstract The marking of exams is a usual tool in the teaching and learning pro-
cesses in mathematics. Nevertheless, there is (at least in Spain) a lack of systematic
education for prospective secondary teachers on this topic. In this study, we analyze
how 58 prospective secondary school teachers mark answers to mathematics written
exams. In particular, we observe differences between graduates in mathematics and
graduates in engineering according to their marking practices. Furthermore, we
design and implement a first cycle of Action Research involving a sequence of
activities focused on different aspects of the marking process. This sequence of
activities helps prospective teachers to realize that marking exams is a complex
activity that requires reflection and specific education.

Keywords Prospective secondary teachers � Marking practices
Assessment � Mathematical test

14.1 Introduction

In the learning and teaching events, assessment plays a fundamental role because it
is the only way to know if the students have learned what they have been taught and
if they are prepared for the society requirements (Rico, 2006). Even if there are
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some other instruments to assess students’ learning, written tests or examinations
are still widely used by secondary school mathematics teachers (McMillan, Myran,
& Workman, 2002; Senk, Beckmann, & Thompson, 1997). It is not usual to include
the correction of mathematics exams in the teacher education process, although this
task is carried out by nearly all of the mathematics teachers. Thus, prospective
teachers are educated through informal conversations, debates with other students
or practicing teachers, reading about other teachers’ practices or reflecting on their
own experience (Sowder, 2007). As a consequence of this lack of systematic
education, unexpected and undesirable phenomena arise when different correctors
mark the same sets of exams involving constructed-response tasks (Gairín-Sallán,
Muñoz-Escolano, & Oller-Marcén, 2012, 2013).

Hence, the following research questions arise:

• How do prospective secondary mathematics teachers mark written exams?
• Is it possible to design and implement a sequence of activities that promotes

reflection on marking practices?

14.2 Theoretical Framework

Grading or marking practices of students’ mathematical procedures are part of
evaluation and assessment practices. Evaluation and assessment in mathematics
education are studied from many different points of view (Romberg, 1992). Even if
there are some other instruments to assess the students’ learning, written tests or
exams are still widely used by secondary school and university mathematics
teachers (McMillan et al., 2002; Rochera, Remensal, & Barberá, 2002).

There are studies about different aspects of how teachers mark written exercises
in mathematics (Hungwe & Nyikahadzoi, 2002). Some researchers study different
factors involved in marking mathematics exams. These factors are related to the
knowledge, conceptions and beliefs about mathematics of the correctors and to the
tasks and the specific answers of the students. Hence, up to six factors that influence
in the corrections are presented in the research of Wang and Cai (2006) and Meier,
Rich, and Cady (2006). These are the teaching experience of the corrector, the
educational level where this experience has been gained, the mathematical
knowledge of the corrector, his beliefs about teaching and learning mathematics,
the nature of the task, and the answers of the students (arising bigger differences
when mathematical errors are shown).

In fact, Morgan, Tsatsaroni, and Lerman (2002) consider different positions
adopted by teachers when marking exams. These positions are based on the dif-
ferent resources that teachers bring to bear when they read students’ work. Morgan
and Watson (2002) identify, among others, the following resources: teachers’
personal knowledge of mathematics, teachers’ beliefs about the nature of mathe-
matics, teachers’ expectations about how mathematical knowledge can be com-
municated, teachers’ experience and expectations of students and classrooms, and

246 A. Arnal-Bailera et al.



teachers’ cultural backgrounds. Note that these resources mostly involve personal,
social, and cultural features of the teachers. This points out the interpretative nature
of the assessment. In this regard, Sakonidis and Klothou (2007, p. 153) state that
“teachers proceed to assessments subjectively” while observing that teachers
mainly rely on unofficial personally constructed discourse when assessing written
works in mathematics.

On the other hand, recent research on mathematics teacher education has shown
that it is very important that prospective teachers acquire the skills of identifying
students’ strategies and procedures, interpreting their understanding and deciding
how to respond accordingly to the students’ understanding (Sherin, Jacobs, &
Philipp, 2010). This will help prospective teachers to develop their competence as
future mathematics teachers (professional noticing). There exist several teaching
proposals aimed to promote professional noticing among prospective secondary
school teachers. For instance, Sánchez-Matamoros, Fernández, and Llinares (2015)
design and implement a sequence (focused on the concept of derivative) in which
prospective teachers give interpretations of written solutions to problems involving
the derivative concept before and after participating in a teacher education module.

Regarding the mathematical knowledge for teaching (MKT), Shulman (1986)
distinguished between content knowledge, pedagogical content knowledge and
curricula knowledge. Later Ball, Thames, and Phelps (2008) refined Shulman’s
theory identifying the six categories shown in Fig. 14.1.

Fernández, Callejo, and Márquez (2014) in a context of prospective primary
school teachers education conducted an activity involving grading answers of
students and point out the formative interest of these kind of activities.
Nevertheless, there are not many works which study the formative use of grading

Fig. 14.1 Ball, Thames, and Phelps (2008)
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and marking answers of secondary students for prospective teachers. In the MKT
frame, Morris, Hiebert, and Spietzer (2009) developed an intervention with pre-
service teachers involving tasks such as anticipating an ideal student response,
evaluating correct and incorrect answers and analyzing a classroom session. From
our point of view, most of these tasks play an important role in order to educate
prospective teachers to reflectively mark exams. Specifically, the aforementioned
works mainly focus on specialized content knowledge. Nevertheless, the marking
of mathematics exams implies certain knowledge of content and curriculum as well
as of horizon content knowledge. For instance, the relevance of errors is related to
the type (arithmetic, algebraic, etc.) and hierarchy (main, auxiliary, etc.) of the task
where they appear (Gairín-Sallán et al., 2012, 2013). Moreover, the hierarchy of a
task heavily depends on the main learning objective that is being evaluated in a
particular exercise.

The awareness of the subjectivity underlying the practices of marking in
mathematics as well as the interpretation and appraisement of the students’ errors
constitute key knowledge for the future mathematics teachers. They will bring into
play this knowledge when they establish marking criteria or rubrics in the process
of marking actual student’s productions.

14.3 Objectives

The main objectives of our study are related to the research questions stated in the
introduction. In particular, Objective 1 tries to answer the first question while
Objective 2 gives a first step in the answer of the second question:

• Objective 1: To analyze how prospective secondary school teachers mark
answers to mathematics written examinations.

• Objective 2: To design and implement a sequence of activities focused on
different aspects of the marking of mathematics examinations.

The first objective can be specified in the following way:

• Objective 1.1: To describe how prospective secondary school teachers mark
correct answers that use different solving methods, analyzing the influence of
the solving method on their marks.

• Objective 1.2: To describe how prospective secondary school teachers mark
answers containing different types of errors in different types of tasks, analyzing
the influence of errors and tasks on their marks.

• Objective 1.3: To analyze the influence of the prior qualifications of the
prospective secondary school teachers on their marks.

The second objective involves the design and implementation of a sequence of
activities with prospective secondary school teachers. The different skills that we
want our prospective teachers to acquire are:
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• Skill 2.1. To notice how different methods can be used to solve the same task in
secondary school mathematics and to anticipate them in order to plan their
marking.

• Skill 2.2. To identify errors in the students’ answers, interpreting and assessing
them with regard to the learning goals of the task and to the part of the task
where these errors appear.

• Skill 2.3. To reflect on the role that the elaboration and application of marking
schemes has on their future profession.

14.4 Method

To achieve these objectives, we carried out our work in two stages. The first stage
corresponds to Objective 1 and it is of exploratory and descriptive nature. We
designed a questionnaire where prospective teachers were asked to mark (from 0 to
10 points) ten different answers of secondary school students to the same problem
about the computation of critical points of a function and to provide reasons for
their marks. This type of problem, involving rational functions, is very common in
the Spanish university entrance exams (Nortes & Nortes, 2010; Zamora-Pérez,
2014). Hence, the given function was f(x) = x2/(4 − x).

In order to design the different incorrect answers of the questionnaire, some of
the authors performed a detailed analysis of around 400 Spanish university entrance
exams (Gairín-Sallán et al., 2012, 2013), where they identified the most common
errors made by the students on this type of tasks finding them consistent with
previous results (Nortes & Nortes, 2010). In particular, they identified errors
regarding algebraic manipulation, applying differentiation rules or showing the lack
of proper knowledge of a method. On the other hand, the correct answers involved
different methods of resolution, more or less standard according to their appearance
in Spanish textbooks.

We show in Table 14.1 a description of the 10 answers with information about
the correctness of the numerical result and about the type of error present in each of
them, if any.

The sample for the first stage was formed by the 58 prospective teachers (34
women and 24 men) enrolled in the Master’s degree on the teaching of secondary
school mathematics at the university of Zaragoza during the academic years 2012–
13, 2013–14, 2014–15 and 2015–16. Therefore, it was a convenience sampling
(Flick, 2009), and it was stratified according to the prior education of its members
(29 graduates in Mathematics, 23 graduates in Engineering and 6 graduates in
Sciences). Some of them (36) had previous teaching experience in non-formal
contexts (mainly in individual or group private classes). The mean age was
30 years. There was a high variability (7.6) due to the fact that most of them were
recent graduates but we find a relevant group of people (16 prospective teachers)
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aged over 35. Most of these elder people have been working in different sectors but
need this master’s degree in order to improve their professional status.

The collected data during the first stage were analyzed using descriptive and
inferential statistic tools with the help of the SPSS and R packages.

The second stage corresponds to Objective 2. In particular, after the first stage,
we design a sequence of six activities with prospective secondary school teachers
corresponding to six sessions of about one and a half hour and related to the
marking of mathematics exams. Throughout the sequence, different aspects of the
theoretical constructs previously described are addressed. Now, we briefly describe
each activity.

• Activity 1: Filling in the initial questionnaire.
• Activity 2: Discussing on the variability of marks. Resources Positions.
• Activity 3: Analyzing textbooks and curricula.
• Activity 4: Working with actual wrong answers.
• Activity 5: Revisiting the results of the questionnaire.
• Activity 6: Elaborating marking criteria.

Activity 1 is an introductory activity and its main goal is to engage the
prospective teachers in an actual in-service task. Moreover, the obtained data are
extensively used and revisited in many of the forthcoming activities. Activities 2, 5
and 6 are designed with a view to showing the different positions adopted and
resources used by correctors. This also makes explicit the interpretative nature of
the assessment. Professional noticing is partially addressed on Activities 2, 4 and 6.
In particular, prospective teachers have to identify different students’ strategies and
procedures (when dealing with correct answers) and to interpret their understanding
(when dealing with incorrect answers). Finally, Activities 3 and 6 cover some
aspects of the MKT model such as knowledge of content and curriculum (in
Activity 3) and specialized content knowledge (in Activity 6). Throughout the
sequence, prospective teachers work in mixed groups of three people (mathe-
maticians and engineers) and whole class discussion takes place at the end of each
activity.

Table 14.1 Main details of
the 10 answers

Answer Numerical result Error

A1 Incorrect On algebraic manipulations

A2 Incorrect On differentiation techniques

A3 None Incomplete method

A4 Correct None

A5 Correct None

A6 Correct None

A7 Incorrect Incorrect method

A8 Incorrect On differentiation techniques

A9 Correct On differentiation techniques

A10 Incorrect On algebraic manipulations
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The second stage was carried out only during the academic years 2014–15 and
2015–16 with 18 and 14 prospective teachers, respectively. It took place in a 3
ECTS credits1 course of the Master’s Degree (Assessment, innovation and edu-
cational research in mathematics) which was delivered during the second term of
the academic year. This course deals with the interplay between teaching practice,
innovation, research, etc., it has a mainly practical nature and partially underpins the
Master’s Thesis. These prospective teachers have had very little experience with
actual students at the moment of our experimentation. In the first term the
prospective teachers receive pedagogical and psychological courses but just a few
lectures on mathematics education while the most relevant internship period at the
high school takes place at the end of the second term.

The collected data during the second stage were analyzed using content analysis
techniques (Krippendorf, 2013). The main source of data was the students’ written
productions, obtained during the implementation of the sequence. Observational
techniques were also applied by the researchers conducting the sequence (Postic &
De Ketele, 1988). While one of them acted as a teacher, the other played the role of
external observer. At the end of each session, the teacher wrote down a daily log
which was later compared with the external observer notes in order to validate the
data and the actual implementation of the course.

The methodological framework used is an action-research design (Zeichner,
2001), which reflects about educational practices and pursues the improvement of
the quality of the educational processes (McNiff, 2013). In particular, we carried out
a classroom action research with a practical purpose (Kemmis, McTaggart, &
Nixon, 2014). We followed the classical approach consisting of a sequence of four
phases (planning, action, observation and reflection) which, eventually, might be
repeated cyclically (Lewin, 1946). Stage one is partly used to identify the problem.
During stage two we conducted a first cycle of an action-research project. The
planning phase corresponds to the design of the previously described activities. The
implementation of the sequence, that also included the data collection, corresponds
to the action phase. Finally, the analysis and discussion of the results correspond to
the observation and reflection phases.

14.5 Results

14.5.1 Results for the First Stage

In Table 14.2, we present the main descriptive statistics arising from the collected
data.

1ECTS stands for European Credit Transfer and Accumulation System. 3 ECTS credits are usually
equivalent to 75 h of total student workload.
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We observe a high influence of the solving method over the assigned marks in
the case of correct answers (A4, A5 and A6). In particular, the means are signifi-
cantly different (at 95%) being higher when the method is more standard
(Arnal-Bailera, Muñoz-Escolano, & Oller-Marcén, 2016). When the answers only
contain algebraic or differentiation errors (A1, A2, A8, A9 and A10), some other
factors seemed to be relevant. For instance, when the final numerical result coin-
cided with the correct one (A9) or the student explained the steps followed (A8), the
mark was significantly higher. On the other hand, if the answer was poorly pre-
sented (A2), marks were lower. Finally, errors showing the lack of knowledge of a
method (A3 and A7) received the lowest marks.

We also observe a high global variability with standard deviation greater than 1
in all but one of the answers of the questionnaire and range greater than 6 in all but
two (A3 and A6). This variability is lower when the answer is correct using a very
standard method (A6) or it shows the lack of knowledge of a method (A3 and A7).
On the other hand, variability increases in the presence of errors or non-standard
methods.

Regarding the three strata of the sample, we observed clear differences, even
though some of them are not statistically significant due to the small size of the
sample. For instance, mathematicians showed a higher dispersion in their marks
than engineers or scientists. The cases in which the differences are statistically
significant (at 90%) seem to point out that, compared to mathematicians, engineers
give lower marks and emphasize the right numerical solution.

If we compare (Table 14.3) the group of mathematicians and the group of
engineers (the main strata of the sample), we notice that engineers seem to give
higher or equal (statistically speaking) marks to those answers whose numerical
result is correct (A4, A5 and A6), even if they contain mistakes (A9). Nevertheless,
in those answers having incorrect numerical result and containing algebraic (A1 and
A10) or differentiation errors (A2 and A8), engineers were stricter and gave lower
marks. In the remaining cases, the marks were similar.

Table 14.2 Descriptive statistics about the marks given to initial questionnaire

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Mean 3.99 3.22 1.35 8.78 8.29 9.66 2.78 5.77 6.50 4.04

S.D. 1.73 1.99 1.11 1.75 2.05 0.75 1.77 1.87 1.68 1.97

Minimum 0.25 0.00 0.00 3.50 2.00 6.00 0.00 1.00 3.00 0.00

Maximum 8.00 8.00 4.00 10.0 10.0 10.0 7.00 9.00 10.0 9.00

Q1–Q3 2 2 1.38 1.88 3 0.5 2 2 2.19 2

Median 4 3 1 9.5 9 10 2.75 6 6.5 4

Table 14.3 Means of marks according to prior discipline

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Mathematicians 4.32 3.60 1.19 8.88 7.84 9.65 2.74 5.90 6.05 4.34

Engineers 3.43 2.68 1.67 8.97 9.05 9.66 2.73 5.55 7.23 3.73
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According to gender (Table 14.4), we observed that women gave lower or equal
(statistically speaking) marks to correct answers (A4, A5 and A6). In the answers
with errors, women gave higher marks, except to A3 and A9, but these differences
are not statistically significant, probably due to the small size of the sample. All of
these facts seem to point out that, compared to men; women tend to be more exigent
with correct answers and more indulgent with answers that contain errors.

With respect to the age of our prospective teachers, we found no statistical
correlation with the marks given to any of the answers. Nevertheless, if we consider
the prior (in non-formal education contexts) teaching experience we find that the
answers A5 and A9 have statistically significant slight negative correlations with
the given marks. It means that more experienced prospective teachers give lower
marks when the method is non-standard, even if the answer is correct (A5) and
when there is an error in the process, even if the numerical result is correct (A9).

14.5.2 Results for the Second Stage

After the analysis of the data obtained in the first stage and based on previous
related research studies by different authors, we designed and implemented a
sequence of activities that we now present:

• Activity 1: Filling in the initial questionnaire.
• Activity 2: Discussing on the variability of marks.
• Activity 3: Analyzing textbooks and curricula.
• Activity 4: Working with actual wrong answers.
• Activity 5: Revisiting the results of the questionnaire.
• Activity 6: Elaborating marking criteria.

Now, we present an account of the implementation of the sequence focusing on
its impact on the prospective teachers.

14.5.2.1 Filling in the Initial Questionnaire

In the first session, the prospective teachers filled in the questionnaire described in
the Method section. They were asked to mark ten different answers during a period
of 90 min. They were told to act as if they were practicing teachers marking

Table 14.4 Means of marks according to gender

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Women 4.24 3.44 1.23 8.49 7.83 9.43 2.87 6.02 6.40 4.38

Men 3.64 2.91 1.52 9.20 8.94 9.98 2.65 5.42 6.64 3.56
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University entrance exams. In addition, they were not allowed to use any kind of
support like textbooks, internet, etc.

The prospective teachers approached the activity with interest, as an actual
in-service activity. Some questions spontaneously arose about the existence of
common marking criteria in university entrance examinations or about the expected
solving methods. The questions were not answered by the researcher/teacher
because their answers were going to be subject of the forthcoming discussion.

14.5.2.2 Discussing on the Variability of Marks

The main goal of the second session was to show that marking exams, even in
mathematics, has an important subjective component. After a discussion about
‘acceptable’ variability, the researcher showed the results of the questionnaire to the
prospective teachers with the objective to point out interesting phenomena. These
phenomena were finally exemplified using actual instances of marked problems
taken from university entrance examinations.

The discussion about ‘acceptable’ variability started by asking the prospective
teachers about the different statistics that they know to measure variability and their
convenience in this context. Prospective teachers spontaneously mention (in order
of appearance) the standard deviation, the range, the number of different values (in
the case of categorical variables) and the interquartile range. In addition, some
inappropriate answers (mean, mode, etc.) appeared, showing a lack of statistical
knowledge. Throughout the process, the researcher made suggestions, pointed out
mistakes, and specified the meanings and uses of the different mentioned concepts.

Once the adequate statistics were chosen, the discussion continued and the
prospective teachers were asked what actual numerical values would be considered
as reasonable in this context and about their expected values in each of the med
exercises. The chosen statistics and their values considered reasonable were: the
standard deviation (smaller than 1.25), the range (smaller or equal than 4) and the
number of different grades2 (smaller or equal than 2). The actual values (see
Table 14.2) were, in general, much higher than those considered reasonable. Even
if the expected values varied among the prospective teachers, most of them were
smaller than those considered reasonable. Thus, our prospective teachers were, in
general, ‘optimistic’.

When they were faced with the actual results, prospective teachers were sur-
prised about the high variability of marks (see, for example, the production of
prospective teacher AG in Fig. 14.2).

They did not seem to expect the wide diversity of marking criteria. In the words
of prospective teacher PL: “… I deduce that each of us was expecting different
aspects from the resolution of the exercise: some wanted to see if the student knew

2The scores were grouped into grades in the following way, according to the usual Spanish grading
system: A = [9, 10]; B = [7, 9); C = [5, 7); D = [3, 5); E = [0, 3).
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how to derive, others if he knew what maxima and minima are, others wanted the
explanation of the procedure, etc.”.

Finally, this activity concluded with the analysis of the actual instances of
marked problems taken from University entrance examinations, exemplifying dif-
ferent phenomena. For instance, in Fig. 14.3, the solver received 0.05 points out of
1 in an answer that is essentially correct in spite of its evidently non-standard
notation.

This final discussion contributed to make even more evident the necessity of
educating prospective teachers in marking and the elaboration of clear marking
criteria. Moreover, once they become aware of this fact, they easily get involved in
the rest of activities.

14.5.2.3 Analyzing Textbooks and Curricula

The main goal of the third session was to make explicit the fact that the same
mathematical problem may have different correct solution methods. The prospec-
tive teachers analyze textbooks and the Spanish official curriculum to be aware of
the different correct solving methods for the task that appear on the initial ques-
tionnaire (A4, A5 and A6 answers).

In this session, the prospective teachers worked both individually and in groups
of three. The groups were formed by the researchers in order to have in the same

Fig. 14.2 Surprise of prospective teacher AG about variability of marks (“The obtained data are
completely unacceptable; it would be a disaster in the event of an actual exam.”)

Fig. 14.3 Strong penalty due only to non-standard notation in an actual university entrance
examination answer
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group at least one mathematician and one engineer. Moreover, in order to promote
discussion, we tried to have in each group prospective teachers whose marks to the
answers A4, A5 and A6 were clearly different.

The first set of tasks in this activity involved mathematical questions about the
computation of minima and maxima of a real function. A second set of tasks were
focused on the analysis of the official curricular documents and its transposition into
four textbooks. The last part of the activity sharpened the re-interpretation of
answers A4, A5 and A6. In light of this, our prospective teachers were asked to
mark again these three answers, both individually and as a group.

The first set of tasks asked about the description and application of different
methods to compute the relative extrema of a real function. Most of the prospective
teachers showed difficulties applying the method that involves the second deriva-
tive; they could not manage the case when the first and the second derivative are
simultaneously zero at the given point. Some of them were surprised by their lack
of knowledge in a content considered by them as a ‘basic’ part of a ‘very standard’
method.

The second set of tasks helped the prospective teachers to notice that there is not
a unique solving method in school mathematics. This idea was supported by the
Spanish curriculum, which does not mention a single method, and by the selected
textbooks, which present more than one. Once the analysis was performed,
prospective teachers EH and MS admitted that they had learned various solving
methods apart from the second derivative one, overcoming their initial lack of
knowledge. In Fig. 14.4, for instance, we show the original and revised marks of
prospective teacher EH and his explanations about the changes.

The last part of the activity consisted of two tasks about interpreting the correct
answers and the individual and collegiate re-marking of them. Most of the
prospective teachers moved from the simple identification of errors (or of the
absence of a correct method) to a deeper analysis and interpretation of the answers
from a wider point of view. Thus, prospective teachers who initially considered
answer A5 as an incorrect procedure in activity 1; found it mathematically correct
after carrying out this activity. In fact, contrary to his initial opinion, prospective
teacher AG pointed out that knowledge and comprehension showed by answer A5
is deeper than those in A4 and A6.

There is an almost unanimous agreement on marking every correct answer with
10 points. Many of the prospective teachers justify their previous marks either on a

Fig. 14.4 After the textbooks analysis, EH changes his marks to A4 and A5 and explains the
reasons of the low marks given in initial questionnaire: “Lack of knowledge of this method for my
part”
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lack of mathematical knowledge about other methods (Fig. 14.4) or on their
expectations about the use of a particular method involving the second derivative.
In this respect, prospective teacher BA points out that she was ‘mentally blinded’
by the second derivative method because this was the method she was expecting, ‘it
is correctly solved, even if he is not using the method I was waiting for’ said about
A5. The prospective teacher MS remarked an interesting fact: ‘I think the method
used by the corrector pushes upwards the marking if the student uses the same
method or downwards if he uses a different one’ (about A5).

Finally, it should be noted that a few prospective teachers pointed out that the
context where the marking practice takes place plays an important role and
somehow determines the way correctors give their marks. Thus, they considered
that, acting as university entrance examiners they would have awarded the highest
mark to the three answers, while acting as regular class teachers they would not
have. The reasons given are related to rewarding more sophisticated methods in
terms of the use of more ‘advanced’ concepts.

14.5.2.4 Working with Actual Wrong Answers

The researcher presented actual answers of secondary students to different problems
containing errors so that prospective teachers identified and found reasons for them.
The main goal of this activity was to emphasize the importance of the task where
the error appears with respect to the whole solving process.

In the first part of this activity, the researcher provided the prospective teachers
with actual answers of university entrance exams containing errors together with the
official marking criteria. For each of them, there is a group discussion to identify the
errors, to interpret and explain and to grade them according to the official criteria.
The prospective teachers remark that the official criteria are, at least, incomplete,
ambiguous and they do not provide enough information in order to mark the
answers adequately (see Fig. 14.5).

During the discussion, it is observed that this ambiguity implies that the use of
the given criteria would lead to different marks to the same answer. The comparison
of the different marks often leads to sometimes lively debates regarding aspects like
the distinction between ‘minor’ and ‘serious’ errors. Finally, prospective teachers

Fig. 14.5 Example of incomplete criterion: “Computation of one-sided limits is worth 0.75
points”
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realize that the criteria should address the question of the relevance of a particular
error in order to assess its importance with respect to the whole solving process.

After this discussion, the researcher presents some marking guidelines to design
marking criteria. These guidelines require a clear statement of the main assessment
goals of the problem. After that, the different tasks involved in a solution must be
classified according to their relevance in the whole process and to their proximity to
the assessment goals. Errors appearing in more relevant or closer to a main goal
tasks must receive higher penalties.

14.5.2.5 Revisiting the Results of the Questionnaire

The main goal of the fifth session is to apply the given marking guidelines to set
new and common marking criteria to the problem of finding the relative extrema of
a function presented in the questionnaire of Activity 1. In order to do so, we
promote the prospective teachers’ reflection on their own previous criteria, on
interpreting secondary school students’ answers where the errors were found and on
the nature and the relevance of the task where the error appears with respect to the
whole problem. The researcher found relative agreement about the application of
the marking criteria. The prospective teachers are able to set sub-objectives and
sub-tasks identifying different types of tasks according to their relevance in the
given problem.

During this session, a quantitative analysis of the qualifications given by the
prospective teachers is performed. Some of the results explained in the first part of
this chapter (see Table 14.2) are shown to the prospective teachers, in particular
those related to the answers containing errors. Moreover, a qualitative analysis of
their comments in the questionnaire of Activity 1 was presented to the prospective
teachers. For instance, regarding answers A2, A8 and A9 (which contain the same
type of error) the researcher presented a summary of different prospective teachers’
justifications of their marks. These justifications were categorized by the researcher
as follows: expected method, correctness of result, clearness of answer, use of
explanations and corrector’s misconceptions. This leads to a discussion in which
the prospective teachers reflect about the motivations behind their previously given
marks and they compare them with the ones they would give if they were asked to
do so again.

In Fig. 14.6, we can read a quite common example of the interpretation of a
secondary school student answer to A10. After the discussion carried in activity 5,
most prospective teachers refined their initial explanation to “He is wrong doing
operations with polynomials within the derivation of a quotient”.
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14.5.2.6 Elaborating Marking Criteria

The main goal of this last session was to design marking criteria, using the pre-
viously introduced marking guidelines, for a problem in a very different context and
to use them to mark the answers given to this problem by seven different secondary
school students.

In particular, this new problem (Fig. 14.7) involved the computation of areas at
8th grade (13–14 years old). Some of the seven answers were correct, while the
others contain different types of errors in different tasks.

In the first part of this activity, the prospective teachers were asked to solve the
problem in small groups (2 or 3 people) using two different methods. In fact, some
groups spontaneously provided up to four different solving methods.

After that, the prospective teachers had to design marking criteria for this
problem. They had to apply the guidelines that were discussed during Activity 3.
These criteria were very homogeneous among the different groups and followed

Fig. 14.6 Example of initial interpretation by prospective teacher BR: “He differentiates badly
and reasons badly, or I do not understand what he is doing”

Fig. 14.7 Problem “What is the area of the shaded region?”
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quite faithfully the guidelines. The main disagreements arose regarding the rele-
vance of the Pythagorean Theorem within the whole solving process and also
regarding the relevance of the use of justifications and explanations by the student.
For instance, some groups do not mention the Pythagorean Theorem when
designing their criteria; some consider it an auxiliary task and others consider it as
one of the main contents involved in the solution of the problem (Fig. 14.8).

Then, the researcher provided the prospective teachers with seven answers to
this problem in order to mark them using their own recently designed criteria. In
most of the answers, the variability was clearly lower than in Activity 1. Only two
out of seven answers presented slightly high variability. One of them presented a
correct general procedure but it used a flawed system of equations and contained
algebraic errors. The other (with a higher variability) was a conceptually incorrect
answer containing both correct and nonsense steps.

In Fig. 14.9, we present three different marks to the same answer to the problem
shown in Fig. 14.7. They range between 1.5 and 6 points out of 10. The answer
only presents two correct features: the computation of the hypotenuse of each
shaded triangle (30/5 = 6) and the statement of the formula for the area of a
triangle. The three presented examples identify these correct features; however the
rest of the answer is a non-sense sequence of computations that is rather hard to
interpret.

Fig. 14.8 Different views of the Pythagorean theorem, as an auxiliary task on the left (“Tarea
Auxiliar Específica”) and as a main content on the right (“T[area] P[rincipal]”)
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Fig. 14.9 Different marks to the same incorrect answer
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14.6 Discussion and Conclusion

Our results regarding objective 1 point out that the variability among the different
correctors is influenced by their familiarity with the solving method or by the
existence of errors in the answers. The prior qualifications of the correctors also
determined differences in the way they give their marks. If we assume a relation
between prior qualification and mathematical knowledge, then these observations
coincide with results from Wang and Cai (2006) and Meier et al. (2006).

Morgan and Watson (2002) pointed out that the personal knowledge of math-
ematics is an important resource for teachers when marking exams. In our case,
when marking correct answers, this is made clear in the fact that A5 receives
significantly lower marks than the other correct answers (A4 and A6) because this
method is not usually presented in the classroom, and this was the first time our
prospective teachers faced it. Nevertheless, in the case of engineers their beliefs
about the nature of mathematics, (mainly seen as a tool for solving problems)
reduces the gap between A5 and the other two because the result is correct
regardless the method.

When marking answers containing errors, we observed that the prospective
teachers do not seem to take into account the type and hierarchy of the task where
they appear (Gairín-Sallán et al., 2012, 2013). For instance, answers A2, A8, and
A9 contained errors on differentiation techniques and received very different marks.
Some other factors related to the expectations about the communication of math-
ematical knowledge (Morgan & Watson, 2002) like the explanations given by the
solver or the clearness of the answer, seem to be relevant.

Our results show that more experienced prospective teachers give lower marks
when the method is non-standard, even if the answer is correct (A5) and when there
is an error in the process, even if the numerical result is correct (A9). In this respect,
experienced prospective teachers behave very much like practicing secondary
school teachers (Arnal-Bailera et al., 2016). An interesting difference between
prospective teachers and practicing teachers arises in A4. Prospective teachers
usually give lower marks than practicing teachers, possibly because they are not
familiar with the method used in A4, which although is often showed in textbooks,
is not the most commonly learnt and used by the students.

Regarding objective 2, we have designed and successfully implemented a
sequence of activities regarding the marking of written exams that is part of a first
cycle of action-research. For the moment, this first cycle seems to be useful pro-
viding prospective teachers with resources other than unofficial personal discourses
(Sakonidis & Klothou, 2007) and developing the skills mentioned in the
‘Objectives’ section, as we have seen throughout this chapter.

As the prospective teachers have progressed through the activities, they have
become more skilled in understanding the interpretative nature of the assessment, in
identifying students’ strategies and procedures or in establishing the mathematical
sub-concepts of learning goals.
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When the prospective teachers face the fact that different correctors assign dif-
ferent marks to the same answers and when they are asked to justify their choices,
they become aware of the interpretative nature of the assessment (Morgan &
Watson, 2002). During our sequence, this mainly took place in Activities 2, 5, and
6. For instance, in Activity 6, the corrections to the answer that still contained a
high variability (recall Fig. 14.9) heavily rely on the interpretation given by the
corrector to the student’s steps. Thus, the different positions adopted by teachers
(Morgan et al., 2002) arise explaining the observed variability.

Identifying students’ strategies and procedures is mainly promoted during our
sequence in Activities 2, 4, and 6. For instance, in Activity 2, the prospective
teachers observed the treatment given by actual correctors to different correct but
unexpected answers in the context of university entrance examination. On the other
hand, in Activity 4, prospective teachers faced different incorrect answers, and they
had to identify and explain the errors in order to grade them according to different
criteria. This skill contributes to the development of some aspects of professional
noticing as pointed out by (Sherin et al., 2010). In particular, our prospective
teachers noticed that errors must not only be identified but also interpreted in the
process of marking exams according to different factors.

The implemented sequence develops several domains of the MKT model (Ball
et al., 2008). The main are knowledge of content and students, specialized content
knowledge, and knowledge of content and curriculum. In Activity 3, where the
prospective teachers analyzed textbooks and curricula, they observe that, even if
textbooks present different solving methods for the problem under consideration,
curricula do not establish any of them as “official”. This activity contributes to the
development of knowledge of content and curriculum. Elaborating marking criteria,
as performed in Activity 6, requires the establishment of the mathematical
sub-concepts of learning goals. This promotes the development of specialized
content knowledge as pointed out by Morris et al. (2009).

One of the main features of action-research is its iterative character. After the
reflection phase, we have identified some developments and changes that might
improve the teacher education module for future implementations. For example,
Activity 6 involved the marking of a task with a higher cognitive demand (Smith &
Stein, 1998) than that of the tasks coming from the Spanish university entrance
examinations which were previously used throughout the sequence. As a conse-
quence, the prospective teachers found difficulties applying the marking guidelines
from Activity 3. The straightforward way to avoid these difficulties would be to
change the task in Activity 6, presenting one with a similar cognitive demand as the
previous one. However, this observation points out the possibility of improving the
sequence by the inclusion of modelling and problem solving tasks. Another pos-
sible way to improve the sequence would be to include tasks containing errors of
more than one type; i.e., to include tasks combining errors regarding algebraic
manipulation, applying differentiation rules or showing the lack of proper knowl-
edge of a method. These answers will be more difficult to analyze by the
prospective teachers but they are closer to the actual answers of students that they
will face in their future professional life.
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The teacher education module that we have designed could be combined with
other works related to professional noticing. In particular, the work by
Sánchez-Matamoros et al. (2015) seems to be especially appropriate because it also
deals with the concept of derivative, which is one of the main mathematical con-
cepts involved in the problem appearing in our questionnaire.

In conclusion, prospective teachers learned that marking exams is a complex
activity that requires reflection and specific education. For instance, prospective
teacher SM states that: “[…] there is no training about marking. It would be
necessary that teachers receive some courses […]”. Finally, all the prospective
teachers actively incorporated this knowledge to their professional practice when
they elaborated on a lesson plan for the teaching of a secondary school mathematics
topic at the end of the Master’s degree.
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Part IV
Professional Identity and Disposition



Chapter 15
Prospective Mathematics Teachers’
Professional Identity

Márcia Cristina de Costa Trindade Cyrino

Abstract This study aims to understand how the examination of a multimedia case
featuring a mathematics teacher’s practice supported prospective mathematics
teachers in the construction of their professional identity. The data analysis focused
on the meaning negotiation processes occurring during the examination of the
multimedia case and written reflections from prospective teachers, concerning the
following dimensions: the beliefs, self-image, professional knowledge, vulnera-
bility and the sense of agency. The results show that the prospective teachers had
the opportunity to: share their repertoires, discuss their written productions,
(re)consider their performance in the student teaching, report and discuss an
“ambitious” pedagogical practice, establish connections between observations and
empirical interpretations and a broader theoretical background, recognize vulnera-
bilities, and seek a sense of agency. The examination of multimedia enabled the
development of an investigative attitude towards pedagogical practice and the (re)
signification of their future professional practice.

Keywords Teachers’ professional identity � Preservice mathematics teachers
education � Multimedia case

15.1 Introduction

The preparation of secondary prospective mathematics teachers is a challenge that
involves aspects other than building essential skills for professional performance.
This knowledge is only one piece of the puzzle in the constitution and development
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of a professional teacher identity (Connelly & Clandinin, 1999; Lasky, 2005;
Oliveira & Cyrino, 2011). It is considered fundamental that the preservice mathe-
matics teacher education programs take into account the need to develop the
reflective ability of prospective teachers contributing to their graduation as
responsible, autonomous and ethically demanding professionals, able to effectively
reflect on their pedagogical practice.

In Brazil, researchers involved in teacher education programs have been working
to understand and promote learning opportunities and establish the professional
identity of mathematics teachers. The “Study and Research Group on the Education
of Teachers Who Teach Mathematics”—Gepefopem, based at the University of
Londrina (UEL), has investigated, in the last twelve years, perspectives of the
preservice mathematics teacher’s education in order to identify factors that may
intervene in the process of constructing the identity of these professionals. In this
research project, it was investigated how the analysis of a multimedia case featuring
one mathematics teacher’s practice supported prospective mathematics teachers in
the construction of their professional identity.

This case consists of classroom videos associated with other elements, such as
lesson plans, interviews with teachers, written productions of students,
problem-solving questions, and texts, which can be accessed electronically in an
online platform (upon login and password). For each phase of the class, questions
are asked, which challenge the prospective teacher to examine specific aspects of
the teacher’s action.

15.2 Theoretical Background

The construction of a professional identity is a complex process that includes the
personal, professional, intellectual, moral and political aspects of the groups to
which the subjects are involved (Beijaard, Meijer, & Verloop, 2004; Connelly &
Clandinin, 1999; Cyrino, 2016; Day, 1999; Kelchtermans, 2005, 2009; Lasky,
2005; Oliveira, 2004; Oliveira & Cyrino, 2011; Ponte & Chapman, 2008). It
consists not only of what others think or say about us, although that is also part of
our way of living, but also of how we see ourselves and our capacity to reflect on
our experience. According to Wenger (1998) “identity in practice is defined socially
not merely because it is reified in a social discourse of the self and of social
categories, but also because it is produced as a lived experience of participation in
specific communities” (p. 151).

The way teachers typify themselves as teachers and on what others mirror back
to the teacher is not neutral; instead, it expresses their orientations, their likes and
their values about themselves and their future professional practice. The teacher’s
professional knowledge, although personal, becomes public in the act of teaching
and may or may not be legitimized by the school community. Thus, it is important
that in the pre-service teacher education, time and space are offered that envision
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such reflections and discussions, so they can revisit their knowledge, views and
expectations, and become aware of their learning and political commitment as
prospective educators.

In this research project, the teacher’s professional identity1 is perceive as a set of
interconnected beliefs to self-knowledge and to knowledge about his/her work,
associated with autonomy (vulnerability and sense of agency) and political
commitment.

The prospective teacher, when starting her education as a teacher, brings a set of
beliefs about her future profession. The set of beliefs that prospective teachers have
of themselves, of their future profession, of what it means to be an “excellent
teacher” and the type of teachers they want to be, among other things, are inter-
connected and affect the knowledge they develop about their work (Shulman, 1986;
Ball, 1990; Ball & Bass, 2002; Ball, Thames, & Phelps, 2008; Silverman &
Thompson, 2008) as well as with aspects outside the school that influence their
practices in classroom. Discussing these beliefs can contribute to their professional
self-image (Kelchtermans, 2009), necessary for dealing with professional situations
inside and outside the classroom. Working with pre-service teachers’ self-image,
self-esteem, motivation to work, knowledge of their duties, and prospect for the
future is important during teacher preparation (Kelchtermans, 2009).

This set of beliefs, knowledge and professional self-image, built on the rela-
tionship between theory and practice, is associated with the development of
autonomy and political commitment. The teaching action is not only related to
values, educational standards or the knowledge and beliefs of individual teachers.
There are political relationships, not always explicit, that permeate teachers’ rela-
tionships with the students. Such political relationships are the school context, the
educational organization, and the educational public policies. As a rule, teachers do
not have full control of their working conditions. Instead, they have only limited
control in relation to education, the context, the curriculum, being subject to the
decisions and rules established by others. For the construction and development of
the teacher’s professional identity to take place, an opening in the education process
is necessary to encourage the development of autonomy (vulnerability and sense of
agency). In this sense, teachers’ preservice education should encourage the rise of
vulnerabilities and the appropriation of values and norms of the profession (Lasky,
2005). Following this author, vulnerability is understand as

a multidimensional, multifaceted emotional experience that individuals can feel in an array
of contexts. It is a fluid state of being that can be influenced by the way people perceive
their present situation as it interacts with their identity, beliefs, values, and sense of
competence. It is a fluctuating state of being, with critical incidents acting as triggers to
intensify or in other ways change a person’s existing state of vulnerability. (Lasky, 2005,
p. 901)

1We do not consider professional identity as static, this will ignore or denie its dynamic and
biographical nature, at a certain moment in time. Instead, we consider professional identity as a
result of an ongoing process.
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Oliveira and Cyrino (2011) highlight the fact that this vulnerability is not
something that weakens and paralyzes,

[…] but one that allows us to hold back for some more or less long and more or less
frequent moments, our certainties and convictions, which makes us question ourselves. It is
also vulnerability in the sense of exposing ourselves to others and, consequently, becoming
“the target of criticism and argumentations”. (Oliveira & Cyrino, 2011, p. 112)

This is the kind of vulnerability that allows prospective teachers, during the
education process, to recognize their difficulties and limitations; to deal with the
resulting conflicts and dilemmas related to the teaching practice and to recognize
mistakes as mutual learning opportunities. To prevent this vulnerability from
turning into weaknesses it is necessary to implement actions that, by means of
instituted spaces, promote the reconsideration of their practices and beliefs and offer
them opportunities to develop knowledge in order to overcome their difficulties and
limitations. These spaces must help develop the future teacher’s capacity to face
any vulnerability and develop the sense of agency (Oliveira & Cyrino, 2011;
Eteläpelto, Vähäsantanen, Hökkä, & Paloniemi, 2013).

Within the social perspective of learning, the notion of agency allows to high-
light that “rather than an individual acting in isolation, the agent is viewed as an
irreducible aggregate of individual (individuals) together with mediation means
such as language, technology (…) or policy mandates” (Lasky, 2005, p. 902). This
way, it makes sense to talk about a ‘mediated agency’. It is important that during
preservice mathematics teachers’ education, tasks are proposed (in a disciplinary
context or not) in which prospective teachers have the opportunity to reflect on and
interpret the social requisites and norms of their future practice, as well as act upon
different contexts in which these practices operate (regardless of the embarrass-
ments), and, consequently, develop a sense of agency as they position themselves
and develop autonomy, “by taking into account their perspectives, knowledge, and
potentials” (Oliveira & Cyrino, 2011, p. 114).

For Wenger (1998), an identity is developed in social contexts through the ways
their members negotiate meanings. An identity is “a way of talking about how
learning changes who we are and creates personal histories of becoming in the
context of our communities” (Wenger, 1998, p. 5). Learning is understood as a
social practice which takes place in the context of our routine experiences with the
world in a process of meaning negotiation. Meaning negotiation presupposes an
interaction between two other processes: the participation process and the reifica-
tion process.

Sfard and Prusak (2005) consider identity as a discursive practice, building up a
collection of stories about the person and relating them to mathematics learning.
The authors use identity as an analytical tool to investigate learning. Producing
stories is a natural way for people to make sense of situations in which they are
involved; it is a way to express or to shape their experiences (Connelly &
Clandinin, 1999; Elbaz-Luwisch, 2002; Kelchtermans, 2009). In this direction, it is
believed that working with narratives during pre-service mathematics teachers’
education may be a fruitful option, enabling them to demonstrate their learning and
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their self-image, i.e., the way they see themselves as prospective teachers. Talking
about themselves or explaining their reflections about themselves is an essential
aspect for developing their professional identity (Graven, 2011). The continuous
feedback provided by trainers and colleagues, in an interrogative, questioning, and
encouraging style, encourages the development of a more problematized writing,
centred on the person/author of the reflection (Oliveira & Cyrino, 2011).

The way someone understands themselve and others is analogous with what is
disclosed in the texts dealing with themselve and others. This understanding
undergoes a direct influence from contexts in which they perform the production
and interpretation of their experiences (Larrosa, 2009). The narrative allows the
author to choose the themes and terminology to be used to explain their reflections.
Thus, the narratives are a source of valuable information in the preparation and data
analysis process, which enable the teacher educator to understand and work with
aspects of the professional identity of prospective teachers.

In this article, it was identified what has become focal points in the negotiations
of meanings that occurred while prospective teachers analysed a multimedia case—
featuring a mathematics teacher’s practice—and that supported prospective math-
ematics teachers in the construction of their professional identity.

15.3 The Multimedia Case

The multimedia case used in this study illustrates the inquiry-based teaching
practice of a 6th grade2 teacher in a Brazilian public school, that unfolds a math-
ematical task entitled “The necklaces”, which aims to develop algebraic thinking
(Fig. 15.1), naming to find the rule of a sequence.

The multimedia case was constructed by Gepefopem,3 in partnership with Hélia
Oliveira, a professor at the University of Lisbon (UL) as part of the “UEL/UL
Cooperation Network in the development and use of multimedia resources in
mathematics teacher education”, funded by CNPq4 and the Araucaria Foundation
and approved by the Ethics committee in Research of UEL.

The case exposition has a narrative structure, as it contains a sequential analysis
of the lesson and its preparation, the implementation of this lesson and reflections
produced by the teacher after the lesson. The motives behind the teacher’s choices,
as well as their doubts and difficulties, contribute to the prospective teachers
regarding the case as realistic and authentic.

In the “before class” section, the selected task, the lesson plan prepared by the
teacher, and the explanation of its intentions with respect to each phase of the class

2Brazilian 6th grade students are 11 years old.
3http://www.uel.br/grupo-estudo/gepefopem/index.html.
4Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (National Council for
Scientific and Technological Development).
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(proposition and task presentation, task performance by students, discussion of
students’ solutions, and systematization of learning) are presented. The featured
lesson takes place during the initial part of the topic algebra. The teacher hoped that
the students, through the solution and discussion of the task, could develop alge-
braic thinking.

In the “The classroom” section, video segments are presented for each phase of
the lesson, accompanied by a transcription of teacher’s and students’ interventions.
Questions are asked to help prospective teachers examine particular aspects of the
teacher’s actions which seek to promote the students learning and a suitable
classroom management. In this section, the students’ solutions for the task are
available for analysis by prospective teachers.

Fig. 15.1 Task “the necklaces”5 (task translation: Inês made three necklaces, with black and
white beads, as shown in Figs. 1, 2 and 3. (1) Find out the total amount of beads in each figure.
(2) Without drawing, consider the pattern of this sequence of necklaces, how many beads would
the necklace corresponding to Fig. 4 have? (3) How many beads would the necklace
corresponding to Fig. 8 have? (4) How many beads would the necklace corresponding to
Fig. 19 have? (5) Is there any necklace in this sequence that has 55 beads? (6) Describe the rule
that determines the number of beads in any sequence figure
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In the “reflection after class” section, the prospective teachers are asked to focus
on the teacher’s reflections and to fill a framework.5 In this framework the teacher’s
intentional actions are described for each stage of the lesson. It is also requested that
the prospective teachers prepare a retrospective analysis of teacher’s experience
working with the multimedia case, in particular, identifying present or omitted
aspects in this framework.

Finally, in the “in practice” section the prospective teachers is invited to elab-
orate a task and develop a class in the inquiry based teaching, in some context (in
the school or with a group of prospective teachers).

On the left side of the multimedia case (see Fig. 15.1) are presented small text
excerpts, produced by the authors of the case, termed “Synthesizing”, enabling
prospective teachers to systematize the main ideas the authors wish to convey with
regard to the teacher’s role during each phase of the lesson. Additionally, the
website on which the case has been posted contains suggestions of readings on
inquiry-based teaching.

15.4 Contextual Background

The work on the multimedia case formed one of the annual modules in the “Practice
and Methodology of Teaching of Mathematics II” course destined to basic and
secondary mathematics teachers. This course is carried out during the 4th year of an
undergraduate program that prepares mathematics teachers. The multimedia case,
available online, was analysed by twelve prospective mathematics teachers in the
classroom in eight 3-h sessions, over the eight-week course. The prospective
teachers worked in pairs, sharing a computer. Each group was encouraged to read
and interpret the material as autonomously as possible, and they were free to seek
teacher’s support on details regarding the case content, the constituent material or
the questions raised.

The multimedia cases offer prospective teachers an opportunity to learn about
innovative practices, such as inquiry based teaching. This practice is uncommon in
Brazil. Besides, it allows to develop the capacity of describing such practices,
knowing the principles and strategies of classroom management and organization.
In this direction, the multimedia case engages prospective teachers in the discussion
about different ways of dealing with the diversity and singularity inherent in the
process of teaching and learning having as starting point actual classroom situa-
tions. This knowledge about the pedagogical practice of the teacher is fundamental
to the constitution of the prospective teacher’s professional identity.

Each exploration session of the multimedia case generally began with a brief
reference, by the teacher, on the written work of different groups produced in the
previous session. Those references were intended to provide feedback for

5Cyrino and Teixeira (2016).
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prospective teachers on how their work corresponded to the established objectives
of the course. These commentaries were followed by a collective discussion on the
ideas presented. Assuming a perspective of learning through negotiating meaning
(Lave & Wenger, 1991), the prospective teachers had the opportunity to discuss
what they had written as a product of their work at each session, first in small
groups and then in the larger group. The interactions which occurred during the
process of meaning negotiations were audio-recorded and then transcribed.

15.5 Methodology

This study is part of a broader Design Research project, which involves a
methodological approach in which the research and development are mutually
dependent (Cobb, Zhao, & Dean, 2009).

The investigation reported in this article focuses on understanding how the
analysis of a multimedia case featuring one mathematics teacher’s practice sup-
ported prospective mathematics teachers in the construction of their professional
identity.

Concerning data collection methods, we opted to focus on the learning that the
prospective teachers demonstrated through the interactions occurred during the
process of meaning negotiation and written reflections that have been requested
from them regarding the exploration of the multimedia resource.

The class consisted of twelve prospective mathematics teachers with little
teaching experience in the classroom. Field experiences at schools occur in the 3rd
and 4th year of the preservice mathematics teachers education program. These
experiences had promoted the relationship between prospective teachers and
teachers at the primary and secondary school level (6–17 years old) in public
schools; the prospective teachers followed the work of the teachers and, at times,
took on the role of teacher educator. In Brazil, the preservice mathematics teacher
education occurs in undergraduate courses that enables teachers to exercise teaching
from 6st to 9th grade of basic education (students aged 11–14 years), 1st to 3th
grade of secondary education (students aged 15–17 years), and in youth and adult
education programs.

For the data analysis, four major dimensions have been defined—the beliefs,
self-image, professional knowledge and vulnerability, and sense of agency. It was
considered these dimensions as constituents of the professional identity of teachers
(Cyrino, 2016), which has become the focal point in the negotiation of meanings
(Wenger, 1998) which took place in the examination of the multimedia case. It is
presented illustrative examples of these dimensions, using excerpts from the
prospective teachers’ written reflections and from the collective discussion in
analysis of the multimedia case.
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15.6 Results

The results were organized into four sections according to the dimensions men-
tioned. Throughout, it was sought to characterize the contributions of the exami-
nation of the multimedia case featuring one mathematics teacher’s practice for the
development of prospective teachers’ professional identity and for the (re)signifi-
cation of their future professional practice.

15.6.1 Beliefs

Through the analysis of the multimedia case, the prospective teachers had the
opportunity to clarify beliefs, sharing their repertoires. These shared repertoires
included reification and participation aspects, namely: routines, mathematical and
pedagogical concepts, classroom stories and participation in student teaching, joint
discussions and impressions of the teaching and learning processes, which sup-
ported the group discussions.

For example, when prospective teachers explored the phase of the class of the
“task performance by students”, they shared insights about the teaching and
learning of Mathematics.

Not answering the questions directly causes students to learn and seek with the help of
colleagues, in order to solve what was proposed. If the teacher answers all the students’
questions, she may disrupt the students’ comprehension process. In addition, the student
will always wait for the teacher’s response. (Written Production – 5th meeting – Dirce6)

The shared repertoire becomes more coherent not as an activity, symbol, or
specific artefact, but as part of a group practice in the process of the negotiation of
meanings and therefore of learning, demonstrating the engagement of the
prospective teachers in search of a joint enterprise and learning with each other.

15.6.2 Self-image

By discussing and reflecting on their written productions (students’ solutions,
answers to multimedia questions and narratives produced with reflections on the
exploration of the multimedia case), the prospective teachers negotiated meanings,
shared different entries and procedures, and justified their declarations. As a result,
they began to value the solutions presented by the students and to understand the
possibilities and limitations of the students and teachers involved in the classroom.

6The names given to the prospective teachers are fictitious.
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This way, prospective teachers were able to indicate whether they would or not
make the same choices the teacher made and to offer suggestions for the teaching
practice.

The videos of the “task performance by students” phase are very interesting, as they teach
the students by presenting their doubts and the referral given by the teacher, causing me
to reflect a lot about what I would do if I were in her place. (Written Production - 8th
meeting – Sibele)

Such demonstrations of recognition and solidarity legitimized the teacher’s
practice and allowed the emergence of challenges between them, that is, made it
possible to offer provocation to reconsidering their future practices in the classroom.
This process allowed the emergence of the collective recognition of difficulties and,
therefore, the need for new learning (self-image). For example, one student wrote:

The exchange of ideas with colleagues […] seems to open my mind even more, making me
feel safer. I feel I still have a lot to learn. (Written Production - 6th meeting - Maya)

According to the prospective teachers, the examination of the multimedia case
was an important moment mainly because it allowed the exploration of the com-
plexities of a teaching practice that they have never experienced before, neither as a
student nor in the graduation process. In this way, this was a teaching practice that
they had known only from a theoretical point of view. The future perspective,
manifested during the discussions was a temporary element of self-image, revealed
the expectations of prospective teachers regarding their future at work (“how do I
see myself as a teacher in the next coming years and how do I feel when I think
about it?”). This component also refers explicitly to the dynamic character of
self-image. It is not a fixed, static identity, but the result of an interactive process of
meaning-making. Temporality permeates self-image: actions in the present are
influenced by significant past experiences and by expectations about the future.

When analysing the lessons, I was able to perceive what I should or should not do in the
classroom. For example, I realized that I must pay attention to everything the students say,
that it is not interesting to say directly what they should do to solve the task. I must let the
students think and interpret the problem, so that they can make their decisions. (Written
Production - 8th meeting - Fernanda)

It was possible to observe that beyond the satisfaction of being able to share a
real classroom experience and questions relating to teaching practice (experiencing
similar problems and dilemmas), this moment favoured the interaction and the
harmonization of this practice with their field experience at schools, leaving them
more confident to face their future professional practice (self-confidence).

By watching the videos, we realized what took place in our field experience at schools last
year. It was possible to compare. We noted aspects in which we can improve or change for
this year’s internship, from the preparation of lesson plans to the way we will systematize
each content, considering how to choose the task, the selection criteria, and the sequencing
of students’ resolutions for discussion. (Written Production - 8th meeting - Edna)

Some prospective teachers stated that (re)considering students teaching and
their future professional practice made them feel more secure (self-confident).
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15.6.3 Professional Knowledge

The reflection on the teacher’s practices and actions and students’ productions were
aspects around which the process of meaning negotiation was organized. These
negotiations resulted in reifications by means of participation of prospective
teachers, which consequently led to learning regarding the knowledge required for
their future profession (Ball, 1990; Ball & Bass, 2002; Ball, Thames, & Phelps,
2008; Shulman, 1986; Silverman & Thompson, 2008). As an example, the fol-
lowing learnings have been reified:

(a) mathematical knowledge associated with algebraic thinking, such as: recogni-
tion of a pattern, Sequences (Arithmetic Progression and Geometric
Progression), Function, Generalization, Rule, Variable, among others;

(b) pedagogical content knowledge, considering the teacher’s need: to maintain the
task’s cognitive demand level; to organize questions for presenting and
proposing the task; to confront different resolutions and records; to request
justifications for the presented resolutions; to evaluate and explore strategies
and arguments presented by students; to think about strategies to minimize
students’ errors and to ensure their understanding; to systematize content,
concepts, and mathematical ideas from the student’s resolutions; to know the
curriculum and the students’ cognitive development to evaluate when a certain
content can be worked on; to think and propose referrals that foster commu-
nication and mathematical argumentation, among others. Some of these
learnings are illustrated in the following discussion:

Trainer: In this case, does the teacher systematize any content?
Luiza: She systematizes the idea of rules, within the context of mathematics.

[…]
Maya: If the teacher was in a first year (of high school) she could have

systematized a function.
Trainer: […] From these resolutions?
Maya: Yes.
Trainer But has she established any idea of a variable here? What is the meaning

of the letter [she is referring to meaning of the mathematical symbols]
she worked on?

Everton: She only draws attention to the fact that the letter can be replaced by 1, 2,
100… which corresponds to the figure number. I think it looks more like
a letter as a generalized number than a variable.
[…]

Paulo: But when she says that the rule allows one to find the number of
calculations for any figure, is it not a relation?
[…]
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Everton: Yes, I think that the functional thinking is implicit, but for her to
systematize the concept of function, it would take another letter to
represent the amount of calculation to each figure. Then I think she
would have the idea of a dependent variable.

Paulo: I see…
Everton: But, it would be possible to consider this other variable. She could have

placed a t and said that letter is a representation for the total number of
the figure…

Maya: She could go back to the table [which she constructed to record the
values of t and n] as well and show that it is in the second column that
the values of t are, and that these values will depend on the value of
n. The (inter)dependence ratio between them. She would just need more
time…

Trainer: Yes, she could hardly finish the systematization. […] But, do you think
6th year students can handle that?

Maya: I think this idea of one letter depending on the other might even be ok,
but not what a function is… It would be ok for students from the 1st year
(high school).

(Collective Discussion - 6th Meeting)

As the multimedia case “The necklaces” was drawn up based on a lesson
developed from the inquiry based teaching (Elbaz–Luwisch, 2002; Oliveira &
Cyrino, 2013), uncommon in Brazil, the prospective teachers regarded the teaching
practice of the teacher as an “ambitious” pedagogical practice (Oliveira &
Cyrino, 2013).

Trainer: What are the main characteristics of a task proposed in a class from the
perspective of inquiry based teaching?

Maya: First, it must agree with the purpose of the lesson.
Cecília: It has to be interesting to the students.

[…]
Trainer: Somehow, the task has to instigate them, it has to awaken the will to

solve it. What else?
Luiza: It ought to have several resolution possibilities. Like the “The necklaces”

task.
Trainer: […] Thinking about the dynamics of the class and also about student

learning, why is it important to have different resolutions?
Cecília Because of the discussion of student ‘solutions, if you do not have

different resolutions there will be no discussion. When they have
different resolutions, each one shares their own, each has the opportunity
to know the resolution of the others, thus enlarging the repertoire of how
to solve the question. The student only has an idea of how to solve it, and
then begins to see the others’ resolutions, noting there is an easier
strategy.
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Trainer: As we discussed last week, this is essential for student learning,
discussing different ways of solving the task, and analyzing which
strategy is faster. […] What are the other characteristics of the task?

Cecília The level of complexity. […] The task has to be appropriate for the
class… It cannot be easy or so difficult. In the “The Necklace”
assignment, 6th graders had to think hard to solve it, and some spent a lot
of time on it, but they did it.

Dirce: Yes, if this assignment were intended for smaller students, for example,
students in the 2nd year of Elementary School, I do not think they would
have succeeded.

Roberta: You have to take into account what they know.
(Collective discussion - 2nd Meeting)

During the discussion of the characteristics of this class, the prospective teachers
had the opportunity to compare it with other perspectives of education, such as
problem solving (Cai, 2003) and investigation of mathematics (Ponte, Brocardo, &
Oliveira, 2003).

It was possible to know a new perspective of teaching, a different [pedagogical practice] to
take to the classroom. Something new to get out of the traditional model, in which the
teacher explains on the board. At first, I had difficulty in differentiating this perspective of
teaching from the methodology of problem solving. (Written Production - 3rd meeting -
Amanda)

With the exploration of the multimedia case, the future teachers were able to
establish connections between observations and empirical interpretations, on
the one side, different teaching perspectives studied during the program, on the
other side. When interacting with each other, prospective teachers confronted their
knowledge in view of their pedagogical practices and they felt the need to resort to
theoretical background to trigger new meaning negotiations. By learning new forms
of reasoning (from colleagues or texts) the prospective teachers had the opportunity
to interpret, challenge, respect, and validate the information mobilized in the
group. This enhanced the establishment of respectful relationships between the
prospective teachers which allowed them to expose their questions and concerns.

15.6.4 Vulnerability and Sense of Agency

While discussing their questions and concerns the prospective teachers experienced
vulnerability and were challenged to call into question their certainties and con-
victions. This helped them develop a sense of agency, i.e., they had the opportunity
to conciliate what must be done and what needs to be mobilized in relation to
themselves (knowledge, beliefs, feelings, emotions), taking into consideration
context conditions (access, resources, and support). These experiences helped them
to question and get involved in meaning negotiations, i.e., they helped prospective
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teachers to guide their own learning process through full participation and processes
of reification of their future professional identity.

When analysing the “discussion of students’ solutions”, one of the phases of the
class, in the “The classroom” section, the prospective teachers explained some of
the challenges that are posed to the teachers during this discussion.

Everton: I think the ultimate challenge here is to make the students understand the
connections between different resolutions, without showing what the
connections are.

Maya: Only by questioning.
Dirce: It is difficult because it is something that neither we (future teachers) nor

the students are accustomed to do. Students are waiting for the teachers’
resolution. So, the challenge is to make the students participate, and if
they don’t, we’ll have no discussion. […] We must make sure that the
discussion does not simply become a presentation of resolutions.

Cláudia: I think that’s the greatest challenge: to make the discussion indeed
become a discussion.

Trainer: And how do we do it?
Luiza: You have to relate the resolutions, seeing which one is more feasible,

drawing attention to important ideas… the teacher has to ask questions,
provoke the students, force them to speak… But this is all a challenge…

(Collective discussion, 7th Meeting)

Situations of vulnerability helped prospective teachers to understand that there
are inherent conditions of the professional practice originated from “the relational
nature of the profession which are related to the ethical character of the relation”
(Oliveira & Cyrino, 2011, p. 113), once the situations may affect the efficacy of the
teacher’s actions and decisions, which will always be subjected to criticism and
judgments. However, it is possible to balance the teachers’ sense of agency and
minimize the negative feelings generated during the process.

15.7 Conclusions

In the use of the multimedia case, what was discussed was not always defined by
the mathematics educators. The prospective teachers had the freedom to choose,
according to their previous knowledge and intentions, specific excerpts for a more
detailed analysis. This was made possible by the fact that this case was on an online
platform, which allowed them free access, accelerating or reviewing episodes.

The results show that by examination of the multimedia case, the prospective
teachers had the opportunity to: share their repertoires, discuss their written pro-
ductions, (re)consider their field experience at schools, report and discuss an
“ambitious” pedagogical practice, establish connections between observations and
empirical interpretations and a broader theoretical background, recognize vulnera-
bilities, and seek a balance in their sense of agency. These were the focal points that
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helped us understand how the analysis of a multimedia case featuring one mathe-
matics teacher’s practice supported prospective mathematics teachers in the con-
struction of their professional identity.

The teacher that each student will become depends not simply on the mathe-
matical and didactic knowledge that is developed during education, because
learning implies a personal transformation. Professional identity is constructed from
the individual’s biography; from their various formative experiences, acting in the
context of the professional practice to which they are submitted during the
pre-service education process; and from the realization of field experiences.
Professional identity is, therefore, influenced by several mediation systems (Lasky,
2005). The contact with the students and the professional practice of other teachers
challenges prospective teachers in their outlook, and gives rise to the establishment
of relations between theory and practice.

The examination of the multimedia case led to a closer relationship between the
university and the school, to the extent that the prospective teachers adopted an
investigative attitude regarding the teacher’s pedagogical practice and the students’
actions and productions. This investigative attitude triggered a process of (re)sig-
nification of their future professional practice, when they: worked collectively,
prepared/organized possible materials and tasks to be developed in the classroom,
shared experiences, studied and discussed mathematical concepts, worked indi-
vidually or in small groups solving the task, answered questions and developed
narratives in order to actively participate in their training processes, exposed their
mistakes with no constraints and built a sense of agency.

There are several challenges to be faced when it is seek to develop the profes-
sional identity of prospective teachers during the education process. Among them, it
is can name: the varied backgrounds of knowledge and learning of mathematics
experiences from prospective teachers; the level of commitment that each one
assumes in their prospective profession; the sensitivity of the teacher educator to
know how to challenge the prospective teachers, in different ways, according to
their different professional experiences.

Factors such as respect, trust, challenge enterprises, negotiation, dynamics and
actions, valorisation of singularities, and the teachers’ professional practices, cul-
tivated by prospective teachers with the support of mathematics educators high-
lighted that fact that the process of examination of the multimedia case was
productive and fundamental regarding the constitution of the professional identity
of these prospective teachers.

It is understood that teacher education proposals that value the experiences,
repertoires, and knowledge as well as enabling the assumption of learning, through
negotiation of meaning, permeated by these factors, are essential to the process of
mathematics teachers’ education.
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Chapter 16
Exploring Pre-service Teachers’
Self-perceptions of Mathematical
Knowledge for Teaching

Gregory Hine

Abstract This research explored the self-perceptions of pre-service secondary
mathematics teachers at one Australian university. Specifically, the researcher
investigated the extent to which these teachers perceived their readiness to com-
mence a full-time, secondary mathematics teaching position. The research relied
principally on the use of a qualitative research instrument administered before and
after participants undertook their major teaching practicum. Participant responses
indicated varying degrees of readiness to teach secondary mathematics. An analysis
of responses suggests three key findings: Pre-service teachers require further
training in mathematical content; training in mathematics pedagogy; and the
teaching practicum confirmed initial participant perceptions of teaching readiness.

Keywords Secondary mathematics teachers � Pre-service teacher identity
Self-perceptions

16.1 Introduction

The preparation of secondary mathematics teachers for the profession is of critical
importance. Scholars have argued that to teach mathematics effectively, teachers
must possess considerable mathematical content knowledge (Norton, 2010;
Schoenfeld & Kilpatrick, 2008). Such knowledge is concerned with the depth,
breadth and connectedness of mathematical concepts and theory (Ma, 1999). At the
same time, various commentators contend that pre-service teachers require training
in mathematical pedagogical knowledge, which comprises a knowledge of
approaches in articulating mathematical content meaningfully to students (Ball,
Hill, & Bass, 2005; Harris & Jensz, 2006). The practicum experience (or teaching
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internship) is also considered invaluable to teacher education programs, as this is
where pre-service teachers learn first-hand the activity of teaching (Cox et al., 2013;
Putnam & Borko, 2000). While there is universal agreement on the importance of
the training pre-service mathematics teachers receive (Cox et al., 2013), there is
considerably less agreement on what constitutes best practice for such training
(Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2009; Cavanagh, 2009; Osana,
Lacroix, Tucker, & Desrosiers, 2006). Building upon the work of Shulman (1999),
Ball, Thames, and Phelps (2008) proposed that effective mathematics teachers
require a particular type of knowledge—mathematical knowledge for teaching—
which, according to a theoretical framework, encompasses both content knowledge
and pedagogical knowledge. The proposed framework forms an integral component
of this paper, which explores the self-perceptions of pre-service, secondary math-
ematics teachers completing a Graduate Diploma of Secondary Education. These
self-perceptions contribute to the paucity of published literature in this genre, both
in giving a ‘voice’ to pre-service mathematics teachers and in particular drawing
attention to their professional learning needs.

16.2 Research Aims and Significance

There are two specific aims of this research project. The first is to investigate the
self-perceptions of pre-service teachers enrolled in a Graduate Diploma of
Secondary Education program as they prepare to teach secondary mathematics for
the first time. The second aim is to explore how these pre-service teachers under-
stand and perceive their ‘readiness’ to undertake such a task, based on their recent
tertiary training. The significance of this research lies in the belief that the Graduate
Diploma of Secondary Education course adequately prepares students for the
teaching profession, and that research into this area can strengthen future efforts in
preparing pre-service teachers. Collected data analyzed according to an analytical
framework offered by Miles and Huberman (1994) (see Sect. 16.4.4) and in
alignment with the three themes forming the theoretical framework.

16.3 Theoretical Framework

Three themes form the theoretical framework for this research, namely:
Mathematical Content Knowledge (MCK), Mathematical Pedagogical Knowledge
(MPK), and the domains of Mathematical Knowledge for Teaching (MKT). These
themes are now articulated.
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16.3.1 Mathematical Content Knowledge

There is strong agreement among researchers, scholars and policymakers alike that
knowledge of mathematical content is central to its teaching (Norton, 2010). Ma
(1999) asserted that teachers require a Profound Understanding of Fundamental
Mathematics, which she described as an in-depth understanding of mathematics
characterized by breadth, depth, connectedness, and thoroughness. Furthermore,
Schoenfeld and Kilpatrick (2008) contended that proficient mathematics teachers
have a broad and deep knowledge of the mathematics taught at school level, as well
as knowing multiple methods of representation and how ideas develop from con-
ceptual understanding. The importance of teachers’ content knowledge has been
recognized by the United States Department of Education (2008, p. 36): “Teachers
must know in detail the mathematical content they are responsible for teaching and
its connectedness to other important mathematics, both prior and beyond the level
they are assigned to teach”. And in Australia, Masters (2009, p. 4) noted similarly
in his report on the 2008 Queensland NAPLAN performance (Ministerial Council
on Education, Employment, Training and Youth (MCEETYA) that:

Highly effective teachers have a deep understanding of the subjects they teach. These
teachers have studied the content they teach in considerably greater depth than the level at
which they currently teach, and they have high levels of confidence in the subjects they
teach. Their deep content knowledge allows them to focus on teaching underlying methods,
concepts, principles and big ideas in a subject, rather on factual and procedural knowledge
alone.

In 2014, the Teacher Education Ministerial Advisory Group (TEMAG) agreed
unanimously that the Australian Professional Standards for Teachers (Professional
Standards) were not being effectively addressed by teacher education providers. In
an Australian context, teacher education providers are universities who offer
nationally accredited programs in teacher education. Consequently, the TEMAG
(2014) recommended providers be required to select carefully applicants (under-
graduate & postgraduate students) who possess academic skills at a requisite level.
Additionally, pre-service teachers must collect evidence to demonstrate skills and
capabilities for both graduation and employment, and in particular, a thorough
knowledge of content they will go on to teach.

Despite the strong claims advancing the importance of content knowledge for
effective teaching, ongoing debate questions the most appropriate models of teacher
education including the prominence of content knowledge and how it might be best
developed in teacher education programs (Cavanagh, 2009; Osana et al., 2006). For
instance, Norton (2010, p. 66) underscored how there has been little research
conducted on the “level of mathematics understanding that graduates typically
bring to teacher preparation and the effect of teacher education courses upon that
knowledge base”. Investigating this issue, Miller and Davidson (2006) found that
the link between teachers’ background knowledge and their students’ achievement
is at best only mildly positive. These authors consequently suggested that
prospective teachers require coursework that focuses on the foundations of a
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discipline rather than on studying them to greater depths (Miller & Davidson,
2006). This finding supported the earlier work of Monk (1994) who concluded
generally that there appears to be no association between the number of advanced
mathematics courses teachers take and how well their students achieve in mathe-
matics. From another perspective, Ball (1990) found that prospective secondary
mathematics teachers had only a cursory understanding of the concepts underlying
elementary mathematics. In her research comparing Chinese and American math-
ematics teachers, Ma (1999) discovered that Chinese teachers—while having
received less formalized instruction in mathematics than their American counter-
parts—had a more profound knowledge of basic mathematics and worked harder at
developing effective ways to teach.

The United States and Australia, among other countries, have acted on the need
to prepare mathematics teachers with sufficient content knowledge. In the United
States, the Conference Board of the Mathematical Sciences (CBMS) (2001) rec-
ommended that pre-service secondary mathematics teachers complete “a 6-hour
capstone course connecting their college mathematics with high school mathe-
matics” (p. 8). With regard to the CBMS survey, a capstone course was defined as a
course taken at the conclusion of a program of study for such teachers that places a
primary focus on at least one of the following: (1) bridges between upper-level
mathematics courses, (2) connections to high school mathematics, (3) additional
exposure to mathematics content in which students may be deficient, and/or
(4) experiences communicating with and about mathematics (Loe & Rezak, 2006).
In Australia, as universities continue to prepare secondary mathematics teachers
through either a 4-year (Bachelor of Education), 2-year (Master of Teaching) or
1-year (Graduate Diploma of Education) programs there is room to consider
mandating a competency-based licensure examination focused on demonstrating a
requisite level of content knowledge. While literature suggests that higher scores on
licensure tests translates into increased student achievement (Sawchuk, 2011), and
with all Australian graduate teachers now required to pass a competency test
(LANTITE—Literacy and Numeracy Test for Initial Teacher Education Students),
such an examination may well become a future certification requirement for sec-
ondary mathematics teachers. In accordance with the findings of Bonner, Ruiz, and
Travis (2013), for an examination to be a useful measure of mathematics teacher
competency the content would need to be aligned closely with the mathematics
taught both at university and secondary level.

16.3.2 Mathematical Pedagogical Knowledge

The relationship between teachers’ mathematical content knowledge and their
ability to teach has been well researched and there is clear and growing evidence on
the positive relationship between them (Ball et al., 2005; Harris & Jensz, 2006; Ma,
1999; Norton, 2010; Shulman, 1987, 1999). Multiple commentators have asserted
that teachers require a development of pedagogical content knowledge (PCK),
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which has been described as an intersection of subject knowledge and pedagogical
knowledge (Chick, 2012; Shulman, 1987). Shulman (1986, p. 9) defined PCK as
comprising:

The most useful forms of representation of those ideas, the most powerful analogies,
illustrations, examples, explanations, and demonstrations - in a word, the most useful ways
of representing and formulating the subject that make it comprehensible to others…
Pedagogical content knowledge also includes an understanding of what makes the learning
of specific topics easy or difficult: the conceptions and preconceptions that students of
different ages and backgrounds bring with them to the learning of those most frequently
taught topics and lessons.

In other words, pedagogical content knowledge can be understood as knowing a
variety of ways to present mathematical content and to assist students in deepening
their understanding of mathematics (Ma, 1999; Shulman, 1987). The profound
knowledge of mathematics and methods of representing it to students has more
recently been described as mathematical knowledge for teaching (MKT) (Delaney,
Ball, Hill, Schilling, & Zopf, 2008; Silvernam & Thomson, 2008). Said another
way, Delaney, Ball, Hill, Schilling, and Zopf (2008) contended that in addition to
the content (i.e. the ‘what’ of mathematics) teachers also need to know ‘how’ to
teach mathematics. Following research into MKT, some scholars aver that impli-
cations for translating mathematical content into effective pedagogical practice are
paramount in raising the profile of mathematics (Butterfield & Chinnappan, 2010).
Other scholars hypothesize that MKT provides to date the promising answer to
address the longstanding question of what kind of content knowledge is needed to
teach mathematics well (Morris, Hiebert, & Spitzer, 2009).

Various commentators highlight the importance of combining theory and
practice within teacher-education programs (Emerick, Hirsch, & Berry, 2003;
Miller & Davidson, 2006; TEMAG, 2014). For example, the TEMAG (2014,
p. xiii) outlined that pre-service teachers must develop a “solid understanding of
teaching practices that are proven to make a difference to student learning”.
Furthermore, Emerick, Hirsch, and Berry (2003) argued that high quality teachers
must possess both appropriate content knowledge and an ability to communicate
this knowledge effectively to students. Miller and Davidson (2006, p. 58) articu-
lated this claim, asserting that “teacher dispositions like collegiality, self-reflection,
collaborative and interactive skills, and the ability to adjust personal and profes-
sional practice based on reflection are important characteristics of good teachers.”
Pre-service teachers often begin teacher education programs with strongly held
beliefs about teaching and learning (Cavanagh & Garvey, 2012). Their own school
experiences exert a powerful influence on their conceptions about the curriculum
and how best to teach it, and invariably want to teach as they were taught (Scherrf
& Singer, 2012). This is a critical issue in secondary mathematics education as most
pre-service teachers have themselves learned mathematics in a traditional manner
(Ebby, 2000). Consequently, pre-service teachers elect for a teacher-centered
approach instead of opting for unfamiliar pedagogical methods (e.g. collaborative
learning). This issue is exacerbated because rather than challenging pre-service
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teachers’ prior understandings, some teacher education courses and practicum
experiences have been found to reinforce them (Zeichner, 2010).

16.3.3 Domains of Mathematical Knowledge for Teaching

Building upon previous work, Shulman proposed that teaching knowledge is not a
simple, uni-dimensional variable. Rather, and at the very least, teacher knowledge
ought to include: content knowledge, PCK, general content knowledge, curriculum,
knowledge of learners and their characteristics, knowledge of educational contexts,
and knowledge of educational ends, purposes and values (Shulman, 1999). From
this proposal, Ball et al. (2008) analyzed extensively the work of mathematics
teachers and hypothesized a conceptual framework for MKT. This framework
comprises two overarching domains, Subject Matter Knowledge (SMK) and PCK,
each of which consist of three subdomains. SMK is made up of the subdomains:
Common Content Knowledge (CCK), Specialized Content Knowledge (SCK), and
Horizon Content Knowledge (HCK). PCK comprises the subdomains Knowledge
of Content and Students (KCS), Knowledge of Content and Teaching (KCT), and
Knowledge of Content and Curriculum (KCC). An adapted version of the con-
ceptual framework hypothesized by Ball et al. (2008) is offered below in
Table 16.1.

For the purposes of this research, each of the six domains of mathematical
knowledge for teaching is described and contextualized with an example in
Table 16.2.

16.4 Methodology

16.4.1 Methods

This study was interpretive in nature, and used qualitative research methods to
collect and analyze data about how pre-service, secondary teachers perceived their
readiness to teach mathematics. Drawing upon the theoretical perspective of
symbolic interactionism (Crotty, 1998), the researcher placed himself in the setting

Table 16.1 Domains of mathematical knowledge for teaching

Subject matter knowledge Pedagogical content knowledge

Common content knowledge (CCK) Knowledge of content and students (KCS)

Specialized content knowledge (SCK) Knowledge of content and teaching (KCT)

Horizon content knowledge (HCK) Knowledge of content and curriculum (KCC)

Adapted from Ball et al. (2008), p. 403
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of those being studied, and to consider situations from the perspective of ‘the actor’.
Methodologically, symbolic interactionism requires researchers to take, to the best
of their ability, the standpoint of the research participants (Crotty, 1998). For this
investigation, the researcher developed and used two online, qualitative surveys to
collect data from participants. Participants were asked to respond to a ten-item
survey prior to commencing a twelve-week teaching practicum experience.
Immediately following the teaching practicum experience, the participants were
asked to respond once more to the same survey. In this manner, the researcher was
able to determine the extent to which any of the participants’ self-perceptions of
readiness had changed following their 10-week experience in the classroom. The
survey items are included within this section.

Table 16.2 Domains of mathematical knowledge for teaching defined

Domain Definition Example

Common
content
knowledge

The mathematical knowledge and
skill used in settings other than
teaching

Knowing the algorithm to
multiply together two numbers

Specialized
content
knowledge

The mathematical knowledge and
skill unique to teaching

Knowing the algorithm to
multiply together two numbers
connects to place value and the
distributive property

Horizon
content
knowledge

An awareness of how mathematical
topics are related over the span of
mathematics included in the
curriculum

Knowing how the algorithm to
multiply together two numbers is
related to multiplying together
two polynomials

Knowledge of
content and
students

Knowledge that combines knowing
about students and knowing about
mathematics. Teachers must
anticipate what students are likely to
think and what they will find
confusing

Knowing that when multiplying
together two numbers students
may make the error of
appropriately ‘shifting’ the terms
to be added

Knowledge of
content and
teaching

Combines knowing about teaching
and knowing about mathematics.
Many of the mathematical tasks of
teaching require a mathematical
knowledge of the design of
instruction

Knowing what teaching strategies
to employ so that students, when
multiplying two numbers, learn
how and why to appropriately
‘shift’ the terms to be added

Knowledge of
content and
curriculum

Represented by the full range of
programs designed for the teaching of
particular subjects and topics at a
given level, the variety of
instructional materials available in
relation to these programs, and the set
of contradictions for the use of
particular curriculum or program
materials in particular circumstances

Knowing what instructional
materials are available for
teaching and learning
multiplication of two numbers,
what approach these materials
take, and how effective they are

Adapted from Ball et al. (2008), pp. 389–407
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16.4.2 Research Context

This research was conducted on site at the University of Notre Dame Australia
(Fremantle campus). At this university, pre-service teachers completing a teaching
qualification with a major (8 tertiary mathematics content units needed) or a minor (4
tertiary mathematics content units needed) in secondary mathematics education must
undertake the unit EDSM04/EDSS04: Secondary Teaching Method (Mathematics).
Students who undertake this unit typically undertake either a Bachelor of Education
(Secondary) degree, a Master of Teaching (Secondary) degree, or a Graduate
Diploma of Secondary Education. This 20-credit point unit is the only secondary
mathematics pedagogy unit offered at the university, and it runs over seven weeks
for a total of 21 hours contact time. During class time, pre-service teachers engage
with secondary mathematical pedagogy (both for lower school and upper school
students), examine key curriculum and educational policy documents, and investi-
gate best practice approaches regarding planning, assessment, and instructional
resources. The unit meets the requirements of the Australian Qualifications
Framework (AQF) for secondary teachers, is nationally accredited for initial teacher
education programs, and addresses a variety of Australian Institute for Teaching and
School Leadership (AITSL) standards (AITSL, 2015/2011).

Over the course of this units, students are required to complete two assessment
items: A Forward Planning Document (FPD) and a Reflective Practicum Workbook
(RPW). When finished, the FPD comprises the plans for twelve sequential,
well-detailed lessons of a chosen theme or unit of work in mathematics. In addition,
one lesson from the FPD must be drafted up in considerable detail using a Lesson
Plan template. Pre-service teachers complete the RPW by recording observations
and reflecting upon pedagogical experiences during an in situ two-week Classroom
Immersion period. After having recorded these observations and experiences,
pre-service teachers respond to a series of reflective questions concerning mathe-
matical content, mathematical pedagogy, classroom management strategies, and the
use of instructional resources (including technology).

16.4.3 Research Participants

From the entire student population enrolled in a tertiary unit for secondary math-
ematics pedagogy, only those enrolled in the Graduate Diploma of Secondary
Education were invited to participate in the research. Specifically, of the 20 students
enrolled in this unit, 15 were purposively sampled. Of those 15 students, 10 elected
to participate in the pre-practicum survey and the post-practicum survey. From the
10 participants, 6 were male (mean age = 33) and four were female (mean age =
38). Five participants had completed an undergraduate degree with a major in
mathematics (at least 8 tertiary units), and five had completed an undergraduate
degree with a minor in mathematics (4 tertiary units). Within the Graduate Diploma
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of Secondary Education, pre-service teachers with a major teaching area are trained
to teach secondary students from Years 7 to 12 (typically aged 13–18 years); those
with a minor teaching area are trained to teach secondary students from Years 7 to
10 (13–16 years).

16.4.4 Survey Items

Ten items comprised the pre-practicum and post-practicum surveys of this research.
Survey items 1–4 were for participants to indicate specific background information
regarding their age, gender, and prior tertiary studies. Survey items 5–10 directly
assisted the researcher in pursuing the specific aims of the research. The research
participants had been furnished with the terms mathematical content knowledge and
mathematical pedagogical knowledge in the unit EDSM04/EDSS04. These items
required participants to adopt a critically reflective stance towards their perceived
readiness (before and after the practicum) in teaching secondary mathematics.

1. What is your gender?
2. What is your major teaching area (i.e. for Years 7–12)?
3. What is your minor teaching area (i.e. for Years 7–10)?
4. Which category below includes your age? 20–29 30–39 40–49 50–59
5. Describe your readiness to teach secondary mathematics students in terms of

the mathematical content knowledge and skills you currently possess.
6. In what area(s) of mathematical content knowledge do you feel you require

further training?
7. Describe your readiness to teach secondary mathematics students in terms of

the mathematical pedagogical knowledge and skills you currently possess.
8. In what area(s) of mathematical pedagogical knowledge do you feel you require

further training?
9. As a pre-service, secondary mathematics educator, are there any other areas you

would like to receive professional training and development in?
10. Overall, describe your readiness to teach mathematics to secondary students.

16.4.5 Data Analysis Process

The researcher analyzed qualitative data collected from the ten pre-practicum and
post-practicum surveys (items 5–10) according to a framework offered by Miles and
Huberman (1994) which comprises the three components: data reduction, data
display, and drawing and verifying conclusions. Within each of these components
the researcher executed the following operations: coding, memoing, and developing
propositions. According to Miles and Huberman (1994, p. 56), codes are “tags or
labels for assigning units of meaning to the descriptive or inferential information
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compiled during a study”. Codes developed by the researcher were attached to
gathered data via pre-practicum and post-practicum surveys, and were selected from
those data based on their meaning. In particular the codes were developed
according to the domains of MKT (Ball et al., 2008), delineated in Tables 16.1 and
16.2. Memoing was then used to synthesize coded data so that they formed a
recognizable cluster of information anchored in one general concept, e.g. Common
Content Knowledge (CCK). Additionally, demoing helped to capture the ongoing,
salient thoughts of the researcher as the coding process proceeded. Finally, the
researcher generated propositions about connected sets of statements, reflected on
the findings, and drew conclusions about the study.

16.5 Findings

The key findings of this research are presented briefly here, and according to the
responses from survey items 5–10. Overall, participant responses concerning their
self-perceived degree of readiness were geared towards MCK and MPK. The key
findings—both in tabulated and discursive form—have been presented in alignment
with the six domains of MKT, which are outlined in Sect. 16.3.

16.5.1 Mathematical Content Knowledge—Readiness

All of the participants (10 of 10) indicated that they were prepared to teach sec-
ondary school mathematics (to varying degrees) before the 12-week practicum
experience commenced. Furthermore, all participants stated that they possessed
CCK and SCK, but no participants expressed having HCK. For instance, one
pre-service teacher drew attention to her CCK and SCK:

I feel I am ready to teach Years 7 to 10, but [I] need to brush up on the content taught in
Years 11 and 12 and in particular Specialist Mathematics. Often I feel I already know the
content, but a refresher is needed so that the MCK is at my fingertips rather than needing to
be recalled.

Another pre-service teacher stated “I feel as I am ready to teach secondary maths
in terms of the MCK and skills, however [I] would feel more confident in the initial
years of teaching in Years 7, 8, and 9”. A third participant echoed these words, but
drew attention to various perceived ‘gaps’ in his CCK and SCK:

I am only now studying the highest level of mathematics that is taught in secondary
schools. There are many gaps in my content knowledge, especially in topics that were
covered when I was in Years 10-11 and not a very serious student, and also in tips which
are not continuously emphasised throughout the school curriculum (such as project net-
works and some topics in statistics). However I was able to re-learn much of this in detail so
that I could teach it during prac[ticum].
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Four participants mentioned that there were particular ‘gaps’ in their MCK, most
of which would restrict them to only teaching Lower School (Years 7–10) classes
and not Specialist Mathematics courses.

Immediately following the 12-week practicum experience, all of the participants
(10 of 10) restated their preparedness to teach secondary school mathematics. In a
similar vein to the comments made before practicum, all ten participants stated they
possessed both CCK and SCK; this time three participants indicated they had HCK.
To illustrate, one pre-service teacher stated how she had CCK, SCK and HCK: “I
have a good understanding of teaching mathematics content at all levels including
setting assignments, tests and providing feedback to students and parents”. Another
pre-service teacher shared how he felt “confident that I have all the necessary
content knowledge for Lower School and Upper School, or [I] can quickly develop
it where necessary”. Three participants highlighted how they still felt there were
particular ‘gaps’ in their MCK. One female participant commented “I have
appropriate content knowledge for lower secondary and basic classes in upper
secondary. More work is needed to prepare for the likelihood of teaching advanced
classes in upper secondary”. This comment was echoed by a male participant who
intimated “[My] content knowledge for Years 7–10 is good but still needs much
work. I still need to review some areas and then figure out how to teach them, but
generally I am pretty happy that my teaching skills can cater for this”. The reported
self-perceptions of pre-service teachers’ MCK are shown in Table 16.3.

16.5.2 Mathematical Content Knowledge—Further
Training Needed

Prior to the practicum experience, all participants (10 of 10) identified areas of their
MCK that required further training. Of these three participants described how they
felt they needed further training to consolidate their CCK, SCK and HCK. For
instance, one pre-service teacher stated:

It would be good if there were one or two units earlier in my course which cover high
school mathematics in such a way that I could fill in any gaps in my knowledge about the
maths that I now need to teach. I can learn this [content] as I teach but I would feel more
prepared if I had some more training beforehand.

Table 16.3 Mathematical content knowledge—perceived readiness

Pre-practicum Relative frequency Post-practicum Relative frequency

I feel prepared 10 of 10 I feel prepared 10 of 10

I have CCK 10 of 10 I have CCK 10 of 10

I have SCK 10 of 10 I have SCK 10 of 10

I have HCK 0 of 10 I have HCK 3 of 10
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Another pre-service teacher averred “It would be useful to undertake a refresher
maths course as part of P[rofessional] Development] and maybe engage with other
maths teachers to look at how they teach part of the curriculum”. Six participants
specified mathematical topics they believed they required further training into
consolidate their SCK. These topics included: calculus, probability, matrices,
proofs, and networks.

After the practicum experience, a total of six participants maintained that there
were areas of their MCK that required further training. This time, participant tes-
timony did not indicate a need for further training in CCK, and three participants
stated how they felt that they required no further training in MCK. Instead, prof-
fered responses suggested a need for participants to develop their SCK and HCK.
For example, one pre-service teacher described how he required HCK: “It would be
nice to see the structure of the upper school courses, and how the content of lower
school courses fits in with these”. Again, participants expressed particular mathe-
matical topics which they required further SCK and HCK, namely: geometry,
differential and integral calculus, trigonometry, probability, quadratics and matrices.
Participant responses indicating a need for further training in MCK are summarized
in Table 16.4.

16.5.3 Mathematical Pedagogical Knowledge—Readiness

All participants (10 of 10) claimed that they were prepared to teach secondary
mathematics with regard to pedagogical knowledge. Out of these participants, a
variety expressed that they currently possessed any combination of KCS (5 of 10),
KCT (6 of 10), or KCC (3 of 10). One pre-service teacher shared her self-perception
of readiness in KCS and KCT: “I feel I am ready to teach secondary maths in terms
of the mathematical pedagogical knowledge and skills; however, [I] would feel
more confident in the initial few years of teaching Years 7, 8 and 9”. Another
pre-service teacher described her readiness in terms of KCS and KCT:

I feel I have all the skills (from a pedagogical perspective) because the pedagogical
knowledge was dealt with so comprehensively. I particularly valued the shift to teaching
mathematics in the context of real-life examples (e.g. exploratory) and using
student-centered [lessons] rather than teacher [centered lessons].

Table 16.4 Mathematical content knowledge—further training needed

Pre-practicum Relative frequency Post-practicum Relative frequency

I need CCK 3 of 10 I need CCK 0 of 10

I need SCK 8 of 10 I need SCK 4 of 10

I need HCK 10 of 10 I need HCK 5 of 10

I need none 0 of 10 I need none 3 of 10
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Most of the participants (6 of 10) described how they felt their postgraduate
training in general pedagogy (including the unit EDSM04/EDSS04) had prepared
them to teach secondary mathematics. To illustrate, one pre-service teacher com-
mented how he had developed his KSC and KCC:

I know a lot of pedagogical theories that I will take into account when planning lessons and
teaching, but in practice I can only integrate a few of them into my lessons. I do feel well
prepared in terms of general pedagogical knowledge, and I’m looking forward to devel-
oping my pedagogical knowledge that is specific to teaching mathematics.

Other commonly proffered responses indicated that participants felt confident in
their KCT (6 of 10). At the same time these participants predicted that their KCS
and KCC would develop quickly during the practicum experience.

Following the practicum experience, all participants (10 of 10) reaffirmed they
possessed sufficient pedagogical knowledge to teach secondary mathematics. Most
participants stated that they felt confident in their KCS or KCT (or a combination of
these domains), while only two expressed feeling confident with the KCC domain.
For example, one pre-service teacher drew attention to his KCS and KCT: “My skills
are relatively strong, [and I] need more repetitiveness so that they become habits.
I have picked up many different things to engage with the students and motivate their
learning”. These comments were echoed by a female pre-service teacher, who
commented “I am very ready to successfully apply what I have already learned, and
my pedagogical skills are constantly growing and evolving. I will need to find a
range of ways to develop my skills and to learn more about how to better teach
mathematics”. A third pre-service teacher emphasized how she had developed a
strong sense of KCT: “I feel that I need to improve my teaching strategies. I think I
can get the content knowledge across but I think I need to develop more ways to
make the lessons more interactive and enjoyable”. A summary of participant
self-perceptions of readiness in MPK is presented in Table 16.5.

16.5.4 Mathematical Pedagogical Knowledge—Further
Training Needed

Before the practicum experience, a total of seven participants mentioned that they
required further training in one or more kinds of MPK. One pre-service teacher
indicated she required further training to develop her KCS, KCT and KCC:

Table 16.5 Mathematical pedagogical knowledge—readiness

Pre-practicum Relative frequency Post-practicum Relative frequency

I feel prepared 10 of 10 I feel prepared 10 of 10

I have KCS 5 of 10 I have KCS 7 of 10

I have KCT 6 of 10 I have KCT 7 of 10

I have KCC 3 of 10 I have KCC 2 of 10
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I have learned a lot about Bloom’s Taxonomy, constructivism and other broad areas but
very little about specific ways of teaching maths. Being creative and observing other
teachers’ own techniques are both important but I would feel more well-prepared to teach
mathematics if I could learn more about specific strategies that have been found to be
effective most of the time/when used properly. This sort of information helps me to better
evaluate my own ideas and the teaching strategies that I observe.

Drawing attention to a perceived need to further develop his KCT and KCC, a
pre-service teacher remarked “I think I require more training on how to formulate a
more interesting lesson. I think if we were provided with more examples of
interactive lessons across a variety of mathematical areas it would be easier to
develop our own variations of interactive lessons”. While other participants claimed
some training was needed in any combination of the KCS, KCT and KCC domains,
three participants expressed they did not require any further training.

After the practicum experience, most of the participants (7 of 10) indicated that
they required further training in one or more forms of MPK. For instance, one
pre-service teacher stressed how he required further training in the KCS and KCT
domains, especially with regards to “how to break down the simple stuff. I am
finding when teaching Year 7/8 I assume too much. Many do not know their
[multiplication] times tables and so simplifying fractions becomes difficult.
Techniques for scaffolding these gaps would be great”. In addition, pre-service
teachers offered a variety of statements concerning the MCS and MCT domains,
including a need to “create a learning environment in which every student is
engaged”, “learn a few different teaching style ideas, but nothing too major”, and
“watch other teachers teach maths and sharing notes with them”. Three participants
reported that they did not require any further training concerning MPK. A summary
of participants’ self-perceptions regarding additional MPK is tabulated in
Table 16.6.

16.5.5 Further Professional Development

All ten participants identified at least one area of professional development that they
needed further training in before commencing the practicum experience. Common
responses included the use of technology (3), increased MCK (3), the use of
resources (2), and training in drafting assessment items (2). Immediately following
the practicum experience, all participants were again able to identify at least one

Table 16.6 Mathematical pedagogical knowledge—further training needed

Pre-practicum Relative frequency Post-practicum Relative frequency

I need KCS 4 of 10 I need KCS 5 of 10

I need KCT 5 of 10 I need KCT 5 of 10

I need KCC 7 of 10 I need KCC 2 of 10

I need none 3 of 10 I need none 3 of 10
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area of professional development that they needed further training in before com-
mencing a full-time teaching position. These responses included the use of tech-
nology (5), increased MCK (4), improved classroom management (2), and training
in special needs education (2). A summary of these responses is offered in
Table 16.7.

16.5.6 Overall Readiness to Teach Mathematics

All participants (10 of 10) reported that they felt ready to teach secondary math-
ematics prior to the practicum experience. From the proffered testimony, and
despite their avowed readiness to teach, six participants stated they required further
training in the SCK and HCK domains—two of these also averred they needed to
work on their KCS and KCT. For example, one pre-service teacher stated “I would
say I am competent in teaching mathematics to Years 7–10 but I think I need a lot
of work on teaching strategies”. Two participants expressed they felt ready and did
not need any further training. Following the practicum, all participants (10 of 10)
re-affirmed their readiness to teach secondary mathematics. In a similar manner to
pre-practicum responses, participants indicated a need to upskill in the domains of
SCK (3 of 10), HCK (4 of 10), KCT (3 of 10), and KCC (3 of 10). In particular,
three pre-service teachers reported feeling ready to teach Lower School classes
effectively, but both their MCK and MPK in Upper School courses required
attention. Four participants shared feeling ready to teach all year levels and did not
need any further training. Participant responses regarding an overall readiness to
teach mathematics are summarized in Table 16.8.

Table 16.7 Further professional development

Pre-practicum Relative frequency Post-practicum Relative frequency

Graphics calculators 3 of 10 Graphics calculators 5 of 10

MCK 3 of 10 MCK 4 of 10

Resources 2 of 10 Classroom management 2 of 10

Assessments 2 of 10 Special needs education 2 of 10

Table 16.8 Overall readiness to teach mathematics

Pre-practicum Relative frequency Post-practicum Relative frequency

I feel prepared 10 of 10 I feel prepared 10 of 10

I need SCK 6 of 10 I need SCK 3 of 10

I need HCK 6 of 10 I need HCK 4 of 10

I need KCS 2 of 10 I need KCT 3 of 10

I need KCT 2 of 10 I need KCC 3 of 10
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16.6 Discussion

The ten surveyed participants were able to articulate their self-perceptions of
‘readiness’ before and after the 12-week teaching practicum. Following the con-
ceptual framework which underpinned the study itself (Ball et al., 2008), an
analysis of these self-perceptions revealed three key findings with regards to how
ready participants felt to undertake a full-time teaching position, and what areas of
professional development in which they required further training. These key find-
ings included (i) a clearly expressed need for pre-service teachers to develop their
MCK, (ii) a clearly expressed need for pre-service teachers to develop their MPK,
and (iii) the practicum was an instructive experience for pre-service teachers’
regarding their perceived readiness to teach secondary mathematics. The findings
will now be discussed.

Despite all ten participants acknowledging feeling ‘ready’ to teach secondary
mathematics before and after the practicum experience, the majority asserted a need
to develop their MCK further. For instance, when asked about the MCK needed
before practicum commenced all participants were able to identify any combination
of CCK, SCK or HCK. Following the practicum, seven participants could still
identify specific areas of MCK which they required further training. The HCK
domain of MCK was acknowledged as that which participants required the most
professional development, (10 before practicum; 5 after practicum). This finding
supports claims made in current literature that MCK is central to its teaching
(Norton, 2010), and that proficient mathematics teachers require a broad and deep
knowledge of the mathematics taught at school level (Ma, 1999; Masters, 2009;
Shoenfeld & Kilpatrick, 2008). In light of the six domains of MKT (Ball et al.,
2008), the tendency for pre-service teachers to self-perceive CCK and SCK as areas
of need suggests they recognize the importance of focusing on the foundations of
mathematics instead of studying this discipline to considerable depth (Miller &
Davidson, 2006). To amplify, participants tended to outline their MCK first in terms
of operationalizing the content with rules, algorithms and properties (i.e. CCK)
before highlighting a need to learn how various ideas are connected topically (i.e.
SCK). The HCK domain was cited as being most in need of further development;
participants tended to identify a lack of Upper School content (including Specialist
Mathematics) and a lack of teaching experience as barriers to possessing this
knowledge. Whilst a lack of teaching experience could be an expected response for
those undertaking a Graduate Diploma of Education (Secondary), a need to con-
solidate MCK taught within secondary schools is surprising—especially given the
undergraduate background of candidates.

In an identical manner to the MCK responses, all participants insisted they were
ready to teach secondary mathematics in terms of their MPK. At the same time as
many as seven (before practicum) and five (post-practicum) participants highlighted
domains of MPK which required professional development. In particular, seven
participants asserted they possessed KCS and KCT before practicum; following the
practicum, five acknowledged needing further training in these same domains. And
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while there was an expressed need for KCC before practicum (7 of 10), this number
decreased significantly to two post-practicum. Of those who stated further training
in MPK was needed, emphasis was placed on having repeated opportunities to
teach mathematical concepts and to try different teaching approaches. To a lesser
degree, participants identified that their future professional development could
focus on techniques to better engage Lower School students and students at edu-
cational risk. Collective testimony aligns with research conducted into MPK, and
supports the previous work of Hine (2015) who investigated the MCK of aspirant
middle school teachers. First, such testimony suggests the importance of both MPK
in mathematics education (Delaney et al., 2008, Silvernam & Thomson, 2008), and
of having opportunities to practice MPK approaches during teacher education
(Emerick et al., 2003; Miller & Davidson, 2006). Second, and while no participants
drew attention to how they themselves were taught mathematics at secondary
school, several participants expressed they wished to acquire KCC so they could
deeply influence student learning (Emerick et al., 2003; TEMAG, 2014).

The practicum experience confirmed most of the participants’ pre-practicum
self-perceptions of their readiness to teach secondary mathematics. For example,
there appeared to be little variation in the pre-practicum and post-practicum
responses offered (see Tables 16.3, 16.4, 16.5 and 16.6). While this research did not
seek to examine the practicum experience in any way, participant testimony sug-
gested that the 12-week, school-based experience was invaluable preparation for
their careers as secondary mathematics teachers. Analyzed testimony revealed that
the practicum experience was an opportunity for pre-service teachers to learn from a
more experienced teacher (i.e. a mentor teacher) as they modelled MCK and MPK
in secondary mathematics classrooms. Equally, the practicum acted as the first
teaching experience for the participants as they discerned their own teaching style,
identified their preferred method for creating a mathematical learning environment,
engaged with mathematical content, and experimented with various pedagogical
approaches. In addition, participants were able to identify and confirm various
domains of MCK and MPK required for their own professional development. As
such the participants’ experiences have underscored the importance of combining
theory and practice within teacher-education programs (Emerick et al., 2003; Miller
& Davidson, 2006; TEMAG, 2014).

16.7 Conclusion

This research project investigated the self-perceptions of pre-service teachers
enrolled in a Graduate Diploma of Secondary Education program as they prepared
to teach secondary mathematics for the first time. Concurrently, the researcher
explored how these pre-service teachers understood and perceived their readiness to
undertake such a task, based on their recent tertiary training. The shared
self-perceptions were analyzed according to a framework developed from the six
domains of mathematical knowledge for teaching (Ball et al., 2008). Despite all
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participants (10 of 10) asserting feeling ready to teach mathematical content, a
majority stressed that they required additional training in mathematical content
knowledge, particularly in Upper School content. These self-perceptions remained
unchanged before and after participants engaged in their practicum teaching
experience. Similarly, all participants stated they felt pedagogically ready to teach
mathematics; however, a significant number articulated a need to further develop
their mathematical pedagogical knowledge. In light of these findings, it is therefore
incumbent on pre-service mathematics teachers and mathematics teacher educators
alike to remain cognizant that assertions of ‘readiness’ to teach secondary mathe-
matics are complex, multi-faceted constructs. An analysis of participant testimony
illustrates that the multi-faceted nature of these assertions comprises a general need
for pre-service teachers to develop their professional skills and knowledge further in
mathematical content, pedagogy, and curriculum.
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Chapter 17
Exploring the Initial Convictions
and Mindset of Prospective Mathematics
Teachers Towards Modelling

Rina Durandt and Gerrie J. Jacobs

Abstract Modelling, as a problem solving strategy forms part of the South African
mathematics secondary school curriculum since 2011. In many instances, mathe-
matics teachers are incapacitated to teach modelling effectively, although literature
also reveals the opposite. This study reports on the convictions (beliefs) and
mindset (attitude) of prospective mathematics teachers, based on their initial
engagement with a modelling task. Significant attitudinal differences emerged
between the two genders, and between participants with diverse mathematics
competency levels. Participants enjoyed and valued the modelling task, but seemed
to lack confidence and motivation in pursuing it in future. In striving to develop the
modelling and mathematical proficiency of prospective teachers, a well-planned
programme that gradually nurtures participants’ modelling mindsets and confidence
is recommended.

Keywords Mathematics teacher education � Prospective secondary
mathematics teachers � Prospective mathematics teachers’ mindset towards
modelling � Mathematics teachers’ competencies and modelling
Mathematics teachers’ gender and modelling

17.1 Background Context and Purpose

To teach mathematics effectively a particular ‘knowledge-in-action’ to unpack and
expand mathematical ideas is usually required. A framework developed from
Shulman’s (1986) categories by Ball, Thames, and Phelps (2008) outlines expected
knowledge components of effective mathematics teachers. The framework firstly
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incorporates subject matter knowledge, which contains how topics in the subject are
connected. Pedagogy content knowledge, which includes an understanding of how
students grasp mathematical content, what skillful mathematics teaching means and
what the mathematics curriculum entails, comprises an interconnected second
component. A profound understanding of both components is essential to effec-
tively teach mathematics as research reports from Baumert et al. (2010, p. 138)
underlined,

One of the major findings of qualitative studies on mathematics instruction is that the
repertoire of teaching strategies and the pool of alternative mathematical representations
and explanations available to teachers in the classroom are largely dependent of the breadth
and depth of their conceptual understanding of the subject.

Teachers are expected to present content and to inspire students to discover
mathematical relations, but they also have to understand and anticipate students’
reasoning and potential misconceptions (Turnuklu & Yesildere, 2007). Learning is
constructed from the classroom environment and student activities, and teachers’
beliefs, knowledge, judgements and thoughts therefore influence decision making
in the classroom. Teacher education programmes have a huge role to play in
shaping prospective teachers’ convictions (beliefs) and mindset (attitudes) in an
appropriate manner and in providing a functional foundation for their mathematical
pedagogical content knowledge.

Olanoff, Lo and Tobias (2014) argued for a stronger focus on regular and
non-standard approaches to problem solving in prospective teacher education pro-
grammes. Authentic problem solving (in relation to mathematical modelling) is
progressively used to great effect in enhancing students’mathematical competencies
and mathematics teachers’ pedagogy and subject content knowledge (Buchholtz &
Mesrogli, 2013). From a South African perspective, Adler and Davis (2006, p. 272)
reason that theways inwhich teachers interact withmathematics, when teaching, have
significant implications for mathematics teacher education and raises the question
“whether the mathematical education of teachers can and does provide opportunities
to learn these ways of knowing and using mathematics”? Their research underscores
two critical elements required for teaching mathematics (in contrast with the elements
that mathematicians require), namely “unpacking” (an interpretation of mathematical
results and processes) and “decompression” (an understanding and clarification as the
student engages with specific mathematical thinking and reasoning). Mathematical
modelling, the process of generating mathematical representations in attempting to
solve real-life problems (Blum et al., 2002), generates authentic learning experiences
and is considered as pedagogical strategy in teacher education to develop these critical
elements. The educational need for adoptingmathematical modelling is either to teach
modelling competencies or mathematical content (Stillman, Galbraith, Brown, &
Edwards, 2007). Soon and Cheng (2013) argued that teachers may not be able to
appreciate the benefits and importance of developing their students’ mathematical
modelling competencies if they themselves were not adequately exposed to such tasks
and activities. The ideal is for prospective teachers to eventually ‘model’ (use) mod-
elling in their classrooms.
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Former research by Ng (2013), conducted with pre-service and in-service
teachers in Singapore, revealed challenges in fostering a positive climate towards
modelling. The authors also underlined that work is needed to help change the
mindset of in-service teachers to adopt modelling as a pedagogical strategy. The
purpose of this study is to explore the convictions (beliefs) and mindset (attitude) of
a group of prospective mathematics teachers at a South African public university,
based on their first mathematical modelling experience. This investigation forms
part of a broader design-based research (DBR) project, which strives to develop a
set of guidelines, aimed at the effective integration of modelling into the formal
education programme of prospective secondary school mathematics teachers at a
South African university. The intention of this investigation1 is to find relatively
acceptable answers to two research questions that will inform, to some extent, the
next iteration in the broader DBR project. The research questions are: (1) what are
the initial convictions and mindset of prospective mathematics teachers towards
modelling and (2) are there differences between the convictions and mindset of the
two gender groups, and between participants’ performance in mathematics?

17.2 Theoretical Perspectives

17.2.1 Theoretical Elements Concerning to Teachers’
Convictions and Mindset

The authors are of the opinion that the education of prospective mathematics
teachers, especially in the current South African school context, has a vital influ-
ence on their initial practices, convictions (beliefs), mindset (attitudes) and early
effectiveness as secondary school teachers (Adler & Davis, 2006). Aligned with the
abovementioned assumption, the first element of the theoretical framework that
underlies this inquiry is the “Learning to Teach Secondary Mathematics” (LTSM)
framework (Peressini, Borko, Romagnano, Knuth, & Willis, 2004). This framework
suggests that the particular competencies (knowledge and skills) a prospective
teacher acquires are primarily influenced by the specific context (or teaching situ-
ation) in which it happens. Furthermore, teachers’ knowledge, convictions and
mindset interact with teaching-learning situations. This suggests that mathematics
teacher education is “usefully understood as a process of increasing participation in
the practice of teaching, and through this participation, a process of becoming
knowledgeable in and about teaching” (Adler, 2000, p. 37). In this enquiry, we tried
to ensure the claims of the LTSM framework by actively involving prospective

1This DBR study is conducted over three phases and the investigation forms part of phase 2,
iteration 1. Each phase has a unique focus and the analysis contribute towards testing, improving
and understanding the design.
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teachers in the modelling task and exposing them to mathematical content
knowledge—adopting mathematical modelling as a pedagogical strategy in teach-
ing mathematics.

The second element of the theoretical framework that underlies this research is
the view of Schackow (2005) in respect of mathematics teachers’ convictions and
mindset. Schackow (2005) describes convictions (beliefs) as the individual ways in
which teachers grasp their role(s). Teachers’ convictions on how mathematical
themes should be taught are deeply rooted, usually related to their own experiences
as mathematics learners (especially during their formal education) and are difficult
to change. These convictions are primarily rational in nature, and they play an
important role in the development of their (and their students’) mindsets. Dweck
(2006) and Boaler (2016) differentiated between two different mindsets. On the one
hand, a ‘growth’ mindset, cultivate a belief in the minds of prospective teachers that
they can improve their abilities through continuous practice and effort. On the other
hand, with a ‘fixed’ mindset prospective teachers belief that their abilities are
unchangeable and predetermined. Research reports confirm people with a growth
mindset believe in the development of intelligence and outperform those with a
fixed mindset (Boaler, 2016) as they focus on “learning, believed in effort, and were
resilient in the face of setbacks” (Dweck, 2010, pp. 26–27). On the contrary, those
with a fixed mind-set are too concerned about setting the ‘correct’ impression and
“became discouraged or defensive in the face of setbacks because they believed that
setback reflected limitations in their intelligence” (Dweck, 2010, pp. 26–27). In this
inquiry, we attempted to ensure the viewpoint of Schackow (2005) by exposing
prospective teachers to mathematical modelling during their formal education and
cultivating a belief in their minds in the hope that they will improve their abilities in
the future through continuous practice and effort.

17.2.2 Mathematical Modelling and Teaching

This inquiry relates to the discussion about what mathematical modelling brings to
teaching and, in particular, about prospective mathematics teachers’ convictions
and mindset towards model-eliciting tasks. In this direction, we will draw on the
following notions developed by the literature on mathematical modelling: levels of
modelling tasks (Tan & Ang, 2012); design guidelines for a mathematical mod-
elling learning experience (Tan & Ang, 2012); evaluation criteria for mathematical
models (Meyer, 2012), originally described by Meyer in 1984; and the modelling
cycle according to curriculum planners Balakrishnan, Yen, and Goh (2010). Next,
we present these theoretical notions.

Tan and Ang (2012) discuss three different levels of mathematical modelling
tasks. The focus of Level 1-tasks is on students obtaining mathematical modelling
skills that may perhaps be used in forthcoming tasks. Traditional problem solving
(or the typical textbook problem) fits the description of such a task as these
problems are carefully defined and require specific mathematical procedures.
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The emphasis with Level 2-tasks is guiding students to apply known models to new
situations, ensuring to some extent, meaningful engagement in the modelling
process. Such tasks usually have a slight vagueness. A Level 3-task is the most
authentic open-ended type. At this level, students should not only review task
constraints, but also search for possible approaches to solve the problem—they
should build new models. According to Ng (2013), a decent modelling task should
consist of a real-world context, open-endedness, unstructuredness and complexity
to provide a platform to experience the complete modelling cycle. In this inquiry
prospective mathematics teachers were exposed to a Level 3-task, World Cup
Rugby 2015 (view Sect. 17.3.2).

Tan and Ang (2012) suggested a framework, to guide the design of a mathe-
matical modelling learning experience. Such a framework involves addressing the
following five questions:

• WHICH level of learning experience?
• WHAT is the skill or competency?
• WHERE is the mathematics?
• HOW to solve the problem or model?
• WHY is this experience a success?

The first two questions lead to the formulation of clear learning goals for specific
modelling tasks. The third question asks from the designer to be conscious of the
mathematics underlining the activity and the required mathematical competency
needed by students to complete the task. The forth question determines if the task is
a good fit for the learning goals and guide teachers in their facilitation of students’
learning. The last question prompts teachers to monitor the modelling process and
highlights that “self-monitoring can increase teachers’ sense of competence and
control and in turn, their motivation to carry out such modelling tasks” (Tan & Ang,
2012, p. 715). These five questions informed the planning of the model-eliciting
activity developed in this inquiry.

Meyer (2012) highlighted the relevance of carrying out an evaluation of the
mathematical model at the end of the modelling cycle as it makes a vital difference
in simulating and improving real life decision-making. In this direction, in the
report “Guidelines for Assessment and Instruction in Mathematical Modeling
Education” (GAIMME), it is explained, “the value of a model is determined by its
ability to provide reasonable solutions to a given problem” (COMAP-SHIAM,
2016, p. 197) and it is advisable to examine the model. Meyer (2012) discussed six
evaluation criteria for mathematical models. These include the accuracy and pre-
cision of the answer, the realism (based on correct assumptions) and robustness of
the model, its applicability to other situations and the usefulness of its conclusions.
In this inquiry, the authors used the criteria discussed by Meyer (2012) to examine
the mathematical models presented by prospective teachers (view Sect. 17.4.2).

A variety of mathematical modelling cycles exist in the literature (Doerr,
Ärlebäck, & Misfeldt, 2017). In this inquire we will adopt the modelling cycle
proposed by Balakrishnan et al. (2010). Such cycle involves: “mathematisation”,
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representing the proses to present the real-world problem mathematically using a
model; “working with mathematics”, representing decision-making using appro-
priate mathematics to solve the problem; “interpretation”, representing the
sense-making of the solution in terms of its relevance and appropriateness to the
real-world situation; and “reflection”, examining the assumptions made and sub-
sequent limitations of the suggested solution. The four sequential phases included
in this cycle represented the activities prospective teachers engaged with during the
modelling process carried out during this inquire.

Research reports indicate students often experience difficulties moving between
these phases and underline that it is important to develop students’ competencies in
each of them (Stillman et al., 2007). For example, Buchholtz (2017, p. 49) explains
how an “out-of-school” activity (in a European setting) such as a mathematical city
walk can be used to develop competences in mathematising. In this inquiry, we
investigated how prospective teachers moved through the modelling cycle (view
Sect. 17.4.2). This analysis fulfilled a vital role in informing the next phase of the
broader DBR study.

17.2.3 Connecting Students’ Attitude, Mindset,
Performance and Teacher Intervention

This section is based on two key assumptions; (1) teaching strategies can send a
growth-mindset message to students, and (2) prospective teachers’ attitudes toward
modelling are influenced by their experiences of the lecturer’s approach and
teaching throughout their formal pre-service education.

Attitudes form a central part of a person’s identity. The affective domain of
learning typically features three dimensions: emotions, attitudes and beliefs
(Papageorgiou, 2009). Attitudes are seen by Philipp (2007, p. 259) as

Manners of acting, feeling, or thinking that show one’s disposition or opinion. Attitudes
change more slowly than emotions, but they change more quickly than beliefs. Attitudes,
like emotions, may involve positive or negative feelings, and they are felt with less intensity
than emotions. Attitudes are more cognitive than emotions but less cognitive than beliefs.

Attitude and mindset are closely related, and in some case viewed as synonyms.
According to Fang, Kang, and Liu (2004, p. 298) mindset is “something that occurs
in a person’s head” that can influence a person’s attitudes and actions. Many
prospective teachers generally have either a positive or a negative attitude towards
mathematics. Ma and Wilkins (2002) put the vital role of teacher attitudes into
perspective, by stating that students who believe that teachers have high expecta-
tions of them tend to have a more positive attitude towards mathematics. Blum et al.
(2002, p. 161) wrote, “beliefs, attitudes and emotions play important roles in the
development of critical and creative senses in mathematics”, and these are essential
to achieve modelling aims. The quality of mathematics teaching and the nature of
teacher attitudes have a pertinent influence on students’ attitudes towards
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mathematics and eventually also on their achievement. Dweck (2006) cautioned
against the messages teachers communicate to students—by often praising their
ability and intelligence teachers can harm their motivation and performance as they
become more afraid to make mistakes. On the contrary, teachers rather have to
show interest in students’ development and growth. It seems that positive teacher
attitudes towards mathematics likewise stimulate favourable attitudes in students,
but so are negative attitudes in students generally caused by inappropriate teaching
practices and undesirable teacher attitudes (Henderson & Rodrigues, 2008; Yara
2009).

Anhalt and Cortez (2016) claim it is vital that prospective teachers develop a
good understanding regarding mathematical modelling throughout their formal
education. They examined the development of 11 prospective teachers’ (from an
American public university) understanding of the topic through the implementation
of a modelling course in a teacher preparation programme. Their study revealed that
although most participants initially had misconceived ideas about mathematical
modelling, they developed the correct understanding of the modelling process
throughout the course. At the end the prospective teachers were able to translate the
modelling cycle into practice in the context of a Level 3-task and understood the
strong relation between modelling activities and promoting mathematical practices.
Kuntze, Siller, and Vogl (2013) investigated the self-perceptions of
modelling-specific pedagogy content knowledge of Austrian in-service and
pre-service teachers and found it were not positive. They recommended intensified
professional development support for both teacher groups. The research findings
from Anhalt and Cortez (2016), Kuntze et al. (2013) and others reveal the expe-
riences of prospective teachers regarding modelling during their formal education
indeed shape their convictions and mindset.

17.3 Research Design and Method

17.3.1 Research Paradigm and Design,
Sampling and Participants

The study’s research paradigm relates to an attempt to measure prospective
mathematics teachers’ modelling competencies as well as their mindset in respect of
a model-eliciting task. The study was thus conducted from a pragmatic worldview
(Creswell, 2013) as the researchers are concerned with finding a solution to the
problem. According to Creswell (2013) pragmatic knowledge claims are focused on
understanding the problem (refer to Sect. 17.1) and therefore pragmatists apply a
variation of approaches to inform their understanding. This worldview forms the
philosophical underpinning for the mixed methods design of this investigation, and
for the broader project. Such a research design (Teddlie & Tashakkori, 2009)
allowed the researchers to explore the mindset of prospective mathematics teachers
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towards modelling and the differences between gender and achievement groups, to
explain their thinking and planning strategies and to describe some valid principles
to incorporate in teacher education programmes. For this study, a pre-designed
worksheet/document and an open-ended questionnaire were administered to collect
the qualitative data and a survey to collect the quantitative data.

The 49 participants were secondary school (Grade 10–12) prospective mathe-
matics teachers at the University of Johannesburg in 2015 with very little school
experience. They were studying full-time and the main elements of their demo-
graphics are male (63%), black (almost 80%), indigenous language speaking (also
almost 80%), 22 years or younger (57%), no prior exposure to model-eliciting
challenges (100%) and having scored 70% or more in Grade 12 for mathematics
(63%).2 Participants were exposed to a mathematical modelling activity during the
last week of the first semester, which is during the last week of May 2015.
Proportional stratified sampling was used to randomly assigning participants to
groups of four or five, in such a way that each group had at least a high(er), a
moderate and a low(er) achiever. The group selection was motivated by various
reasons; to form comparable groups due to the complexity of the modelling task,
the collaborative nature of problem-solving activities in mathematics and in par-
ticular modeling tasks, the lack of experience of participants in modelling tasks, and
to create an inviting climate for dialogue and reflection activities which are vital in
the development of modelling competencies (Stillman et al., 2007).

17.3.2 The Modelling Task/Activity

The activity was based on both the design guidelines of Tan and Ang (2012) and a
pilot study conducted by the researchers in the previous year (Durandt & Jacobs,
2017) involving another mathematical modelling activity and group of students.
The session lasted for almost two hours during a scheduled time slot. A 20 min
presentation (by one of the researchers fostering a positive attitude towards mod-
elling) served as introduction on the purpose and nature of the research explaining
ethical measures, what modelling entails, its pedagogical value, and the phases of a
typical modelling cycle. The model-eliciting activity, labelled World Cup Rugby
2015 (adapted from a traditional textbook problem) relates to participants’ math-
ematics curriculum (applications of integration). It is an unstructured, open-ended,
complex and incomplete ‘real world’ modelling task [Level 3-task according to the

2In South Africa, different Grade 12 qualifications are available, e.g. the National Curriculum
Statement (known as the Curriculum and Assessment Policy (CAPS) since 2011), mostly offered
by public schools and the Grade 12 examination of the Independent Examinations Board (the IEB)
mostly offered by private/independent schools and colleges. The two curricula differ in respect of
scope and depth, though not substantially, while the exit level outcomes of both in respect of the
subject Mathematics are compatible and thus accepted by both public and private South African
universities.
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classification by Tan and Ang (2012)]. The activity, displayed in Fig. 17.1, con-
tained information regarding specific features of the official rugby ball, tournament
rules and regulations, in-flight safety regulations, and specific requirements from
the South African Rugby Union (SARU).

Participants were expected to pave the way through the modelling cycle of
Balakrishnan et al. (2010) (mathematisation, working with mathematics, interpre-
tation, and reflection) with the purpose of making recommendations to SARU on
the maximum number of official inflated rugby balls that can be transported via a
crate to England for the World Rugby Tournament in September 2015.

Their recommendations must also allow SARU to apply the design in other
situations. The ten prospective teacher groups were required to report on the
strategies and methods they employed in order to come up with possible solutions
and also to critique their suggested solutions. The researchers carefully monitored
the experiment and group interactions and each group recorded their strategies,
processes and suggested solutions on a predesigned worksheet.

World Cup Rugby 2015 Task 
The 2015 Rugby World Cup Tournament (RWT) will be hosted by England from 
18 September to 31 October 2015 and the final will be played at the well-known 
Twickenham Stadium. 

The official rugby ball is made of the following features: three-ply backing 
material for good shape retention, standard grip, grippy rubber surface, hand 
stitched, and synthetic latex bladder for excellent air retention. The design features 
the official Tournament social media hashtag, and ball comes inflated for 
safeguarding a good smell and shape (approximate weight 460g & pressure 
10PSI). Tournament rules stipulate each of the twenty teams should supply a 
sufficient number of the official rugby balls for team practices and preparation.  
Tournament officials are responsible to supply the match ball only. The South 
African Rugby Union (SARU) would like to receive a recommendation on the 
maximum number of official rugby balls that can be transported to England for the 
RWT 2015 on a South African Airways (SAA) flight. Provide the SARU with a 
plan on how they can perform relevant calculations. You need to explain the 
method you used as the SARU would like to apply this method to other areas. 

Data collected from the SARU stipulates the official match ball is oval or egg 
shaped and made from four different panels.  For a size 5 rugby ball (relevant for 
full sized rugby), the length should be approximately 30cm, the length 
circumference approximately 77cm and the width circumference roughly 62cm. In 
flight safety regulations by SAA stipulates the weight per new ball (460g) and 
optimal ball pressure of approximately 10PSI can be allowed (standard ball size).  
Luggage capacity is restricted to a maximum of 1 cubic meter per flight.

Fig. 17.1 The ‘World Cup Rugby 2015’ modelling task
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17.3.3 Quantitative Design, Data Collection and Analysis
Procedures

A questionnaire was used to collect information from the participants the day after
their initial exposure. It contained demographical items, an item on their Grade 12
performance in mathematics, as well as the items of a recognized instrument, used
for gaining student teacher attitudes towards mathematics as subject. The original
Attitudes towards Mathematics Inventory (ATMI) (Schackow, 2005), was adjusted
towards mathematical modelling, keeping its items and dimensions intact. The new
Attitudes towards Mathematical Modelling Inventory (ATMMI) still consists of
four dimensions, namely value (whether mathematical modelling knowledge and
skills are worthwhile and necessary, including 10 items), enjoyment (whether
problem-solving and model-eliciting activities are enjoyable, including 10 items),
self-confidence (expectations about mastering mathematical modelling, including
15 items) and motivation (the desire to learn more about mathematical modelling
and to teach it, including 5 items). Each of the 40 items used a Likert-type response
scale, ranging from 1 (Strongly disagree) to 5 (Strongly agree).

Sweeting (2011, pp. 53–54) classifies teacher attitudes towards mathematics as a
subject on five levels, which is labeled as “strongly negative, negative, neutral,
positive and strongly positive”. Using this classification, positive scores on the
enjoyment and the value dimensions (maximum 50) would be 41 or more. Positive
scores on the self-confidence dimension (maximum 75) would be 61 or more and on
the motivation dimension (maximum 25) 21 or more. A positive ATMMI total
(incorporating all four dimensions—maximum 200) would thus be 161 or above.

Analyses of the data, including normality testing, reliability measures and testing
for attitudinal differences between groups of participants, were performed via the
Statistical Package for the Social Sciences (SPSS, version 23). Cronbach’s alpha
coefficients were calculated in respect of the four dimensions, as well as partici-
pants’ total ATMMI scores. Table 17.1 portrays the coefficients (all of them > than
.8), implying that all items in each dimension indeed measure the same construct,
confirming the questionnaire’s reliability (internal consistency).

Table 17.1 Reliability (internal consistency) measures of the attitudes towards mathematical
modelling inventory (ATMMI)

ATMMI dimension Cronbach’s alpha coefficient

Enjoyment (including 10 items) .891

Value (including 10 items) .857

Self-confidence (including 15 items) .925

Motivation (including 5 items) .872

ATMMI total (including 40 items) .893
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17.3.4 Qualitative Design, Data Collection and Analysis
Procedures

One predesigned worksheet, containing the different phases of the modelling cycle
(Balakrishnan et al., 2010), was completed by each group during the modelling
session and submitted at the end of the session. These working documents reflected
the work from each group in relation to the task proposed. Figure 17.2 demon-
strates how the participants in Group 1 represented the real-world problem math-
ematically. All participants were enrolled in a course in the applications of calculus
and could therefore relate to the method of calculating volumes of solids of revo-
lution. However, participants were not necessarily familiar with calculating the
volume of an ellipse (consistent with the shape of a rugby ball). Group 1 selected a
function familiar to them to construct a solid of revolution. They identified the
relevant information from the task and used the familiar root function f xð Þ ¼ ffiffiffi

x
p

to
rotate about the x-axis. This solid of revolution then represented half of the rugby
ball. They continued setting up an integral, working between the limits x ¼ 0 and
x ¼ 15, to calculate the volume in cubic centimeters. If the result is multiplied by
two they could find an accurate estimation of the volume of a match size rugby ball.
In addition, they calculated the radius of the ellipse using the given information on
the circumference of the ball. This method allowed Group 1 to mathematise the
modelling task and proceeded with phase two of the modelling cycle. Not all groups
followed the same approach, although most groups tried to use well-known
mathematical content from their current mathematics course or previously studied.
These working documents, containing the mathematical work of groups, their
proposed mathematical model and solution to the real-life problem, were analyzed
according to the modelling cycle described by Balakrishnan et al. (2010), and
model evaluation criteria from Meyer (2012).

The questionnaire, including four open-ended questions, was administered the
following day. These questions requested individual participant’s feedback on four
aspects, namely: (1) their perceptions of their group’s biggest challenges during the
modelling activity, (2) their views on the open-ended nature of the modelling task,
(3) their post-activity mindset towards mathematical modelling, and (4) concrete
suggestions on how the university can support a prospective teacher to become an

Fig. 17.2 Representation of the first modelling phase mathematisation by Group 1
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even more effective teacher of mathematical modelling. For analysis the
“codes-to-theory” model for qualitative inquiry by Saldaña (2016) was used. This
model refers to the systematic arrangement of data, first cycle coding, re-reading
and second cycle coding. In short, the data (collected from the open-ended ques-
tionnaire) were arranged in categories and sub-categories that lead towards more
general abstract constructs such as themes or concepts. In particular, process coding
was exploited for this analysis. According to Saldaña (2016), process coding is
particular useful if participants interact with the purpose of reaching a specific goal.
This method of coding uses “-ing” words such as “reading”, to illustrate action.

Furthermore, the researchers purposefully addressed the strategies to maintain
trustworthiness of findings from qualitative data, as originally recommended by
Lincoln and Guba (1985). These strategies include the transferability of data
(by providing necessary detail on the context of the fieldwork), dependability
(by encouraging other researchers to repeat the study), confirmability (by applying
triangulation of data collection and analysis methods) and credibility of data (by
providing a thick description of the methodology).

17.4 Findings and Discussion

17.4.1 Quantitative Findings

The researchers expected the majority of the participants to portray relatively
positive attitudes towards this model-eliciting activity (considering they are all
prospective mathematics teachers).

Table 17.2 reveals six in ten participants enjoyed the activity, while just more
than half regarded modelling competencies as valuable. Just three in ten were
confident that they could master modelling, and felt motivated to learn more about it
in future. In an overarching sense, almost half of the participants exhibited positive

Table 17.2 Distribution and descriptive statistics of ATMMI scores

ATMMI dimensions Scoring intervals N %

ENJOYMENT [N = 48]
[M = 42.10; SD = 6.33]

40 or lower 19 39.6

41–50 29 60.1

VALUE [N = 38]
[M = 39.63; SD = 6.73]

40 or lower 18 47.4

41–50 20 52.6

SELF-CONFIDENCE [N = 44]
[M = 51.32; SD = 11.79]

60 or lower 27 70.5

61–75 13 29.5

MOTIVATION [N = 49]
[M = 17.61; SD = 4.82]

20 or lower 34 69.3

21–25 15 30.7

TOTAL ATMMI SCORE [N = 36]
[M = 152.25; SD = 24.27]

160 or lower 19 52.8

161 or higher 17 47.2
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attitudes towards the modelling activity, but a single modelling experience is not
sufficient to develop an attitude towards a complex pedagogical perspective such as
modelling.

The Mann-Whitney U test, as non-parametric statistical technique was used to
detect differences between the medians of the responses of two genders and two
performance groups (based on their achievement in mathematics in Grade 12). This
test is considered appropriate, because participants’ responses are not normally
distributed, are measurable on an ordinal scale, are comparable in size and inde-
pendent (responses from one subgroup do not affect the responses of another)
(Milencović, 2011).

Table 17.3 present the ranks and Table 17.4 the test statistics of students’
overarching attitudes towards this modelling experience, with gender and mathe-
matics achievement in Grade 12 as grouping variables.

The findings firstly indicate that prospective female mathematics teachers in this
study (Mdn = 135) have a significantly lower (at the 95% confidence level) over-
arching attitude towards this mathematical modelling activity than their male
counterparts (Mdn = 168.5, U = 82.50, p = .020). The findings secondly indicate
that prospective mathematics teachers in this study, who have scored 69% or less
for mathematics in their Grade 12 year (Mdn = 141.0) have a significantly lower (at
the 95% confidence level) overarching attitude towards this mathematical mod-
elling activity than their counterparts, who have scored 70% or more (Mdn = 168.5,

Table 17.3 Ranks relating to total ATMMI scores

Demographic attributes Groups N Mean
rank

Sum of
ranks

Gender [N = 36] Female 14 13.39 187.50

Male 22 21.75 478.50

Achievement in mathematics in Grade 12
[N = 36]

Less than
70%

14 14.14 198.00

70% or more 22 21.27 468.00

Table 17.4 Test statisticsa in respect of total ATMMI scores

Genderb Achievement in mathematics in Grade 12c

M Mann-Whitney U 82.500 93.000

W Wilcoxon W 187.500 198.000

Z Z −2.322 −1.981

A Asymp. Sig. (2-tailed) .020d .048d

E Exact Sig. (1-tailed) .019d .049d

aGrouping variables: gender and achievement in mathematics in Grade 12
bFemale participants are compared to male participants
cParticipants, who scored 69% or less in mathematics in Gr 12 are compared to participants, who
scored 70% or more for mathematics in Gr 12
dSignificant at the 95% level of confidence
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U = 93.0, p = .038). Cohen’s effect sizes (r = .390 and .393 respectively) are in the
medium to high interval (Milencović, 2011, p. 77), which imply that the findings
have both moderate (to high) practical significance.

17.4.2 Qualitative Findings

Qualitative findings from data collected by the open-ended questionnaire indicate
three main categories based on Saldaña’s (2016) model for analysis (refer to
Sect. 17.3.4). These findings reflect participants’ initial convictions and mindset
after a single modelling session. It is important to highlight that such convictions
could likely change after more and more in-depth exposure to modelling activities.
The following categories emerged from the analysis: (1) challenging nature of
tasks, (2) mindset towards modelling (with sub-categories positive mindset on the
one side and negative mindset on the other) and (3) supporting teacher education.

The first category, challenging nature of tasks, describes participants’ general
responses on the modelling activity. Participants (44 from 49) mostly experienced
the task as overwhelming and difficult to understand, especially at the beginning of
the session. For example, one participant commented “We could not understand the
problem thus we could not even attempt to solve the problem”.

The second category, mindset towards modelling, provides insight on the pos-
itive (24 from 47) or negative (14 from 47) participants’ mindset after the modelling
activity. Some participants (9 from 47) experienced mixed emotions, ranging from
scary and frustrating to exciting and effective. For example a participant said, “It is
exciting but not easy, I have mixed emotions”.

The third category, supporting teacher education, represents participants’
opinions on the type of support they require to become more effective modelling
teachers and the necessary structure to achieve such a goal. A number of possi-
bilities have been listed including more frequent exposure to modelling tasks, a
course/module on modelling, linking mathematical modelling with relevant
methodology courses and some others.

Each worksheet document (from 10 groups) was examined according to the
elements of the modelling cycle (Balakrishnan et al., 2010) and certain modelling
and mathematical competencies required (Stillman et al., 2007) by groups to pro-
ceed through the cycle. These qualitative findings are useful to answer our first
research question. Table 17.5 represents the findings by indicating the number of
groups showing evidence in their documents of the specific assessment criteria.

To support and crosscheck the findings from the list (as displayed in Table 17.5),
the different models (presented by each group) were further evaluated according to
the six evaluation criteria presented by Meyer (2012). An assessment of the models
revealed only 4 of 10 groups presented an accurate answer, although 8 groups
presented a realistic and precise model and only 3 of 10 group models were rela-
tively robust. Sixty percent of the models could be applied in other situations, for
example if the size of rugby balls change.
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The qualitative findings indicate almost all 10 groups could shift effortlessly
through the first two phases of the modelling cycle. Nine groups could differentiate
between relevant and irrelevant information and all groups could represent the
real-life problem mathematically and then use appropriate acquired mathematical
knowledge to solve the problem. The findings also indicate that almost half of the
groups had trouble in the third and fourth phases of the modelling cycle. Four
groups could not make sense of the mathematical solution in terms of relevance and
appropriateness to the real-world situation and three groups did not consider
implications of decisions and results. In addition, five groups demonstrated the need
to acquire new mathematical knowledge and only one group used alternative
methods to check results.

Finally, qualitative data findings ‘tell the story’ of the exposure of participants to
a challenging mathematical modelling task. In particular, participants’ testimony
communicated how the modelling cycle created opportunities for them to experi-
ence shortcomings, and to view inaccuracies as valuable opportunities in which to
invest. These are vital messages to stimulate a growth-mindset (Dweck, 2006) and
would be considered in the next DBR phase of the broader project.

17.5 Conclusion

Since 2011, mathematical modelling has been integrated into the mathematics
curriculum of South Africa’s secondary (Grade 10–12) public schools. The solid
relationship between a positive mindset towards and achievement in mathematics

Table 17.5 Groups’ modelling and mathematical competencies

Modelling and mathematical competencies required to complete the
modelling cycle

Number of
groups

Identifying from the available information what is relevant and what is
irrelevant

9

Making simplified and relevant assumptions to enable mathematics to be
applied

10

Recognising relevant variables 10

Presenting the real-world problem mathematically (mathematisation) 10

Selecting appropriate mathematical formulae/s 10

Using acquired mathematical knowledge to solve the problem 10

Demonstrating the need to acquire new mathematical knowledge 5

Choosing appropriate methods of checking and testing the model 1

Indicating the selection of technology or other resources to confirm
calculations and/or to investigate other possibilities

3

Linking and critically checking mathematical results with the real-world
situation

6

Considering implications of decisions and results 7
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has been adequately recognised (Dowker, Ashcraft, & Krinzinger, 2012; Durandt &
Jacobs, 2017; Schukajlow, Kolter, & Blum, 2015; Sweeting, 2011). In this context,
the goal of this study was to explore the convictions and mindset of a group of
prospective mathematics teachers at a South African university, based on their
initial exposure to a model-eliciting task. An investigation of participants’ mindsets
(attitudes) towards the modelling task and convictions (beliefs) about mathematical
modelling afterwards, has shown that they enjoyed and valued the activity.
A majority of qualitative responses indicated participants experienced the activity
as challenging, although about half of the participants made positive remarks about
the experience and they mostly felt inspired to further develop their modelling
competencies. The participants generally revealed a confidence deficiency with
regards to approaching and handling the modelling task. Subsequent analyses
revealed that females, as well as prospective teachers who are less mathematically
competent, largely exhibited a fixed mindset towards mathematical modelling.

The theoretical lens through which this study was viewed, the Learning to Teach
Secondary Mathematics framework (Peressini et al., 2004), firstly asserts that how a
prospective mathematics teacher acquires a particular set of knowledge and skills
and the specific teaching context in which it happens fundamentally influence what
they eventually learn. It secondly stipulates that mathematics teachers’ knowledge,
especially their convictions and mindset, are shaped through increased participation
in the practice of teaching itself.

17.6 Suggestions

The researchers realised right from the start that a once-off modelling experience
would not be insufficient to prepare prospective teachers for this complex mathe-
matical topic, and that one modelling task cannot shape their confidence and beliefs
adequately. Prospective mathematics teachers should develop professionally during
their formal education with regards to their own mathematical modelling content
and pedagogical knowledge. Such professional development should ideally be
based on a well-planned set of guidelines that take cognisance of and gradually
cultivate a growth mindset in prospective teachers.
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Chapter 18
Conclusion and Looking Ahead

Marilyn E. Strutchens, Rongjin Huang, Despina Potari
and Leticia Losano

Overall this collection of articles is very forward thinking and focused on ensuring
that prospective secondary mathematics teachers develop positive dispositions
toward teaching and learning mathematics, develop pedagogical and content
knowledge that provides PSMTs with the background knowledge to handle most
situations, and experience teaching and learning in their course work and field
experiences that lead them toward becoming effective teachers of mathematics.

Much like many of the articles reviewed by Strutchens (2017) in the Topical
Survey: The Mathematics Education of Prospective Secondary Teachers Around
the World (Strutchens et al., 2017), most of the articles focused on field experiences
are at a small scale and much of the work has not been replicated in other places.
However, Peterson and Leatham in this monograph replicated their work with some
extended goals, and the Martin and Strutchens chapter shares how researchers
across universities are replicating the previous work of Peterson and Leatham
related to paired placements within their Networked Improvement Community.
Their work is in alignment with Strutchens et al.’s (2017) suggestion that, “a
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collaboration of researchers across multiple programs may be able to create a
sufficient sample size to undertake larger-scale investigations” (p. 46). Also featured
in this monograph is an article Mohr-Schroeder, Jackson, Cavalcanti, and Delaney)
which examined how a robotics course in an educator preparation program that
required a field experience in an informal learning environment impacted its par-
ticipants. This chapter highlights an innovative practice which benefits both
prospective teachers and their students. Heinrich’s and Kilic’s chapters focus on the
the importance of prospective teachers having extended time in the field during
practicum placements to work with students in order to hone their lesson planning,
noticing, and decision making skills. Overall, this set of papers reflects the myriad
of experiences that prospective teachers need to have during practicums and student
teaching in order to fully develop the craft of teaching.

The technology based papers presented in the monograph illuminate the impact
that technology can have on teacher preparation programs and teacher candidates.
These articles pay particular attention to PSMT’s development of technological
pedagogical content knowledge (TPACK) as a set of knowledge as well as an
orientation that reviews technology as a critical tool for identifying mathematical
relationships (Huang & Zbiek, 2017). In addition to exploring the PSMT’s per-
spectives of the use of technology in Moreno and Llinares’ chapter, Akcay and
Boston provided an account about how teaching a methods course focusing on
intentional selection and use of tasks with high levels of cognitive demand could
help develop PSMT’s capacities in designing technology-based lesson plans with
high-level cognitive demand tasks and maintaining a high-level of implementation
and anticipation of student responses. Moreover, the chapter by Zbeik describes a
holistic and integrated framework for designing programs and teaching courses that
prepare PSMTs to effectively use technology during mathematics teaching.
However, designing and implementing programs for preparing PMSTs to become
“proficient with tools and technology designed to support mathematical reasoning
and sense making, both in doing mathematics themselves and in supporting student
learning of mathematics” (AMTE, 2017, p.11) on a large scale remain challenging.

The papers included in the professional identity section present different
opportunities where PSMTs can reflect and discuss their beliefs, attitudes, and
convictions about becoming a mathematics teacher. In this way, they analyze varied
settings in which pre-service education can contribute to the development of
PSMTs’ professional identities. In line with the articles reviewed by Losano and
Cyrino (2017), Hine’s and Cyrino’s papers highlight the importance of different
field experiences as key settings for the development of PSMTs’ professional
identities while Durant and Jacobs’ work is focused on the potentiality of content
courses for developing PSMTs’ beliefs and attitudes about pedagogical strategies.
Cyrino’s work shows that through the analysis of a multimedia case featuring one
mathematics teacher practice PSMTs developed an investigative attitude towards
pedagogical practice and (re)signified their identities and their future professional
practice. Hine’s work underlines the complexity and multi-faceted character of
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PSMTs self-perceptions. In this way, despite all Hine’s research participants
asserted they felt ready to teach, a significant number articulated a need to further
develop their mathematical content knowledge and their mathematical pedagogical
knowledge. Durant and Jacobs’ results underline that PSMTs beliefs and attitudes
about mathematical modelling as a pedagogical strategy are shaped through
increased participation in the practice of teaching. Therefore, pre-service education
should offer progressive and coherent opportunities that gradually cultivate a
growth mindset in PSMTs regarding the pedagogical value mathematical modelling
and, simultaneously, develop their confidence with regards to approaching and
handling modelling tasks. The three articles show the complexity, variety, and
richness of research on PSMTs professional identities and dispositions. Particularly,
notions such as identity, beliefs, self-perceptions, and attitudes provide rich insights
into why PSMTs make certain decisions or assume particular stands (inside and
outside the classroom) and into how mathematics teacher educators may assist
PSMTs in developing their autonomy and agency.

Understanding and teaching mathematical modeling, developing assessment
criteria and grading student work, reasoning for proportional relations and facili-
tating student mathematical argumentation were topics discussed in the teacher
knowledge chapters. The reported studies emphasize the process of how teacher
knowledge can be developed, an approach that seem central in the current research
on teacher knowledge (see Potari & Ponte, 2017). In particular, the four papers in
the teacher education section, show that the development of prospective teachers’
knowledge can be facilitated through a number of teacher education practices such
as: engaging prospective teachers in identifying and interpreting critical incidents;
in solving mathematical tasks, transforming them into classroom tasks and identi-
fying their main mathematical ideas; marking exam’s responses, interpreting stu-
dents’ understanding and defining learning goals.
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