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Abstract We consider the problem of internal structure of the triple point appearing
in Mach reflection, which is considered to be important for the cause study of
the von Neumann paradox as well as the shock reflection itself in rarefied gas.
We investigate it in an adequately made finite region near the triple point and
use analytical approach rather than numerical to have a solution of 2D Navier-
Stokes equations system, by which we can avoid the difficulties such as the need
for ever finer mesh size for the region not known in the beginning. We consider
first one-dimensional flow in a finite region, which gives a flow with a hump unlike
conventional one of monotonous change for the infinite region. Then we seek a
solution of the 2D Navier-Stokes equations system in polar coordinates to the flow
field between two curved boundaries. Results show the incoming parallel flow bents
to the direction of the slip flow and the density distribution along the streamline
increases similar to that for one-dimensional shock structure but a small hump as
the solution over to the flow for a finite range.

1 Introduction

We consider the problem of internal structure of shock wave especially its non-
Rankine-Hugoniot zone [1] at the triple point in Mach reflection. It is important for
the cause study of the von Neumann paradox [2] of weak Mach reflection. Also it
is needed to see the change in feature of reflecting shock wave in rarefied gas as the
zone is widened enough to influence the main flow field [3].

The aim of the problem of shock wave structure is to find the distributions of
pressure, density, and velocity within shock wave to satisfy boundary values at
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Fig. 1 (a) Plane shock wave; (b) triple wave configuration; (I), incoming uniform flow; (II), non-
R-H flow; (III), flow of triple-point singularity

its up- and downstream conditions. We investigate the problem in the same way
as the one for ordinary plane shock wave surface, which usually considers the
problem in studying the solution of the Navier-Stokes equation system of one-
dimensional viscous gas flow to satisfy the Rankine-Hugoniot shock condition for
up- and downstream in respective regions in infinities. Here we have to consider the
problem in finite region. So we divide the flow region into three zones (I), (II), and
(III) bounded by two curved boundaries ra, rb, as seen in Fig. 1b, which correspond
to the two straight lines r ′

a , r ′
b, in Fig. 1a for the plane shock wave flow case. So we

consider first the problem of shock wave structure in a finite region in Sect. 2 and
utilize the process to construct a solution in region (II) in Fig. 1b.

2 Internal Structure of Plane Shock Wave

Here we are concerned with the solution of one-dimensional Navier-Stokes equation
system of viscous gas in a finite region as being illustrated in Fig. 1a. We have
equations of continuity, momentum, and energy as

d
dx

(ρu) = 0,
d
dx

(
ρu2 + p

) = d
dx

(
4
3μdu

dx

)

d
dx

[
ρu

(
u2

2 + h
)]

= d
dx

(
4
3μudu

dx

)
+ d

dx

(
κ dT

dx

)
,

(1)

which are supplemented by the gas relations

h = cpT and p = ρRT,
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where ρ, p, u, T, and h are the density, the pressure, the velocity, the temperature,
and the enthalpy of the flow field, with cp, R the specific heat and the gas constant.
The flow is supposed to be bounded by x = x1, x2, x1 < x2, and

ρ = ρ1, ρ2;p = p1, p2; u = u1, u2;h = h1, h2

Here we follow Becker [4] to assume that the Prandtl number σ = μcp/κ = 3/4,
where the σ value of 3/4 = 0.75 is nearly equal to the corresponding value of 0.73
for air. This assumption can simplify the system of Eq. (1) greatly to have

−u

α

du

dx
= u (B − u) − γ − 1

γ

(
A + A′eαx − u2

2

)
≡ F(u), (2)

where α ≡ (4μ/3m)−1 and integration constants A, A
′

are determined by the
boundary values as

A′ = (eαx2 − eαx1)−1 (
u2

1/2 + h1 − u2
2/2 − h2

)
,

A = (eαx2 − eαx1)−1 [(
u2

1/2 + h1
)
eαx2 − (

u2
2/2 + h2

)
eαx1

]

Furthermore, it is conventional to have the solution as considered in Becker [4]
and Taylor [5] to the shock region being infinite and ∂u/∂x, ∂p/∂x, . . . →0 as x
approaches infinities. In that case, we have A

′ = 0 to result

F(u) = γ + 1

2γ
(u1 − u) (u − u2) , u1 > u2 and mB = ρ1u

2
1 + p1 = ρ2u

2
2 + p2,

from which we can integrate Eq. (2) to have

u1 log (u1 − u) − u2 log (u − u2) = Dx + c,D ≡ α (u1 − u2) ,

c : integration constant. (3)

Notice that these are true also for ∂u/∂x, ∂p/∂x, . . . →0 at x = x1, x2, of finite
x = x1, x2. This solution shows monotonous feature as seen in Fig. 1a for its pressure
distribution.

Now for the present finite region case, the solution of Eq. (2) satisfying the
shock boundary condition approximately at its both ends is sought numerically in
determining B-value as a proper value, and the result shows that it provides a hump
in pressure distribution profile as shown in Fig. 1b. The actual numerical example
is presented in Sakurai et al. [6].

It is noted that this problem itself is simple as such and its solution is basically
known, so that it is used for the test problem for a new numerical scheme or
various models other than fluid dynamics such as molecular kinetic equation as the
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Boltzmann equation. It is often reported in this trial that the obtained distribution is
not monotonous but takes a form with hump as sketched in Fig. 1b.

3 Solution in Zone (II)

3.1 Non-Rankine-Hugoniot Zone

In practice, we use polar coordinate system (r, θ ) and postulate bounding two curves
ra, rb between zones (I), (II), and (III) as shown in Fig. 2b in two hyperbolas given by

ra : [y − tan (π − ω) x] [y − tan (2π − λ) x] = tan (π − ω) tan (2π − λ) a2

rb : [
y − tan ω′x

]
[y − tan (2π − λ) x] = tan ω′ tan (2π − λ) b2

where a, b are, respectively, the distance of ra, rb from the origin along x-axis. These
can be expressed more conveniently in polar coordinates (r, θ ) as

ra : r = a

[
sin ω sin λ

sin (θ + ω) sin (θ + λ)

]1/2

, rb : r = b

[ − sin ω′ cos λ

sin (θ − ω′) sin (θ + λ)

]1/2

(4)

We assume that the flow in (I) is the incoming uniform flow of velocity U in
x-direction with its density and pressure ρ0, p0. For the flow on the boundary rb, we
utilize the flow of the triple-point singularity in (III) given in references [7, 8], to
which we give some in Appendix below. So we have

Fig. 2 Pressure distributions, (a) in infinite region and (b) in finite region
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Vr = U cos (π − θ) , Vθ = U sin (π − θ) , p = p0, ρ = ρ0 on r = ra

Vr = Ṽr , Vθ = Ṽθ , p = p̃, ρ = ρ̃ on r = rb
(5)

3.2 2D Navier-Stokes Equation System in Polar Coordinates

The Navier-Stokes equation systems for 2D viscous gas flow in cylindrical coordi-
nates are the following equations of continuity, motion, and energy supplemented
by equations of perfect gas:

∂
∂r

(ρVrr) + ∂
∂θ

(ρV θ) = 0

ρ

(
Vr

∂Vr

∂r
+ Vθ

r
∂Vr

∂θ
− V 2

θ

r

)
+ ∂p

∂r
= μ

[
�Vr − Vr

r2 − 2
r2

∂Vθ

∂θ
+ 1

3
∂
∂r

1
r

(
∂rVr

∂r
∂Vθ

∂θ

)]
,

ρ
(
Vr

∂Vθ

∂r
+ Vθ

r
∂Vθ

∂θ
− VrVθ

r

)
+ ∂p

r∂θ
= μ

[
�Vθ − Vθ

r2 + 2
r2

∂Vr

∂θ
+ 1

3
∂
∂θ

1
r

(
∂rVr

∂r
∂Vθ

∂θ

)]

ρ
[(

Vr
∂
∂r

+ Vθ

r
∂
∂θ

)
E + p

(
Vr

∂
∂r

+ Vθ

r
∂
∂θ

)
1
ρ

]
= κ�T +

μ

[
2
(

∂Vr

∂r

)2 +
(

1
r

∂Vθ

∂θ
+ Vr

r

)2 +
(

1
r

∂Vr

∂θ
+ ∂Vθ

∂r
− Vθ

r

)2 − 2
3

(
∂Vr

∂r
+ ∂Vθ

r∂θ
+ Vr

r

)2
]

(6)

where � ≡ ∂2

∂r2 + 1

r

∂

∂r
+ 1

r2

∂2

∂θ2 , E = cvT , p = ρRT,

and (Vr, Vθ ) stands for (r, θ ) components of the velocity; ρ, p, T for the density, the
pressure, and the temperature; μ for the coefficient of the viscosity; and κ for the
heat conductivity. These μ and κ are assumed constants.

3.3 r-Expansion Solution

We consider a solution of Eq. (6) near the origin r = 0. In the present circumstances,
we express the solution in the form of the power series in r and use the approxima-
tion of the expansion to its second-order term. To this after some algebra under the
condition that the solution must be single valued at r = 0, we have the following for
the velocity V, the density ρ, the pressure p, and the temperature T:

V =Vr + i Vθ :
V = − C̃e−iθ + r

[
Ae−2iθ + B

]
, A = A1 + iA2,B = B1 + iB2 C̃ = C̃eiθ ′

0 ,

(7)
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ρ = C
(0)
5

{
1 + rC′ [cos

(
θ + θ ′

0

) − C(1) sin
(
θ + θ ′

0

)]
, C′ ≡ 2B1/

�

C

p = ρRT, T = D0 + r (D1 + D2θ) ,

(8)

where A, B, C̃, C
(0)
5 , θ ′

0, D0, D1, and D2 are to be determined by the conditions at
r = ra and r = rb in Eq. (5). In this connection, we express the uniform velocity to
the zone (I) in a complex form as

V = Vr + iVθ = Ue−iθ .

Now, firstly in observing Eq. (8) with ρ̃ in Appendix A, we can see θ0 = θ ′
0. Next

for A, B, and C̃ to the velocity, we have from Eq. (5)

r = ra : −C̃e−iθ + ra

[
Ae−2iθ + B

]
= Ue−iθ , (9)

r = rb : −C̃e−iθ + rb

[
Ae−2iθ + B

]
=

[
Ṽ

]

r=b
(10)

Obviously we cannot have solution to satisfy this completely, but we seek a
solution from its approximation to a small region near the origin of non-R-H zone.
So we put θ = π + ϕ, in Eq. (9), and θ = −θ0 + φ̃, in Eq. (10), and expand these
equations, respectively, in ϕ and φ̃, to have from the expansion coefficients

− C̃ + a (A + B) = −U

iC̃ + s (A + B)−2iA = iU

C̃eiθ0 + r̂b

(
Ae2iθ0 + B

)
=

(
Ṽ

)
r=rb,θ=−θ0 = −Ã (1 − kθ0)

where we put ra
′ (−θ0) = s, rb (−θ0) = r̂b. From these above we can determine

C̃, A, and B. In the same manner, we can determine the constants C
(0)
5 , C(1) for ρ

and D0, D1, and D2 for p, T.

4 Streamline

Let r = r(θ , θa) be a streamline from a point r(θa) on ra, which is given by the
equation

1

r

dr

dθ
= Vr

Vθ

with r = r (θa, θa) = ra (θa) .
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Fig. 3 Streamlines I R

m

q0

Here we use Vr = V
(0)
r + rV r , Vθ = V

(0)
θ + r V

(1)
θ , and expand the right-hand

side term in the power of r to have an approximation, which can be integrated, and
we use the initial condition above to have

1

r sin (θ + θ0)
= 1

ra sin (θa + θ0) 1
+

θ∫

θa

K
(
θ ′)

sin (θ ′ + θ0)
dθ ′,

K (θ) ≡ −Vr
(0)

Vθ
(0)

(
Vr

(1)

Vr
(0)

− Vθ
(1)

Vθ
(0)

)

(11)

We can see in Eq. (11) that this without the term of integral represents simply
straight line and the term contributes to make a distortion from it. This feature
of streamlines is illustrated in Fig. 3. We use this for r in the density distribution
solution Eq. (8) to have

ρ = C
(0)
5

{
1 + r (θ, θa) C′ [cos (θ + θ0) − C(1) sin (θ + θ0)

]
,

which provide the changing feature of the density along the streamline s in showing
that its main change is sinusoidal with a distortion by the factor r(θ , θa) as shown
schematically in Fig. 4. Starting from the same density, it becomes different after
passing through shock wave(s) on different streamlines. It looks similar to the one
for one-dimensional flow in a finite region shown in Fig. 1b.
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Fig. 4 Density distribution
along streamline

5 Conclusion

The importance of structure study of the triple point has been recognized for the
cause study of von Neumann paradox in Mach reflection as well as its effect to
shock reflection itself in rarefied gas flow. We proceed the study in a parallel way as
for plane shock surface in a finite region. We used analytical approach rather than
numerical to have a solution of 2D Navier-Stokes equation system, which can avoid
the difficulties such as the need for ever finer mesh size for the region not known
in the beginning. Using this solution we can see streamlines bent from the original
parallel flow line to the direction of the one for the slip flow line and the density
distribution along the streamline behaves as the one for plane shock surface with a
hump in between as seen in Fig. 1b. These suggest the understanding of the relation
representing the feature of non-Rankine-Hugoniot zone. Also these can serve as the
guide for numerical work for more details.

A.1 Appendix: Solution of Triple-Point Singularity [7, 8]

This is a r-power expansion solution of Eq. (6) in angler region between the reflected
and Mach stems satisfying the shock boundary condition at the two shock lines so
that it is singular at the triple point r = 0, which in fact represents the flow in the non-
R-H zone caused by shock lines with different shock values meeting there. Some of
the results relevant to this study are

Ṽθ = Ṽ
(0)
θ + rṼ

(1)
θ , Ṽr = Ṽ

(0)
r + rṼ

(1)
r , ρ̃ = ρ̃(0) + rρ̃(1), p̃ = p̃(0) + rp̃(1)

Ṽ
(0)
θ =Ã (1+kθ) sin (θ+θ0) , Ṽ

(0)
r = −Ã [(1+kθ) cos (θ+θ0)+k/7 sin (θ+θ0)]

ρ̃(0) = E(1 + kθ)−6/7, p̃(0) = ρ̃(0) (F θ + G) ,

Ṽ
(1)
θ = − (1/2) Ã1 sin (θ + θ0 − 2α) sin (θ + θ0) + S1 (θ)

Ṽ
(1)
r = − (1/2) Ã1 cos (θ − θ0 − 2α) sin (θ + θ0) + S2 (θ) ,

S1 (−θ0) = S1 (−θ0) = ρ̃(1) (−θ0) = p̃(1) (−θ0) = 0
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