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Abstract Two-dimensional planar motions of a rigid body carrying movable
internal masses are considered. The body can move along a horizontal plane in
the presence of dry friction forces obeying Coulomb’s law. The motion of the body
is controlled by means of internal masses that can perform prescribed movements
relative to the body. Two configurations of internal movable masses are considered.
For each of them, relative motions of these masses are proposed that ensure the
transfer of the system from any given initial state to any prescribed terminal state
in the plane. Thus, the controllability of the system by means of internal masses is
proven.

1 Introduction

The most well-known locomotion principles for mobile robotic systems presume the
use of external devices such as legs, wheels, tracks, propellers, etc., interacting with
the exterior environment. However, the motion of a robotic system inside a resistive
medium can be based also upon special motions of internal movable masses relative
to the main body of the robot. This way of locomotion without external devices can
be useful for motion inside hazardous and vulnerable environment.

Mobile robotic systems with internal movable masses are considered in a number
of papers and used for micro- and nano-positioning [5, 6]. In [1], optimal periodic
motions of systems subjected to dry friction forces and controlled by internal
movable masses are analyzed. The obtained optimal control corresponds to the
maximum average speed of the periodic motion under constraints imposed upon the
relative displacement of the internal mass, its velocity, or acceleration. Experimental
data [3, 4] confirm the obtained theoretical results. In earlier papers, only one-
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dimensional motions of systems with internal masses along a horizontal line are
discussed.

In this paper, two-dimensional motions of a rigid body carrying internal movable
masses are considered. The body contacts a horizontal plane at three support points
where normal reactions and dry friction forces are applied to the body. Two versions
of internal masses with two degrees of freedom are considered.

A short summary of results concerning optimal one-dimensional motions of a
system with an internal mass is given. These results [1] are used for designing
controls for two-dimensional motions. For two versions of mechanical systems,
the controls are proposed that transfer the systems from any initial position and
configuration in the horizontal plane to any prescribed terminal position and
configuration in this plane.

2 Mechanical Systems

Consider a rigid body P of mass m1 that can slide along a fixed horizontal plane
OXY. Vertical axis OZ of the Cartesian coordinate system OXYZ is directed upwards.
Body P called the main body contacts plane OXY at three support points Ai, i =
1, 2, 3. Since in the case of three support points the system is statically determinate,
normal reactions Ni at points Ai can be found univalently.

Dry friction forces Fi acting between points Ai and plane OXY obey Coulomb’s
law. If point Ai slides along the plane with velocity vi , the friction force is defined
by equation

Fi = −fNivi/vi, vi = |vi |, if vi �= 0. (1)

Here, f is the coefficient of friction. At the state of rest of body P, we have

|Fi | ≤ f Ni, if vi = 0, i = 1, 2, 3. (2)

We consider two versions of mechanical systems.

Version 1 Main body P carries a point Q of mass m2 that can move relative to the
main body along a horizontal plane parallel to plane OXY (Fig. 1). The point mass Q

Fig. 1 Two-dimensional
motion (Version 1)
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Fig. 2 Two-dimensional
motion (Version 2)

has two degrees of freedom relative to the main body and is controlled by actuators
installed on the body.

Version 2 Two additional bodies are associated with the main body, namely, point
Q of mass m2 and rotor R of mass m3. The rotor is a rigid body that can rotate about
the vertical axis BZ′ which is parallel to OZ and passes through point B of body
P. Rotor R is dynamically symmetric with respect to its axis BZ′. A horizontal line
directed along the unit vector e is connected with the rotor and rotates with it. Point
mass Q can move along this line; its displacement BQ is denoted by ξ (Fig. 2). As
in Version 1, the internal bodies have two degrees of freedom relative to the main
body: the angle of rotation of the rotor and displacement ξ . The relative motions of
these bodies are controlled by two actuators: one of them rotates rotor R, and the
second moves point Q along vector e.

Version 2 can be implemented in different ways [2].

3 Optimal One-Dimensional Motion

Let us consider one-dimensional motion of a system that consists of a main body
of mass M and an internal point mass m that can move relative to the main body
(Fig. 3). Both masses move along a horizontal axis Ox. The main body interacts
with the horizontal plane by means of dry friction forces, whereas the point mass
equipped with an actuator interacts only with the main body. Denote by x the
horizontal displacement of the main body, by v its velocity, by ξ the displacement of
mass m relative to the main body, by u and w its relative velocity and acceleration,
respectively. The kinematic equations can be written as follows:

ẋ = v, ξ̇ = u, u̇ = w. (3)
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Fig. 3 One-dimensional
system

The dynamical equations can be reduced to the relationship:

(M + m)v̇ = −mw + F, (4)

where F is the dry friction force acting upon the main body. This force obeys
Coulomb’s law (1):

F = −f (M + m)g signv if v �= 0; |F | ≤ f (M + m)g, if v = 0, (5)

where g is the acceleration of gravity.
Equations (4) and (5) can be presented in the normalized form:

v̇ = −μw − fg signv, if v �= 0; |w| ≤ fgμ−1, if v = 0, (6)

where μ = m/(M + m). Let us consider relative acceleration w as a control subject
to the constraint |w| ≤ W, where the constant W must satisfy the inequality:

Y = μW(fg)−1 > 1. If this inequality does not hold, then the system cannot be
controlled by the motion of the internal mass.

The relative displacement of the internal mass is subject to the constraint:

0 ≤ ξ ≤ L, (7)

where L is a given constant.
Let us consider periodic motions of our system satisfying the following boundary

conditions:

x(0) = v(0) = ξ(0) = u(0) = 0, v(T ) = ξ(T ) = u(T ) = 0, (8)

where T is the period of motion. We consider the following optimal control problem.

Problem Find control w(t) subject to constraint |w| ≤ W and such that for the
solution of system (3), (6) satisfying boundary conditions (8) and constraint (7), the
average velocity V = x(T )/T is maximum.

The solution of this problem (in the class of piecewise constant controls w(t)) is
given in [1]. We describe this solution below for the case where 1 < Y < 2 + 51/2.
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The optimal control w(t) and the corresponding velocity v(t) are given by

w(t) = fgμ−1 ×

⎧
⎪⎪⎨

⎪⎪⎩

1, t ∈ (0, t1),

−Y, t ∈ (t1, t2),

1, t ∈ (t2, T ),

(9)

v(t) = fgμ−1 ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t ∈ (0, t1),

(Y − 1)(t − t1), t ∈ (t1, t2),

[(Y − 1)(t2 − t1) − 2(t − t2)], t ∈ (t2, t3),

0, t ∈ (t3, T ).

Here, the following denotations are introduced:

T = 2τ

√
Y + 1

Y
, τ =

√
2Lμ

fg
,

t1 = τ

√
Y

Y + 1
, t2 = T − t1, t3 = τ

(√
Y

Y + 1
+

√
Y + 1

Y

)

.

The value of the maximum average speed V and the total displacement x0 of the
system over the period are given by

V =
√

μLfg

2Y (Y + 1)
(Y − 1), x0 = V T = μL(Y − 1)/Y. (10)

The control described above can be applied to the displacement of the system for
a given distance X. First, let us represent this distance as follows: X = nx0 + x1,

0 ≤ x1 < x0, where n is an integer. The total displacement consists of n periods
with duration T and displacement x0 each and one additional interval with duration
T1 and displacement x1. To determine the control for the additional interval, we
consider the relationship similar to (10):

x1 = μL(Y1 − 1)/Y1. (11)

Since x1 < x0, we have 1 < Y1 < Y . Hence, for the additional interval of length x1,
the control can be defined by the same formulas (9) as for the optimal period with
the only replacement Y by Y1 defined by Eq. (11).

Thus, we have determined the control of one-dimensional motion of our two-
mass system that ensures its displacement for any given distance X.

The same control is also applicable to a two-body system in its rotational
motion about a common axis. Here, the dry friction torque is applied to the main
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body, whereas the second body can rotate relative to the main one. Here, linear
displacements should be replaced by angles of rotation about the axis, and the
masses of bodies by their moments of inertia.

The control of one-dimensional motion can be used as a component part of the
control for two-dimensional motions.

4 Control of Motion for Version 1

Let the initial and terminal positions of system P +Q be given, and system is at rest
at these positions. This means that the initial and terminal positions of the triangle
A1A2A3 in plane OXY as well as the initial and terminal positions of pointQ relative
to this triangle are prescribed. The control problem is to find such motion of point
Q relative to body P that transfers the system P + Q from the initial position to the
terminal one.

Denote by C the center of mass of body P and assume that the vertical axis
passing through point C is the principal central axis of inertia of the body. The
projection C′ of point C onto plane OXY lies within triangle A1A2A3. Point Q can
move arbitrarily in a horizontal plane parallel to OXY within a circle |C′Q′| ≤ R0,
where Q′ is the projection of Q onto OXY, with an acceleration w relative to body
P bounded by the inequality |w| ≤ w0.

If point Q moves slowly so that its relative acceleration and velocity are small
enough, then body P stays at rest. Hence, point Q can move slowly from any initial
to any terminal position relative to the stationary body P.

Possible motion of point Q that solves our control problem consists of three
stages.

First, point Q moves slowly from its initial position to some position where the
distance C′Q′ is equal to l, l ∈ (0, R0). Body P does not move.

At the second stage, point Q moves along a circle relative to body P so that
the distance C′Q′ is equal to l. The relative velocity of this motion should be high
enough so that body P rotates in the direction opposite to the rotation of point Q. To
achieve the rotation of body P, the bound w0 should be high enough. The motion of
body P at this stage is not, generally speaking, a pure rotation; its center of mass C
can also move. This stage ends, when body P comes to the rest, and the orientation
of the triangle A1A2A3 coincides with its terminal orientation.

At the third stage, point Q moves along horizontal straight lines such that its
projection Q′ moves along lines C′Ai, i = 1, 2, 3. Suppose point Q′ travels along
line C′A1; then body P moves translationally, and point C′ moves along the same
line in the horizontal plane OXY. In this motion, all support points move along lines
parallel to C′Q′A1. This motion is feasible because the normal reactions Ni at points
Ai, i = 2, 3, have equal and opposite torques with respect to line C′A1 and thus
counterbalance each other. The torques of friction forces F2 and F3 about pointC are
also equal in value and opposite in direction. Hence, the motion of point Q along line
C′A1 results in the translational motion of body P along this line. This motion can
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be performed using the control described in Sect. 3. Using two progressive motions
of body P along two directions C′Ai , it is possible to bring triangle A1A2A3 to its
terminal position. Point mass Q can reach its prescribed terminal position relative to
body P by means of slow motion.

Therefore, it is proven that the system can be brought to the prescribed terminal
position.

5 Control of Motion for Version 2

Let the initial and terminal positions of system P +Q+R be given, and the system
is at rest at these positions. The problem is to find such motions of rotor R and point
Q relative to body P that transfer the system from the initial position to the terminal
one.

To simplify the problem, we suppose that the triangle A1A2A3 is equilateral, the
projection C′ of the center of mass C of the whole system P + Q + R (with zero
displacement ξ = 0 of point Q) lies in the center of the triangle, and the vertical
axis CZ′ passing through point C is the principal main axis of inertia of the system.

Under these assumptions, the explicit analytical solution of the control problem
stated above is feasible [2]. This solution consists of three stages (Fig. 4).

At the first stage, point Q does not move, so that ξ = 0. Rotor R rotates about
its axis. As a result, body P rotates about axis CZ′, whereas point C does not move.
The rotation ends at the state of rest, in which projection B ′ of point B onto plane
OXY lies on a line that connects the projections of the initial and terminal positions
of point C. At the end of this stage, vector e should be parallel to the same line.

At the second stage, rotor R stays fixed relative to body P, while point mass
Q moves along vector e that keeps its direction. As a result, body P moves
translationally along the same direction. At the end of the second stage, the center
of mass C reaches its terminal position, and the whole system comes to the rest with
ξ = 0.

Fig. 4 Stages of motion
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At the third stage, as at the first one, the point mass Q stays at rest with ξ = 0.
Due to the rotation of rotor R, body P rotates about the fixed vertical axis passing
through its center of mass C that stays fixed. The rotation ends at the state of rest,
in which triangle A1A2A3 comes to its terminal position. Also, point B and vector
e reach their terminal states.

At all three stages, the motions are essentially one-dimensional: rotations at the
first and third stages, and translation at the second one. They can be described by
formulas for controls given in Sect. 3. Thus, the solution of the control problem
stated above is obtained.

6 Conclusions

It is shown that the mechanical system consisting of a main body and internal
movable masses attached to it and controlled by actuators can be transferred from
an initial state to any terminal state in the horizontal plane. The motion occurs in the
presence of dry friction forces acting upon the main body. Two versions of internal
masses associated with the main body are considered; both of them have two degrees
of freedom relative to the body. The motions of internal masses that bring the system
to the desired position include several stages, rotations and translations, that are
reduced to one-dimensional motions considered earlier. The results obtained can
be useful for mobile robots moving in hazardous or vulnerable environment; these
robots have no external devices and may be hermetic.
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