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Abstract In this paper we present a complete direct approach to modeling non-
linear plates, which are made of incompressible dielectric elastomer layers. In
particular, the layers are assumed to exhibit a neo-Hookean elastic behavior and
the effect of electrostatic forces is incorporated by a purely electrical contribution
to the Helmholtz free energy. In our previous work on this subject, two-dimensional
constitutive relations for the plate were derived by numerical integration of the
three-dimensional augmented free energy through the plate thickness imposing a
plane stress assumption and an a-priori assumption concerning the distribution of
the strain through the thickness of the plate. In contrast, we directly postulate the
form of the two-dimensional augmented free energy for the structural plate problem
in this paper. Results computed within the framework of this novel approach are
compared to results from our previous work, which are well tested against existing
solutions in the literature. A very good agreement is found.

1 Introduction

The general theory of elastic dielectrics dates back to [1], and has been further
developed in, e.g., [2–4] and [5]. Elastic dielectrics belong to the class of so-
called smart or intelligent materials, which are often used as structurally integrated
materials to put structures into practice, which exhibit both, sensing and actuating
authority. Such structures are denoted as smart structures. Prominent examples are
piezoelectric materials, but also electro-active polymers. Concerning the latter we
refer to, e.g., [6] or [7]. Due to the large deformations in electro-active polymers,
nonlinear and electro-mechanically coupled formulations are required, in which two
types of coupling are typically accounted for: coupling by means of electrostatic
forces and constitutive coupling through coupling effects like electrostriction, see,
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e.g., [6]. For three-dimensional Eulerian and Lagrangian formulations, we refer to
[8] and [9].

A practically important sub-class of electro-active polymers are dielectric elas-
tomers, for which the constitutive coupling is often assumed negligible, and the
actuation is then caused solely by the electrostatic forces. Practical applications of
such dielectric elastomer actuation devices can be found, e.g., in [10–12] and [13].
In general problems of dielectric elastomer actuators numerical methods, such as the
Finite Element method, are applied implementing solid elements for general three-
dimensional problems [9, 14, 15] or solid shell elements to account for the typical
thinness of the dielectric elastomer actuators, as developed in [16].

In our own previous work, see [17], we proposed a strategy for the modeling
of thin dielectric elastomer plates, in which the plate was considered as a material
surface with mechanical and electrical degrees of freedom, and the specific consti-
tutive relations were obtained from the three-dimensional ones by the assumption
of a plane stress and an a-priori assumption concerning the distribution of the strain
through the thickness of the plate. Numerical integration was applied to compute the
structural two-dimensional constitutive relations. In elasticity such an approach has
been successfully used for elastic plates and shells [18, 19] and [20], and extended
to the electro-mechanically coupled problem of piezoelectric plates and shells in
[21] and [22].

In this paper we directly postulate the form of the two-dimensional augmented
free energy for the structural plate problem, from which structural two-dimensional
constitutive relations follow as a consequence from an extension of the principle of
virtual work to the electro-mechanically coupled problem. We compute results with
the proposed direct approach and compare them to validated results reported in [17].

2 Nonlinear Dielectric Elastomer Plates as Material Surfaces

In this section we briefly summarize the governing equations of thin plates modeled
as material surfaces with mechanical and electrical degrees of freedom. For details
concerning these equations we refer the reader to [17] and [22]. In particular,
we consider the plate as a two-dimensional continuum of “needles” with five
mechanical degrees of freedom, three translations δr, and two rotations δk, in which
the variation of the unit normal vector k lies in the tangential plane. This resembles
the notion of a single director attached to each particle of the plate, introduced in
[23]. Concerning the electrical degrees of freedom, we use only the dominant one—
the electric potential difference V .
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2.1 Strain Measures

The material surface is plane in the reference configuration, and it is denoted as
reference surface. In the deformed or actual configuration the deformed material
surface is denoted as actual surface. The first metric tensor of the reference surface
A = I plays the role of the two-dimensional identity tensor. The second metric
tensor is zero for the plane reference surface, B = 0. For the actual surface the
first and second metric tensors are a and b. The reference configuration and the
actual configuration of the material surface are related to each other by means of
a deformation gradient tensor F = (∇r)T with the position vector r of points of
the actual surface and the differential operator ∇ of the reference surface. With the
aid of the deformation gradient tensor, we introduce two tensor valued Green strain
measures for the material surface, which are defined as the difference between the
two metric tensors in the two configurations; yet, with the proper transformation by
means of F applied to the metric tensors of the actual surface a and b. These two
strain measures are

ε = 1

2

(
FT · a · F − I

)
, κ = −FT · b · F, (1)

with the right-Cauchy Green tensor C of the material surface as C = FT · a · F =
FT ·F. Both strain measures remain constant, if and only if the motion of the material
surface is a rigid body motion, see [24] for a discussion.

2.2 Principle of Virtual Work

We introduce a generalized principle of virtual work as

∫

A

δ(η0Ω)dA +
∫

A

σδV dA + δAe = 0, (2)

with the mass η0 per unit undeformed area. Integration is done over the domain A

of the reference surface. η0Ω is the plate augmented free energy per unit area in
the reference configuration, δAe is the virtual work of external forces and moments,
which through boundary forces and moments involves mechanical and electrical
sources, and the second integral accounts for the external electric charge σ per unit
reference area with δV being the variation of the electric potential. It has been shown
before, see [17], that the augmented free energy of the plate has the form η0Ω =
η0Ω(ε, κ, V ), such that its variation reads

δ(η0Ω) = η0
∂Ω

∂ε
· · δε + η0

∂Ω

∂κ
· · δκ + η0

∂Ω

∂V
δV. (3)
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Moreover, stress measures τ and μ as well as the internal charge q per unit reference
area are obtained through the constitutive relations

τ = η0
∂Ω

∂ε
= 2η0

∂Ω

∂C
, μ = η0

∂Ω

∂κ
, q = −η0

∂Ω

∂V
, (4)

and the variation becomes δ(η0Ω) = τ · · δε + μ · · δκ − qδV .
With the extended principle of virtual work at hand, we can derive the governing

equations or use the principle as a starting point for a numerical solution. In any
case, it remains to derive the specific form for the plate augmented free energy
η0Ω(ε, κ, V ).

2.3 Augmented Free Energy

First, we study a single layer dielectric elastomer plate with the thickness h. The
material is assumed to exhibit a neo-Hookean behavior and to be incompressible.
Moreover, we consider the thickness center surface as the material surface. In
analogy to the three-dimensional case, we decompose the structural augmented free
energy into a purely mechanical part η0Ω

mech and an electrical part η0Ω
elec. The

mechanical part is further additively composed of a membrane part and a bending
part, Ωmech = Ωmech

m + Ωmech
b . With the right Cauchy–Green tensor C of the

material surface, we introduce the membrane part of the mechanical contribution to
the structural augmented free energy in analogy to a plane stress augmented free
energy for an incompressible neo-Hookean material as

η0Ω
mech
m = 1

2

A

4

(
trC + (detC)−1 − 3

)
, (5)

with the extensional stiffness A = Yh(1 − ν2)−1 known from linear plate theory.
In the latter incompressibility is accounted for by means of ν = 0.5 and Young’s
modulus becomes Y = 3μ; then, A = 4μh holds. Next, we introduce the bending
part Ωmech

b of the structural augmented free energy in analogy to the bending energy
of an isotropic incompressible Kirchhoff plate as

ηΩmech
b = 1

2
D̃

(
1

2
(trκ̃)2 + 1

2
κ̃ · · κ̃

)
, (6)

in which all entities are referred to the actual configuration. J = detF is the area
change from the undeformed to the deformed configuration, η = J−1η0 is the mass
per unit area in the deformed configuration, κ̃ = −b = F−T · κ ·F−1 is the negative
second metric tensor of the actual surface, and the thickness change is accounted
for in the definition of a plate stiffness D̃ = J−3D. D = Yh3/12(1 − ν2)−1 is
the classical plate stiffness, which for an incompressible material with ν = 0.5 is
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D = μh3/3. Therefore, we have

η0Ω
mech
b = 1

2
(detC)−1D

(
(trκ̃)2 − detκ̃

)
(7)

for the bending part of the augmented free energy. Concerning the electrical
contribution to the augmented free energy we write 2ηΩelec = −c̃V 2, with the
voltage V and the capacity c̃ per unit deformed area, which is related to the capacity
per unit undeformed area c by c̃ = J c. Therefore, we have

η0Ω
elec = −1

2
cV 2(detC). (8)

We summarize our result. In the nonlinear case we have the augmented free energy
of a single layer incompressible dielectric elastomer plate

η0Ω(C, κ̃, V 2) = 1

2

A

4

(
trC + (detC)−1 − 3

)

+ 1

2
(detC)−1D

(
(trκ̃)2 − detκ̃

)
− 1

2
cV 2(detC), (9)

in which C = 2ε + I holds. Moreover, we note the identities trκ̃ = tr(C−1 · κ) and
detκ̃ = det(C−1 · κ), from which we conclude that Ω = Ω(ε, κ, V ) is true.

Change of Material Surface Our formulation holds only for a single layer
dielectric elastomer plate, for which the physical thickness center surface is taken
as the material surface. Using a different physical surface as the material surface,
we must extend the form of the augmented free energy accordingly. Owing to the
thinness of the plate, we assume the curvature tensor κ to be invariant under such a
change of the material surface. In contrast, the right Cauchy–Green tensor C is not
invariant, but transforms according to C → C + 2λmκ , in which λm is a geometry
parameter accounting for the change of the material surface. Moreover, λm is of the
same order of smallness as the plate thickness h. We start the derivation with the
membrane energy η0Ω

mech
m = η0Ω

mech
m (C) by replacing C with C + 2λmκ and

conducting a formal expansion with respect to λm up to terms of order λ3
m. This

results into

η0Ω
mech
m ≈ 1

2

A

4

(
trC + (detC)−1 − 3

)
+ 1

2

A

2
λm

(
trκ − (detC)−1trκ̃

)

+ 1

2
Aλ2

m(detC)−1
(
(trκ̃)2 − detκ̃

)

+ 1

2
2Aλ3

m(detC)−2trκ̃
(

2detκ − detC(trκ̃)2
)

. (10)
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Likewise, we treat the electrical part of the energy and find the exact result

η0Ω
elec = −1

2
cV 2

(
detC (1 + 2λmtrκ̃) + 4λ2

mdetκ
)

. (11)

Concerning the bending energy we note that it is proportional to h3 rather than the
membrane energy, which is only proportional to h. Therefore, the order of smallness
of the bending energy is already λ2

m and it is sufficient to have a formal expansion
with respect to λm up to terms of order λm; hence,

η0Ω
mech
b ≈ 1

2
(detC)−1D

(
(trκ̃)2 − detκ̃

)

+ 1

2
6Dλm(detC)−2trκ̃

(
2detκ − detC(trκ̃)2

)
. (12)

In conclusion, we write the augmented free energy for the single layer dielectric
elastomer plate as

η0Ω = 1

2

A

4

(
trC + (detC)−1 − 3

)
+ 1

2

A

2
λm

(
trκ − (detC)−1trκ̃

)

+ 1

2

(
D + Aλ2

m

)
(detC)−1

(
(trκ̃)2 − detκ̃

)

+ 1

2
2

(
Aλ2

m + 3D
)

λm(detC)−2trκ̃
(

2detκ − detC(trκ̃)2
)

− 1

2
cV 2

(
detC (1 + 2λmtrκ̃) + 4λ2

mdetκ
)

, (13)

in which A and D are stiffnesses referring to the center surface of the plate, whereas
λm characterizes the distance of the material surface from this center surface.
However, we are not so much interested in the derivation of these parameters, but
rather in the functional dependency of the different terms of the augmented free
energy on the strain measures. To identify the material parameters as well as the
sources of actuation we will linearize our formulation and compare the result to the
well-known linear theory.

Small Strain Regime Finally, we linearize the augmented free energy in the small
strain regime, in which we have C = I + 2λε with λ as a formal small parameter;
also κ is formally replaced by λκ . Concerning the voltage V we assume its square
to be of order λ. Then, an expansion in the vicinity of λ = 0 finds the principal term
λ1 of the augmented free energy to be independent from any deformation measure.
Therefore, the leading order term for the plate theory is of order λ2 and it reads

η0Ω
lin = 1

2

(
A

(
(trε)2 − detε

)
− 2cV 2trε

)
+ 1

2
Aλm (trεtrκ + ε · · κ)

+ 1

2

((
D + Aλ2

m

) (
(trκ)2 − detκ

)
− 2cλmV 2trκ

)
. (14)
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On the other hand, the linear theory of thin plates with eigenstrains is well studied,
see [25]; for the case of an isotropic incompressible material obeying Hooke’s law
using any other surface than the neutral surface as a reference surface we have

η0Ω
Hooke = 1

2

(
Ā

(
(trε)2 − detε

)
− 2τ ∗trε

)
+ 1

2
B̄ (trεtrκ + ε · · κ)

+ 1

2

(
D̄

(
(trκ)2 − detκ

)
− 2μ∗trκ

)
, (15)

in which the actuation enters classically by means of so-called Eigenspan-
nungsquellen τ ∗ and μ∗ = Zmτ ∗, provided the corresponding source is constant
through the thickness. Zm is the thickness position of the neutral surface, which is in
the thickness center of the plate. The extensional stiffness Ā, the coupling stiffness
B̄, and the bending stiffness D̄ as well as the Eigenspannungsquellen are defined as

(Ā, B̄, D̄) = 4μ

∫ Zo+h

Zo

(1, Z,Z2)dZ,

(τ ∗, μ∗) =
∫ Zo+h

Zo

ε0εr

(
V

h

)2

(1, Z)dZ,

Zm = 1

h

∫ Zo+h

Zo

ZdZ. (16)

Zo is the thickness coordinate of the upper side of the plate and ε0 and εr are the
permittivity in vacuum and the relative permittivity. This specific type of actuation
is due to Coulomb forces. Comparing the linearized version of the nonlinear theory
to the linear theory we identify the material parameters and the actuation of the
nonlinear theory, and eventually write the augmented free energy as

η0Ω = 1

2

Ā

4

(
trC + (detC)−1 − 3

)
+ 1

2

B̄

2

(
trκ − (detC)−1trκ̃

)

+ 1

2
D̄(detC)−1

(
(trκ̃)2 − detκ̃

)
+ 1

2
2K̄(detC)−2trκ̃

(
2detκ − detC(trκ̃)2

)

− 1

2
τ ∗ (

detC (1 + 2Zmtrκ̃) + 4Z2
mdetκ

)
. (17)

with τ ∗ = cV 2 and ch = ε0εr . By analogy, we identify the corresponding higher
order coupling stiffness K̄ as

K̄ = 4μ

∫ Zo+h

Zo

Z3dZ. (18)
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This completes the discussion of the augmented free energy. Having this energy at
hand we can easily study layered plates as well, because the choice of the material
surface as any physical surface is possible.

3 Validation

As a simple example, we are studying a rectangular plate with dimension a×b×h =
100 mm × 50 mm × 1 mm made of two perfectly connected layers; the material
parameters are εr = 4.7 and μ = 20,698 Pa. An electrode at the connecting
interface is grounded and a voltage can be applied at the two outer electrodes. In
particular, the voltage is applied at the lower electrode and the upper one is grounded
as well; this configuration will result into a bending actuator. The plate is fully
clamped at x = 0 and free at the other edges. As no external forces are applied
and the voltage is prescribed, the principle of virtual work reduces to a stationarity
principle,

δΣ = 0 with Σ =
∫

A

η0Ω(ε, κ, V )dA. (19)

As we are mainly interested in verifying the proposed form of the augmented
free energy, we compute solutions with a simple Ritz approximation within the
framework of the von-Karman and Tsien theory, see [26], rather than for the fully
geometric nonlinear theory. Therefore, the strain measures ε and κ are approximated
as

ε = 1

2

(
∇uS + ∇w∇w

)
, κ = −∇∇w, (20)

in which w is the plate deflection and u the in-plane displacement vector; ∇uS

denotes the symmetric part of the displacement gradient tensor. For the Ritz-Ansatz
we set

u(x, y) =
5∑

i=1

xiui , v(x, y) = 0 , w(x, y) =
5∑

i=1

xi+1wi. (21)

We increase the voltage in the bottom layer starting with V = 0 V up to V = 2000 V
and show results for the non-dimensional end point deflection w/h and the non-
dimensional end point axial position x/h in the center of the free end in the top
row of Fig. 1. Results are presented for four different physical surfaces used as the
material surface—the bottom and the top surface of the plate, the center surface
of the plate, which represents the neutral plane, with B̄ = 0 and K̄ = 0, and the
center surface of the actuated bottom layer, which is the neutral plane of the bottom
layer. One can see that the deflection and the axial positions are close to each other
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Fig. 1 Non-dimensional end point deflection w/h and the non-dimensional end point axial
position x/h for different physical surfaces

independent from the choice of the material surface. These results verify the proper
modeling concerning the choice of the material surface; yet, they still need to be
validated against other results. This is done in the two plots in the bottom row
of Fig. 1. Here, neutral plane refers to the present theory using the center surface
as the material surface and bottom—no correction to the present theory using the
bottom surface as the material surface, but setting K̄ = 0. Clearly, one can see
the significance of the material parameter K̄, if the material surface is not the
neutral plane of the plate. Gauss refers to the result computed with the same Ritz-
Ansatz within the von-Karman and Tsien approximation, but with the augmented
free energy as

�0Ω3 = 1

2
μ

(
trC3 + (detC3)

−1 − 3
)

− 1

2
ε0εr detC3

(
V

h/2

)2

, (22)

with C3 = 2(ε + Zκ) + I. A numerical integration through the thickness then
finds the plate augmented free energy. This type of modeling is already well
tested against results from the literature in [17] using finite elements within the
geometrically exact formulation. As the present results—neutral plane—coincide
very well with the ones using the numerical integration—Gauss—we conclude that
the plate augmented free energy, as given in Eq. (17), is a proper formulation.



96 M. Krommer and E. Staudigl

4 Conclusions

In this paper we primarily focused on postulating a specific form for the two-
dimensional augmented free energy of a thin plate made of layers of incompressible
dielectric elastomers. The particular case of a neo-Hookean material was consid-
ered. The resulting novel formulation was validated against results based on a-priori
assumptions imposed on the state of stress and the distribution of the strain through
the thickness of the plate, which are already well tested. A very good agreement was
obtained.
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