
Valerii P. Matveenko · Michael Krommer   
Alexander K. Belyaev · Hans Irschik   
 Editors 

Dynamics 
and Control 
of Advanced 
Structures and 
Machines
Contributions from the 3rd International 
Workshop, Perm, Russia



Dynamics and Control of Advanced Structures
and Machines



Valerii P. Matveenko • Michael Krommer •
Alexander K. Belyaev • Hans Irschik
Editors

Dynamics and Control
of Advanced Structures
and Machines
Contributions from the 3rd International
Workshop, Perm, Russia

123



Editors
Valerii P. Matveenko
Institute of Continuous Media Mechanics
Russian Academy of Sciences
Perm, Russia

Michael Krommer
Institute of Mechanics and Mechatronics
Vienna University of Technology
Vienna, Austria

Alexander K. Belyaev
Institute of Problems in Mech. Eng.
Russian Academy of Sciences
St. Petersburg, Russia

Hans Irschik
Institute for Technical Mechanics
Johannes Kepler University of Linz
Linz, Austria

ISBN 978-3-319-90883-0 ISBN 978-3-319-90884-7 (eBook)
https://doi.org/10.1007/978-3-319-90884-7

Library of Congress Control Number: 2018966531

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-90884-7


Preface

This book presents a collection of 21 contributions presented during the 3rd
International Workshop on Advanced Dynamics and Model Based Control of
Structures and Machines, which was held in September 2017 at the Institute of
Continuous Media Mechanics of the Ural Branch of the Russian Academy of
Sciences in Perm, Russia. The book contains 13 full-length papers of presentations
from Russia, 3 from Austria, 3 from Japan and 2 from Taiwan.

The general goal of the workshop was to present and discuss the frontiers in
the mechanics of controlled machines and structures. The workshop continued a
series of international workshops: the Japan–Austria Joint Workshop on Mechanics
and Model Based Control of Smart Materials and Structures, the Russia–Austria
Joint Workshop on Advanced Dynamics and Model Based Control of Structures and
Machines and the first two editions of the International Workshop on Advanced
Dynamics and Model Based Control of Structures and Machines. The previous
workshops took place in Linz, Austria, in September 2008 and April 2010, in St.
Petersburg, Russia, in July 2012 and in Vienna, Austria, in September 2015.

As with the previous editions of this workshop, the main motivation was to
proceed with and further foster the long-standing cooperation between research
teams from Russia, Austria, Japan and Taiwan. The participation of a total of 39
scientists from these 4 countries led to fruitful scientific discussions among the
participants, further deepening long-lasting cooperation and friendships, and to the
publication of this book.

Perm, Russia Valerii P. Matveenko
Vienna, Austria Michael Krommer
St. Petersburg, Russia Alexander K. Belyaev
Linz, Austria Hans Irschik
October 2018
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Measurement System of Impact Force
and Specimen Deflection Based on
Electromagnetic Induction Phenomena

Tadaharu Adachi, Yuto Mochizuki, and Yosuke Ishii

Abstract In this research, our measurement system based on electromagnetic
induction phenomena was further improved to establish a complete system for
measuring the impact force, specimen deflection, and collision velocity when
a small impactor collides with a specimen. The measurement method and data
analysis have been clarified to determine the impact force and specimen deflection
from the measured electromotive forces induced in coils set near a specimen. The
results of a rubber impact test confirmed the effectiveness of the system.

1 Introduction

The measurement of impact force [1] is important to consider the dynamic strength
of several structures related to traffic accidents (automobiles, trains, airplanes)
and natural disasters (debris from tornadoes, hail, lapillus, etc.). The impact force
when a small impactor collides with a specimen cannot be easily measured with
conventional sensors such as a load cell, accelerometer, or strain gages on the
impactor due to limitations of the sensor size. Although the supporting force of
a specimen can be measured as the impact force (under the assumption that the
impact force is equal to the supporting force), the equilibrium of the forces is not
always satisfied in the case of dynamic problems. When using other methods such
as inverse analysis with dynamic response of the structure [2], it is often difficult to
measure the force by virtue of the cracking or breaking of the structures. Therefore,
in previous works factors such as fracture, damage, and depth of penetration have
been estimated in impact tests using the impact velocity or kinetic energy of the
impactor, which was determined from the impactor behavior before collision [3–9].
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In an earlier work, the authors proposed a system that utilizes electromagnetic
induction [10] to measure impact force and specimen deflection from an electro-
motive force induced in coils near a specimen when a small impactor containing
a magnet collides with the specimen. This method was based on earlier ones
proposed by Moody et al. [11], Tansel et al. [12], and Watanabe et al. [13]. First,
we proposed continuously measuring the impactor positions and velocities in the
impact test from the electromotive force generated in a single coil near a specimen
[14]. Although the accuracy of the electromotive force was reduced near the coil,
overall effectiveness of the measured impactor behavior was demonstrated by the
results of direct measurements with a high-speed camera. Second, we proposed
the system for measuring impact force and specimen deflection by analyzing the
electromotive force with high accuracy even near the coils using the coils connected
in series [15] and quantitatively confirmed the effectiveness [16]. In this work, we
further improved the system to establish a complete system for measuring the impact
force, specimen deflection, and collision velocity of an impactor in impact tests.

2 Impact Testing Machine

We manufactured an impact testing machine to conduct impact tests (Fig. 1). The
impactor was collided with a specimen after accelerating along the gun barrel by
high-pressure air from the air chamber. The maximum air pressure was 1.0 MPa, and
the length and inner diameter of the gun barrel were 0.5 m and 15 mm, respectively.
A specimen was fixed circumferentially between two acrylic flanges with a circular
hole 80 mm in diameter (Fig. 2) by tightening polyvinyl chloride (PVC) bolts and
their nuts. Circular PVC pipes 115 mm in outer diameter were connected at both
sides of the flanges to set the coils.

Fig. 1 Impact testing machine
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Fig. 2 Specimen support and coils

3 Coils

Two coils (No. 1 and 2) were set on the PVC pipe on the gun-barrel side to measure
the electromotive forces for determining the collision velocity and initial position
of the impactor (Fig. 2). Both coils had the same 40 turns. The electromotive forces
induced in coils No. 1 and 2 were measured independently.

Three coils (No. 3, 4 and 5) on the PVC pipe on the back side were connected
in series to measure the electromotive force for analyzing the impact force and
specimen deflection. If the connected coils had the same number of turns, the
electromotive force between the coils would definitely become zero, which would
make it impossible to extend the measureable distance. Thus, coils No. 3, 4 and
5 had gradually increasing turn numbers (40, 80, and 120, respectively) and were
used to maintain a large electromotive force and extend the measureable distance
[15, 16].

Every coil was produced by wrapping 0.5 mm polyurethane-covered copper wire
(2UEW-0.16, JIS C3202) around each PVC pipe. The electromotive forces induced
in the coils were measured at 1 μs intervals using a data logger (GL-159 7000-U-
130, Graphtec).

4 Impactor and Specimen

An impactor with a steel cone-head was manufactured to increase contact stiffness
and strength at the tip of the impactor (Fig. 3). The head material did not interfere
with measuring the electromotive forces in the experiment despite it being the
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Fig. 3 Impactor. (a) Cross section, (b) Photograph

ferromagnetic. A cylindrical neodymium magnet 6 mm in diameter and length was
placed at the end of the steel head. The rear part of the impactor was covered by
high-density polyethylene. The length, diameter, and weight of the impactor were
36.0 mm, 14.9 mm, and 18.3 g, respectively. The impactor was launched by the
testing machine at an air pressure of 0.52 MPa in the experiment.

The specimen was a sheet made of a mixture of natural and butadiene rubber
filled with carbon black fillers. The thickness of the specimen was 2.3 mm. With our
measurement system, specimens containing materials with the effect of a magnetic
field shield cannot be measured since the magnetic field of the impactor is changed
due to deformation and fracture of the specimen.

5 Data Analysis

Initial position and collision velocity were determined from the histories of the
electromotive forces induced in coils No. 1 and 2 when the impactor passed through
the coils before its collision with a specimen (Fig. 4). The electromotive forces
become zero when the magnet in the impactor is located just at the coils No. 1 and
2, x1 and x2, so, the positions of the impactor, x = x1 and x = x2, can be identified
at times t = t1 and t = t2. The impactor velocity before the collision, namely the
collision velocity v0, can be evaluated from the distance between the coils and the
time difference t2 − t1.

The broken line in Fig. 5 shows the histories of the electromotive forces induced
in coils No. 3, 4 and 5 connected in series when the impactor passed through coils at
constant velocity. Because the intensity of the electromotive force in the connected
coils is proportional to the impactor velocity evaluated by coils No. 1 and 2, and
because its variation is solely dependent on the position of the impactor x, the
electromotive force per impactor velocity was used as the reference data e(x) in
the analysis of the impact force and specimen deflection. The reference data can
be acquired by the testing machine alone because the impactor velocity can be
determined from the electromotive forces of coils No. 1 and 2 when the impactor
passes through the coils without the specimen. The history of the impactor velocity
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Fig. 4 Histories of electromotive forces induced in coils No. 1 and 2 when the impactor passes
through coils at constant velocity

Fig. 5 Histories of electromotive forces induced in coils No. 3, 4 and 5 connected in series. Solid
and broken lines respectively denote result of impact test and result when impactor passed through
coils at constant velocity

in the impact test v can be evaluated with the reference data e as

v(t) = V (t)

e(x)
, x = x(t), (1)

where V is the measured electromotive force induced in connected coils No. 3, 4
and 5 in series in the impact test (solid line in Fig. 5). By integrating Eq. (1) under
the initial condition that x = x1 or x = x2 at t = t1 or t = t2, the impactor position
can be given as

x(t) = xi +
∫ t

ti

v(τ )dτ (i = 1 or 2). (2)
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The acceleration of impactor α is determined as

a(t) = dv(t)

dt
. (3)

If the natural frequency of the impactor is sufficiently high compared to that of the
specimen, the impactor behaves as a mass point. Under this condition, the impact
forceF can be evaluated by multiplying the acceleration by the mass of the impactor
m:

F(t) = mα(t). (4)

Because the impactor is in contact with the specimen during the impact loading, x(t)
can be regarded as a specimen deformation at the collision point of the impactor.

6 Experimental Results

The impactor was collided with the rubber specimen at approximate 48 m/s and
penetrated through the specimen easily, as the impactor had a steel head with high
stiffness. Figure 6 shows the history of the impact velocity evaluated by Eq. (1)
with the measured results in Fig. 5. The impactor velocity was found to decrease
monotonically from the collision velocity, 48 to 28 m/s, and after that became
constant. The constant velocity means the impactor velocity after the penetration.
Figure 7 shows the histories of the impact force evaluated with Eqs. (2) and (4). The
force increased at a high rate until 0.5 ms due to the collision of the impactor and
then gradually increased up to 1.0 ms to initiate and extend a crack in the specimen.
After that, the force decreased to zero due to the contact between the parallel side

Fig. 6 History of impactor velocity
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Fig. 7 History of impact force

Fig. 8 Impact–specimen deflection relation

of the impactor and the hole in the specimen. Finally the impactor had completely
passed through the specimen. The relation of the impact force–specimen deflection
curve calculated from the data in Figs. 6 and 7 is shown in Fig. 8. To consider the
energy in the experiment, external work due to the collision of the impactor W was
evaluated from the relation according to

W(t) =
∫ x(t)

0
F(ξ)dξ . (5)

The kinetic energy of the impactorK was also calculated from the impactor velocity
in Fig. 6 and from the impactor mass. The histories of the external work W and
the total energy of the work and kinetic energy W + K are shown in Fig. 9. The
total energy in the collision process maintained the initial kinetic energy, although
the external work increased over time. It follows from the result that the kinetic



8 T. Adachi et al.

Fig. 9 Histories of external work and total energy

energy of the impactor consumed the penetration of the specimen. The above results
demonstrated the effectiveness of the system quantitatively.

7 Conclusion

Our measurement system of the impact force and specimen deflection based on
electromagnetic induction phenomena was further improved to establish a complete
system for measuring the impact force, specimen deflection, and impactor velocity.
The reference data can be acquired and the measurement of the impact force and
specimen deflection can be determined by a testing machine alone, without other
equipment. The effectiveness of the system was demonstrated by the experimental
results of a rubber impact test. The improved system can be applied widely to
impact tests for materials without magnetic shield effect to consider impact strength,
penetration strength, etc.

Acknowledgements This research was supported by the Japan Society for the Promotion of
Science (JSPS), KAKENHI, grant number JP17K06053.
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New Cracks for Hard Contact
of Lithosphere Plates with the Base

Olga M. Babeshko, Olga V. Evdokimova, and Vladimir A. Babeshko

Abstract It is being researched the existence of the hidden defects which are not
visually watched in the coverings of nanomaterials in earthquake seismology and
materials science. It is being developed the method of the research on such defects
and coverings which are based on the topological approach. It is being adduced the
analysis of the defects on the example the research on the stress–strain state of a
block structure, consisting of a two-dimensional horizontal units of different types
in contact with each other on the boundaries. The block structure is situated on
the surface three-dimensional linearly deformable substrate and rigidly connected
with it. The researching block structures are under the arbitrary harmonic outside
effects. It is peculiar not only to the nanocoverings, surface reinforcement of the
materials but the lithospheric plate structure, the research on which stress–strain
state serves to get information about the seismic intensity of the areas. The obtained
results are evidence of the fact that the hidden defects are practically new types of
the cracks, additional to the cracks of Griffith–Irvine. That is, unlike crack Griffith–
Irvine characterized by the roundness and smoothness of boundaries, this type of
cracks includes breaks of boundaries and visually more accurately describes the
boundaries of the cracks, for example, in the fragile materials such as glass.

1 Defining Equations

Consider the case of harmonic effects on the surface of the plates is rigidly coupled
to the base. Then, after the reduction of the interim multiplier e−iωt , equations of
a boundary problem for plates can be represented as [1, 2], where the problem is
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formulated and the notations are introduced, which we follow below

sb(x1x2) =

∥∥∥∥∥∥∥
−ε5bs1b(x1, x2) 0 0

0 −ε5bs2b(x1, x2) 0

0 0 ε53bs3b(x1, x2)

∥∥∥∥∥∥∥
snb(x1, x2) = (tnb + gnb)

Rb (∂x1, ∂x2)ub

=

∥∥∥∥∥∥∥∥∥∥∥

(
∂2

∂x2
1
+ ε1b

∂2

∂x2
2
+ ε4b

)
u1b

(
ε2b

∂2

∂x1∂x2

)
u2b 0

(
ε2b

∂2

∂x1∂x2

)
u1b

(
∂2

∂x2
2
+ ε1b

∂2

∂x2
1
+ ε4b

)
u2b 0

0 0 L
(

∂
∂x1

, ∂
∂x2

)
u3b

∥∥∥∥∥∥∥∥∥∥∥
(1)

L

(
∂

∂x1
,
∂

∂x2

)
u3b =

(
∂4

∂x4
1

+ 2
∂2

∂x2
1

∂2

∂x2
2

+ ∂4

∂x4
2

−ε43b

)
u3b

Ub = Fub, Gb = Fgb Tb = Ftb

ub = {u1b, u2b, u3b} , gb = {g1b, g2b, g3b} , tb = {t1b, t2b, t3b}

Here the normal stresses t3b act on the plate at the top and g3b bottom.
Similarly stresses g1b, g2b and t1b, t2b act in the tangent plane, moreover, g2b and

t2b in the direction of the normals to the edges of lithospheric plates

Ub = F2ub, Gb = F2gb, Tb = F2tb, b = λ, r

Mb = −Db1

(
∂2u3b

∂x2
2

+ νb
∂2u3b

∂x2
1

)
, Db1 = Db

H 2 , Db2 = Db

H 3

Qb = −Db2

(
∂3u3b

∂x3
2

+ (2 − νb)
∂3u3b

∂x2
1∂x2

)
, u3b,

∂u3b

∂x2

Db = Ebh
3
b

12
(
1 − ν2

b

) , ε53b =
(
1 − ν2

b

)
124

Ebh
3
b

ε−1
6 = (1 − ν)H

μ



New Cracks for Hard Contact of Lithosphere Plates with the Base 13

ε1b = 0.5(1− νb), ε2b = 0.5(1+ νb), ε5b = 1 − ν2
b

Ebhb
, ε3b = h2

b

12
,

Tx1x2 = ε7

(
∂u2

∂x1
+ ∂u1

∂x2

)
, Nx2 = ε8

(
∂u2

∂x2
+ ν

∂u1

∂x1

)
,

ε7 = E

2(1 + ν)H
, ε8 = E

(1 − ν2)H

g1b = μ0b

(
∂u1b

∂x3
+ ∂u3b

∂x1

)
, g2b = μ0b

(
∂u2b

∂x3
+ ∂u3b

∂x2

)

μ0b = μb

H
, x3 = 0, g = {g1b, g2b}

The following symbols are accepted: μb—shear modulus, νb—Poisson’s ratio,
Eb—Young’s modulus, hb—thickness, gb, tb—vectors of contact stresses and
external horizontal, g1b, g2b, t1b, t2b and vertical, g3b, t3b impacts, respectively,
acting at a tangent to the boundary of the base and to normal to it, in the areas Ωb.
F2 ≡ F2(α1, α2), F1 ≡ F1(α1)—two-dimensional and one-dimensional operators
of the Fourier transform, respectively. The boundary conditions described in [1, 2]
are preserved here. Normals Nx2 and tangents Tx1x2 of the stress components to the
median plane at the ends of the plates, and also the bending moment Mb and Qb

cutting force are determined here.
Different models may be used for the deformable base, described by the

boundary value problem. These models are given by the relations

u(x1, x2) = ε−1
6

1

4π2

∫ ∞

−∞

∫
K(α1, α2)G(α1, α2)e

−i〈α,x〉dα1dα2, (2)

x ∈ Ωλ, x ∈ Ωr, x ∈ Ωθ, 〈α, x 〉 = α1x1 + α2x2

Ωλ(|x1| ≤ ∞; x2 ≤ 0), Ωr(|x1| ≤ ∞; 0 ≤ x2),

K = ‖Kmn‖ , m, n = 1, 2, 3,

K(α1, α2) = O(A−1), A =
√
α2

1 + α2
2 →∞

ε−1
6 = (1 − ν)H

μ
, G(α1, α2) = F2(α1, α2)g
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g—the vector of tangential and normal stresses under the plates on the boundary of
the base. Some types of matrix-base K(α1, α2) functions, called the symbol of the
system of integral equations, are given in [3] and are given by a matrix-function

K(α1, α2) =

∥∥∥∥∥∥∥
α2

1M + α2
2N α1α2(M −N) iα1P

α1α2(M −N) α2
1N + α2

2M iα2P

−iα1P −iα2P K

∥∥∥∥∥∥∥
The matrix (1) of the boundary value problem is block-diagonal, consisting of a
second-order matrix situated on the diagonal, representing a matrix operator or
vector operator and a scalar operator separated on the diagonal. Since the operators
are independent, this greatly facilitates the study of the boundary value problem.

2 Solution Method for the Boundary Value Problems

The boundary problems for each block of a block structure are absorbed in a
topological space induced by a three-dimensional Euclidean space, after this they
are reduced to functional equations by the application of the Stokes formula.

2.1 Scalar Problem

The functional equations of the scalar boundary value problem about vertical
impacts may be represented in the form

Rb(−iα1,−iα2)U3b ≡
[(
α2

1 + α2
2

)2 − ε43b
]
U3b = −

∫
∂Ωb

ωb−ε53bS3b(α1, α2)

(3)
S3b(α1, α2) = F2(α1, α2)(t3b − g3b), b = λ, r

The representation of the solution for each plate has the form

u3b = −F−1
2 (α1, α2)

1(
α2

1 + α2
2

)2 − ε43b

∫
∂Ωb

ωb−ε53bS3b(α1, α2)
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Here ωb—taking part in the representation of external forms, having the form

ωb = ei〈α,x〉
{
−
[
∂3u3b

∂x3
2

− iα2
∂2u3b

∂x2
2

− α2
2
∂u3b

∂x2
+ iα3

2u3b

+2
∂3u3b

∂x2
1∂x2

− 2iα2
∂2u3b

∂x2
1

]
dx1

+
[
∂3u3b

∂x3
1

− iα1
∂2u3b

∂x2
1

− α2
1
∂u3b

∂x1
+ iα3

1u3b

]
dx2

}
, b = λ, r

We can implement automorphism by calculating the Leray-residue forms, and
thus obtain the pseudodifferential equations of the scalar boundary value problem.
Taking into account the accepted notations, we can present pseudodifferential
equations for the left plate in the form

F−1
1 (ξλ1 )

〈
−
∫
∂Ωλ

{
iα21−D−1

λ1 Mλ −D−1
λ2 Qλ −

(
α2

21− + νλα
2
1

) ∂u3λ

∂x2

+ iα21−
[
α2

21− + (2 − νλ)α
2
1

]
u3λ

}
eiα1x1dx1 − ε53λS3λ(α1, α21−)

〉

= 0, ξλ1 ∈ ∂Ωλ (4)

F−1
1

(
ξλ1
) 〈−

∫
∂Ωλ

{
iα22−D−1

λ1 Mλ −D−1
λ2 Qλ −

(
α2

22− + νλα
2
1

) ∂u3λ

∂x2

+ iα22−
[
α2

22− + (2 − νλ)α
2
1

]
u3λ

}
eiα1x1dx1 + ε53λS3λ(α1, α22−)

〉
= 0,

α21− = −i
√
α2

1 −
√
ε43λ, α22− = −i

√
α2

1 +
√
ε43λ, ξλ1 ∈ ∂Ωλ

We introduce the following notation system:

z1λ = F1
∂uλ

∂x2
, z2λ = F1uλ, z1r = F1

∂ur

∂x2
, z2r = F1ur ,

Kλ = {k1λ, k2λ} , Kr = {k1r , k2r} , k1λ = ε53λF2(α1, α21−)(tλ − gλ),

k2λ = ε53λF2(α1, α22−)(tλ − gλ), k1r = ε53rF2(α1, α21+)(tr − gr),

k2r = ε53rF2(α1, α22+)(tr − gr)
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As a result, the pseudodifferential equations for this case may be rewritten in the
form of algebraic equations

AλYλ + BλZλ +Kλ = 0,

ArYr + BrZr +Kr = 0

Let us consider the case when the bending moment and the cutting force are zero,
that means that the plate ends are stress-free, Yλ = 0, Yr = 0.

The system of equations takes the form

(
α2

21+ + νrα
2
1

)
z1r − iα21+

[
α2

21+ + (2 − νr )α
2
1

]
z2r = −k1r

(
α2

22+ + νrα
2
1

)
z1r − iα22+

[
α2

22+ + (2 − νr )α
2
1

]
z2r = −k2r

(
α2

21− + νλα
2
1

)
z1λ − iα21−

[
α2

21− + (2 − νλ)α
2
1

]
z2λ = −k1λ

(
α2

22− + νλα
2
1

)
z1λ − iα22−

[
α2

22− + (2 − νλ)α
2
1

]
z2λ = −k2λ

The solutions of the resulting systems of equations are easily found

Zλ = −B−1
λ Kλ, Zr = −B−1

r Kr ,

and what is more, the determinants of the systems have the form

Δλ = i

〈[
α2

21− + νλα
2
1

]2
α22− −

[
α2

22− + νλα
2
1

]2
α21−

〉

Δr = i

〈[
α2

21+ + νrα
2
1

]2
α22+ −

[
α2

22+ + νrα
2
1

]2
α21+

〉

Introducing the correlations found in the expressions for the external forms in (4)
and taking U31 + U32 = U3, Umn(α1, α2) = F2(α1, α2)umn, we will have the
equations placing G3r = G+, G3λ = G−.

[
ε53r

(
α2

1 + α2
2 − ε43r

)−2 + ε−1
6 K1(α1, α2)

]
G+(α1, α2)

= −
[
ε53λ

(
α2

1 + α2
2 − ε43r

)−2 + ε−1
6 K1(α1, α2)

]
G−(α1, α2)
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+
(
α2

1 + α2
2 − ε43r

)−2 [
Ark1r + Brk2r + ε53rT

−(α1, α2)
]

+
(
α2

1 + α2
2 − ε43r

)−2 [
Aλk1λ + Bλk2λ + ε53λT

+(α1, α2)
]

2.2 Vector Problem

For the vector case we have

Rb (∂x1, ∂x2) ub =

∥∥∥∥∥∥∥∥

(
∂2

∂x2
1
+ ε1b

∂2

∂x2
2
+ ε4b

)
u1b

(
ε2b

∂2

∂x1∂x2

)
u2b

(
ε2b

∂2

∂x1∂x2

)
u1b

(
∂2

∂x2
2
+ ε1b

∂2

∂x2
1
+ ε4b

)
u2b

∥∥∥∥∥∥∥∥
The Fourier transform of the differential part of the system of equations has the form

−Rb(−iα1,−iα2)Ub =
∥∥∥∥∥
(
α2

1 + ε1bα
2
2 − ε4b

)
U1b ε2bα1α2U2b

ε2bα1α2U1b
(
α2

2 + ε1bα
2
1 − ε4b

)
U2b

∥∥∥∥∥
(5)

U = F2u, G = F2g, b = 1, 2, . . . , B

The functional equations for plates, in general, have the form [1, 2]

− Rb(−iα1b,−iα2b)Ub =
∫
∂Ωb

ωb − ε5bF2(α1b, α2b)(gb + tb), (6)

Ub = {U1b, U2b} , b = 1, 2

Here ωb—taking part in (6) a vector of external forms having the form

ωb = {ω1, ω2}

ω1b = ei〈α,x〉
{
−
(
ε1b

∂u1b

∂x2
+ ε2b

∂u2b

∂x1
− iε1bα2bu1b

)
dx1

+
(
∂u1b

∂x1
− iα1bu1b − iε2bα2bu2b

)
dx2

}
,
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ω2b = ei〈 α,x 〉
{
−
(
ε2b

∂u1b

∂x1
+ ∂u2b

∂x2
− iα2bu2b

)
dx1

+
(
ε1b

∂u2b

∂x1
− iε1bα1bu2b − iε2bα2bu1b

)
dx2

}

To make calculations we receive the Wiener–Hopf functional equations of the
following form:

MG+ = G− + V

MG+ = G− + V,

M = −[ε53λ

(
α2

1 + α2
2 − ε43r

)−2 + ε−1
6 K1(α1, α2)

]−1

×
[
ε53r

(
α2

1 + α2
2 − ε43r

)−2 + ε−1
6 K1(α1, α2)

]

V = +
(
α2

1 + α2
2 − ε43r

)−2 [
Ark1r + Brk2r + ε53rT

−(α1, α2)
]

+
(
α2

1 + α2
2 − ε43r

)−2 [
Aλk1λ + Bλk2λ + ε53λT

+(α1, α2)
]

M = K−1
2 K1, K1 = ε5rR−1

r −K, K2 = K− ε5λR
−1
λ ,

V = K−1
2

(
R−1
λ

∫
∂Ωλ

ωλ + R−1
r

∫
∂Ωr

ωr − ελR
−1
λ Tλ − εrR−1

r Tr

)

When the ends of the plates fully approached each other, the contact stresses at the
edges of the plates have the representation for the vertical and horizontal actions

gλ(x1, x2)→ σ 4λ(x1, x2)x
−1
2 + σ 5λ(x1, x2) ln |x2| + σ 6λ(x1, x2) sgn x2,

gr (x1, x2)→ σ 4r (x1, x2)x
−1
2 + σ 5r (x1, x2) ln |x2| + σ 6r (x1, x2) sgn x2 (7)

All vectors σ nλ(x1, x2) and σ nr (x1, x2), n = 3, . . . , 6 are continuous in both
parameters. Taking into account the time parameter exp(−iωt) reduced in the
solution of the harmonic boundary problem leads to the representation of the
coefficients of physical stresses σ3b(x1, x2, t) in the case of peculiarities in the form

σnb(x1, x2, t) = Re σnb(x1, x2)e
−iωt ≡ Re σnb(x1, x2) cosωt + Im σnb(x1, x2) sinωt
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3 Conclusions

The resulting correlation (7) indicates that the hidden defects are actually new types
of cracks, supplementing the known Griffith–Irwin cracks [4–8]. Unlike the well-
known Griffith–Irwin cracks, characterized by the roundness and smoothness of
the boundaries, this type of cracks contains fractures of boundaries and describes
visually more accurately the boundaries of cracks, for example, in brittle materials
such as glass. In this paper, this type of defects is detected in an inhomogeneous
medium–formed by a block structure from a three-dimensional layer and Kirchhoff
plates. The problem of the existence of such defects in homogeneous media will be
the subject of the following studies.
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Dynamics of Contour Motion of Belt
Drive by Means of Nonlinear Rod
Approach

Alexander K. Belyaev, Vladimir V. Eliseev, Hans Irschik,
and Evgenii A. Oborin

Abstract The contour motion of the belt drive, i.e., the motion with the constant
trajectory, is addressed. The belt is considered as a closed Cosserat line whose
particles have translational and rotational degrees of freedom. The problem is
considered in the framework of geometrically nonlinear formulation with no
restrictions on the smallness of displacements and rotations. The spatial (Eulerian)
coordinate which is the arc coordinate in the actual configuration is introduced. The
belt is divided into four segments: two contact segments on the pulleys and two free
spans. The friction forces are assumed to obey the Coulomb law. The study is limited
to the stationary case with the constant angular velocities of the pulleys and the
equations in components are derived for both contact and free spans. In the contact
segment two assumptions are employed to eliminate the unknown contact pressure
and friction: (1) the full contact, i.e., coincidence between the pulley and the belt and
(2) the stick condition, i.e., the belt velocity is related to the pulley angular velocity.
A nondimensional coordinate is introduced in the segments to obtain the boundary
value problem with fixed boundaries. The boundary coordinates of the contact zones
are the integration constants of the derived problem along with the other constants.
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1 Introduction

Friction belt drives were studied extensively as they are interesting from a mechan-
ical perspective. Until recently, one-dimensional models of extensible strings were
widely used [13, 15]. However it turned out that the string model captures just a
part of important effects in belt mechanics. Friction forces transmit power between
the belt and the pulley. They are applied on the belt from one side and result not
only in tangent forces, but also in distributed moments. The model without bending
stiffness cannot describe the effects related to the moment loading. For this reason
we apply the rod model accounting for the bending stiffness. In contact problems of
the rod theory, the account of shear is known to be of crucial importance, cf. [2, 8].
The introduction of shear deformation causes the absence of lumped contact forces
and promotes better understanding of the contact force distribution [4, 5]. Shear is
also required to describe the effect of elastic microslip [3].

The goal of this study is to present a rational model of the belt as a rod with
bending, extension, and shear in the steady dynamic problem, see the results of
other authors on rod steady dynamics in [9, 11] which are obtained without account
for shear.

2 Basic Equations

We consider the motion of a drive belt on two pulleys rotating with the angular
velocities Ω1, Ω2 (see Fig. 1). κ−1

1 , κ−1
2 are the pulley radii; they are inverse

to curvature. In the initial undeformed state the belt is a circle of radius κ−1
0 . Before

Fig. 1 Belt on pulleys
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fitting the belt on the pulleys Δ0 = 2κ−1
0 − κ−1

1 − κ−1
2 is the center distance—

the pulleys are just tangent to the belt. Then the distance increases up to the value
Δ > Δ0, and the belt deforms and extends forming the contact segments on the
pulleys; the stress state with forces and bending moments in the belt and the contact
pressure on the pulleys arises [4, 5].

It is reasonable to formulate the corresponding model of nonlinear elastic rod as
Cosserat material line [1, 7]. We introduce the material coordinate 0 < s < 2π/κ0
in the rod; it is the arc coordinate of the belt axis in the initial state (see Fig. 1). The
position vector of a rod particle is a function of coordinate and time r(s, t). In the
initial state

r0(s) = κ−1
0 [i(1 − cos κ0s)− j sin κ0s] ,

where i, j are the unit vectors of Cartesian axes x, y (zero refers to the values in the
initial state). We differentiate and obtain the tangent and normal unit vectors

r′0 = i sin κ0s − j cos κ0s = τ 0 = e10, κ−1
0 τ ′0 = i cos κ0s + j sin κ0s = n0 = e20.

(1)

Particles of the Cosserat line are elementary bodies with translational and
rotational degrees of freedom. Therefore we associate the directors e1, e2 with
every particle, see Fig. 1. Their coincidence with the tangent and normal (as in
(1)) disappears after the deformation—it is a consequence of transversal shear. The
angles ϕ(s), ϕ0(s) between the unit vectors e1, e10 and x-axis are important; their
difference θ is rather more important, determines the particle rotation

e1 = i cosϕ + j sin ϕ, e2 = k× e1 = −i sinϕ + j cosϕ;
ϕ0(s) = κ0s − π/2; θ(s) = ϕ − ϕ0. (2)

The system of equations [7] of nonlinear elastic rods deforming in plane is

Q′ + q = ρr̈, M ′ + k · r′ ×Q+m = 0, θ ′ = AM, r′ = e1 + B ·Q. (3)

Here q, m are the force and moment loads distributed per unit length, ρ is the mass
density per unit length, A is the bending compliance, B is the compliance tensor of
tension and shear. Usually

B = B1e1e1 + B2e2e2 ⇒ r′ = (1 + B1Q1)e1 + B2Q2e2. (4)

We have two contact segments and two free spans in the belt (see the similar
approach in [6]). In the free spans q = 0, m = 0. In the contact segments q =
−pn + f τ , m = −hf/2, where p ≥ 0 is the contact pressure, f is the friction
force, h is the belt thickness. For the driver pulley (with the angular velocity Ω1)
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there is f > 0 and for the driven pulley (Ω2) f < 0 . According to the Coulomb law
we have |f | ≤ μp where μ is the friction coefficient; after exceeding the boundary
of this inequality the slip begins.

The point about the character of contact is of importance: is it point-wise contact
or distributed. In works [4, 5] based on the exact equations of the nonlinear theory
of elastic rods, it is stated that the contact is distributed.

In the present paper we consider the simplest motion of the belt, which is the
contour motion [15]. It means that the spatial configuration does not change
in appearance in the course of time, the belt flows along the fixed closed curve
with the position vector R(σ ). We take the new coordinate σ ∈ [0, L] to be the arc
coordinate on this curve. The boundaries of the contact segments correspond to the
values σ1, . . . , σ4, see Fig. 1; they are unknown and are subject to the determination
(in contrast to the string model, they are not determined by the position of the circles
tangents). The new length of belt L is also unknown. The contour motion law reads

σ = σ(s, t)⇔ s = S(σ, t). (5)

The inverse function S is constructed for every fixed time instance.
For the velocity and acceleration we have the well-known formulae of kinematics

v = ṙ(s, t) = R′(σ )σ̇ = vτ , w = v̇τ + κv2n. (6)

We use the formulae of differential geometry: R′(σ ) = τ , τ ′(σ ) = κn, where κ is
the trajectory curvature. In (6) the velocity of the belt motion v = σ̇ = ∂tσ (s, t)

appears (with the reduced notation of the partial derivative).
Below we will use also the value D = |r′| = ∂sσ (s, t). From the equality of

mixed derivatives the following is valid:

∂tD = ∂sv. (7)

3 Eulerian Description of Motion

Thus far we have mostly used the Lagrangian description of motion [7]. However
for the contour motion the spatial (Eulerian) description is more advantageous; it
has the arguments σ and t . Transition from one description to another is based on
(5):

u(s, t) = u(S(σ, t), t) ≡ ũ(σ, t) = ũ(σ (s, t), t),

∂su = D∂σ ũ, D ≡ ∂sσ = |r′|, ∂tu ≡ u• = ∂t ũ+ v∂σ ũ. (8)
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We introduce the material time derivative here (a bullet point in the superscript
denotes it). Then in formula (6) for the tangential acceleration we have

wτ = v• = ∂t v + vv′ = ∂tv + ∂σ (v
2/2). (9)

Besides the linear velocity v, the angular velocity ω appears in the equations

ω = θ• = (∂t + v∂σ )θ̃(σ, t). (10)

Because the model with shear is considered, the linear and angular velocities are
independent.

We make an additional simplifying assumption: the contour motion is stationary
in the same sense as in the fluid mechanics [10]: v(σ, t) = v(σ ), etc. The full list
of values depending only on σ is: R, v, Q, M, ω, ϕ, B, τ , n, e1, e2, w.
In particular, the values r, θ, r0, ϕ0, e10 are absent in this list. This brings up
the question about the bending deformation and the elasticity relation which can be
written as follows:

θ ′(s, t) = ϕ′(s, t) − ϕ′0(s) = D∂σϕ − κ0 = AM. (11)

By now we have the system of ordinary differential equations (ODE) of
stationary motion of the nonlinear elastic belt. Let us write it denoting the derivative
with respect to σ by prime:

DQ′ + q = ρw, D(M ′ + n ·Q)+m = 0, D ≡
√
(1 + B1Q1)2 + (B2Q2)2,

Dϕ′ − κ0 = AM, R′ = τ = D−1 [(1 + B1Q1)e1 + B2Q2e2] . (12)

However the system (12) is not full; the equations for v, ω are missing. We
deduce the equations from (7) and (10):

vD′ = Dv′ ⇒ v = cD, c = const; ω = vϕ′ = c(AM + κ0). (13)

We use the first equation in the second one.
The system (12), (13) consists of six ODE for the unknowns Q1, Q2, M , ϕ, x,

y—as the system in the “usual” nonlinear theory of rods deforming in plane [4, 5, 8].
In the free spans (see Fig. 1) the distributed load is absent, and on the pulleys it is the
unknown normal pressure and friction force.

4 Contact Segment

For the case without slip, i.e., when |f | ≤ μp, we assume

v = Ω1κ
−1
1 + ωh/2 (14)
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(for the left contact segment). When the limiting friction is achieved at a certain
segment of belt, the tangent load becomes proportional to the normal one, as the
distributed moment does. Then we need to obtain the solution again accounting for
these circumstances—an iteration process is probably required. The curvature radius
of the belt line is κ̃−1 = κ−1 + h/2. The belt coinciding with the pulley circle has
the position and tangent vectors as follows:

R = κ̃−1
1

[
i (1 − cos κ̃1σ )− j sin κ̃1σ

]
, R′ = i sin κ̃1σ − j cos κ̃1σ. (15)

We note that different assumptions may be used for the present contact model.
Using the formulae (15) and elasticity relations (12), we write the projections

of the tangent unit vector into the directions of unit vectors e1 and e2:

R′ · e1 = (1 + B1Q1)/D = − sin α, R′ · e2 = B2Q2/D = − cosα, α ≡ ϕ − κ̃1σ.

(16)

Then similarly to the static considerations [4, 5] we may express the force
component Q2 as a function of coordinate σ , angle ϕ and force component Q1
in the form:

Q2 = B−1
2 (1 + B1Q1) cotα. (17)

For the second contact segment we express the transverse force in the same way:

Q2 = B−1
2 (1 + B1Q1) cot

[
ϕ − κ̃2

(
σ − L̃

)]
. (18)

Here L̃ is the arc coordinate of the belt point lying at the rightmost point of the
second pulley. In the following we focus on the first contact segment; however, in
the second one the analogous equations are valid. From Eqs. (13) and (14) we obtain

M = −κ0

A
+ 2

Ah
D − 2Ω1

Ahκ1
c−1. (19)

This can be used to determine the friction force from the balance of moments (12)

f = 2

h
D(M ′ +Qn) = 4

h2A
DD′ + 2

h
DQn. (20)

Also we need the equation for ϕ′ derived from (12) with the use of (19)

ϕ′ = 2

h

(
1 − Ω1

κ1

1

cD

)
. (21)
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In the balance equations of contact segments we express Q1, Q2 in terms of the
tangent Qτ and normal Qn components:

Q1 = −Qτ sin α +Qn cosα, Q2 = −Qτ cosα −Qn sin α. (22)

Then we rewrite Eq. (17) and Equation for D in (12)

Qn = (B1 − B2)Qτ sin 2α/2 − cosα

(1 + cos 2α)(B1 − B2)/2 + B2
, D = − 1

sin α
− B1Qτ + B1Qn cotα.

(23)

The acceleration components are

wτ =
(
v2

2

)′
= c2

2

(
D2
)′ = c2DD′; wn = κ̃1v

2 = κ̃1c
2D2. (24)

Now we write the balance of forces (12) with the use of (20) as follows:

Q′
τ =

(
κ̃1 − 2

h

)
Qn +

(
ρc2 − 4

h2A

)
D′, Q′

n = −κ̃1Qτ +D−1p + ρκ̃1c
2D,

(25)

where we need the derivative D′. Now we may transform the first equation of (25)
into the normal form which is not stated here, because it is lengthy. Finally from the
second equation of (25) we determine the contact pressure

p = DQ′
n + κ̃1DQτ − ρκ̃1c

2D2. (26)

So, in the contact zone we have two unknown functions ϕ and Qτ and one
constant c determining all the remaining variables.

5 Free Span

The expression for curvature κ is cumbersome and includes the derivatives of the
unknown functions under the square root. Therefore it is advisable to exclude the
curvature from the system of equations. To do this we use the derivative of the
tangent vector τ ′ and write the acceleration vector in the form w = wττ + wnn =
wττ +w∗

nτ
′. Exploiting the stationarity, we account for (9) and (13) and determine

the acceleration components

wτ = c2

2

(
D2
)′ = c2 (1 + B1Q1) B1Q1

′ + c2B2
2Q2Q2

′, w∗
n = v2 = c2D2.

(27)
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Now we rewrite the balance equations without distributed loads and the remain-
ing equations of system (12):

Q1
′ = (1 − ρc2B2D)Q2 (κ0 + AM)

D
(
1 − ρc2B1D

) ,

Q2
′ = [ρc2D(1 + B1Q1)−Q1](κ0 + AM)

D
(
1 − ρc2B2D

) ,

M ′ = [(B2 − B1)Q1 − 1]Q2/D, x ′ = [(1 + B1Q1) cosϕ − B2Q2 sin ϕ] /D,

ϕ′ = (κ0 + AM) /D, y ′ = [(1 + B1Q1) sin ϕ + B2Q2 cosϕ] /D.

(28)

Now we subdivide the belt into four segments, σ4 − L ≤ σ ≤ σ1, σ1 ≤ σ ≤ σ2,
σ2 ≤ σ ≤ σ3, and σ3 ≤ σ ≤ σ4. For convenience, we eventually will introduce
the new nondimensional coordinate 0 ≤ ξ ≤ 1 similarly to the previous works
[4, 5, 8]. The main advantage of this transformation is dealing with the boundary
value problem (BVP) with known boundaries. As a result we have 16 functions:Qτ

and ϕ in the contact segments; Q1, Q2, M , ϕ, x, and y in the free segments and
eight constants: c from (13); four boundary arc coordinates σ1, . . . , σ4, L̃, actual
belt length L, and center distance Δ. The boundary conditions are the conditions
of continuity in force, moment, position vector, and angle at the segment ends;
altogether there are 24 conditions in components. The formulated BVP can be
numerically solved, e. g. by the collocation method of Chebfun package in Matlab.

6 Conclusion

The main results of the present research are listed below:

• the drive belt is modelled as a plane nonlinear elastic rod with account for
bending, tension, and shear; its steady motion is generalized to the case of friction
contact;

• the spatial (Eulerian) description of motion is introduced;
• the belt is divided into four segments, two contact and two free segments; the

equations for these segments are combined in a single ODE system;
• the formulated BVP is written down in the form appropriate for numerical

analysis;
• the simulation results will be further used to substantiate the FEM solutions,

presented in [12, 14].
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On the Method of Low-Frequency
Monitoring of the Initial Stress State
of a Body

T. I. Belyankova, O. V. Bocharova, A. V. Sedov, and V. V. Kalinchuk

Abstract A method for low-frequency control of the stress state of structures is
proposed, based on an analysis of the parameters of the surface wave field created
by the impact. To process the recorded signal, a special method is used, based on
the use of optimal orthogonal decompositions of the signal in the base, adaptively
tuned to the training sample. A series of computational experiments on simulation
of dynamic processes in a prestressed medium was carried out. Studies have shown
a high degree of informativeness of the method to various types of initial stress state
in the medium and also a high sensitivity to a change in the value of the initial
deformation.

1 Introduction

The development of methods for monitoring the structure and stress of composite
structures is one of the key problems in the mechanics of solids. A considerable
number of publications are devoted to the study of the influence of initial stresses
on the processes of wave propagation in an elastic medium [1–3]. In particular, the
regularities of the influence of the initial deformation on the velocity of various
types of waves are revealed. An equally large number of papers are devoted to
the investigation of wave processes on the surface of prestressed media [4–6]. The
effect of the initial deformation on the velocity of the Rayleigh waves [7, 8], SH
waves [9], or Love waves [10] was studied. Studies have shown that this influence is
linear. An alternative to these studies is the method of initial stress control proposed
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in [11–16]. It is based on recording the change in the resonance properties of the
system sensor-layered heterogeneous medium. The advantage of this approach is
its integral nature due to the use of low-frequency oscillations. This allows to
significantly increase the area monitoring by one sensor and opens the prospect
of creating continuous monitoring systems—remote monitoring of the state of
constructions and assemblies made of layered composite materials.

2 Resonance Method of Stress Control

The resonant method of stress state control [16] is based on recording the change
in the resonance properties of the system “sensor-layered heterogeneous medium.”
The process of interaction of a massive stamp with a medium is described by the
equation of motion of a massive body interacting with an elastic medium

w = F
[
Q(κ)−mκ2

]−1
(1)

Here Q(κ) is the dynamic rigidity of the medium, m is the mass of the die, κ is
the dimensionless frequency (κ = ωhV −1

S , ω is the oscillation frequency, h is the
characteristic linear dimension, and VS is the shear wave velocity). The idea of the
method is based on the properties of the functionQ(κ)—the dynamic rigidity of the
medium, which is a reaction to the vibrations of a stamp with a given amplitude. Any
change in the properties of the medium inevitably leads to a change in the dynamic
rigidity and as a consequence, which follows from (1), to a change in the amplitude
of the oscillations of a massive body.

If you adjust the mode of oscillation of the body to resonant, then the change
in the reaction of the medium will lead to a change in the resonance frequency.
As an example in [16] the case of vibrations of a massive body on the surface
of a composite medium, which is a layer 0 ≤ x3 ≤ h lying on the surface of
a half-space x3 ≤ 0, was investigated. The system performs translational vertical
vibrations under the action of force F , applied to the body m. The oscillations are
assumed to be steady; friction in the contact region is absent.

Next the following types of initial deformed state are considered: a prestressed
layer on a non-stressed half-space (the layer is first stretched or compressed, and
then connected to a half-space); an unstressed layer on the prestressed half-space
(the half-space is first prestressed, then connected to the layer). As before, the initial
deformed state in a layer or half-space can be uniaxial, biaxial, or triaxial. The effect
of localization of the initial stressed state on the dynamics of a massive stamp is
illustrated by the graphs in Fig. 1 (the prestressed layer, the half-space is free of
initial stresses) and Fig. 2 (the half-space is prestressed, the layer is in the natural



On the Method of Low-Frequency Monitoring of the Initial Stress State of a Body 33

–24

–18

–12

–6

0

5,93 5,99 6,05 6,11 6,17

4

3

2

1
τ

ω

Fig. 1 Influence of various types of initial deformation on the resonance properties of the system
“massive die—prestressed two-layer medium.” The layer is prestressed

state). The digits 1, 2, and 3 indicate the curves τ calculated for the uniaxial stress
state along the axes x1, x2, and x3, respectively, 4—the curve calculated with the
triaxial stress state. It is not difficult to see that the maximum influence on the
dynamics of a massive body is exerted by a triaxial stress state localized both in
the layer and in the half-space. At the same time, there is a sharp difference between
the manifestations of prestress in the layer and in the half-space. When the initial
stresses localized in the layer (Fig. 1), it has a major influence on the amplitude of
the resonance. The resonance frequency does not change—the curves for various
initial stresses are embedded to each other. When the initial stresses localized in a
half-space (Fig. 2), it has a major influence on the resonance frequency. Curves τ
are shifted relative to each other. Each type of initial stresses is characterized by
the frequencies of maximum influence and the frequency at which the influence
of initial stresses on the amplitude of oscillations of a massive body is absent.
This shows the peculiarity of the half-space, which consists in the presence of a
maximum and minimum influence in the half-space for each initial state of stress,
and the absence of such frequencies near the layer.
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Fig. 2 Influence of various
types of initial deformation
on the resonance properties of
the system “massive
die—prestressed two-layer
medium.” The half-space is
prestressed
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3 Bispectral Method of Stress Control

Another method that allows controlling the stress state of the medium is a method
based on a special treatment of the surface wave field. Figure 3 shows the difference
graphs of the displacement amplitudes of the surface point with an initial tension of
0.5×10−3 and 1.5×10−3 with respect to the initial compression of 1.5×10−3. The
question is how to process the signal to get useful information about the stress state.
The use of the spectral method, correlation, autocorrelation, and cross correlation
did not allow to significantly increase the information content of the signal. In this
paper, we propose a bispectral method of signal processing [17].

Next, the results of a numerical experiment on the calculation of the wave-
field parameters for different values of the initial stressed state are presented. The
following values were used as design values: uniaxial initial stress along the x1
axis: tensile strength of 0.5 × 10−3, 1.0 × 10−3, 1.5 × 10−3; compression strength
of 0.5 × 10−3, 1.0 × 10−3, 1.5 × 10−3. Each graph fi(t) can be considered as
a column-vector of real values fi = [fi1, fi2, fi3, . . . , fiN ]T ∈ RN of response
change in time. Discretization step Δt in time is selected in accordance with the
discretization theorem [17]. Let n be the number of recognizable variations of the
defect in the construction. To each of the variations we associate a column-vector
fi ∈ RN . Then the test sample for n variations of the defect will be a matrix fi =
{f1, f2, f3, . . . , fn} ∈ RN×n. Initially, a set of vectors fi = {f1, f2, f3, . . . , fn}
is linearly dependent. This is due to the excessive dimensionality of the vectors
fi ∈ RN , precision of the graph forms fi(t). Base of recognition is the finding of an
orthogonal transformation � ∈ RN×m of matrix f ∈ Rn×N into matrix A ∈ Rn×m
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Fig. 3 Amplitude difference of the surface point oscillations under uniaxial initial tension 0.5 ×
10−3 and 1.5 × 10−3 multiplied by 1012 m relatively to the compression of 1.5 × 10−3

of the following form A = f�. The matrix � = [ξ1, ξ2, ξ3, . . . , ξm] defines a linear
subspace in RN , for which it is true that the set of possible linear combinations of
the vectors is also a linear space or linear span:

span {ξ1, ξ2, ξ3, . . . , ξm} =
⎧⎨
⎩

m∑
j=1

βj ξj : βj ∈ R

⎫⎬
⎭ (2)

At the same time vectors ξ1, ξ2, ξ3, . . . , ξm form an orthonormal basis in RN

and for the matrix �, it is true that �T � = Im. Conventionally, the matrix � can
be considered as a matrix of orthogonal compression of linear space RN into the
space Rm. Vectors fi ∈ RN of responses are transformed into images Ai ∈ Rm,
using �. In this case the investigated matrix of responses f transformed into the
matrix of images A = [A1, A2, A3, . . . , An]T ∈ Rn×m. In general, the orthogonal
decomposition of the original vectors fi ∈ RN in the basis � can be represented as
fi = �Ai + A0, where A0 is constant component of the transformation.

The orthonormal basis ξ1, ξ2, ξ3, . . . , ξm is adaptively adjustable and dependent
on recognizable sample fi = {f1, f2, f3, . . . , fn} ∈ RN×n.

When determining the basis, a complex of optimization problems is solved:

1. best reproducibility: ‖f−A�T −A0‖2 → min, where A0 ∈ Rn×N is the matrix
of constant transform components, composed of the vectors A0;

2. orthonormality of the basis: ‖�T �− Im‖2 → min;
3. best distinguishability: d2 (A) = 1

m2−m
∑m

i,j=1,i �=j ‖Ai − Aj‖2 → max.

For the sake of simplicity of physical interpretation, we realized the represen-
tation of the images of the initial deformation by images in the two-dimensional
feature space. As the two coordinates of the image, we choose those that have the
maximum spread spectral sign 1 and spectral sign 2. As the study showed, this size
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Fig. 4 The results of signal processing for compression and extension along the x1 axis by the
bispectral method

of the spatial space is sufficient to conduct a qualitative diagnosis of the initial stress
state of the body.

Figure 4 shows the results of constructing a specific diagnostic space and image
arrangement for different values of the uniaxial initial deformation along the x1
axis. The images are represented in the form of points, the coordinates of which
represented in the form of points, the coordinates of which are the coefficients for
the expansion of the vectors in the chosen basis. The point bd corresponds to the
natural state, the points r0.5, r1.0, r1.5 correspond to the initial stretching values
of 0.5 × 10−3, 1.0 × 10−3, 1.5 × 10−3. The points s0.5, s1.0, s1.5 correspond to
the initial compression values of 0.5 × 10−3, 1.0 × 10−3, 1.5 × 10−3. It can be
noted that the proposed method makes it possible to effectively identify the initial
deformed state both in magnitude of strain and in sign (tension or compression). The
peculiarity of the result is that the points corresponding to different deformations are
located on one parabola.

In Fig. 5 the results of the study of a uniaxial stress state are supplemented by
the results of a biaxial stress state along the x2 and x3 axes, which provide a given
initial deformation along the x1 axis. The points rr0.5, rr1.0, rr1.5 correspond to
the initial tension values of 0.5 × 10−3, 1.0 × 10−3, 1.5 × 10−3. The points ss0.5,
ss1.0, ss1.5 correspond to the initial compression values of 0.5×10−3, 1.0×10−3,
1.5×10−3. They are also located on a parabola, but the values of the spectral features
changed sign and decreased in modulus. Figure 6 illustrates the sensitivity of this
approach. It presents images corresponding to different values of uniaxial tension or
compression along the x1 axis with a deformation reduced by a factor of 10.

As follows from the graphs, the proposed method makes it possible to identify
different types of initial stress state.
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Fig. 5 The results of signal processing for compression and extension along the x1 axis by the
bispectral method. Uniaxial deformation (s, r), biaxial deformation (ss, rr)

Fig. 6 The results of signal processing for compression and extension along the x1 axis by the
bispectral method. The deformation is reduced by a factor of 10

4 Conclusions

A method for processing signals in problems of controlling the initial stress state is
proposed using the response function on the sample surface on the basis of the user
adaptive orthonormal basis.

The use of the proposed method provides a clear recognition of the type of the
initial stress state and the magnitude of the initial deformation in the diagnostic
image space. The method may be of interest for solving the problem of monitoring
the stress state of structures.
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Mesomechanical Response of a Soft
Magnetic Elastomer to AC Magnetization

A. M. Biller, O. V. Stolbov, and Yu. L. Raikher

Abstract The behavior of a pair of magnetizable spherical particles embedded in a
viscoelastic elastomer is studied for the case, where an AC magnetic field is applied
along the center-to-center line of the particles. This system is considered as a small-
scale (mesoscopic) structure element of a magnetorheological elastomer. Under a
quasistatic cycle of the field, the system in question is prone to hysteretic behavior.
Namely, the particles initially positioned well apart, at some finite field strength,
fall onto one another (cluster) and reside in this state until the field decreases well
below the value at which the cluster has been formed. Under dynamic cycling of
the field, the viscous friction interferes with the particle displacement process and
impedes the occurrence of the magnetodeformational hysteresis of the element.
Starting from small-amplitude overdamped oscillations and enhancing the role of
magnetic forces over viscous ones, we show how the anharmonicity of the system
grows while it approaches the transition threshold, above which the dynamics of
the element includes the cluster state. The dynamic hysteresis of magnetization that
accompanies the mechanical oscillations of the particles is presented as well.

1 Introduction

For quite a time now, smart materials whose properties can be adjusted to variable
working conditions by external or “built-in” control mechanisms are a subject of
nonfading interest. A vast majority of smart materials are composites. Uniting
in one system the elements sensitive to different stimuli and, at the same time,
interacting with each other is, indeed, a direct way to get an entity with a unique
combination of properties. In this paper we address the dynamic behavior of the
composites of that type known as magnetorheological elastomers (MREs), which
are elastomer matrices filled with micron-sized magnetizable particles. Under the
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external magnetic field, the particles acquire magnetic moments of their own that
makes them interact with the applied field and with each other via ponderomotive
forces. Those interactions compel the particles to move at the mesoscopic (of the
order of interparticle distance) scale, and, while doing that, the particles entrain
the surrounding matrix. The occurring processes, on the one hand, modify the
internal structure of a MRE and by that affect its material parameters, rheological
ones, in particular. On the other hand, if those changes undergo coherently, (e.g.,
all the particles attract each other along the direction of the field) cause notable
macroscopic deformations of a MRE sample or modify substantially its stress state.

The usage of MREs as essential working components in adaptive dampers,
actuators, valves, medical appliances, etc. is an actively developing applicational
trend. In such devices, the main exploited effect is the change of rheological
characteristics and shape of MRE elements in response to the applied magnetic
field or mechanical load in the real-time regime. Therefore, the dependence of the
dynamic characteristics of MREs on the applied field and load is an important issue;
this is demonstrated by a rather large number of published experimental works on
this subject [1–3, 7, 9, 11–13].

2 Two-Particle Element

To understand the internal interactions, which govern the rearrangements of the
inner structure of MREs’, one should study them at the mesoscopic level, where
the matrix and particles are considered separately and each entity is treated as a
continuous medium with its own set of properties to which scope the hypotheses
on the interaction between the phases are added. In line with this viewpoint,
we have proposed a simple model comprising two magnetic particles embedded
in an elastic matrix as a basic element of a MRE capable of illustrating the
magnetomechanical response of the material [4, 5]. The model element consists of
a cylindrical sample whose outer dimensions are chosen under the requirement that
a pair of spherical particles occupies about 30% of its geometric volume, which is a
typical concentration in MREs of applicational interest. The particles have identical
radii a and are positioned symmetrically in such a way that their center-to-center
vector l coincides with the cylinder axis. The latter is taken as the Oz axis of the
cylindrical coordinate frame whose origin is placed at the center of the sample.

As well known, the most strong shape changes and magnetic effects are displayed
by MREs based on soft polymer matrices with Young’s moduli E ∼5–30 kPa;
see [13], for example. The internal viscosity of those compounds is rather high:
the range of experimentally estimated magnetic and stress relaxation times spans
from tenths of seconds to a few seconds [10]. This time scale is inherent to MREs
filled with microparticles (2–5 μm) of carbonyl iron, which have the initial magnetic
susceptibility of the order of 104 and saturation magnetization of 1500 kA/m [8].



Mesomechanical Response of a Soft Magnetic Elastomer to AC Magnetization 41

Fig. 1 (a) Model mesoscopic two-particle element of a MRE; (b) quasistatic magnetomechanical
hysteresis loop for a pair of particles with center-to-center distance q0 = 3 and β = 2500 for
definitions of those parameters seen below

When the model element sketched in Fig. 1a is subjected to an external uniform
magnetic field H0 = (0, 0,H0), the magnetic polarization of the particles induces
their mutual attraction, striving to move them closer. However, as soon as the
particles yield to this tendency, the deformed matrix generates restoring elastic
forces, so that a new equilibrium state of the pair is defined by the balance of those
opposing effects.

The magnetomechanical response of the above-described two-particle element
under quasistatic conditions was studied in detail in Refs. [4, 5]. Note that in
those works, nonuniform deformation of a nonlinearly elastic elastomer matrix and
nonuniform and nonlinear magnetization of the particles were taken into account as
well. It turned out that within a certain domain of material parameters of the particles
and matrix, the system displays bistable behavior. Namely, when the MRE element
is subjected to a quasistatic cycle of the magnetic field, the magnetomechanical
hysteresis occurs: the trajectory z(H) along which the particles moves when the
field increases does not coincide with that undergone during the field decrease. This
is demonstrated in Fig. 1b, where the downward arrow corresponds to the field of
cluster formation, whereas the upward arrow corresponds to the field of the cluster
breaking apart. In this work, for the sake of simplicity, we deal in the small-strain
approximation and assume that the polymer obeys just the Hooke law. Because of
that, here the parameter governing the effect is β = 2μ0M

2
s /G, where μ0 is the

magnetic constant, Ms saturation magnetization of the ferromagnetic material, and
G shear modulus. The comparison with [4, 5] shows that the adopted simplifications
do not qualitatively change the field-induced behavior of the model. A quantitative
difference, however, is that the quasistatic hysteresis loop in Fig. 1b is wider than
for the case of a MRE with Mooney-Rivlin matrix.

To characterize the configuration of the two-particle element, we use nondimen-
sional units, scaling all the distances with the particle radius a. Therefore, the current
center-to-center distance of the pair and the relative change of the interparticle gap
(the closest distance between the particle surfaces) are defined as

q = l/a and δ = (q − 2)/(q0 − 2), (1)
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respectively; here q0 is the initial interparticle distance and q = 2 is the limiting
value attained when the particles come into tight contact. As seen, the gap parameter
δ varies from unity in the initial state of the element to zero when the particles
collapse in a cluster.

The loop presented in Fig. 1b describes the element with initial center-to-center
distance q0 = l0/a = 3 and magnetomechanical parameter β = 2500 that
corresponds to a MRE with Ms = 1500 kA/m and Young’s modulus of the matrix
8 kPa. Here and below we express the external field strength in nondimensional
units as h0 = H0/Ms . The adopted set of material parameters implies that the
polymer is rather soft so that the collapsing field is low: h0 ≈ 0.039 that corresponds
to H0 ∼ 60 kA/m (or 750 Oe) that is rather far from the saturation level of the
particle magnetization. Under these conditions, the magnetomechanical hysteresis
loops of the linearly and nonlinearly magnetizing particles do not differ much.
Further on, after qualitatively understanding the dynamic processes, we restrict
the consideration to the linear magnetization approximation, that is, using it for
evaluating the interparticle magnetic interaction via the linear multipole model; see
Ref. [4]. This treatment is not at all unrealistic since carbonyl iron microparticles
magnetize virtually linearly in the fields up to a few kOe. Although a linearly
magnetizing substance does not have saturation, we keep the adopted value ofMs to
scale the field strength; this should be recalled when transforming the results back
to dimensional form.

In the case of a time-dependent field, the motion of the particles, besides the
potential magnetic and elastic forces, is affected by viscous friction which has two
evident sources. One of them stems from the dissipation (Joule heat) due to the eddy
currents induced inside the metal grains by the applied field. However, in the low-
frequency range (up to a few kHz) that we are interested in, this effect is negligible.
The only dissipation mechanism relevant for the considered situation results from
the particle displacements relative to the matrix. Provided this motion is not too fast
(the frequency of the field is low), the arising viscous force acting on a particle is
Stokes-like, i.e., proportional to its velocity.

We begin with the case of small particle displacements, i.e., small matrix strains.
In that case, one may assume that the motion of the pair occurs only along the
upper branch of the magnetomechanical hysteresis loop; see Fig. 1b. In linear strain
approximation, the stress σ̂ arising in the matrix may be presented as a sum of elastic
and viscous parts as

σ̂ = σ̂el + σ̂visc = λI1(ε̂) Î + 2Gε̂ + η
d

dt
ε̂. (2)

Here ε̂ is the strain tensor, λ Lamé’s first parameter, I1 the first invariant of tensor
ε̂, Î the unity tensor, and G and η the shear modulus and viscosity coefficient of the
matrix, respectively. It is easy to note that the adopted viewpoint corresponds to the
Kelvin model of a viscoelastic medium, where the elastic and viscous elements are
connected in parallel.
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Under linear magnetization law, the interparticle magnetic force may be
described with the aid of analytical expressions derived in Ref. [4]. In the set
of units that we adopt here, the result of [4] for the vector of magnetic attraction
force per particle writes as

Fm = μ0H
2
0 a

2 Fm(q), (3)

where nondimensional function Fm in a complicated way depends on the interpar-
ticle distance q but is independent of the applied field strength. Introducing volume
density fm of this force in such a way that it is nonzero only inside the particles and
is always directed along the local magnetic field, one arrives at the time-dependent
force balance equation:

∇ · σ̂ + fm = 0. (4)

For the considered materials the inertia terms are omitted as being negligible.
Finally, we introduce the nondimensional time scale t = t/τR , basing it on

the stress relaxation time τR = η/G of the Kelvin model. After the pertinent
transformation of the strain tensor time derivative, the equation set of the problem
takes the form

∇ · σ̂ + κh2
0 fm = 0,

σ̂ = λ

G
I1(ε̂)Î + 2ε̂ + d

dt
ε̂. (5)

Here the stress is determined as σ̂ = σ̂ /G, the operator as ∇ = a∇, and
the coefficient alongside the magnetic force as κ = μ0M

2
s /G. The problem is

completed by imposing stress-free conditions at all the boundaries.
The magnetomechanical problem (5) was solved numerically in axisymmetric

formulation by the finite element method with the aid of library fenics for the
python language for different field oscillation regimes.

Evidently, the most interesting dynamic issues are the oscillation regimes of the
particle pair when the AC field is strong enough to provoke the particle collapse.
During some part of the field period, where the field strength is the highest, despite
the viscous impediment, the particles would dwell in the cluster state, falling on each
other at the beginning of this time interval and falling apart at its end. The chances
to obtain this regime analytically, due to its strong nonlinearity, are very poor, and
numerical modelling seems the only possible way to describe it. Moreover, even our
numerical tools are inept for adequate description of an oscillation that includes the
cluster state: the calculation procedure becomes unstable there.

To overcome the difficulty and get some qualitative notion of such regimes, we
resort to an interpolation model. Let the particles be connected by a compact Kelvin
element whose properties are as close as possible to those of the whole viscoelastic
matrix of the mesoscopic model. Therefore, we consider an elastic rod of finite
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dimensions set in parallel with a viscous damper. The selection of properties of those
two branches is done by fitting their overall responses to those obtained by solving
numerically the full problem in the field-frequency domain where the algorithm yet
works well. The comparison yields that the shear modulus of the elastic rod should
coincide with that of the matrix, whereas the geometry dimensions of the rod serve
as fitting parameters. The relaxation time of the Kelvin scheme that is determined by
the ratio of its elastic and viscous parameters turns out to be close to the relaxation
time of the matrix.

To ensure regular behavior of the model at small interparticle distances, the
adopted Kelvin scheme is modified by adding one more branch. This is done on
a “technical” purpose: one needs to increase the stability of calculations for the case
where the particles are in the cluster state. Although the particle collapse (getting in
tight contact) is quite natural from the physical viewpoint, for the software packages
that we use, it entails huge computational difficulties as one faces a necessity to
solve a contact problem between two solid bodies. To avoid that with minimal effect
on the results, we treat the particles as objects with a solid core covered with a thin
elastic shell with a high (but not immense) elastic modulus. The abovementioned
third branch is responsible for that: it replaces a strictly vertical repulsive potential
wall by, although very steep, but inclined ascending one; in other words, it makes
the radial dependence of interparticle energy an analytical function.

3 Oscillations of the Interparticle Distance

Let an AC uniform external magnetic field

h0(t) = hA sin(ωt) = hA sin(ωt ), ω = ωτR, t = t/τR, (6)

of amplitude hA be applied along the axis of the MRE element; here ω is the dimen-
sional frequency. With the usage of the interpolation model, the magnetomechanical
problem is solved analytically for any steady field oscillations (6).

As the magnetic particles are just polarizable and do not possess any remanent
magnetization, the magnetic force between them does not depend on the direction
of the applied field and, thus, would oscillate with doubled frequency. Accordingly,
the time dependence of the forced changes of interparticle gap δ would be the same.

The establishment of steady state particle oscillations at low field amplitudes
was investigated in our previous work [6]. Here we focus on the oscillations whose
regime could be termed pretransitional. The results for that case are shown in Fig. 2.
Here the amplitude of the applied field exceeds the quasistatic threshold h∗ of the
particle collapse. In this situation, the transitions of a separated pair to a cluster and
back become possible. However, the fact whether or not such a transition would
really occur depends on the frequency of the field.

Indeed, in the presence of viscous friction, the transition to the cluster state, i.e.,
a substantial change of the interparticle distance, needs a finite time τ∗. If, at a given
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Fig. 2 Steady dynamic magnetodeformational hysteresis cycles of the model element under AC
field of amplitude hA = 0.04 and frequencies ω = 0.8 (a), 0.5 (b), 0.44 (c), and 0.2 (d). We note
that smooth smaller loops in pane (c)—those similar in shape to that in pane (b)—correspond to a
transient process; the steady loop is the largest one with “angles”

frequency in each half-period of the AC field, the condition h0(t) > h∗ holds for
a time interval longer than τ∗, then the particle clustering should take place. If, to
the contrary, this interval is shorter than τ∗, clustering is impossible. Although the
time parameter τ∗ is not calculable analytically, the numerical plots of Fig. 2 for a
certain amplitude imply that for the set of material and model parameters that we
use, one has 0.44 < τ∗ < 0.5. This follows from the difference of the cycle shapes:
the one at higher frequency is closed and located at δ ≥ 0.5, while the one at lower
frequency falls down to δ � 0 after a few cycles. At lower field frequencies, the
shape of the dynamic hysteresis loop becomes much the same as the one inherent to
the quasistatic case.

4 Magnetization Oscillations

As the MRE element under study is made of magnetically polarizable particles
of a finite size, the changes in the interparticle distance, modulating their mutual
magnetization, entail cyclic changes of the magnetic moment of the pair. This effect
is evaluated from the carried out calculations as well and enables one to obtain the
magnetic dynamic hysteresis loops of the studied model system.
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Fig. 3 Steady magnetization curves of the model element under AC field of amplitude hA = 0.04
and frequencies ω = 0.8 (a), 0.5 (b), 0.44 (c), and 0.2 (d); note that magnetization curves are given
in terms of absolute values, i.e., they are valid for both positive and negative m and h0. We remark
that smaller loops in pane (c)—those similar in shape to that in pane (b)—correspond to a transient
process; the steady loop is the largest one

In Fig. 3 the plots of the model element magnetization are presented for the same
overcritical field amplitude (h0 > h∗) as in Fig. 2 and different frequencies. Note
that, due to the fact that the MRE element contains only magnetically soft particles,
the dynamic magnetization curves m(h0) have “zero-waist” shape: no remanent
magnetization in the considered low-frequency (with respect to internal magnetic
relaxation) range. At higher frequencies, the elastic effect in the viscoelastic matrix
prevails, and the particle displacements (and, thus, magnetization) are tiny and
coherent with the field. As a result, the magnetization curve virtually does display
any loop; see pane a. As the frequency goes down, the amplitude of the particle
forced motions becomes greater, and, accordingly, the viscous lag between the field
and magnetization enhances. The gradual increase of the phase shift between h(t)
and m(t) results in progressive “inflation” of the end loops of the magnetization
curves.
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5 Conclusion

The mesoscopic oscillatory behavior of ferromagnetic filler particles in a magne-
torheological elastomer (MRE) is investigated with the aid of a structure model
presenting an element of a MRE as a pair of particles embedded in an elastomer
cylinder element. The oscillations are induced by external magnetic field applied to
the element. Therefore, they are of the forced type and, due to the small size of the
particles, are overdamped: the viscous forces are far greater than the inertial ones.
The main phenomenon that affects the process is the bistability of the interparticle
gap: in a certain domain of the field and frequency magnitudes, the pair of initially
remote particles might collapse in a cluster. This affects the type of the oscillations:
from nearly linear (small amplitudes/high frequency) they transform to essentially
nonlinear where the part of the field period the pair spends in a collapsed state. As
the particles are magnetic, the occurring mechanical motion affects the magnetic
moment of the pair as well. This results in a dynamic magnetic hysteresis of the
MRE element: its magnetization curves become loop-shaped. In our viewpoint, the
above-presented considerations infer that forced oscillations, where the MRE filler
particles clusterize, are an interesting issue, whose more detailed investigations—
analytical, numerical, and experimental—would be useful for shading light on the
internal dynamics of MREs.

Concerning the macroscopic manifestations of the above-described effects we
remark the following. On the one hand, they should be strongly smoothed down
because of the polydispersity of the MRE filler particles and the distribution of the
interparticle gaps. On the other hand, the effect should contribute to the effective
values of the dynamic elastic moduli extracted from the measurement data. We
remark also that some experimental works, see [1], point out that in some situations
the inertial effects (not taken into account here) seem to be important. The presented
model could be easily extended to cover that case as well.
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Two-Dimensional Motions of a Robot
Under the Influence of Movable Internal
Masses

F. L. Chernousko

Abstract Two-dimensional planar motions of a rigid body carrying movable
internal masses are considered. The body can move along a horizontal plane in
the presence of dry friction forces obeying Coulomb’s law. The motion of the body
is controlled by means of internal masses that can perform prescribed movements
relative to the body. Two configurations of internal movable masses are considered.
For each of them, relative motions of these masses are proposed that ensure the
transfer of the system from any given initial state to any prescribed terminal state
in the plane. Thus, the controllability of the system by means of internal masses is
proven.

1 Introduction

The most well-known locomotion principles for mobile robotic systems presume the
use of external devices such as legs, wheels, tracks, propellers, etc., interacting with
the exterior environment. However, the motion of a robotic system inside a resistive
medium can be based also upon special motions of internal movable masses relative
to the main body of the robot. This way of locomotion without external devices can
be useful for motion inside hazardous and vulnerable environment.

Mobile robotic systems with internal movable masses are considered in a number
of papers and used for micro- and nano-positioning [5, 6]. In [1], optimal periodic
motions of systems subjected to dry friction forces and controlled by internal
movable masses are analyzed. The obtained optimal control corresponds to the
maximum average speed of the periodic motion under constraints imposed upon the
relative displacement of the internal mass, its velocity, or acceleration. Experimental
data [3, 4] confirm the obtained theoretical results. In earlier papers, only one-
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dimensional motions of systems with internal masses along a horizontal line are
discussed.

In this paper, two-dimensional motions of a rigid body carrying internal movable
masses are considered. The body contacts a horizontal plane at three support points
where normal reactions and dry friction forces are applied to the body. Two versions
of internal masses with two degrees of freedom are considered.

A short summary of results concerning optimal one-dimensional motions of a
system with an internal mass is given. These results [1] are used for designing
controls for two-dimensional motions. For two versions of mechanical systems,
the controls are proposed that transfer the systems from any initial position and
configuration in the horizontal plane to any prescribed terminal position and
configuration in this plane.

2 Mechanical Systems

Consider a rigid body P of mass m1 that can slide along a fixed horizontal plane
OXY. Vertical axis OZ of the Cartesian coordinate system OXYZ is directed upwards.
Body P called the main body contacts plane OXY at three support points Ai, i =
1, 2, 3. Since in the case of three support points the system is statically determinate,
normal reactions Ni at points Ai can be found univalently.

Dry friction forces Fi acting between points Ai and plane OXY obey Coulomb’s
law. If point Ai slides along the plane with velocity vi , the friction force is defined
by equation

Fi = −fNivi/vi, vi = |vi |, if vi �= 0. (1)

Here, f is the coefficient of friction. At the state of rest of body P, we have

|Fi | ≤ fNi, if vi = 0, i = 1, 2, 3. (2)

We consider two versions of mechanical systems.

Version 1 Main body P carries a point Q of mass m2 that can move relative to the
main body along a horizontal plane parallel to plane OXY (Fig. 1). The point mass Q

Fig. 1 Two-dimensional
motion (Version 1)
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Fig. 2 Two-dimensional
motion (Version 2)

has two degrees of freedom relative to the main body and is controlled by actuators
installed on the body.

Version 2 Two additional bodies are associated with the main body, namely, point
Q of mass m2 and rotor R of mass m3. The rotor is a rigid body that can rotate about
the vertical axis BZ′ which is parallel to OZ and passes through point B of body
P. Rotor R is dynamically symmetric with respect to its axis BZ′. A horizontal line
directed along the unit vector e is connected with the rotor and rotates with it. Point
mass Q can move along this line; its displacement BQ is denoted by ξ (Fig. 2). As
in Version 1, the internal bodies have two degrees of freedom relative to the main
body: the angle of rotation of the rotor and displacement ξ . The relative motions of
these bodies are controlled by two actuators: one of them rotates rotor R, and the
second moves point Q along vector e.

Version 2 can be implemented in different ways [2].

3 Optimal One-Dimensional Motion

Let us consider one-dimensional motion of a system that consists of a main body
of mass M and an internal point mass m that can move relative to the main body
(Fig. 3). Both masses move along a horizontal axis Ox. The main body interacts
with the horizontal plane by means of dry friction forces, whereas the point mass
equipped with an actuator interacts only with the main body. Denote by x the
horizontal displacement of the main body, by v its velocity, by ξ the displacement of
mass m relative to the main body, by u and w its relative velocity and acceleration,
respectively. The kinematic equations can be written as follows:

ẋ = v, ξ̇ = u, u̇ = w. (3)
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Fig. 3 One-dimensional
system

The dynamical equations can be reduced to the relationship:

(M +m)v̇ = −mw + F, (4)

where F is the dry friction force acting upon the main body. This force obeys
Coulomb’s law (1):

F = −f (M +m)g signv if v �= 0; |F | ≤ f (M +m)g, if v = 0, (5)

where g is the acceleration of gravity.
Equations (4) and (5) can be presented in the normalized form:

v̇ = −μw − fg signv, if v �= 0; |w| ≤ fgμ−1, if v = 0, (6)

where μ = m/(M +m). Let us consider relative acceleration w as a control subject
to the constraint |w| ≤ W, where the constant W must satisfy the inequality:

Y = μW(fg)−1 > 1. If this inequality does not hold, then the system cannot be
controlled by the motion of the internal mass.

The relative displacement of the internal mass is subject to the constraint:

0 ≤ ξ ≤ L, (7)

where L is a given constant.
Let us consider periodic motions of our system satisfying the following boundary

conditions:

x(0) = v(0) = ξ(0) = u(0) = 0, v(T ) = ξ(T ) = u(T ) = 0, (8)

where T is the period of motion. We consider the following optimal control problem.

Problem Find control w(t) subject to constraint |w| ≤ W and such that for the
solution of system (3), (6) satisfying boundary conditions (8) and constraint (7), the
average velocity V = x(T )/T is maximum.

The solution of this problem (in the class of piecewise constant controls w(t)) is
given in [1]. We describe this solution below for the case where 1 < Y < 2 + 51/2.
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The optimal control w(t) and the corresponding velocity v(t) are given by

w(t) = fgμ−1 ×

⎧⎪⎪⎨
⎪⎪⎩

1, t ∈ (0, t1),

−Y, t ∈ (t1, t2),

1, t ∈ (t2, T ),

(9)

v(t) = fgμ−1 ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t ∈ (0, t1),

(Y − 1)(t − t1), t ∈ (t1, t2),

[(Y − 1)(t2 − t1)− 2(t − t2)], t ∈ (t2, t3),

0, t ∈ (t3, T ).

Here, the following denotations are introduced:

T = 2τ

√
Y + 1

Y
, τ =

√
2Lμ

fg
,

t1 = τ

√
Y

Y + 1
, t2 = T − t1, t3 = τ

(√
Y

Y + 1
+
√
Y + 1

Y

)
.

The value of the maximum average speed V and the total displacement x0 of the
system over the period are given by

V =
√

μLfg

2Y (Y + 1)
(Y − 1), x0 = V T = μL(Y − 1)/Y. (10)

The control described above can be applied to the displacement of the system for
a given distance X. First, let us represent this distance as follows: X = nx0 + x1,

0 ≤ x1 < x0, where n is an integer. The total displacement consists of n periods
with duration T and displacement x0 each and one additional interval with duration
T1 and displacement x1. To determine the control for the additional interval, we
consider the relationship similar to (10):

x1 = μL(Y1 − 1)/Y1. (11)

Since x1 < x0, we have 1 < Y1 < Y . Hence, for the additional interval of length x1,
the control can be defined by the same formulas (9) as for the optimal period with
the only replacement Y by Y1 defined by Eq. (11).

Thus, we have determined the control of one-dimensional motion of our two-
mass system that ensures its displacement for any given distance X.

The same control is also applicable to a two-body system in its rotational
motion about a common axis. Here, the dry friction torque is applied to the main
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body, whereas the second body can rotate relative to the main one. Here, linear
displacements should be replaced by angles of rotation about the axis, and the
masses of bodies by their moments of inertia.

The control of one-dimensional motion can be used as a component part of the
control for two-dimensional motions.

4 Control of Motion for Version 1

Let the initial and terminal positions of system P +Q be given, and system is at rest
at these positions. This means that the initial and terminal positions of the triangle
A1A2A3 in plane OXY as well as the initial and terminal positions of point Q relative
to this triangle are prescribed. The control problem is to find such motion of point
Q relative to body P that transfers the system P +Q from the initial position to the
terminal one.

Denote by C the center of mass of body P and assume that the vertical axis
passing through point C is the principal central axis of inertia of the body. The
projection C′ of point C onto plane OXY lies within triangle A1A2A3. Point Q can
move arbitrarily in a horizontal plane parallel to OXY within a circle |C′Q′| ≤ R0,
where Q′ is the projection of Q onto OXY, with an acceleration w relative to body
P bounded by the inequality |w| ≤ w0.

If point Q moves slowly so that its relative acceleration and velocity are small
enough, then body P stays at rest. Hence, point Q can move slowly from any initial
to any terminal position relative to the stationary body P.

Possible motion of point Q that solves our control problem consists of three
stages.

First, point Q moves slowly from its initial position to some position where the
distance C′Q′ is equal to l, l ∈ (0, R0). Body P does not move.

At the second stage, point Q moves along a circle relative to body P so that
the distance C′Q′ is equal to l. The relative velocity of this motion should be high
enough so that body P rotates in the direction opposite to the rotation of point Q. To
achieve the rotation of body P, the bound w0 should be high enough. The motion of
body P at this stage is not, generally speaking, a pure rotation; its center of mass C
can also move. This stage ends, when body P comes to the rest, and the orientation
of the triangle A1A2A3 coincides with its terminal orientation.

At the third stage, point Q moves along horizontal straight lines such that its
projection Q′ moves along lines C′Ai, i = 1, 2, 3. Suppose point Q′ travels along
line C′A1; then body P moves translationally, and point C′ moves along the same
line in the horizontal plane OXY. In this motion, all support points move along lines
parallel toC′Q′A1. This motion is feasible because the normal reactionsNi at points
Ai, i = 2, 3, have equal and opposite torques with respect to line C′A1 and thus
counterbalance each other. The torques of friction forcesF2 andF3 about point C are
also equal in value and opposite in direction. Hence, the motion of point Q along line
C′A1 results in the translational motion of body P along this line. This motion can
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be performed using the control described in Sect. 3. Using two progressive motions
of body P along two directions C′Ai , it is possible to bring triangle A1A2A3 to its
terminal position. Point mass Q can reach its prescribed terminal position relative to
body P by means of slow motion.

Therefore, it is proven that the system can be brought to the prescribed terminal
position.

5 Control of Motion for Version 2

Let the initial and terminal positions of system P +Q+R be given, and the system
is at rest at these positions. The problem is to find such motions of rotor R and point
Q relative to body P that transfer the system from the initial position to the terminal
one.

To simplify the problem, we suppose that the triangle A1A2A3 is equilateral, the
projection C′ of the center of mass C of the whole system P + Q + R (with zero
displacement ξ = 0 of point Q) lies in the center of the triangle, and the vertical
axis CZ′ passing through point C is the principal main axis of inertia of the system.

Under these assumptions, the explicit analytical solution of the control problem
stated above is feasible [2]. This solution consists of three stages (Fig. 4).

At the first stage, point Q does not move, so that ξ = 0. Rotor R rotates about
its axis. As a result, body P rotates about axis CZ′, whereas point C does not move.
The rotation ends at the state of rest, in which projection B ′ of point B onto plane
OXY lies on a line that connects the projections of the initial and terminal positions
of point C. At the end of this stage, vector e should be parallel to the same line.

At the second stage, rotor R stays fixed relative to body P, while point mass
Q moves along vector e that keeps its direction. As a result, body P moves
translationally along the same direction. At the end of the second stage, the center
of mass C reaches its terminal position, and the whole system comes to the rest with
ξ = 0.

Fig. 4 Stages of motion
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At the third stage, as at the first one, the point mass Q stays at rest with ξ = 0.
Due to the rotation of rotor R, body P rotates about the fixed vertical axis passing
through its center of mass C that stays fixed. The rotation ends at the state of rest,
in which triangle A1A2A3 comes to its terminal position. Also, point B and vector
e reach their terminal states.

At all three stages, the motions are essentially one-dimensional: rotations at the
first and third stages, and translation at the second one. They can be described by
formulas for controls given in Sect. 3. Thus, the solution of the control problem
stated above is obtained.

6 Conclusions

It is shown that the mechanical system consisting of a main body and internal
movable masses attached to it and controlled by actuators can be transferred from
an initial state to any terminal state in the horizontal plane. The motion occurs in the
presence of dry friction forces acting upon the main body. Two versions of internal
masses associated with the main body are considered; both of them have two degrees
of freedom relative to the body. The motions of internal masses that bring the system
to the desired position include several stages, rotations and translations, that are
reduced to one-dimensional motions considered earlier. The results obtained can
be useful for mobile robots moving in hazardous or vulnerable environment; these
robots have no external devices and may be hermetic.
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Splitting of Strain Solitons upon Their
Interaction in the Auxetic Rod

Vladimir I. Erofeev, Vladimir V. Kazhaev, and Igor S. Pavlov

Abstract The problem of longitudinal wave propagation in a rod made from
an auxetic material is considered. It is shown that a negative Poisson’s ratio
leads to a qualitatively different (anomalous) dispersion behavior of linear waves.
Accounting for geometric and physical elastic nonlinearities leads to the possibility
of generating in a rod of stationary strain waves of a substantially non-sinusoidal
profile—solitons and their periodic analogues. By means of numerical simulation it
is shown that qualitatively different scenarios of interaction of solitons depend on
the relative collision velocity.

1 Introduction

At present, models and structures of auxetic rods [1] used as elements of a new
class of composites [2] are actively developed, and auxetic polymeric foams [3, 4]
and auxetic crystalline materials [5, 6] are synthesized and studied. Considerable
attention is paid to the study of characteristic features of the propagation of elastic
waves, primarily, of the ultrasonic range, in materials with a negative Poisson’s
ratio (auxetics) [1, 7–13], since such studies will contribute to the development of
methods for acoustic non-destructive testing of new advanced materials.

The aim of this paper is an investigation of the propagation of longitudinal waves
in a rod made from an auxetic material.
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2 The Nonlinear Mathematical Model

The nonlinear equation generalizing the Bishop model of longitudinal vibrations of
a rod has the form [14]:

∂2u

∂t2
− c2

0

(
1 + 6α

E

∂u

∂x

)
∂2u

∂x2 − ν2R2
(

∂4u

∂x2∂t2
− c2

x

∂4u

∂x4

)
= 0 (1)

Here R is the polar radius of inertia, and the coefficient α determining the
contribution of the geometric and physical nonlinearities is equal to α = E

2 +
ν1
6 (1 − 6ν) + ν2 (1 − 2ν) + 4

3ν3, where ν1, ν2, and ν3 are Lame constants of the
third order.

Let us introduce dimensionless variables t ′ = c0t/R, x ′ = x/R, u′ = αu/R in
Eq. (1) and then omit dashes over the dimensionless variables:

∂2u

∂t2
−
(

1 + β
∂u

∂x

)
∂2u

∂x2
− ∂4u

∂x2∂t2
+ c2 ∂

4u

∂x4
= 0 (2)

The dimensionless parameter β defines a rod with a “rigid” (β = 1) or a “soft”
(β = −1) type of nonlinearity.

In Eq. (2) the dimensionless parameter c is equal to the ratio of the velocities
c = cτ /c0 and c ≤ 1 for all the positive values of the Poisson’s ratio. But if
the Poisson’s ratio is negative, various cases are possible, when the rod velocity
c0 exceeds the shear wave velocity cτ (c < 1 for − 0.5 < ν < 0) or, vice versa,
cτ > c0 (c > 1 for − 1 < ν < −0.5). The degenerated case, when both velocities
coincide, yields c = 1 for ν = −0.5.

3 Strain Solitons in an Auxetic Rod

Let us consider a rod with a “rigid” nonlinearity. We shall search for solutions
of Eq. (2) among stationary strain waves U(ξ) = ∂u/∂ξ where ξ = x − V t is
the “travelling” coordinate and V = const is the stationary wave velocity. Some
solutions of Eq. (2) describe a nonlinear stationary wave (soliton) having a bell
shape:

U(ξ) = A∗

ch2((x − V t)/Δ)
(3)

where ch is the hyperbolic cosine. The amplitude A∗ and the width Δ of a wave are
related to its velocity V by the following relations:

A∗ = 3
(
V 2 − 1

)
, Δ = 2

√(
c2 − V 2

)
/
(
1 − V 2

)
(4)
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Fig. 1 The dependence of the amplitude for ν > −0.5

Fig. 2 The dependence of the width on the soliton velocity for ν > −0.5

If Poisson’s ratio exceeds −0.5 (i.e., c < 1), then “subsonic” solitons (0 < V <

c) of a negative polarity and “supersonic” (V > 1) solitons of a positive polarity can
propagate in a rod. The dependences of the amplitude and the width on the soliton
velocity are plotted in Figs. 1 and 2, accordingly.

When ν ∈ (−1; 0.5), “subsonic” solitons (0 < V < 1) have a negative
polarity too, whereas “supersonic” (V > c) solitons possess a positive polarity.
The dependences of the amplitude and the width on the soliton velocity are plotted
in Figs. 3 and 4, respectively.
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Fig. 3 The dependence of the amplitude on the soliton velocity for −1 < ν < −0.5

Fig. 4 The dependence of the width on the soliton velocity for −1 < ν < −0.5

4 Numerical Simulation of Soliton Interactions

Numerical simulation of Eq. (2) was carried out using the developed finite-
difference algorithm realizing an implicit three-layer scheme with the approxi-
mation order o

(
τ 2, η2

)
, where τ is the time step and η is the space step of the grid.

The difference scheme is uniformly stable for the following relation between the
steps: τ ≤ 0.85η2/

√
2η2 (1 + |ux |)+ 8c2.
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By means of numerical simulation it is shown that qualitatively different
scenarios of interaction of solitons depend on the relative collision velocity. A
collision of only supersonic solitons was considered, as any collision velocities can
be realized for them.

If the relative velocity is small (ΔV = 0.0466), the collision occurs like the
exchange interaction of the classical solitons described by the Korteweg–de Vries
equation. A fast soliton overtakes a slow soliton, they are not unified but they
exchange their characteristics and continue to move with the just received velocities.
In this case the secondary solitons are completely identical to the primary solitons.

When the relative velocity is greater (ΔV = 0.1), the collision of solitons is
already inelastic. During the interaction, solitons lose a part of their energy, which is
realized in a packet of quasiharmonic waves moving behind the slowest supersonic
soliton with the velocity of linear waves.

As a result of further increasing of the collision velocity (ΔV = 0.4), the fast
soliton overtakes the slow soliton and they are unified. The amplitude of the unified
soliton is less than the algebraic sum of the amplitudes of the interacting solitons.
Then the solitons go away from each other losing some of the energy. This energy
is distributed between two wave packets, one of which propagates in the opposite
direction to the motion of the solitons with the velocity of quasilinear waves, and
the other one overtakes, with the same velocity, supersonic solitons.

The great collision velocities (ΔV ≥ 0.5) lead to the effect of splitting of
solitons, which means generation of a larger number of secondary solitons than
in the beginning of interaction. Figure 5 demonstrates the process of splitting
for collision of the solitons with velocities V1 = 3 and V2 = 1.5. Since the
amplitudes of the interacting solitons differ by almost two orders of magnitude, for
the convenience of visual perception, Fig. 5 is executed in a logarithmic scale. From
this figure it is visible that a high-speed soliton, after overtaking a slow soliton, is
rapidly removed from the interaction zone. And in this case a wave packet arises
that propagates in the opposite direction to the soliton motion. It is shown in the
enlarged scale in the left circle, below its evolution is demonstrated. Next, a second
soliton is extracted and a nonstationary wave packet (the right circle) follows for
it (its evolution is shown below). Later, another supersonic soliton is formed from
this packet. Then again a quasilinear wave packet and a slow (subsonic) soliton of
a negative polarity are generated. All the characteristics of the secondary solitons
completely coincide with the solutions (3) and (4).

The soliton interaction occurring with very high speeds (ΔV > 2) looks most
effectively for the counter collision of identical solitons (Fig. 6). After the collision,
a high-speed secondary soliton with amplitude A11 is released. This amplitude is
not much smaller than the amplitudeA0 of the primary soliton. A second secondary
soliton is formed behind it, the amplitude A12 of which is much smaller than A0.
Next, a nonlinear wave packet is formed (on an enlarged scale it is shown in the
oval). If to observe the soliton interaction for a long time, it should be noticed that
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Fig. 5 Collision of the solitons with the relative velocity ΔV ≥ 0.5: the splitting effect

solitons can be further generated from this packet and, at last, the slow subsonic
soliton, whose amplitude A13 is almost equal to A12, will travel behind them. In
general, any number of supersonic solitons can arise from a wave packet, since their
amplitude and energy can be practically zero.
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Fig. 6 Counter interaction of solitons with relative velocities ΔV > 2

5 Conclusions

Longitudinal wave propagation in an auxetic rod has been considered. A quali-
tatively different (anomalous) dispersion behavior of linear waves is shown to be
possible in such a rod. Accounting for geometric and physical elastic nonlinearities,
in its turn, leads to the possibility of generating in a rod of stationary strain waves
of a substantially non-sinusoidal profile—solitons and their periodic analogues.

By means of numerical simulation it is shown that qualitatively different sce-
narios of interaction of solitons depend on the relative collision velocity. So, if the
velocity is small, the collision occurs like the exchange interaction of the classical
Korteweg–de Vries solitons, i.e., secondary solitons possess the same velocity,
amplitude, and width as the primary solitons have. When the relative velocity is
greater, the collision of solitons is inelastic: during the interaction, solitons lose a
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part of their energy, which is realized in a packet of quasiharmonic waves moving
with the velocity of linear waves. A further increasing of the collision velocity leads
to the effect of splitting of solitons that means generation of a larger number of
secondary solitons than in the beginning of interaction.
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Analysis of Acoustic Second-Harmonic
Generation in a Multilayered Structure
with Nonlinear Interfaces

Yosuke Ishii and Tadaharu Adachi

Abstract The one-dimensional longitudinal wave propagation in a multilayered
structure consisting of alternating layers and nonlinear spring-type interlayer inter-
faces is analyzed theoretically to investigate the acoustic second-harmonic genera-
tion due to the interfacial nonlinearity. Assuming that the nonlinearity is sufficiently
weak, the second-harmonic components contained in the reflected and transmitted
waves when a monochromatic longitudinal wave impinges perpendicularly on the
structure are derived using a perturbation approach and the transfer-matrix method.
Some numerical results of frequency dependence of second-harmonic amplitudes
are shown and discussed with the aid of the band structure of layered structures.

1 Introduction

Nonlinear acoustic wave propagation in layered structures was widely studied theo-
retically to explore the amplitude-dependent dispersion relation [1], the localized
solutions [2], and the second-harmonic generation [3]. These foregoing studies
[1–3] dealt with the nonlinear acoustic phenomena caused by material nonlinearity,
whereas the nonlinear acoustics at imperfect interfaces between solid media have
attracted much attention in the field of nondestructive testing as a sensitive measure
of contacting interface, weak bonds, kissing bonds, closed cracks, and so on. In par-
ticular, the higher-harmonic generation at an imperfect interface was extensively
investigated theoretically and experimentally [4, 5]. These studies demonstrated
that the second- or higher-harmonic generation at a contacting interface between
two solids was reasonably described by modeling it as a spring-type interface
with quadratic nonlinearity. This modeling was utilized to analyze the frequency-
dependent second-harmonic generation in multiple interface structures, namely
multilayered structures consisting of layers having identical elastic properties
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and nonlinear interlayer interfaces, where the interlayer interfaces were solely
responsible for the formation of frequency pass and stop bands [6, 7]. On the other
hand, in the case of dissimilar layers, the wave scattering can occur at interlayer
interfaces due not only to the finite stiffness of interfaces but also to the mismatch
of acoustic impedances between neighboring layers. Therefore, understanding the
resulting frequency dependence of the second-harmonic generation is of academic
interest and important from a practical perspective for nondestructive evaluation of
layered structure with dissimilar layers.

In this study, the acoustic second-harmonic generation in a multilayered structure
consisting of alternating layers of two linear elastic solids and nonlinear spring-
type interlayer interfaces is analyzed theoretically by a perturbation approach and
the transfer-matrix method [8] to investigate the frequency dependence of second-
harmonic amplitudes of reflected and transmitted waves when the structure is
subjected to the normal incidence of a monochromatic longitudinal wave. The
formulation is briefly summarized in Sect. 2 and some numerical results are shown
in Sect. 3.

2 Analysis

2.1 Formulation

The one-dimensional longitudinal wave propagation in the layering direction (x
direction) of a multilayered structure shown in Fig. 1 is considered. The structure
consists of N − 1 alternating layers of two different types of linear elastic media,
denoted by “Layer 0” (density ρ0, wave speed c0, and thickness h0) and “Layer 1”
(density ρ1, wave speed c1, and thickness h1), and is embedded between two linear
elastic semi-infinite media with the same material properties as the Layer 1. All
these media are bonded each other by N spring-type interfaces at x = Xm(m =
1, 2, . . . , N), where N is a positive even number.

Fig. 1 Computational model
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The displacement in the structure, denoted as u(x, t) where t is the time, is
governed by the linear equation of motion as

∂2u

∂t2
= c2

α

∂2u

∂x2 , (1)

where α = 0 in the Layer 0 and α = 1 in the Layer 1 (and the surrounding
semi-infinite media). At each interface, the stress given by σ(x, t) = ραc

2
α∂u/∂x is

continuous while the discontinuity is allowed in the displacement. With the spring-
type interfaces possessing weak quadratic nonlinearity, the boundary conditions at
x = Xm are given as [5]

σ(Xm+, t) = σ(Xm−, t) = K [1 − βmym(t)] ym(t), (2)

where the subscripts “m+” and “m−” denote the limit of a field variable when x

approaches Xm from x > Xm and x < Xm, respectively. In Eq. (2), K is the linear
interfacial stiffness and assumed to be the same for all interfaces because they are all
located between two phases. Furthermore, βm is a positive parameter representing
the nonlinearity of the mth interface, and ym(t) ≡ u(Xm+, t) − u(Xm−, t) is the
jump of displacement at x = Xm.

In this paper, the amplitudes of the nonlinearly generated second-harmonic
component in the reflected and transmitted waves for x < X1 and x > XN ,
respectively, are analyzed when a monochromatic longitudinal wave with angular
frequency ω0 and amplitude Ainc impinges perpendicularly upon the multilayered
structure from x < X1. Assuming that maxm(βm)Ainc is sufficiently small, and that
the time dependence term is given by exp(−iωt) where i is the imaginary unit and
ω is the angular frequency, the governing equations and the boundary conditions for
the fundamental wave (ω = ω0) and its second-harmonic component (ω = 2ω0) are
written by performing the perturbation analysis [6] as follows.
For ω = ω0, we have

d2U1

dx2 +
(
ω0

cα

)2

U1 = 0, (3)

ρχc
2
χ

dU1

dx
(Xm−) = ρκc

2
κ

dU1

dx
(Xm+) = KY1m, m = 1, 2, . . . , N, (4)

where χ = 1 and κ = 0 when m is odd and χ = 0 and κ = 1 when m is even.
For ω = 2ω0, we have

d2U2

dx2 +
(

2ω0

cα

)2

U2 = 0, (5)

ρχc
2
χ

dU2

dx
(Xm−) = ρκc

2
κ

dU2

dx
(Xm+)

= KY2m − 1

2
βmKY

2
1m, m = 1, 2, . . . , N. (6)
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In Eqs. (3)–(6), U1 and U2 (Y1m and Y2m) are the complex-valued time-harmonic
displacements (jumps of displacement at themth interface) of the fundamental wave
and its second-harmonic component, respectively.

2.2 Propagation of Fundamental Wave

Using the classical transfer-matrix method [8] for Eqs. (3) and (4), the complex
amplitude reflection and transmission coefficients of the fundamental wave, R(Ω)

and T (Ω), can be given as,

R(Ω) = −L21(Ω)

L22(Ω)
exp

(
2iΩX̂1

)
, (7)

T (Ω) = L11(Ω)L22(Ω)− L12(Ω)L21(Ω)

L22(Ω)
exp

[
−iΩ

(
X̂N − X̂1

)]
, (8)

where Ω = ω0h0/c0 and X̂q = c0Xq/(c1h0)(q = 1, N) represent the normalized
frequency and the normalized positions of the leftmost and rightmost interfaces,
respectively. In Eqs. (7) and (8), LIJ (Ω)(I, J = 1, 2) are the elements of the global
transfer matrix given by

L(Ω) =
[
L11(Ω) L12(Ω)

L21(Ω) L22(Ω)

]
= P−1

1 (Ω)H
N
2 (Ω), (9)

where H (Ω) ≡ P 1(Ω)S01(Ω)P 0(Ω)S10(Ω), and

S10(Ω) = 1

2

[
1 + 1/ζ + iΛΩ 1 − 1/ζ − iΛΩ
1 − 1/ζ + iΛΩ 1 + 1/ζ − iΛΩ

]
, (10)

S01(Ω) = 1

2

[
1 + ζ + iΛΩ 1 − ζ − iΛΩ
1 − ζ + iΛΩ 1 + ζ − iΛΩ

]
(11)

are the scattering matrices at the interfaces at x = Xm(m = 1, 3, . . . , N − 1) and at
x = Xm(m = 2, 4, . . . , N), respectively. Furthermore,

P 0(Ω) =
[

exp(iΩ) 0
0 exp(−iΩ)

]
, P 1(Ω) =

[
exp(iΩη) 0

0 exp(−iΩη)

]
,

(12)
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are the propagator matrices in the Layer 0 and Layer 1, respectively. In the above
expressions, the non-dimensional parameters

Λ ≡ ρ0c
2
0

Kh0
, ζ ≡ ρ1c1

ρ0c0
, η ≡ h1c0

h0c1
, (13)

represent the relative linear compliance of the interfaces, the acoustic impedance
ratio between the two phases, and the ratio of the times of flight in the Layer
0 and Layer 1, respectively. Using Eqs. (10)–(12) with the so-obtained reflection
coefficient R(Ω) from Eq. (7), the jump of displacement at the mth interface
(m = 1, 2, . . . , N) due to the fundamental wave propagation can be calculated as

Y1m(Ω)

=
{

e[S10(Ω)− I ]H m−1
2 (Ω)U1(X1−), m = 1, 3, . . . , N − 1,

e[S01(Ω)− I ]P 0(Ω)S10(Ω)H
m−2

2 (Ω)U1(X1−), m = 2, 4, . . . , N,
(14)

where e ≡ (1, 1), I represents the 2 × 2 identity matrix, and

U 1(X1−) =
⎛
⎝ Ainc exp

(
iΩX̂1

)

R(Ω)Ainc exp
(
−iΩX̂1

)
⎞
⎠ . (15)

2.3 Generation and Propagation of Second Harmonics

By applying the transfer-matrix method again to Eqs. (5) and (6), the second-
harmonic amplitudes of reflected and transmitted waves, AR2 and AT2, can be
given as,

AR2 = − b2(Ω)

L22(2Ω)
exp

(
2iΩX̂1

)
, (16)

AT2 = b1(Ω)L22(2Ω)− b2(Ω)L12(2Ω)

L22(2Ω)
exp

(
−2iΩX̂N

)
, (17)

where

b(Ω) ≡
(
b1(Ω)

b2(Ω)

)
= 1

4

N/2∑
j=1

M
N
2 −j (2Ω)

[
β2j−1Y

2
1(2j−1)(Ω)S01(2Ω)P 0(2Ω)+ β2jY

2
1(2j)(Ω)

]
, (18)

and M(Ω) ≡ S01(Ω)P 0(Ω)S10(Ω)P 1(Ω).
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3 Numerical Examples

The frequency dependence of second-harmonic amplitudes due to a single nonlinear
interface located at x = X6 (β6 = β > 0, βm = 0 for m �= 6) when N = 10, Λ =
0.1, ζ = 1, and η = 1 is shown in Fig. 2, together with the amplitude transmission
coefficient of fundamental wave |T (Ω)| in Eq. (8) and the jump of displacement at
the nonlinear interface |Y16(Ω)| in Eq. (14). Likewise, the results when ζ = 0.7 are
shown in Fig. 3. Furthermore, the spatial distributions of fundamental and second-
harmonic displacements corresponding to Figs. 2 and 3 are illustrated in Figs. 4 and
5, respectively.

Fig. 2 Frequency dependence of fundamental and second-harmonic components when N = 10,
Λ = 0.1, ζ = 1, and η = 1. (a) Amplitude transmission coefficient of fundamental wave. (b)
Opening displacement at the nonlinear interface at x = X6. (c) Second-harmonic amplitudes of
reflected and transmitted waves
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Fig. 3 Same as Fig. 2, but for N = 10, Λ = 0.1, ζ = 0.7, and η = 1

In Fig. 2a, the bandgaps can be seen at around Ω/π = 1 and 2, where the
transmission coefficient |T (Ω)| drops to relatively low levels due to the constructive
interference of scattered waves from the interfaces. When ζ = η = 1 in Fig. 2,
Layer 0 and Layer 1 have the identical material properties, so the finite interfacial
stiffness (finite Λ) is solely responsible for the wave scattering at the interfaces.
After being generated at the nonlinear interface, the second harmonics propagate
in the layered structure linearly, namely that the second-harmonic components
contained in the reflected and transmitted waves are influenced by not only the
opening displacement at the nonlinear interface |Y16(Ω)| in Fig. 2b but also the
transmission coefficient at the double frequency |T (2Ω)| shown in Fig. 2a. For
example, when Ω/π = 1.9 in Fig. 2, the second-harmonic component generated
at the nonlinear interface decays with the distance from x = X6 as can be seen in
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Fig. 4 Spatial distributions of displacements when N = 10, Λ = 0.1, ζ = 1, η = 1, and h1/h0 =
0.7. (a) Fundamental component. (b) Second-harmonic component when the nonlinear interface is
located at x = X6

Fig. 5 Same as Fig. 4, but for N = 10, Λ = 0.1, ζ = 0.7, η = 1, and h1/h0 = 0.7

Fig. 4b because the double frequency lies in the bandgap in Fig. 2a, which results
in the smaller second-harmonic amplitudes in the reflected and transmitted fields in
Fig. 2c.

On the other hand, when ζ(= ρ1c1/(ρ0c0)) = 0.7 in Figs. 3 and 5, the mismatch
of acoustic impedances between neighboring layers also contributes to the wave
scattering. Hence, more bandgaps are formed in the transmission spectrum in Fig. 3a
in comparison with Fig. 2a. As a consequence, the second-harmonic amplitudes in
Fig. 3c have the more complicated band structure than the one in Fig. 2c. However,
its generation mechanism can still be explained in the same manner as mentioned
above in Figs. 2 and 4.
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Experimental and Analytical
Examination in Solid Sensible
Cylindrical Heat Storage Block
Consisted of Ferronickel Slag

Ryuusuke Kawamura, Kozo Onoue, Yoshinori Nagase,
and Shigeki Tomomatsu

Abstract Using ferronickel slag as heat storage medium, low cost solid sensible
heat storage system for concentrating solar thermal power generation plant has been
considered. Effects of ferronickel slag mix on amount of heat storage of mortar
block specimen using ferronickel slag as a fine aggregate are evaluated. It has
been shown that amount of heat storage increases as volume fraction of ferronickel
slag increases in heat storage test. On the other hand, it has been shown that
variation of amount of heat storage with volume fraction of ferronickel slag differs
between numerical results in steady state and those in unsteady state in numerical
calculations based on theoretical analysis. The reason is explained by variations of
specific heat capacity and thermal conductivity in the block with volume fraction of
ferronickel slag. Variation of amount of heat storage in the block in unsteady state
with volume fraction of ferronickel slag has been clarified.

1 Introduction

Effective use of solar energy becomes an important issue all over the world, since
solar energy has been promising as one of the renewables which enables to reduce
greenhouse gas emissions. Concentrating solar thermal power generation (CSP)
[1] is one of the effective technologies using solar energy for preventing from
global warming. It is necessary to introduce heat storage system in CSP to be
able to supply electric power in cloudy day or in the night. In general, introducing
heat storage system into CSP increases electric generating capacity meanwhile it
increases investments in CSP. Therefore, low cost solid sensible heat storage using
concrete as heat storage medium has been investigated to reduce cost of power
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generation [2, 3]. It is an important subject to develop low cost solid sensible heat
storage for central power tower plants which have an advantage in energy efficiency.

In this study, ferronickel slag [4] is used as a concrete fine aggregate for
heat storage medium. Ferronickel slag is an industrial by-product in refining of
ferronickel at 1600–1900 ◦C. The slag is harmless to health, and it can be expected
as inexpensive heat storage medium at elevated temperature, which also contributes
to effective use of unused industrial wastes. However, applicability of the slag as
heat storage medium has not been made clear. The aim of this study is to develop
mortar hollow circular cylinder blocks using ferronickel slag as a fine aggregate for
heat storage medium in low cost solid sensible heat storage system of concentrating
solar thermal power generation plant. Effects of ferronickel slag mix on amount
of heat storage in the block are evaluated by both heat storage tests and numerical
calculations based on unsteady heat conduction analysis.

2 Heat Storage Test

2.1 Fabrication of Heat Storage Block Specimen

Using ferronickel slag (FNS) as a fine aggregate of mortar, mortar hollow circular
cylinder block specimens for heat storage are fabricated. FNS is a granulated slag
produced when processing ferronickel which is used as a raw material of stainless
steel. Appearance of FNS is shown in Fig. 1. Chemical composition of FNS is
shown in Table 1. Chemical composition of FNS is mainly composed of silica and
magnesia. Considering workability of mortar, three kinds of mix proportions listed
in Table 2 are nominated. As shown in Fig. 2, a mortar hollow circular cylinder

Fig. 1 Appearance of FNS
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Table 1 Chemical
composition of FNS (in
weight (%))

Total Fe SiO2 MgO CaO Al2O3 Cr Ni

8.34 52.9 31.3 0.52 2.04 0.88 0.06

Table 2 Mix proportion of
mortar

Water Cement FNS

Block [g] [g] [g]

No. 1 225 449 1499

No. 2 240 481 1424

No. 3 256 512 1349

Fig. 2 Appearance of mortar
block

block has a length of 200 mm, an outer diameter of 100 mm, and an inner diameter
of 40 mm. A piece of heat storage block specimen consists of five hollow circular
cylinder blocks which are bonded in series with high temperature ceramic and
graphite adhesives.

2.2 Experimental Apparatus and Test Procedures

Heat storage tests of the block specimens have been performed to examine effects of
mix proportion of FNS on amount of heat storage in the specimen. Heat storage tank
for the test is shown in Fig. 3. A piece of the specimen is filled in a stainless duct. Air
generated by electric heater is flowed from top of the duct to bottom. Inner and outer
surfaces of the specimen are heated by air at 200 ◦C for 60 min. Heat storage tests for
three kinds of specimens No. 1–No. 3 which have different mix proportions shown
in Table 2 are performed four times for each specimen. After warming up operation
for 2 min. to keep air temperature generated by the heater constant, charging the
specimen is started by inserting a nozzle of the heater into a stainless reducer of the
tank. K-type sheath thermocouples are embedded at a depth of 15 mm from outer
surface to measure temperatures of the specimen. Temperatures of air at inlet and
outlet of the specimen are also measured by the thermocouples. Temperatures of
both the specimen and the air are recorded by a data logger.
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Block specimen Stainless duct
Sheath thermocouples

Reducer

Electric
heater

TC1 TC2 TC3

x1 x2 x3 x4 x5 x6 x7

Air flow
TC4 TC5 TC6 TC7

Fig. 3 Schematic view of heat storage tank

Table 3 Volume fraction of
FNS, specific heat, and
density in blocks

Volume fraction Specific heat Density

Block VFNS [kJ/kg K] [kg/m3]

No. 1 0.582 0.984 3022

No. 2 0.553 0.990 3028

No. 3 0.524 0.996 3035

2.3 Specific Heat and Density of Block Specimens

Specific heat c and density ρ in the specimen are estimated as

c = cFNSρFNSVFNS + ccρcVc

ρFNSVFNS + ρcVc
, (1)

ρ = ρFNSVFNS + ρcVc, (2)

in which cFNS, ρFNS, VFNS, cc, ρc, Vc are specific heat, density, and volume fractions
of FNS and Portland cement, respectively. Volume fraction of FNS, specific heat,
and density in blocks are shown in Table 3.

2.4 Calculation of Amount of Heat Storage of Block Specimen

Amount of heat storage of the specimen is calculated by using temperature changes
in the specimen measured by the thermocouples. We assume that temperature of
the specimen is constant in radial direction and changes only in axial direction.
Temperature change T (x) at position x in the specimen is evaluated by

T (x) = xj+1 − x

xj+1 − xj
Tj + x − xj

xj+1 − xj
Tj+1 (j = 1, . . . , 6), (3)

in which xj (j = 1, . . . , 7) are positions in axial direction of the specimen, and Tj
(j = 1, . . . , 7) are temperature changes at positions xj . Temperature changes T1
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and T7 at both edges (x = x1, x7) are calculated as

T1 = T (x1) = x3 − x1

x3 − x2
T2 + x1 − x2

x3 − x2
T3, (4)

T7 = T (x7) = x6 − x7

x6 − x5
T5 + x7 − x5

x6 − x5
T6. (5)

Assuming that specific heat in the specimen does not depend on temperature but is
constant, amount of heat storage in the specimen is expressed in a dimensionless
form as

Q̄ = π

8

(
d̄2

o − d̄2
i

)
c̄ρ̄

6∑
j=1

(
x̄j+1 − x̄j

) (
T̄j + T̄j+1

)
, (6)

in which dimensionless quantities introduced in Eq. (6) are defined as

(d̄o, d̄i) = (do, di)

l
, c̄ = c

c0
, ρ̄ = ρ

ρ0
, x̄j = xj

l
(j = 1, . . . , 7), (7)

T̄j = Tj

ΔT0
(j = 1, · · · , 7) , Q̄ = Q

c0ρ0ΔT0l3
, (8)

in which do, di are outer and inner diameters of the specimen; l is a length of the
specimen; c0, ρ0 are typical quantities of specific heat and density; ΔT0 is a typical
temperature change.

3 Theoretical Analysis of Amount of Heat Storage

3.1 Unsteady Heat Conduction Analysis of Hollow Circular
Cylinder Block Model

Effects of mix of FNS on amount of heat storage in the specimen are evaluated by
numerical calculations based on unsteady heat conduction analysis.

Let the specimen be a hollow circular cylinder of inner radius a and outer radius
b composed of homogeneous material subjected to heat supply at inner and outer
surfaces by surrounding media. Disregarding axial variation of temperature change
of the cylinder, theoretical analysis of plane axisymmetric unsteady heat conduction
problem of the cylinder is developed. We assume that temperature of the cylinder is
initially at uniform temperature θ0, and that heat transfer between boundary surfaces
of the cylinder and surrounding media at constant temperatures θa, θb occurs by
convection with constant coefficients of heat transfer γa, γb, as shown in Fig. 4.
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Fig. 4 Hollow circular
cylinder block model

Temperature, thermal conductivity, thermal diffusivity in the model are denoted as
θ , λ, κ , and coordinate in radial direction, time are denoted as r , t , respectively.
Temperature changes are introduced as

T = θ − θ0 , Ta = θa − θ0 , Tb = θb − θ0, (9)

in which T is temperature change in the model; θa, θb are temperature changes
of surrounding media. Fundamental equation of unsteady heat conduction, initial
condition, and thermal boundary conditions for the model are expressed in dimen-
sionless forms as follows:

∂T̄

∂τ
= κ̄

(
∂2T̄

∂ r̄2 + 1

r̄

∂T̄

∂r̄

)
, (10)

T̄ = 0 at τ = 0, (11)

−∂T̄

∂r̄
+ h̄a

(
T̄ − T̄a

) = 0 at r̄ = ā, (12)

−∂T̄

∂r̄
+ h̄b

(
T̄b − T̄

) = 0 at r̄ = b̄ (13)

Dimensionless quantities introduced in Eqs. (10)–(13) are defined as follows:

(
T̄ , T̄a, T̄b

) = (T , Ta, Tb)

T0
,
(
r̄ , ā, b̄

) = (r, a, b)

l
, κ̄ = λ̄

c̄ρ̄
,

λ̄ = λ

λ0
, ρ̄ = ρ

ρ0
, c̄ = c

c0
, τ = λ0

c0ρ0l2
t , h̄a = lγa

λ
, h̄b = lγb

λ
, (14)

in which T0, λ0 are typical quantities of temperature change and thermal conductiv-
ity.
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Using Laplace transformation method, analytical solution of temperature change
in the model T is expressed in a dimensionless form as

T̄ (r̄, τ ) =
∞∑
m=1

2e−ωm2τ

ωmΔ′
ut(ωm)

{
ĀmJ0

(
ωm√
κ̄
r̄

)
+ B̄mY0

(
ωm√
κ̄
r̄

)}

+ 1

Δst

(
Ā′ + B̄ ′ ln r̄

)
, (15)

in which J0, Y0 are Bessel functions of first and second kinds with order zero; ωm
is m-th positive eigenvalue; Ām, B̄m, Δ′

ut(ωm) are coefficients; and Ā′, B̄ ′, Δst are
constants, whose detailed expressions are omitted.

3.2 Amount of Heat Storage Per Unit Length

Using the solution of temperature change in the model, amount of heat storage per
unit length q in the model is expressed in a dimensionless form as

q̄ = 2πc̄ρ̄

[[ ∞∑
m=1

2e−ωm2τ

ωmΔ′
ut(ωm)

[
Ām

{
b̄J1

(
ωm√
κ̄
b̄

)
− āJ1

(
ωm√
κ̄
ā

)}

+ B̄m

{
b̄Y1

(
ωm√
κ̄
b̄

)
− āY1

(
ωm√
κ̄
ā

)}]

+ 1

Δst

[
Ā′

2

(
b̄2 − ā2

)
+ B̄ ′

{
b̄2

2

(
ln b̄ − 1

2

)
−
(

ln ā − 1

2

)}]]]
, (16)

in which J1, Y1 are Bessel functions of first and second kinds with order one.
Dimensionless quantity introduced in Eq. (16) is defined as

q̄ = q

c0ρ0l2T0
. (17)

4 Results and Discussion

Experimental results in heat storage tests for the specimens which have three
different kinds of FNS mix are presented.
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Table 4 Temperature change
of thermocouple TC2 and
amount of heat storage

Volume fraction Temperature Amount of heat

Block VFNS change T2 [◦C] storage Q [kJ]

No. 1 0.582 179 2127

No. 2 0.553 178 2063

No. 3 0.524 176 2019

Fig. 5 Variations of amount
of heat storage and flow value
with volume fraction VFNS
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Table 4 shows the volume fractions VFNS, temperature changes of thermocouple
TC2 of the specimens, and amounts of heat storage. Temperature change of the
specimen No. 1 in which the volume fraction VFNS is the largest among three
specimens is the highest and amount of heat storage is also the largest. Figure 5
shows variations of amount of heat storage Q̄ in the specimen and flow value of
fresh mortar with the volume fraction VFNS. As the volume fraction VFNS increases,
amount of heat storage Q̄ increases, while flow value of fresh mortar decreases.
It is found that the specimen, which has the high volume fraction VFNS, exhibits
high performance in terms of heat storage. Because flow value of fresh mortar
decreases, it is necessary to take fabrication of block into account. Next, numerical
results of amount of heat storage per unit length q in the model based on unsteady
heat conduction analysis are presented. Table 5 shows numerical parameters, and
Fig. 6 shows variations of specific heat capacity cρ and thermal conductivity λ with
the volume fraction VFNS. Thermal conductivity λ is estimated by Kerner’s law of
mixture. As the volume fraction VFNS increases, specific heat capacity cρ decreases,
while thermal conductivity λ increases.

Figure 7 shows time evolutions of amount of heat storage per unit length q̄ for
three kinds of the models, and Fig. 8 is an enlarged drawing of Fig. 7 near steady
state. The amount of heat storage q̄ in steady state for Block No. 3 is the largest
among the three blocks. As the volume fraction VFNS increases, the amount of
heat storage q̄ in steady state decreases. Figure 9 shows variation of the amount
of heat storage q̄ in unsteady state (t = 570 s) with the volume fraction VFNS. As
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Table 5 Numerical
parameters

Inner radius a [m] 0.02

Outer radius b [m] 0.05

Initial temperature θ0 [◦C] 17.9

Temperature of inner surrounding
medium θa [◦C]

194.5

Temperature of outer surrounding
medium θb [◦C]

194.5

Typical value of temperature change
T0 [◦C]

200

Coefficient of heat transfer at inner
surface γa [W/m2 K]

12

Coefficient of heat transfer at outer
surface γb [W/m2 K]

12

Length of block specimen l [m] 1

Fig. 6 Variations of specific
heat capacity and thermal
conductivity with volume
fraction VFNS
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the volume fraction VFNS increases, the amount of heat storage q̄ in steady state
increases. It is found that variation of the amount of heat storage q̄ in unsteady
state with the volume fraction VFNS turns out the opposite of one q̄ in steady state
with the volume fraction VFNS. As the volume fraction VFNS increases, thermal
conductivity λ increases as shown in Fig. 6, and temperature change in unsteady
state also increases. The amount of heat storage q̄ in unsteady state for Block No. 1
is the largest among the three blocks because the amount of heat storage q̄ depends
on product of specific heat capacity cρ and temperature change. The amount of
heat storage q̄ depends on specific heat capacity cρ because temperatures in steady
state for three kinds of blocks are same with the volume fraction VFNS. Figure 10
shows comparison of experimental results of amount of heat storage per unit length
with analytical one after a lapse of an hour of heating. Experimental results of
amount of heat storage per unit length are larger than analytical one. The reason
is that radial variation of temperature change of the block is not considered when
calculating experimental results of amount of heat storage. In heat storage tests,
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Fig. 7 Time evolutions of amount of heat storage per unit length
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Fig. 8 Time evolutions of amount of heat storage per unit length (enlarged Fig. 7)

temperatures of the block are measured by the thermocouples embedded in the block
at a depth of 15 mm from its outer surface to measure, and amount of heat storage
is calculated under assumption that temperature is constant in radial direction of the
block. Therefore, it is necessary to consider radial variation of temperature change
in the block to obtain amount of heat storage of block.
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Fig. 9 Variation of amount
of heat storage per unit length
with volume fraction VFNS in
unsteady state (t = 570 s)
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Fig. 10 Comparison of
experimental result of amount
of heat storage with analytical
one

0.003

0.0032

0.0034

0.0036

0.0038

0.004

0.5 0.52 0.54 0.56 0.58 0.6

Experiment

Analysis

A
m

o
u
n
t 

o
f 

h
ea

t 
st

o
ra

g
e 

p
er

 u
n
it

 l
en

g
th

, 
q

Volume fraction, VFNS

t = 3600 s

_

5 Conclusions

The following conclusions are drawn from results of heat storage tests and
numerical calculations based on theoretical analysis on effects of volume fraction
of ferronickel slag on amount of heat storage in mortar hollow circular cylinder
blocks.

1. In heat storage tests, amount of heat storage increases, while flow value of fresh
mortar decreases as volume fraction of ferronickel slag increases.

2. In numerical calculations based on theoretical analysis, variation of amount of
heat storage in unsteady state with volume fraction of ferronickel slag turns out
the opposite of one in steady state with volume fraction of the slag.

3. It is necessary to measure temperatures on inner and outer surfaces to evaluate
amount of heat storage of the block accurately.
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Consequently, effects of volume fraction of ferronickel slag on amount of heat
storage in the mortar hollow circular cylinder block in unsteady state are revealed.
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A Complete Direct Approach to Modeling
of Dielectric Elastomer Plates as Material
Surfaces

Michael Krommer and Elisabeth Staudigl

Abstract In this paper we present a complete direct approach to modeling non-
linear plates, which are made of incompressible dielectric elastomer layers. In
particular, the layers are assumed to exhibit a neo-Hookean elastic behavior and
the effect of electrostatic forces is incorporated by a purely electrical contribution
to the Helmholtz free energy. In our previous work on this subject, two-dimensional
constitutive relations for the plate were derived by numerical integration of the
three-dimensional augmented free energy through the plate thickness imposing a
plane stress assumption and an a-priori assumption concerning the distribution of
the strain through the thickness of the plate. In contrast, we directly postulate the
form of the two-dimensional augmented free energy for the structural plate problem
in this paper. Results computed within the framework of this novel approach are
compared to results from our previous work, which are well tested against existing
solutions in the literature. A very good agreement is found.

1 Introduction

The general theory of elastic dielectrics dates back to [1], and has been further
developed in, e.g., [2–4] and [5]. Elastic dielectrics belong to the class of so-
called smart or intelligent materials, which are often used as structurally integrated
materials to put structures into practice, which exhibit both, sensing and actuating
authority. Such structures are denoted as smart structures. Prominent examples are
piezoelectric materials, but also electro-active polymers. Concerning the latter we
refer to, e.g., [6] or [7]. Due to the large deformations in electro-active polymers,
nonlinear and electro-mechanically coupled formulations are required, in which two
types of coupling are typically accounted for: coupling by means of electrostatic
forces and constitutive coupling through coupling effects like electrostriction, see,
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e.g., [6]. For three-dimensional Eulerian and Lagrangian formulations, we refer to
[8] and [9].

A practically important sub-class of electro-active polymers are dielectric elas-
tomers, for which the constitutive coupling is often assumed negligible, and the
actuation is then caused solely by the electrostatic forces. Practical applications of
such dielectric elastomer actuation devices can be found, e.g., in [10–12] and [13].
In general problems of dielectric elastomer actuators numerical methods, such as the
Finite Element method, are applied implementing solid elements for general three-
dimensional problems [9, 14, 15] or solid shell elements to account for the typical
thinness of the dielectric elastomer actuators, as developed in [16].

In our own previous work, see [17], we proposed a strategy for the modeling
of thin dielectric elastomer plates, in which the plate was considered as a material
surface with mechanical and electrical degrees of freedom, and the specific consti-
tutive relations were obtained from the three-dimensional ones by the assumption
of a plane stress and an a-priori assumption concerning the distribution of the strain
through the thickness of the plate. Numerical integration was applied to compute the
structural two-dimensional constitutive relations. In elasticity such an approach has
been successfully used for elastic plates and shells [18, 19] and [20], and extended
to the electro-mechanically coupled problem of piezoelectric plates and shells in
[21] and [22].

In this paper we directly postulate the form of the two-dimensional augmented
free energy for the structural plate problem, from which structural two-dimensional
constitutive relations follow as a consequence from an extension of the principle of
virtual work to the electro-mechanically coupled problem. We compute results with
the proposed direct approach and compare them to validated results reported in [17].

2 Nonlinear Dielectric Elastomer Plates as Material Surfaces

In this section we briefly summarize the governing equations of thin plates modeled
as material surfaces with mechanical and electrical degrees of freedom. For details
concerning these equations we refer the reader to [17] and [22]. In particular,
we consider the plate as a two-dimensional continuum of “needles” with five
mechanical degrees of freedom, three translations δr, and two rotations δk, in which
the variation of the unit normal vector k lies in the tangential plane. This resembles
the notion of a single director attached to each particle of the plate, introduced in
[23]. Concerning the electrical degrees of freedom, we use only the dominant one—
the electric potential difference V .
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2.1 Strain Measures

The material surface is plane in the reference configuration, and it is denoted as
reference surface. In the deformed or actual configuration the deformed material
surface is denoted as actual surface. The first metric tensor of the reference surface
A = I plays the role of the two-dimensional identity tensor. The second metric
tensor is zero for the plane reference surface, B = 0. For the actual surface the
first and second metric tensors are a and b. The reference configuration and the
actual configuration of the material surface are related to each other by means of
a deformation gradient tensor F = (∇r)T with the position vector r of points of
the actual surface and the differential operator ∇ of the reference surface. With the
aid of the deformation gradient tensor, we introduce two tensor valued Green strain
measures for the material surface, which are defined as the difference between the
two metric tensors in the two configurations; yet, with the proper transformation by
means of F applied to the metric tensors of the actual surface a and b. These two
strain measures are

ε = 1

2

(
FT · a · F− I

)
, κ = −FT · b · F, (1)

with the right-Cauchy Green tensor C of the material surface as C = FT · a · F =
FT ·F. Both strain measures remain constant, if and only if the motion of the material
surface is a rigid body motion, see [24] for a discussion.

2.2 Principle of Virtual Work

We introduce a generalized principle of virtual work as

∫
A

δ(η0Ω)dA+
∫
A

σδV dA+ δAe = 0, (2)

with the mass η0 per unit undeformed area. Integration is done over the domain A
of the reference surface. η0Ω is the plate augmented free energy per unit area in
the reference configuration, δAe is the virtual work of external forces and moments,
which through boundary forces and moments involves mechanical and electrical
sources, and the second integral accounts for the external electric charge σ per unit
reference area with δV being the variation of the electric potential. It has been shown
before, see [17], that the augmented free energy of the plate has the form η0Ω =
η0Ω(ε, κ, V ), such that its variation reads

δ(η0Ω) = η0
∂Ω

∂ε
· · δε + η0

∂Ω

∂κ
· · δκ + η0

∂Ω

∂V
δV. (3)
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Moreover, stress measures τ and μ as well as the internal charge q per unit reference
area are obtained through the constitutive relations

τ = η0
∂Ω

∂ε
= 2η0

∂Ω

∂C
, μ = η0

∂Ω

∂κ
, q = −η0

∂Ω

∂V
, (4)

and the variation becomes δ(η0Ω) = τ · · δε + μ · · δκ − qδV .
With the extended principle of virtual work at hand, we can derive the governing

equations or use the principle as a starting point for a numerical solution. In any
case, it remains to derive the specific form for the plate augmented free energy
η0Ω(ε, κ, V ).

2.3 Augmented Free Energy

First, we study a single layer dielectric elastomer plate with the thickness h. The
material is assumed to exhibit a neo-Hookean behavior and to be incompressible.
Moreover, we consider the thickness center surface as the material surface. In
analogy to the three-dimensional case, we decompose the structural augmented free
energy into a purely mechanical part η0Ω

mech and an electrical part η0Ω
elec. The

mechanical part is further additively composed of a membrane part and a bending
part, Ωmech = Ωmech

m + Ωmech
b . With the right Cauchy–Green tensor C of the

material surface, we introduce the membrane part of the mechanical contribution to
the structural augmented free energy in analogy to a plane stress augmented free
energy for an incompressible neo-Hookean material as

η0Ω
mech
m = 1

2

A

4

(
trC+ (detC)−1 − 3

)
, (5)

with the extensional stiffness A = Yh(1 − ν2)−1 known from linear plate theory.
In the latter incompressibility is accounted for by means of ν = 0.5 and Young’s
modulus becomes Y = 3μ; then, A = 4μh holds. Next, we introduce the bending
partΩmech

b of the structural augmented free energy in analogy to the bending energy
of an isotropic incompressible Kirchhoff plate as

ηΩmech
b = 1

2
D̃

(
1

2
(trκ̃)2 + 1

2
κ̃ · · κ̃

)
, (6)

in which all entities are referred to the actual configuration. J = detF is the area
change from the undeformed to the deformed configuration, η = J−1η0 is the mass
per unit area in the deformed configuration, κ̃ = −b = F−T · κ ·F−1 is the negative
second metric tensor of the actual surface, and the thickness change is accounted
for in the definition of a plate stiffness D̃ = J−3D. D = Yh3/12(1 − ν2)−1 is
the classical plate stiffness, which for an incompressible material with ν = 0.5 is



Direct Approach to Dielectric Elastomer Plates 91

D = μh3/3. Therefore, we have

η0Ω
mech
b = 1

2
(detC)−1D

(
(trκ̃)2 − detκ̃

)
(7)

for the bending part of the augmented free energy. Concerning the electrical
contribution to the augmented free energy we write 2ηΩelec = −c̃V 2, with the
voltage V and the capacity c̃ per unit deformed area, which is related to the capacity
per unit undeformed area c by c̃ = J c. Therefore, we have

η0Ω
elec = −1

2
cV 2(detC). (8)

We summarize our result. In the nonlinear case we have the augmented free energy
of a single layer incompressible dielectric elastomer plate

η0Ω(C, κ̃, V 2) = 1

2

A

4

(
trC+ (detC)−1 − 3

)

+ 1

2
(detC)−1D

(
(trκ̃)2 − detκ̃

)
− 1

2
cV 2(detC), (9)

in which C = 2ε + I holds. Moreover, we note the identities trκ̃ = tr(C−1 · κ) and
detκ̃ = det(C−1 · κ), from which we conclude that Ω = Ω(ε, κ, V ) is true.

Change of Material Surface Our formulation holds only for a single layer
dielectric elastomer plate, for which the physical thickness center surface is taken
as the material surface. Using a different physical surface as the material surface,
we must extend the form of the augmented free energy accordingly. Owing to the
thinness of the plate, we assume the curvature tensor κ to be invariant under such a
change of the material surface. In contrast, the right Cauchy–Green tensor C is not
invariant, but transforms according to C → C + 2λmκ , in which λm is a geometry
parameter accounting for the change of the material surface. Moreover, λm is of the
same order of smallness as the plate thickness h. We start the derivation with the
membrane energy η0Ω

mech
m = η0Ω

mech
m (C) by replacing C with C + 2λmκ and

conducting a formal expansion with respect to λm up to terms of order λ3
m. This

results into

η0Ω
mech
m ≈ 1

2

A

4

(
trC+ (detC)−1 − 3

)
+ 1

2

A

2
λm

(
trκ − (detC)−1trκ̃

)

+ 1

2
Aλ2

m(detC)−1
(
(trκ̃)2 − detκ̃

)

+ 1

2
2Aλ3

m(detC)−2trκ̃
(

2detκ − detC(trκ̃)2
)
. (10)
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Likewise, we treat the electrical part of the energy and find the exact result

η0Ω
elec = −1

2
cV 2

(
detC (1 + 2λmtrκ̃)+ 4λ2

mdetκ
)
. (11)

Concerning the bending energy we note that it is proportional to h3 rather than the
membrane energy, which is only proportional to h. Therefore, the order of smallness
of the bending energy is already λ2

m and it is sufficient to have a formal expansion
with respect to λm up to terms of order λm; hence,

η0Ω
mech
b ≈ 1

2
(detC)−1D

(
(trκ̃)2 − detκ̃

)

+ 1

2
6Dλm(detC)−2trκ̃

(
2detκ − detC(trκ̃)2

)
. (12)

In conclusion, we write the augmented free energy for the single layer dielectric
elastomer plate as

η0Ω = 1

2

A

4

(
trC+ (detC)−1 − 3

)
+ 1

2

A

2
λm

(
trκ − (detC)−1trκ̃

)

+ 1

2

(
D + Aλ2

m

)
(detC)−1

(
(trκ̃)2 − detκ̃

)

+ 1

2
2
(
Aλ2

m + 3D
)
λm(detC)−2trκ̃

(
2detκ − detC(trκ̃)2

)

− 1

2
cV 2

(
detC (1 + 2λmtrκ̃)+ 4λ2

mdetκ
)
, (13)

in which A and D are stiffnesses referring to the center surface of the plate, whereas
λm characterizes the distance of the material surface from this center surface.
However, we are not so much interested in the derivation of these parameters, but
rather in the functional dependency of the different terms of the augmented free
energy on the strain measures. To identify the material parameters as well as the
sources of actuation we will linearize our formulation and compare the result to the
well-known linear theory.

Small Strain Regime Finally, we linearize the augmented free energy in the small
strain regime, in which we have C = I + 2λε with λ as a formal small parameter;
also κ is formally replaced by λκ . Concerning the voltage V we assume its square
to be of order λ. Then, an expansion in the vicinity of λ = 0 finds the principal term
λ1 of the augmented free energy to be independent from any deformation measure.
Therefore, the leading order term for the plate theory is of order λ2 and it reads

η0Ω
lin = 1

2

(
A
(
(trε)2 − detε

)
− 2cV 2trε

)
+ 1

2
Aλm (trεtrκ + ε · · κ)

+ 1

2

((
D + Aλ2

m

) (
(trκ)2 − detκ

)
− 2cλmV 2trκ

)
. (14)



Direct Approach to Dielectric Elastomer Plates 93

On the other hand, the linear theory of thin plates with eigenstrains is well studied,
see [25]; for the case of an isotropic incompressible material obeying Hooke’s law
using any other surface than the neutral surface as a reference surface we have

η0Ω
Hooke = 1

2

(
Ā
(
(trε)2 − detε

)
− 2τ ∗trε

)
+ 1

2
B̄ (trεtrκ + ε · · κ)

+ 1

2

(
D̄
(
(trκ)2 − detκ

)
− 2μ∗trκ

)
, (15)

in which the actuation enters classically by means of so-called Eigenspan-
nungsquellen τ ∗ and μ∗ = Zmτ

∗, provided the corresponding source is constant
through the thickness.Zm is the thickness position of the neutral surface, which is in
the thickness center of the plate. The extensional stiffness Ā, the coupling stiffness
B̄, and the bending stiffness D̄ as well as the Eigenspannungsquellen are defined as

(Ā, B̄, D̄) = 4μ
∫ Zo+h

Zo

(1, Z,Z2)dZ,

(τ ∗, μ∗) =
∫ Zo+h

Zo

ε0εr

(
V

h

)2

(1, Z)dZ,

Zm = 1

h

∫ Zo+h

Zo

ZdZ. (16)

Zo is the thickness coordinate of the upper side of the plate and ε0 and εr are the
permittivity in vacuum and the relative permittivity. This specific type of actuation
is due to Coulomb forces. Comparing the linearized version of the nonlinear theory
to the linear theory we identify the material parameters and the actuation of the
nonlinear theory, and eventually write the augmented free energy as

η0Ω = 1

2

Ā

4

(
trC+ (detC)−1 − 3

)
+ 1

2

B̄

2

(
trκ − (detC)−1trκ̃

)

+ 1

2
D̄(detC)−1

(
(trκ̃)2 − detκ̃

)
+ 1

2
2K̄(detC)−2trκ̃

(
2detκ − detC(trκ̃)2

)

− 1

2
τ ∗
(

detC (1 + 2Zmtrκ̃)+ 4Z2
mdetκ

)
. (17)

with τ ∗ = cV 2 and ch = ε0εr . By analogy, we identify the corresponding higher
order coupling stiffness K̄ as

K̄ = 4μ
∫ Zo+h

Zo

Z3dZ. (18)
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This completes the discussion of the augmented free energy. Having this energy at
hand we can easily study layered plates as well, because the choice of the material
surface as any physical surface is possible.

3 Validation

As a simple example, we are studying a rectangular plate with dimension a×b×h =
100 mm × 50 mm × 1 mm made of two perfectly connected layers; the material
parameters are εr = 4.7 and μ = 20,698 Pa. An electrode at the connecting
interface is grounded and a voltage can be applied at the two outer electrodes. In
particular, the voltage is applied at the lower electrode and the upper one is grounded
as well; this configuration will result into a bending actuator. The plate is fully
clamped at x = 0 and free at the other edges. As no external forces are applied
and the voltage is prescribed, the principle of virtual work reduces to a stationarity
principle,

δΣ = 0 with Σ =
∫
A

η0Ω(ε, κ, V )dA. (19)

As we are mainly interested in verifying the proposed form of the augmented
free energy, we compute solutions with a simple Ritz approximation within the
framework of the von-Karman and Tsien theory, see [26], rather than for the fully
geometric nonlinear theory. Therefore, the strain measures ε and κ are approximated
as

ε = 1

2

(
∇uS +∇w∇w

)
, κ = −∇∇w, (20)

in which w is the plate deflection and u the in-plane displacement vector; ∇uS
denotes the symmetric part of the displacement gradient tensor. For the Ritz-Ansatz
we set

u(x, y) =
5∑
i=1

xiui , v(x, y) = 0 , w(x, y) =
5∑
i=1

xi+1wi. (21)

We increase the voltage in the bottom layer starting with V = 0 V up to V = 2000 V
and show results for the non-dimensional end point deflection w/h and the non-
dimensional end point axial position x/h in the center of the free end in the top
row of Fig. 1. Results are presented for four different physical surfaces used as the
material surface—the bottom and the top surface of the plate, the center surface
of the plate, which represents the neutral plane, with B̄ = 0 and K̄ = 0, and the
center surface of the actuated bottom layer, which is the neutral plane of the bottom
layer. One can see that the deflection and the axial positions are close to each other
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Fig. 1 Non-dimensional end point deflection w/h and the non-dimensional end point axial
position x/h for different physical surfaces

independent from the choice of the material surface. These results verify the proper
modeling concerning the choice of the material surface; yet, they still need to be
validated against other results. This is done in the two plots in the bottom row
of Fig. 1. Here, neutral plane refers to the present theory using the center surface
as the material surface and bottom—no correction to the present theory using the
bottom surface as the material surface, but setting K̄ = 0. Clearly, one can see
the significance of the material parameter K̄, if the material surface is not the
neutral plane of the plate. Gauss refers to the result computed with the same Ritz-
Ansatz within the von-Karman and Tsien approximation, but with the augmented
free energy as

�0Ω3 = 1

2
μ
(

trC3 + (detC3)
−1 − 3

)
− 1

2
ε0εr detC3

(
V

h/2

)2

, (22)

with C3 = 2(ε + Zκ) + I. A numerical integration through the thickness then
finds the plate augmented free energy. This type of modeling is already well
tested against results from the literature in [17] using finite elements within the
geometrically exact formulation. As the present results—neutral plane—coincide
very well with the ones using the numerical integration—Gauss—we conclude that
the plate augmented free energy, as given in Eq. (17), is a proper formulation.
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4 Conclusions

In this paper we primarily focused on postulating a specific form for the two-
dimensional augmented free energy of a thin plate made of layers of incompressible
dielectric elastomers. The particular case of a neo-Hookean material was consid-
ered. The resulting novel formulation was validated against results based on a-priori
assumptions imposed on the state of stress and the distribution of the strain through
the thickness of the plate, which are already well tested. A very good agreement was
obtained.
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Harmonic Balance Method and Stability
of Discontinuous Systems

E. V. Kudryashova, N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov,
and R. N. Mokaev

Abstract The development of the theory of discontinuous dynamical systems
and differential inclusions was not only due to research in the field of abstract
mathematics but also a result of studies of particular problems in mechanics. One
of the first methods, used for the analysis of dynamics in discontinuous mechanical
systems, was the harmonic balance method developed in the thirties of the twentieth
century. In our work, the results of analysis obtained by the method of harmonic
balance, which is an approximate method, are compared with the results obtained
by rigorous mathematical methods and numerical simulation.

1 Introduction

The development of the theory of discontinuous dynamical systems and differential
inclusions was not only due to research in the field of abstract mathematics in
the thirties of the last twentieth century but also a result of studies of particular
problems in mechanics. In the thirties and forties of the twentieth century, J. Hartog,

E. V. Kudryashova · O. A. Kuznetsova
Saint-Petersburg State University, Saint-Petersburg, Russia

N. V. Kuznetsov (�)
Saint-Petersburg State University, Saint-Petersburg, Russia

University of Jyväskylä, Jyväskylä, Finland

Institute of Problems of Mechanical Engineering RAS, Saint-Petersburg, Russia
e-mail: n.v.kuznetsov@spbu.ru

G. A. Leonov
Saint-Petersburg State University, Saint-Petersburg, Russia

Institute of Problems of Mechanical Engineering RAS, Saint-Petersburg, Russia

R. N. Mokaev
Saint-Petersburg State University, Saint-Petersburg, Russia

University of Jyväskylä, Jyväskylä, Finland

© Springer Nature Switzerland AG 2019
V. P. Matveenko et al. (eds.), Dynamics and Control of Advanced
Structures and Machines, https://doi.org/10.1007/978-3-319-90884-7_11

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90884-7_11&domain=pdf
mailto:n.v.kuznetsov@spbu.ru
https://doi.org/10.1007/978-3-319-90884-7_11


100 E. V. Kudryashova et al.

A. Andronov, N. Bautin, and M. Keldysh were among the first who rigorously
treated the mathematical peculiarities of discontinuous dynamical models [1–3] on
the examples of mechanical models. One of the first methods, used for the analysis
of stability and oscillations in discontinuous dynamical models was the harmonic
balance method (or the describing function method) developed in the thirties of
the twentieth century [4]. This method is not strictly mathematically justified
and is one of the approximate methods of analysis of oscillation in nonlinear
systems. Nowadays, we can apply various rigorous analytical and reliable numerical
methods, which have been developed from that time till now: mathematical theory
of differential inclusions (see, e.g., [5–9] and others), direct Lyapunov method and
frequency methods (see, e.g., [6, 10]), and special numerical approaches for solving
differential inclusions (see, e.g., [11–13]).

In our work for the Hartog, Keldysh, and modified Fitts models, we compare
the results of analysis obtained by the method of harmonic balance with the results
obtained by rigorous mathematical methods and numerical simulation.

2 Hartog Model

In 1930, J. Hartog studied vibrations in a mechanical model with dry friction1

described by the following equation [1]:

mẍ + kx = −ϕ(ẋ), ϕ(ẋ) = F0sign(ẋ) (1)

where m > 0 is the mass, k > 0 is spring stiffness, and F0 > 0 is the dry friction
coefficient. Following the mechanical sense, Hartog defined sign(0) as a value from
[−F0, F0] and, thus, the discontinuous differential equation (1) has a segment of
equilibria (rest segment).

Following the theory of differential inclusion, for the model (1) we consider the
discontinuity manifold: S = {ẋ : ẋ = 0} on the phase space (x, ẋ), define ϕ(ẋ) on
S as the set [−F0,+F0], and get differential inclusion:

mẍ + kx ∈ −ϕ̂(ẋ), ϕ̂(ẋ) =
{
ϕ(ẋ), if ẋ �= 0,
[−F0,+F0], if ẋ = 0.

(2)

The solutions of (2) are considered in the sense of Filippov [5]. Remark that here
solutions cannot slide on the discontinuity manifold S but can tend to the rest
segment:

Λ = { −F0/k ≤ x ≤ F0/k, ẋ = 0} ⊂ S,

or pierce the manifold S\Λ. The phase portrait of (2) is shown in Fig. 1.

1The history of the dry friction law can be found, e.g., in [14].
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Fig. 1 Phase portrait of
system (1): trajectories tend
toward the rest segment
{|x| ≤ F0/k, y = 0}

x

y

-F /k0
F /k0

For Eq. (2), the harmonic balance methods states that there are no periodic
oscillations for any values of the parameters. This result can be rigorously justified
by the analog direct Lyapunov method for differential inclusions [6, Lemma 1.5,
p. 58]. Consider Lyapunov function:

V (x, ẋ) = 1

2
(mẋ2 + kx2). (3)

Then, we have

V̇ (x, ẋ) = −F0ẋsign(ẋ) < 0, ∀ẋ /∈ S

and the equality V (x(t), ẋ(t)) ≡ const can hold only for x ∈ Λ. Thus, any solution
of (2) converges to the rest segment Λ.

3 Two-Dimensional Keldysh Model

M. Keldysh, in 1944, studied a two-dimensional model of damping flutter in aircraft
control systems with dry friction [3]:

J ẍ + kx = −μẋ − ϕ(ẋ), μ = λ− h, ϕ(ẋ) = (F0 + κẋ2)sign(ẋ), (4)

where J > 0 is the moment of inertia, k > 0 is spring stiffness, hẋ is an excitation
force proportional to the angular velocity ẋ, f (ẋ) = λẋ + ϕ(ẋ) is the nonlinear
characteristic of hydraulic damper with dry friction, F0 > 0 is the dry friction
coefficient, and λ > 0 and κ > 0 are parameters of the hydraulic damper.

Using the harmonic balance method, Keldysh formulated the following result: If

−2.08
√
F0κ = δK < μ



102 E. V. Kudryashova et al.

then all trajectories of (4) converge to the rest segment; if μ < −2.08
√
F0κ , then

there are two periodic trajectories (limit cycles) ≈ a± cos(ωt) with amplitudes:

a±(μ) = 3

8κ

√
J

k

(
πμ±

√
π2μ2 − 32

3
κF0

)
; (5)

Other trajectories behave as follows. The trajectories, emerging from infinity, tend
to the external limit cycle. The domain between two limit cycles is filled with
trajectories unwinding from the internal (unstable) limit cycle and winding onto
external (stable) limit cycle. The stability domain bounded by the internal limit
cycle is filled with trajectories tending to one of the possible equilibria on the rest
segment.

By analogy with the above consideration of the Hartog model, we transform the
Keldysh model to the differential inclusion:

J ẍ + kx + μẋ ∈ −ϕ̂(ẋ), ϕ̂(ẋ) =
{
ϕ(ẋ) ẋ �= 0,
[−F0,+F0] ẋ = 0,

(6)

consider Lyapunov function (3) with m = J , and get

V̇ (x, ẋ) = −μẋ2 − ẋϕ(ẋ) < 0, ∀ẋ /∈ S.

Thus, if ẋϕ(ẋ) > 0 for ẋ �= 0, that is:

−2
√
F0κ < μ,

then any solution of (6) converges to the rest segment Λ [15]. Here, the estimate
obtained by direct Lyapunov method is close to the Keldysh estimate obtained by
the harmonic balance method.

To check the second part of Keldysh’s result, we use numerical simulation [13].
The qualitative behavior of trajectories in the case of two coexisting limit cycles is
shown in Fig. 2.

Here, the largest limit cycle is a hidden attractor [16–23] and corresponds to the
flutter. Figure 3 shows the bifurcation of collision of the limit cycles and the rest
segment. In the right subfigure of Fig. 3, both limit cycles have disappeared and
trajectories tend to the rest segment, while the second part of the Keldysh estimate
is valid.
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Fig. 3 Numerical experiment with F0 = 3, J = 1, k = 1, and κ = 1. Left subfigure: μ =
−1.0713δK, a+(μ) � F0 > a−(μ); outer trajectory winds onto stable limit cycle, and internal
unstable limit cycle is not revealed numerically (due to stiffness). Right subfigure: μ = −1.0076δK,
F0 � a+(μ) > a−(μ) (dash circles); outer trajectory approaches the stationary segment, both limit
cycles have disappeared

4 Discontinuous Modification of the Fitts Counterexample

It is known that the harmonic balance method may lead to wrong conclusion
on the global stability. For example, it states that the Aizerman and Kalman
conjectures on the global stability of nonlinear control systems are valid, while
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Fig. 4 Sliding mode surface
{(x1, x2, x3, x4) ∈ R

4
∣∣ x3 =

x4 = 0,−1 ≤ a0x1 + a1x2 ≤
1} for system (7). Arrowed
lines define the motion on the
surface, and thick line defines
the rest segment
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various counterexamples with hidden attractors have been found (see, e.g., [16, 24–
32]). Consider a modification of one of the first counterexamples to the Kalman
conjecture [33]:

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4,

ẋ4 ∈ −a0x1 − a1x2 − a2x3 − a3x4 + ϕ̂(−x3), ϕ̂(ẋ) =
{

sign(−x3) x3 �= 0,
[−1, 1] x3 = 0,

(7)

where ai > 0.
The sliding mode surface for the system (7) is given by:

D = {(x1, x2, x3, x4) ∈ R
4
∣∣ x3 = x4 = 0,−1 ≤ a0x1 + a1x2 ≤ 1}

and the rest segment is (Fig. 4)

Λ = {(x1, x2, x3, x4) ∈ R
4
∣∣ x2 = x3 = x4 = 0,− 1

a0
≤ x1 ≤ 1

a0

}
.

This system has infinite sector of the linear stability and, thus, the harmonic
balance method cannot reveal any periodic solutions [16]. However, for parameters
a0 = 0.981919, a1 = 0.121308, a2 = 2.0254, and a3 = 0.12, it can be found
numerically periodic solution (see Fig. 5) with initial data [33, 34]:

(x0
1 , x

0
2 , x

0
3 , x

0
4) = (− 0.62520516260693109534342362490723,

− 3.7324097072650610465825278562594,

0,

3.4754169728697120793989274111636) (8)
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Using the continuation procedure and passing from parameters a0 = 0.981919,
a1 = 0.121308, a2 = 2.0254, and a3 = 0.12 to parameters a0 = 1.0004, a1 = 4.08,
a2 = 2.08, and a3 = 0.4, it is possible to localize nonperiodic oscillating solution
(see Fig. 6).

5 Conclusions

While harmonic balance method is widely used for the study of stability and
oscillations of nonlinear dynamical systems, it may lead to wrong results. Some
limitations of the use of harmonic balance method for the study of systems with dry
friction and rest segment are demonstrated.
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Optimization of the Dissipative
Properties of Electroelastic Bodies
with Electric Circuits Through
the Analysis of Natural Vibrations

V. P. Matveenko, N. A. Yurlova, N. V. Sevodina, D. A. Oshmarin,
and M. A. Yurlov

Abstract This paper presents a formulation and equations for the problem of
natural vibrations of electroelastic bodies with external electric circuits that contain
resistive, capacitive, and inductive elements. As one of its applications, the results
of the solution of this problem are suggested for determining external electric circuit
parameters that ensure optimal damping of one or several vibration modes. In
order to illustrate the proposed approach, there are presented results of definition
of optimal parameters of external series RL-circuit, shunting piezoelectric element
attached to the surface of thin-walled shell in the form of half-cylinder and providing
the best variants of damping for one or two vibration modes.

1 Introduction

The possibility of controlling the dynamic characteristics of structures by means
of the attached piezoelements and the electric circuits connected to these piezoele-
ments was first demonstrated in [1]. A technique for determining parameters for
external shunting circuits that ensure optimal damping of structures was proposed
in [2]. The technique is based on the transfer function analysis of the electrome-
chanical system under consideration. A review of the literature has shown that
the above-mentioned approach prevails in the analysis of the dynamic behavior
of electroelastic systems with piezoelements shunted with passive electric circuits
[2–9].

Another more general variant of the analysis of the dynamic characteristics of
electroelastic bodies (elastic deformable body with attached deformable piezoele-
ment) with external electric circuits suggests the usage of the equations of solid
mechanics and Maxwell’s equations. Within this approach, an estimate of the
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dissipative properties of the system can be obtained using the results of the solution
of one of the two well-known problems. The first problem is concerned with
studying free vibrations. In this case, the system dissipation manifests itself in the
decay of vibrations, and the rate of decay of vibrations estimates quantitatively the
dissipative properties of the system. The second problem focuses on steady-state
forced vibrations. The dissipation of the system is determined in this case by the
values of resonance amplitudes of the examined variables.

For the electroelastic systems under consideration, it is of great practical signif-
icance to find appropriate parameters, including external electric circuit parameters
that provide optimal and, as a rule, maximum damping of vibrations in the
prescribed frequency range. Determination of optimal parameters through numer-
ical simulations requires multiple solutions of problems that give a quantitative
evaluation of the dissipative properties of the system.

The problems of damped free vibrations and steady-state forced vibrations have
disadvantages when they are used in optimization algorithms. For instance, in
the case of free vibrations an optimal solution is obtained for specified boundary
and initial conditions and the change in these conditions generates a need for
a novel optimal solution. When addressing the problem of steady-state forced
vibrations, an additional drawback arises regarding the necessity to construct an
amplitude–frequency response for getting the values of amplitudes in the prescribed
frequency range. This requires multiple solutions to the problem of steady-state
forced vibrations at each step of the optimization algorithm.

A more acceptable problem for using in optimization algorithms is the problem
of natural vibrations of dissipative systems. One of the results of the solution of
such problems is the spectrum of complex eigenfrequencies of vibrations, where the
real parts characterize resonance frequencies and the imaginary parts—the rate of
decay at a certain frequency. The first formulation of these problems was associated
with the consideration of the natural vibrations of viscoelastic bodies [10], whose
mechanical behavior was described by the complex modulus, the components of
which were calculated using the relations of the hereditary theory of viscoelasticity.
A formulation for the problem of natural vibrations of deformable bodies with
attached piezoelectric elements connected via electrode surfaces to external electric
circuits is given in [11, 12].

This paper considers the application of a natural vibration problem to the
optimization of the dissipative characteristics of electroelastic systems via the
determination of external electric circuit parameters that ensure maximum damping
of vibrations.



Optimization of the Dissipative Properties of Electroelastic Bodies. . . 111

2 Equations of the Problem of Natural Vibrations
of Electroelastic Systems

We consider a piecewise-homogeneous body of volume V = V1 + V2, where the
volume V1 consists of homogeneous elastic elements, and the volume V2 consists of
homogeneous electroelastic (piezoelectric) elements. The passive electric circuit of
arbitrary configuration, which contains resistive (R), capacitive (C), and inductive
(L) elements, is connected to the electrode surface of the piezoelement. “Passivity”
implies the absence of external sources of energy.

The variational equation of motion of the body consisting of elastic/viscoelastic
and piezoelectric elements is formulated using the relations of the linear theory of
elasticity, Maxwell’s equations in quasistatic approximation, and the well-known
relations of electrical engineering [11]. A solution to the natural vibration problem
is found as:

ui(x̄, t) = ui(x̄)e
iωt , ϕ(x̄, t) = ϕ(x̄)eiωt (1)

where ω = ωRe + iωIm is the complex eigenfrequency, the real part of which
ωRe corresponds to the circular natural frequency of vibrations and its imaginary
part ωIm is the damping coefficient characterizing the rate of decay of vibrations;
ui(x̄), ϕ(x̄) are the eigenmodes of components of displacement and electric poten-
tial. The variation equation for the natural vibration problems takes the form [11]:

∫
V1

(σij δεij + ρ1üi δui)dV +
∫
V2

(σij δεij − DiδEi + ρüiδui)dV

+
nL∑
p=1

1

Lp

∫ ∫
(ϕ

Lp
1 − ϕ

Lp
2 )δϕdt2 +

nR∑
q=1

1

Rq

∫
(ϕ

Rq
1 − ϕ

Rq
2 )δϕdt (2)

+
nC∑
r=1

Cr(ϕ
Cr
1 − ϕ

Cr
2 )δϕ = 0.

where Di,Ei are the components of electric flux density and electric field intensity
vectors; σij are the components of a Cauchy stress tensor; εij are the components
of the tensor of linear strains; ui are the components of the displacement vector;
ρ1 is the volume density of the elastic material; ρ2 is the volume density of
the piezoelectric material; ϕ is the electric potential; ϕcir1 − ϕcir2 is the potential
difference of the corresponding element of the electric circuit cir = Lp,Rq,Cr ,
p = 1, . . . , nL, q = 1, . . . , nR, r = 1, . . . , nC , where nL, nR, nC is the number
of inductive, resistive, and capacitive elements, respectively, and Lp,Rq,Cr are
the values of inductance, resistance, and capacitance of the corresponding circuit
element; and δ is the variation of the corresponding variable.
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3 Optimization of Dissipative Properties on the Basis
of Natural Vibration Problem

The resonant RL-circuit consisting of series-connected resistance (R) and induc-
tance (L) is most commonly used for damping the vibrations of electroelastic
systems. A piezoelement exhibits capacitive properties and, along with the resonant
circuit, forms a series RLC oscillatory circuit. This makes it possible to generate,
in the main frequency spectrum of electroelastic system vibrations, an additional
eigenfrequency due to the interaction between the inductive element (inductance
coil or gyrator) and the piezoelement capacitance. This frequency can vary in a
fairly wide range owing to changes in external electric circuit parameters.

The use of an external electric RL-circuit in damping structural vibrations at the
prescribed frequency requires the adjustment of the additional vibrational frequency
of the electric circuit. “Adjustment” is realized through changes in the external elec-
tric circuit parameters, which causes shifts in the additional frequency and brings it
closer to the eigenfrequency of the electroelastic structure, until they coincide [2].

In [12], it was shown that in the space of possible values of the parametersR and
L there may appear such values at which the imaginary parts of the main complex
eigenfrequenciesωn, related directly to the structure, have pronounced extrema (the
only ones for each frequency), corresponding to the maximum rate of decay of
vibrations at a frequency corresponding to the real part. The vibrational frequency of
the electric circuit ωe (additional frequency) has in this case a great number of local
extrema of imaginary part corresponding to the adjustment of a shunting circuit to a
specified vibration frequency of the structure (Fig. 1).

Fig. 1 Dependence of the imaginary part ωIm of the first complex eigenfrequency on the circuit
parameters R and L
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This allows us to formulate the condition, which unambiguously defines the
optimal values of shunting circuit parameters Ropt and Lopt at which the highest
rate of decay of the corresponding vibration mode of the main spectrum is achieved
[12]:

∣∣ωnIm
∣∣→ max (3)

According to [2], the use of a series-resonant electric circuit shunting the
piezoelement makes it possible to damp vibrations only at a single chosen frequency,
to which the electric circuit is adjusted through the selection of appropriate
parameters R and L.

Analysis of the behavior of the imaginary parts ωIm in the space of parameters R
and L has revealed some variants of the coincidence at different eigenfrequencies
but at the same parameters of the electric circuit, i.e., the rate of decay of vibrations
at these frequencies is equal [13].

It has been found that the parameters of the external electric circuit that provide
optimal damping of a few vibration modes should correspond to the point in the
space of parameters R−L where the coincident moduli of damping coefficients for
some modes are maximum:

max
(∣∣∣ωkIm

∣∣∣ =
∣∣∣ωlIm

∣∣∣
)

(4)

Here, k, l are the numbers of vibration modes for which one can observe the point
of coincidence of damping coefficients.

4 The Results of Determination of Optimal Parameters
of External Electric Circuit

To demonstrate the validity of the proposed approach, we consider a thin-walled
shell in the form of a half-cylinder, which was rigidly clamped at both ends and
freely supported along the generatries (Fig. 2).

The geometrical parameters of the shell are: radius r1 = 76 mm, length
l1 = 300 mm, and thickness h1 = 0.25 mm. The shell is made of an elastic isotropic
material with the following physical–mechanical characteristics:E=2×1011 N/m2,
ν = 0.3, and ρ = 7700 kg/m3.

The piezoelement made of piezoceramics PZT-4 was attached to the shell. It
was polarized along the axis r and had standard physical–mechanical characteristics
described in [11] and the following dimensions: length of 50 mm, width of 20 mm,
and thickness of 0.36 mm. The center of mass of the piezoelement was located at a
distance of 15 mm from the clamped ends and it was shifted by 90◦ with respect to
the angular coordinate from the lower base.
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Fig. 2 Computational scheme for the shell in the form of a half-cylinder with a piezoelement and
a series RL-circuit

The solution of the problem of natural vibrations of the shell has shown that in the
range from 0 Hz up to 1500 Hz there are 15 eigenfrequencies. With the prescribed
location of the piezoelement, only five vibration modes (first, fourth, fifth, twelfth,
and fifteenth) can be damped. The remaining modes are such that the piezoelement
is either not deformed or a zero potential is generated on its surface, which does
not allow controlling the dissipative characteristics of the structure by means of the
external electric circuit.

For each of these modes, the values of optimal parameters of the shunting
circuit and the corresponding values of complex eigenfrequencies are given in
Table 1. Figure 1 shows the dependence of the imaginary part of the first complex
eigenfrequency on the circuit parameters R and L in the vicinity of their optimal
values. This dependence gives an idea of possible strategies for finding optimal
solutions.

The results for determining circuit parameters R and L under condition (4) that
provides high damping coefficients of a few vibration modes (in the considered
variant, modes 4, 5 or modes 12 and 15) are summarized in Table 2. The values
of the imaginary parts of corresponding complex eigenfrequencies demonstrate that
there exist some variants of the series external RL-circuit parameter values that can

Table 1 The values of eigenfrequencies at optimal parameters of the external circuit

Frequency
number

Circuit parameters
L(H), R (k�)

Eigenfrequencies of the shell with
external electric circuit
ω = ωRe + iωIm

1 L = 6.9, R = 5.3 554 − i 28.3

4 L = 3.7, R = 4.1 751 − i 32.1

5 L = 3.7, R = 4.0 814 − i 31.1

12 L = 1.3, R = 2.2 1308 − i 48.2

15 L = 1.0, R = 2.6 1493 − i 81.5
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Table 2 External electric circuit parameters that ensure the maximum values of coincident
imaginary parts of eigenfrequencies for two vibration modes

1st frequency 4th frequency 5th frequency 12th frequency 15th frequency

R = 4.41 k�,L = 3.57H

552 − i 2.0 755 − i 23.8 792 − i 23.6 1296 − i 0.7 1486 − i 0.8

R = 2.45 k�,L = 1.19H

553 − i 0.5 754 − i 1.1 799 − i 0.9 1281 − i 25.4 1507 − i 25.8

ensure sufficiently high damping coefficients in the vicinity of modes 4, 5 and modes
12 and 15 in comparison with other modes.

The comparison of the results from Tables 1 and 2 led us to conclude that two
modes of vibrations of the electroelastic structure can be damped using one series-
resonant electric circuit with the parameters selected under condition (4). Although
the damping coefficients of the considered frequencies are lower than those adjusted
for damping only one vibration mode (Table 1), these coefficients are significantly
higher compared to other vibration modes.

5 Conclusions

In this work, we have demonstrated the application of the problem of natural
vibrations of piecewise-homogeneous bodies containing piezoelements and external
electric circuits for selecting variants that ensure an increase in the dissipative
properties of the system for one and several vibration modes in the presence of one
external circuit consisting of inductive and resistive elements connected in series.

Determination of the optimal dissipative characteristics of the system is based
on the analysis of the imaginary part of the eigenfrequency, which specifies the
damping coefficient of the corresponding vibration modes in the space of electrical
circuit parameters (inductance and resistance).

It is shown that the approach developed in this work can be used to optimize the
dissipative characteristics of the electroelastic system for one or several vibration
modes.
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Multiscale Dynamics of Damage-Failure
Transitions and Structures Control
Under Intensive Loading

O. B. Naimark

Abstract High-cycle and very-high-cycle fatigue is the most important funda-
mental and engineering problem for a variety of applications. Series of accidents
caused by the gas turbine engine failure (Cowles, Int J Fract 80:147–163, 1996;
Shanyavsky, Simulation of fatigue fracture of metals. Synergetics in aviation.
Monografiya, Ufa, 2007), along with high costs of service life estimation and
potential costs of development of new constructions, stimulated advanced concepts
of national programs for high-cycle and very-high-cycle fatigue (Bathias and Paris,
Gigacycle fatigue in mechanical practice. Dekker Publisher Co., Marcel, 2005;
Botvina, Fracture: kinetics, mechanisms, general laws. Nauka, Moscow, 2008; Hong
et al., Metall Mater Trans A 43(8):2753–2762, 2012; Mughrabi, Int J Fatigue
28:1501–1508, 2006; Nicolas, Int J Fatigue 21:221–231, 1999; Nicholas, High cycle
fatigue. A mechanics of material perspective. Elsevier, Oxford, 2006; Paris et al.,
Eng Fract Mech 75:299–305, 2008; Peters and Ritchie, Eng Fract Mech 67:193–
207, 2000; Sakai, J Solid Mech Mater Eng 3(3):425–439, 2009; Shanyavsky,
Simulation of fatigue fracture of metals. Synergetics in aviation. Monografiya, Ufa,
2007), as being based on new fundamental results of fatigue evaluation. The pro-
grams aim at developing approaches using basic research findings, modern methods
of laboratory modeling, and quantitative analysis of structural changes in order to
reveal fracture stages and “criticality” mechanisms in transition to macroscopic
fracture. A strong interest in the gigacycle range (109 cycles) of fatigue loads is
provided by the progress in the creation of new (nano- and submicrostructural)
materials with a very-high-cycle fatigue life and by breakthrough tendencies in
technologies requiring such life in aviation motor industry (Nicolas, Int J Fatigue
21:221–231, 1999).
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1 Special Features of Crack Initiation
in the Very-High-Cycle Fatigue Regime

To distinguish stages of initiation and propagation of fatigue cracks is one of
the key problems of fatigue failure [9, 15–17, 24, 26], which is solved using the
methodology of investigation of damage kinetics, crack nucleation and propagation
as well as by means of experimental technique for registration of specific fracture
stages. It was previously noted [5, 15, 17] that a promising approach to evaluating
the very-high-cycle fatigue life is the consistent description of stages of damage
accumulation with regard to its multiscale kinetics until the leader crack appears
whose size would allow a use of fracture mechanics approaches. The role of the
initiation stage is particularly important for gigacycle loading regimes, which are
characterized by the generation of the fracture cite of a “fish-eye” shape in the
material bulk [6]. The stage of fatigue crack growth in the very-high-cycle regime
may be short as the major part of the fatigue life is accounted for the time of
formation of the initiation zone [5, 12, 15–17, 20, 25].

Fatigue damage is traditionally associated with microplastic deformation [15, 16]
under cyclic loading that induces various microstructural mechanisms of control
of the fatigue life, being dependent on the origin and initial structure of material.
For plastic metals, there is a special type of localized fatigue (cyclic) deformation
(persistent slip bands), usually initiating cracks in the near-surface zone. Fatigue
fracture of high-strength steels is another case that implies the generation of
damages (cracks) in the vicinity of inclusions at low-load amplitudes corresponding
to very-high-cycle fatigue. Thus, in contrast to conventional studies of very-high-
cycle fatigue focusing on the crack propagation stage, we pose a fundamental
problem of initiation of a fatigue crack during multiscale processes of damage accu-
mulation associated with various defects (localized plastic shear bands, microcracks,
and pores). In so doing, a qualitative difference of very-high-cycle fatigue is the
fatigue crack initiation in the material bulk [5, 12, 15, 25]. This radically alters the
statement of the problem of fatigue life evaluation and implies the development
of new methods for studying fracture stages, formation of critical conditions for
the transition from disperse to macroscopic fracture, experimental and structural
methods of assessment of fracture stages. Mughrabi and Höppel also noted that
fracture stages are characterized by the irreversibility effects appearing due to
localized shears that govern the fatigue crack initiation [15, 16].

2 Fatigue Crack Growth

The study of the crack kinetics is one of the important fundamental problems of
the mechanics and physics of fracture, which considers crack propagation in the
damaged medium in new statements, being a distinctive feature of fracture under
very-high-cycle fatigue. Paris analyzed a large amount of experimental data and
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dependences of the crack growth rate da/dN on the stress intensity factor K and its
range ΔK and found the power law of crack growth [5, 23]:

da

dN
= C (ΔK)m , (1)

where C and m are the material-dependent constants.
The stress intensity factor range is defined as ΔK = Kmax − Kmin, where

Kmax and Kmin are the maximum and minimum stress intensity factors under cyclic
loading. In addition to the Paris kinetics, the existence of the threshold value ΔKth

is anticipated, under which the crack will not propagate.
Once formed, a crack grows further in the material by certain mechanisms that

can be divided into the following three stages. Figure 1 is a kinetic diagram of
fatigue fracture [5], which describes the crack growth. Stage 1 is a near-threshold
growth of the fatigue crack at the crack rate in the range 10−6–10−5 mm/cycle;
stage 2 is a stable growth of the fatigue crack (more than 10−5 but less than
10−3 mm/cycle); stage 3 is an unstable growth of the fatigue crack at 10−3 mm/cycle
and higher. The Paris law describes a linear portion of the kinetic diagram with the
“upper bound” at the first stage. At stage 3, the crack growth rate proves to be much
higher than that predicted by the Paris equation.

Fig. 1 Kinetic diagram of fatigue fracture, crack growth stages [5]. Stage 1 is a strong influence of
the microstructure, average stress, maximum stress of the environment; stage 2 is a strong influence
of maximum stresses, a weak influence of the microstructure, average stress of the environment;
and stage 3 is a strong influence of the microstructure, average stress, a weak influence of the
environment
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Fig. 2 Schematic diagram of
fatigue crack growth
depending on the crack size
[13]

The kinetic diagram is indicative of the two main characteristics of the cyclic
crack resistance: the threshold stress intensity factor range ΔKth, below which a
fatigue crack does not grow, and the critical stress intensity factor range ΔKfc,
at which a catastrophic fatigue failure occurs. Fatigue failure in the Paris regime
is determined by the applied stress and crack length (and its orientation) [14].
However, for small cracks or low stresses when the crack growth kinetics is
significantly affected by the structure and damage of the surrounding material, the
Paris law cannot be used in its traditional formulation.

To describe the growth kinetics of cracks smaller than “Paris cracks,” Miller
and Hertzberg [11, 13] proposed a phenomenological relation, which, along with
the macroscopic characteristics of the stress state at the crack tip ΔK , includes
a parameter of the dislocation subsystem, namely, the Burgers vector modulus b
(Fig. 2):

da

dN
= b

(
ΔK

E
√
b

)α
, (2)

where E is Young’s modulus. This relation finds wide applications, even for “Paris
cracks” due to the introduction of the effective value ΔKeff .

3 Kinetic Equation of Fatigue Crack Growth

The versatility of kinetics mechanisms determining the relationship between the
fatigue crack growth rate and stress intensity factor change ΔK is the subject
of intensive experimental and theoretical research. Power-law dependence (1)



Multiscale Dynamics of Damage-Failure Transitions 121

reflects the self-similar nature of fatigue crack growth due to nonlinear damage
accumulation in the vicinity of the crack tip (process zone).

Self-similar features of crack growth were studied by methods of the theory of
similarity and dimensions [4, 8]. The crack growth rate da/dN (a is the crack length
and N is the number of cycles) is dependent on the following parameters:

da

dN
= F

(
ΔK,E, lsc, Lpz

)
, (3)

where ΔK is the stress intensity factor range, E is Young’s modulus, lsc is the
minimum spatial scale in the vicinity of the crack tip (fracture process zone)
on which scale-invariant laws of the fracture surface relief begin to show up,
and Lpz is the scale of the fracture process zone at the crack tip. The values
Lpz and lsc are experimentally determined based on the study of correlation
properties using the scale invariant (Hurst exponent) obtained from the analysis of
the correlation function of fracture surface profiles. Following the Π-theorem [4] in
a dimensionless form, function (3) can be represented as:

da

dN
= Φ

(
ΔK

E
√
lsc

,
Lpz

lsc

)
. (4)

By evaluating ΔK/
(
E
√
lsc
) � 1 and Lpz/lsc � 1, we can suggest the

intermediate asymptotic nature of crack growth kinetics and write (4) in the form:

da

dN
= lsc

(
ΔK

E
√
lsc

)α (Lpz
lsc

)β
, (5)

where α and β are exponents reflecting the intermediate asymptotic nature of
crack growth kinetics versus dimensionless variables. We introduce the parameter
ΔKeff = ΔK

(
Lpz/lsc

)β/α and write (5) in the form:

da

dN
= lsc

(
ΔKeff

E
√
lsc

)α
. (6)

At lsc → b where b is the Burgers vector modulus,Lpz → lsc, and consequently
ΔKeff → ΔK the derived equation of crack growth kinetics will tend to be written
as Herzberg (2) [11].

The scalesLpz and lsc were previously determined by the profilometry data at the
fatigue crack tip for R4 steel [21]. These data presented in logarithmic coordinates
in accordance with (6) allow an assessment of the critical scale lsc. The lower limit
of the spatial scale Lmin is taken as the critical scale lsc (Fig. 3).
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Fig. 3 Typical form of the dependence of lnK(r) on the fracture surface relief

4 Quantitative Fractography of Fracture Surfaces

Mechanisms of fatigue failure in the very-high-cycle regime are studied by quan-
titative fractography based on the data of optical microscopy and high-resolution
profilometry of the fracture surface (New View 5000 interferometer–profilometer).

Specimens made of titanium and its alloys with a characteristic fracture (“fish-
eye”), whose cite is in the material bulk, demonstrate zones with pronounced
roughness around the crack nucleus (zone I), which are about 100 μm in diameter
for pure Grade-4 titanium and 300 μm in diameter for alloy VT-6 (Fig. 4). The rest
and the largest part of the fracture surface is zone II which is smoother.

5 Methods of the Fracture Surface Analysis

5.1 Scale Kink Method

Methods for evaluating the correlation length are tested with the use of processing
of roughness profiles of high-strength steel obtained by the New View 5000
interferometer–profilometer (Fig. 5).
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Fig. 4 Images of the fatigue crack nucleus and specific zone of increased roughness around it
taken by the New View 5010 interferometer. Solid and dashed lines show the investigated one-
dimensional profiles in zones I and II, respectively

Fig. 5 3D-image of the fracture surface of steel R5 and the analyzed one-dimensional profile
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Fig. 6 Oscillations of the correlation function and the assessment of the correlation scales. The
solid line is the experimentally obtained correlation function, and the dashed line is the power-law
extrapolation

The structural scaling parameter is introduced at calculating the correlation
function [1–3, 7, 10, 18, 21, 22]:

K(P) ≡
√
〈(h(x + R)− h(x))2〉, (7)

provided that there are scales R � ξ (ξ is the correlation length) on which the relief
reveals correlated fluctuations which are indicative of the power-law dependence:

K(P) ∝ RH, (8)

whereH is the relief scaling (surface roughness) index (Hurst exponent). Therefore,
the correlation length is determined as the scale, at which the structural scaling
parameter begins to deviate from the power-law dependence, meaning that the crack
behavior is not determined by the material state on scales R � ξ . The correlation
scale can be thus associated with the scale of a zone in the vicinity of the crack tip
defining its kinetics.

The proposed approach can be used with sufficient accuracy for long profiles of
the fracture surface. However, if the length of the experimental profile is limited,
this approach can demonstrate a sufficiently wide scatter of the correlation function
values. In addition, oscillations might be responsible for the ambiguous definition of
intersection points of the correlation function and power-law dependence (Fig. 6).
In accordance with the standard procedure, each of the five intersection points can
be taken as the correlation length.

6 Results and Discussion

Various mechanisms of initiation and propagation of fatigue cracks in metals
under high-cycle and very-high-cycle fatigue have a variety of qualitative and
quantitative fractographic signs of fracture surfaces. The developed methods of
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multiscale analysis enable a determination of scale-invariant characteristics (scaling
parameters) of specific zones of fatigue fracture (initiation and propagation of
cracks), which are related to various mechanisms and stages of defect development
and fatigue crack growth.

A quantitative analysis of the surface morphology according to high-resolution
profilometry made it possible to find the scale invariance of the fracture surface relief
and to relate it to the self-similar nature of fatigue crack growth in the very-high-
cycle fatigue regime. Characteristic scales Lpz and lsc which determine boundaries
of the zone of the correlated behavior of defects at the crack tip are related to
phenomenological relations describing the fatigue crack kinetics.

The analysis of the experimental data shows that an increasing number of cycles
in very-high-cycle fatigue testing lead to an increase in softening of Armco iron
specimens, i.e., increases the damage degree associated with defects (dislocations,
microscopic pores, and cracks). The studies performed demonstrate that fracture
occurs in the central part of the specimen. The experimental data allow us to
conclude that the detected softening in specimens when tested for very-high-cycle
fatigue is due to the formation of pores and microcracks that decrease the density of
the specimen. Independent measurements of the elastic modulus, which decreases
on account of the formation of pores and microcracks, confirm the formation of the
fracture site in the specimen bulk.

Acknowledgement Research was supported by the Russian Foundation of Basic Research
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Influence of Sensors and Actuators
on the Design of the Modal Control
System

V. A. Polyanskiy, A. K. Belyaev, N. A. Smirnova, and A. V. Fedotov

Abstract The efficiency of the active vibration control of flexible systems is limited
by the delay in the feedback loop, which causes instability at higher frequencies. In
order to design the transfer functions of the feedback control system, it is necessary
to use the frequency response functions of the control object. In the case where these
functions cannot be measured experimentally, they can be derived from the model
of the object. We consider the object model with and without taking into account the
influence of sensors and actuators on its dynamics, and the results demonstrate that
if this influence is neglected in the model, the efficiency of the control system can
significantly decrease. We consider modal control of bending vibrations of a metal
beam using piezoelectric sensors and actuators.

Keywords Active vibration control · Modal control · Identification · Sensors ·
Actuators

1 Introduction

Material savings and lightweight design lead to the appearance of flexible systems
practically in all new constructions, from bridges to robots. At the same time, there is
a cheapening of sensors and actuators. All this gives completely new opportunities
in the solution of engineering problems by methods of active control. Such smart
structure control methods have been intensively developed over the past 25 years.

Piezoelectric sensors and actuators are widely used as the control elements in
the modern smart systems due to their high operational characteristics. A review
of functional materials used in smart structures is given by Tani et al. [10]. One
of important applications of the smart structure technology is the active vibration
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control. Concerning the literature on the active vibration control and the smart
systems used for this purpose, the reader is referred to cf. [1, 9].

An important part of such smart structures is the electronic control system. Due to
the limited dynamics of all digital and electronic components, there are limitations
on the accuracy of control. All processes are fast in the case of active vibration
suppression. The limited dynamics of electronic and digital components can play
a decisive role in control. These problems lead to residual vibrations in the smart
structures that are observed during the experiments [3, 7]. Additional difficulties
are associated with the presence of a large number of resonances and small internal
damping of elastic smart systems. Instability may cause the resonance peaks for
the cutoff frequency of the open-loop system. In [3], we showed theoretically
and experimentally that modal control has significant advantages over the local
one. This is achieved by knowledge of the model of the controlled object, and its
eigenfrequencies and eigenmodes.

There arises the problem of identification, which is almost always solved by
calculation, either by the finite element method [5, 8] or by means of an analytical
solution of the oscillation problem [4, 6]. At the same time, thin piezoelectric
patches influence own frequencies and modes, even on a steel beam. In fact, using
the model modes we try to control an object using its inaccurate model. It is
important to understand how serious control errors this can cause.

2 Modal Control of the Distributed Elastic Object

The purpose of the control is to reduce the amplitude of forced vibrations of the
distributed elastic object in the frequency range, which includes several of its lower
eigenfrequencies. It is assumed that the displacement of the object u(r, t) can be
expressed as an infinite series in eigenmodes of the object:

u(r, t) =
∞∑
k=1

wk(r)βk(t). (1)

Let the control system include r sensor–actuator pairs. The principal coordinates
βk(t) can be found as the solution of the following system:

β̈k(t)+ 2ξkλkβ̇k(t)+ λ2
kβk(t) = fk + yk

yk =
r∑
i=1

θakiUi
, (2)

where λk is the k-th natural frequency of the object, ξk is the damping ratio, fk is
the external disturbance, yk is the control influence on the k-th eigenmode of the
object, Ui is the control signal applied to the i-th actuator, and θaki is the coefficient
of influence of the i-th actuator on the k-th mode. In terms of system (2), the purpose
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of the control is to reduce the moduli of the first m principal coordinates by selecting
the control signals Ui . The modal control algorithm has the following form [3]:

Ur×1 = FKm×mT Yr×1

Yr×1 = θsr×mβm×1 + Ỹ
, (3)

where Km×m is the diagonal matrix of gain factors (the subscript indicates the
dimension of the matrix object), Fr×m, Tm×r are the modal matrices to be selected,
Yr×1 is the vector of sensor signals, θsr×m is the weighting matrix to be identified,
and vector Ỹ contains only higher principal coordinates, but not the first m

coordinates. Then, the first m equations of the system (2) can be expressed in the
matrix form:

β̈m×1 + 2ξm×mβ̇m×1 +Λm×mβm×1

= fm×1 + θam×rFr×mKm×mTm×r θ sr×mβm×1 +Δm×1,

where Λm×m = diag{λ2
k} is the diagonal matrix of squares of the eigenfrequencies

of the object, ξm×m = diag{ξkλk} is the diagonal damping matrix, fm×1 is the
vector of external disturbances, and vector Δm×1 contains only higher harmonics.

The modal approach assumes the independent control of the lower eigenmodes
of the object, and therefore, the diagonal structure of matrix M = θaFKT θs . For
this purpose, the modal matrices F and T must be selected as follows:

Fr×m = θaTr×m(θam×r θaTr×m)−1, Tm×r = (θsTm×rθ sr×m)−1θsTm×r .

The task in defining the control algorithm is to determine the matrices θam×r and
θsr×m, which change as a result of attaching sensors and actuators to the object. It
is also necessary to select the transfer functions k1(s), . . . , km(s), which are the
elements of the diagonal matrix Km×m, so as to improve the quality of suppression
of the lower modes and ensure the stability of higher ones.

3 Functional Models of Sensors and Actuators

This section describes the operation of rectangular piezoelectric patch sensors and
actuators used to control bending vibrations of a beam. Two functional models of
control elements are obtained: a full one, which takes into account their mechanical
properties, and a simplified one, which does not take into account the size of the
control elements and their effect on the mechanical properties of the beam.

Let the sensors and the actuators be located in pairs on both sides of the beam
between the sections x = ai and x = Ai , i = 1, . . . , r , Ai−ai = lp, where lp is the
length of the piezopatch. According to the piezo-actuator model [9], the application
of the electric voltage V to the actuator electrodes is equivalent to the application of
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a pair of bending moments Mp in sections x = ai and x = Ai , equal in magnitude
and opposite in direction: Mp = e31bzmV , where e31 is the piezoelectric constant
of the material, b is the width of the electrode, and zm is the distance between the
midplanes of the beam and the piezopatch. According to the piezo-sensor model [9],
the signal of the i-th sensor is proportional to the difference between the rotation
angles φ(t, x) of beam sections x = ai and x = Ai . We assume here the dynamics
of the beam limited to its n lower bending modes. Then, the control influence on
the k-th vibration mode yk and the signal of the i-th sensor Yi in the full model will
take the following form:

yk =
l∫

0
ϑk(x)

(
r∑
i=1

Mpi [δ(x − Ai)− δ(x − ai)]
)
dx

= ka
r∑

i=1
[ϑk(Ai)− ϑk(ai)]Ui =

r∑
i=1

θakiUi,

Yi = e31bzm
C

(φ(t, Ai)− φ(t, ai))

= ks
n∑

k=1
[ϑk(Ai)− ϑk(ai)]βk(t)

=
n∑

k=1
θaikβk(t),

where C is the capacitance of the sensor; ka = e31bzm and ks = e31bzm/C are
the coefficients common to all actuators and sensors; the influence coefficient θaki =
ka[ϑk(Ai) − ϑk(ai)] and the weighting coefficient θsik = ks[ϑk(Ai) − ϑk(ai)] are
calculated from the k-th mode of the rotation angle of the beam section taking into
account the influence of the control elements attached to the beam ϑk(x).

In simplified models, we assume the curvature of the vibration modes constant
over the actuator length, while the modes themselves are obtained without taking
into account the control elements attached to the beam. In this case, the control
influence ŷk and the sensor signal Ŷi are determined by the following formula:

ŷk = ka

r∑
i=1

lp
d2

dx2 ŵk

(
ai + Ai

2

)
Ui =

r∑
i=1

θ̂ akiUi,

Ŷi = ks

n∑
k=1

lp
d2

dx2 ŵk

(
ai + Ai

2

)
βk(t) =

n∑
k=1

θ̂ sikβk(t),

where the influence coefficients θ̂ aki = kalp
d2

dx2 ŵk

(
ai+Ai

2

)
and the weighting

coefficients θ̂ sik = ks lp
d2

dx2 ŵk

(
ai+Ai

2

)
are calculated from the vibration modes of

the beam without taking into account the piezopatches ŵk(x).
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4 The Influence of the Model of Piezopatches
on the Efficiency of the Modal Control

We consider a simply supported aluminum beam of length l = 1 m with a
rectangular cross-section S = 3× 35 mm2. The external disturbance is the bending
moment μ0 applied at the beam section x0 = 0.4 m. The purpose of the control
is to suppress forced resonant vibrations of the beam with the first and the second
natural frequencies. The modal control (3) includes m = 2 vibration modes. The
numerical model includes n = 20 lower modes with the same damping factor
ξ = 0.01. Two pairs of piezoelectric sensors and actuators (r = 2) with dimensions
60×30×0.5 mm are attached to the beam between the sections x = ai and x = Ai ,
i = 1, 2. Their locations are chosen so as to provide the most effective separation
of the first and the second modes: a1 = 0.22 m, A1 = 0.28 m, a2 = 0.47 m, and
A2 = 0.53 m.

Attaching piezopatches has a significant effect on the properties of the beam:
the linear density of the corresponding beam segments changes from 0.284 to
0.518 kg/m, and their bending stiffness increases from 5.51 to 12.3 N m2. Figure 1
shows the frequency response functions of the beam for the first actuator and the
first sensor, which are obtained using both models of the control elements.

Taking into account the mechanical properties of the piezopatches leads to
significant lowering of the frequency response function of the beam. This is
explained by the fact that the control elements considerably increase the bending

Fig. 1 FRFs of the beam for the 1st actuator and the 1st sensor using the complete (red line) or
the simplified (blue line) model of the piezopatches
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stiffness of the beam segments to which they are attached, therefore the curvature of
these segments decreases for each vibration mode. These changes should be taken
into account in the numerical model of the object, which serves as a starting point
for the synthesis of the modal control algorithm.

To implement the modal control algorithm (3), it is necessary to specify the
modal matrices T and F and the elements of matrix K . Meanwhile, K includes the
dynamics of the electronic and digital parts of the control system, which is modeled
with the transfer function He(s) = 1

0.0005s+1. Thus, the elements of matrix K take
the following form:

K11(s) = 1

0.0005s + 1
R1(s),K22(s) = 1

0.0005s + 1
R2(s),

where R1(s) and R2(s) are the transfer functions of the first and the second control
loops, respectively. The modal matrices F2×2 and T2×2 are obtained by inverting the
matrices θa2×2 and θs2×2, which are related due to the pair placement of the sensors

and the actuators: θa = ka
ks
θ sT . Therefore, the modal matrices are defined by the

following formula:

F = ks

ka
T T = (θa)−1, (4)

where the matrix θa is obtained using the complete or the simplified model of the
actuators.

The transfer functions R1(s) and R2(s) are selected in order to provide the
desired frequency response functions of the open-loop system. For this purpose,
the FRFs of the control object corresponding to both control loops are used. These
FRFs can be obtained using either full or simplified model of piezopatches. During
the synthesis of the transfer functions, their order was increased until it was possible
to significantly increase the gain factor at the lower frequencies provided that the
closed-loop system is stable. The transfer functions are designed independently for
each control loop. When the control loops are switched on simultaneously, the gain
factors should be reduced to ensure the stability of the closed-loop system. The
described approach to the synthesis of the transfer functions was applied on the
experimental setup, and the results are reported in the article [3].

To estimate the efficiency of vibration suppression in the resonance
regimes, the steady-state value of the vibration intensity was calculated: E =
sup
t

√∫ l
0 u

2(x, t) dx, where u(x, t) is the displacement of the beam from the formula

(1). For each variant of the control system, the coefficient of vibration suppression

K
(i)
u was calculated according to the formula K(i)

u =
(

1 − E(i)

E
(i)
0

)
· 100%, where

E(i) and E(i)
0 denote the vibration intensity at the i-th resonance with and without

control.
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We considered four different variants of the control system. Variants 1A and 2A
use modal matrices, calculated using the simplified model of sensors and actuators:

F =
(

0 −169
−675 119

)
, T = 10−5 ·

(
0 −4.62

−1.16 0.82

)
.

Variants 1B and 2B use modal matrices on the basis of the full model of the
piezopatches:

F =
(

11.3 −350
−1453 249

)
, T = 10−5 ·

(
0.077 −9.95
−2.4 1.71

)
.

Variants 1A and 1B use first-order transfer functions:

R1(s) = K
(1)
p1 R

(1)
1 (s), R2(s) = K

(1)
p2 R

(1)
2 (s), R

(1)
1 (s) = 1 + 0.4s

1 + 0.002s
,

R
(1)
2 (s) = 1 + 0.067s

1 + 0.00033s
.

Variants 2A and 2B use more complicated transfer functions of higher order:

R1(s) = K
(2)
p1 R

(2)
1 (s), R2(s) = K

(2)
p2 R

(2)
2 (s),

R
(2)
1 (s) = 1+ 0.015s + 0.000625s2

1 + 0.0012s + 0.0004s2 , R
(2)
2 (s) = 1 + 0.00235s + 0.000035s2

1 + 0.000054s + 0.000029s2 .

For each variant, the configurations of the control system with only one or both
control loops were tested; for these cases, the gain factors Kp1 and Kp2 were
different. The magnitude of the gain factors is limited by the onset of instability
at the higher resonance frequencies of the system. For the variants 1A and 2A, the
gain factors are determined based on the FRFs obtained using the simplified model
of the piezopatches. In contrast, the gain factors for the variants 1B and 2B are
determined based on the real FRFs of the beam. Table 1 shows the gain values in
cases of separate and simultaneous work of the control loops. Table 2 shows the

Table 1 Gain factors for different variants of the control system

Gain factors

One control loop Two control loops together

Control system Kp1 Kp2 Kp1 Kp2

1A 0.6 8 0.33 4.4

1B 0.4 5.5 0.22 3.03

2A 65 800 32.5 400

2B 45 620 22.5 310
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Table 2 Coefficients of vibration suppression at the 1st and the 2nd resonances for different
variants of the control system

Coefficients of vibration suppression Ku, %

One control loop Two control loops together

Control system K
(1)
u K

(2)
u K

(1)
u K

(2)
u

1A 5.7 3.4 3.3 2

1B 15 9.3 9.3 7.4

2A 48 47 32 32

2B 70 59 59 57

corresponding values of the coefficients of vibration suppression at the first and the
second resonances.

We can see that the use of simple transfer functions (variants 1A and 1B) is
ineffective, in contrast to more complex transfer functions (variants 2A and 2B). In
the case where both control loops operate simultaneously, the efficiency of vibration
suppression is considerably lower than in the cases where the loops work separately,
because of the lower gain values in the first case. Comparison of the data presented
shows that the efficiency of the modal control, based on the complete model of
sensors and actuators (1B and 2B), significantly exceeds the efficiency of control
based on the simplified model of piezopatches (1A and 2A). This means that the
synthesis of the control systems should be based either on the adequate model of the
object, with correctly calculated eigenmodes, or on the experimental identification
of the modal matrices, in accordance with the algorithm proposed in [2]. The design
of the transfer functions and the optimization of the gain factors should be carried
out using the real frequency response functions of the object.

It is found out that the delay in the control channel leads to instability of higher
modes, limiting the gain factors. Numerical studies usually neglect the dynamics of
the electronic part, considering the delay in the control loop to be not significant.
Results show that this small delay, approximately two orders less than the periods
of vibrations suppressed in the system, has a very significant effect on the maximum
possible coefficient of vibration suppression.

5 Conclusion

Modeling of the elastic beam with and without taking into account the mechanical
properties of sensors and actuators has shown that these elements have considerable
effect on the dynamical properties of the controlled object. The combination of this
effect with the delay in the control loop imposes strong restrictions on the operation
of the smart system.

The results of the numerical modeling has shown that in order to design correctly
the modal matrices and the transfer function in the control loops, it is necessary
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either to precisely calculate the eigenfrequencies and eigenmodes of the object
taking into account the characteristics of the control elements, or directly identify
all the parameters on the controlled object.
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Control of Beam Vibrations by Casimir
Functions

Hubert Rams, Markus Schöberl, and Kurt Schlacher

Abstract This contribution presents a port-Hamiltonian (pH) framework for the
modeling and control of a certain class of distributed-parameter systems. Since
the proposed pH-formulation can be seen as a direct adoption of the calculus of
variations on jet bundles, it is especially suited for mechanical systems exhibiting
a variational character. Besides the pH-framework, an energy-based control scheme
making heavy use of structural invariants (casimir functions) is presented on the
example of a boundary-controlled Euler–Bernoulli beam.

1 Introduction

Geometric methods turned out to build an effective framework for the description
and analysis of mechanical systems, see [1] for example. In particular, differential-
geometric approaches can be used in a very beneficial manner for the pure
covariant formulation of classical field theories, see, e.g., [3], specifically for
continuum mechanics find [9]. From a control engineering point of view, especially
port-Hamiltonian formulations are very beneficial since they provide insight into
the power flow within the system and how the system exchanges power with
other systems. These formulations therefore naturally lead to energy-based control
schemes, see, e.g., [15], which turned out to result in robust and physically
reasonable controls. Unfortunately, for control systems governed by partial differ-
ential equations (pdes) there exists no unique pH-framework. For example, in [12]
different pH-formulations are demonstrated by means of a Mindlin plate. In this
contribution, however, we restrict ourselves to a pH-framework based on jet-bundle
structures, see [11], as it is very well suited for the formulation and the energy-based
controller design of mechanical systems, see [10, 14]. Having said that, it should be
emphasized that in [10, 14] only 1st-order Hamiltonians, i.e., Hamiltonian densities
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depending on derivative coordinates up to 1st-order, are considered. Therefore,
in this paper, we extend this pH-formulation to 2nd-order Hamiltonians with the
restriction on one-dimensional spatial domains and demonstrate the energy-based
control by means of Casimir functions in the example of an Euler–Bernoulli beam
formulated in terms of this framework.

2 Geometrical Framework

To define the representation of systems governed by pdes in a pH-setting, we first
introduce some geometrical structures. Hence, we start with defining the (so-called)
state-space bundle π : E → B, where the base manifold B (spatial domain)
is equipped with the independent (spatial) coordinate z, and the total space E

comprises the dependent (fiber) coordinates xα, α = 1, . . . , n, as well as the
coordinate z. Furthermore, π is a surjective submersion from the manifold E to the
manifold B and is referred to as projection. Consequently, the bundle π : E → B

allows us to distinguish strictly between dependent and independent coordinates.
Note that the time t remains in the role of an evolution parameter in this setting, i.e.,
we confine ourselves to the time-invariant scenario solely. A section σ : B → E

of the bundle π : E → B is a smooth mapping which relates the independent
coordinates to the dependent ones in the manner of xα ◦ σ = σα(z) ∈ C∞(B).

By means of the first, second, third, and fourth jet manifold, which are denoted as
J 1(E), J 2(E), J 3(E), and J 4(E), respectively, the so-called derivative coordinates
or jet variables can be introduced. As coordinates on these manifolds we have
(z, xα, xαz ), (z, x

α, xαz , x
α
zz), (z, x

α, xαz , x
α
zz, x

α
zzz), and (z, xα, xαz , x

α
zz, x

α
zzz, x

α
zzzz),

respectively; here, xαz , xαzz, x
α
zzz, and xαzzzz denote the first, second, third, and fourth

derivative coordinates, respectively. For these coordinates, the important relation
xαz···z ◦ σ = ∂lσα/∂zl holds, where l is the cardinality of the subscripted index set
of xαz···z. To clarify notation, we have xαzzz ◦ σ = ∂3σα/∂z3, for example.

Of particular interest is also the vertical tangent bundle vE : V (E) → E where
a section v : E → V (E) forms a vertical vector field given as v = vα∂α with
vα ∈ C∞(E) in local coordinates. Based on certain pullback-bundle constructions,
see [3, 8] for example, we are able to introduce the so-called evolutionary or
generalized vertical vector fields v = vα∂α with vα ∈ C∞(J l(E)), l ≥ 0, i.e.,
the coefficients vα are allowed to depend on derivative coordinates. Furthermore,
the second prolongation of a (generalized) vertical vector field v is given by:

j2(v) = vα∂α + dz(v
α)∂zα + dz(dz(v

α))∂zzα (1)

using the total derivative dz = ∂z + xαz ∂α + xαzz∂
z
α + xαzzz∂

zz
α + · · · as well as the

abbreviation ∂z···zα = ∂/∂xαz···z.
Other important bundles are the cotangent bundles τ ∗E : T ∗(E) → E and

τ ∗B : T ∗(B) → B. Sections of these bundles are 1-forms (covectors) and read as
ω = ωαdxα + ω̄dz and θ = θ̄dz, where ωα, ω̄ ∈ C∞(E) and θ̄ ∈ C∞(B), in
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local coordinates, respectively. Again, by forming an appropriate pullback bundle
Wl

0(E) = T ∗(B) → J l(E), we can introduce special densities hdz with h ∈
C∞(J l(E)), l ≥ 0, i.e., the function h may depend on derivative coordinates as
well.

The natural contraction between a vector field v = vα∂α + v̄∂z and a 1-form
ω = ωαdxα + ω̄dz is denoted by v�ω and results in v�ω = vαωα + v̄w̄. Note that
here and in the sequel Einstein’s summation convention is applied.

Moreover, covector-valued densities ηαdxα ∧ dz with ηα ∈ C∞(J l(E)), l ≥ 0,
can be built as sections of the pullback bundle Wl

1(E) = T ∗(E)∧T ∗(B)→ J l(E).
Based on the above bundle constructions, we introduce the Euler–Lagrange

operator, which is henceforth referred to as domain operator, δ : W 2
0 (E)→ W 4

1 (E):

δ(hdz) = δα(h)dxα ∧ dz (2)

including the variational derivative δα = ∂α − dz(∂
z
α)+ dz(dz(∂

zz
α )) as well as both

the (so-called) boundary operators of the special form:

δ∂,1(hdz) = δ∂,1α (h)dxα = (∂zαh− dz(∂
zz
α h))dx

α (3a)

δ∂,2(hdz) = δ∂,2α (h)dxαz = ∂zzα (h)dx
α
z . (3b)

Finally, it is of particular interest how the integrated quantity H = ∫
B
hdz

evolves along a vertical vector field v = vα∂α which might be generalized, i.e.,
we shall consider the expression

∫
B
j2(v)(hdz). To this end, we state the following

theorem.

Theorem 1 (Decomposition Theorem) Let h ∈ C∞(J 2(E)) be a 2nd-order
density, and v ∈ V (E) an evolutionary vector field. Then, the integral

∫
B j

2(v)(hdz)
can be decomposed into:

∫
B

j2(v)(hdz) =
∫
B

v�δ(hdz)+
∫
∂B

v�δ∂,1(hdz)+
∫
∂B

j1(v)�δ∂,2(hdz) (4)

with the domain operator (2) as well as both the boundary operators (3).

Proof Using the prolongation of v according to (1), we find

∫
B

j2(v)(hdz) =
∫
B

(vα∂αh+ dz(v
α)∂zαh+ dz(dz(v

α))∂zzα h)dz,

and after successive integration by parts, we unambiguously obtain

∫
B

j2(v)(hdz) =
∫
B

vαδα(h)dz+
∫
B

dz(v
α[∂zαh− dz(∂

zz
α h)] + vαz [∂zzα h])dz.
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Finally, applying the theorem of Stokes, see [2, p. 260] for example, yields (4) where
we exploited the operators (2) and (3). Note that (·)|∂B denotes the restriction of an
expression to the boundary ∂B of the domain B.  !

In case the evolutionary vector field v in Theorem 1 can be linked to the
solution of the corresponding evolutionary pdes of the form ẋα = vα , we use the
notation Ḣ = ∫B j2(v)(hdz) to emphasize that the formal expression

∫
B j

2(v)(hdz)
then describes how the integrated quantity H evolves along the solutions of the
underlying pdes. Furthermore, we stress that if H corresponds to an energy, then (4)
states a power balance relation.

3 A PH-Framework for Distributed-Parameter Systems

In the following, we state a port-Hamiltonian system-representation structure for
evolutionary equations of the type ẋα = f (z, xα, xαz , x

α
zz, x

α
zzz, x

α
zzzz) that makes

extensive use of the balance relation (4) of Theorem 1. This system structure shall
enable us to introduce collocation on the boundary, i.e., it enables the “power”
exchange with external systems through the boundary of the spatial domain.

Definition 1 (ipH-Systems) Let H = hdz be a 2nd-order Hamiltonian, i.e., h ∈
C∞(J 2(E)). Then, a distributed-parameter port-Hamiltonian system with 2nd-order
Hamiltonian and one-dimensional spatial domain is of the form:

ẋ = (J − R)(δH) (5)

where J and R are linear mappings J,R : W 4
1 (E)→ V (E) with the properties that

J is skew symmetric, and R is symmetric as well as positive semidefinite.

Therefore, the local coordinate expression of (5) is

ẋα = (J αβ − Rαβ)δβh , α, β = 1, . . . , n (6)

where the mappings enjoy the properties J αβ = −J βα, Rαβ = Rβα as well as
[Rαβ ] ≥ 0 (positive semidefinite).

Consequently, applying Theorem 1 with v = ẋ of (6), we find that the
Hamiltonian H = ∫B hdz evolves along trajectories of (6) as:

Ḣ = −
∫
B

δα(h)R
αβδβ(h)dz+ [ẋαδ∂,1α (h)+ ẋαz δ

∂,2
α (h)]∣∣

∂B
. (7)

Hence, (7) reveals that the “power balance” equation of (6) generally comprises
dissipation within the domain (first term), and two classes of possible boundary
(power) ports (second and third term). Now, we divide ∂B into an actuated part ∂Ba
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and an unactuated part ∂Bu. For ∂Bu, we set ẋαδ∂,1α (h) = ẋαz δ
∂,2
α (h) = 0; for ∂Ba ,

we set

ẋαδ∂,1α (h)|∂Ba = ûξ̂ ŷ
ξ̂
, ẋαz δ

∂,2
α (h)|∂Ba = ũξ̃ ỹξ̃ , (8)

with ξ̂1 = 1, . . . ,m1 and ξ̃ = 1, . . . ,m2; thus, we obtained the collocated boundary
inputs û, ũ and boundary outputs ŷ, ỹ, respectively, which can be used in many
applications (if they exist) to either extract or deliver “power” to the system through
the boundary of the domain. Obviously, the assignment of û, ũ and ŷ, ỹ in (8) is not
unique, cf. [13]. Hence, in the following, we restrict ourselves to the assignment:

δ∂,1α (h)|∂Ba = B̂
αξ̂
ûξ̂

B̂
αξ̂
ẋα|∂Ba = ŷ

ξ̂

δ∂,2α (h)|∂Ba = B̃αξ̃ ũ
ξ̃

B̃αξ̃ ẋ
α
z |∂Ba = ỹξ̃

(9)

that will be suitable for the mechanical example under consideration.
In view of the 1st-order Hamiltonian case, see [10, 14], we want to stress the

following facts. That is, for 1st-order Hamiltonians the first and second term in (7)
are also present; however, the second boundary-port class, more specifically the
boundary operator (3b), does not appear. Of course, if we restrict the density to
h ∈ C∞(J 1(E)), i.e., to a 1st-order density, in (7)–(9) the second boundary-port
category disappears, since ∂zzα h = 0 clearly holds in that case, and thus (7)–
(9) degenerates precisely to the boundary ports obtained in [10, 14] for 1st-order
densities.

Casimir Functions In light of the findings presented in [10, 14], we define a
structural invariant or casimir function to be of the form:

C =
∫
B

cdz, c ∈ C∞(J 2(E)). (10)

We say that (10) is a casimir function of (6), if Ċ = 0 holds independently of h, i.e.,
C is then a conserved quantity along the trajectories of the ipH-system. This implies
that the conditions:

δα(c)(J
αβ − Rαβ) = 0 (11a)

[ẋαδ∂,1α (c)+ ẋαz δ
∂,2
α (c)]∣∣

∂B
= 0 (11b)

are met independently of h. It is remarkable that in the infinite-dimensional as
well as in the finite-dimensional case, the interconnection and dissipation mappings
characterize the casimir functions. More specifically, casimir functions are subject
to the pdes (11a) with the boundary conditions (11b).

Note that since the variational derivative δα always annihilates total derivatives,
see [6, Theorem 4.7] for example, the differential equations (11a) can be satisfied
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trivially by the choice c = dz(ϕ) with ϕ ∈ J 1(E). In that case, therefore only the
boundary conditions (11b) have to be investigated.

Example 1 Consider the Euler–Bernoulli beam equation (see [5] for example):

ρAẍ1(z, t)+ EIx1
zzzz(z, t) = 0 (12)

on the spatial domain B = {z|z ∈ (0, L)} with the boundary ∂B = {0, L}.
We suppose the beam to be pivoted at one end (z = 0) and fully actuated at
the other (z = L). Hence, ∂B can be divided into an actuated part ∂Ba = {L}
and an unactuated part ∂Bu = {0}. Consequently, the beam vibrations x1(z, t)

are also subject to the boundary conditions x1(0, t) = EIx1
zz(0, t) = 0 and

−EIx1
zzz(L, t) = u1(t) as well as EIx1

zz(L, t) = u2(t), where u1 and u2 represent
controlled variables. Note that EIx1

zz(z, t) and −EIx1
zzz(z, t) correspond to the

bending moment and shear force, respectively.
To formulate (12) in the pH-structure (5), we first introduce the momentum x2 =

ρAẋ1 and consider the total energy of the beam structure as Hamiltonian, i.e., H =∫ L
0

(
1

2ρA(x
2)2 + EI

2 (x1
zz)

2
)

dz. Then, we find that (12) can be formulated as:

[
ẋ1

ẋ2

]
=
[

0 1
−1 0

] [
δ1(h)

δ2(h)

]
. (13)

Moreover, evaluating (7) yields Ḣ = [ẋ1(−EIx1
zzz) + ẋ1

z (EIx
1
zz)]|∂Ba ; therefore,

we have [ẋ1(−EIx1
zzz)]|∂Ba = û1ŷ1 and [ẋ1

z (EIx
1
zz)]|∂Ba = ũ1ỹ1 with the

assignment according to (9), i.e., −EIx1
zzz(L) = û1 and ẋ1(L) = ŷ1 as well as

EIx1
zz(L) = ũ1 and ẋ1

z (L) = ỹ1. Note that the construction of the maps B̂
αξ̂

and

B̃αξ̃ is straightforward in this case.

The objective of the next section shall be to stabilize the particular rest position
x1,d = az with a ∈ R of the beam structure of Example 1. That is, the minimum
of the closed-loop Hamiltonian must be shaped appropriately, and damping must
be injected to achieve stabilization of the desired rest position. To this end, power-
conserving interconnection and casimir functions shall be exploited.

4 Control by Interconnection and Casimir Functions
on the Example of an Euler–Bernoulli Beam

In this section, we discuss the power-conserving interconnection between an ipH-
system and a lumped-parameter pH-controller as well as the energy-based control
exploiting casimir functions of the closed loop, all on the example of the boundary-
controlled Euler–Bernoulli beam of Example 1.
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Interconnection and Damping Injection Consequently, the power-conserving
interconnection must satisfy

û1ŷ1 + ũ1ỹ1 + ûcŷc + ũcỹc = 0, (14)

where the controller ports have already been splitted into two parts to take account
of the 2nd-order Hamiltonian. As pH-controller structure we use

ẋ
αc
c = (J

αcβc
c − R

αcβc
c )∂βcHc + Ĝαc ûc + G̃αc ũc, αc, βc = 1, . . . , 4 = nc

ŷc = Ĝαc∂αcHc, and ỹc = G̃αc∂αcHc

(15)

with J
αcβc
c = −J βcαcc , Rαcβc

c = R
βcαc
c , and [Rαcβc

c ] ≥ 0; see, e.g., [10] for a
concise introduction of the geometric structure behind (15). Note that the controller
Hamiltonian Hc evolves along solutions of (15) as Ḣc = −∂αc(Hc)R

αcβc
c ∂βc (Hc)+

ûcŷc + ũcỹc. As power-conserving feedback structure we simply choose

ûc = ŷ1, û1 = −ŷc and ũc = ỹ1, ũ1 = −ỹc (16)

clearly satisfying (14). Consequently, due to (16), the closed-loop Hamiltonian
Hcl =

∫
hdz + Hc evolves along solutions of the closed loop (well-posedness

provided) as:

Ḣcl = −
∫
B

δα(h)R
αβδβ(h)dz− ∂αc (Hc)R

αcβc
c ∂βc (Hc) , (17)

thus the controller injects additional damping into the closed loop.
Next, we investigate casimir functions of the plant (13) coupled with the

controller (15) via the feedback structure (16), to relate (some) plant states to (some)
controller states to shape Hcl such that its minimum is shifted to x1,d .

Control by Means of Casimir Functions (Energy Shaping) Motivated by the
results of [7, 10, 14], we are interested in casimir functions of the form:

Cλ = xλc +
∫
B

cλdz, c ∈ C∞(J 2(E)), λ = 1, . . . , n̄ ≤ nc, (18)

which have to be constant along the closed-loop trajectories, i.e., conserved
quantities, to be able to relate (some) plant states to (some) controller states; thus, we
require Ċλ = 0 independently of h and Hc. In that case, the casimir functions (18)
enable us to easily express the controller states in terms of the plant states via
xλc = − ∫B cλdz + κλ, where κλ = Cλ|t=t0 are constants that only depend on
the plant and controller initial data. As a result, it may be possible to shape Hcl

properly. For more details on the general framework, see [7], where a similar beam
setup is considered as application example.
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Fig. 1 Left: Beam deflection w(z, t) plotted against time t and space variable z. Note that w∗
indicates the rest position to be stabilized. Right: Closed-loop Hamiltonian Hcl plotted against t .
Controller parameter: J 34 = 4.1, R33 = 10, R34 = 6, R44 = 12, Ĝ3 = 2.4, Ĝ4 = 0.8, G̃3 = 0.9,
and G̃4 = 2.8; beam parameter: EI = 15 Nm2, ρA = 2.1 kg/m, L = 0.5 m, and a = 0.1 m

With regard to stabilizing the rest position x1,d = az of the considered beam
structure, we are thus interested in relations of the form x1

c = x1(L) + κ1 and
x2
c = x1

z (L) + κ2. Fortunately, we find that both the functions (total derivatives)
c1 = −1

L
dz(zx

1) and c2 = −1
L
dz(zx

1
z ) are able to yield such relations if the controller

maps are appropriately restricted. In particular, c1 and c2 are only casimir functions
of the closed loop if the controller maps are restricted to J

λβc
c − R

λβc
c = 0 with

λ = 1, 2, and Ĝ1 = G̃2 = 1 as well as Ĝ2 = G̃1 = 0. Consequently, if we set (with
H from Example 1) Hcl = H + 1

2 (x
1
c − x

1,d
c )2 + 1

2 (x
2
c − x

2,d
c )2 + 1

2 (x
3
c )

2 + 1
2 (x

4
c )

2,
as closed-loop Hamiltonian for example, it is obvious that x1,d = az is part of the
strict minimum of Hcl due to the validity of the relations x1

c = x1(L) + κ1 and
x

1,d
c = aL + κ1 as well as x2

c = x1
z (L) + κ2 and x

2,d
c = a + κ2. Note that the

controller states x1
c and x2

c are responsible for the “energy-shaping” part—cf. Hcl ,
whereas x3

c and x4
c are responsible for the “damping-injection” part—cf. (17).

Finally, Fig. 1 presents simulation results that confirm the theoretical findings.

Remark 1 By exploiting functional-analytic methods, see [4] for example, it can
be proven that the controller (15) stabilizes the rest position x1,d of the plant (13)
asymptotically if the conditions Ĝ3G̃4 − G̃3Ĝ4 �= 0 and [Rkl

c ] > 0, k, l = 3, 4, are
met.
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AModular Solver for Mechanical System
Dynamics Under One-Sided Contact
Constraints

Alexander Schirrer and Sebastian Thormann

Abstract A modular and flexible solver for mechanical system dynamics with
one-sided (inequality) contact constraints is proposed. In each time step, an active
set method constructs the current set of active constraints, the α-RATTLE time
integration method is employed to solve the equality-constrained subproblem, and
a Newton iteration is applied to solve the implicit system of update equations.
The purely geometric formulation of the constraint functions allows an efficient
modeling of system couplings where the constraint forces are solved for as part of
the solution. A test case showing a ball bouncing on a string illustrates the solver’s
functionality.

1 Introduction

Many technical applications of mechanical systems involve transient contacts
between solid (rigid or deformable) bodies. Even everyday examples like a tennis
racket hitting the ball—two deformable bodies colliding abruptly—represents a
difficult computational problem. The resulting constraint forces and the shape of the
contact region depend on each other. Both evolve over time as part of the solution in
such a way that no penetration occurs. These contact problems are commonly solved
numerically using the finite element method (FEM) in combination with penalty
techniques (minimize penetration) or Lagrange multiplier methods (exact solution)
as described in Ref. [8, ch. 10.3]. The (nonlinear) FEM for mechanical problems
[2, ch. 6.2] is commonly based on D’Alembert’s principle, using a Lagrangian
(material) formulation of the problem.
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The focus of this work is the dynamics of rigid and/or elastic bodies coupled
by generalized contacts. For this application field, we introduce a flexible solver
architecture for transient contact problems. Its efficiency is illustrated via a planar
test problem in which a ball bounces on an elastic string.

The presented solver is based on the α-RATTLE method [7] which is inspired
by the RATTLE method [1] of molecular dynamics, extending the generalized α-
method [3] with algebraic constraints. Special parameter cases of the generalized
α-method lead to, e.g., the Newmark or the Hilber–Hughes–Taylor integration
methods. The α-RATTLE method is a numerical time integration scheme for
Lagrange’s equations of the first kind (following from D’Alembert’s principle)
stabilized by additional degrees of freedom. This extended system formulation with
global index two was derived in Ref. [5]. A numerical solution was proposed in
Ref. [4], highlighting the advantages over former methods based on the Euler–
Lagrange equation (i.e., state-space form or Lagrange’s equation of the second
kind).

Lagrange’s equations of the first kind allow for modularization of the system (and
solver) structure since the mechanical subsystems add equations independent of
the other systems. The coupling between subsystems is formulated via generalized
contact constraints. These are represented as algebraic constraint equalities or
inequalities. Consequently, constraint forces need not be modeled explicitly—
instead, they are determined as part of the solution. The constrained system takes
the form of an inequality-constrained differential-algebraic equation (DAE).

2 Problem Statement

The proposed algorithm solves the inequality-constrained DAE system:

Mq̈ +GTλ = f (q̇, q, t) (1)

geq (q, t) = 0 (2)

giq (q, t) ≤ 0 (3)

over time t . The generalized coordinate vector q , velocities q̇, and accelerations q̈,
as well as the constraint force vector GTλ constitute the unknowns. Here, (1) is
called the equation of motion, which is a vector-valued balance of inertial forces
Mq̈, constraint forces, and active forces f given as a function f = f (q̇, q, t). Such
formulation is readily obtained, for example, after applying the FEM on a solid-
body problem. The square mass matrix M is assumed to be constant and invertible.
From the principle of sufficient reason, it follows that the vector GTλ is orthogonal
to the (time-varying) contact surfaces [6, ch. 2]. The constraint Jacobian G projects
the auxiliary vector of Lagrange multipliers λ accordingly.
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Constraints are formulated via scalar functions either in the form of equalities
(e.g., clamping) or inequalities (e.g., no penetration between two bodies). Herein,
these constraints are interpreted as displacement-level constraints, and the constraint
functions represent the (generalized) displacement residuals. They can be explicitly
time dependent (rheonomic) but are assumed independent of q̇. Multiple scalar
constraint functions are then stacked into vectors geq = geq (q, t) and giq =
giq (q, t) for equality and inequality constraint functions, respectively.

All quantities in (1)–(3) are time dependent (except for M) and real valued. The
initial values q0 = q (t = t0) and q̇0 = q̇ (t = t0) are given.

3 Solution Strategy

The problem (1)–(3) is solved over the time interval t ∈ [t0, tend] by combining:

1. An active-set management strategy,
2. The α-RATTLE method [7] for numerical time integration, and
3. A dynamic equilibrium iteration using the Newton–Raphson scheme [2, ch.

8.4.1].

The combination of these methods results in an algorithm structure consisting of
three nested iteration levels, outlined in Fig. 1. Hereafter, these three levels will be
called Time Stepper, Active Set Manager, and Dynamic Equilibrium (DE) Solver.
The DE Solver operates on a stacked unknown vector x (including q and q̇) as
explained below.

The Time Stepper constructs the solution over a major time grid spanning
[t0; tend]. For each time step, the Active Set Manager (and therein, to the DE
Solver) is called to obtain the solution. If convergence of either the active set or
the equilibrium iterations fails, shorter (minor) time steps are attempted.

Problem Statement Solution Algorithm

Time Stepper constructs solution for t ∈ [t0; tend]

Active Set Manager iterates until gact is valid

DE Solver iterates until converged

Solution

M, f , geq, giq
q0, q̇0

q, q̇, GTλ

tn+1

choose
active set

gact 1. init

2. solve for q, q̇, GTλ at tn+1

3. updateMa at tn+1

Fig. 1 Solver architecture
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3.1 Active Set Manager

Since a direct solution to the original system (1)–(3) is difficult because of the
inequality (3), an active set method is employed. All formulated scalar constraint
functions together form the candidate set ḡ = geq ∪ giq.

For each time step, the Active Set Manager iteratively updates the active set
gact ⊆ ḡ until it is valid (satisfies the Hertz–Signorini–Moreau conditions [8]). As a
result:

gact (q, t) = 0 (4)

replaces the equalities (2) and inequalities (3). If gact is valid, then the DAE
system (1), (4) is locally (at this point in time) equivalent to the inequality-
constrained DAE system (1)–(3). The set geq is always part of the active set gact.
The set giq is partitioned into two subsets: the active inequality functions gact

iq and

the inactive ones gina
iq , hence giq = gact

iq ∪ gina
iq and gina

iq = giq \ gact hold.
Since each element of ḡ corresponds to a component of the vector λ, also the set

of active inequality functions gact
iq ⊆ ḡ corresponds to a part of λ, denoted by the

vector λact
iq . Analogously, the vector λina

iq is that part of λ which corresponds to the

set gina
iq . It holds that

Eq. (4) ∧ gina
iq < 0 ∧ λact

iq ≥ 0 ∧ λina
iq = 0 $⇒ gact is valid . (5)

The active set iteration starts with an initial guess for gact. A useful guess is the
valid gact from the last time step. Violated inequality constraints gvio

iq are not in gact

but nonnegative, meaning that gvio
act = {gina

iq ≥ 0}. Inequality constraint functions

which correspond to negative-valued λact
iq cause (incorrect) “sticking” constraint

forces, denoted by gneg
iq . The update rule:

gact →
((
gact

iq ∪ gvio
iq

)
\ gneg

iq

)
∪ geq (6)

is therefore applied until gact is valid according to (5). If this procedure fails, a
shorter time step is attempted.

3.2 Dynamic Equilibrium Solver

Considering the DAE system of (1), (4) where the active set g = gact is defined
locally at one active set iteration step, the α-RATTLE method [7] is applied, which
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implicitly defines the new unknowns x via:

D(xn+1)︷ ︸︸ ︷⎡
⎢⎢⎣
M 0 −α4G

T
n − α5G

T
n+1 0

0 M 0.5hGT
n 0.5hGT

n+1
0 Gn+1 0 0
0 0 0 0

⎤
⎥⎥⎦

xn+1︷ ︸︸ ︷⎡
⎢⎢⎣
qn+1

vn+1

λ+n+1
λ−n+1

⎤
⎥⎥⎦

=

R(xn+1)︷ ︸︸ ︷⎡
⎢⎢⎣
α3fn+1 + α2fn +M(qn + hvn + α1an)

α8fn+1 + α7fn +M(vn + α6an)

−ġn+1

gn+1

⎤
⎥⎥⎦ (7)

and

Man+1 = α9fn + α10fn+1 + α11Man . (8)

The system (7), (8) describes the discrete time evolution from tn to tn+1 (time
step size h = tn+1 − tn) of five vectors : the coordinates qn = q(tn), the velocities
vn = q̇(tn), the auxiliary variables an, and the approximations of the Lagrange
multipliers for the next point in time λ+n+1 � λ(tn+1) and for the last one λ−n+1 �
λ(tn). Here, the term ġn+1 stems from the consideration of rheonomic constraints
and the scalars αi are given below. Since the matrix D and the vector R depend
(nonlinearly) on components of the unknowns at the next time step xn+1, a direct
solution is typically not possible.

Hence, the nonlinear implicit root finding problem:

F(xn+1) := D(xn+1)xn+1 − R(xn+1) = 0 , (9)

is solved iteratively via the Newton–Raphson approach in each time step, obtained
by a Taylor expansion of F (iteration index k):

F(xkn+1 +Δxkn+1) =̇ F(xn+1)|xkn+1
+ ∂F (xn+1)

∂xn+1

∣∣∣∣
xkn+1

Δxkn+1

= −B + A Δxkn+1 := 0 . (10)

Therefore, the dynamic equilibrium update is given by:

xk+1
n+1 := xkn+1 +Δxkn+1 with A Δxkn+1 = B , (11)



152 A. Schirrer and S. Thormann

with the coefficient matrix A and the right-hand side B (the indices n + 1 for the
next point in time tn+1 and k for the current iteration are suppressed for the symbols
q , v, f , λ+, λ−, K , C, g, ġ, G, Ġ, Hv, H+

λ , and H−
λ ) defined by:

A =

⎡
⎢⎢⎢⎣

M + α3K − α5H
+
λ α3C −α4G

T
n − α5G

T 0

α8K + 0.5hH−
λ M + α8C 0.5hGT

n 0.5hGT

Hv + Ġ G 0 0

−G 0 0 0

⎤
⎥⎥⎥⎦ (12)

B =

⎡
⎢⎢⎢⎣

M(qn − q)+ hMvn + (α4G
T
n + α5G

T)λ+ + α1Man + α2fn + α3f

M(vn − v)− 0.5h(GT
nλ

+ +GTλ−)+ α7fn + α8f + α6Man

−Gv − ġ

g

⎤
⎥⎥⎥⎦ (13)

The matrices A and B contain derivatives of the forcing f : tangent stiffness
matrix K and damping matrix C. They also contain derivatives of the vector g
corresponding to the active set of constraint functions: the vector ġ, and the matrices
G, Ġ, Hv , H+

λ , and H−
λ . These derivatives are defined as:

K = −∂f (q̇, q, t)

∂q
, C = −∂f (q̇, q, t)

∂q̇
, ġ = ∂g (q, t)

∂t
, G = ∂g (q, t)

∂q
,

Ġ = ∂2g (q, t)

∂q ∂t
, Hv = ∂ (Gv)

∂q
, H+

λ = ∂
(
GTλ+

)
∂q

, and H−
λ = ∂

(
GTλ−

)
∂q

.

The scalars αi in (7), (8), and (11) are given by:

α1 = h2

2
1−αm−2β

1−αm
, α2 = h2β αf

1−αm
, α3 = h2β 1−αf

1−αm
, α4 = h2

(
β̄ − 1

2

)
,

α5 = −h2β̄ , α6 = h
1−γ−αm

1−αm
, α7 = hγ αf

1−αm
, α8 = hγ 1−αf

1−αm

α9 = αf
1−αm

, α10 = 1−αf
1−αm

, and α11 = − αm
1−αm

.

Further details on the coefficients of the integration scheme (αf, αm, β, β̄,

and γ ), and accuracy and numerical damping properties of the α-RATTLE method
are given in [7]. Summing up, one call of the Dynamic Equilibrium Solver:

1. Prepares the initial values of the vector x,
2. Iterates x (11) until a terminal condition is met (e.g., Δx sufficiently small), and
3. Finally updates the vector Ma by (8).
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4 Implementation Aspects

To illustrate the proposed solver, a two-dimensional contact problem between a rigid
ball and an elastic rope is shown. The rigid ball is modeled via a point mass P . Its
spatial extension (circle with radiusR) is considered by one-sided radius constraints
(inequalities), which prevent penetrations between the ball and the rope nodes. The
rope is modeled by nonlinear finite elements E and clamped at points a and b, see
Fig. 2. In the initial state of the simulation, both bodies are at rest, the rope forms
a straight line from a to b, and the ball is located above the rope without contact.
Gravity accelerates P downwards until the first contact occurs. Figure 2 shows a
snapshot of both bodies in contact, where cross markers indicate active constraints.
Dotted lines represent snapshots of the rope at several times after the first contact.

The inequality-constrained DAE system (1)–(3) can be formulated by first
modeling the unconstrained solid bodies and then adding the constraint functions
geq and giq. Newton’s second law for point mass P states, with regard to its
coordinates qP = [xP yP ]T and mass mP , that

[
mP 0
0 mP

] [
ẍP

ÿP

]
=
[

0
−mP ag

]
⇐⇒ MP q̈P = fP

holds, where the scalar ag is the gravitational acceleration. Therefore, all necessary
quantities of P are known: its coordinate vector qP , mass matrix MP , and active
forces fP = const .

The rope is assembled out ofNE nonlinear truss elementsE according to Ref. [2,
ch. 6.3.3]. Each of these isoparametric two-node elements (four degrees of freedom
per element) is formulated in the form of:

ME (ρA,L0) q̈E = fE
(
qE, ρA,EA, ag, L0

)
,

with specific mass ρA, spring constantEA, and relaxed lengthL0 ofE. Assembling
both subsystems (point mass P and rope) yields the global stacked coordinate
vector:

q = [xP yP x1 y1 x2 y2 . . . yNE xNE+1 yNE+1
]T

,

mass matrix M , and active forces f in the equation of motion (1) of the full system.

NE· · ·321

R
rope element E

point mass P
ba

Fig. 2 Snapshots of the bouncing ball test problem
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Equality constraint functions in geq realize the clamping of the nodes at a and
b; inequality constraint functions in giq prevent penetrations between the ball with
radius R and the nodes of the rope:

geq =

⎡
⎢⎢⎣

x1 − xa

y1 − ya

xNE+1 − xb

yNE+1 − yb

⎤
⎥⎥⎦ , giq =

⎡
⎢⎣
√
(xP − x1)2 + (yP − y1)2 − R√
(xP − x2)2 + (yP − y2)2 − R

...

⎤
⎥⎦ = r (q)− R ,

where r(q) is the vector of current distances and the vector giq has NE + 1
components. The candidate Jacobian matrix Ḡ of the candidate set ḡ has the form:

Ḡ =
⎡
⎣
∂geq
∂xP

∂geq
∂yP

· · · ∂geq
∂yNE+1

∂giq
∂xP

∂giq
∂yP

· · · ∂giq
∂yNE+1

⎤
⎦ with e.g.,

∂giq

∂xP
=

⎡
⎢⎢⎣
xP−x1
r1

xP−x2
r2
...

⎤
⎥⎥⎦ .

The Jacobian matrix G of the current active set gact is always a part of the matrix Ḡ.
Here, the derivatives ġ and Ġ are zero since ḡ is not explicitly time dependent; for
simplicity, the derivatives Hv , H+

λ , and H−
λ are neglected here. This is admissible

because these terms do not affect the right-hand side B (13) and thus correctness of
the solution. Perturbations in the coefficient matrix A (12) potentially do affect the
convergence speed and stability of the Newton–Raphson scheme, but no according
effects have been seen here.

Figure 3 shows the transient build-up and bounce-off of the ball over time.
Vertical ball position yP , the varying number of active radius constraints, and the
total vertical constraint force VP acting on the ball demonstrate the solver’s ability
to solve this one-sided contact problem effectively.

Summing up, a flexible solver architecture for solid-body problems with equality
and inequality constraints (representing two-sided respectively one-sided contacts)
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Fig. 3 Bouncing ball test problem: vertical ball position yP , number of active constraints, and
total vertical constraint force VP on the ball plotted over time; the circle indicates the time of the
main snapshot shown in Fig. 2
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has been proposed. An active set strategy has been combined with DAE solving
techniques (the α-RATTLE method), allowing an efficient and strongly modularized
treatment of assembled system dynamics.
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Shock Absorption Effect of Semi-active
Mass Control Mechanism for Structure

Ming-Hsiang Shih and Wen-Pei Sung

Abstract Taiwan is located in the Circum-Pacific Seismic Zone and also at the
junction of the Eurasian plate and the Philippine Sea plate, initiating sensible
earthquakes to threaten the structural safety. Therefore, in order to enhance the
seismic proof capability of structure, a new structural control mechanism, emerged
passive control and active control, is proposed in this study. This mechanism
can execute the “release” and “capture” of control mass block and only produce
“negative” work on structure, based on the active mass control principle without
power supply. A mathematical model of control law of this proposed mechanism is
derived and the parameter study for single degree of freedom is executed to compare
with those of structures without control and with passive tuned mass damper to
obtain the optimal design parameters. Analysis results display that amplification of
steady state reaction for structure with this semi-active control is much less than
those of structure with passive control under within 0.03–0.07 and around 0.6–1.6.
This proposed mechanism can “capture” and “release” the active control mass based
on the direction and velocity of movement of the structural displacement.

1 Introduction

There are many reasons to enhance the intensity of natural disasters such as strong
earthquakes, typhoons, and hurricanes. Especially, Taiwan is located in the Circum-
Pacific Seismic Zone and also at the junction of the Eurasian plate and the Philippine
Sea plate, initiating sensible earthquakes every year, for example, 6.4 Richter scale
earthquake magnitudes, happened in southern Taiwan, led to the 16-story building
collapsed on the ground, causing heavy casualties in 2016, before Chinese New Year
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and 5.6 Richter scale earthquake magnitudes, happened in Hualien, eastern Taiwan,
led to many buildings collapse. The main reason for building collapse is lack of
earthquake resistance capability. To maintain the safety of buildings to resist seismic
force and other dynamical excitations, structural control theorems and equipment
are widely applied in Architecture and Civil Engineering. In this study, a semi-
active mass control mechanism is proposed to combine the advantages of a tuned
mass damper with active mass damper. This new proposed mechanism is adopted
to improve passive control damper and active control damper as a semi-active mass
control mechanism. This mechanism can execute the “release” and “capture” of
control mass block, based on the active mass control principle without power supply.

Presently, structural control techniques have been divided into passive control
[1–4], active control [5–8], and semi-active control [9–12]. The disadvantage of
passive control is that such approaches provide insufficient strength to counter large
deformation. Active control [5–8] requires a supply of external energy to exert a
control force. An active control system must be ready to detect structural responses
according to predetermined control laws, transmit a control signal, and output
commands to the system to produce a moderate control force. Therefore, semi-active
control [9–12], emerged passive control and active control, is proposed to improve
the disadvantages of these two control dampers. A new structural control method,
a semi-active mass control mechanism, is proposed in this research to improve
these two kinds of dampers as a semi-active mass control mechanism. The control
power of these two control methods is derived from the vibrations of structural
responses. This control mechanism has a variable control system that provides
different natural frequencies to control structural displacement. A mathematical
model and the control logic of this semi-active control mechanism are provided
in this paper. Then, the parameter study of this proposed method, installed in single
degree of freedom structure, is analyzed, discussed, and compared with those of
structures without control and with passive control to obtain the optimal design
parameters.

2 Methodology

2.1 Mathematical Model of Semi-active Mass Control Method

The structural control mechanism of this proposed method is based on active mass
control principle to execute the action of “release” and “capture” of control mass
block. It is a variable control system to provide with different natural frequency of
structure according to the changeable system of this proposed control method. This
proposed control method does not have obvious natural frequency, and so resonance
phenomenon does not exist. This proposed structural control mechanism, installed
in structure, is shown in Fig. 1.
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Fig. 1 The proposed
semi-active mass control
mechanism

According to Fig. 1, the equation of motion of this proposed system can be
derived as follows:

[
M m

] { Ẍ
ẍ

}
+ [C c

] { Ẋ
ẋ

}
+ [K k

] {X
x

}
= P (t), (1)

M Ẍ(t)+ C Ẋ(t)+K X(t) = P (t)− {m ẍ(t)+ c ẋ(t)+ k x(t)
}
. (2)

Let control force be ui(t) = −{m ẍ(t)+ c ẋ(t)+ k x(t)
}
. Therefore, control

force ui(t) of Eq. (3) is active changeable. Equation (2) can be rewritten as follows:

M Ẍ(t)+ C Ẋ(t)+K X(t) = P (t)+ ui(t), (3)

in which ui(t) = u1(t) + u2(t) + · · · + uM(t) and ui(t) = uCi (t) or ui(t) = uRi (t)

for i = 1, . . . ,M .
In this proposed method, the equivalent control force uCi (t) and uRi (t) of each

control mass block for “captured state” and “released state” can be obtained based
on the detecting reaction state of structure and control mass blocks. Therefore, ui(t)
actively changes and only produced negative power for the structure to be controlled.
Then, the control logic will be described in Sect. 2.2.
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2.2 Control Logic of the Proposed Method

This proposed mechanism is a changeable system and choose the optimal combina-
tion of active mass block to reduce the structural dynamic responses under excitation
of earthquake force. In order to execute the “release” state and “capture” state at the
best time, the control command is carried out based on the sign of the velocity of the
control mass block. The sign of the velocity of the control mass block relative to that
of the structure and the sign of the structural velocity at the control mass block of a
placed degree of freedom (DOF) is a contrary sign. When the relative displacement
of the control mass block at the placed DOF to the structural displacement at the
control mass block of the placed DOF is zero, the active control joint begins to be
released. The sign of the velocity of the control mass block relative to that of the
structure and the sign of the structural velocity at the control mass block of the
placed DOF is the same sign. The duration for the structure to capture the active
mass block is half the natural frequency of the control mass block system.

The control flowchart of this proposed system is presented in Fig. 2. In Fig. 2, xsi
and xmi denote the displacement response of structure at which the i-th control mass
installed and of the i-th control mass, respectively, and εi denote the strain or force
exerted by the i-th control mass on the structure.

i=1~M

STATEi=”Capture” STATEi=”Capture”STATEi=”Release”

Next i

True

True TrueFalse False

FalseSTATEi=
”Release”?

X –
. m
i X

. .s
i X

. s
i)( < 0 X

. .s
i εi ≥ 0

X s
i = 0 &

Fig. 2 The flowchart of the control logic for this proposed mechanism



Shock Absorption Effect of Semi-active Mass Control Mechanism for Structure 161

3 Analysis Results and Discussions

In order to compare the structural control effects of structure under control of
different structural control method, a single degree of freedom (SDOF) struc-
ture is executed to compare the energy dissipation behavior of the structure
under passive control in the resonance state and the random loading state with
those of this proposed control method in this section. This SDOF is with mass
of structure = 1 kg, stiffness = 40 N/m, damping ratio = 0.03, passive tuned mass
block = 0.04 kg, and spring constant = 1.6 N/m. In this study, two design param-
eters are defined as: η is the ratio of the mass summation of the control mass
blocks to the total mass of the structural system, and Ω , the ratio of the fre-
quency of the control mass block to the fundamental natural frequency of the
structural system. In order to investigate the influence of the loading frequency,
β is defined as the ratio of frequency of a periodic load to the fundamental
natural frequency of the structure. This structure is subjected to periodic loads
β = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.8, 2.0. Then the single DOF building without
control, with passive control Ω = 1, and with semi-active Ω = 4 with ratios
of mass variation of η = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10
under excitation of various β is compared with the steady state reaction and
the relationship of the amplification factor to β. The results of analysis of the
amplification of the steady state reaction for the structure without control and those
with passive and semi-active control are listed in Table 1. The relationship of the
amplification factor to β for the structure without control and those with passive
and semi-active control are presented in Fig. 3.

Analysis results of Table 1 show that the amplification of steady state response
for SDOF with this semi-active control is much less than those of SDOF with
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Table 1 Amplification of steady state reaction for structure without control and with passive
control and semi-active control for SDOF structure

η(%)/β 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Dynamic magnitude without control

− 1.03 1.21 1.62 2.83 15.98 2.30 1.07 0.69 0.50 0.35

Dynamic magnitude with passive control

1 1.06 1.21 1.60 3.04 4.36 2.39 1.08 0.65 0.46 0.34

2 1.07 1.24 1.70 3.25 2.85 2.48 1.12 0.70 0.48 0.34

3 1.08 1.26 1.72 3.31 2.22 2.70 1.10 0.88 0.45 0.33

4 1.10 1.27 1.79 3.97 1.98 2.91 1.13 0.89 0.45 0.35

5 1.11 1.28 1.80 4.25 1.68 3.01 1.13 0.71 0.45 0.35

6 1.12 1.32 1.82 4.51 1.43 3.21 1.17 0.68 0.48 0.35

7 1.13 1.34 1.88 4.99 1.37 3.55 1.20 0.68 0.50 0.35

8 1.14 1.35 1.94 3.34 1.30 3.99 1.24 0.70 0.50 0.35

9 1.15 1.37 2.01 5.57 1.25 4.28 1.23 0.70 0.49 0.35

10 1.17 1.40 2.08 6.51 1.23 4.62 1.22 0.69 0.49 0.36

Dynamic magnitude with semi-active control

1 1.01 1.21 1.50 2.20 3.35 2.09 1.04 0.69 0.49 0.35

2 1.02 1.25 1.41 1.72 2.09 1.44 0.95 0.70 0.47 0.32

3 1.04 1.35 1.37 1.37 1.25 1.01 0.79 0.64 0.65 0.61

4 1.06 1.43 1.34 1.12 1.19 0.80 0.62 0.55 0.63 0.61

5 1.07 1.51 1.31 0.99 0.82 0.64 0.51 0.47 0.63 0.63

6 1.08 1.53 1.28 0.89 0.70 0.53 0.43 0.46 0.66 0.62

7 1.07 1.52 1.28 1.00 0.79 0.97 0.53 0.37 0.88 0.62

8 1.07 1.52 1.29 0.98 1.39 0.91 0.49 0.41 0.70 0.61

9 1.06 1.53 1.31 1.05 1.03 0.85 0.46 0.38 0.68 0.62

10 1.05 1.50 1.32 1.02 1.28 0.66 0.53 0.38 0.67 0.62

passive control under η within 0.03 ≈ 0.07 and β around 0.6 ≈ 1.6. As shown
in Fig. 3, the greater the η is, the less the resonance amplitude is for passive control.
However, the amplification factors increase on both sides of β = 1. Particularly,
when β is lower than β = 1, a greater η leads to an amplification factor. The
resonance amplitudes are even almost the same as those of the structure without
control. Actually, resonance still occurs by the natural frequencies of the structure
with passive control. When η is lower, the two frequencies are close to each
other and cause an interaction phenomenon. There are no very large amplification
factors. Nevertheless, the larger the η is, the greater the difference between the two
frequencies. The dynamic characteristics of the structure with passive control tend
toward two degrees of freedom. Therefore, a large peak exists at low frequency.
The structural control effect of the structure under random load may necessarily be
negative for larger η. The passive control effect is not stable with the increase in η.

Figure 3 shows that the structure control effects of the structure with semi-active
control achieve a better control effect for a larger η. But variance of the control effect
tends to ease quickly. The amplitude is large for a large η with a high frequency
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load. The greater the control mass is, the greater the effect of the semi-active control
within the range of the allowable device. This semi-active control mass need not be
large. A small control mass can achieve almost the limit of the control effect.

4 Conclusions

The semi-active mass control method is proposed in this study. According to the
results of numerical simulation, the conclusions of this study can be obtained as
follows:

1. This proposed mechanism can “capture” and “release” the active control mass
based on the direction and velocity of movement of the structural displacement.

2. Amplification of steady state reaction for structure with this semi-active control is
much less than those of structure with passive control under η within 0.03 ≈ 0.07
and β around 0.6 ≈ 1.6.

This proposed mechanism can perform well shock absorption effect and avoid the
disadvantages of passive and active mass dampers. Therefore, structural control
effects of multiple degree of freedom structure with this proposed mechanism
should be carefully studied and discussed to demonstrate the actual shock absorption
benefits.
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Hierarchical Modeling of Damage
and Fracture in a Structurally
Inhomogeneous Materials Subjected
to Deformation

Sergey V. Smirnov, Marina V. Myasnikova, and Yury V. Khalevitsky

Abstract Two computational models of deformation are presented: the first one
models aluminum matrix composite with silicon carbide reinforcement; the second
models complexly alloyed brass. The models account for material internal structure,
as well as for rheological properties of material constituents. Material deformation
on micro- and macroscale has been simulated. It is shown that damage mechanics
is applicable for simulating fracture of both malleable and brittle constituents of
the materials. In numerical simulations an empirically obtained model of composite
matrix limiting plasticity is used, which correlates limiting plasticity with stress
stiffness coefficient and Lode-Nadai stress state coefficient. On an example of the
brass, a technique is developed, that allows one to derive the dependence of limiting
deformation of brittle inclusions of metal alloys, on stress stiffness coefficient.

1 Introduction

Developing a hierarchical model with several structural levels of deformation and
fracture in solid body subjected to external mechanical effects enables simulations
of material behavior at various scale levels. Experimental investigations and numer-
ical simulation of the plastic deformation of structurally inhomogeneous materials
are successfully pursued within this research area [1–3]. We propose to remove the
sentence, since it is not clear where to insert it specifically. The use of a hierarchical
approach to deformation and fracture of materials allows one to solve two important
problems for industrial applications: (1) to develop and optimize pressure forming
technological processes for a specific material; (2) to develop and optimize the
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composition of the material so the technological processes result in required strength
of produced parts.

This work uses the concept of multilevel material description and damage
mechanics failure criteria to simulate plastic deformation and fracture in structural
components of heterophase material. Randomly chosen microscopic volumes of
metal matrix composite (MMC) and complexly alloyed brass have been chosen
as models. The model materials are chosen in a way to demonstrate two different
fracture mechanisms: in case of the composite fracture develops in malleable matrix,
but reinforcement particles have high strength and hardly experience any strain
at all; in contrary, complexly alloyed brass fracture initiates in brittle inclusions
enclosed in malleable base. The models explicitly account for internal structure of
material, as well as constituent rheology.

2 Material and Investigation Procedures

A specific metal matrix composite has been chosen to be the first model material.
The constituents of the composite are 99.8% commercially pure aluminum and
silicon carbide reinforcement particles. The dominant particle shape is considered
to be irregularly prismatic; particle sizes are in ranges of 1–5 and 15–20 μm. The
composite microstructure is depicted in Fig. 1a. As tensile tests show, a MMC
damage process is initiated and then governed by the emergence and development
of cracks in the matrix, while SiC inclusions demonstrate high strength and do
not undergo any substantial strain [4]. Considering this failure behavior, the stress–
strain response evolution and damage accumulation in matrix under uniaxial loading
conditions has been studied.

(a) (b)

Fig. 1 The microstructure of model materials. (a) The model material matrix composite
microstructure. (b) The microstructure of complexly alloyed brass, ×400
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A complexly alloyed brass has been chosen as the second model material. The
brass has the following chemical composition, mass %: 71.13 Cu; 1.82 Fe; 5.27
Al; 2.06 Si; 7.04 Mn; 0.04 Ni; 0.94 Pb; the rest Zn. The brass contains three main
structural constituents, namely a ductile base—an α-phase, solid solution of zinc
and alloying elements in copper with low values of microhardness; the strengthening
β-phase, which is present in the form of an (α + β) mechanical mixture and
characterized by higher hardness and lower plasticity; silicide inclusions Mn5Si3
and (Fe,Mn)5Si3 high hardness and playing a reinforcing role in the material.
A typical alloy structure is depicted in Fig. 1b. Silicide particles in the alloy are
columnar and globular [2]. Investigations show that the brass deformation under
upset takes place mainly in malleable matrix—solid α-phase and colonies of phases
(α + β). The brittle silicide inclusions are fractured first. This distinctly differs the
brass from the metal matrix composite, in which the fracture is initiated in ductile
matrix by microscopic crack emergence. Experimental investigations of microcrack
initiation and development in the brass as dependent on the amount of strain were
made by series of upsetting tests on prismatic specimens. Experimental apparatus
featured polished heads and lubrication. The experimental procedure allowed us to
sufficiently accurately reproduce the plane strain loading conditions.

After each stage of loading the fractured inclusions have been counted. Microc-
rack emergence has been chosen as failure criterion. Since it does not seem possible
to evaluate the equivalent plastic strain of silicides εsil directly from experiments,
finite element simulation results were used.

The computational models of the composite and the brass leverage the two-
level structural-phenomenological approach for coupling the micro- and macroscale
material behavior [5]. According to this approach, the material is considered to
be a homogeneous isotropic medium with isotropic hardening on the macroscale.
On the microscale, the material is considered to be an inhomogeneous medium
partitioned into connected non-intersecting domains which represent corresponding
constituents.

According to the approach, the composite volume on microlevel is modeled
by a cube with 30 μm edge size, which represents the aluminum matrix with
embedded silicon carbide particles. The microstructural properties of the metal
matrix composite have been chosen according to metallographic investigation [4].
The structurally inhomogeneous microvolume is surrounded with a buffer layer.
The layer has smeared macroscopic mechanical properties of the composite and
dilates evenly from microvolume borders. The volume thickness is equal to the
microvolume linear size (Fig. 2). Rheological properties of commercially pure
aluminum were set as strain-hardening curves according to compression tests with
cylindrical specimens on macroscale [6]. Tests were conducted with a strain rate of
1 s−1 at 300 ◦C.1

1Experimental investigations have been made using the Centre of Collective Usage Plastometry of
IES UB RAS equipment.
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Fig. 2 Three-dimensional metal matrix composite computational model

To develop a computational model of brass on the microlevel, we dealt with
structurally inhomogeneous cells (microcells) being an array of structural-phase
constituents specified as a system of interconnected regions, with their geometries,
dimensions, and properties corresponding to those of actual structural constituents
of the brass tested. The initial image of the brass structure was determined by
the results of a quantitative metallographic analysis with the application of the
statistical Monte Carlo method. Coordinates of the metallographic section points
in whose vicinity the structure was photographed were selected as random values
(Fig. 3a). The images of microstructure have been digitized and further used to
develop geometrical models of deforming areas. The area size has been chosen to
be approximately 140 × 160 μm in size and has been enclosed in buffer layer with
smeared material properties. Altogether there were 10 photographs treated, and this
ensured adequate sampling for subsequent statistical averaging of the results. The
buffer layer was composed of eight identical homogeneous and isotropic cells, their
sizes being consistent with that of the central microcell (Fig. 3b).

Strain resistance of the buffer layer was assumed equal to that of the brass.
The strain resistance of the constituents of brass was determined with the micro-
indentation technique [7] based on the identification of the stress–strain dependence
by experimental results and a numerical solution of the inverse problem. The
stress–strain curves for the brass and its constituents are published in [2]. The
numerical simulation of metal matrix composite and brass deformation has been
conducted in the quasi-static statement. Boundary conditions, ensuring uniaxial
loading conditions of the MMC model and upsetting under the plane strain state
of the brass model, have been specified in displacements of the faces of the buffer
layer of each computational model.
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Fig. 3 The microstructure and the model of the brass. (a) A photograph of the brass microstruc-
ture, 140 × 160 μm. (b) A microcell surrounded by a buffer layer

The simulation allowed us to obtain stress tensor σmp and strain increment
Δεmp tensor data in each node of the finite element models. The data have been

further used to determine the stress stiffness coefficient ki = σ i

T i
and the Lode-

Nadai coefficient μσi = 2
σ i2−σ i3
σ i1−σ i3

at each finite element mesh nodes of the models

on i-th computation step. σ i denotes mean normal (hydrostatic) stress, T denotes
tangential stress intensity equal to shear yield stress in the plastic region. σ1, σ2 σ3
denote principal stresses on i-th computational step. The equivalent (von Mises)
strain increment on i-th computation step has been expressed in terms of strain

tensor component incrementsΔεmp obtained on this step as Δεi =
√

2
3ΔεmpΔεmp.

Thereafter, the whole accumulated equivalent deformation ε in every node is
computed as amount of equivalent strain increments after n total computational step
number for deformation (i = 1 . . . n ).

The phenomenological theory authored by Vadim Kolmogorov [8] has been used
for studying the materials damage accumulation. This theory assumes that material
damage ω lies in range 0–1, where 0 means undeformed material and 1 implies
material failure and crack emergence. The material damage on computational step
of deformation is equal to the ratio of equivalent strain increment to equivalent
plastic strain to fracture εf and damage accumulation considered to be linear. A
node has been considered to be fractured if the damage level in the node reaches 1.
The condition of fracture after n steps is stated as follows:

ω =
n∑
i=1

Δεi

εf (ki, μσi)
= 1. (1)
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3 Results and Discussion

3.1 Metal Matrix Composite

Numerical simulation has shown that rigid silicon carbide particles clamp a thin
matrix layer. Clamping leads to the emergence of local plastic deformation regions.
On the other hand, stiff silicon carbide inclusion particles distributed in the ductile
matrix make tensile stress areas in their proximity. This has been shown by
computing the stress stiffness coefficient k in the finite element nodes pertaining
to matrix of composite. Maximum k values caused by inclusion proximity appear to
occur in distinctive microcrack initiation areas observed in experiments. It is known
that severe tensile stresses contribute to intensive plastic dilatancy and accelerate
fracture process [8]. This conclusion is also confirmed by numerical simulations of
damage ω accumulation in the matrix metal within microvolume of MMC.

The fracture locus of commercially pure aluminum (composite matrix material)
for 300 ◦C has been taken from the experimental investigation [9]. A fracture
locus determines the dependence of ultimate shear strain Λf at fracture on stress
state parameters k and μσ : Λf = Λf (k,μσ ). Ultimate strain at fracture εf was
calculated as follows: εf = Λf /

√
3.

It is found that the most possible regions of failure initiation (i.e., regions,
where equation 1 holds true) are strain localization regions where adverse tensile
stresses prevail. As an example, Fig. 4 depicts accumulated damage distribution
in central cross-section xy of the metal matrix within the microvolume depending
on equivalent macroscopic strain ε for uniaxial tension. The results of the damage
simulation of MMC are discussed in more detail in [6].

Fig. 4 Damage ω distribution in the matrix. Central xy cross-section of metal matrix microvol-
ume, tension simulation. (a) ε = 0.04. (b) ε = 0.2
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3.2 Complexly Alloyed Brass

The experimental investigations have shown that (Fe,Mn)5Si3 particles of any
geometry, which are, in the average, bigger in size (10–80 μm) and contain iron, are
more prone to fracture than smaller manganic Mn5Si3 particles (10–20 μm) under
identical deformation conditions. Besides, a negative effect is exerted by the non-
uniform stress–strain state of the material on the mesolevel, whereas the geometry
of silicides scarcely affects their ability to fracture. Therefore in the subsequent
discussion our consideration is restricted to the ultimate plasticity of acicular iron-
containing (Fe,Mn)5Si3 silicides. The features of the fracture of silicides in brass
are discussed in more detail in [2]. The analysis of the calculation results has
revealed the non-uniformity of the stress state of silicides on the microlevel at a
fixed moment loading. A fairly wide range of the values of the stress stiffness
coefficient k and its variation in the course of specimen upsetting enabled us to
use the identification procedure for determining the diagram relating the amount
of ultimate equivalent strain prior to silicide fracture εsilf to the stress stiffness
coefficient k. The description of diagrams of the kind by the exponential function is
the most commonly used for metal alloys [8], therefore, to describe the diagram of
ultimate equivalent strain of (Fe, Mn)5Si3 silicides, it was also reasonable to use the
function of the form εsilf = a exp(−bk), where a and b denote empirical coefficients
obtained by the identification.

Let the mean value of μσ be constant on every step of upset in plate strain
conditions. Then the fracture criterion (1) can be used to compute damage in every
node of finite element mesh of silicides, on every computation step. It is assumed
in the calculation that a silicide will fracture when the above-mentioned fracture
condition is fulfilled on the average over the nodes belonging to this silicide. The
number of fractured silicides at each stage of deformation was determined similarly.
The model was identified from the condition of the best agreement between the
experimental and calculated data, reasoning from the minimization of the value of
the quadratic residual. For the quadratic residue S = 0.22, the following empirical
coefficients were obtained: a = 0.005, b = 6.1.

With the obtained diagram and the linear model of damage accumulation [8] the
simulation of the deformation and fracture of silicides in the course of specimen
upsetting was performed. A treated fragment of brass microstructure, about 70 ×
80 μm in dimensions, was used as a structurally heterogeneous microcell. Figure 5,
a shows simulation results at equivalent macroscopic strain ε = 0.04 in upsetting. It
shows areas corresponding to the zones of the most probable fracture of silicides. It
is possible to reduce the probability of silicide fracture, i.e., to increase the durability
of the brass, through the use of “milder” stress schemes offering a higher level of
compressive stresses—sufficient for minimizing the “adverse” tensile stress zones.
Figure 5b shows results of the simulation of damage accumulation in silicides prior
to fracture at equivalent macroscopic strain ε = 0.25 in upsetting under plane strain
with an additional external hydrostatic pressure of 850 MPa. The simulation has
demonstrated that this loading scheme enables brass to be deformed with a fairly
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Fig. 5 Damage distribution among silicides at equivalent macroscopic strain in upsetting. Addi-
tional 850 MPa hydrostatic pressure is applied in (b). Fractured areas are colored gray (a) ε = 0.04.
(b) ε = 0.25

high value of strain and minimum internal fractures (with only slight spalling at
silicide edges).

4 Conclusion

Both two and three-dimensional computational models of inhomogeneous mate-
rial deformation have been developed. The two-level structural-phenomenological
approach has been applied to couple macroscopic boundary condition and micro-
scopic model. The model takes into account the complex rheological properties of
its components. The developed models have been implemented numerically on the
example of simulating the loading of the random microstructure subvolume of an
aluminum matrix composite with silicon carbide reinforcement for uniaxial tension
and compression as well as for simulating the loading of the random microstructure
portion of complexly alloyed brass in upsetting under the plane strain state.

The principal possibility of applying phenomenological damage theory for
damage accumulation simulations of the materials under loading has been shown.
The evolution of stress–strain state parameters (the stress stiffness coefficient and
the Lode-Nadai coefficient) has been taken into account. A technique has been
proposed for relating the ultimate strains of brittle particles in the soft phase
of alloys to the stress stiffness coefficient. The technique has been applied to
construct a diagram of ultimate strain for (Fe,Mn)5Si3 silicides of complexly
alloyed brass. Damage accumulation in ((Fe,Mn)5Si3 silicides prior to fracture has
been simulated.
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Effect of Lattice Misfit Strain on Surface
Acoustic Waves Propagation in Barium
Titanate Thin Films

P. E. Timoshenko, V. V. Kalinchuk, V. B. Shirokov, and A. V. Pan‘kin

Abstract The finite-element approaches are used to the analysis of the properties
of acoustoelectronic devices on surface acoustic waves (SAWs) made using thin-
film technologies. The device consists of a barium titanate BaTiO3 film placed on a
magnesium oxide substrate MgO. The barium titanate (BT) film is studied in the c-,
r-, and aa-phases. The interdigital transducer (IDT) is attached to the free surface of
the ferroelectric film and consists of a system parallel electrodes (pins) alternately
connected to each other via common buses. The commercial software COMSOL
is used for two-dimensional finite-element analysis and modeling the processes of
excitation and propagation of SAW. The resonance and antiresonance frequencies
are calculated for different film thicknesses and values of the lattice misfit strain.
The significant influence of the film thickness and strains near the phase transitions
and in r-phase on the resonant and antiresonant frequencies is discussed. In addition,
a two-dimensional model of a SAW filter consisting of 40 pair pins of transmitting
and receiving IDTs spaced 1.8 mm apart is considered. The frequency dependences
of scattering parameters (S-parameters) have calculated and are presented.

Keywords Ferroelectrics · Finite-element method · Scattering parameters

1 Introduction

The progress in obtaining high perfection films [1, 2] stipulates a wide range of
their applications in various branches of science and technology. High-efficiency
dynamic deformation sensors of the generator type have been obtained [3, 4] on the
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basis of thin ferroelectric films, which allowed to take a new look at the problem of
monitoring the dynamic behavior of complex systems [4–6].

Another promising direction of using thin-film technologies are microwave
devices and acoustic-electronic radio components on surface acoustic waves (SAW)
for analog signal processing in real time in a wide frequency range from 1 MHz to
15 GHz. In traditional elements using SAW, an increase in the central frequency of
the operating frequency band is achieved in two ways: using a sound-conducting
substrate with a higher sound velocity and reducing the geometric dimensions (gap
and electrode width) of the emitting and receiving interdigital transducer (IDT)
[7]. Both of these methods have their own natural limitations: a fixed speed of
sound in the substrate and significant technological difficulties in obtaining a gap
width of less than 0.5 μm using a lithographic method. An alternative way is to
improve the design of acoustic-electronic devices by using thin films of various
piezoelectric materials [8–12]. Experience has shown that the properties of acoustic-
electronic devices depend significantly on the quality of the film. The using of high
perfection films allowed to provide acoustic-electronic devices with fundamentally
new capabilities, for example, increasing the operating frequencies or the adjustable
sensitivity [13, 14].

The miniaturization and application of thin ferroelectric films, on the one hand,
and the presence of external electric fields and initial stresses, on the other hand,
require the use of rigorous mathematical methods that allow accounting of all
external influences and emerging internal stresses, revealing new regularities and
creating fundamentally new types of devices, based on the use of the identified
physical effects. The properties of thin films can perform a special role in the design
of the acoustic-electronic device due to the presence of internal stresses that arise
when the film is applied to a substrate crystal lattices of which have different sizes
[15, 16]. The properties of films can depend on the geometrical parameters of the
film (thickness) and technological conditions (deposition temperature) [17–26].

2 Resonant and Antiresonant Frequencies

The problem of finding the resonant and antiresonant frequencies at different values
of the forced deformation of the barium titanate film does not differ from the
problem of finding the natural frequencies, and, consequently, we can consider a
two-dimensional periodic problem.

The model for the solution of the two-dimensional problem is a barium titanate
(BT) film with thickness hBT (area Ω1 in Fig. 1) on a substrate of magnesium oxide
(Ω2) with thickness hMgO, on which a high-frequency IDT is put, which consists of
parallel flat aluminum electrodes Ω3, Ω4 located on the surface of the piezoelectric
material and alternately connected to each other via common bars. The width of the
electrodes making up the IDT is s, their period is p, the thickness is hs .
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Fig. 1 The computational
domain contains a single
period of IDT

The problem is considered in the Cartesian coordinates x1, x3. Surface waves
propagate in both directions along the coordinate x1, and x3 is the direction of their
attenuation. The wave parameters do not depend on the coordinate x2. In general,
due to the anisotropy of the ferroelectric material properties, all three components of
the mechanical displacements exist, which we will denote as u1, u2, u3 (respectively,
in the x1, x2, x3 axis direction). We also introduce the electric potentialV to describe
the electric field. The extended vector u = (u1, u2, u3, V )

T fully characterizes
such piezoelectric system. The use of these variables allows to determine all
the mechanical and electrical parameters in the quasistatic approximation. The
equations of piezoacoustics in the time domain are given in the tensor form [26]
(summation is made over repeated indices):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CE
ijkl

∂2ui
∂xj ∂xk

+ ekij
∂2V

∂xj ∂xk
= ρ ∂2ui

∂t2
,

ejkl
∂2ui
∂xj ∂xk

+ εSki
∂2V
∂xi∂xk

= 0,

Tij = CE
ijklSkl − ekijEk,

Di = eiklSkl + εSkiEk,

i, j, k, l = 1, 2, 3 (1)

where ui is the components of the mechanical displacement vector, V is the electric
potential, CE is the elastic modulus tensor, e is the tensor of the piezomodules, Tij ,
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Sij are the strain and deformation tensors, εS is the permittivity tensor, ρ is the
density of the medium, E is the electric field vector (Ei = −∂V/∂x), and D is the
electric displacement vector.

The system of partial differential equations of the second order (1) can be
transformed to solve the problem of finding the Eigen frequencies in COMSOL
to the following form:

ea · ω2 · u−∇ · (c∇u) = 0, (2)

where u = (u1, u2, u3, V )
T , and ea, c are the matrices, depending on the material

constants. This solution approach allows to take into account all three spatial
components of the mechanical displacements vector, as well as the effect of
mechanical loading of the electrodes. The boundary conditions on the two lateral
boundaries are given periodically. Finding the resonant and antiresonant frequencies
requires fixing the wave number so that the value of the induced deformation of the
barium titanate film and the film thickness can be varied.

3 Effect of Lattice Misfit Strain at the Different Film
Thicknesses on the Resonant and Antiresonant
Frequencies

The properties of ferroelectric films differ greatly from the bulk samples. When
films are placed to the substrate, large mechanical stresses may appear at the
film–substrate interface. These stresses arise from the discrepancy between the
parameters of the film and substrate lattices, the differences in the thermal expansion
coefficients, and the formation of spontaneous deformations during phase transitions
[17].

Large deformations of a film can result in a specific domain structure and
considerable growth of the spontaneous polarization [1]. The misfit strain of the
film provides the interface of its crystal lattice with the lattice of the substrate.
The deviation from intrinsic crystallographic symmetry with a change in the lattice
period reduces the interphase energy of the film–substrate interface, but increases
the energy of mechanical stresses due to elastic deformation of the film [24, 25]. The
discrepancy between the crystal lattices of the piezoelectric layer and the substrate
leads to a change in the dielectric permeability constant and the piezoelectric
coefficient. The property that determines the peculiarity of the interaction of the
film with the substrate is the mismatch parameter um [24, 25], which depends both
on the mismatch between the dimensions of the crystal lattices of the film and the
substrate and the difference in the coefficients of their thermal expansion, and on
the film deposition mode.
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Fig. 2 The dependence of piezoelectric moduli e11, e12, e13, e14, e15, e16, e31, e33, e34, and e36
for the BT film on the lattice misfit strain um

Figure 2 shows graphs illustrating the influence of the um parameter on the
piezoelectric constants of a barium titanate film. As the graphs show, there are three
phases. In the c- and aa-phases, the constants change slightly, and in r-phase the
change in the constants occurs abruptly. It is not difficult to see that the change in
material constants is particularly large near phase transitions.

Figure 3a, b shows the graphs of the resonant frequencies fr and the antiresonant
frequencies fa of the structure shown in Fig. 1. The calculations were carried out
for the first two resonances at value of um = −10−2 . . . 10−2, and film thicknesses
of 20 nm, 200 nm, and 2 μm. As the figure shows, closer to the phase transition
(um = −1.85 · 10−3 and um = 1.85 · 10−3) at film thickness of 20 and 200 nm, the
frequency change is the largest and its abrupt jump takes place. In addition, films
of thickness 20 and 200 nm are characterized by the superposition of the resonant
and antiresonant frequencies (Fig. 3a) in c- and aa-phase, the r-phase has a slight
discrepancy between them. At film thickness of 2 μm, starting with the r-phase, a
sharp discontinuity is observed between the resonant and antiresonant frequencies
(Fig. 3b). It is also observed in a-phase. In addition, films with thickness of 20 and
200 nm have higher frequency—from 635 to 660 MHz and from 1175 to 1250 MHz,
than film with thickness of 2 μm—from 250 to 500 MHz and from 400 to 602 MHz.
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Fig. 3 The effect of the lattice misfit strain um on the resonance (fr ) and antiresonance (fa )
frequencies of the IDT at film thicknesses 20 nm (a), 200 nm (a), and 2 μm (b)

4 Scattering Parameters at Various Values of the Lattice
Misfit Strain

For the calculation of the scattering parameters we will consider a model different
from the one used for the calculation of the resonant and antiresonant frequencies.
The model is a 300 nm thick BT film placed on a 0.25 μm MgO substrate, on which
100 nm thick and 2 μm wide aluminum electrodes are applied. The distance between
the electrodes is 2 μm. The radiating and absorbing IDT has 40 pairs of electrodes.
The geometric period of the IDT is 8 μm. The distance between the IDTs is 1.81 mm.
The model is surrounded on all sides by the absorption region with thickness 10 μm.

The calculations were carried out for the values um = −2 · 10−3, −4 · 10−3, and
10−2. The first resonance is observed at about of 640 MHz.

Figures 4 and 5 shows graphs of the reflection (S11) and transmission (S21)
coefficients. As the graphs show, the frequencies of peaks at the dependence of the
reflection and transmission coefficients on the um parameter change slightly. This
could be expected, since the calculation was carried out in the c-phase and there are
no significant changes in the constants.

Figures 4 and 5 also make it possible to draw a conclusion that the maximum
values of the transmission and reflection coefficients are achieved at um = −10−2.
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Fig. 4 The effect of the
lattice misfit strain um on the
parameter S11

Fig. 5 The effect of the
lattice misfit strain um on the
parameter S21

5 Conclusion

The calculation results of two models are presented. The first model is “periodic”
and allows calculating the resonant and antiresonant frequencies. This model made
it possible to determine the features of the behavior of resonant and antiresonant
frequencies, depending on the film thickness and the value of the parameter um.

The second one is a real device (SAW filter) with real parameters. It allows
finding out how the transmission and reflection coefficients behave for different um
values and making a conclusion that the characteristics can be changed significantly
close to the phase boundaries.
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Control of Nanosensors Forming on Base
of Aluminum Template

A. Vakhrushev, R. Valeev, A. Fedotov, and A. Severyukhin

Abstract The results of the investigation of deposition processes of nanofilms
formation on amorphous porous anodic aluminum oxide substrates, based on which
it is possible to create various optic highly sensitive nanosensors, are presented in
this research. The study was carried out by molecular dynamics simulation. The
modified embedded atom method was used for calculation, temperature and pres-
sure were maintained by Nose–Hoover thermostat and barostat. The different types
of atoms were deposited on aluminum oxide substrates. The aims of investigation
were understanding of process mechanisms of nanofilms forming and of process
of filling nanopores with atoms of various substances and establishing the basic
parameters governing these processes. The results of modeling the processes of
precipitation of pure molecular sulfide of zinc and with the addition of additives
in the form of copper atoms and manganese sulfide molecules are presented.

1 Statement of the Problem

Porous anodic aluminum oxide (AAO) is quite often used as a template to
synthesize different nanostructures: nanowires, nanopoints, nanorings, nanotubes,
etc., due to its hexagonal-ordered arrangement of pores vertically aligned to the film
surface (Fig. 1). AAO can be successfully used as a carrier of catalytically active
nanoparticles as well as nanostructures of [1, 3, 4, 10]. This gives the possibility
to form the ordered aggregates of nanostructures of semiconductor fluorescent
material of the same size and shape that allows representing each nanostructure
as a separate light emitter. The coherent addition of radiation from each light
source results in significant light intensity increase [2, 9]. The lighting properties
of electroluminescent light sources (ELS) depend on the fluorescent material layer
thickness and its structure. So, the problems of studying electrochemical and
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Fig. 1 Porous anodic aluminum oxide

Fig. 2 Experimental device for filling processes of nanopores into templates of aluminum oxide
by atoms of various materials

magnetic effects in porous AAO and application of similar templates as optic
sensors are topical.

Despite the wide application of nanosystems on base of aluminum template, the
questions of detailed investigation of their composition, structure, and processes in
them still arise. The understanding of mechanisms and investigation of nanofilms
forming and functioning, interaction of nanostructures and nanoparticles they con-
tain, as well as the development of engineering ideas and approaches to managing
and using these processes, will give the possibility to control properly the design
nanocomposites and find perspective areas of their application. That is why it is
very important to investigate the processes of such nanostructure growth which we
carried out for several years. Experimental studies are performed on the installation
shown in Fig. 2. The methods of theoretical investigation of these processes by
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Fig. 3 Steps of solving the problem of forming nanofilm coatings based on porous aluminum
oxide

the molecular dynamics method in Fig. 3 are shown. The interested reader can get
acquainted with the experimental and modeling technique in detail in [5–8].

In the work, we investigated the influence of dimensional parameters of the
pores in aluminum oxide matrix on the processes formation of nanofilm coatings.
Gold, silver, chromium, copper, iron, gallium, germanium, titanium, platinum,
and vanadium were used as precipitated materials in the experiments and while
modeling. In this paper, we present the simulation results of nanofilm formation on
porous templates at the deposition of molecular zinc sulfide (ZnS).

Nanofilms based on ZnS are actively used in optical systems of IR band. For
industrial purposes zinc sulfide is produced by chemical deposition from zinc gases
and vapors onto the template. ZnS is not always applied in the pure state, the
material is frequently added to admixtures and additives. The introduction of silver
admixture into the composition results in the luminescence in the blue light region.
The addition of copper as an alloying metal allows using the luminescence of green
color, which is applied in display boards, panels, luminophors, oscillograph tubes.

When investigating luminophor properties, the luminescence brightness is usu-
ally the determining parameter. However, to find out main physical mechanisms
underlying luminescence, it is necessary to investigate both spectral and kinetic
characteristics of electroluminophor that confirms the importance of theoretical
studies of processes of nanofilm deposition onto porous templates.

2 Results of Simulation and Discussions

In multiparticle potentials, such as Abel–Tersoff, Stillinger–Weber, embedded atom
method, the bond formation and breakage occur due to the principles of force
field performance. Nevertheless, for multiparticle potentials rather large amount of



188 A. Vakhrushev et al.

empirical parameters is required. Especially for alloys and complex compounds it is
necessary to obtain additional characteristics of force fields, adapting the action of
energy fields for multimolecular nanostructures.

In order to obtain realistic results maximally fitting the experimental data, the
sizes of the modeling region were significantly increased. The amorphous aluminum
oxide templates with the following dimensions: length—19.1 nm, width—19.1 nm,
height—11.6 nm were used in the modeling process. The total number of atoms in
the template after the pore formation was about 122,000. Before the precipitation
process the template was at rest, at the beginning its temperature was 293 K and it
was further maintained at the same level. The pore with the radius of 5 and 10 nm
deep was cut in aluminum oxide template. The lower template layer was fixed to
avoid its vertical movement at the precipitation stage. The rest of the atoms were
not fixed and could freely move in any direction.

The number of precipitated ZnS molecules was 200,000. The proportion of alloy-
ing elements increased in proportion to its composition increased the percentage of
epitaxial atoms. The precipitation was uniform along the whole template surface
and with the same intensity in time. The atom velocity at epitaxy was 0.05 nm/ps.

The evaporation process of nanofilms from pure zinc sulfide is demonstrated
in Fig. 4. The duration of the complete deposition stage was 0.6 ns. Analysis of the
graphical results indicates that a pore is gradually buried with nanofilm. Initially, the
neck starts forming on the sides above the hole (Fig. 4a), which is gradually covered
later on. Zinc sulfide molecules partially get into the pore, but its complete dense
filling does not occur (Fig. 4b and c). Nevertheless, practically all internal surface
of the porous hole appears to be covered with ZnS molecules by the deposition
stage completion. The gradual pore filling results in the emergence of rounded
overgrowths above the pore region.

Fig. 4 Result of burying the porous template of aluminum oxide with zinc sulfide for the
deposition time: (a) 0.2 ns, (b) 0.4 ns, and (c) 0.6 ns
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In general, the surface of ZnS nanofilm formed is rather even with slight
flash above the pore region. The formation of molecular agglomerates above the
template during epitaxy is not registered, therefore, the resultant film does not have
considerable relief changes in the surface. The nanofilm intensity growth was even.
The resultant thickness of the nanofilm formed for pure zinc sulfide was 6.6–6.8 nm.

To investigate the possibility of controlling the processes of deposition and
formation of nanofilms and burying of porous templates, the angle to the normal
line of the porous template in which the epitaxial atoms and molecules move to the
deposition surface was selected as one of the modeling control parameters.

The percentage of atoms in the pore relative to the total number of particles being
deposited for different time moments of the condensation stage and nanofilm growth
and different angles relative to the normal line of epitaxy direction is given in Fig. 5.

The graph analysis demonstrates that the deposition process only slightly
depends on the angle, at which the atoms are evaporated, and it is practically
identical in time. Slight deviations of the atom share in the pore are observed at
the time moments of 200–400 ps, when the active rearrangement of the internal
structure of nanofilms and nanoformations in the pore takes place. Afterwards, the
dependencies under consideration are stabilized and reach the stationary regime.
The stationary behavior of the atom percentage in the pore relative to the total
amount of the particles being deposited (time moments of 450–600 ps) still has a
slight difference for different deposition angles. The deviation from the normal line
to the template surface results in slight increase in the area onto which the atoms
are deposited that is explicitly confirmed in the graph considered. The deposition
angles for all graphs are given in degrees.

Fig. 5 Percentage of atoms in the pore relative to the total number of particles being deposited for
different deposition angle
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Fig. 6 Relative depth of the mass center of nanoformations in the pore for different deposition
angle

Similar behavior is observed for the position of mass center of nanostructure
being formed inside the pore shown in Fig. 6. As we can see from the behavior
of the graphs in Fig. 5, the change in the height of mass center of the deposited
atoms and molecules inside the pore also only slightly depends on the deposition
angle. Slight deviations in the behavior of dependencies occur for the time moment
of 30 ps of the condensation stage. The height of nanostructures for the deposition
angles of 20◦ and 40◦ is a bit lower. After the time moment of 400 ps the situation
changes and the mass center for the epitaxy angle of 0◦ has the least height. Thus, for
the case of deposition along the normal line to the template surface the mass center
of atoms and molecules inside the pore is the lowest. Nevertheless, the deviations
between the graphs in Fig. 6 are slight and do not exceed 5%.

To continue with the analysis, the thickness of the nanofilm being formed
above the template surface was considered. The computational algorithm of the
nanofilm thickness considers its layer-by-layer structure at each time moment. The
numeration of layers starts from the template surface and increases at the distance
from it. The thickness of layers in the algorithm can vary, but it should depend on
the crystalline structure type of the material being formed and lattice parameters, in
particular, distances to the nearest neighbors. In the prevailing majority of cases, the
thickness of the nanofilm intermediary layers of 0.2–0.3 nm provides the satisfactory
accuracy of calculations. For each layer, starting from the first, the number of
particles in the layer and atomic density are calculated. These values are compared
with similar values on the previous layer. If the spatial layers become much rarer, the
computational process stops. The nanofilm final thickness will comprise all layers
previously considered. The level of atomic density is a variable algorithmic value,
the value of 50% was used in this work.
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Fig. 7 Nanofilm average thickness on the template surface for different deposition angles

The nanofilm thickness growth on the template surface for different deposition
angles is presented in Fig. 7. For the initial time moments (0–400 ps) linear
growth of the nanofilm thickness is observed. At the time moments of 400–600 ps
the deposited atoms and molecules are compacted and the internal structure is
rearranged, so the film average thickness slightly decreases.

3 Conclusion

The results of modeling the processes of precipitation of pure molecular sulfide
of zinc and with the addition of additives in the form of copper atoms and
manganese sulfide molecules have shown that the addition of uniformly distributed
alloying elements to the nanofilms does not significantly affect the process of pore
contraction. The process of incubation proceeds with partial filling of the cavity in
the substrate. The growth of the nanofilm proceeds evenly, without sudden jumps
and shifts.

When adding alloying elements, there are no visual changes in the growth
processes, there is an insignificant deviation of functional dependencies within the
limits of not more than 0.3%. The introduction of additives leads to an increase in the
number of deposited atoms and a regular increase in the thickness of nanostructured
coatings of substrates. The highest nanofilms were detected in the cases of 10%
alloying additives, which led to the appearance of an additional 0.2–0.6 nm layer-
by-layer deposition.

Investigations into the possibility of controlling the growth processes of
nanofilms, overgrowing porous substrates, and the formation of nanostructured
coatings have shown that the epitaxial deposition angles and heating of the
nanosystem to temperatures of 293–593 K do not lead to a significant change
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in the formation of nanoformations. At the same time, there is a slight restructuring
of the structure and internal organization of nanoelements, but there is no certain
filling of the pores and changes in the properties of the nanofilms.
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Dynamic Coupling Characteristics
of Slender Suspension Footbridges
with Wind-Resistant Ropes

Y. B. Yang and J. D. Yau

Abstract An analytical study is presented for the slender suspension bridge
with inclined wind-resistant ropes (i.e., wind-guys) susceptible to coupled flexural
and torsional vibrations. Based on the linearized deflection theory of classical
suspension bridges, the modal coupling mechanism of a single-span footbridge is
studied analytically. The free vibration analysis is conducted to obtain the closed-
form solutions of modal frequencies and modal shapes of the suspended beam
with horizontal wing guys, from which the key parameters and coupling factors
dominating the flexural–torsional coupled vibrations are identified. To evaluate the
coupling nature of flexural–torsional vibrations for the suspended beam, the modal-
based coupling contribution factor is presented in this study.

1 Introduction

Paralleling the advances in constructional materials and technology, a modern
suspension footbridge is designed toward the features of a lighter and more slender
form. Such a slender suspension footbridge with low stiffness, mass, and damping
ratio is more susceptible to coupled flexural and torsional vibrations due to the
existence of dense modal frequencies.

In the design of traditional suspension bridges, wind or seismic resistance
are crucial factors to be considered in determining the main geometric shape of
the bridge. In the past several decades, numerous researchers and engineering
scientists have devoted themselves to the theoretical analyses, experimental tests,
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and structural health monitoring for long-span suspension bridges under various
traffic conditions [1, 2]. In comparison, rather little works were carried out for the
pedestrian suspension bridges that are getting more popular in the world.

The structural characteristics of a slender suspension footbridge investigated
herein include the following components: (1) two vertical strong suspension cables
to hang a narrow bridge deck; (2) a flexible bridge deck with no stiffening girders;
and (3) two symmetrical pre-tensioned wind-guys via inclined wind-ties to stabilize
the additional torsion induced by pedestrians or wind loads. The inclined wind-
guys play a key role in coupling the lateral and torsional vibrations of a suspension
footbridge. In this paper, an analytical approach based on the linearized deflection
theory of suspension bridges [3, 4] is presented to extract the key parameters
dominating the dynamic coupling characteristics of the flexural and torsional modes
of the slender suspension footbridge. To carry out the free vibration analysis
analytically, closed-form solutions for the characteristic equations and modal shapes
are derived from the decoupled equations of the suspension footbridges with
horizontal wind-guys, from which approximate shape functions used for coupled
flexure and torsion of the suspension beam are obtained. Then the dynamic coupling
characteristics of a slender suspension footbridge with inclined wind-guys are
investigated and the modal mass-based coupling contribution factor is presented to
assess the dynamic coupling characteristics in the flexural and torsional vibrations
of the suspended beam.

2 Formulation of the Problem and Governing Equations

Figure 1 depicts a schematic diagram of a single-span suspension footbridge in static
equilibrium under the gravity loads and pre-tensioned wind-guys. With reference to
Fig. 1a and b, the suspension footbridge with pre-tensioned wind-guys (or wind-
resistant ropes) is simulated as a single-span suspended beam with hinge supports.
The following symbols are defined: B = width of the bridge deck, Bc = width of the
walkway below the two suspended cables, (EcAc,ErAr ) = axial rigidities of the
suspension cables and wind-guys, (H,h) = total horizontal forces in the cables and
wind-guys, L = span length of the beam, w = self-weight per unit length, Y0f (x)

= sag function of the suspension cables, Y0 = cable sag, y0f (x) = arching function
of the wind-guys, y0 = rising height in the inclined wind-guys, and α = angle of
inclination of the wind-guys.

For analytical formulation, the linearized deflection theory of suspension bridges
[4] is adopted to describe the spatial motion of the suspended beam. The following
are the basic assumptions adopted:

1. The beam is prismatic, rigid in cross section, and of the Bernoulli–Euler type;
2. The suspension cables and wind-guys are parabolic and symmetrical with respect

to the beam axis (see Fig. 1a and b);
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Fig. 1 Schematic of a suspension footbridge in static equilibrium: (a) elevation; (b) free body
diagram of the cross section

3. The angles (α) of inclination of the wind-guys are the same at the two sides of
both ends of the beam (see Fig. 1b);

4. The tensile cables along with vertical hangers are assumed to carry all the dead
loads (w) of the beam and the vertical force components of the wind-guys via the
wind-ties (see Fig. 1b);

5. Both the hangers and wind-ties are inextensible and weightless; and
6. The mass of the beam, including those of the cables and wind-guys, is uniformly

distributed along the length.

As shown in Fig. 2, we regard the tensile forces induced by the suspension cables
and the inclined wind-guys as the external forces acting on the suspended beam.
Based on the classical suspension beam theory [3] and considering the equations of
equilibrium for the translations along the (Y,Z) axes and for the torsional rotation
about the X axis, one can write the following differential equations of motion for
the suspended beam:
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Fig. 2 Kinematics of cross section in deformed position

Vertical equation (Y ):

mÜY + EIZU
′′′′
Y −

(
H + h(cosα)2

)
U ′′
Y +

(
S + s(cosα)2

) ∫ L

0
2UYdx = wY

(1)

Coupled equations in flexure (Z) and torsion (X):

{
mÜZ + EIYU

′′′′
Z

Iθ θ̈ + 4y0(hB sinα)
L2 θ

}
−
[
h(sin α)2 hB sin 2α

4
hB sin 2α

4 GJ + HB2
c+h(B cosα)2

4

]{
U ′′
Z

θ ′′
}

+
[

2s(sin α)2 sB sin 2α
2

sB sin 2α
2

SB2
c+s(B cosα)2

2

]{∫ L
0 UZdx∫ L

0 θdx

}
=
{
wZ

wθ

} (2)

S =
(

8Y0

L2

)2
EcAc

Lc
, s =

(
8y0

L2

)2
ErAr

Lr
,

Lc =
∫ L

0

(√
1 + Y ′2

)3

dx , Lr =
∫ L

0

(√
1 + y ′2

)3

dx (3)

Here, (EIY ,EIZ) = flexural rigidities about the Y and Z-axes, respectively, GJ
= torsional rigidity, (m, Iθ ) = mass and torsional mass inertia per unit length,
respectively, (UY ,UZ) = vertical (Y ) and lateral (Z) displacements, respectively,
and (wY ,wZ,wθ ) = external loads acting on the beam.
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3 Free Vibration Analysis

In the following, two cases will be conducted for the free vibration of a slender
suspension bridge with pre-tensioned wind-guys. In Sect. 3.1 the shape functions
of the suspended beam with horizontal wind-guys will be derived analytically. With
these, the coupling characteristics of the free vibration of the suspended beam with
inclined wind-guys will be explored in the sections to follow.

3.1 Decoupled Case

For the uncoupled case of a suspended beam with horizontal wind-guys, that is, with
α = π/2, the integro-differential equations in Eqs. (1) and (2) become

mÜY + EIZU
′′′′
Y −HU ′′

Y + 2S
∫ L

0
UY dx = 0, (4)

mÜZ + EIYU
′′′′
Z − hU ′′

Z + 2s
∫ L

0
UZdx = 0, (5)

Iθ θ̈ −
(
GJ + HB2

c

4

)
θ ′′ + 4y0hB

L2 θ + SB2
c

2

∫ L

0
θdx = 0 (6)

The suspended beam is stiffened by the suspension cables in both the vertical
flexural and torsional directions and by the pre-tensioned wind-guys in the horizon-
tal plane. For the purpose of analytical investigation, the lateral-flexural (Uz) and
torsional (θ ) vibrations will be considered in the following free vibration analysis.
By solving Eqs. (5) and (6) for the beam with hinged supports, the characteristic
equations and the corresponding n-th natural modes in flexure and torsion are listed
as Tables 1 and 2, respectively. In Tables 1 and 2, the following parameters are used:
k = h/EIY and

k2
1n = w2

n

⎛
⎝
√(

k

2w2
n

)2

+ 1 − k

2w2
n

⎞
⎠ , k2

2n = w2
n

⎛
⎝
√(

k

2w2
n

)2

+ 1 + k

2w2
n

⎞
⎠ ,

βn = ωn

√
Iθ − 4y0hB/(ωnL)

2

GJ +HB2
c /4

, w4
n =

mω2
n

EIY
(7)

From the closed-form solutions of natural frequencies and modal shapes in flexure
and torsion derived for the suspended beam, a set of approximate shape functions
can be selected for the coupled flexural and torsional modes of the suspended beam
with inclined wind-guys in the following section.



198 Y. B. Yang and J. D. Yau

Table 1 Dynamic properties of the suspended beam in flexural vibration (UZn)

Even modes

Odd modes (n = 1, 3, 5, . . .) (n = 1, 2, 3, . . .)

Characteristic
equation

(k2nL)
3 tan(k1nL/2)+ (k1nL)

3 tanh(k2nL/2)

(k1nL)
2 + (k2nL)

2

+(wnL)
6
(
EIY
4sL5

)
− (wnL)

2

2
= 0

ω2
2n = EIY

m

(
2nπ
L

)4

+ h
m

(
2nπ
L

)2

Modal shapes

1 − cos k1nx + tan(k1nL/2) sin k1nx

1 + (k1n/k2n)
2

+
(
k1n
k2n

)2 (tanh(k2nL/2) sinh k2nx − cosh k2nx)

1 + (k1n/k2n)
2

sin
(

2nπx
L

)

Table 2 Dynamic properties of the suspended beam in torsional vibration (θn)

Odd modes (n = 1, 3, 5, . . .) Even modes (n = 1, 2, 3, . . .)

Characteristic
equation

tan βnL
2 = βnL

2 − (βnL)
3

(
GJ+HB2

c
4

SB2
c L

3

)
ω2

2n = GJ+B2
c H/4

Iθ

(
2nπ
L

)2

+ 8y0hB

IθL3

Modal shapes 1 − tan
(
βnL

2

)
sinβnx − cos βnx sin

( 2nπx
L

)

Table 3 Properties of the suspension footbridge

L Y0 y0 Bc B EIY GJ h m Iθ EcAc ErAr

m m m m m kNm2 kNm2 kN t/m tm2/m kN kN

250 20 10 2 3.5 7 × 107 4 × 104 3000 0.75 0.6 5.4 × 106 1.7 × 106

Table 4 Distribution of natural frequencies for symmetrical modes

Natural frequency/mode (n) n = 1, 3, 5, 7, 9, 11, 13, 15

Flexure ωZn =
(
ηZnπ
L

)2√EIY
m

ηZn = 1.4, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0

Torsion ωθn = ηθnπ
L

√
GJ+HB2

c /4
Iθ

ηθn = 2.9a, 3.9, 5.2, 7.1, 9.1, 11.1, 13.1, 15.0
aStrengthened by suspension cables and pre-tensioned wind-guys

3.2 Determination of Shape Functions

With the properties given in Table 3 for the suspension footbridge with horizontal
wind-guys, the distribution of natural frequencies obtained from the exact solutions
of Table 1 is listed in Table 4. Here, the bold values in Table 4 represent the
strengthening natural frequencies in flexural and torsional induced by suspension
cables and pre-tensioned wind-guys.
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As indicated for the symmetrical modes, the higher frequencies of odd flexural
modes are mostly dominated by the corresponding modal shape of a simple beam,
that is, sin(nπx/L)|n=3,5,7,.... Thus, the lateral displacement of the suspended beam
can be represented by

UZ(x, t) =
∑

n=1,2,3,...

qZn(t) sin
nπx

L
(8)

In contrast, the torsional frequencies of the symmetrical modes do not have such a
regular distribution as the flexural modes. Inspired by the torsional shape functions
of symmetrical modes shown in Table 1, we can represent the torsional shape of the
suspended beam as

θ(x, t) =
∑

n=1,3,5,...

qθn(t)

(
1 − sin

nπx

L
− cos

2nπx

L

)
+

∑
n=2,4,6,...

qθn(t) sin
nπx

L

(9)

Here, the shape functions of odd modes with multi curvatures are selected to
simulate the symmetrical modes for better convergence to account for the cable-
induced additional stiffness than the sinusoidal functions.

3.3 Generalized Coupled Equations of the Suspended Beam

For illustration, the first two shape functions shown in Eqs. (8) and (9) are
selected. By Galerkin’s method, one can derive the following coupled equations
of free motion for the first (symmetrical) and second (anti-symmetrical) modes,
respectively, of the suspended beam as

Symmetrical mode:

[
m/2 0

0 (2 − 16/3π) Iθ

]{
q̈Z1

q̈θ1

}
+
[
kZ1/2 C1

C1 kθ1

]{
qZ1

qθ1

}
=
{

0
0

}
(10)

Anti-symmetrical mode:

[
m 0
0 Iθ

]{
q̈Z2

q̈θ2

}
+
[
kZ2 C2

C2 kθ2

]{
qZ2

qθ2

}
=
{

0
0

}
(11)
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Here, the generalized torsional stiffness coefficients are given as follows:

C1 =
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+ 4
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The coupled terms (C1, C2) in Eqs. (10) and (11) are related to the pretension force
(h) in the inclined wind-guys. Solving the eigenvalue problem for the free vibration
analysis in Eqs. (10) and (11) yields the approximate natural frequencies of the
suspended beam.

3.4 Natural Frequencies

To analytically demonstrate the additional torsional stiffness induced by the sus-
pension cables and inclined wind-guys, the decoupled case of unstressed wind-guys
with inclined angle of α = π/4 is considered. With the condition of h = 0 or
C1 = C2 = 0, the generalized equations in Eqs. (10) and (11) of the suspended
beam become decoupled and the frequencies obtained have been listed in Table 5.
Thus the frequency ratio of the first symmetrical mode (j = 1) to the first anti-
symmetrical mode (j = 2) in torsion of the suspension bridge is

Ω2
Z1

Ω2
Z2

= 1

4
+ 4sL

π2EIY (2π/L)4
= 1

4
+
(

4y0

π3L

)2ErAr/Lr

EIY /L3 < 1, (13)

Ω2
θ1

Ω2
θ2

= (5/2 − 16/3π)

8 (1 − 8/3π)
+ (SB2

c + sB2/2)L(1 − 2/π)2

16 (1 − 8/3π)
(
GJ + B2

c H/4
)
(π/L)2

> 1 (14)
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Table 5 Natural frequencies of the suspended beam with unstressed wind-guys

Lateral flexure Torsion

Symmetrical
frequencies

ΩZ1 =
√

EIY
m

(
π
L

)4 + 4sL
mπ2 Ωθ1 =

√√√√√√
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5
2 − 16

3π

)
GJ+B2

c H/4
Iθ (2−16/3π)

(
π
L

)2

+ (SB2
c+sB2/2)L

2Iθ (2−16/3π)

(
1 − 2

π

)2

Anti-symmetrical
frequencies

Ω
Z2 =

(
2π
L

)2√
EIY
m

Ω
θ2 =

(
2π
L

)√
GJ+B2

c H/4
Iθ

As indicated in Eq. (14), the torsional stiffness factors of (SB2
c , sB

2), which are
related to the aspect ratios of (B/L,Bc/L, Y0/L, y0/L) and the axial stiffness of
(EcAc/Lc,ErAr/Lr ) of the suspension cables and wind-guys, play a key role in
increasing the torsional stiffness of the first symmetrical mode of a suspension foot-
bridge. Clearly, the additional torsional stiffness factors explain why the frequency
of the first symmetrical mode is higher than that of the first anti-symmetrical one.

3.5 Coupled Modes

As revealed in Sect. 3.4, the first torsional frequency of the anti-symmetrical mode
is smaller than the one of the symmetrical modes induced by strengthening of the
suspension cables and wind-guys. To evaluate the coupling between the lateral-
flexural and torsional modes, only the first anti-symmetrical modes are studied in
this section. Solving the eigenvalue problem for the first anti-symmetrical modes of
Eq. (11) yields the following frequencies and modal shapes:

Ω2
j2 =

Ω2
Z2

2

[
1 + f 2

2 ∓
√
(1 − f 2

2 )
2 + (2c2)

2
]
, j = Z, θ (15)

[Ψ ]2 =
[ {φZ2} {φθ2}

] =
[

1 ψ2

−ψ2/r
2 1

]
,

ψ2 = r

⎡
⎢⎣1 − f 2

2

2c2
+
√√√√
(

1 − f 2
2

2c2

)2

+ 1

⎤
⎥⎦ , (16)

where c2 = C2/(kz2r), f2 = Ωθ2/ΩZ2 = √
kθ2/kZ2/r , and Iθ = mr2. With the

eigenvectors shown in Eq. (16), the 2nd generalized modal mass matrix is given by

[
1 ψ2

−ψ2/r
2 1

]T [
m 0
0 Iθ

] [
1 ψ2

−ψ2/r
2 1

]
=
(

1 + ψ2
2

r2

)[
m 0
0 Iθ

]
(17)
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As indicated above, the skew-diagonal terms with (ψ2, ψ2/r
2) play a role to couple

the flexure with torsion of the suspended beam in vibration. For example, if the
pretension force (h) disappears in the wind-resistant ropes, then the coupling factor
ψ2 becomes zero and the coupled equations in Eq. (11) will become decoupled, as
indicated in Sect. 3.4. In the following examples, such coupling factors are used to
estimate the coupling degree of the vibration modes in both flexure and torsion.

4 Numerical Investigation of Coupled Modes

Let us represent the n-th mode {φn} of the suspended beam as {φn} = {ϕf }n+{ϕt }n,
where {ϕf }n = sub-vector of the flexural component in {φn}, and {ϕt }n = sub-vector
of the torsional component in {φn}. Thus the n-th modal mass contributed by the
flexural or torsional components can be respectively expressed as

mf,n = {ϕf }nTm{ϕf }n , mt,n = {ϕt }nTm{ϕt }n, (18)

where m represents the mass matrix of the suspended beam. With the components
of the n-th modal mass given in Eq. (18), the coupling contribution factors (CCF) of
flexure (χf,n) or torsion (χt,n) to the corresponding torsional or flexural mode are
respectively defined as

χf,n = mf,n

mf,n +mt,n

, χt,n = mt,n

mf,n +mt,n

. (19)

Adopting the properties of the suspended beam with inclined wind-guys in Table 3,
one can obtain the numerical results of natural frequencies and torsional–flexural
coupled modes as listed in Tables 6 and 7, respectively. Let us examine the torsional
and flexural modes plotted in Table 7. The first symmetric torsional mode (T1)
appears to have multi-curvatures due to the additional stiffness of tensile cables
and pre-tensioned wind-guys. Such additional torsional stiffness may enable the
first symmetric torsional frequency (T1) to be higher than the first anti-symmetric
torsional one (T2), that is, Ωθ2 < Ωθ1 (see the frequencies in Table 6). On the other
hand, the coupling contribution factors of the vibration modes in torsion and flexure
have been shown in Table 7 as well. As can be seen, the larger the ratio of χt,n/χf,n,

Table 6 Natural frequencies for the suspended beam

1st symm. 1st anti-symm. 2nd symm. 2nd anti-symm.
α Modal type (n = 1) (n = 2) (n = 3) (n = 4)

π/4 Flexural Ωb,n (Hz) 0.36 (L1) 0.38 (L2) 2.21 (L3) 3.90a (L4)

Torsional Ωθ,n (Hz) 1.54 (T1) 1.23 (T2) 2.01 (T3) 2.32 (T4)

aThe 4th lateral frequency of a simple beam: f4 =
[
(4π/L)2

√
EIY /m

]
/2π = 3.90 Hz
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Table 7 Coupled vibration modes of the suspended beam

/ 4= Coupled modes CCF (
, ,/t n f n) (%)

Torsional-flexural 

mode

Solid = torsional

= flexural

0.29 / 99.71

1.39 / 98.61

3.46 / 96.54

0.06 / 99.94

Flexural-torsional 

mode

Solid =lateral

= torsional

99.71 / 0.29

98.61 / 1.39

96.54 / 3.46

99.94 / 0.06

the more contribution of torsion to couple the flexural mode will be. Thus there
exists a significant coupling phenomenon in torsion and flexure on the 3rd coupled
modes, as plotted in Table 7.

5 Concluding Remarks

Based on the linearized deflection theory of classical suspension bridges, the
coupled equations of motion for a slender suspension footbridge with pre-tensioned
wind-guys are solved analytically. To assess the coupling nature of torsion/flexure
on the flexural/torsional modes, this study presented a modal mass-based coupling
contribution factor. From the free vibration analysis, the key parameters such as tor-
sional stiffness factors (SB2

c , s(B cosα)2), aspect ratios (Y0/L, y0/L,B/L,Bc/L),
and axial stiffness (EcAc/Lc,ErAr/Lr ) dominating the flexural–torsional coupled
vibrations are identified. The added stiffness of the tensile cables and pre-tensioned
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wind-guys can significantly raise the first symmetric frequencies in the lateral and
torsional directions, such that the first symmetric frequency in torsion becomes
higher than the first anti-symmetric one.
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