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Chapter 9
Is There an Optimum System 
for Culturing Human Embryos?

Jason E. Swain

9.1  �Introduction

Multiple factors influence the success of an IVF program. Obtaining good quality 
gametes and ensuring appropriate uterine receptivity are paramount. However, 
despite the often large variability in these clinical aspects or the inherent properties 
of patients themselves, immense focus and critique are often placed in the processes 
that occur within the confines of the IVF laboratory. It is often viewed that much of 
what drives IVF success, or failure, is a result of what occurs during the time that 
the gametes and embryos reside within the laboratory. The IVF laboratory takes 
extreme measures to ensure consistency and repeatability: tracking inventory, moni-
toring equipment function, and assessing technician efficacy on a regular basis. This 
attention to detail and quantification of quality data may explain why such credit, 
and blame, is often assigned to the laboratory.

Certainly, when embryo development is poor or outcomes are low, one of the first 
suspected culprits is a suboptimal culture system. Indeed, laboratory conditions are 
one key component than can impact embryo quality. As a result, immense amounts 
of time and resources are devoted to identifying the “optimal” system to culture 
embryos. The key word here, however, is “system,” as culturing embryos consists of 
several variables. Importantly, within the context of the entire culture system and 
interactions between variables, “optimal” conditions may vary slightly from labora-
tory to laboratory.
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9.2  �Gamete Processing

Quality of preimplantation embryos is dependent upon quality of the gametes used 
to create the embryo. Unfortunately, a significant component of gamete quality is 
inherent and beyond influence of laboratory conditions. Thus, it should be men-
tioned, that if gamete quality is poor, even an “optimal” culture system is likely 
unable to overcome inherent abnormalities. That being said, sperm and oocytes are 
processed and cultured briefly within the laboratory, and these brief periods can 
impact quality. A detailed discussion regarding the processing of oocytes and sperm 
is beyond the scope of this review. However, some key factors should be considered. 
Care should be taken to ensure appropriate environmental conditions, including 
temperature and pH stability, during handling and manipulation of oocytes and 
sperm. This includes use of appropriate media formulated for the respective gam-
etes. Precautions should also be taken to avoid excessive physical stress during 
manipulations occurring during procedures like sperm isolation/centrifugation and 
oocyte denuding.

Laboratories should permit adequate oocyte maturation prior to insemination/
ICSI, often 2–4 h post-retrieval. It has been shown that completion of nuclear matu-
ration does not occur until ~1 h following polar body extrusion and injection of 
oocytes prior to 2–4 h after retrieval yielded lower fertilization rates [1]. The culture 
of cumulus intact oocytes for 3–6 h prior to injection yielded superior fertilization 
and cleavage embryo development compared to those cultured <3 h [2]. Similarly, 
using patient randomization in a prospective trial, waiting for 4 h to inject cumulus 
intact oocytes following retrieval, yielded superior fertilization and blastocyst 
development compared to injection immediately after retrieval [3]. It should be 
noted that these timings are likely dependent upon the type of stimulation and trig-
ger used and timing between the trigger and oocyte retrieval.

It is known that separation and processing techniques can impact sperm quality 
and DNA integrity and likely resulting embryo quality [4, 5]. Various studies exist 
comparing common sperm isolation practices such as density gradient separation, 
swim-up and also newer technological approaches [6–9]. A clear consensus as to 
the superior approach is not apparent from the literature and conflicting results may 
stem from subtle variations in techniques, such as gradient used, centrifugation 
speed and time of centrifugation, number of washes, media used, swim-up tech-
nique and other variables [10]. Appropriate sperm concentrations should be used 
for standard insemination cases, with 50,000–100,000 motile sperm/mL as stan-
dard accepted concentrations. Brief co-incubation of sperm with eggs has been 
shown to be sufficient and may avoid possible negative impacts of extended sperm 
exposure [11–13]. Elevated sperm concentrations and/or extended exposure could 
be detrimental to oocyte quality and embryo development due to increased ROS, 
lowered pH, or other media alterations. With regard to ICSI, at a minimum, normal 
morphology sperm should be utilized for injection with sperm assessment at 400×. 
Use of higher magnification approaches, such as IMSI, does not appear overly ben-
eficial, though this may depend on patient population and what magnification is 
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normally used for ICSI [14–17]. Emerging sperm selection approaches, such as 
PICSI, may also be useful [18], though this likely depends on the patient population 
and semen characteristics [19].

9.3  �Embryo Culture

Once a sperm has been successfully joined with an egg, formation of a zygote 
occurs. Continued development of the resulting preimplantation embryo in vitro, 
often to the blastocyst stage, is a requirement for a successful IVF program. 
Therefore, the culture conditions used in the laboratory must support this develop-
ment. However, numerous variables are present in the embryo culture system. Thus, 
it is extremely difficult to do a properly controlled comparison of culture systems, 
considering the number of variables involved. Without an exhaustive comparison 
within the same laboratory, identification of an “optimal” system is practically 
unattainable.

That being said, there are key components of the culture system that have been 
found to be superior to alternative approaches and that are viewed as “best prac-
tices.” Some of these key components, as well as other relevant variables, will be 
discussed.

9.3.1  �Incubators

Minimizing environmentally induced stress within the IVF laboratory is crucial in 
creating a culture system optimized for embryo development and to achieve maxi-
mal assisted reproductive outcomes. Key environmental variables to consider 
include temperature, humidity and atmospheric/gas stability. These can subse-
quently impact properties of embryo culture media, such as pH and osmolality. 
Importantly, all of these potential stressors are regulated or impacted by the labora-
tory incubator. As a result, the incubator is arguably the most important piece of 
equipment in the embryo culture system.

Multiple culture incubator types exist with varying capabilities and differing 
methods of regulating their internal environment. Box-type incubators, initially 
developed to hold multiple flasks of somatic cells, have been long used for clinical 
IVF. These were later adapted to smaller box-type incubators, with lower volume 
and faster gas/atmosphere recovery following openings/closings. Most recently, a 
plethora of embryo-specific benchtop incubators have been development. These 
newer incubators tend to have several small chambers for individual patients to 
reduce the number of openings/closing and to speed gas recovery. They tend to also 
include direct heat for faster temperature recovery and various accessories, such as 
air filtration and other technologies aimed at improving environmental stability. As 
a result, selection of an appropriate culture incubator for the IVF laboratory has 
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become a complex process. To date, there is no clear consensus as to a superior 
incubator type, as exhaustive controlled comparisons have not been done, and as 
efficacy and environmental stability rely heavily on incubator management [20] 
(Table 9.1).

For any incubator, optimal function requires proper use and daily quality control 
(gas and temperature measurements/validation). An appropriate number of units is 
required to avoid overcrowding with patient samples and prevent excessive open-
ings/closings. Reduced incubator openings appears to benefit mouse embryo devel-
opment [21, 22], as well as improving human blastocyst development [23]. 
Importantly, it should be noted that while single-step culture media (discussed later) 
and new time-lapse incubator technology permit uninterrupted culture of embryos 
with no disturbance over 5/6 days of development, no clear benefit of this approach 
has been shown, indicating that other variables in the culture system must also be 
considered [24–26]. A mix of incubator types within an individual laboratory per-
mits a wide variety of uses to accommodate different dish or test-tube types, as well 
as implementation of emerging culture technology.

9.3.2  �Atmosphere

Today’s optimal culture system requires the use of low oxygen within the incubator. 
Culturing embryos in reduced oxygen concentrations (~5%), compared to atmo-
spheric concentrations of ~21%, have been long recognized as superior in various 
animal IVF systems [27–33]. This makes sense when one considers the female 
reproductive tract appears to have oxygen levels between 2 and 8% (see reviews 
[31]). Numerous studies have also demonstrated improved human embryo develop-
ment, implantation, and pregnancy rates when using reduced oxygen concentrations 
[34–46]. Importantly, use of low oxygen throughout the entire culture period 
through day 5/6 appears to be required to see the most benefit [34, 36, 46]. While 
5% is often the standard concentration used for low oxygen culture, it is currently 
unknown if even lower oxygen concentrations or differential oxygen concentrations 
during embryo development may yield superior outcomes [47, 48].

There is no consensus as to the superior method of achieving low oxygen condi-
tions. Nitrogen gas is used to depress oxygen concentration down from atmospheric 
levels of 21%. Nitrogen gas can be supplied via a nitrogen generator, nitrogen gas 
siphoned from a high-pressure liquid nitrogen tank, or compressed cylinders of 
nitrogen or premixed cylinders of gas.

The exact mechanism of the benefit of low oxygen use for embryo culture is 
unknown. Use of low oxygen may be superior due to improved embryo metabolism, 
reduced ROS, or perhaps even improved air quality (reduced levels of VOCs).

Maintenance of an appropriate and stable CO2 concentration by the laboratory 
incubator is also required to ensure a highly effective embryo culture system. The 
carbon from CO2 can be utilized by developing embryos for biosynthetic processes 
[49–51]. Additionally, the CO2 concentration inside the incubator is important in 
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establishing the pH of the embryo culture media [52–54]. The CO2 gas dissolves in 
the media and reaches equilibrium with the sodium bicarbonate concentrations to 
establish a set point. As CO2 is increased, pH decreases and vice versa. This is 
important because the pH of culture media can impact embryo development. No 
clear consensus exits as to the optimal pH requirement of embryo culture media to 
optimize development. This may vary between media, due to the impact of ingredi-
ents, such as lactate [54], and may vary between embryo developmental stages [54, 
55]. The value usually falls between 7.2–7.4 and may change if using a sequential 
cutlure medium. The amount of CO2 required to achieve the desired pH will vary 
between labs based on lab elevation, type of culture media, and other variables (pro-
tein concentrations, etc.). Rapid and accurate CO2 recovery and maintenance of 
CO2/pH stability is paramount. Thus establishment of the desired pH range by the 
laboratory is required, with pH measurement to determine the required CO2 concen-
tration with routine verification.

9.3.3  �Temperature

Temperature is another variable of the culture system that may impact efficacy. It is 
well known that temperature can impact various aspects of gamete and embryo 
function, most notably, meiotic spindle stability [56–58] and possibly embryo 
metabolism [59]. Studies have reported that maintaining a warm temperature around 
35–37 °C compared to 25–30 °C during retrieval is beneficial for bovine embryo 
development and mouse embryo gene expression [60, 61]. Maintaining temperature 
stability around 37 °C during human oocyte injection also improved fertilization 
rates and embryo development [57]. However the optimal temperature at which to 
culture embryos remains unknown.

Commonly, 37 °C is used to culture embryos and is based on the estimate of 
human core body temperature. Importantly, body temperature varies and is likely 
not exactly 37 °C. Temperature can vary based on time of day, between the sexes 
and between individuals. Furthermore, temperature of the female reproductive tract 
may actually be slightly less than the core body temperature. The temperature of the 
human follicle is ~2.3 °C cooler than surrounding stroma, and the fallopian tube 
from animal models carries a temperature gradient ~1.5 °C cooler [62–67]. As a 
result, the question has been poised “whether human IVF and related procedures 
should be carried out, at, say, 35.5–36°C rather than at 37°C” [59]. Use of a 1.5 °C 
lower temperature would presumably lower the metabolic rate of the embryo ~15%, 
which may result in a more “quiet” metabolism, thereby possibly benefiting embryo 
development [59]. However, this hypothesis has not been proven.

Recently, a prospective randomized controlled trial utilized patient embryo splits 
and examined the effect of culture human embryos at either 37 or 36  °C [68]. 
Controlling for temperature variations, incubator type, and pH, authors demon-
strated that culture of human embryos at 37 °C yields higher average cell numbers 
at day 3 of development, higher blastocyst formation, and higher useable blastocyst 
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rates compared to 36 °C (Table 9.2). No differences were observed in rates of aneu-
ploidy or implantation. More detailed analysis of the optimal temperature for 
embryo culture is required, but the best practice at the moment appears to be main-
tenance of a stable temperature around 37 °C.

There is no clear advantage of one incubator type over another in terms of tem-
perature regulation, though some types may recover temperature faster or maintain 
temperature better than others under various circumstances [20]. In addition to incu-
bators, temperature stability should be monitored on other lab equipment, such as 
warm ovens and heating stages. The type of culture dish, as well as other factors that 
can impact heat exchange, should be considered. Careful monitoring of temperature 
and proper handling of embryos during use is imperative to ensure the desired con-
ditions are achieved and maintained.

9.3.4  �Group Culture

It is known that embryos can modify their surrounding microenvironments during 
culture though secretion or depletion of various proteins. Indeed, examination of the 
embryo secretome through analysis of spent culture media has become an active 
area of research [69–78]. Modification of their own microenvironment may impact 
embryo development during the culture period. It is therefore perhaps not surprising 
that group embryo culture has been shown to be beneficial over individual embryo 
culture for animal embryos, from both mono- and polyovulatory species. Various 
studies have shown a benefit of group culture of embryos from the rodent [79–83] 
as well as domestic species like the cow, sheep, and pig [84–91].

Similarly, studies exist that indicate human embryos may also benefit from group 
embryo culture [92]. Grouping of human embryos significantly enhanced cleavage 
rates but not morphology grade as compared with embryos grown individually [93]. 
Group embryo culture resulted in significantly improved pregnancy rates, with 
embryos grown in groups producing a 43% pregnancy rate per transfer, compared 
to a 24% pregnancy rate for embryos that were cultured individually [94]. A retro-
spective analysis of patients who had embryos cultured from day 1 to day 3, either 
individually or in groups of three to five embryos, had no differences in pregnancy 
or implantation rates, but those cultured in groups did result in more usable blasto-
cysts [95]. This is similar to a prior prospective report that indicated no benefit of 
group culture of human embryos prior to day 2 or day 3 transfer [96], suggesting 
extended culture may be required to observe the full benefits of group embryo cul-

Table 9.2  Comparison of culture temperature on development of human preimplantation embryos [69]

MII’s 
(n)

Fert 
rate

Day 3 cell 
number

Blast 
rate

Usable 
blast rate

Aneuploidy 
rate

Implantation 
rate

36.0 ± 0.07 °C 399 86.2% 7.0 ± 0.1a 51.6%a 41.2%a 42.5% 67.4%
37.0° ± 0.04 °C 406 82.0% 7.7 ± 0.1b 60.1%b 48.4%b 46.1% 73.3

Different superscripts within a column represent statistical significance, p < 0.05
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ture. Finally, prospective trial patients had their embryos split between three treat-
ment groups using sibling embryos [9]. Embryos were cultured individually or in 
groups where embryos were physically separated but able to exchange media, or in 
groups without physical separation. Importantly, all treatments were included 
within the same culture dish to help control for variables. Group culture of embryos 
without physical separation resulted in greater rates of compaction on day 4 and 
blastocyst formation on day 5 compared to group culture with physical separation 
and embryos cultured individually. Group culture yielded a trend toward higher live 
birth rate compared to individual culture. This indicates that extended group culture 
of embryos may be beneficial for human preimplantation embryo development and 
that physical contact or proximity of embryos seems to be an important factor.

9.3.5  �Culture Dishes

Various factors involved in group embryo culture can impact results, including 
volume of media and shape/size of the culture area. These factors can impact the 
ratio of media volume used to the number of embryos (embryo density) and 
embryo spacing. Importantly, these factors may be influenced by the type of cul-
ture dish utilized. The type of culture dish may impact heat exchange during 
embryo manipulations due to surface contact with the bottom of the dish. The type 
of culture dish may also be dictated by the type of incubator. Notably, new time-
lapse incubator systems have proprietary culture dishes, many of which promote 
single embryo culture or that are aimed at trying to utilize a beneficial microenvi-
ronment created by the culture area. The type of culture dish could therefore have 
an impact on embryo quality and outcomes [97–99]. Currently, there is no consen-
sus as to a superior type of culture dish or volume of media used for embryo 
culture.

Directly related to optimizing the culture system is an assurance that the cul-
ture dish, as well as other contact materials, is nontoxic. Contact material testing 
is one of the most important aspects of laboratory QC/QA and is paramount for 
improving embryo development. It is well documented that not all products, 
despite being packaged or sold as sterile, are inert in terms of the impact on 
embryo development [100, 101]. Thus, verification of material safety is required 
prior to clinical use. This is usually performed using a relevant bioassay, such as 
the mouse embryo assay (MEA) or the human sperm survival assay (HSSA), also 
known as the human sperm motility assay (HSMA). Comparisons and the merits 
of these two assays have been discussed elsewhere [102–108], and each can be 
useful in their own respect, with factors such as cost and availability warranting 
attention. Perhaps more importantly, the sensitivity of the bioassay is important, 
and approaches can be modified to increase this sensitivity to ensure that subtle 
material toxicity can be detected. Examples of approaches used to increase sensi-
tivity are use of the one-cell vs. the two-cell MEA, outbred vs. inbred vs. hybrid 
mouse strains, blastocyst cell counts vs. simple blastocyst formation, exclusion of 
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protein from media vs. protein inclusion, and use of a simple media vs. a more 
robust complex media [109–111]. Importantly, thresholds must be set for an assay 
to “pass,” and these thresholds should be set to ensure rigorous criteria. Each labo-
ratory can determine which assay and threshold suits their needs regarding sensi-
tivity and cost. A commonly used and often recommended sensitive assay includes 
using the one-cell MEA, noting time-appropriate embryo development with the 
rate of expanded or hatching blastocyst >70% at 96 h (4 days) of culture. Real-
time assessment of morphokinetics may also be useful in helping improve sensi-
tivity of the MEA [112].

9.3.6  �Culture Media

In trying to discern key components of the “optimal” embryo culture system, 
focus often immediately turns to culture media. Unquestionably, culture media 
plays a significant role in embryo development and quality and therefore, clinical 
outcomes. However, in terms of identifying or selecting the single “optimal” 
medium for use within IVF laboratories, this is likely a futile endeavor. As men-
tioned, numerous variables are present within the laboratory and can impact cul-
ture media performance [113]. Thus, the same medium can perform differently 
between laboratories. The inability to identity a single optimum media is reflected 
by examining the numerous studies in the literature comparing one medium 
against another [114]. Indeed, when examining prospective trials using sibling 
oocytes splits or patient randomization, comparison of different sequential media 
[115–121], as well as comparisons between single-step culture media and sequen-
tial media [122–127], many studies fail to identify a clearly superior approach or 
product. No trial exists comparing every available media against each other in a 
controlled fashion, which would be required to identify the superior medium. It 
is also unclear whether changing media at 48 or 72 h intervals or utilizing unin-
terrupted culture yields superior results with modern media formulations. 
Individual laboratories should perform their own trials/splits to determine which 
product and methodology performs most successfully under their specific condi-
tions. (see Table 9.3).

Modern human embryo culture media must contain some assortment of amino 
acids. Amino acids support numerous cellular processes, including acting as metab-
olites, osmolytes, antioxidants and buffers, and likely help alleviate stress in the 
embryo culture system [136]. Brief period of culture with no amino acids present 
can impair mouse embryo development [21]. While animal studies have given some 
insight [128, 129, 137], it is likely impossible to determine the optimal mixture and 
concentrations of specific amino acids for human embryo culture. Studies have 
identified glycine, taurine, and glutamine as important amino acids for human 
embryos [131–133]. If glutamine is present, modern embryo culture media should 
include the dipeptide form of the amino acid. Use of the stable dipeptide-glutamine 
helps avoid ammonium accumulation and the associated detrimental effects on 
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human embryo development and appears superior to glutamine [130, 134, 135, 
138]. No clear consensus exists regarding whether glycyl-glutamine or alanyl-
glutamine is the superior dipeptide for human embryo culture. Whether use of other 
dipeptide amino acids may be beneficial is unknown.

The pH of culture media should be monitored and used adhering to manufactur-
ers recommendations. As mentioned, CO2 concentrations should be adjusted to 
achieve the desired/recommended pH. No clear consensus exists as to the ideal pH 
for embryo culture, whether this be a single pH set point throughout culture or 
whether pH should change during embryo development.

9.3.7  �Protein

Protein supplementation to culture media can have a dramatic impact on embryo 
development and resulting outcomes. The macromolecule supplementation can act 
as a surfactant, nitrogen source to stabilize membranes, modulate physical microen-
vironment, act as a carrier molecule for other compounds, or even bind trace ele-
ments/toxins. A recent report even indicates that protein in culture media can impact 
human birth weight [139], though results of the study should be interpreted with 
caution due to lack of control over other system variables. Regardless, it is irrefutable 
that protein supplements are the ones least defined components of the culture system 
and thus are a large source of potential variation. For example, stabilizers/preserva-
tives, such as octanoic acid, used when making protein solutions, may be embryo-
toxic [140]. Additionally, as mentioned, other proteins, growth factors, and hormone 
“contaminants” may be present at varying levels in protein preparation [141–143]. 
Some clinical IVF media currently include growth factors, though limited data exists 
to support their purposeful use [144–146], and this remains a controversial topic 
[147]. Thus, to optimize performance of the culture system, specific lot numbers of 
protein should be screened for efficacy prior to clinical implementation.

Primary protein supplements used in clinical embryo culture media include human 
serum albumin (HSA), as well as complex protein supplements containing HSA and 
a combination of alpha and beta globulins [148, 149]. Recombinant albumin is also 
available, as well as a dextran-based macromolecular supplement. Data suggest that 
a complex protein supplement with globulins is superior to HSA for animal embryos 
[148, 150], human embryo development [151, 152], and even live birth [153]. This 
may be due to growth hormones and other components in the complex protein prod-
ucts [142]. Recombinant albumin gave comparable embryo development to HSA in 
a prospective randomized trial and may reduce variability in the culture system [154]. 
Optimal concentrations of protein are unknown, though 5% of albumin or 10% of 
complex protein products are commonly used and higher concentrations of up to 
20% of a globulin supplement may be beneficial in certain circumstances [155].

Care should be taken to ensure pH of the culture media is still within expected 
ranges after adding protein, as supplementation can cause pH to shift and may 
require adjustment of incubator CO2 levels.
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9.3.8  �Oil

Oil overlay is commonly used during embryo culture to prevent media evaporation, 
which can result in media osmolality increase and compromised embryo develop-
ment. Oil is required when using modern benchtop incubators with no humidifica-
tion. However, open culture, or culture without oil overlay, may also be used if 
humidification is present and sufficient volume of media is used. Similar to protein, 
despite improvements in refinement and testing, oil overlay products can differ sig-
nificantly due to contaminants and are a large source of variation within the culture 
system. Washing of oil with either water or culture media can help alleviate some 
toxicity concerns [156] and a good practice to ensure that all oil is washed. 
Additionally, proper storage is required to avoid peroxidation of oil, which can lead 
to embryo toxicity [156–159]. Recommendations often include keeping oil out of 
direct light and storing at 4 °C.

There are several oil products for embryo culture including paraffin oil and light 
mineral oil. Products are sold in plastic or glass bottles. There is no clear consensus 
on a superior oil type or packaging method. Regardless of the oil, testing using an 
approved bioassay is recommended prior to use.

9.4  �Conclusions

It is evident that there are numerous variables to consider when attempting to opti-
mize an embryo culture system. Interactions between variables can impact out-
comes. Thus, an “optimum” system may vary slightly from laboratory to laboratory. 
Key variables that appear consistent between high-performing culture systems 
include use of low-oxygen, proper incubator management to yield stable CO2/pH 
and temperature and proper quality control. Of course, even if a culture system is 
optimized, embryo selection remains a critically important factor to maximize out-
comes. In fact, if a system is optimized to maximize embryo development, then 
selection of embryos becomes even more difficult, as there are more “good quality” 
embryos to choose from. Embryo assessment, noting key morphological features or 
morphokinetic timings/selection algorithms, or use of embryo biopsy/CCS become 
very important.

With advances in technology, culture “systems” have been introduced which 
consist of advanced incubator systems with imaging technology, proprietary 
customized cultureware, and embryo selection algorithms. Even if selecting one of 
these systems, differing culture media and other variables, such as protein and oil, 
often vary. This is likely at least one reason why there appears to be difficulty in 
identifying a single embryo selection algorithm that is applicable between laborato-
ries. Regardless, existing data does not demonstrate that any of these emerging com-
mercial systems is superior to another or to more traditional methods of culturing 
embryos to the blastocyst stage [160–164].
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