## **Chapter 15 Overview of Molecular Basics**



**1. (a)** For T = 273 K and pressure 1 atmosphere, that is  $10^6$  dyne cm<sup>-2</sup> (760 mm of Hg), find the density, *n*, of an ideal gas in cm<sup>-3</sup>. Repeat for conditions in a molecular cloud, that is T = 10 K, pressure  $10^{-12}$  mm of Hg.

(b) For both sets of conditions, find the mean free path,  $\lambda$ , which is defined as  $1/(\sigma n)$ , and the mean time between collisions,  $\tau$ , which is  $1/(\sigma n v)$ , where v is the average velocity. In both cases, take  $\sigma = 10^{-16} \text{ cm}^{-3}$ . For the laboratory, take the average velocity to be 300 m s<sup>-1</sup>; for the molecular cloud, take the average velocity of H<sub>2</sub> as 0.2 km s<sup>-1</sup>.

(c) Suppose that the population of the upper level of a molecule decays in  $10^5$  s. How many collisions in both cases occur before a decay?

(d) For extinction we define the penetration depth,  $\lambda_v$ , in analogy with the mean free path. When  $\lambda_v = 1$  the light from a background star is reduced by a factor 0.3678. For a density of atoms n,  $\lambda_v$ , in cm, is  $2 \times 10^{21}/n$ . Calculate the value of  $\lambda_v$  for a molecular cloud and for standard laboratory conditions. The parameters for both are given in part (a) of this problem.

**2.** (a) The result of problem 2(c) of chapter 13 gives  $T_{\rm k} = 21.2 (m/m_{\rm H}) (\Delta V_{\rm t})^2$  where  $\Delta V_{\rm t}$  is the FWHP thermal width, i.e. there is no turbulence and the gas has a Maxwell–Boltzmann distribution. Apply this formula to the CO molecule (mass 28  $m_{\rm H}$ ) for a gas of temperature *T*. What is  $\Delta V_{\rm t}$  for  $T = 10 \,\text{K}$ ,  $T = 100 \,\text{K}$ ,  $T = 200 \,\text{K}$ ?

(b) The observed linewidth is  $3 \text{ km s}^{-1}$  in a dark cloud for which T = 10 K. What is the turbulent velocity width in such a cloud if the relation between the observed FWHP linewidth,  $\Delta V_{1/2}$ , the thermal linewidth,  $\Delta V_t$  and the turbulent linewidth  $\Delta V_{\text{turb}}$  is

$$\Delta V_{1/2}^2 = \Delta V_t^2 + \Delta V_{turb}^2 ?$$

**3.** The following expression is appropriate for the spontaneous decay between two rotational levels, (u, l) of a linear molecule:  $A_{ul} = 1.165 \times 10^{-11} \mu_0^2 v^3 (J+1)/(2J+3)$  where v is in GHz,  $\mu_0$  is in Debyes and J is the lower level in the transition from  $J + 1 \rightarrow J$ . Use this to estimate the Einstein A coefficient for a system with a dipole moment of 0.1 Debye for a transition from the J = 1 level to the J = 0 level at 115.271 GHz.

**4.** To determine whether a given level is populated, one frequently makes use of the concept of the "critical density",  $n^*$ , defined as:

$$A_{\rm ul} = n^* \langle \sigma v \rangle$$
.

where *u* is the quantum number of the upper rotational level, and *l* is that for the lower level. If we take  $\langle \sigma v \rangle$  to be  $10^{-10}$  cm<sup>3</sup> s<sup>-1</sup>, determine *n*<sup>\*</sup> from the following  $A_{\rm ul}$  coefficients

CS : 
$$A_{10} = 1.8 \times 10^{-6} \text{ s}^{-1}$$
  
CS :  $A_{21} = 2.2 \times 10^{-5} \text{ s}^{-1}$   
CO :  $A_{10} = 7.4 \times 10^{-8} \text{ s}^{-1}$ .

**5.** Suppose the effective radius  $r_e = 1.1 \times 10^{-8}$  cm and the reduced mass,  $m_r$ , of a perfectly rigid molecule is 10 atomic mass units, AMU (an AMU is 1/16 of the mass of a 16-oxygen atom; 1 AMU=  $1.660 \times 10^{-24}$  g), where  $\Theta = m_r r_e^2$ .

(a) Calculate the lowest four rotational frequencies and energies of the levels above the ground state. One needs a simplified version of Eq. 15.11 to 15.13 from 'Tools' for the rotational constant is

$$B_{\rm e} = \frac{\hbar}{4\pi \, \Theta_{\rm e}} \tag{15.1}$$

The energy of level J is:

$$E_{\rm rot} = W(J) = \frac{\hbar^2}{2\,\Theta_{\rm e}} \,J(J+1) - hD \left[J(J+1)\right]^2\,. \tag{15.2}$$

and the frequency is the difference between the energy of level J + 1 and J divided by the Planck constant:

$$\nu(J) = \frac{1}{h} \left[ W(J+1) - W(J) \right] = 2 B_{\rm e} \left[ (J+1) - 4D(J+1)^3 \right]$$
(15.3)

(b) Repeat if the reduced mass is (2/3) AMU with a separation of  $0.75 \times 10^{-8}$  cm; this is appropriate for the HD molecule. The HD molecule has a dipole moment  $\mu_0 = 10^{-4}$  Debye, caused by the fact that the center of mass is not coincident with

| Chemical <sup>a</sup> formula | Molecule name   | Transition | v/GHz <sup>b</sup> | $E_u/K^c$ | $A_{ij}/s^{-1^d}$    |
|-------------------------------|-----------------|------------|--------------------|-----------|----------------------|
| C <sup>18</sup> O             | Carbon monoxide | J = 1 - 0  | 109.782182         | 5.3       | $6.5 \times 10^{-8}$ |
| <sup>13</sup> CO              | Carbon monoxide | J = 1 - 0  | 110.201370         | 5.3       | $6.5 \times 10^{-8}$ |
| СО                            | Carbon monoxide | J = 1 - 0  | 115.271203         | 5.5       | $7.4 \times 10^{-8}$ |
| C <sup>18</sup> O             | Carbon monoxide | J = 2 - 1  | 219.560319         | 15.9      | $6.2 \times 10^{-7}$ |
| <sup>13</sup> CO              | Carbon monoxide | J = 2 - 1  | 220.398714         | 15.9      | $6.2 \times 10^{-7}$ |
| СО                            | Carbon monoxide | J = 2 - 1  | 230.538001         | 16.6      | $7.1 \times 10^{-7}$ |

Table 15.1 Parameters of the more commonly observed carbon monoxide lines (problem 6)

<sup>a</sup> If isotope not explicitly given, this is the most abundant variety, i.e., <sup>12</sup>C is C, <sup>16</sup>O is O, <sup>14</sup>N is N b From Lovas (1992, J. Chem. Phys. Ref. Data 21, 18)

c Energy above the ground state in Kelvins

d Spontaneous transition rate, i.e., the Einstein A coefficient

the center of charge. Take the expression for A(ul) from Problem 3 and apply to the J = 1 - 0 and J = 2 - 1 transitions of the HD molecule. (c) Find the "critical density",  $n^* \approx 10^{10} A(ul)$ .

**6.** The <sup>12</sup>C<sup>16</sup>O molecule has  $B_e = 57.6360$  GHz and  $D_e = 0.185$  MHz. Calculate the energies for the J = 1, 2, 3, 4, 5 levels and line frequencies for the J = 1 - 0, 2 - 1, 3 - 2, 4 - 3 and 5 - 4 transitions. Use the expression energy  $E(J)/h \approx B_e J(J+1) - D_e J^2(J+1)^2$  for the energy calculation. Check the results against the relevant parts of Table 16.1 in 'Tools', given here as Table 15.1.

7. Apply for J = 0, 1 the analysis in problem 6 to the linear molecule HC<sub>11</sub>N, which has  $B_e = 169.06295$  MHz and  $D_e = 0.24$  Hz. Estimate J for a transition near 20 GHz. What is the error if one neglects the distortion term?

**8.** In the following, we neglect the distortion term  $D_e$  and assume that the population is in LTE. The population in a given J level for a linear molecule is given by Eq. (15.33):

$$n(J)/n(\text{total}) = (2J+1)e^{B_0 J(J+1)/kT}/Z$$

where Z, the partition function, does not depend on J. Differentiate n(J) with respect to J to find the state which has the largest population for a fixed value of temperature, T. Calculate this for CO if T = 10 K and T = 100 K. Repeat for CS ( $B_0 = 24.584$  GHz) and HC<sub>11</sub>N, for T = 10 K.

9. Extend Eq. (15.33 in 'Tools'), which is:

$$N(J)/N(\text{total}) = \frac{(2J+1)}{Z} \exp\left[-\frac{h B_e J (J+1)}{kT}\right]$$

to include the optical depth relation Eq. (15.26), which is:

$$N_l = 1.95 \times 10^3 \frac{g_l v^2}{g_u A_{ul}} \int T_{\rm B} \, {\rm d}V$$

to obtain an estimate of which J level has the largest optical depth,  $\tau$ , in the case of emission for a linear molecule.

(a) Show that when the expression for the A coefficient for a linear molecule is inserted into Eq. (15.26 of 'Tools'), we have

$$N_{\rm I} = \frac{1.67 \times 10^{14}}{\mu_0^2 \, \nu [\rm GHz]} \times \frac{2J+1}{J+1} \, T_{\rm ex} \, \tau \, \Delta \, v \, ,$$

where  $\mu$  is in Debyes and v is in km s<sup>-1</sup>.

(b) Use the above expression to estimate whether the J for the maximum  $T_{\rm MB} = T_{\rm ex} \tau$  is larger or smaller than the J obtained in Problem 8.

10. Find the ratio of the intensities of the J = 2 - 1 to J = 1 - 0 transitions for a linear molecule if the excitation temperature of the system, T, is very large compared to the energy of the J = 2 level above the ground state, and both lines are optically thin. What is the ratio if both are optically thick? Use the last equation in the statement of Problem 9 of this Chapter.

**11.** The ammonia molecule, NH<sub>3</sub>, is an oblate symmetric top. For ammonia, B = 298 GHz, C = 189 GHz. If  $T \gg B$ , C, the value of Z, the partition function, with C and B in GHz, is  $Z = 168.7\sqrt{(T^3)/(B^2 A)}$ .

(a) Evaluate Z for NH<sub>3</sub> for T = 50 K, 100 K, 200 K, 300 K. For this approximation to be valid, what is a lower limit to the value of T?

(b) The (3,3) levels are 120 K above ground. Use the partition function and

$$n(J)/n(\text{total}) = (2J+1)e^{120/T}/Z$$

to calculate the ratio of the total population to that in the (3,3) levels. (c) If only metastable (J = K) levels are populated, use the definition of Z as a sum over all populated states, and

$$n(J)/n(\text{total}) = (2J+1)e^{(BJ(J+1)+K^2(C-B))/kT}/Z$$

and the *B* and *C* values for  $NH_3$  to obtain the ratio between the population of the (3,3) levels and all metastable levels.

**12.** The selection rules for dipole transitions of the doubly deuterated isotopomer  $D_2CO$  differ from that of  $H_2CO$  since  $D_2CO$  has two Bosons, so the symmetry of the total wavefunction must be symmetric. Determine these rules following the procedure in Sect. 15.6.2.