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Preface

This book of problems and solutions is an update of the first edition. The largest
changes are (1) the addition of new problems, (2) the elimination of problems no
longer relevant, and (3) a rearrangement to follow the exact order and numbering of
the problem sets at the end of corresponding chapters in Tools of Radio Astronomy,
6th edition (hereafter ‘Tools’) by Wilson, Rohlfs and Hüttemeister (Springer-Verlag,
2013). We have tried to make this book as self-contained as possible. Thus, we have
included figures, equations, and tables from ‘Tools’ that are directly relevant to the
problems. In addition, we have added a few additional, necessary explanations in
the formulation of the problems and the solutions. Usually, we have used a notation
with lower case names for chapters and problem which are in this volume, but upper
case when these are in ‘Tools’.

In cases where the problems are more complex than usual, these have been
divided into subsets. The problems themselves are of two types:

• Exercises which are a direct application of the material presented in the text. If
use of specific equations in ‘Tools’ is needed, these are given.

• An extension of material or an alternative presentation of material in ‘Tools’. This
type of problem is identified by an asterisk (*). The number of such problems has
been reduced to a minimum.

We have made use of a number of sources dealing with the interstellar medium,
electromagnetic theory, and modern physics. Where applicable, we quote relevant
original literature citations. We have not given general references for each chapter.
These are to be found in ‘Tools’.

In the following, we summarize the rationale for this book, taken from the preface
of our first edition:

“We believe that a familiarity with orders of magnitude, typical estimates, and
the basic understanding which one needs in observational radio astronomy can be
learned only by practice; this means problem solving. Since there are only a few
solved problems in ‘Tools’ itself, we decided to compose a set of ∼200 problems
(many multi-part) which apply the principles set forth in ‘Tools’. In addition, we
wanted to give the flavor of the current state of radio astronomy, showing what

v



vi Preface

is possible. We have tried to select examples from all branches of radio astronomy.
This is done to achieve a ‘practice-oriented’ presentation which makes use of current
instrumental parameters and our present-day understanding of source parameters.
These problems can be considered as astronomical applications of the basic physics
encountered at the level of final-year undergraduates.”

A recurring problem is the choice of units. Astronomers prefer the CGS system,
whereas practical work is greatly facilitated by using MKS units such as volts and
amperes. We have tried to use the simplest approach in all situations. We give the
most often used quantities in the following table. For a specific problem, we give
the quantity needed for that problem in the problem itself.

The relation of CGS and other systems of units can be found in the website: NRL
Plasma Formulary.

Bonn, Germany Thomas L. Wilson
Bochum, Germany Susanne Hüttemeister
February 2018



Some Relevant Physical Constants in CGS Units

Quantity Symbol Value
Velocity of light c 2.99792 × 1010 cm s−1

Gravitational constant G 6.67 × 10−8 dyne cm2 g−1

Planck’s constant h 6.626 × 10−27 erg s
Charge of the electron e 4.80325 × 10−10 electrostatic units (esu)
Mass of the electron me 9.11 × 10−28 g
Mass of the proton mp 1.672 × 10−24 g
Boltzmann’s constant k 1.380 × 10−16 erg degree−1

Avogadro’s number NA 6.022 × 1023 mole−1

One electron volt eV 1.602 × 10−12 erg
Stefan–Boltzmann constant σ 1.80 × 10−5 erg cm−2 degree−4 s−1

Bohr radius a0 5.29 × 10−9 cm
Debye D 2.53 × 10−18 esu cm

Some Relevant Astronomical Constants

Quantity Symbol Value
Astronomical unit AU 1.45979 × 1013 cm
Parsec pc 3.085678 × 1018 cm
Light year lt yr 9.460530 × 1017 cm
Mass of the Sun M� 1.989 × 1033 g
Radius of the Sun R� 6.9599 × 1010 cm
Luminosity of the Sun L� 3.826 × 1033 erg s−1

Mass of the earth Me 5.976 × 1027 g
Radius of the Earth (equator) Re 6378.164 km
Radius of Jupiter RJ 71.492 km
Mass of the Galaxy MMilky Way ∼1011 M�
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Chapter 1
Radio Astronomical Fundamentals

1. If the average electron density in the interstellar medium (ISM) is 0.03 cm−3,
what is the lowest frequency of electromagnetic radiation which one can receive due
to the effect of this plasma? Compare this to the ionospheric plasma cutoff frequency
if the electron density, Ne, in the ionosphere is ∼105 cm−3. Use the equation on
page 4 of ‘Tools’, which is: νp = 8.97 × (0.03)0.5.

2. (a) A researcher measures radio emission at a frequency of 250 kHz and finds that
the emission is present over the whole sky with a brightness temperature of 250 K.
Could the origin of this radiation be the earth’s ionosphere?
(b) Assume that the source fills the entire visible sky, taken to be a half hemisphere.
What is the power received by an antenna with A =1 m2 collecting area in a B =
1 kHz bandwidth?

3. The downward-pointing radar satellite, Cloudsat, is moving in a polar orbit at an
altitude of 500 km. The operating frequency is 94 GHz. Assume that the power is
radiated over a hemisphere. The peak power will be 1500 W, uniformly distributed
over a bandwidth of 1 GHz. If no power is absorbed in the earth’s atmosphere, what
is the peak flux density of this satellite when it is directly overhead? This radar is
transmitting 3% of the time (duty cycle). What is the average power radiated and
the corresponding flux density?

4. A unit commonly used in astronomy is flux density, Sν , the Jansky (Jy). One Jy is
10−26 W m−2 Hz−1. Calculate the flux density, in Jy, of a microwave oven with an
output of 1 kW at a distance of 10 m if the power is radiated over all angles and is
uniformly emitted over a bandwidth of 1 MHz.

5. (a) What is the flux density, Sν , of a source which radiates a power of 1 kW in
the microwave frequency band uniformly from 2.6 to 2.9 GHz, when placed at the
distance of the Moon (3.84×105 km)? Repeat for an identical source if the radiation
is in the optical frequency band, from 3 × 1014 to 8 × 1014 Hz.

© Springer International Publishing AG, part of Springer Nature 2018
T. L. Wilson, S. Hüttemeister, Tools of Radio Astronomy – Problems
and Solutions, Astronomy and Astrophysics Library,
https://doi.org/10.1007/978-3-319-90820-5_1
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2 1 Radio Astronomical Fundamentals

(b) If we assume that the number of photons is uniform over the band, what is the
average energy, E = hν, of a photon? Use this average photon energy and the power
to determine N , the number of photons. How many photons pass through a 1 m2 area
in one second in the optical and radio frequency bands?

6. In the near future there may be an anti-collision radar installed on automobiles. It
will operate at 78.5 GHz. If the bandwidth is 10 MHz, and at a distance of 3 m, the
power per area is 10−9 W m−2. Assume the power level is uniform over the entire
bandwidth of 10 MHz. What is the flux density of this radar at 1 km distance? A
typical large radio telescope can measure to the mJy (=10−29 W m−2 Hz−1) level.
At what distance will such radars disturb such radio astronomy measurements?

7. If the intensity of the Sun peaks in the optical range, at a frequency of about
3.4 × 1014 Hz, what is the temperature of the Sun? Use the Wien displacement law

Eq. (1.25) of ‘Tools’, which is:
(

νmax
GHz = 58.789 T

K

)
. If all of the power is emitted

only between 3 and 4× 1014 Hz, how many photons per cm2 arrive at the earth when
the Sun is directly overhead? What is the power received on earth per cm2? A value
for the solar power is 135 mW per cm2. How does this compare to your calculation?

Problems number 8 and 9 were shifted to a later chapter, so the next problem in this
chapter is number 10.

10. Show that Eq. (1.34), which is,

(
Sν

Jy

)
= 2.65 TB

(
θ

arcmin

)2 (
λ

cm

)−2

can be obtained from Eq. (1.33), which is, Sν = 2 k ν2

c2 TB �� Extend the relation to
arc seconds, wavelength in millimeters and milli Jy, to obtain:

(
Sν

mJy

)
= 73.6 TB

(
θ

arcsec

)2 (
λ

mm

)−2

11. Suppose the maximum observed temperature of the galaxy is 105 K at 14.6 m
wavelength. If this is measured with a 24◦ gaussian beam, what is the flux density
contained within the telescope beam? If the bandwidth used is 100 kHz and the
collecting area is 800 m2, what is the received power?

12. The discrete source Cassiopeia A has an observed peak brightness temperature
of 7 × 104 K at 20 MHz. If the antenna has a beamsize of 24◦, what is the flux
density? The source has a size of 4 arcmin. Using the approximate relation

Tsource · θ2
source = Tobserved · θ2

beam

What is the actual source temperature, Tsource? This is proven mathematically in
problem 6 of chapter 8.



1 Radio Astronomical Fundamentals 3

13∗. In Leighton (‘Principles of Modern Physics’, 1959, Appendix B, p. 725), the
units for the Planck function, B, are mixed, with the wavelength, λ, in micrometers,
μm, power in Watts, area in centimeters and angles in steradians. Show that when
physical constants are inserted in Eq. (1.22) from ‘Tools’:

Bλ(T ) = 2hc2

λ5

1

ehc/kλT − 1

the result is:
(

Bλ(T)

W cm−2 μ−1 sterad−1

)
= 1.19 · 104 [

λ(μm)
]−5 1

ey − 1

where y = 1.44 · 104/λ(μm) T. Another form of this relation, that could be used for
infrared spectroscopy, is

∫ (
Bν(T)

ergs s−1 cm−2 sterad−1

)
= 4.9 · 10−17 [ν(GHz)]4 � V(km s−1)

1

ex − 1

where x = 4.84 · 10−2 ν(GHz)/T. Show that in the Rayleigh-Jeans limit, this takes
on the simpler form:

∫ (
Bν(T)

ergs s−1 cm−2 sterad−1

)
= 10−15 (ν(GHz))3 T � V(km s−1)

14. Insert values of physical constants in Eq. (1.13) of ‘Tools’, which is,

Bν (T) = 2hν3

c2

1

ehν/kT − 1

to obtain:
(

Bν

Jy sterad−1

)
= 1.47 × 103 ν(GHz)3 1

ex − 1

where x = hν/kT = 4.81 · 10−2 ν(GHz)/T.

15∗. If Jupiter has TB = 150 K, with θ ≈ 40′′, what is Sν at 1.4 GHz? At 115 GHz?
Repeat for the HII region Orion A, with θ = 2.5′, with TB = 330 K at 4.8 GHz, and
TB = 24 K at 23 GHz. Use the result of problem 10 (also Eq. (1.33) of ‘Tools’) of
this chapter.



4 1 Radio Astronomical Fundamentals

16. Show that the solid angle in steradians for a Jupiter-like planet (in an extrasolar
system) with a radius in terms of RJ (where RJ=71,492 km) at a distance D, in
parsecs, is:

�� = 1.7 · 10−17 ·
(

R(RJ)

D(pc)

)2

Using the result given in problem 10 show that the flux density relation is:

Sν(Jy) = 2.6 · 10−14 ν(GHz)3
(

1

ex − 1

)
·
(

R(RJ)

D(pc)

)2

where x is

x = 4.81 · 10−2 ν(GHz)/T

Estimate the detectability of a “Hot Jupiter”, that is, a Jupiter in the formation
process, using Eq. (1.1), if such an object has T=2500 K, R=30 RJ (see Wolf and
D’Angelo 2005 Ap. J. 619, 1114). For D=20 parsecs and ν=345 GHz or λ =
0.87 mm, show that Sν=36 μ Jy.

17. Show that the flux density of a solar-like star with a radius R� is given by:

Sν(Jy) = 2.5 · 10−12 ν(GHz)3 1

ex − 1
·
(

R(R�)

D(pc)

)2

where x is as given in the last problem. Show that if we use R = R�, D = 20 pc
and T=5700 K, the flux density at λ = 0.8 mm is Sν = 35 mJy. If, for an O star,
these values are T=4.1 105 K, R = 18.2 R�, and if Sν(Jy) = 10−3, for a detection,
what is this distance in pc?

18. For Fig. 1.6 from ‘Tools’ (here figure 1.1), determine the frequency that
corresponds to the peak of 150 K radiation from Jupiter. At three times this
frequency, determine the intensity of the Rayleigh-Jeans and Planck expressions.
For one tenth of the peak frequency, determine these values and the prediction from
the Wien Law (see problem 7). Often the Planck temperature scale is used in radio
studies of the planets. The 2.73 background radiation follows the Planck relation.
Show that the peak occurs at 160 GHz. Use Eq. (1.32) from ‘Tools’, which is

TB = c2

2k ν2 Iν��, to determine the temperature in the Rayleigh-Jeans approximation
at 115 GHz. [Hint: use δΩ = 4π]

19. A cable has an optical depth, τ , of 0.1 and a temperature of T = 300 K. A signal
of peak temperature Tb(0)=1 K is connected to the input of this cable. Use Eq. (1.37)
in ‘Tools’, which is Tb(s) = Tb(0) + T (1 − e−τ ) to analyze this situation. What is
Tb(s), the temperature of the output of the cable? Repeat the problem for T = 100 K.
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Fig. 1.1 This is Fig. 1.6 in ‘Tools’. This is a plot of Planck spectra for black bodies of different
temperatures versus wavelength and frequency (for problem 18)

What is the signal-to-noise ratio for these two cases, using signal = 1 K, and noise
from the cable contribution?

20. A signal passes through two cables with the same optical depth, τ . These have
temperatures T1 and T2, with T1 < T2. Which cable should be connected first to
obtain the lowest output power from this arrangement?

21. Eq. (1.43) of ‘Tools’, namely, P = k T Δν, describes the power radiated in
one dimension. If a microwave oscillator delivers 1 mW of power uniformly over
a bandwidth of 1 Hz, what is the equivalent temperature T ? Since the physical
temperature of such an oscillator is ∼300 K, this is an example of a non-thermal
process.
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22∗. Eq. (1.40) is given by:

Tb0 = (1 − r)T0 + rTs

Using this relation, determine the noise contribution of a room temperature reflector
with an r value of 0.9 for 100, 1000 and 104 GHz. Discuss the implication for
infrared telescopes. Why is it better to cool such telescopes?



Chapter 2
Electromagnetic Wave Propagation
Fundamentals

1. There is a proposal to transmit messages to mobile telephones in large U.S. cities
from a transmitter suspended below a balloon at an altitude of 40 km. Suppose the
city in question has a diameter of 40 km. What is the solid angle to be illuminated?
Suppose mobile telephones require an electric field strength, E, of 200 μV per meter.
If one uses S = E2/R with R = 50 �, what is the E field at the transmitter? How
much power must be transmitted? At what distance from the transmitter would the
microwave radiation reach the danger level, 10 mW cm−2?

2. Radiation from an astronomical source at a distance of 1.88 kpc, (1 pc=3.08 ×
1018 cm) has a flux density of 103 Jy over a frequency band of 600 Hz. If it is
isotropic, what is the power radiated? Suppose the source size is 1 milli arc second
(see Eq. (1.34) given in problem 10 of chapter 1). What is the value of TB?

3. Suppose that vphase = c√
1−(λ0/λc)2

and that vphase × vgroup = c2 What is vgroup?

Evaluate both of these quantities for λ0 = 1
2 λc.

4. There is a 1 D wave packet. At time t=0, the amplitudes are distributed as
a(k) = a0 exp(−k2/(Δk)2), where a0 and Δk are constant. From the use of Fourier
transform relations in Appendix A, determine the product of the width of the wave
packet, Δk, and the width in time, Δt .

5. Repeat problem 4 with a(k) = a0 exp(−(k − k0)
2/(Δk)2). Repeat for a(k) = a0

for k1 < k < k2, otherwise a(k) = 0.

6. Assume that pulsars emit narrow periodic pulses at all frequencies simultane-
ously. Differentiate Eq. (2.67), which is,

τD = L

c
+ e2

2πc me

1

ν2

L∫

0

N(l) dl

© Springer International Publishing AG, part of Springer Nature 2018
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8 2 Electromagnetic Wave Propagation Fundamentals

to show that a narrow pulse (width of order ∼10−6 s) will traverse the radio spectrum
at a rate, in MHz s−1, of ν̇ = 1.2 × 10−4 (DM)−1 ν [MHz]3.

7. (a) Show that using a receiver bandwidth B will lead to the smearing of a very
narrow pulse, which passes through the ISM with dispersion measure DM, to a
width Δt = 8.3 × 103 DM [ν (MHz)]−3 B s.
(b) Show that the ionosphere (electron density 105 cm−3, height 20 km) has little
influence on the pulse shape at 100 MHz.

8. (a) Show that the smearing of a short pulse, Δt , in milli seconds per MHz of
receiver bandwidth, is (202/νMHz)

3 DM.
(b) If a pulsar is at a distance of 5 kpc, and the average electron density is 0.05 cm−3,
find the smearing at 400 MHz. Repeat for 800 MHz.

9. Suppose you would like to detect a pulsar located at the center of our Galaxy.
The pulsar may be behind a cloud of ionized gas of size 10 pc, and electron density
103 cm−3. Calculate the dispersion measure, DM. What is the bandwidth limit if the
observing frequency is 1 GHz, and the pulsar frequency is 30 Hz?

10. A typical value for DM is 30 cm−3 pc, which is equivalent to an electron column
density of 1020 cm−2. For frequencies of 400 MHz and 1000 MHz, use Eq. (2.71),
which is,

ΔτD

μs
= 4.148 × 109

[
DM

cm−3 pc

] [
1(

ν1
MHz

)2 − 1(
ν2

MHz

)2

]

Use this to predict how much a pulse will be delayed relative to a pulse at an
infinitely high frequency.

11. To resolve a pulse feature with a width of 0.1 μs at a received frequency of
1000 MHz and DM = 30 cm−3 pc, what is the maximum receiver bandwidth? For
this, one needs Eq. (2.73): bMHz = 1.205 × 10−4 1

DM ν3(MHz) × τs, where b is the
bandwidth.

12. In Fig. 2.2 of ‘Tools’, reproduced here as fig. 2.1, at about the 10% level,
the pulse width is 10 ms. What bandwidth is needed to resolve this pulse for a
DM=295 cm−3 pc?
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Fig. 2.1 This is Fig. 2.2 in ‘Tools’. It is referred to in problem 12. The diagram shows pulse arrival
times at frequencies from 1.24 to 1.5 GHz. The source is the pulsar B1356-60. The single pulse
shown at the bottom has been coherently added from single pulses. It has a period of 128 ms. The
Dispersion Measure, DM, is 295 cm−3 pc



Chapter 3
Wave Polarization

1. In optical astronomy, the convention for circular polarization is opposite to that
used in radio astronomy, as used in this chapter. The difference is contained in the
convention of the direction in which the wave is rotating. In the optical case, right-
handed circular polarization has sin δ < 0. Make use of this change to interpret the
sense of rotation of right-handed circular polarization (contrast with the description
in the caption of Fig. 3.3 of ‘Tools’, given here as figure 3.1).
For this and the following problems, you may need the Stokes parameters, as given
in Eq. (3.39) of ‘Tools’. These are:

S0 = I = E2
1 + E2

2

S1 = Q = E2
1 − E2

2

S2 = U = 2E1 E2 cos δ

S3 = V = 2E1 E2 sin δ

2. A source is 100% linearly polarized in the north–south direction. Express this in

terms of Stokes parameters. Use the equations given in the statement of problem 1,
above.

3. If the degree of polarization is 10% in Eq. (3.55), namely,

p =
√

S2
1 + S2

2 + S3
3

S0

© Springer International Publishing AG, part of Springer Nature 2018
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with S3=0, S1=S2 in Eq. (3.53). In another form, in contrast to problem 2 of this
chapter, this is,

S0 = I = I (0◦, 0) + I (90◦, 0)

S1 = Q = I (0◦, 0) − I (90◦, 0)

S2 = U = I (45◦, 0) − I (135◦, 0)

S3 = V = I (45◦, π
2 ) − I (135◦, π

2 )

what is the state of polarization?

4. Intense spectral line emission at 18 cm wavelength is caused by maser action of
the OH molecule. At certain frequencies, such emission shows nearly 100% left
circular polarization, but no linear polarization. Express this in terms of Stokes
parameters.

5. In Fig. 3.3 of ‘Tools’, given here as figure 3.1, if we reverse the radio astronomical
convention, so that if a wave is receeding from us, it is counterclockwise, what is
the sense of polarization? Is the wave right-hand circular or left-hand circular? Note
that this is the optical definition, opposite to that in radio astronomy.

Fig. 3.1 This is Fig. 3.3 in ‘Tools’. It shows Stokes parameters for polarization and the Poincaré
sphere. Taking the angles 2ψ and 2χ as angles in a polar coordinate system, each point on the
surface of the resulting sphere corresponds to a unique state of polarization. The positions on the
equator (2χ = 0) correspond to linear polarization, those at the northern latitudes (2χ > 0)

contain right-handed circular polarization, while those on the southern hemisphere contain left-
handed. If we orient the (x, y) coordinate system parallel to Q and U , the linear polarization
of the waves are oriented as indicated. A simple rule-of-thumb is that for an approaching wave
counterclockwise is right-hand circular polarization. This is the radio astronomy convention. Note
that this definition is the opposite of that used in the optical
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6. Determine the upper limit of the angle through which a linearly polarized
electromagnetic wave is rotated when it traverses the ionosphere. Use Eq. (3.70)

in ‘Tools’, which is: Δψ
rad = 8.1 × 105

(
λ
m

)2
L/pc∫

0

(
B‖

Gauss

) (
Ne

cm−3

)
d
(

z
pc

)
. First, one

must calculate the rotation measure, RM. This is given Eq. (3.70).

(a) Find RM using Eq. (3.71) of ‘Tools’): RM
rad = 8.1 × 105

L/pc∫
0

(
B‖

Gauss

) (
Ne

cm−3

)

d
(

z
pc

)
with the following parameters: an ionospheric depth of 200 km, an average

electron density of 105 cm−3 and a magnetic field strength (assumed to be parallel
to the direction of wave propagation) of 1 G.
(b) Carry out the calculation for the Faraday rotation, Δψ , for frequencies of
100 MHz, 1 and 10 GHz.
(c) What is the effect if the magnetic field direction is perpendicular to the direction
of propagation? What is the effect on circularly polarized electromagnetic waves?
(d) Repeat for the conditions which hold in the solar system: the average charged
particle density in the solar system is 5 cm−3, the magnetic field 5 μG and the
average path 10 AU (=1.46 × 1014 cm). What is the maximum amount of Faraday
rotation of an electromagnetic wave of frequency 100 MHz, 1 GHz? Must radio
astronomical results be corrected for this?

7. A 100% linearly polarized interstellar source is 3 kpc away. The average electron
density in the direction of this source is 0.03 cm−3. The magnetic field along the
line-of-sight direction, B‖, is 3 μG. What is the change in the angle of polarization
at 100 MHz, at 1 GHz?

8. A right hand circularly polarized electromagnetic wave is sent perpendicular to a
perfectly conducting metallic flat surface. The electromagnetic energy must be zero
inside this conductor.
(a) Use a qualitative argument to show that the sense of the polarization of the
reflected wave is opposite to that of the incoming wave.
(b) What is the effect of reflection on a linearly polarized signal?

9. If the DM for a given pulsar is 50, and the value of RM is 1.2 × 102, what is the
value of the average line-of-sight magnetic field? If the magnetic field perpendicular
to the line of sight has the same strength, what is the total magnetic field.

10. Consider a quasi-monochromatic wave with Δν/ν̄ = 0.1 and ν = ν0, a constant.
Use Eq. (3.41), given here as:

V (r)(t) =
∞∫

0

a(ν) cos[φ(ν) − 2πνt] dν .

with a(ν)=a0, a constant, and φ(ν̄ +μ) = φ0 likewise a constant. With these values,
calculate A(t). This is an idealization, however is a commonly used approximation
to describe wide band signals limited by narrow filters.
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Fig. 3.2 The direction of the rotation axis and the direction of rotation of Jupiter are shown. The
direction of the magnetic field, B, is shown as thin lines

11. Repeat problem 5, chapter 2, for the function

a(ν) = a0e

(
− (ν−ν0)

�ν

)2

Show that Δν Δt=1.

12. The planet Jupiter has a dipole magnetic field, B as shown in Fig. 3.2. Electrons
trapped in this field move in circular orbits perpendicular to B. Describe qualitatively
the polarization measured with a radio telescope beam which is small compared to
all dimensions.



Chapter 4
Signal Processing and Receivers: Theory

1. The Gaussian probability distribution function with mean m is

p(x) = 1

σ
√

2π
e−(x−m)2/2σ 2

.

(a) Show that
∫ +∞
−∞ p(x)dx = 1. If the first moment, or mean value m, is

m = 〈x〉 =
∫ +∞

−∞
xp(x)dx

and the second moment is

〈
x2

〉
=

∫ +∞

−∞
x2p(x)dx ,

(b) find m and σ , the RMS standard deviation, where σ = 〈
x2

〉 − 〈x〉2. The third
and fourth moments are defined in analogy with the definitions above. Determine
the third and fourth moments of the Gaussian distribution.
(c) The relation between

〈
x2

〉
and

〈
x4

〉
has been used to study the noise statistics for

very intense narrow band emission from an astronomical source at 18 cm (see Evans
et al. 1972 Phys. Rev. A6, 1643; in addition this method has been used to eliminate
interference encountered in passive satellite measurements, that is, ‘kurtosis’). If
the noise input has zero mean, and if the voltages

〈
v2

〉
and

〈
v4

〉
are compared, what

would you expect the relation to be for a Gaussian distribution of noise?

2. For an input

v(t) = A sin 2πνt

© Springer International Publishing AG, part of Springer Nature 2018
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calculate the Fourier Transform (FT), autocorrelation function and power spectrum.
Note that this function extends to negative times. Repeat the calculation for

v(t) = A cos 2πνt .

3.Calculate the power spectrum, Sν , for the sampling function v(t) = A for −τ/2 <

t < τ /2, otherwise v(t) = 0, by taking the Fourier transform to obtain V (ν) and
then squaring this. Next, form the autocorrelation of this function, and then FT to
determine the power spectrum. Show that these two methods are equivalent.

4. Repeat the analysis in Problem 3, but shifting this function by a time +τ /2: that
is, v(t) = A for 0 < t < τ , otherwise v(t) = 0. The FT shift theorem is given in
Eq. (B5) in Appendix A:

f (x − a) ↔ e−i2πa s F (s) .

Show that the result of this problem can be obtained from the result of Problem 3
by applying the shift theorem. What is the value of the shift constant, a?

5. Convolve the function f1(t), on the right side of figure 4.1 (also Fig. 4.10 in
‘Tools’) with itself, graphically. Show four steps in the relative offset τ and use
symmetry to complete the calculation.

6. This problem refers to figure 4.2 (this is Fig. 4.5 in ‘Tools’). Convolve the ‘picket
fence’ function, in part (c) of that Figure with the function in part (a) graphically,
in the frequency domain. That is, convolve part (b) with part (d). This is the
mathematical representation of sampling in the time domain. If the adjacent samples
overlap in the frequency domain, the results will be aliased. Show graphically that
aliasing occurs if the time sampling rate is halved, i.e. in frequency from ν0 = 1

T0
to

ν0 = 1
2T0

.

7. Repeat problem 4 for the function v(t) = A for τ < t < 2τ , and −2τ <

t < −τ , otherwise v(t) = 0. The result can be interpreted as the frequency
distribution calculated in Problem 5, modulated by cos 2πντ . This is an example of
the modulation property of Fourier transforms, in Appendix A, under ‘Modulation’,
namely,

f (x) cosx = 1

2
F(s − ν) + 1

2
F(s + ν) .

Fig. 4.1 This is Fig. 4.10 in
‘Tools’. The shape on the
right, f1(t), is used for the
graphical convolution in
problem 5
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Fig. 4.2 This is for problem 6. It is also Fig. 4.5 in ‘Tools’. This shows the time and frequency
distribution of sampled functions f(t): (a) The time variation, (b), the frequency behavior, (c) the
time behavior of a regularly spaced sampling function (referred to as a “picket fence” function),
(d) the frequency behavior of the “picket fence” function, (e) the time behavior of the sampled
function, and (f) the frequency behavior of the function sampled with a “picket fence”. The result
in (f) is low pass filtered to recover the input as shown in b. As can be seen from these plots, the
maximum frequency extent in (b) is smaller than the sampling rate, as shown in (d)

Table 4.1 Gaussian integrals used to determine noise statistics

σ Value outside the curve Value inside

1 0.3174 0.6826

2 0.0456 0.9544

3 0.0026 0.9974

4 0.0020 0.9980

8. Consider another aspect of the situation described in the last problem. We have
a function cos(2πνct) cos(2πνst), where νs = νc + Δ, where Δ � νc. Apply
the identity cos (x + y) = (1/2) [cos (x + y) + cos (x − y)]. Check whether the
modulation property of the Fourier transform applies.

9. Table 4.1 is a list of Gaussian integrals to determine the area within the boundary
of the curve at the σ , 2σ , 3σ and 4σ levels is given in Table 4.1 here: (This is
Table 4.2 in ‘Tools’).
(a) If you want to determine whether a feature is not noise at the 1% level, how
many standard deviations from the mean must this signal be?
(b) Suppose you want to detect a continuum signal of peak temperature 10−2 K
with a total power receiver with a system noise of Tsys=200 K, and a bandwidth,
Δν of 500 MHz. Assume that this system is perfectly stable, that is random noise
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is the only source of error. How long a time, τ must you integrate to obtain a 3σ

detection? You need the relation

ΔT

Tsys
= 1√

Δν τ

and the fact that 1σ = ΔT .
(c) For a spectral line with a total width of 10 kHz, use the same system, but using
a spectrometer which has a bandwidth equal to the linewidth. How long must one
integrate so that a detection is 99% certain if random noise is the only effect?
(d) If the spectrometer has 1000 channels, how many “false” emission lines, i.e.
noise peaks, will be found at the 1σ , 2σ , 3σ levels?
(e) Now suppose the spectral line could appear only as a positive deflection. How
does this change the probabilities? [Note that this assumption is not usually used to
argue for a detection, since a positive feature might overlap with a negative noise
spike.]

10∗. (a) On 2 days, labelled as 1 and 2, you have taken data which are represented
by Gaussian statistics. The mean values are x1 and x2, with σ1 and σ2. Assume that
the average is given by x̄ = f x1 + (1 − f )x2 and the corresponding σ̄ 2 = f 2σ 2

1 +
(1 − f )2σ 2

2 . Determine the value of f which gives the smallest σ̄ by differentiating
the relation for σ and setting the result equal to zero. Show that

x̄ =
(

σ 2
2

σ 2
1 + σ 2

2

)
x1 +

(
σ 2

1

σ 2
1 + σ 2

2

)
x2

and

σ̄ 2 =
(

σ 4
2

(σ 2
1 + σ 2

2 )2

)
σ 2

1 +
(

σ 4
1

(σ 2
1 + σ 2

2 )2

)
σ 2

2 .

(b) Use the relation σ 2 ∼1/(time) to show that the expression for x̄ reduces to the
result, x̄ = (1/(t1 + t2)) (t1x1 + t2x2).

11. Obtain Eq. (4.36) in ‘Tools’, given here:

F = S1/N1

S2/N2
= N2

G N1
= 1 + TR

T1

these variables are shown as figure 4.3 (and in Fig. 4.6 of ‘Tools’). Justify the
definition of the noise factor F in Eq. (4.36) based on the case of a noiseless

receiver, i.e. one with F = 1. Show that this definition is consistent with the
definition of receiver noise temperature

TR = (F − 1) × 290 K
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Fig. 4.3 A schematic diagram of a two port system needed for problem 12; this is also Fig. 4.6 of
‘Tools’. The receiver is represented as a box, with the input signal S1, and noise, N1, shown on the
left. On the right are the output signal S2 and noise N2, after amplification G. The system has an
intrinsic noise contribution TR. For a direct detection device, G=1

Fig. 4.4 This is needed for problem 12; it is also Fig. 4.7 of ‘Tools’. The figure shows the
components of a receiver

if a room-temperature load is connected to the receiver input. Suppose F = 2, what
is TR? Repeat for F = 1.2 and 1.5.

12∗. The analysis in Section 4.2.1 of ‘Tools’ is applied to a square law detector.
This analysis, taken from ‘Tools’, is given here. Modify this analysis, step for step,
to derive the response of a linear detector. The relevant receiver block diagram is
shown in Fig. 4.7 of ‘Tools’, shown here as figure 4.4. The relevant steps in this
analysis for a square law detector are:

P2 = v2
2 = σ 2 = k Tsys G Δ ν ,

where Δν is the receiver bandwidth, G is the gain, and Tsys is the total noise from the
input TA and the receiver TR. The output of the square law detector is v3: 〈v3〉 = 〈

v2
2

〉
.

After square-law detection we have

〈v3〉 =
〈
v2

2

〉
= σ 2 = kTsysG Δ ν .

The noise is the mean value and variance of 〈v3〉, for Gauss functions is:

〈
v2

3

〉
=

〈
v4

2

〉
= 3

〈
v2

2

〉

this is needed to determine
〈
σ 2

3

〉
. Then, from the definition of variance:

σ 2
3 =

〈
v2

3

〉
− 〈v3〉2
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〈
v2

3

〉
is the total noise power (= receiver plus input signal). Using the Nyquist

sampling rate, the averaged output, v4, is (1/N)Σv3 where N = 2Δν τ .
From v4 and σ 2

4 = σ 2
3 /N , the result is

σ4 = kΔ ν G (TA + TR)/
√

Δν τ

Use the calibration procedure to eliminate the term kGΔν. Apply this to a linear
detector.

ΔT

Tsys
= 1√

Δν τ

In this system, the output is taken to be the absolute value of the voltage input.
Assume that the signal is small compared to the receiver noise. Complete each
calculation as in the previous problem. The output of the linear detector is

v3 =
∫

|v2| exp(−v2
2/2σ 2

2 )dx ,

while the noise depends on 〈v3〉2 = 〈v2〉2 = σ 2.
To obtain the final result, one must make use of the relation (fig. 4.5).

ΔTRMS = σ4

(Δ 〈v4〉 /ΔTs)
.

13. The Y factor is used to determine receiver noise. Given that TL is 77 K and
TH = 290 K, show that the plot in Fig. 4.11, given here, correctly expresses the
relation between Trx and the Y factor.

Fig. 4.5 This is Fig. 4.11
from ‘Tools’. It is used in
problem 13. This is a plot of
receiver noise versus Y factor
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14. Suppose a receiver accepts inputs from two frequencies, νu and νl . The response
of the receiver is the same at these frequencies.
(a). If all gain and loss factors are equal, and the signal is present in both νu and νl ,
how does the value of TR change?
(b). Suppose the signal is present in νu only. Repeat part (a).
(c). Repeat (b) for the situation in which the response at νu is twice that at νl . What
is the value of TR?

15. Derive Eq. (4.57), which is:

τm = 1√
Δν γ1

.

from Eq. (4.56) of ‘Tools’:

ΔT

Tsys
= K

√
1

Δν τ
+

(
ΔG

G

)2

.

and the assumed fluctuations in receiver gain, G:

(
ΔG

G

)2

= γ0 + γ1τ ,

16. To detect a source one samples a large region of the sky. The receiver is perfectly
stable. If one has 10 samples at the position of the source, and 103 samples away
from the source. If this involves spectral lines, one can fit a curve to the off-source
data and subtract this from the on-source data. Justify the assertion the if the RMS
noise of the on-source data is N , the noise in the difference of on-source and off-
source is N

√
1 + 0.01.

17. What is the minimum receiver noise possible with a coherent receiver operating
at 115 GHz? At 1000 GHz? At 1014 Hz.

18. Derive the results for Δν and τ in Table C.1 of ‘Tools’, given here as table 4.2.
To carry out this evaluation, you need the definitions: a signal detectable if the mean
output increment is greater than or equal to the dispersion of z; i.e. if 〈Δz〉 >= σz.
Generally, the smoothing filter output power transfer function is only a few Hertz
wide.

Δz

〈z〉 =

√√√√√√√√√

2
∞∫

−∞
|G(ν)|2 dν

( ∞∫
−∞

G(ν) dν

)2

∞∫
−∞

W(ν) dν

W(0)
.
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Table 4.2 Equivalent bandwidth of some filters and time smoothing (problem 18)

Reception filter G(ν) Δν

Rectangular pass band
{

1 for ν0 − 1
2 Δ < |ν| < ν0 + 1

2 Δ

0 elsewhere

Δ

Single tuned circuit [1 + (|ν| − ν0)
2/Δ2]−1 2πΔ

Gaussian pass band exp[−(|ν| − ν0)
2/2Δ2] 2

√
πΔ

Smoothing filter W(ν) τ

Running mean over time T (πT ν)−2 sin2 πT ν T

Single RC circuit [1 + (2πRCν)2 ]−1 2RC

Rectangular pass band
{

1 for |ν| < ν0

0 for |ν| > ν0

1
2 ν0

Gaussian pass band exp
{−ν2/2ν2

0

} √
2πν0

The first term depends only on the predetector bandwidth of the receiver, while the
second term depends on the smoothing filter time constant. Thus defining bandwidth
as:

Δν = 1

2

( ∞∫
−∞

G(ν) dν

)2

∞∫
−∞

|G(ν)|2 dν

and the smoothing is

τ = W(0)
∞∫

−∞
W(ν) dν

Note that Δz ∝ ΔT and 〈z〉 ∝ Tsys, so we have:

ΔT

Tsys
= 1√

Δν τ



Chapter 5
Practical Receiver Systems

1. Determine the slope of the minimum receiver noise in Fig. 5.13 of ‘Tools’, given
here as figure 5.1.

2. Coherent and incoherent receivers are fundamentally different. However one
can determine the equivalent noise temperature of a coherent receiver Tn which
corresponds to the NEP of a bolometer. This can be determined by using the relation

NEP = 2kTn
√

Δν .

For Δν = 50 GHz, determine Tn for NEP = 10−16 W Hz−1/2. A bolometer receiver
system can detect a 1 mK source in 60 s at the 3σ level. The bandwidth is 100 GHz.
How long must one integrate to reach this RMS noise level with a coherent receiver
with a noise temperature of 50 K, and bandwidth 2 GHz?

3. In the millimeter and sub-millimeter range, the Y factor (see, e.g. problem 13 of
chapter 4) usually represents a double-sideband system response. See Fig. 4.11 of
‘Tools’, given as figure 4.5 in chapter 4. For spectral lines, one wants the single-
sideband receiver noise temperature. If the sideband gains are equal, what is the
relation of the Y factor for a single- and double-sideband system?

4. The definition of a decibel, db, is

db = 10 log

(
Poutput

Pinput

)
.

If a 30 db amplifier with a noise temperature of 4 K is followed by a mixer with a
noise temperature of 100 K, what is the percentage contribution of the mixer to the
noise temperature of the total if (see Eq. (5.17) in ‘Tools’, given below)

Tsys = Tstage 1 + Tstage 2/Gainstage 1
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Fig. 5.1 This is Fig. 5.13 from ‘Tools’. The receiver noise temperatures for coherent amplifier
systems compared to the temperatures from different astronomical sources and the atmosphere.
The atmospheric emission is based on a model of zenith emission for 0.4 mm of water vapor (plot
from B. Nikolic (Cambridge Univ.) from the “AM” program of S. Paine (Center for Astrophys.)).
This does not take into account the absorption corresponding to this emission. In the 1–26 GHz
range, the horizontal bars represent the noise temperatures of HEMT amplifiers. The shaded region
between 85 and 115.6 GHz is the receiver noise for the SEQUOIA array which is made up of
monolithic millimeter integrated circuits (MMIC), at Five College Radio Astronomy Observatory.
The meaning of the other symbols is given in the upper left of the diagram. For the SIS mixers,
we have used the ALMA specifications. These are single sideband mixers covering the frequency
range shown by the horizontal bars. The mixer noise temperatures given as double sideband (DSB)
values were converted to single sideband (SSB) temperatures by increasing the receiver noise by a
factor of 2. The ALMA mixer noise temperatures are SSB. The HEMT values are SSB

5. (a) In Fig. 5.5 of ‘Tools’, shown here as figure 5.2. In this figure, the upper
sideband (USB) frequency is 115 GHz, and the lower sideband frequency is
107 GHz. What is the intermediate frequency? What is the Local Oscillator (LO)
frequency?
(b) When observing with a double-sideband coherent receiver, an astronomical
spectral line might enter from either upper or lower sideband. To distinguish
between these two possibilities, one uses the following procedure. To decide
whether the line is actually in the upper or lower sideband, the observer increases
the local oscillator frequency by 100 kHz. The signal moves to lower frequency. Is
the spectral line from the upper or lower sideband?

6. The same situation as in Problem 5, but after the first mixer is a second mixer
with an LO frequency which is higher than the intermediate frequency of the first
mixer. The spectral line is known to be in the upper sideband. To eliminate unwanted
spectral lines, someone tells you to move the LO higher frequencies in steps of
100 kHz, and at the same time, move the next oscillator in the LO chain, LO2, to
lower frequencies by the same step. After repeating this procedure for 10 steps of
100 kHz, the result is added. Will this procedure eliminate spectral lines in the lower
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Fig. 5.2 This is Figure 5, Chapter 5 in ‘Tools’. Here it refers to problem 5. This is a sketch of the
frequencies shifted from the sky frequency (top) to the output (lower) of a double sideband mixer.
In this example, the input is at the sky frequencies for the Upper Side Band (USB) of 115 GHz,
and Lower Side Band (LSB) of 107 GHz while the output frequency is 4 GHz. The slanted boxes
represent the passbands; the direction of the slant in the boxes indicate the upper (higher) and
lower (lower) edge of the bandpass in frequency

Fig. 5.3 This is Figure 5.6 from ‘Tools’. This refers to problem 7. It is a sketch of the single
sideband mixer (SSB). The input signal, f (t), is divided into two equal parts. There are two
identical mixers located in an upper and lower branch of the sketch. The monochromatic LO
frequency from a central source, ωc, is shifted in phase by π /2 from the input to the output of
the mixer in the lower part of the sketch. In the lower branch, the phase of the input signal is
also shifted by π /2. After mixing the signals are added to produce the single sideband output. For
further details, see problem 7

sideband? If the unwanted lower sideband spectral line has a width of 100 kHz, by
how much is this line reduced in intensity?

7. In Fig. 5.6 of ‘Tools’, shown here as figure 5.3, we give the schematic of a single-
sideband mixer. In such a system, the image and signal bands are separated in the
output if the input is f (t) = cos ωst. Use an analysis for this input signal to show
that such a mixer is feasible. Repeat for f (t) = sin ωst .

8. The input power of a receiver can be 10−16 W, while the power at the output of a
receiver must be about a milli Watt. What must be the power amplification of such
a receiver? Express this in decibels. Suppose the gain stability of this receiver is
10−3 over 30 s. What is the change in the output power? Suppose that the system
noise is 100 K and the bandwidth is 1 GHz. This is used to measure a source with
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a peak temperature of 0.01 K. What is the ratio of the signal intensity to that of
gain fluctuations? The fluctuations can be reduced by periodic comparisons with a
reference source; how often should one switch the receiver between the signal and
a reference to stabilize the output power?

9. Laboratory measurements frequently make use of a data-taking method which
involves a modulated signal. The output is then measured synchronously with the
modulation rate in both frequency and phase. We can measure a weak input signal,
S = T (signal)e−τ , in the presence of noise, T (cable)(1−e−τ ), by modulating
the signal with a known frequency, f1. The output is superimposed on noise
background. What is the noise in the switched output? What is the signal-to-noise
ratio? How will the signal-to-noise ratio change with time if only random noise is
present?

10. This makes use of the equations in problem 15 of chapter 4. If the bandwidth of
a receiver is 500 MHz, how long must one integrate to reach an RMS noise which
is 0.1% of the system noise with a total power system? Repeat for a Dicke switched
system, and for a correlation system. Now assume that the receiver system has an
instability described by Eq. (4.56 in problem 15 of chapter 4). For a time dependence
(ΔG/G)2 = γ0 + γ1τ we take γ0 = 0, γ1 = 10−2 and K = 2. On what time scale
will the gain instabilities dominate uncertainties caused by receiver noise? If one
wants to have the noise decrease as 1/

√
t , what is the lowest frequency at which one

must switch the input signal against a comparison?

11. At 234 MHz, the minimum sky noise is ∼100 K. For use as a first stage amplifier
at 234 MHz should you buy an expensive receiver for use at a sky frequency of
234 MHz which has a noise temperature of 10 K, if a similar receiver has a noise
temperature of 50 K but costs 10% of the price of the lower-noise receiver? Explain
your decision by considering observational facts.

12. An all-sky continuum survey covering 41,252 square degrees, is carried out with
a 40′ (=0.44 square degrees) beam at 234 MHz. Three spatial samples are taken for
each beamwidth. These samples are used to image the sky at 234 MHz.
(a) Compare the sampling procedure to the Nyquist sampling rate using the example
of the sampling of sine or cosine waves. What is the total number of samples?
(b) Next, assume that the sky noise dominates the receiver noise. If the bandwidth
B is 10 MHz and the integration time is 10 s per position, what is the RMS noise as
a fraction of Tsource, the sky noise? How many data points are needed to completely
characterize the resulting map? If one needs 20 s of time for measuring each
position, how long will this survey require?
(c) Repeat this estimate for a survey at 5000 MHz carried out with a 3′ beam, for
a receiver with noise temperature 50 K, 500 MHz bandwidth, 10 s integration per
point. Note that the sky background contributes only a small amount of the receiver
noise at 5 GHz. How much observing time is needed for this survey?



Chapter 6
Fundamentals of Antenna Theory

1. Complete the mathematical details of summing the expression in Eq. (6.49) of
‘Tools’, which is given here:

Ŝ = ΣN
n=0e i k n D sin (φ)

First, show that

Ŝ = ΣN
n=0q = 1 − qn+1

1 − q

(hint: multiply by q to obtain another relation, then subtract from the relation above).
With q = e i k D sin (φ), show that we obtain Eq. (6.50), which is:

Ŝ = e i k D sin (φ) · e− i (N−1) k D/2 sin (φ) ·
[

sin k ND
2 sin (φ)

sin k D
2 sin (φ)

]

From this, one can obtain the power pattern:

Ŝ2 =
[

sin [k (n + 1)D/2] sin (φ)

sin [k D/2] sin (φ)

]2

Use limits to show that the square of the x component of Eq. (6.64) in ‘Tools’ can
be obtained from the expression above. This component is:

Pn(l) =
[

sin(πl Lx/λ)

πl Lx/λ

]2
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2. You read that there are antennas without sidelobes. That is, all of the energy
is contained in the main lobe. Should you believe the report? Comment using
qualitative arguments, but not detailed calculations.

3. If the size of the pupil of the human eye, D is 0.5 cm, what are the number
of wavelengths across this aperture for light of λ = 500 nm? Compare this to
the number of wavelengths across the aperture of a 100 m radio telescope for a
wavelength of 2 m, 1 cm. Repeat for the ALMA radio telescope, with a diameter of
12 m, for λ =1 cm, 3 mm, 0.3 mm. Discuss the implications of these results.

4. Derive the increase in the radiated power for an array of N dipoles, for the case
of phases set to zero in Eq. (6.51 in ‘Tools’). This is:

|Ŝ|2 =
[

sin ( k ND
2 sin (φ))

sin ( k D
2 sin (φ))

]2

Compare this to the maximum power radiated in a given direction by a single Hertz
dipole, expressed in these terms as |Ŝ|2 = [sin φ]2.

5. The full width half power (FWHP) angular size, θ , in radians, of the main beam
of a diffraction pattern from an aperture of diameter D is θ ≈ 1.02λ/D.
(a) Determine the value of θ , in arc min, for the human eye, where D = 0.3 cm, at
λ = 5 × 10−5 cm.
(b) Repeat for a filled aperture radio telescope, with D = 100 m, at λ = 2 cm, and
for the very large array interferometer (JVLA), D = 27 km, at λ = 2 cm.
(c) Show that when λ has the units of millimeters, and D the units of kilometers
and θ the units of arc seconds, then θ = 0.2λ/D. Is this consistent with Eq. (6.78),
which is θ = 58.4 × λ

D
?

6. Hertz used λ ≈ 26 cm for the shortest wavelength in his experiments.
(a) If Hertz employed a parabolic reflector of diameter D ≈ 2 m, what was the
FWHP beam size? (See Problem 3 of this chapter.)
(b) If the Δl ≈ 26 cm, what was the radiation resistance, from Eq. (6.43)? Eq.
(6.43) is:

RS = c

6

(
Δl

λ

)2

(c) Hertz’s transmitter was a spark gap. Suppose the current in the spark was 0.5 A.
What was the average radiated power?

7. Over the whole world, there have been (on average) 100 radio telescopes of
(average) diameter 25 m operating since 1960. Assume that the power received by
each is 10−15 W over this period of time. What amount of energy has been received
in this period of time? Compare this to the energy released by an ash (taken to be
1 g) from a cigarette falling a distance of 2 cm in the earth’s gravity.
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Fig. 6.1 This is Fig. 6.11 from ‘Tools’. This is a sketch of a parabola showing angles used in
problem 8

8. Refer to figure 6.1 which is Fig. 6.11 of ‘Tools’. The surface is described by
y(x) = (1/4f )x2.
(a) Find a general expression for the path from the pupil plane (dashed line) to the
focus, f .
(b) If an on-axis plane wave is in the pupil plane, show that for a paraboloid, there
is a single focus.

(c) Is there such a relation for a circle, y(x) =
√

R2
0 − x2?

9. Show that the two dimensional expression for the E field Eq. (6.56) in ‘Tools’,
given here as:

dEy(φ) = − i J0 g(x ′) 1

r
e− i (ωt−k r) dx ′ .

and one of the factors in the three dimensional diffraction Eq. (6.57), given here as:

dEy = − i

2
λJ0 g(x′)

Fe(n)

| x − x′ |e−i(ωt−k |x−x′|) dx ′

λ

dy ′

λ
.

are related by equating (| x − x ′ |) = 1
r

and identifying J0 as IΔl/2λ, the current
density.

10. If two dipoles spaced by λ/4 are connected to a coherent input, what is the far
field radiation pattern if the phases of the dipoles differ by λ/4? Simplify by using a
one dimensional geometry.

11. Suppose you have a single dipole at λ/4 in front of a perfectly conducting plate.
Determine the far field radiation pattern. Compare this to the result of problem 10.
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12. Show that the relation in (6.78) of ‘Tools’, which is FWHP = 1.02 λ
D

radians
becomes

θ = 206
λ

D

where θ is in arc seconds, λ is in millimeters and D is in meters. The relation
between radians and arc seconds, namely, 1 rad=206,265arcsec, is needed for the
conversion.

13. If one uses

I Δl

2λ
= e V̇ 2

c2

show that the expression in Eq. (6.41), which is PS = c
3

(
IΔl
2λ

)
becomes:

P(t) = 2

3

e2V̇

c2

this is the radiation from an accelerated electron of charge e and velocity V , from
classical electromagnetic theory. The relation for the radiation from the bound states
m and n, where νmn is the line frequency and |μmn| is the dipole moment, from
quantum theory is:

〈P 〉 = 64π4

3 c3 ν4
mmn

(|μmn|
)2

Determine the relation of the quantum mechanical to the classical result.

14. In Eq. (6.40), which is:

|〈S〉|= c

4π
| Re (E × H∗) |= c

4π

(
IΔl

2λ

)2 sin2 ϑ

r2

use the more realistic variation of current in the dipole:

I (z) = I0 × (
1 − |z|

Δl/2

)

to determine the power radiated and the radiation resistance (Eq. (6.43)). Show that
RS is

RS = c

24

(Δl

λ

)



Chapter 7
Practical Aspects of Filled Aperture
Antennas

1. (a) Use Eq. (7.3) in ‘Tools’, which is: ΩA = ∫ 2π

0

∫ π

0 Pn(ϑ, ϕ) dΩ ,
Eq. (7.5) in ‘Tools’, which is: ΩMB/ΩA = ηB
Eq. (7.20) in ‘Tools’, which is: Pν = 1

2 Ae
∫∫

Bν(ϑ, ϕ) Pn(ϑ, ϕ) dΩ

Eq. (7.21) in ‘Tools’, which is: Pν = k TA

and Eq. (7.23) of ‘Tools’, which is: TA(ϑ0, ϕ0) =
∫

TB(ϑ,ϕ)Pn(ϑ−ϑ0,ϕ−ϕ0) sinϑ dϑ dϕ∫
Pn(ϑ,ϕ) dΩ

Eq. (7.23) is the convolution of the telescope power pattern, Pn with the actual
source distribution, TB. The result is the observed source distribution.
Use these to show that TA = ηBTB, where TB is the observed brightness
temperature. to show that for a source with an angular size � the telescope beam,
TA = Sν Ae/2k. Use these relations to show that TA = ηBTB, where TB is the
observed brightness temperature.
(b) Suppose that a Gaussian-shaped source has an actual angular size θs and actual
peak temperature T0. This source is measured with a Gaussian-shaped telescope
beam size θB. The resulting peak temperature is TB. The flux density, Sν , integrated
over the entire source, must be a fixed quantity, no matter what the size of
the telescope beam. Use this argument to obtain a relation between temperature
integrated over the telescope beam,

TB = T0

(
θ2

s

θ2
B + θ2

s

)

Show that when the source is small compared to the beam, the main beam
brightness temperature TB = T0(θs/θB)2, and further the antenna temperature
TA = ηBT0 (θs/θB)2.

2. Suppose that a source has T0 = 600 K, θ0 = 40′′, θB = 8′ and ηB = 0.6. What is
TA? (Use the result of Problem 1(b) of this chapter.)
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3. Suppose your television needs 1 μW of power at the input for good reception.
The transmitter radiates 100 kW in all azimuthal directions, and within an angle
±10◦ about the horizontal direction, and is at 100 m elevation. Ignore reflections
and assume that the earth is perfectly flat. Calculate the effective area, Ae, that your
TV antenna must have if you live 30 km from the transmitter.

4. Suppose that your antenna has a normalized peak power, P , with the following
values: P = 1 for θ < 1◦, P = 0.1 for 1◦ < θ < 10◦, and P = 0 for θ > 10◦. What
is ΩA, from Eq. (7.3), given in problem 1 of this chapter? What is ΩMB and ηB.

5. A scientist claims that for a very special antenna the brightness temperature of a
compact source can exceed the antenna temperature. Do you believe this?

6. You are told that there is a special procedure which allows the measured Gaussian
source size (not the deconvolved size) to be smaller than the Gaussian telescope
beam. This can occur (so the claim goes) if the source is very intense. Do you believe
this? This is the ‘diffraction limit’. [In recent years, Nobel Prizes in chemistry
have been given for violating this limit, but only with the aid of non-equilibrium
excitation.]

7. The Gaussian function considered in chap. 4 was:

y(x) = A exp

(
− x2

2σ 2

)
,

where A is a normalization constant. For radio astronomical applications, one
usually takes the form of this function as

y(x) = A exp

(
−4ln2(x − x0)

2

θ2
1/2

)
.

Relate the parameters σ and θ1/2. The quantity θ1/2 is the FWHP, full width to half
power. In the literature, the “width” of a Gaussian function is usually the FWHP.

8. The ground screen for the Arecibo telescope has a width of 15 m, and is mounted
around the edge of the 305 m diameter radio telescope. Assume you could direct the
entire ground screen so that the power is collected at a single location.
(a) What is the geometric area of this ground screen? Take the antenna as a ring,
with an inner radius of 305 m, the outer radius being 315 m.
(b) Calculate the far-field antenna pattern. What are the location and intensity in the
first sidelobe, relative to the main lobe?
(c) Calculate the conversion factor, from Jy to K, for the antenna temperature if the
antenna efficiency is 0.6.

9. Single telescope pointing is checked by scanning through the center positions of
known sources by a few beamwidths in orthogonal directions. The positional error,
�θ , caused by random noise, as measured with a beam of FWHP size θ0 and signal-
to-noise ratio of (S/N) is θ0/(S/N). Neglect all systematic errors. What would have
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to be the (S/N) to determine a source position to 1/50 of the FWHP beamwidth of
the telescope? Is there a contradiction between the angular resolution of a telescope,
θ ∼ λ/D, and the positional accuracy?

10. Figure 7.6d in ‘Tools’, given in figure 7.1, represents off-axis reflectors such as
the South Pole Telescope (SPT). This has a beam efficiency of 0.95 at a wavelength
of 3 mm. Assume that p = 0, K = 0, as given in Table 6.1 of ‘Tools’ (i.e. no taper
of the power pattern; a part of Table 6.1 is given here as Table 7.1). The relevant
equation is:

Pn(u) =
[

2p+1 p! Jp+1(πuD/λ)

(πuD/λ)p+1

]2

where Jp+1 is a Bessel function of order p + 1, D is the dish diameter an λ is the
wavelength. The parameter u is a parameter to specify the angular offset from the
telescope axis.
From Figs. 7.6d and 7.7 of ‘Tools’ (our figure 7.1), what must be the surface
accuracy?

Fig. 7.1 A combination of Fig. 7.6d in (a) and 7.7 in (b), taken from ‘Tools’. In (in (a)), the
Aperture efficiency ηA (——) and beam efficiency ηMB (− − −) for different values of K in
Table 6.1, reproduced in Table 7.1, here. The values for both an ideal reflector (δ = 0) and one that
introduces random phase errors of δ = 0.04 λ are given. This diagram applies to an antenna with
no blockage. Such antennas are the Green Bank Telescope, GBT and the South Pole Telescope,
SPT [(a) after Nash (1964 IEEE Trans. on Antenna Propag. 12, 918)]

Table 7.1 Normalized power pattern characteristics produced by aperture illumination (problem
10)

p K FWHP (rad) BWFN (rad) Relative gain First side lobe (dB)

0 1.02 2.44 1.00 −17.6

1 1.27 3.26 0.75 −24.6
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(a) What must be the antenna efficiency from the figure?
(b) At one time, a similar telescope was used for satellite tests at 28 GHz. The
satellite is a point source in the beam of this telescope, so ηA should be optimized
for a point source. Now what are the values of antenna and beam efficiency? What
is the beam size?

11. Combine Eqs. 7.5, which is ηB = �MB
�A

, Eq. (7.9), which is, Ae = ηA Ag and

Eq. (7.11), which is Ae ΩA = λ2 together with θg = θgeom = λ
D

and Ageom = π
4 D2

to obtain the relation

ηB = 1.133 × ηA

π

4

[
θB

θgeom

]2

Use this result to determine the value of θB in terms of θgeom for the highest and
lowest values of ηA and for the value at the point when ηB = ηA.

12. Use Eq. (6.52), which is θ = λ/D, Eq. (7.9), which is given in problem 11, and
the definition of SEFD (Eq. (7.27)), which is

SEFD = 2 η′ k Tsys

Aeff

where η′ is the signal loss in the electronics, which is small. η′ is of order unity, to
obtain:

SEFD = 2η′kTsysθ
2

πηaλ2

where θ is the FWHP beamsize, η′ ≈ 1, ηa is the antenna efficiency, λ is the
wavelength, “k” is Boltzman’s constant and Tsys is the total system noise. The units
must be consistent, and “SEFD” is in Janskys. Repeat for Bolometers, using the
relation of NEP to Tsys = TBG as in Eq. (5.13), that is:

NEP = 2 ε kTBG
√

Δν

13. Use Eq. (6.40), namely P(θ) = P0 sin2 θ to determine the normalized power
pattern of the Hertz dipole. Use Eq. (7.2), which is:

G(ϑ, ϕ) = 4πP (ϑ, ϕ)∫∫
P (ϑ, ϕ) dΩ

where the integral is over 4π .
Use Eqs. 7.3, 7.5 and 7.11, given in problems 1 and 11 of this chapter, to obtain ΩA,
ΩMB, ηB and Ae.
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14. Use Eqs. 7.9–7.11, given previously, to obtain the effective area of the Hertz
dipole using a linear variation of current along the dipole,

I (z) = I0 ×
(

1 − |z|
Δl/2

)

(this is Eq. (6.86) in ‘Tools’ and problem 14 of chapter 6). Show that the effective
area in this case is

Ae = 3

8π
λ2

15. Calculate the Rayleigh distance, k, defined as k = 2D2/λ, for an antenna of
diameter D = 100 m and a wavelength λ = 3 cm. This is also referred to as the
Frauenhofer Distance. It is one of the criteria that defines the far field, or wave zone
of an antenna.

16. For a 305 m diameter radio telescope with ηA=0.5, what is the ratio of antenna
temperature to flux density for a point source? for an antenna of diameter D =
100 m and a wavelength λ = 3 cm.



Chapter 8
Single Dish Observational Methods

1. Investigate the effect of the earth’s atmosphere on radio observations by using a
single layer atmosphere, using Eq. (1.37), which is:

Tb(s) = Tb(0) + T (1 − e−τν (s))

Suppose we know that the atmospheric optical depth, τ , is 0.1, and the temperature
is 250 K.
(a) What is the excess noise from the atmosphere, and what is the reduction in the
intensity of a celestial source?
(b) Repeat for τ = 0.5, 0.7, 1.0, 1.5.
(c) If τ is related to the optical depth in the zenith by τ = τz/sin(elv), determine the
increase in τ between 30◦ and 20◦ elevation. (Elevation is measured relative to the
horizon.)
(d) Repeat this calculation for the increase between 20◦ and 19◦, then 20◦ and 15◦.
(e) For spectral line measurements, one is interested in a comparison of the
responses of the receiver system over a (relatively) small frequency interval.
Consider the measurement of a 10 mK spectral line through an atmosphere with
τ = 0.2, if the receiver noise is 100 K. Repeat this calculation for a receiver noise
of 20 K.

2. A standard method to determine atmospheric τ values employs a receiver to
determine the emission of the earth’s atmosphere at 225 GHz. Suppose this emission
is found to be 15 K at elevation 90◦, 18 K at 60◦, 30 K at 30◦, and 42 K at 20◦. If the
temperature of the atmosphere is 250 K, what is the zenith τ? Is the curve in Fig. 8.1
consistent with ratios of zenith τ to that at 225 GHz are 3.4 (at 340 GHz), 6.7 (at
410 GHz), 9.9 (at 460 GHz) and 19.0 (at 490 GHz).

3. Suppose you are observing at 1 cm wavelength with a filled aperture telescope.
When pointed toward cold sky, in the zenith, your system noise temperature is twice
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what you expect. Normally the receiver noise temperature is 70 K and system noise
temperature is 100 K. Your partner notices that the radio telescope is filled with wet
snow. Assuming that the snow has a temperature of 260 K, and is a perfect absorber
at 1 cm, how much of the telescope surface is covered with snow?

4. A group observe sources at 1.3 cm at elevations between 8◦ and 11◦. If the
zenith optical depth is τz = 0.1, use an assumed dependence of τ=τz/ sin(elv) to
determine τ at the lowest and highest elevations. These astronomers see at most a
30% change in τ over this range of elevations. Is this reasonable? If the receiver
noise is 40 K, what is the system noise, including the atmospheric contribution, for a
200 K atmosphere, at these elevations? The observations are mostly of spectral lines;
how much is the attenuation? The temperature scale is calibrated using a nearby
source with peak main beam brightness temperature 16 K. What is the RMS error
for each continuum data point, from noise only, if the bandwidth used is 40 MHz
and the integration time is 1 s?

5. Use the Rayleigh–Jeans approximation to calculate the numerical relation
between flux density, Sν and brightness temperature, TB, if the source and beam
have Gaussian shapes. Sν must be in units of Janskys (= 10−26 W m−2 Hz−1),
wavelength must be in cm, and the observed angle θ0 in arc min.

6. For a Gaussian-shaped source of actual angular size θsource and observed
size θobserved, find the relation between the apparent or main beam brightness
temperature, TMB, and the actual brightness temperature, TB. (Use the fact that
the flux density of a discrete source must not depend on the telescope.) Show that
TB > TMB. Show that the observed or apparent, actual and telescope beam sizes,
θobserved, θsource and θbeam, are related by θ2

observed = θ2
actual + θ2

beam.

7. An outburst of an H2O maser (at 22.235 GHz) in the Orion region (distance from
the Sun 500 pc) gave a peak flux density of 106 Jy over a 1 MHz band. If this maser
radiation were measured with the 100 m telescope, which has a collecting area of
7800 m2, and antenna efficiency 0.4, what is the peak power? If the safety level for
microwave radiation for humans is 10 mW cm−2, at what distance would the Orion
maser be a threat for humans?

8. Use the Rayleigh–Jeans relation to calculate the flux density of the Sun at 30 GHz
if the disk has a diameter of 30′ at a uniform surface temperature 5800 K? Suppose
we had a 40 m radio telescope with effective collecting area 1000 m2. What is the
value of TMB? If ηA = 0.5 and ηMB = 0.65, what is TA?

9. Use Eq. (8.19) (this equation is given in the solution of problem 5 of this chapter),
to determine the peak main beam brightness temperature of the planetary nebula
NGC7027 at 1.3 cm with the 100 m telescope (S(Jy) = 5.4 Jy, θo = 43′′).
(a) If the actual (assumed uniform) source size is θs = 10′′, use Eq. (8.21), which is:

Ts = TMB × θ2
s +θ2

b
θ2

s
to determine the actual source brightness temperature Ts. Then

use Eq. (1.37), as given in the problem 1 statement of this chapter, with T0 = TB(0)

and T = Tν with T0 = 0, and Tν = 14, 000 K to determine the peak optical depth
of this region at 1.3 cm.
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10. A celestial source has a flux density of 1 Jy at 100 MHz. If the angular size is
10′′, and source and telescope beams are Gaussians, estimate the source brightness
temperature in the Rayleigh–Jeans limit. Repeat this for an observing frequency of
1 GHz.

11. The planet Venus is observed at the distance of closest approach, a distance
of 0.277 AU. The radius of Venus is 6100 km. What is the full angular width of
Venus in arc seconds? Suppose the measured brightness temperature of Venus at
3.5 cm wavelength in a telescope beam of 8.7′ is 8.5 K. What is the actual surface
brightness temperature of Venus?

12. In the sub-millimeter range, sky noise dominates, but one wants to have the most
sensitive receivers possible. Is this a contradiction? If not, why not?

13. The APEX submillimeter telescope on the ALMA site has a diameter of 12 m,
an estimated beam efficiency of 0.5 at a wavelength of 350 μm. At 350 μm the
atmospheric transmission is 5%.
(a) Show that this is equivalent to a τ of 3.
(b) What is the sky noise for this situation if the physical temperature of the sky is
200 K?
(c) If the receiver noise is 50 K, what is the total system noise?
(d) Suppose you plan to measure a small diameter source with a flux density of
0.1 Jy. After what length of time will you have a signal-to-noise ratio of unity if the
receiver bandwidth is 2 GHz?

14. Use the following expression for the redshift, z, which is based on the special
theory of relativity. This can be used to relate the speed of expansion v to the z value

1 + z =
√

c+V
c−V

. Find V/c for z values of 2.28, 5, 1000.

15. Spectral line observations are carried out using position switching, that is the
“on–off” observing mode. Thus effects of ground radiation should cancel in the
difference spectrum. However, there is usually a residual instrumental baseline
found in the case of centimeter wavelength observations. The amplitude of this
residual instrumental baseline is found (with the 100 m telescope) to be ∼10−3 of
the continuum intensity of the source being observed. This effect is caused by the
correlation of signal voltage Ei, with that reflected by the primary feed horn, Er.
How much power flux, E2

r , (in W m−2) relative to Ei, is reflected from the feed?

16. A search for dense molecular gas in the Orion cloud shows the presence of 125
sources, each with a FWHP of 1′. The region searched is 15′ by 120′. If the beam
size is 20′′, what is the mean number of sources per angular area? Now use Poisson
statistics P = e−m mn/n! where n is the number of expected sources, and m is the
mean, to find the probability of finding a dense clump of gas in this region if one
uses a 20′′ beam. What is the chance of finding two such sources?

17. (a) In an extragalactic survey, the average number of sources per beam is 0.04.
Use Poisson statistics to find the chance of finding 2 or 3 sources in the same beam?
(b) Use these results to estimate the number of beam areas per source needed to
insure that source confusion is a small effect.
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18. Derive the result in Eq. (8.62), which is:

σ 2 =
(

q3−γ

3 − γ

) 1
γ−1

(k Ωe)
1

γ−1

showing all steps.

19. (a) For radio telescopes, the one dimensional power pattern is y(x) =
A exp

(
− 4ln2x2

θ2
1/2

)
Use this expression to evaluate Eq. (8.59), which is:

Ωe =
∫

[f (θ, φ)]γ−1 dΩ

(b) Calculate k = γ Nc S
−γ
c for γ = 2.5, q = 5, Ω=80 × 100 arcsec, Nc = 105 per

steradian, and Sc = 10−28 W m−2 Hz−1=10−2 Jy.

20. The approach used by Mills and Slee (1957 Austral. J. Phys., 10, 162) illustrates
the relation of the observed flux densities to number of sources for the Euclidean
model of the universe. This approach is derived next. Start with the relation of flux
density S to intensity emitted by a source at a distance R, P0. Then we have S =

P0
4πR2 .

Show that the total number of sources in a sphere of radius R is: n = 4π
3 R3n0

Show that this is equivalent to n = k′S−1.5 Show that the differential number of
sources is dn = k′S−2.5 dS. Evaluate k′.
21. This is a derivation that gives a result comparable to Eq. (8.62), which is given
in problem 18. Here we use an approach that expresses the dispersion σ 2 in terms
of limiting flux density rather than instrument deflection, Dc. This is sometimes
referred to as the “Classical Approach to Confusion”, as given in the 4th edition of
“Tools of Radio Astronomy”. Let p(S) be the probability density for the number
of sources per steradian with a flux density between S and S + dS; that is, on
average we will observe ν̄ = Ω p(S) dS sources with flux densities in the interval
(S, S+ dS) per beam Ω . The average number of sources per beam is n̄. If the sources
are distributed according to a Poisson distribution (see, e.g. “An Introduction to
Error Analysis, second edition”, 1997, J. R. Taylor, University Science Books), the
probability of n sources in a beam is f (n) = ν̄n

n! e−ν̄ Show that the second moment

μ2, of this distribution is μ2 =
∞∑

ν=0
ν2f (ν) = ν̄(ν̄ + 1) , so that the dispersion

becomes σ 2
ν = ν̄ . when applied to flux densities, show that this is σs = S2 ν̄.

(b) For simplicity, take the shape of the beam to be a “pill-box” with perpendicular
walls, so that the total output of the antenna is the unweighted sum of the flux
densities of all sources within the beam S = ∑

k

Sk . Show that the average S̄

caused by sources (S, S + dS) will be S̄ = S ν̄ . If the signal is caused by
sources with different flux densities, the dispersions add quadratically. Making
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use of ν̄ = Ω p(S) dS and σ 2
S = S2 ν̄, sources with flux densities between

Sc and SL and a number density of p(S) then result in a dispersion for the

total flux of σ 2
Sc

= Ω
Sc∫
SL

S2 p(S) dS . from Rice (1954 in Selected Papers on

Noise and Stochastical Processes, N. Wax ed., Dover, New York).Then sources
with a flux density cut-off Sc can be measured with a signal to noise ratio, q , of
q = Sc

σSc
, where SL is a lower limit to the actual flux density, whereas Sc is a cutoff

q2 = S2
c

Ω
1

Sc∫
SL

S2 p(S) dS

The distribution of faint point sources is p(S) = nNc Sn
c S−n−1

for a wide range of S with n = 1.5. Show that q2 =
(

0.333
1

ΩNc

1

1 − (SL/Sc)0.5

)

(c) For the case SL = 0, show that limSL→0 q2 = 0.333 1
ΩNc

, Suppose SL =
0.666 Sc = 0 and ΩNc is interpreted as the number of sources per beam area. What
is this value if q is taken to be 5?



Chapter 9
Interferometers and Aperture Synthesis

1. In one dimension, one can make a simple interferometer from a paraboloid by
masking off all of the reflecting surface except for two regions of dimension a,
which are separated by a length b, where b >> a. Assume that the power incident
on these two regions is reflected without loss, then coherently received at the prime
focus. A receiver there amplifies and square law detects these signals. This system
is used to measure the response of an isolated source.
(a) In one dimension, one can make a simple interferometer from a paraboloid by
masking off all of the reflecting surface except for two regions of dimension a,
which are separated by a length b, where b >> a. Assume that the power incident
on these two regions is reflected without loss, then coherently received at the prime
focus. A receiver there amplifies and square law detects these signals. This system
is used to measure the response of an isolated source. Write out a one-dimensional
version of Eq. (6.60) from ‘Tools’, which is the far field pattern:

f (n) = 1

2π

∞∫ ∫

−∞
g(x′)e− i k n·x′ dx ′

λ

dy ′

λ

Apply this equation and Eq. (6.61), which is the relation of the field pattern and the
power pattern:

Pn = | f(n) |2
| fmax |2

to determine the far-field pattern of this instrument.
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(b) Use Eq. (9.6) from ‘Tools’ to analyze the response of such a one-dimensional
2 element interferometer consisting of 2 paraboloids of diameter a, separated by a
distance b, measuring a star by a disk of size θs . Show how one can determine the
angular size of the source from the response, R.

2. Show that the one-dimensional version of Eq. (9.6) from ‘Tools’, which is:

R(B) =
∫ ∫

Ω

A(s)Iν(s) exp

[
i 2πν

(
1

c
B · s − τi

)]
dΩdν

is:

R(B) =
∫

A(θ) Iν(θ) exp

[
i 2πν0

(
B

c

)
· θ

]
dθ

(this is Eq. (9.8) of ‘Tools’; with θ/c = 1/λ, it becomes Eq. (9.46) in ‘Tools’).
Interpret this relation in terms of the Fourier Transform (FT) pair with variables
u = B/λ and θ . In Fig. 9.4 of ‘Tools’, given here as figure 9.1, one dimensional
distributions of u = B/λ are shown. Show that the “Image-plane distributions”
(on the right with variables x, y=θx, θy) are related to the “one-dimensional” (u, v)
plane distributions (on the left) using Eq. (9.46).

3. Use the result of problem 2 (which is Eq. (9.46) in ‘Tools’ and figure 9.2 here) to
obtain the interferometer beam shapes (left side of the figure here, which is Fig. 9.18
in ‘Tools’) from the coverage of the (u, v) plane, shown on the right side of this
figure.

4. This problem and the next two problems illustrate features of fig. 9.3 (shown
above) and the use of Eq. (9.46), which is the result of problem 2.
The Sun is assumed to be a uniformly bright disk of diameter 30′. This source
is measured using a multiplying interferometer at 10 GHz which consists of
two identical 1 m diameter radio telescopes. Each of these dishes is uniformly
illuminated. We assume that the instrumental phase is adjusted to zero, i.e. τi = 0,
the bandwidth of this system is small, and one measures the central fringe.
(a) What is the FWHP of each dish? Compare to the diameter of the Sun.
(b) Assume that the antenna efficiency and beam efficiency of each of the 1 m
telescopes are 0.5 and 0.7, respectively. What is the antenna temperature of the Sun,
as measured with each? What is the main beam brightness temperature measured
with each telescope?
(c) Now the outputs are connected as a multiplying interferometer, with a separation
on an east–west baseline of 100 m. Suppose the Sun is observed when directly
overhead. What is the fringe spacing? Express the response in terms of brightness
temperature measured with each dish individually.
(d) Now consider the more general case of a source which is not directly overhead.
Determine the response as a function of B, the baseline.
(e) What is the response when the two antennas are brought together as close as
possible, namely 2 m?
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Fig. 9.1 This is Figure 9.4 in ‘Tools’, This shows the visibility function for various brightness
distribution models. The solid lines are amplitudes, the dashed lines are phases. (a) A point source
displaced from the phase center; a displacement of x0 = 1′′ shifts phase by one fringe for a
k1 = 206,265 wavelength baseline. (b) A Gaussian shaped extended source of FWHP 1′′ displaced
from the origin; the amplitude reaches a value of 0.5 at k2 = 91,000 wavelengths. (c) Two point
sources with an intensity ratio R; the period of amplitude and phase depends on the separation.
If the centroid of the double is the phase center, the sign of phase gives the direction of the more
intense components, with positive to the east. (d) Two extended double sources; this has been
obtained from the response to a pair of point sources by multiplying the visibility amplitude by
the envelope shown in (b). The numerical values are k3 = 103,000 if s = 1′′ and k2 = 91,000 if
d = 1′′ [after Fomalont and Wright (1974)]
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Fig. 9.2 The descriptions are
given above each sketch for
the (u, v) plane and the Image
Plane

Fig. 9.3 This is Figure 9.2 of
‘Tools’. It is referred to in
problem 7. This is a
schematic diagram of a
two-element correlation
interferometer. The antenna
output voltages are V1 and
V2; the instrumental delay is
τi. The geometric delay is τg,
equal to the baseline
projected in the direction of
the source, B · s, for which
the time delay is B · s/c
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5. Repeat Problem 4 for a simplified model of the radio galaxy Cygnus A. Take
this source to be a one-dimensional double with centers separated by 2θ1 = 1.5′.
Assume that each region have uniform intensity distributions, with FWHP sizes of
θ2 = 50′′. Each region has a total flux density of 50 Jy.

6. Repeat Problem 4 for the HII region Orion A, taking this as a one-dimensional
Gaussian region with angular size FWHP 2.5′. Repeat for the supernova remnant
Cassiopeia A, a ring-shaped source. In one dimension model this source is a region
of outer diameter 5.5′ with a ring thickness of 1′.
7. Suppose the receivers of an interferometer are double-sideband mixers. In each
mixer, power arrives from the upper sideband and from the lower sideband. Use
our figure 9.3 and Eq. (9.6) (see the beginning of problem 2) to show that the upper
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and lower sidebands can be separated since the geometric phase delays, τg for the
upper and lower sideband frequencies φg = 2πντg, will differ.

8. The interferometer described in Problem 4 is used to measure the positions
of intense water masers at 22.235 GHz. The individual masers are very compact
sources, unresolved even with interferometer antenna spacings of hundreds to
thousands of kilometers. These masers normally appear as clusters of individual
sources, but usually do not have identical, radial velocities.
(a) Discuss using a set of contiguous narrow frequency filters as a spectrometer.
Should these filters be placed before or after multiplication? How wide a frequency
band can be analyzed without diminishing the response of this system? What must
the phase and frequency characteristics of these filters be?
(b)∗ An alternative to filters is a cross-correlation spectrometer. Discuss how this
system differs from the filter system. Analyze the response of such a cross correlator
system if the instrumental phase differences between antennas can be eliminated
before the signals enter the cross correlator.

9. Suppose we use an interferometer for which one: (1) added the voltage outputs
of the two antennas, and then square-law detected this voltage and (2) inserted a
phase difference of 180◦ into one of the inputs, (3) repeated this process and (4)
then subtracted these outputs to obtain the correlated voltages. Compare the noise
arising from this process with that from a direct multiplication of the voltages. Show
that direct multiplication is more sensitive.

10. Derive Eq. (9.12), which is:

R(B) = A I0 · θ0 exp

(
i π

θ0

θb

) (
sin (πθ0/θb)

(πθ0/θb)

)

using the one dimensional form of Eq. (9.46), from problem 2. Derive Eq. (9.13),
which is:

Δφ = 2π

(
θoffset

θb

) (
Δν

ν

)

Show all steps in both derivations.

11. Use Eq. (9.27), which is: ΔTB = 2 M λ2 T ′
sys

AeΩb
√

2 N t Δν
setting M = 1, show that the

following is an alternative form of this relation:

ΔTB ∼ λ0.5TsysB
2
max

n d2
√

τΔV
,

where Bmax is the maximum baseline of the interferometer system, d is the diameter
of an individual antenna and ΔV is the velocity resolution. In addition, N = n(n −
1)/2 ≈ n2/2 where n is the number of correlations.



48 9 Interferometers and Aperture Synthesis

12∗. Suppose we have a filled aperture radio telescope with the same diameter and
collecting area as an interferometer used to carry out a full synthesis.
(a) If the filled aperture diameter is D(= Bmax of problem 11) and the diameter of
each individual interferometer antenna is d , how many elements are needed to make
up the interferometer? (This is the number of dishes of diameter d which fit into the
area of the filled aperture D.)
(b) Calculate the times needed to map a region of a given size with the filled aperture
(equipped with a single receiver) and the interferometer array.
(c) The following is related to “mosaicing”, which is needed for interferometer
imaging of a very extended source of size Θ which is very extended compared
to the beamsize of each individual interferometer antenna, θ . Calculate how many
pointings are needed to provide a complete image of the extended source. The RMS
noise for a map made with a single pointing is

ΔTB ∼ 1

n d2
√

2 N τ Δν

(see previous problem). If the total time available for the measurement of a region
is T , show that the number of pointings is proportional to T/d2. Then show that the
RMS noise in a mosaiced map is ΔTB ∼ 1/d instead of ΔTB ∼ 1/d2.

13. A source with a FWHP of ∼30′′ and maximum intensity of 2.3 K, TMB is
observed with ALMA interferometer. If a velocity resolution of 0.15 km s−1 is used
to measure the J = 1 − 0 line of CO at 2.7 mm, with a 10′′ angular resolution, how
long must one integrate to obtain a 5-to-1 peak signal-to-noise ratio? Use the result
of problem 11.

14. The MERLIN interferometer system has a maximum baseline length of 227 km.
At an observing frequency of 5 GHz, what is the angular resolution? Suppose that
the RMS noise after a long integration is 50 μJy, that is, 5 × 10−5 Jy. Use the
Rayleigh–Jeans relation to obtain the RMS noise in terms of main beam brightness
temperature. If a thermal source has at most a peak temperature of 5 × 105 K, can
one detect thermal emission?

15.Compare the performance of the Jansky-VLA at 1.3 cm with the bilateral ALMA
(i.e. fifty 12 m antennas) at 2.6 mm, for a velocity resolution of 0.1 km s−1. Set M =
1 for the Jansky-VLA. For the twenty-seven 25 m antennas of the JVLA 1.3 cm, each
with Ae = 240 m2, and a 3′′ synthesized beam. For the fifty 12 m diameter antennas
of bilateral ALMA, each with Ae = 80 m2 with a 140 K system noise temperature
(including atmosphere) at 2.6 mm and a 38 kHz frequency resolution (=0.1 km s−1).
Use Eq. (9.29) from ‘Tools’:

ΔTB = 838.0
M λ2 T ′

sys

Aeθ
2
B

√
N t Δν

where TB is in Kelvins, λ is in mm, θB in arc seconds, and Δν in kHz.



Chapter 10
Emission Mechanisms of Continuous
Radiation

1. Suppose an object of radius 100 m, with a uniform surface temperature of 100 K
passes within 0.01 AU of the earth (an astronomical unit, AU, is 1.46 × 1013 cm).
(a) What is the flux density of this object at 1.3 mm?
(b) Suppose this object is observed with a 30 m telescope, at 1.3 mm, with a
beamsize of 12′′. Assume that the object has a Gaussian shape; calculate the peak
brightness temperature by considering the dilution of the object in the telescope
beam. Neglect the absorption by the earth’s atmosphere.
(c) This telescope is equipped with a bolometer with NEP = 10−15 W Hz−1/2 and
bandwidth 20 GHz; how long must one integrate to detect this object with a 5 to
1 signal-to-noise ratio, if the beam efficiency is 0.5, and the earth’s atmospheric
optical depth can be neglected?

2. The Orion hot core is a molecular source with an average temperature of 160 K,
angular size 10′′, located 500 pc (= 1.5 × 1021 cm) from the Sun. The average local
density of H2 is 107 cm−3.
(a) Calculate the line-of-sight depth of this region in pc, if this is taken to be the
diameter.
(b) Calculate the column density, N(H2), which is the integral of density along the
line of sight. Assume that the region is uniform.
(c) Obtain the flux density at 1.3 mm using Tdust = 160 K, the parameter b = 3,
β=2 and solar metallicity (Z = Z�) in Eq. (10.6), which is:

NH = 1.55 × 1024 Sν

θ2

λ2+β

Z/Z� b Td

(
eu − 1

u

)
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where Sν is the flux density in mJy, the beam FWHP size, θ , is in arc seconds, the
wavelength, λ in mm, Td the dust temperature in Kelvins, Z/Z� is the fraction of
the solar metallicity, (more generally, ‘b’ is an adjustable parameter with the value
of 1.9 for moderate density and 3.4 for dense gas). [A skeptic might consider b and
β to be fudge factors.] The value of ‘u’ is given by 14.4

λ T = 0.048 ν
T .

(d) Use the Rayleigh–Jeans relation (given in problem 10 of chapter 1) to obtain
the actual dust continuum brightness temperature from this flux density, for a 10′′
source. Show that this is much smaller than Tdust.
(e) At long millimeter wavelengths, a number of observations have shown that the
optical depth of such radiation is small. Then the observed temperature is T =
Tdust × τdust, where the quantities on the right hand side of this equation are the dust
temperature and dust optical depth. From this relation, determine τdust.
(f) At what wavelength is τdust = 1 if τdust ∼ λ−4?

3. (a) From figure 10.1 (also Fig. 10.1 in ‘Tools’), determine the “turnover”
frequency of the Orion A HII region, that is the frequency at which the flux density
stops rising, and starts to decrease. This can be obtained by noting the frequency
at which the linear extrapolation of the high and low frequency parts of the plot
of flux density versus frequency meet. At this point, the optical depth, τff, of free–
free emission through the center of Orion A, is unity, that is τff = 1. Call this
frequency ν0.
(b) From Eq. (10.37), which is:

τν = 8.235 × 10−2
(

Te

K

)−1.35 ( ν

GHz

)−2.1
(

EM

pc cm−6

)
a(ν, T )

where, usually, the parameter “a” is close to unity, gives the relation of turnover
frequency, electron temperature, Te, and emission measure. This relation applies to
a uniform density, uniform temperature region; actual HII regions have gradients in
both quantities, so this relation is at best only a first approximation. Determine EM
for an electron temperature Te = 8300 K.
(c) The FWHP size of Orion A is 2.5′, and Orion A is 500 pc from the Sun. What
is the linear diameter for the FWHP size? Combine the FWHP size and emission
measure to obtain the RMS electron density.

4. A more accurate method to obtain the emission measure of the high electron
density core of an HII region such as Orion A is to use TB = Teτff, where TB is the
brightness temperature of the source corrected for beam dilution.
(a) Use the Te and source FWHP size values given in the last problem. For
ν = 23 GHz, take the main beam brightness temperature, TMB = 24 K, and the
FWHP beamsize as 43′′. Correct the main beam brightness temperature, TMB, for
source size to obtain TB.
(b) Determine τff.
(c) Use Eq. (10.37, as given in problem 3) with a = 1 to find ν0 and EM; compare
these results to those obtained in the last problem. Discuss the differences. Which
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Fig. 10.1 This is Figure 1 in Chapter 10 of ‘Tools’. It shows the flux densities of various radio
sources. The Moon, the quiet Sun and (at lower frequencies) the H II region Orion A are examples
of Black Bodies. At frequencies higher than 200 GHz there is additional emission from dust in the
Orion KL molecular cloud. The active Sun, supernova remnants such as Cassiopeia A (3C461),
the radio galaxies Cygnus A (3C405), Virgo A (Messier 87, 3C274) and the Quasi Stellar radio
source (QSO) 3C273 are nonthermal emitters. The hatching around the spectrum of 3C273 is meant
to indicate rapid time variability. (The 3C catalog is the third Cambridge catalog, a fundamental
list of intense sources at 178 MHz (Bennett 1962 Mem RAS 68, 163 (the revised 3C catalog));
more recent continuum catalogs are Gregory et al. (1996 Ap. J. Suppl., 103, 427 the “GB6”
survey), Condon et al. (1998 Astronom. J. 115, 1693, the “NVSS” survey) and Cohen et al. (2004,
Ap. J. Suppl., 150, 417 the “VLSS” survey)

method is better for determining the EM value for the core of an HII region at high
frequencies?

5. (a) For frequencies above 2 GHz, the optical depth of Orion A is small (i.e., the
source is optically thin) and τff varies as ν−2.1. Calculate τff at 5, 10, 23, 90, 150
and 230 GHz.
(b) Next calculate the peak brightness temperature, at the same frequencies, for
a telescope beam much smaller than the FWHP source size. Use the expression
TB = Teτff.
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(c) With the IRAM radio telescope of 30 m diameter, one has a FWHP beamwidth
in arc seconds of θb = 2700/ν, where ν is measured in GHz. Calculate the main
beam brightness temperature at the frequencies given in part (a).

6. (a) Given the characteristics of the source Orion A (from the last two problems)
and Orion hot core (problem 2), at what frequency will the continuum temperatures
of these sources be equal when measured with the 30 m telescope?
(b) Repeat this calculation for the Heinrich Hertz sub-millimeter telescope, of 10 m
diameter, where now the FWHP beamwidth is θ = (8, 100/ν) for ν measured in
GHz. Will Tdust equal Tff at a higher or lower frequency?

7. (a) The HII region W3(OH) is 1.88 kpc from the Sun, has a FWHP size of 2′′
and a turn over frequency of 23 GHz. Determine the RMS electron density if the
Te=8500 K. Determine the mass of ionized gas. Use the Eq. (10.37) in problem 3(b)
of this chapter.
(b) There is a molecular cloud of size 2′′ located 7 arcsec East of W3(OH). The dust
column density of order 1024 cm−2, with Tdust=100 K. Given these characteristics,
at what frequency will the continuum temperatures of these sources be equal when
measured with the 30 m telescope?
(c) Repeat this calculation for the Heinrich Hertz sub-millimeter telescope. Will
Tdust equal Tff at a higher or lower frequency?

8. The Sunyaev–Zeldovich (S-Z) effect can be understood in a qualitative sense
by considering the interaction of photons in the 2.73 K black body distribution with
much more energetic electrons, with an energy of 5 keV and density of ∼10−2 cm−3.
(a) What is the energy of photons with a wavelength of 1.6 mm (the peak of the
background distribution)? Compare to the energy of the electrons.
(b) Obtain the number of 2.73 K photons per cm3 from Problem 3(d) of Chap. 11.
(c) Assume that the interaction of the 2.73 K black body photons with the electrons
(assumed monoenergetic) in the cluster will lead to the equipartition of energy.
Make a qualitative argument that this interaction leads to a net increase in the energy
of the photons. Justify why there is a decrease in the temperature of the photon
distribution for wavelengths longer than 1.6 mm and an increase shorter than this
wavelength.

9. The source Cassiopeia A is associated with the remnant of a star which exploded
about 330 years ago. Measurements of the radio emission give the relation of flux
density to frequency, as shown in figure 10.1 in this chapter, and also Fig. 10.1 in
‘Tools’. For the sake of simplicity, assume that the source has a constant temperature
and density, in the shape of a ring, with thickness 1′ and outer radius of angular size
5.5′. What is the actual brightness temperature at 100 MHz, 1, 10, 100 GHz?

10. Obtain the integrated power and spectral index (power emitted per bandwidth
proportional to ν−n) for synchrotron radiation from an ensemble of electrons which
have a distribution N(E) = N0, that is a constant energy distribution from Emin to
Emax.



Chapter 11
Some Examples of Thermal
and Nonthermal Radio Sources

1. (a) This problem deals with the quiet Sun. The electron distribution is given by
Eq. (11.2) in ‘Tools’, which is:

Ne

cm−3
=

[
1.55

(
r

r0

)−6

+ 2.99

(
r

r0

)−16
]

× 108

with r0 = 7 × 1010 cm to determine the emission measure,
∫

N2
edl, of the quiescent

solar atmosphere.
(b) Determine the optical depth of the quiescent solar atmosphere, looking at the
center of the Sun, using Eq. (10.37) of ‘Tools’, which is stated in problem 3 (b) of
chapter 10), with Te = 106 K and for a frequency 100 MHz. What is the brightness
temperature of the Sun?

2. If the nearest Jupiter is 10 pc from us, and are bursts which are identical with the
Jupiter bursts, i.e. with an intrinsic peak intensity of 105 Jy at the distance of Jupiter
(mean= 778 million km), what is the flux density from such a burst at 10 pc?

3. (a) At what frequency does the intensity of a 2.73 K black body reach a
maximum? At what wavelength? Use the T − λ relation in Eq. (1.26), which is:

(
λmax

cm

)(
T

K

)
= 0.28978 .

and the T − ν relation in Eq. (1.25), which is:

( νmax

GHz

)
= 58.789

(
T

K

)
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(b)Could the difference between the maximum wavelength and frequency be caused
by the different weightings of the Planck relation? Determine the intensity, Iν , which
in this case is the Planck function, Bν , at the maximum frequency. Bν is defined in
problem 14 of chapter 1.

(c) What is the (integrated) energy density, given by: u = (1/c)
∫

IdΩ =
(4π/c) I?

(d∗) Reformulate the derivation of the Stefan–Boltzmann relation in ‘Tools’
Eq. (1.24), which is:

B(T ) = σT 4 , σ = 2π4k4

15c2h3
= 1.8047 × 10−5 erg cm−2 s−1 K−4

to obtain the number density of photons. To do this, one must integrate the Planck
function (Eq. (1.13)):

Bν(T ) = 2hν3

c2

1

ehν/kT − 1

this function is divided by hν and then over all frequencies. Make use of the relation
with x = hν/kT :

∫ ∞

0

x2

ex − 1
dx = 2.404

to determine how many photons are present in a volume of 1 cm−3.
(e) What is the error in applying the Rayleigh–Jeans approximation, instead of
the Planck relation to calculate the intensity of the 2.73 K black body radiation at
4.8, 115 and 180 GHz? Compare these values to Fig. 1.7 of ‘Tools’, given here as
figure 11.1.

4. The 2.73 K microwave background (a black body) is one of the most important
pieces of evidence in support of the big bang theory. The expansion of the universe
is characterized by the red shift z. The ratio of the observed wavelength, λo, to the
(laboratory) rest wavelength, λr, is related to z by z = (λo/λr)− 1. The dependence
of the temperature of the 2.73 K microwave background on z is T = 2.73 (1 + z).
What is the value of T at z = 2.28? What is the value at z = 5 and z = 1000?

5. Use Eq. (1.25), which is:

( νmax

GHz

)
= 58.789

(
T

K

)

together with Fig. 1.7 of ‘Tools’ (figure 11.1 here) to repeat the analysis of problem
3. How do the results compare?
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Fig. 11.1 This is Figure 1.7 from ‘Tools’, used in problem 3(e). This is the normalized Planck
curve and the Rayleigh-Jeans and Wien approximation. The 2.73 K background follows a Planck
relation, with a peak at 160 GHz. This is at the normalized frequency of 3. Thus for frequencies
below 50 GHz, the Rayleigh-Jeans approximation is adequate for most purposes. For frequencies
larger than 160 GHz, the Wien curve provides a reasonable approximation

6. (a) At 5 GHz, the brightness temperature in the outer parts of Orion A is ∼0.5 K.
Use the assumption of an optically thin, smooth Bremsstrahlung emission from a
region with Te = 6500 K which fills the telescope beam completely to calculate the
brightness temperature of these regions at 23 GHz. Use TB = Te × τ with τ from
problem 3 of chapter 10. At 23 GHz the map of Orion A has an RMS noise of 0.1 K.
Would this emission from the outer parts of Orion A be detected in the 23 GHz map?
(b) At what frequency would the outer regions of Orion A have an optical depth of
unity?

7. Suppose a solar type star is to be detected at the 1 μJy level at λ = 3 mm. Given
that Te = 5700 K and r0 = 7 × 1010 cm, what is the maximum distance that such a
star can be detected? use the relation in Eq. (11.1), which is:

(
S

μJy

)
= 7

(
R∗
R�

)
×

(
1

D(pc)

)
×

(
ν(GHz)

345 GHz

)

8. (a) Calculate the radio continuum flux density at ν = 10 GHz for a B3 supergiant
(T = 1.6×104 K, r0 = 3.6×1012 cm). Use an electron and ion density of 1010 cm−3

and Eq. (11.9) of ‘Tools’, which is:

Sν = 8.2

(
n0 r2

0

1036

)4/3 ( ν

GHz

)0.6
(

Te

104 K

)0.1 (
d

kpc

)−2

with r = r0 for such a star which is 3 kpc distant.
(b) Is this source detectable with the 100 m telescope if the receiver noise is 50 K,
if 1 Jy corresponds to 1.3 K, TA, and the receiver bandwidth is 500 MHz? Do not
consider confusion effects.
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(c) With the JVLA at 23 GHz, a source was found to have a continuum flux density
of 27 mJy. This is at a distance of 7 kpc. What would n0r

2
0 have to be if this emission

be caused by an ionized outflow of T = 20, 000 K?
(d) If n0 = 1010 cm−3, what is r0?

9∗. Reformulate Eq. (11.9), (given in problem 8) by substituting the mass loss rate
for a steady ionized wind. The product of electron density and radius squared can
be related to

ne(r) = Ṁ

4πr2vwμmH
.

Substitute this relation into the equation in Problem 4, where Ṁ is the mass loss rate
in 10−5 Ṁ (per year) and vw is the wind velocity, in units of 1000 km s−1. μ is the
average mass as a multiple of the mass of the hydrogen atom, mH. Use this result to
find the mass loss rate for the source analyzed in Problem 8.
(a) if vw = 100 km s−1.

10. The parameters of a B0 Zero Age Main Sequence (ZAMS) star are T = 3.1 ×
104 K, luminosity L = 2.5 × 104 L� and radius r = 3.8 × 1011 cm. Suppose this
object has a mass loss rate of 10−6M� per year and is 7 kpc distant. What is the
flux density for a frequency of 10 GHz? Is this source detectable with the 100 m
telescope? With the JVLA?

11. From the flux density at 100 MHz in Fig. 10.1 of ‘Tools’ (figure 10.1,
chapter 10), calculate the peak brightness temperature of the Crab nebula, if the
FWHP angular size of this source is 5′, and the source shape is taken to be Gaussian.
Repeat this calculation for a frequency of 10 GHz, using the same angular size.
If the maximum brightness temperature for Bremsstrahlung emission from a pure
hydrogen HII region is considered to be 20,000 K, is the emission from the Crab
nebula thermal or non-thermal?

12. If Cassiopeia A has an angular diameter of 5.5′, determine the present-day linear
size of Cassiopeia A if this source is 3 kpc from the Sun. If the explosion occurred
in 1667, and if the expansion velocity has been constant, what is vexp? The JVLA
can measure positions of “point” (i.e. unresolved in angle) features in Cas A, and if
these features do not change shape with time, but merely move with vexp, over what
time scale would you have to carry out JVLA measurements to observe expansion?

13. (a) Use Eq. (11.45) of ‘Tools’, which is:

Ṡν

Sν

= −4

5

δ

t

with δ = 2.54, to extrapolate the radio flux density of Cassiopeia A to a time
when this source was 100 years old; that is, what was Sν at 100 MHz in 1777?
See Fig. 10.1 of ‘Tools’ (also figure 10.1 in chapter 10) for the flux today. What
would be the angular size if the expansion is linear with time?
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(b) Calculate the peak brightness temperature in 1777 assuming that this source is a
Gaussian, using Eq. (8.19) of ‘Tools’, which is:

S = 2.65
TMB θ2

o

λ2

14. There is a sharp decrease in the flux density of Cassiopeia A at a frequency of
about 10 MHz. If this source is 3 kpc from the Sun, and the average electron density
is 0.03 cm−3, calculate whether the cause of the fall off is free–free absorption by
electrons along the line of sight. These will have an effect only if τ = 1. Use
Eq. (10.35 of ‘Tools’, given in problem 3 (b) of chapter 10 in this volume) with
Te = 6000 K.

15. (a) Make use of the minimum energy theorem to estimate the magnetic
fields and relativistic particle energies on the basis of synchrotron emission, using
Eq. (10.121), which is:

Wtot = 7

4
(6π)−3/7

(
Gνn

H
Sν

)4/7

R8/7 V 3/7

to obtain a numerical result if the spectral index, n, is 0.75, and b(n) = 0.086. For
the maximum frequency, take νmax equal to 50 GHz and for the minimum frequency,
νmin, equal to 0.1 GHz. Finally, take η (the ratio of other relativistic particles to that
of electrons) to be 10. With these parameters, show that the expression for the B

field is

Beq = 1.2 × 10−5
(

Sν[Jy] R2[Mpc]ν0.75[GHz]
V [kpc]

)2/7

.

16. Assume that the galaxy NGC 253 is similar to our Milky Way. The radius of
the synchrotron-emitting halo is 10 kpc at a distance of 3.4 Mpc. At ν = 8.7 GHz,
the integrated flux density is 2.1 Jy and the spectral index is n = 0.75 (Sν =
S0(ν/ν0)

−0.75). Take νmax = 50 GHz and νmin = 10 MHz to calculate the B field
and estimate the relativistic particle energy assuming that the minimum energy
condition holds, i.e. using Eq. (10.121 of ‘Tools’ as given in problem 15 of this
chapter).

17. Assume that the distance to Cygnus A is 170 Mpc. This source has a flux density
of 104 Jy at 100 MHz. Assume that the electrons radiate over a frequency range from
10 MHz to 50 GHz with a spectral index n = 0.75. Find the power, P , radiated by
the electrons via the synchrotron process, using

P = 4πR2
∫ νmax

νmin

Sνdν .
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Compare to the total energy of the radio lobes, 2 × 1057 erg, calculated under the
assumption of equipartition. What is the lifetime of these relativistic electrons if
synchrotron emission is the only loss mechanism? Compare this to the expected
lifetime of the source if the lobes are 7 × 104 pc apart and are thought to be moving
with a speed <0.2c. What do you conclude about the need to replenish the energy
of the electrons?

18. (a) The quasi-stellar radio source 3C273 has a red shift of 0.16. Take the Hubble
constant, H0, to be 70 km s−1 per Mpc. Find this distance. The flux density varies on
a time scale of months. Use a simple relation of R = cṫ to determine the source size,
without taking any relativistic effects into account. What is the angular size? Next,
using this angular size, convert the flux density at 20 GHz, which is ∼20 Jy, into a
source brightness temperature. What is the result? Does this exceed the maximum
temperature of 1012 K, the limit predicted by the inverse Compton effect? This is an
indication that relativistic beaming effects are important.
(b) Make use of Eq. (11.61) of ‘Tools’, which is:

vapp = r

t2 − t1
= V

1 − V

c
cos θ

for transverse velocities this is given by Eq. (11.62) of ‘Tools’, which is:

(vapp)tranverse = V sin θ

1 − V

c
cos θ

What is the angle at which the apparent transverse velocity is a maximum? What
is the apparent velocity at this angle? If the apparent expansion velocity is 7c, what
is the beaming angle? There is no counter jet. Explain why not, taking “Doppler
boosting” into account, using Eq. (11.68) of ‘Tools’, which is:

S(ν) = L0(ν(1 + z))

4πR2 (1 + z)3



Chapter 12
Spectral Line Fundamentals

1. Use Eq. (12.4) of ‘Tools’ which is

n2

n1
= g2

g1
exp(− hν

kT
)

to estimate T for a two-state system with equal statistical weight factors and level
populations n1=1.01n2 (where the upper state is n2). Repeat for n1 = 1.1 n2. For
non-Local Thermodynamic Equilibrium (LTE) conditions, T is referred to as Tex.

2. We now investigate the variation of Tex with the collision rate, C21, and the
spontaneous decay rate, A21, for a two-level system., for TK � T0 = hν/k is
given by Eq. (12.41), which is:

Tex = TK

(
T0 C21 + Tb A21

T0 C21 + TK A21

)

where νul is in GHz and μul in 10−18 ESU units, or Debyes. The relation for collision
rate gives the dependence on the kinetic temperature, TK, the temperature of the
radiation field, Tb, and the ratio of collision rates to A coefficients. In addition, we
suppose that the collision rate between levels 2 and 1, C21, is given by n 〈σv〉, where
the value of 〈σv〉 is ∼10−10. The value of T0 is hν/k where h is Planck’s constant,
k is Boltzmann’s constant and ν is the line frequency. When n 〈σv〉 = A21 for the
transition involved, this is referred to as the “critical density”, n∗. For the 21 cm
line, A21 = 2.85 × 10−15 s−1. Find n∗ for this transition. For neutral hydrogen, in
most cases, only two levels are involved in the formation and excitation of the 21 cm
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line since the N = 2 level is 9 eV higher. Less secure is any result for multi-level
systems. However, to obtain an order of magnitude estimate, repeat this calculation
for the J = 1 − 0 transition of the molecule HCO+, modelling the molecule as a
two-level system in which the Einstein A coefficient is A21 = 3 × 10−5 s−1. What
is the value of n∗? Compare this to the value for the 21 cm line. For HCO+, take
TK = 100 K; find the value of the local density for which Tex = 3.5 K. Tb=2.7 K. For
the same density, calculate n∗ for the J = 1 − 0 transition of the carbon monoxide
molecule, CO, modelling this as a two-level system with A21 = 7.4 × 10−8 s−1.

3∗. Line shapes can be obtained using a semi-classical model of the atom. Use the
model of a classical oscillator, but now with a loss term proportional to velocity:
ẍ = −ω2

0 x − γ ẋ.
(a) Solve for x under the assumption that γ � ω0, using x = x0eαt .
(b) Determine the electric field caused by the motion of the oscillating charge.
(c) Determine the line shape using the Fourier transform (F.T.) of the electric field.
(d) Obtain the line intensity as the absolute value of the square of the F.T. of the
electric field. This is the Lorentzian line shape.
(e)Determine the line shape if the thermal motion of the atoms, described by f (v) =
(m/2kT )3/2 exp(−mv2/2kT ), is combined with the relation for the Doppler shift,
Δv/c = Δν/ν0.

(f)Assume that the areas of these two line profiles are equal, and plot the line shapes.
Discuss the difference in intensities of the line wings.
(g) Compare values of γ and ω0 for the Lyman α line, given that the line frequency,
ν, is 3.29×1015 s−1 and the A coefficient is 5.4×109 s−1. Take γ as A, the Einstein
coefficient for spontaneous decay. Repeat this for the 1.420 GHz line of hydrogen,
emitted by hydrogen atoms in regions of density 1 cm−3, 105 cm−3 and 1019 cm−3

if γ = 2.87 × 1015 s−1.

4∗. The energy of the ground state of the hydrogen atom can be obtained using
the following analysis, which is closer to the spirit of quantum mechanics than the
usual semi-classical orbit analysis. Assume that the nucleus has a very large mass,
and charge e. The electron has a mass m and change −e. The electron moves with a
momentum p at a distance x from the nucleus.
(a) Write down the energy equation for this situation.
(b) Use the relation obtained in problem 4 in chapter 2, namely ΔxΔk = 1. Use
the de Broglie relation k = p/h̄ in the energy equation. Differentiate the energy
equation, and set the result to zero to obtain the minimum value of x. What is
this value? Compare to the lowest Bohr orbit. Calculate the energy. The value x

is the lowest orbit of the electron. The radius increases with n2, where n is the
principal quantum number. Calculate the energy of the lowest two orbits. Now take
the difference and set the energy difference equal to hν. What is the value of ν?
Compare this to the frequency of the Lyman α line.
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5. Evaluate the constants in Eq. (12.24) of ‘Tools’, which is:

Amn = 64π4

3 h c3 ν3
mn |μ∗

mn|2

to show that

Aul = 1.165 × 10−11 × ν3
ul|μul|2 (12.1)

where νul is in GHz, and μul is in 10−18 esu units.



Chapter 13
Line Radiation of Neutral Hydrogen

1. The ratio of the populations in the upper, Nu and lower, Nl levels of the ground
state of HI is given by the Boltzmann relation, where the statistical weights in these
levels are 3 and 1, respectively: Nu/Nl = 3 exp(−0.0682/Ts). Assume that the spin
temperature, Ts, equals the kinetic temperature, TK. Calculate the population ratio
for a temperature of 100 K. Repeat for a temperature of 3 K (the lowest temperature
possible under local thermodynamic equilibrium), for 104 K (the warm interstellar
medium) and 106 K. Compare the differences in populations.

2. In this problem, we determine the value of the FWHP linewidth in terms of TK,
the kinetic temperature, and the mass of the emitter, m. We assume that the thermal
motion of atoms in three dimensions is described by the Boltzmann relation for

velocities v between ±∞: f (v) = (m/2πkTK)3/2 exp
(
− mV 2

2kTK

)
.

(a) Show that the requirement
∫

f (v)dV = 1 is fulfilled.
(b) Use the distribution from part (a), with the definition

VRMS =
√∫

V 2f (v)dV .

The above relation between the line-of-sight FWHP ΔV1/2 (which is measured)
and the three-dimensional Vrms is ΔV1/2 = √

8ln2/3 VRMS. Use this to relate the
measured linewidth to the emitter mass and kinetic temperature for hydrogen. Show
that 1 km s−1 is equivalent to motion in a gas of TK = 21.2 K for atomic hydrogen.
(c) Show that the general result is TK = 21.2 (m/mH) × (ΔV1/2)

2, where mH is the
mass of a hydrogen atom.
(d) Compare this value with the speed of sound in an isothermal gas, c0 = √

P/ρ,
where P is pressure in dyne cm−2 and ρ is density in g cm−3. Check that this is
dimensionally correct, then evaluate c0 in terms of kinetic temperature and density
(in cm−3) for a perfect gas consisting of hydrogen atoms.
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Fig. 13.1 This is Fig. 13.9 of
‘Tools’. It shows the
excitation cross section (in
arbitrary units) for a two level
system in which the energy
levels are separated by E0

Table 13.1 Parameters of some selected atomic lines

Element and ionization Critical
state Transition ν/GHz Aij/s−1 density n∗ Notes

DI 2S1/2, F = 3/2 − 1/2 0.327 4.65 × 10−17 ∼ 1 a,b

HI 2S1/2, F = 1 − 0 1.420 2.87 × 10−15 ∼ 1 a,b
3He+ 2S1/2, F = 0 − 1 8.665 1.95 × 10−12 ∼ 10 a

aIons or electrons as collision partners
bH2 as a collision partner

3∗. In fig. 13.1 given here, we show the (idealized) cross section for a neutral–neutral
collision to excite the population of a two-level system (levels are separated by an
energy E0). On the basis of this description, explain the behavior of the cross section
with particle energy.

4∗. For the electronic ground state (L = 0) of HI, DI and 3He+, the energy of
interaction of the electron and nuclear magnetic moments is given by

W = 4

3
µe × µn

(
4Z3

I n3

)

where Z is the nuclear charge, I is the angular momentum quantum number of
the nucleus, and n is the principal quantum number. For HI, the energy levels are
designated by the quantum numbers Fu = 1, Fl = 0 and I = 1/2. For DI, Fu =
3/2, Fl = 1/2 and I = 1. In both cases, J = 1/2. The magnetic moment of
the HI nucleus is 2.79 nuclear magnetons. For the DI nucleus this is 0.857 nuclear
magnetons. Use the frequency in Table 13.1 (we include the relevant portion of this
Table) to scale the DI frequency from the HI frequency.

5. Repeat the previous problem for the hyperfine interaction for 3He+. For this ion,
Z = 2, and the upper and lower energy levels have quantum numbers Fu = 0 and
Fl = 1. The magnetic moment of the 3He+ nucleus is −2.1274 nuclear magnetons.

6. An estimate of |μul| for hyperfine transitions is: |μ2
ul| = β2μ2

e where β2 is 4/3
for a spin −1 system (D nucleus), and 1 for a spin −1/2 system (H nucleus).
For HI, Aul = 2.869 × 10−15 s−1. Given this result, the relations above, and
the result of problem 5, chapter 12, use the line rest frequencies of HI, DI and
3He, 1420.406 MHz, 327.384 MHz and 8665.65 MHz, respectively, and scaling
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arguments to obtain the A coefficients for DI and 3He+. Compare the results with
the compilation in Table 13.1.

7∗. This problem outlines an estimate of the amount of telescope integration time
needed to detect the 92 cm DI line toward an intense background continuum source.
When the 100 m telescope, FWHP beam size 9′ at 21 cm, and beam efficiency,
ηB = 0.75 is used to measure absorption of the 21 cm line of HI toward the
supernova remnant Cassiopeia A, one finds an apparent optical depth, τapp =
−ln(1 − (Tline)/(Tcont), of 2.5. The total continuum flux density of Cas A at 21 cm
is S = 3000 Jy; this varies with wavelength as S ∼ λ0.7. Take the FWHP size of
Cas A as 5.5′ and assume that the source and beam are Gaussian shaped. We want
to search for deuterium using the hyperfine transition.
(a)Use the source and telescope parameters to estimate the FWHP beamwidth of the
100 m telescope, and the peak continuum antenna temperature at the DI wavelength,
92 cm.
(b) If the HI and DI lines arise from the same region, the linewidths in km s−1

are equal. The linewidth in frequency units, Δνl, will follow the Doppler relation
(ΔV/c = Δνl/νl). The DI profile is assumed to have a FWHP of 2 km s−1; estimate
the FWHP of the DI line profile in kHz.
(c) Use Eq. (12.17), which is:

κν = c2

8π

1

ν2
0

g2

g1
N1 A21

[
1 − exp

(
−hν0

k T

)]
ϕ(ν)

and set ϕ(ν), the linewidth distribution, equal to dV obtain an expression for the
total column density of DI. The relation of populations in the upper and lower
energy levels is described in problem 1 of chapter 12. The general relation between
excitation temperature, line optical depth and column density, N = n × L, of any
two-level system, is:

Nl = 93.5
gl ν

3

gu Aul

1[
1 − exp(−4.80 × 10−2ν/Tex)

]
∫

τdV , (13.1)

where Tex is the excitation temperature, defined in problem 1 of chapter 12. Nl is
the column density in the lower level (in cm−2, τ is the optical depth of the spectral
line, dV is the linewidth, and ν is the frequency of the line in GHz.
(d) Derive this relation.
(e) For DI, as for HI, Tex = Ts = Tkin. Assume that hν � kTex to simplify this
relation. For the 92 cm line, Aul = 4.63 × 10−17 s−1, gu=4 and gl=2, what is the
relation for DI?
Assume that the spin temperatures, Ts, of DI and HI are equal that τ (HI) = 2.5
and that the D/H ratio is 1.5 × 10−5. What is the antenna temperature of the DI line
at 92 cm if Tline = Tcontτ? From the DI line antenna temperature and the system
noise (= receiver noise of 100 K plus the source noise), determine the integration
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time needed to detect a DI line, for a spectral resolution which is 1/2 of the FWHP
linewidth. Compare to the results in Heiles et al. 1993 ApJ Suppl 89, 271.
[Later searches and detections by Chengalur et al. 1997 A & A, 1997 318, L35 and
Rogers et al. 2007 AJ 133, 1625) were carried out toward positions in the outer
galaxy. These outer galaxy searches are more favorable since the system noise is
lower and the abundance of deuterium should be larger, due to the effect of stellar
destruction of deuterium (see Wilson & Rood 1994 Ann. Rev. A & A 32, 191).
The Chengalur et al. result was at the 3σ level; the Rogers et al. result gave a 9σ

detection].

8. (a) Suppose a uniform, extended HI cloud has a physical temperature of TK =
2.73 K. If the only background source is the 2.73 K microwave background, would
you expect to observe the HI line in emission or absorption or no line radiation at
all?
(b) Repeat if there is a background source with main beam brightness temperature,
TMB = 3 K, that is, TMB > TK. What would be the temperature of the absorption,
ΔTL, in K if τ = 1?

(c) Repeat for TK = 3.5 K.

9. In this and the next two problems, we investigate the details of geometry
(Fig. 13.10 in ‘Tools’ and figure 13.2 here). Assume that all regions are Gaussian
shaped. There is a continuum source behind the cloud of neutral gas containing
HI. The HI in this cloud has an excitation temperature Tcl and an angular size θcl.
The continuum source has an actual brightness temperature T0 and angular size θ0.
Assume that θa, the beam size of the antenna, is much larger than all other sizes.
The cloud covers a fraction f of the background source, that is θcl = f θ0. Specify
the conditions under which there will be line absorption against the continuum
source. Obtain the expression for the main beam brightness temperature of the line,
ΔTL = TL − T0. If τ �1, show that |ΔTL/T0| = f τ .

Fig. 13.2 This is Figure 10 in Chapter 13 of ‘Tools’. This is a set of three sketches for problems
9, 10 and 11. These deal with the geometry of a neutral gas cloud in front of a continuum source
where the relative sizes of the antenna beam, θa, the cloud, θcl and the continuum source θ0, differ



13 Line Radiation of Neutral Hydrogen 67

10. Repeat the last problem for the situation in which θcl � θ0, but both are
much smaller than the antenna beam, θa. Obtain the expression for the main beam
brightness temperature. Under what conditions does one find line absorption?

11. Repeat for the case in which the antenna beam is much smaller than either θcl or
θ0. Under what conditions does one find absorption?



Chapter 14
Recombination Lines

1∗. A spherically symmetric, uniform HII region is ionized by an O7 star (mass
about 50 M�), with an excitation parameter, which is defined as U = N2/3

e L(pc)
has U = 68 pc cm2/3. Background information needed: The excitation parameter U

is used in the following problem. U is the radius of the HII region (in pc), multiplied
by the 2/3 power of the electron density.
(a) Interpret the meaning and limitations of the excitation parameter. (See Table
14.1 in ‘Tools’; the most relevant data for the spectral types of the exciting stars are
given in the problems in this chapter)
(b) If Ne = 104 cm−3 what is the radius of this region?
(c) Calculate the Emission Measure, EM = N2

e L, where L is the diameter of the
HII region.
(d) If this region consists of pure hydrogen, determine the mass.

2∗. If the ionization is caused by a cluster of B0 stars (each with mass 18 M�), each
with U = 24 pc cm2/3, how many of these stars are needed to provide the same
excitation as with one O7 star?

3∗(a). Compare the mass of the HII region in Problem 1 to that of the exciting stars
needed to ionize the regions in Problems 1 and 2.
(b) Suppose that the HII region in Problem 1 has an electron density, Ne, of 3 ×
104 cm−3, but the same Emission Measure, EM = N2

e L, where L is the diameter of
the HII region. Determine the mass of ionized gas in this case.
(c) Now repeat this calculation for the same excitation parameter, but with Ne =
3 × 103 cm−3.

4. In the core of the HII region Orion A, the diameter is 0.54 pc, the emission
measure, N2

e L = 4 × 106 cm−6 pc, and the electron density Ne is 104 cm−3 (from
optical data). Combine Ne with the emission measure to obtain the line-of-sight
depth. Compare this result with the RMS electron density obtained by assuming
a spherical region with a line-of-sight depth equal to the diameter. The “clumping
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Fig. 14.1 This is Fig. 1 in
Chapter 14 of ‘Tools’. This
shows the photoionization
cross sections for H0, He0

and He+ (Osterbrock &
Ferland 2006 “Astrophysics
of Gaseous Nebulae and
Active Galactic Nuclei 2ed”
University Science Books,
Herndon VA)

factor” is defined as the ratio of the actual to the RMS electron densities. What is
this factor?

5. The assumption in problem 2 is that all of the exciting stars are of the same
spectral type (and mass). This is not found to be the case. Rather the distribution of
stellar masses follows some distribution. One is the Salpeter distribution, N(M) =
N0M

−1.35. Integrate over mass
∫

M N(M)dM to obtain the total mass of stars
between the limits Mlower and Mupper. Take Mlower as 0.08 M�, and Mupper as 50
M�. Is there more mass in stars of type B0 and larger or in stars with masses below
class B0?

6∗. (a) In Fig. 14.1 in ‘Tools’ and here (fig. 14.1), is a sketch of the photoionization
cross sections for hydrogen and two ionization states of helium. Explain why there
is a sharp decrease in the absorption cross section for frequencies lower than ν0.
Calculate the photon energy corresponding to ν0.
(b) At frequencies higher than ν0, the photons are only slowly absorbed. Suppose
that only these (higher energy) photons escape and are absorbed in the outer parts
of an HII region. On this basis, do you expect the electron temperature to be higher
or lower than in the center of the H II region? Give an explicit argument.

7. Calculate the Rydberg constant for the nuclei of deuterium (2H) and 3-helium
(3He), using Eq. (14.19 in ‘Tools’), which is:

RM = R∞
1 + m

M
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For the electron, the mass is 9.109 × 10−28 g. For D, the nuclear mass is 3.344 ×
10−24 g, and for 3He, this is 5.008 × 10−24 g.

8. (a) If the Rydberg constant for 4He is 3.28939118 × 1015 Hz, find the separation
between the 4He and 3He lines (in km s−1). Given that the linewidths of 4He and
3He are ∼24 km s−1, and that the number ratio 3He/4He = 10−4, sketch the shape
of each profile and that of the combined profile.
(b∗) For a 4He line TA of 2 K, frequency resolution 100 kHz, and system noise
temperature of 40 K, how long must one integrate using position switching to detect
a 3He recombination line?

9. The exact formula for a transition from the ith to the nth level, where i < k is
given in Eq. (14.18) in ‘Tools’, which is:

νki = Z2RM

(
1

i2 − 1

k2

)

where i < k.
(a) If we set k = n+1, show that the approximate Rydberg formula for the transition
from the n + 1th to the nth levels, that is for the nα line, is

ν = 2 Z2 RM

n3 .

(b∗) Determine the error for this approximation in the case of nα transitions, for
n = 126, 109, 100 and 166. If a total analyzing bandwidth of 10 MHz is used to
search for these recombination lines, show that the line frequencies calculated using
the approximate formula do not fall in the spectrometer band.

10. Suppose that the recombination lines from the elements 4He and 12C are emitted
without turbulence. The 4He arises from a region of electron temperature, Te=104 K,
while the 12C arises from a region with electron temperature Te=100 K. Eq. (14.20)
in ‘Tools’ is:

ΔV 1
2

=
√

0.04576 Te + v2
t

Modify Eq. (14.20), which is valid for H, for these elements using the atomic
weights. Assume that the turbulent velocity, vt, is zero.) The 4He −12C separation
is 27.39 km s−1. If the intensities are equal, at what level do these lines overlap?
Suppose the turbulence of the 4He line is 20 km s−1. Now what is the overlap?

11∗. This problem applies the derivation given in Eq. (14.22) to Eq. (14.29) for the
recombination of the remaining electron of singly ionized helium. This electron will
experience the field of the doubly ionized nucleus.
(a) Estimate the line frequencies using the relation in problem 9. Hint: use the
Rydberg formula with Z2 in the numerator.
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(b) For measurements of recombination lines of He+ and He at nearly the same
frequency, which line is more intense? For this, one must calculate the dipole
moment and A coefficient. The dipole moment as obtained from the correspondence
principle is μn+1,n = (1/2)ean, where an is the Bohr radius for principal quantum
number n (Eq. (12.24) in ‘Tools’) leads to Eq. (14.22) for hydrogen. Hint: The
nuclear charge enters as Z2 in this relation and in the An + 1, n coefficient.

An+1,n = 64π6 m e10

3 h6 c3

1

n5

where the charge on the nucleus is unity. For a larger value, the right side must
be multiplied by Z2. Refer to the previous problem to obtain an for an atom with
nuclear charge Z. Use the expression for the dipole moment given above, then
use this to show that the A coefficient for high nα lines is An+1,n = 5.36 ×
109 n−5 Z2 s−1.

12. Use Eq. (14.32) in ‘Tools’, which is:

TL = TbL − Tbc = Tee−τc × (1 − e−τL)

with τL � 1 but τc � 1 to investigate how TL is affected by a finite continuum
optical depth. Suppose you are unaware of the effect of the continuum optical depth;
show that the value of TL is reduced. Use the fact that TL is proportional to 1/Te to
show that the value of Te obtained from the measurement of TL and Tc will be larger
than the value one would obtain if τc is small.

13∗. The level populations of hydrogen atoms in an HII region deviate from LTE.
We use a specific set of parameters to estimate the size of these quantities. From the
Boltzmann relation for T = 104 K, we find that

N(LTE, 101)/N(LTE, 100) = 1.00975 .

Make use the ratio of the bn factors, b101/b100 = 1.0011 for Ne = 103 cm−3 and
Te = 104 K (from M. Brocklehurst 1970 Mon. Notices Roy. Astron. Soc. 148, 417),
to determine the excitation temperature between the n = 100 and n = 101 energy
levels. Is Tex greater or less than zero? Determine the ratio of bn factors for n = 100
and 101 which allows superthermal populations (Tex > Tk > 0) by setting Te = ∞.

14. For the n = 40 and 41 levels, for Ne = 103 cm−3 and Te = 104 K and hν/k =
4.94 K, the ratio of b41/b40 = 1.005. Determine the excitation temperature between
these levels.

15∗. For Ne = 103 cm−3 and Te = 104 K, for the principal quantum number, n =
100, the departure coefficient is b = 0.9692 and (d ln b100/dn)Δn = 1.368 × 10−3.
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Determine β using Eq. (14.42) from ‘Tools’, which is:

β = 1 − 20.836

(
Te

K

)
×

( ν

GHz

)−1 × d ln bn

dn
Δn

Then calculate r
r∗ which is TL

T ∗
L

using Eq. (14.52) in ‘Tools’:

r

r∗ = TL

T ∗
L

= b ×
(

1 − 1

2
τc β

)

where τc is the continuum optical depth.

16∗. Assume that the carbon 166 α recombination lines, at ν = 1.425 GHz, are
emitted from an isolated region, i.e. without a background source (this is possible
since carbon has an ionization potential lower than 13.6 eV). The parameters of this
region are NC = Ne = 1 cm−3, L = 0.4 pc and Te = 100 K. Using the LTE relation,
what is Tline and Tcontinuum if Δν = 4.7 kHz = 1 km s−1? Now use the appropriate
non-LTE coefficients, bn = 0.75, β = −7, and repeat the calculation.

17. A modified version of the usual equation of radiative transfer is Eq. (14.46) in
‘Tools’. This is:

−dIν

dτν

= Sν − Iν

Set the source function, S � I , to show that I = I0 eκνβb L. This is the situation in
which there is an intense background source with TBG � Te. Then repeat Problem
19 for TBG = 2500 K.

18. There are a few neutral clouds along the line of sight to the supernova remnant
Cassiopeia A. Assume that these are the only relevant carbon recombination line
sources. These clouds are known to have H2 densities of ∼ 4 × 103 cm−3, column
densities of ∼ 4 × 1021 cm−2, diameters of 0.3 pc. If we assume that all of the
carbon is ionized, we have C+/H = 3 × 10−4. At wavelengths of more than a
few meters, the carbon lines are in absorption. Assume that the line formation is
hydrogen-like. For the C166α line, we estimate that the peak line temperature is
3 K, and the Doppler FWHP is ΔV1/2 = 3.5 km s−1 (see Kantharia et al. (1998
Ap. J. 506, 758) for a model and references).
(a) Show that for n > 300 collisions dominate radiative decay, so that the
populations are thermalized, but that the populations are dominated by radiative
decay for n < 150.
(b) An observer claims that “Since the C166α line is in emission, the excitation
temperature must be larger than the background temperature, or negative”. Do you
agree or disagree? Cite equations to justify your decision.
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(c) If hν � kT and LTE conditions hold, show that a reformulation of Eq. (14.28)
in ‘Tools’, which is:

TL = 1.92 × 103 × (Te)
−3/2 × (

EM

Δν
)

where EM, the Emission Measure, is in units of cm−6 pc, and Δν is in units of kHz.
This gives the following relation between EM and line intensity:

TL =
(

576

T
3/2
e

)
×

(
EM

ν0 ΔV1/2

)
,

where ΔV1/2 is in km s−1, ν0 in GHz, EM in cm−6 pc and all temperatures in
Kelvin.
(d)∗ Estimate the maximum brightness temperature of Cas A at 1.425 GHz.
Assuming that the level populations are not inverted, the excitation temperature,
Tex, of the C166α transition is >0. Given the background continuum temperature
of Cassiopeia A, estimate a lower limit for Tex from the continuum brightness
temperature of Cassiopeia A. Next, use the cloud parameters in part (a) to determine
the emission measure of C+. Finally, make use of the expression in part (c) to
determine the integrated C166α line intensity. From a comparison with the observed
result, is it more reasonable to assume that Tex > 0 or that population inversion is
more likely? In this case, population inversion will give rise to line masering effects.



Chapter 15
Overview of Molecular Basics

1. (a) For T = 273 K and pressure 1 atmosphere, that is 106 dyne cm−2 (760 mm of
Hg), find the density, n, of an ideal gas in cm−3. Repeat for conditions in a molecular
cloud, that is T = 10 K, pressure 10−12 mm of Hg.
(b) For both sets of conditions, find the mean free path, λ, which is defined as
1/(σ n), and the mean time between collisions, τ , which is 1/(σ n v), where v is
the average velocity. In both cases, take σ = 10−16 cm−3. For the laboratory, take
the average velocity to be 300 m s−1; for the molecular cloud, take the average
velocity of H2 as 0.2 km s−1.
(c) Suppose that the population of the upper level of a molecule decays in 105 s.
How many collisions in both cases occur before a decay?
(d) For extinction we define the penetration depth, λv , in analogy with the mean free
path. When λv = 1 the light from a background star is reduced by a factor 0.3678.
For a density of atoms n, λv , in cm, is 2 × 1021/n. Calculate the value of λv for a
molecular cloud and for standard laboratory conditions. The parameters for both are
given in part (a) of this problem.

2. (a) The result of problem 2(c) of chapter 13 gives Tk = 21.2
(
m/mH

)
(ΔVt)

2

where ΔVt is the FWHP thermal width, i.e. there is no turbulence and the gas has
a Maxwell–Boltzmann distribution. Apply this formula to the CO molecule (mass
28 mH) for a gas of temperature T . What is ΔVt for T = 10 K, T = 100 K, T =
200 K?
(b) The observed linewidth is 3 km s−1 in a dark cloud for which T = 10 K. What
is the turbulent velocity width in such a cloud if the relation between the observed
FWHP linewidth, ΔV1/2, the thermal linewidth, ΔVt and the turbulent linewidth
ΔVturb is

ΔV 2
1/2 = ΔV 2

t + ΔV 2
turb ?
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3. The following expression is appropriate for the spontaneous decay between two
rotational levels, (u, l) of a linear molecule: Aul = 1.165 × 10−11 μ2

0ν
3 (J + 1)/

(2J + 3) where ν is in GHz, μ0 is in Debyes and J is the lower level in the transition
from J + 1 → J . Use this to estimate the Einstein A coefficient for a system with a
dipole moment of 0.1 Debye for a transition from the J = 1 level to the J = 0 level
at 115.271 GHz.

4. To determine whether a given level is populated, one frequently makes use of the
concept of the “critical density”, n∗, defined as:

Aul = n∗ 〈σv〉 .

where u is the quantum number of the upper rotational level, and l is that for the
lower level. If we take 〈σv〉 to be 10−10 cm3 s−1, determine n∗ from the following
Aul coefficients

CS : A10 = 1.8 × 10−6 s−1

CS : A21 = 2.2 × 10−5 s−1

CO : A10 = 7.4 × 10−8 s−1.

5. Suppose the effective radius re = 1.1 × 10−8 cm and the reduced mass, mr, of
a perfectly rigid molecule is 10 atomic mass units, AMU (an AMU is 1/16 of the
mass of a 16-oxygen atom; 1 AMU= 1.660 × 10−24 g), where Θ = mrr

2
e .

(a) Calculate the lowest four rotational frequencies and energies of the levels above
the ground state. One needs a simplified version of Eq. 15.11 to 15.13 from ‘Tools’
for the rotational constant is

Be = h̄

4π Θe
(15.1)

The energy of level J is:

Erot = W(J ) = h̄2

2 Θe
J (J + 1) − hD [J (J + 1)]2 . (15.2)

and the frequency is the difference between the energy of level J + 1 and J divided
by the Planck constant:

ν(J ) = 1

h
[W(J + 1) − W(J )] = 2 Be

[
(J + 1) − 4D(J + 1)3

]
(15.3)

(b) Repeat if the reduced mass is (2/3) AMU with a separation of 0.75 × 10−8 cm;
this is appropriate for the HD molecule. The HD molecule has a dipole moment
μ0 = 10−4 Debye, caused by the fact that the center of mass is not coincident with
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Table 15.1 Parameters of the more commonly observed carbon monoxide lines (problem 6)

Chemicala formula Molecule name Transition ν/GHzb Eu/Kc Aij/s−1d

C18O Carbon monoxide J = 1 − 0 109.782182 5.3 6.5 ×10−8

13CO Carbon monoxide J = 1 − 0 110.201370 5.3 6.5 ×10−8

CO Carbon monoxide J = 1 − 0 115.271203 5.5 7.4 ×10−8

C18O Carbon monoxide J = 2 − 1 219.560319 15.9 6.2 ×10−7

13CO Carbon monoxide J = 2 − 1 220.398714 15.9 6.2 ×10−7

CO Carbon monoxide J = 2 − 1 230.538001 16.6 7.1 ×10−7

a If isotope not explicitly given, this is the most abundant variety, i.e., 12C is C, 16O is O, 14N is N
b From Lovas (1992, J. Chem. Phys. Ref. Data 21, 18)
c Energy above the ground state in Kelvins
d Spontaneous transition rate, i.e., the Einstein A coefficient

the center of charge. Take the expression for A(ul) from Problem 3 and apply to the
J = 1 − 0 and J = 2 − 1 transitions of the HD molecule.
(c) Find the “critical density”, n∗ ≈ 1010 A(ul).

6. The 12C16O molecule has Be = 57.6360 GHz and De = 0.185 MHz. Calculate
the energies for the J = 1, 2, 3, 4, 5 levels and line frequencies for the J = 1 −
0, 2 − 1, 3 − 2, 4 − 3 and 5 − 4 transitions. Use the expression energy E(J )/h ≈
Be J (J + 1) − De J 2(J + 1)2 for the energy calculation. Check the results against
the relevant parts of Table 16.1 in ‘Tools’, given here as Table 15.1.

7. Apply for J = 0, 1 the analysis in problem 6 to the linear molecule HC11N,
which has Be = 169.06295 MHz and De = 0.24 Hz. Estimate J for a transition
near 20 GHz. What is the error if one neglects the distortion term?

8. In the following, we neglect the distortion term De and assume that the population
is in LTE. The population in a given J level for a linear molecule is given by
Eq. (15.33):

n(J )/n(total) = (2J + 1)eB0J (J+1)/kT /Z

where Z, the partition function, does not depend on J . Differentiate n(J ) with
respect to J to find the state which has the largest population for a fixed value of
temperature, T . Calculate this for CO if T = 10 K and T = 100 K. Repeat for CS
(B0 = 24.584 GHz) and HC11N, for T = 10 K.

9. Extend Eq. (15.33 in ‘Tools’), which is:

N(J )/N(total) = (2J + 1)

Z
exp

[
−hBeJ (J + 1)

kT

]

to include the optical depth relation Eq. (15.26), which is:

Nl = 1.95 × 103 gl ν
2

gu Aul

∫
TB dV
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to obtain an estimate of which J level has the largest optical depth, τ , in the case of
emission for a linear molecule.
(a) Show that when the expression for the A coefficient for a linear molecule is
inserted into Eq. (15.26 of ‘Tools’), we have

Nl = 1.67 × 1014

μ2
0 ν[GHz] × 2J + 1

J + 1
Tex τΔ v ,

where μ is in Debyes and v is in km s−1.
(b) Use the above expression to estimate whether the J for the maximum TMB =
Tex τ is larger or smaller than the J obtained in Problem 8.

10. Find the ratio of the intensities of the J = 2 − 1 to J = 1 − 0 transitions
for a linear molecule if the excitation temperature of the system, T , is very large
compared to the energy of the J = 2 level above the ground state, and both lines
are optically thin. What is the ratio if both are optically thick? Use the last equation
in the statement of Problem 9 of this Chapter.

11. The ammonia molecule, NH3, is an oblate symmetric top. For ammonia, B =
298 GHz, C = 189 GHz. If T � B, C, the value of Z, the partition function, with
C and B in GHz, is Z = 168.7

√
(T 3)/(B2 A).

(a) Evaluate Z for NH3 for T = 50 K, 100 K, 200 K, 300 K. For this approximation
to be valid, what is a lower limit to the value of T ?
(b) The (3,3) levels are 120 K above ground. Use the partition function and

n(J )/n(total) = (2J + 1)e120/T /Z

to calculate the ratio of the total population to that in the (3,3) levels.
(c) If only metastable (J = K) levels are populated, use the definition of Z as a sum
over all populated states, and

n(J )/n(total) = (2J + 1)e(BJ (J+1)+K2(C−B))/kT /Z

and the B and C values for NH3 to obtain the ratio between the population of the
(3,3) levels and all metastable levels.

12. The selection rules for dipole transitions of the doubly deuterated isotopomer
D2CO differ from that of H2CO since D2CO has two Bosons, so the symmetry
of the total wavefunction must be symmetric. Determine these rules following the
procedure in Sect. 15.6.2.



Chapter 16
Molecules in Interstellar Space

1. For CH3CN, CH3C2H and NH3 there can be no radiative transitions between
different K ladders. The populations can however be exchanged via collisions. For
ammonia, there must be J > K . There is a rapid decay of populations with quantum
numbers from (J + N + 1,K) to (J + N,K), where N is ≥ 1. Use the result
in problem 11, chapter 15 to show that rotational transitions of NH3 fall in the
frequency range ≥ 500 GHz. Estimate the Einstein A coefficients for the J = 1 − 0
and J = 2 − 1 transitions using μ = 1.34 Debye. Compare these values to those for
the inversion transitions listed in Table 16.1, which are ∼ 10−7 s−1.

2.(a) Calculate the excitation temperature, Tex, between two energy levels which
have the same statistical weights, that is gu = gl, so that the Boltzmann equation
is nu/nl = e−hν/kTex with hν/k = 1.14 K (see also problem 1 of chapter 12 where
these parameters are defined). The values of nu/nl are 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4, 1.5.
(b) Use the relation between optical depth and column density from Problem 9(a)
of chapter 15 to calculate the optical depth, τ , for the J = 1 − 0 line which has a
FWHP of 10 km s−1, Tex = −100 K, μ0 = 3.6 Debye, and ν = 9.0 GHz.
(c) Substitute this value of τ into the relation TMB = (Tex − TBG)(1 − e−τ ). If
|TBG| � |Tex| and |τ | � 1, show that TMB gives an accurate estimate of the column
density in the lower level, N0. Aside from questions of English usage, would you
agree with the statement “Optically thin masers do not mase”?
(d) Evaluate the other extreme case, TBG � Tex, to show that the background
radiation is amplified.
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3. Use the large velocity gradient (LVG) relation for a two-level system Eq. (16.39)
in ‘Tools’, which is:

T

T0
= Tk/T0

1 + Tk/T0 ln

[
1 + Aji

3Cji τij

(
1 − exp (−3 τij )

)]

to estimate the line temperature when TK � T0, A � C. In addition,
(Aji)/(3Cji τij )� 1. This is a hot, subthermally excited transition.

4. Repeat the above exercise for the case in which A � C, but with all other
parameters unchanged. This is the case of a hot, thermalized gas. Compare these
results with those of Problem 3.

5∗. In circumstellar envelopes, one assumes that spherical symmetry holds, and that
density n(r) = n0r

−2. In addition, r = (z2 + p2)1/2, where p is the projected
distance and z the line-of-sight distance, and a constant velocity of expansion.
(a) Show that

δz = ΔV/(dv‖/dz) = p
ΔV

V
(1 − (v‖/V )2)−3/2 .

(b) Take the abundance of a species to be a constant fraction of the abundance of
H2. Show that the optical depth for a given species at point p and for a given v‖ is

τ (p, v‖) = μ2f n0(J + 1)

1.67 × 1014 Tex

p

V (2J + 1)
(1 − (v‖/V )2)−1/2 .

(c) Take the beam to be much larger than the source. Then show that

T = 2π

∫ pmax

0
T0(1 − e−τ ) pdp

(d) Assume that the line is optically thin. Show that the line profile is flat–topped.
Then assume that the line is optically thick. Show that the profile has a parabolic
shape.

6∗. Bipolar outflows are common in pre-main sequence sources. This is a very
elementary analysis of molecular line emission from well-defined bipolar outflows.
(a) Approximate the outflow as a cylinder of length l, width w, with constant density
n, inclined at an angle i to the line of sight. Show that the functional description of
the mass of the outflowing material is (1/4)n(H2)π l w2.
(b) If the observed velocity of the outflow is vo, show that the age of the outflow is

age = lo/(vo tan i) .
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(c) Show that the total kinetic energy in the outflow is (1/2) Mv2
o sin i/cos2 i.

(d) If we define the mechanical luminosity L as Ė = (2× kinetic energy in the
outflow)/age, show that L = M(M�) v3/(sin i cos3 i), where M is the mass of the
outflow.

7*. For linear molecules, in principle one can determine both the kinetic temperature
and the H2 density if one can measure the “turn over” in the distribution of column
densities from different transitions. One example is given by measurements of the
CO molecule in Orion KL.
(a) You need the results in problems 3, 4 and 9 of chapter 15 to solve this problem.
Estimate the wavelengths, frequencies and Einstein A coefficients for the J = 30 −
29, J = 16−15 and J = 6−5 transitions, if CO is a rigid rotor molecule. Compare
these to the value for the J = 2 − 1 transition. If the lines are optically thin, and
〈σv〉 = 10−10 cm3 s−1, what are the critical densities?
(b) Determine the energies of the J = 30, J = 16 and J = 6 levels above the
ground state. If the kinetic temperature of this outflow region is ∼2000 K, find the
ratio of populations of the J = 30 to J = 6 levels, assuming LTE conditions. If
the H2 density, n, is ∼106 cm−3, set A equal to the collision rate, C = n 〈σv〉, to
determine which of the transitions is sub-thermally excited, i.e. A � C.

8. For interstellar grains, one can assume a size of 0.3 μm and an abundance of
1 grain for every 1013 hydrogen atoms. Then show that the quantity σg ng equals
10−22 nH cm−1. The mean free path, λ, is equal to 1/σg ng. If the mean time
between collisions, tgas−grain = λ/V , where the expression for V is taken to be
ΔV1/2. Show that this leads to Eq. (16.53) namely,

tgas−grain = 1.2 × 1010

nH2

(16.1)

9. From Eq. (16.50 in ‘Tools’), the free-fall time in years for a cloud under the
influence of self gravity. This is tff = 5×107/

√
n(H2), where n(H2) is the molecular

hydrogen density in cm−3. From this result and the result in the previous problem,
find the density at which the free-fall time equals the average time for a molecule to
strike a grain.

10. A typical giant molecular cloud (GMC) is thought to have a diameter of 30 pc,
and total mass of 106M�. Assume that GMC’s have no small scale structure.
(a) Develop a general formula relating the H2 density to the mass and radius of
a uniform spherical cloud. Because the He/H number ratio is 0.1, the average
molecular mass is 4.54 × 10−24 g.
(b) What is the density of the GMC? Find the column density of H2 in this cloud.
If the visual extinction is related to the column density of H2 by 1m = 1021 cm−2,
what is the extinction through the GMC?
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(c) What is the FWHP width of a line if the cloud is in virial equilibrium? Use the
simplest condition for virial equilibrium, as given in (Eq. (13.72) in ‘Tools’), which
is:

M

M�
= 250

(
ΔV1/2

km s−1

)2 (
R

pc

)

(d) If the mass of the ISM in the galaxy from 2 kpc to 8.5 kpc is 3 × 109 M�, and if
there are ∼100 GMCs as described in part (a) in this part galaxy, how much of the
total mass of the interstellar medium is in GMCs? If the thickness of the galaxy is
200 pc, how much of the volume is contained in GMCs?
(e) What is the H2 column density through a GMC? If one visual magnitude is
equivalent to a column density of 1021 cm−2 of H2, what is Av of a GMC?

11. (a) A well-established ion exchange reaction in diffuse molecular clouds is

H2 + D+ = HD + H+ + ΔE, (16.2)

where the zero point energy difference between H2 and HD is ΔE/k = 500 K. It is
thought that reaction (16.2) reaches equilibrium. Then one can relate the initial and
final products by the Boltzmann relation

HD

H2
= D+

H+ eΔE/kT .

If the relevant temperature, T , is Tk = 100 K, what is the overabundance of HD?
(b) A similar reaction to that given in part (a) occurs for isotopes of carbon
monoxide (CO) if the carbon ion, C+, is present in the outer parts of molecular
clouds:

12CO + 13C+ = 13CO + 12C+ + ΔE .

In this case, ΔE/k = 35 K. Repeat the steps in part (a) for the case of CO and
13CO.



Chapter 17
Solutions for Chapter 1: Radio
Astronomical Fundamentals

1. The equation given in the statement of this problem determines the cutoff
frequency of a plasma. For the Interstellar Medium (ISM), that is, νp = 8.97 ×
(0.03)0.5 = 1.6 kHz, while the ionospheric cutoff is νp = 8.97(105)0.5 = 2.8 MHz,
from the discussion on page 4 of ‘Tools’. Since the plasma cutoff frequency in the
ISM is much lower than the cutoff frequency in the Earth’s ionosphere, there may be
astronomical phenomena which can be observed only from above the ionosphere.
Thus such measurements must be made from satellites.

2. (a) From the result of problem 1, this radiation must arise in the ionosphere.
(b)∗ Assuming that this is black body radiation which falls on the antenna from one
hemisphere (solid angle Ω = 2π steradians), we use the Rayleigh–Jeans law to
relate the brightness temperature to the power. The antenna can receive only one
polarization, so the relation for power, P , is P = Sν × Area × Bandwidth ×
Solid Angle and Sν = 2kT /λ2 × Solid Angle: P = (2kT /λ2)AB(1/2)2π . For
these values, the resulting power is 1.5 × 10−23 W.

3. The peak flux density is
S = 1500 W/[2π(5 × 105 m)2 × (109 Hz)] = 9.6 × 10−19 W m−2 Hz−1

= 9.6 × 107 Jy. The average power is 3% of this value or 2.9 × 106 Jy.

4. Inserting the values give S = 600 W/[4π(10 m)2(106 Hz)] = 4.8 ×
10−7 Wm−2 Hz−1 = 4.8 × 1019 Jy.

5. (a) In the microwave band, the flux is S = 1000W/[4π(3.84 × 108 m)2

×(3 × 108 Hz)] = 1.8 × 10−24 W m−2 Hz−1 = 1.8 × 102 Jy. In the optical
range, the bandwidth is much larger (5 × 1014 Hz), resulting in a far smaller value,
S = 5 × 10−4 Jy.
(b) In the microwave range, the average photon energy is Er(photon) = (6.62 ×
10−27 erg s) × (2.8 × 109 Hz) = 1.85 × 10−17 erg = 1.85 × 10−24 J. In the optical,
it is Eo(photon) = 3.6 × 10−12 erg= 3.6 × 10−19 J. The total number of photons
emitted per second is Nr = 5.49 × 1027 (radio) and No = 3.0 × 1021 (optical).
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The photon flux can be calculated using N(photon)/A, where A is the area of the
sphere with the radius being the distance to the Moon. The photon fluxes are 3.0 ×
108 m−2 s−1 (radio) and1620 m−2s−1 (optical), respectively.

6. At 1 km, S = 10−9 W m−2 (3/1000)2/(108 Hz)] = 9 × 10−23 W m−2 Hz−1 The
result is 9×103 Jy. If there is a line of sight to the telescope, there will be interference
at a level of at least the sensitivity limit of the telescope up to a distance of 3000 km,
if there is no atmospheric absorption. The actual distance will be smaller if the
radiation follows a straight line path. For this distance, D, if the height is small
compared to the radius of the Earth, Re, we have

D = √
2 hRe

For a height, h, of 1 km, the range of the interference would be limited to 80 km.

7. We have νmax = 3.4 × 1014 Hz = 3.4 × 105 GHz = 58.789 T , thus T = 5780 K.
The number of photons per second is n. In the (simple but rather unrealistic)
monoenergetic case, we use n = L�/hν = 1.7 × 1045 photons emitted per second.
At 1 AU= 1.5 × 1013 cm, this number is reduced by a factor of 4π(1.5 × 1013)2 =
2.8×1027 cm2, so the number received on earth is 6.0×1017 cm−2 s−1. Multiplying
by the energy of each photon, 2.25 × 10−12 erg, we have 1.4 × 106 erg cm−2 s−1 =
0.14 W cm−2 = 1.4 kW m−2 = 1.4 mW cm−2. So, good agreement. Problems
number 8 and 9 were shifted to later chapters.

10. From the Rayleigh-Jeans relation in MKS units, we have from Eq. (1.33):

Sν = 2k TB θ2/λ2 ��

where δΩ is the solid angle in steradians. The value of Boltzmann’s constant, k, is
1.38 × 10−23 The area under a Gaussian in one dimension is 1.06 times the product
of the height and width. For two dimensions, this is 1.13. For a normalized Gaussian
in two dimensions, we take the angle in steradians to be 1.13×θ2, where θ is in
radians. Then we have θ(arcmin) = π

180 × 1
60θ(rad) = and for wavelength, λ(m) =

1
60λ(cm) combining these, we have Eq. (1.34):

Sν = 2.65 TB

(
θ

arcmin

)2

(
λ

cm
)−2

Using the standard relations of angles, mm and cm, we used 2.65 × 3600/100
to obtain Eq. (1.44):

(
Sν

mJy

)
= 73.6 TB

(
θ

arcsec

)2 (
λ

mm

)−2
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11. Use the result of problem 10 or Eq. (1.34):

Sν(Jy) = 2.65 × 105 × (24 × 60)2/(14.6 × 102)2 = 2.58 × 105 Jy

For the power, P , we multiply Sν by the collecting Area, A and bandwidth, B. The
result is P = 2.58× 105 × 103Hz× 800m2. Then the power is: P = 2.1× 10−13 W.

12. Use the result of problem 10 or Eq. (1.34) in ‘Tools’. The wavelength is 15
meters, and the angle is 24o, so: Sν(Jy) = 2.65 × 7 × 104 × (24 × 60)2/(15.0 ×
102)2= 1.7 × 105 Jy. The source shape is a ring, but considering this much larger
telescope beam, can be approximated as a Gaussian. Then the relation holds, and
Tsource × 42 = 7× 104 ×(24× 60)2 = 9.1× 109 K. As will be shown in chapter 10
and figure 10.1, where source flux densities are plotted as a function of frequency.
This plot shows that the Cas A emission is non-thermal.
The reader will have noted that we have used a convenient property of Gaussian
functions to obtain the actual source temperature. The proof of this is a long drawn
out process, which we give in problem 6 of chapter 8 of this volume. One may
wonder why this is only carried out in chapter 8 where the use of telescopes is
presented. The most important result is that the observed antenna temperature, TA,
is the convolution (see chapter 4 of this volume) of the telescope power pattern, P ,
with the actual source temperature, TB. This is presented in problem 1 of chapter 7.
Not all sources have a Gaussian shape, but can be approximated by the sum of
Gaussians. Finally, the ‘actual’ temperature of a source is an approximation which
depends on the angular resolution; the higher the angular resolution, the more detail
of a source is revealed. As will be shown, this detail is limited by the ratio of the
flux density in a beam element to the receiver noise.

13∗. For the version of the Planck formula in wavelength units, we have from
Eq. (1.22):

Bλ(T ) = 2hc2

λ5

1

ehc/kλT − 1

where y = 1.44 · 104/λ(μm) T. The expression 2hc2

λ5 determines the coefficient. In
MKS units, this is:
1.19 × 108/λ(μ)5. In W cm−2 Steradians−1 μ−1, the value, 3.7 × 10−7, is a factor
of about 3 larger than that value extracted from the plot in Leighton, Appendix B,
p. 725.
Changing to units of ergs cm−2 μm−5 Hz−1, this has a value of 1.19 × 1015 erg
cm−2 μm−1.
In CGS units, that is, ergs s−1 cm−2 Hz−1 steradian−1, the coefficient is 7.36 ×
10−21 The conversion is dν/ν = ΔV/c, from the Doppler relation. If the units
are GHz and km s−1,

dν = (109ν(GHz)) × dV(km s−1)/(3 × 105) = 3.3 × 103dV(km s−1)
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the relation is
∫

BνdV = 4.9 × 10−17 × (ν(GHz))3 1

ey − 1
�V(km s−1)

with y= hν/kT = 4.84 × 10−2 ν(GHz)/T.

14. The expression for the Planck formula is: Bν(T ) = 2hν3

c2
1

ehν/kT −1
. In terms of

the frequency in GHz, the coefficient is:

2hν3

c2 = 2 × 6.62 × 10−34 1027 ν(GHz)3/(3 × 108)2 = 1.47 × 10−23

the value of ‘y’ is given in the previous problem. So,

(
Bν(T)

Jy sterad

)
= 1.47 × 103 × ν(GHz)3 × 1

e4.8× 10−2 ν(GHz)/T − 1

In units of W m−2 km s−1 and ν in GHz, the term 2hν3

c2 is:

2 × 6.62 × 10−34 × 1027ν(GHz)3/(3 × (108)2) = 7.36 × 10−24 ν(GHz)3

In the Rayleigh-Jeans limit, this becomes,

(
Bν(T)

Jy sterad

)
= 7.36 × 102 × ν(GHz)3 × 1

e4.8× 10−2 ν(GHz)/T − 1

In other units,

(
Bν(T)

ergs s−1 cm−2 sterad−1

)
= 4.81 · 10−17 [ν(GHz)]4 � V(km s−1)

1

ex − 1

where the term x is given as before. In the Rayleigh-Jeans limit, this is:

(
Bν(T)

ergs s−1 cm−2 sterad−1

)
= 10−15 (ν(GHz))3 T � V(kms−1)

15.∗ Assume that the emission from Jupiter has a Gaussian shape. Then we can use

Eq. (1.33): Sν = 2.65 TB
(

θ
arcmin

)2 × (
λ

cm

)−2
with a size of θ=0.67 arcmin, and

1.4 GHz=λ=21 cm, so that Sν(Jy) = 2.65 × 150 × (0.67)2/(21)2= 0.40 Jy.
For ν=115 GHz, λ=0.3 cm, so scaling from the last result, Sν(Jy) = 1983 Jy.
This illustrates the behavior of black bodies, for which the Flux Density rises
with increasing frequency squared. In actual fact, in addition, Jupiter exhibits non-
thermal radiation at lower frequencies.
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The flux density relation for Orion A, the flux density of the core at ν=4.8 GHz or
λ=6.2 cm, requires a correction for the 2.6′ beam size. This requires the use of the
relation in problems 10 and 12. Use of this gives an actual peak source temperature
of 687 K. Then: Sν(Jy) = 2.65 × 687 × 2.52/6.22 = 300 Jy. (For a comparison,
see figure 10.1 in chapter 10 or Fig. 10.1 in ‘Tools’).

16. From the definition of a solid angle, Ω , this is

� = 2π

∫
sin θdθ = 2π (1 − cos θ)

For a small angle, Ω = πθ2, where θ is in radians. For RJ=71,492 km, and 1 pc=3
× 1013 km, this source subtends a solid angle of 3.8 × 10−17 steradians. From the
result of problem 13, the intensity in Jy/steradians is:

Iν(Jy) = 1.47 × 103 × ν(GHz)3 1

ex − 1

where x = 4.8 × 10−2 ν(GHz)/T. Then the product of Planck intensity and angular
size is as given. Inserting the values:

Sν = 2.6 × 10−14(345)3 × 1

(e0.0066 − 1)

The result is: 2.6 × 10−14 × 150.2 × (345)3 × (20/30)2 = 71 μJy

17. Following the approach used in problem 16, and the values in the table following
the Preface, the solid angle is 1.69× 10−15. Combing this with the result of problem
13, we have:

Sν = 1.47 × 103 × ν(GHz)3 ×
(

1

ex − 1

)
×

(
1.69 × 10−15

)
×

(
R�

D(pc)

)2

The coefficient is 2.48 × 10−12 and x = 0.0029 Assuming that 0.8 mm=345 GHz,
this is:

Sν = 2.48 × 10−12 (345)3 × (1/20)2 1

(e0.0029 − 1)
= 80 μJy

The distance must be reduced by the square root of the ratio of 88 μJy to 1 milli Jy.
This gives a distance of 3.4 pc.

18. Use figure 1.1 (Fig. 1.6 in ‘Tools’; see statement of this problem) to get a value
for 1013 Hz = 104 GHz. Make use of Eq. (1.25), which is:(

νmax
GHz

) = 58.789
(

T
K

)
is more accurate. This gives the more exact value,

8.82 × 103 GHz. At 1/10th of this frequency, 8.82 × 102 GHz, from Fig. 1.7 (see
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statement of this problem), the prediction from the Rayeigh-Jeans and Planck
relations agree. These give an value that is about 6% of the peak intensity.
For T=2.73 K, Eq. (1.25) (see statement of problem) gives a frequency of
160.3 GHz. From figure 1.1, the intensity is 10−18 W m−2 Hz−1 sterad−1. Using

this in Eq. (1.32), which is in MKS units, we have (TB = λ2

2k
Iν). Inserting numerical

values, we have for the approximation to the Planck law:

TB = ((0.00273)2 × 10−18)/(2 × 1.38 × 10−23) × 4π

The result is 3.39 K. Clearly, for mm wavelengths and low temperatures, the exact
Planck law is needed.

19. One needs Eq. (1.37) of ‘Tools’, which is: T = TB(0)×e−τ +T (1−e−τ ). Then
T (out) = 1 K e−0.1 + 300 K (1 – e−0.1) = 29.4 K. One should cool the cable, since
this reduces the (useless, i. e. noise, rather than signal!) contribution of the cable
itself to the output signal.

20. Use the equation of radiative transfer: T1(out) = Tse−τ + T1(1−e−τ ). Then,
T2(out) = Tse−2τ + (1 − e−τ )[T1e−τ + T2]. To minimize the output, the last term
has to be as small as possible. This is achieved if the warmer cable, i.e., the one
having T1, is placed first.

21. Inserting values into Eq. (1.43), we have the following. The value of Boltz-
mann’s constant in MKS units: k = 1.38 × 10−23 J K−1, and 1 J s−1 to obtain P ,
power in Watts. For 1 mW, the value of T is 7.24 × 1019 K.

22∗. From Eq. (1.40, in statement of this problem), we have

TB0 = (1 − r)T0 + rTs

The Black Body intensity per m2 from the warm surface is given by r × π × Iν

where Iν in MKS units is given in problem 13:

Bν = 1.47 × 10−20 × (ν(GHz))3 × 1

e0.048ν(GHz)/T − 1

The effective temperature is calculated using:

J (T ) = hν

k
× 1

ehν/kT − 1

we can calculate T0 (Table 17.1).
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Table 17.1 Effective temperatures and power for a reflector (problem 22)

ν hν/k J(T) r × T0 π r× Sν

(GHz) (K) (K) (W m−2 Hz−1) (W m−2)

100 5.0 297.6 29.8 9 × 10−14

1000 48.0 276.6 27.7 8 × 10−12

104 480.0 121.5 12.2 4 × 10−9

Although the effective temperature is slightly higher at 100 GHz, the losses
are usually much lower. At 104 GHz, the effective temperature is lower, but the
combined losses are usually much higher. More important is that the flux density
and power in W m−2 (taking into account a 10% bandwidth) input is 105 higher at
104 GHz than at 100 GHz. This is important considering the fact that for bolometers,
the fractional bandwidth is larger at higher frequencies. This bandwidth is typically
at least 10% of the center frequency.



Chapter 18
Solutions for Chapter 2: Electromagnetic
Wave Propagation Fundamentals

1. The solid angle for tan θ = 20 km/40 km, or θ=26.5o. This is Ω =
2π

∫ θ

0 sin θ dθ = 2π(1 − cos θ) = 0.663 steradians. By inserting the numbers,
the flux is determined to be 2 10−10 W m−2. To reach the edge of a city with
a radius of 20 km, this is 47.7 km from the transmitter, with the required power
flux the radiated power must be P = 2 × 10−10 W m−2 × [(47.7 × 103)]2 m2 =
0.4 W. This is a very small quantity. The danger level is at a distance R, where the
flux reaches 0.4 W/R2 = 10−2 W, so R = 6.3 m. This is a proposal put forth by
Facebook.

2. (a) The source luminosity, L, is L = 4π × D2 × Sν For the values given, this is

L = 4π × 1.88 × 103 × 3 × (
1016

)2
m2 × (600 Hz) × (

10−23 W m−2 Hz−1)
The result is 2.4 × 1020 W.
Using Eq. (1.34) (this is in the statement of problem 10 of chapter 1.),

103Jy = 2.65 TB × (10−3/60)2/182 = 2.16 × 10−8

the result is

TB = 4.6 × 1010 K

This is more than could be expected from any thermal process. At first, some
speculated that this was a communication from an alien civilization. The more
mundane solution is maser emission. This is a Λ-doublet line of the OH molecule.

3. From Eq. (2.64), this is: vphase × vg = c2 Thus the group velocity is vg =
c
√

1 − (λ0/λc)2 If λ0 = 1/2λc, we have vg = c/
√

2 and the phase velocity is
c × √

2. The group velocity is the speed at which information can be transmitted,
whereas the phase velocity is has no such interpretation.
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4. From ‘Tools’, Appendix A, Eq. (A.24), the Fourier transform (FT ) is

F(t) =
∫ +∞

−∞
e
− ν2

(Δν)2 e−i2πνtdν .

From the relations for the Fourier Transform (Table A.2), it is found that

F(t) = √
πΔν e−π2(Δν)2 t2

.

Requiring the exponent to be equal to −t2/(Δt)2 yields Δt = 1/(πΔν). Thus, the
product of the widths in t and ν is ΔνΔt = 1/π . This is a fundamental relation. In
quantum mechanics, this is the ‘uncertainty principle’ governing joint uncertainties
in momentum and position or phase and energy. See problem 4 in chapter 12.

5. This can be solved using the ‘shift theorem’ in Table A.2 of ‘Tools’:

f (x − a) = e−i2πas

where ‘a’ is k0. A more straightforward ‘brute force’ application of the integrals is
also possible.
If a(k) = a0 for k1 < k < k2, this is a square box in k space, and a factor (sin x/x) in
time. See the solution to the convolution of two Gaussians in problem 6 of chapter 8.

6. Differentiating Eq. (2.67) in ‘Tools’ with respect to t (using the appropriate units,
[cm−3 pc] for the dispersion measure, [s] for the pulse arrival time τD and [MHz]
for the frequency) gives

τ̇D = 4.148 × 103 DM
2ν̇

ν3 → ν̇[MHz/s] = 1.20 × 10−4 (DM)−1 ν3 .

7. (a) Set the dispersion bandwidth, ΔνD equal to B, the bandwidth which leads
to a pulse width of Δt . Then, using the relation from the last problem, we have
B/(Δt) = 1.2 × 10−4 (DM)−1ν3. Thus, Δt[s] = 8.3 × 103B DM (ν−3[MHz])
(b) The dispersion measure of the ionosphere is DM = (105 cm−3) × (6.7 ×
10−13 pc) = 6.7 × 10−8 pc cm−3. For ν = 100 MHz, Δt[s] = 5.5 × 10−10 B.
So even with a bandwidth of 10 MHz the smearing is small compared to a typical
pulse length of 10−6 s.

8.(a) Rewrite the result in Problem 7(a) with (202)3 ≈ 8.3 × 106. So, Δt[ms] =
DM (202/ν[MHz])3 B.
(b) The dispersion measure is DM = (0.05 cm−3)× (5.0 × 103 pc) = 250 cm−3 pc,
so the pulse smearing at 400 MHz is Δt[ms] = 250 × (202/400)3 B = 32.2 × B

ms. At 800 MHz, this is 4.0 × B ms.

9. The dispersion measure is DM = 103 cm−3 × 10 pc = 104 cm−3 pc. The pulses
are separated by 3.3 × 10−2 s, so the smearing must be significantly less than this
value. We require it to be at most 10 ms. From the result of Problem 8, we have
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Δt[ms] < 10 = 104 cm−3 pc (202/1000)3 B, or B ≤ 0.12 MHz, where B is the
bandwidth.

10. Use Eq. (2.71):

�τ(μs) = 4.148 × 109
[
DM(cm−3 pc)

] [
1

ν2
1

− 1

ν2
2

]

where ν is in units of MHz. Then set ν2 = ∞, and set DM=30 and ν1=400 MHz,
so obtain Δτ(μs)=0.78 s. For ν1=1400 MHz, Δτ(μs)=0.12 s

11. Use Eq. (2.73), where b is the bandwidth: bMHz = 1.205× 10−4 1
DM ν3(MHz)×

τsec For ν=1000 MHz and DM=30, have

b = (1.205 × 10−4/30) × (1000)3 × (0.1 × 10−6)

This gives 4.2 × 10−4 MHz, or 0.4 kHz.

12. Use Eq. (2.73), with ν=1.4 × 103 MHz and τ = 0.01 s. Then

b =
(

1.205 × 10−4/295
)

× (1400)3 × (0.01) = 11.2 MHz



Chapter 19
Solutions for Chapter 3: Wave
Polarization

1. Refer to Fig 3.3 of ‘Tools’, given here as figure 3.1. One must reverse the direction
of the arrows on the circles in the upper and lower parts of this figure.

2. Eq. (3.39) from ‘Tools’ was given in the statement of this problem.
Use the definitions to determine that S1 = Q = E2

1 , so the wave is linearly
polarized, aligned along the North/South axis.

3. From the statement of this problem, the wave is linearly polarized at an angle of
45◦ with respect to the N/S axis.

4. Then S3 = V = S0. This is the opposite of the statement in ‘Tools’, p. 49, point 2.
Also the value of V in point 1, p. 49 of ‘Tools’ needs a minus sign.

5. In the north, the wave is receeding Counter Clock Wise (CCW), it is Left Hand
Circular, LHC.

6. (a) The rotation measure is defined as:

RM = 8.1 × 105 (1 G × (105 cm−3) × (6.5 × 10−13) = 5.3 × 10−2 rad m−2

(b) For 100 MHz, we have Δψ = 0.48 rad = 27.3◦. For 1 GHz, Δψ = 0.27◦, and
for 10 GHz, Δψ = 0.003◦.

(c) If the magnetic field is perpendicular to the line of sight, there is no effect, so
the results in (b) are upper limits. Circular polarization is not changed by Faraday
rotation.
(d) Inserting the numbers gives RM = 8.1 × 105 (5 × 10−6 G) × (5 cm−3) × (5 ×
10−5 pc) = 1.01 × 10−3 rad m−2. For 100 MHz, Δψ = 0.009 rad = 0.5◦. For
1 GHz, the effect is 1% of the result for 100 MHz (Δψ = 0.005◦), so no corrections
are needed.
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7. Using the same relation as above, the rotation measure is RM = 2.2 ×
102 rad m−2. For 100 MHz, Δψ = (3 m)2 RM = 2 × 103 rad = (1.1 × 105)◦.
This is a very large rotation measure. For 1 GHz, the result is 1% of this value,
which is smaller, but still large, with Δψ = 19.7 rad.

8. (a) Since the electric field must be zero in the metal, at the instant when the
incoming wave reaches the metal surface, there must be a wave with the opposite
sense of circular polarization leaving the surface, so that the sum of the two waves
cancel. Thus, the sense of circular polarization of the reflected wave is opposite to
that of the incoming wave.

(b) For a linearly polarized wave, the polarization is unchanged, but the phase of the
outgoing wave is 180◦ different.

9. Using the definitions of RM and DM and taking the ratio, we get B‖ = 1.23 ×
10−6 RM/DM = 3.0×10−6 G = 3 μG. If the field perpendicular to the line of sight
is also 3 μG, the total vector sum is 4.2 μG.

10. We start with Eq. (3.41), which is: V(t) =
∞∫
0

a(ν)ei[φ(ν)−2πνt ] dν. We then set

a(ν)=a0, φ(ν) = φ0 and make the upper limit of the integral equal to 0.1ν0. Then

V (t) =
0.1ν0∫

0
a0 ei[φ0−2πν t] dν. This gives:

V (t) = −a0 eiφ0 e−π i(0.1νt) 1

2π it
× [e−π i(0.1ν)t − eπ i(0.1ν)t]

This is:

V (t) = −a0 eiφ0 e−π i(0.1νt) × sin [0.1ν0 π t]
2π i t

11. Here we show how to carry out the integration with all of the mathematical

details. The Fourier Transform is F . This is a function of time, whereas the input is
a function of frequency, ν. Then, from Appendix A, we have:

F(s) =
∫ ∞

−∞
f (x)e−i2π x sds

We drop the range of integration, and substitute t for s and ν for x. Then:

F(t) =
∫

e−i2πνt
(
a0e−(ν−ν0)

2/Δν2
)

dν
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change ν −ν0 to ν′. Then dν′ = dν, since ν0 is a constant. The goal is transform the
exponent into a quantity which is a square. This is done by adding the term (2π)2 t2.
Then the exponent is renamed ν′′ and we have:

F(t) = e(2π)2 t2
∫

e−(k′′/Δν)2
dk′′

The integral is a Gaussian, with the result
√

πΔν2. The standard interpretation is as
given in problem 4 of chapter 2, namely a large width in frequency requires a small
width in time.

12. The gyrating electrons emit synchrotron radiation, which has a high degree
of linear polarization. The circular orbit of an electron at the magnetic equator
is perpendicular to the movement of an electron at the magnetic poles. Thus, a
telescope with a small beam moving from the equator to the north or south pole
will measure a smooth change in linear polarization angle by 90◦.



Chapter 20
Solutions for Chapter 4: Signal
Processing and Receivers: Theory

1. (a) We must evaluate the integral
∫ +∞
−∞ Ae−x2/2σ 2

dx = 1. The standard approach
is to evaluate the square of this integral in terms of the variables x and y. Then we
have A2

∫ +∞
−∞ e−x2/2σ 2

dx
∫ +∞
−∞ e−y2/2σ 2

dy = 1. Now transform from rectangular to
two-dimensional polar coordinates, so that

dxdy = dθdr , and x2 + y2 = r2.
Then A2

∫ 2π

0

∫ +∞
0 er2/2σ 2 = 1. The result is A = 1/

√
2πσ 2.

(b) m = 〈x〉 = 0, since
∫ +∞
−∞ xe−x2/2σ 2

dx = 0.

For σ , we need
〈
x2

〉 = (1/
√

2πσ 2)
∫ +∞
−∞ x2ex2/2σ 2

dx. We must use ‘integration

by parts’, that is
∫

udv = uv − ∫
vdu, with v = −σ ex2/2σ 2

and u = x, so that

dv = xe−x2/2σ 2
.

Then
〈
x2

〉 = σ 2
∫ +∞
−∞ ex2/2σ 2

dx = (1/
√

2πσ 2)σ 2
√

2πσ 2 = σ 2.〈
x3

〉 = 0, while
〈
x4

〉 = (1/2πσ 2)
∫ +∞
−∞ x4 e−x2/2σ 2

dx. This latter expression
can be evaluated by the use of ′integration by parts′, with u = x3 and dv =
x e−x2/2σ 2

. Then v = −σ 2e−x2/2σ 2
and du = 3x2. The surviving term is

(3σ 2/2πσ 2)
∫ +∞
−∞ x2 e−x2/2σ 2

dx = (3σ 2) × (1/2πσ 2) × (
√

πσ 2/2) = 3 σ 4.

(c) From the results of part (b), we find that
√

x4 = √
3
〈
x2

〉
. Then we can sample

the voltage, square this and square again. Then one can investigate the σ values of
these results and compare to the theoretical result given here.

2. Use Eq. (4.11) in ‘Tools’, namely RT (τ) = ET {x(s) x(s + τ )} =
ET {x(t − τ ) x(t)}. In this case, since the function is periodic, use the period of
the sine wave. Then R(τ) = ∫ 1/ν

0 (A sin 2πνt)(A sin 2πν ×(t − τ ))dt . Expanding
the time-delayed term, we have
R(τ) = A2

∫ 1/ν

0

[
(sin 2πνt)2 cos (2πντ) + sin (2πνt) cos (2πνt) sin (2πντ)

]
dt .

Substituting x = 2πν, we find that the second term is zero, while the first term is
R(τ) = A2 (1/2πν)(π)(cos 2πντ) = (A2/2ν) cos 2πντ .
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For the cosine, the result is the same. In the frequency domain, the power spectrum
is a single spike at ν = 1/2πτ . This process is illustrated in fig. 20.1

3. Use Eq. (4.7) in ‘Tools’, namely: X(ν) = limT →∞
T
2∫

− T
2

x(t)e−2π iν t dt ; the Fourier

transform extends to ±∞, but the function is zero at ±τ/2. Then
v(ν) = ∫ +1/2τ

−1/2τ
f (t)e−2π iνtdt = −(A/2π iν)

(
e−2π iντ/2 + e2π iντ/2

)
= Aτ (sin (πντ)/πντ).

The spectral power density is
S(ν) = v(ν)2 = A2τ 2 (sin (πντ)/πντ)2.
The autocorrelation function, R(τ), is calculated as in Problem 2, this chapter.
A graphical method to obtain this is to slide the two rectangles past each other,
stepwise, summing the overlap at each step. The result is a triangle. The Fourier
transform of a triangular function is (sin x/x)2 as obtained above. Fig. 4.1 in ‘Tools’,
is here figure 20.2. This shows a sketch of this process in terms of voltages and
power (i.e. power). A more general relation describes the relation of autocorrelation
and Fourier Transforms.

4. This is v(ν) = ∫ τ

0 f (t)e−2πiνtdt which equals −A/2πiν
(
e−2πiντ + 0

)
. This is:

v(ν) = A/(2πiν)
(
e−πiντ

)
(sin πντ/πντ). This is the function found in Prob-

lem 5, this Chapter, shifted by the factor e−πiντ .

5. See fig. 20.2 for details. To graphically produce an autocorrelation, we must first
invert the shape about the f axis, then calculate the overlap. Then we sum over the
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Fig. 20.1 A sketch of the relation between the voltage input as a function of time, V (t),
and frequency, V (ν), with the autocorrelation function, ACF, R(τ), where τ is the delay, and
corresponding power spectral density, PSD, S(ν). The two-headed arrows represent reversible
processes. This a specific example of the more general relation between autocorrelation (on the
left) and Fourier Transforms (problem 2)
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Fig. 20.2 Graphical display of the correlation of two square-shaped functions as a function of
offset. This process is treated in Problem 5

Fig. 20.3 This refers to Problem 6. Above is the distribution in frequency space in which the
time sampling interval is too long for the frequency spread of the function. There is an overlap of
frequencies of the sampled function, shown as shaded areas. This is an example of aliasing. Below
the time sampling interval is halved, so aliasing is avoided

overlapping area, and plot this as a function of t0. We must repeat the process for a
series of t0 values, both positive and negative. For those with enthusiasm, apply this
process to the figure on the left side of Fig. 4.10 in ‘Tools’.
6. In frequency space, the convolution is a multiplication of the Fourier Transformed
functions. The result is a series of identical F(ν) structures. If the maximum
frequency content of F(ν) is large enough there will be an overlap of adjacent
functions, which is referred to as aliasing. Clearly, halving the sampling rate causes
an overlap of the sampled data (figure 20.3).
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7. Use the analysis in problem 4, this chapter, to obtain
v(ν) = (A/2π iν)

(
e−π iντ (sin (πντ)/πντ) + eπ iντ (sin (πντ)/πντ)

)
. Combining

terms, we have
v(ν) = (A/2π iν) cos (πντ/2) (sin (πντ)/(πντ))

= (A/4π2iν2 τ ) (sin (3πντ/2) − sin (πντ/2)).

We interpret this result as a (sin x/x) function shifted by a frequency ± ν/2. This is
a modulated signal.

8. Use the trigonometric identity:
y = cos 2πνct cos 2πνst = 1/2 (cos 2π(νc + νs)t + cos 2π(νc − νs)t).
One can modulate a carrier radio frequency, νc, with, e. g. speech frequencies νs .
This produces two sets of frequencies, the upper and lower sidebands. As will be
shown in Problem 7, chapter 5, one sideband can be eliminated at the expense of
more complexity.

9. (a) We use the table given in the statement of this problem. Including both the
plus and minus boundaries at the 1σ level, the confidence that the correct result
is 68.3%. At the two σ level, this is 95.4% and at the 3σ level, this is 99.7%. So
for security at the 1% error level, we need to use the 3σ level. Even better is a 4σ

criterion, as demonstrated in part (d) of this problem.
(b) ΔT = Tsys/

√
Bt = 200/[(500×106)t]1/2 = 0.0089/

√
t . This is the expression

for a one-sigma detection. Taking a certain detection as one at the 3σ level, the
noise must be 10−2 K/3 = 0.00333, so the time we need is [(0.00297)/(0.01)]2, or
7.2 s.
(c) Now the noise equation is ΔT = 200/

√
(10 × 103) × t = 2.0/

√
t . Using the

same 3σ value as in part (c), we find that 100 h are needed. Clearly, the bandwidth is
an important factor. If one can assume that the line is only in emission, one might
believe that the integration time is 1/4 of this value, since only one half of the value
outside the Gaussian integrated area is needed. However, this statement makes use
of additional information, which is not normally used to argue for the integration
time needed for a detection.
(d) Using Table 20.1, at the 1 σ we have 317 channels with spurious detections
and at the 2σ level, 46 channels. At the 3σ level, there will be only three spurious
channels. Even better is the use of a criterion that sets the reality of a detection at
the 4σ level. Then, there are only two spurious features.
(e) The use of additional information could allow one to reduce the integration time.
Restricting a feature to positive-only values would eliminate one half of the area

Table 20.1 Y factor and receiver noise temperature

TRX (K) Y from Eq. (4.11) TRX from Eq. (4.34) % difference

1000 1.24 810 19

100 2.0 136 36

20 3.3 17 15
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outside the Gaussian curve’s boundary. Then the integration time would be a factor
of 4 lower. However, see the statement at the end of the solutions for part (c).

10∗. (a) Differentiate the expression for σ with respect to f . Then set this to zero to
minimize the uncertainty in the combined sigma: the result is f = σ 2

2 /(σ 2
1 + σ 2

2 ).
Substitute into the expression for x̄. The results are given in the question.

(b) If we take σ 2
1 ∼ 1/t , we obtain x̄ = (1/(t1 + t2)) (t1 x1 + t2 x2). This is as it

must be to have an average which we intuitively expect.

11. If the receiver contributes no noise, Pout = GPin or F = 1. If F = 1, the
receiver noise is zero. If we put a room temperature load (T = 290 K) on the input,
and if output power is doubled, must have Trx = 290 K. If F = 1.2, Trx = 58 K, for
F = 1.5, Trx = 145 K.

12∗. Use the analysis in Section 4.2.1; the process is analogous. This analysis for
the square law detector is as follows. The steps refer to figure 4.4 in the statement
of this problem.
P2 = v2

2 = σ 2 = kTsysGΔν

< v3 >=< |v2| >= ∫ ∞
−∞ |v2|p(v2)dv2 = 2

∫∞
0 v2 p(v2)dv2.

Set v2/2σ = x2

< v3 >= 4σ 2(1/
√

2πσ 2
∫ ∞

0 xe−x2
dx = (

√
2/π)σ

< v2
3 >=< v2

2 >= σ 2, so σ 2
3 =< v2

3 > − < v3 >2= σ 2 − (
√

2/π σ)2=(1 −
(2/π))σ 2

But < v3 >=< v4 >= (
√

2/π) σ=([2/π] kGν[Ts + TR])1/2

If Ts �TR, have for the signal
< v4 >signal= (2/πkGνTR[1 + Ts/TR])1/2=(kGν/2πTR)1/2Ts
σ 2

4 = σ 2
3 /2ντ=σ 2(1 − 2/π)/2ντ .

To relate the σ4 to temperature, need to form
Δ < v4 >signal /ΔTsignal = (2 k B G Δν/2πTR)1/2.
Then, for TR � Ts, have

< σ4 >=
(

(1−2/π) (kGΔνTR)√
2Δντ

)
.

Since < v4 >=< v3 >, and using
ΔTRMS = σ4

(Δ<v4>/ΔTs)
, we have

ΔTRMS =
√

π − 2 TR√
ντ

= 1.07TR√
ντ

This has slightly less sensitivity than the square law detector system, but more
seriously, we can have a linear response only if the signal intensity is much less
than the receiver noise.

13. Check three values in Fig. 4.11 from Tools, figure 4.5 in the statement of this
problem.
The conclusion should be that the plot is illustrative, but that the Eq. (4.11) is more
accurate.
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14.(a) The receiver noise is not changed since the signal and the noise are in both
νu and νl

(b) The receiver noise is twice as large, since the signal is in one sideband but the
receiver noise is in both.
(c) If the response is twice as large, but the receiver noise is the same in both
sidebands, the signal-noise ratio is 2 Su/(Trxu + Trxl

) = Su/Trxu

15. Eq. (4.56) states:

ΔT

Tsys
= K

√
1

Δν τ
+

(
ΔG

G

)2

.

Differentiating this with respect to τ and setting the result equal to zero, we have
the term: −1/Δτ 2 + γ1 = 0. The solution is τ 2 = 1/(γ1 + Δν). This gives τ =
1/

√
γ1 Δν

16. For the on-source measurement consisting of ten samples, the signal at the
position of the source is 10, while the noise at the position of the source is

√
10. Thus

the signal-to-noise (S/N) ratio improves as
√

10 At the position of the reference, the
signal is 1000, while the noise is

√
1000. Thus the S/N ratio is

√
1000. When the

difference of the on-source and reference is taken, the noise in this result is the
square root of the sum of the squares of the noise in the on-source and reference, so
the S/N ratio has improved by (1 + 1000)/(

√
1 + 1000) = √

1 + 1000. For an on-
source combined with an off-source measurement of equal time, the result would
be

√
2. This has no advantage for a single off-on pair. However, for a map of an

extended region, there are advantages. If one takes 1000 off-source samples and
then 1000 on-source samples at different positions, the on-off combination gives
an advantage of

√
1001/2. In the more general case, if the number of on-source

samples is 1 N and the number of reference is 1000 N, the noise in the difference of
on-minus-off is N

√
1 + 1000. In contrast, the S/N ratio is 1001. So, for mapping

an extended source, the combination of 1000 samples on the reference position with
1000 different positions on the source gives a great advantage in S/N ratio when
compared to a single on-off pair.

17. Use the relation Tmin = hν/k. Then we have:
for ν = 115.271 GHz, Tmin = 5.5 K,
for ν = 1000 GHz, Tmin = 48 K, and
for ν = 105 GHz, Tmin = 4800 K.

18. The Δν solutions can be divided into two parts. First is the predetection
bandwidth. After that, the smoothing function.
For the numerator, we square the result after carrying out the integral. For the
rectangular pass band, the step function gives

∫ ν0+1/2Δ

ν0−1/2Δ
dν, which equals Δ. This

is squared to give 2 Δ2. For the denominator, the square of the step function is the
function, so is δ. Taking the factor of 1/2 into account, the ratio is thus Δ (see also
problem 6). For the single tuned circuit, the numerator is

∫ ∞
−∞

1
[1+(|ν|−ν0)2/Δ)2]dν.
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The correlation integral results in an arctangent, which is π . (This integral, and all of
those handled here, are to be found in ‘Table of Integrals, Series and Products’, 7th

edition by I.S. Gradshteyn and I.M. Ryzhik (Jeffrey and Zwillinger, eds., Elsevier
Academic Press 2007, in sections 3.249 for numerator 2.141 for denominator)).
The numerator is multiplied by 1/2, so the autocorrelation is halved to give the
result. The Gaussian integral for the numerator gives 2 Δ

√
2π , which is squared.

The denominator gives Δ
√

π . So the ratio is 2Δ
√

π . The factor of 1/2 provides the
final result.
For the smoothing functions, the numerators are all unity. The integral in the
denominator for the ‘running mean’ is

∫
(sin x/x)2dx which is related to the

Dirichlet integral. This integral has the value π . Changing the variable from 2πTν

to x to simplify the integration yields the result in the table. For the rectangular
passband, the integral is from 0 to ν0 and −ν0. The result is 2ν0. Since this is in
the denominator, the result is 1/2ν−1

0 . For the Gaussian integral, the result is
√

2π .
Since the smoothing is the inverse, this is 1√

2π
.

Inserting these into the relation 1√
Δν τ

, one can assess the effect of using different
bandwidths and smoothing functions.



Chapter 21
Solutions for Chapter 5: Practical
Receiver Systems

1. Fig. 5.13 is shown in the statement of this problem as figure 5.1. This is a log-log
plot. The value of the y-axis at 10 GHz is 4.3 K, while at 1000 GHz, this is 430 K.
Thus the slope is 0.43 K/GHz. The minimum noise in a coherent receiver is hν/k or
0.048 K/GHz, so to within the error of estimating the value of the slope in the plot,
it is consistent with the report that this line is 10 × hν(GHz)/k.

2.Use MKS units, and set the coupling efficiency, ε to unity: NEP=10−16W Hz−1/2=
2(1.38 10−23 Tn

√
50 × 109) so we find Tn=16 K. Calculate the RMS noise from

ΔTrms= Tn/
√

B=7.2 10−5 K.
For the coherent receiver, � TRMS = 50K/(2 × 109 τ )1/2 = 1.1 × 10−3/(τ )1/2.
To reach the RMS noise obtained with the Bolometer in 1 s, but one must integrate
with the coherent receiver for 238 s.

3. If the sideband ratio is unity, the single-sideband noise is twice the receiver noise
in the plot, since the receiver and sky noise enter in both the upper and lower
sideband, whereas the signal enters from only one sideband.

4. For a 2 stage amplifier system, Tsys = Tstage1 +Tstage2/Gstage1, with Gstage1 being
the gain of stage 1. For this problem, the gain, Gstage1, is 1000, so the system noise,
Tsys = 4 K + (1000 K/1000) = 5 K. Thus, the second stage contributes only 20%
of the total system noise even though the noise of this component is 50 times higher
than the noise of the first stage.

5. (a) The separation of the upper and lower sidebands is twice the IF frequency.
Thus this ν(IF) = [(115 − 107)/2] GHz = 4 GHz. The L. O. frequency is exactly
between the sidebands, so ν(LO) = 111 GHz.

(b) If ν(signal) is higher than ν(LO), the IF frequency moves down, since the
oscillator frequency is ν(IF) = ν(signal) − ν(LO). We know that ν(signal) is fixed,
and if ν(LO) is increased, ν(IF) will decrease, so the line must be in the upper
sideband.
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6. This is a more complex variant of the previous problem. For the lower sideband,
ν(IF) = −ν(signal) + ν(LO), so when ν(LO) is increased, the line will move to
higher frequency.
After the first mixer, the output from the signal band will move to lower frequency, if
the L.O. to the first mixer is increased. After mixing, this line is at a lower frequency,
so the frequency offset between the line (in the IF) and the second mixer is larger.
So after the second mixing, the line moves to a higher frequency in the second IF.

7. Along the lower path in fig. 5.3, shown in the statement of this problem, the mixer
output is shifted in phase by π/2, so this is cos (ωt − π/2) = sin ωst . The mixer in
the lower path produces an output
[sin ωst]2 + [sin ωct]2 + sin ωct sin ωst . The upper path produces
[cos (ωst)]2 + [cos (ωct)]2 + cos (ωct) cos (ωst). Adding these results, we have
2 + sin (ωct) sin (ωst) + cos (ωct) cos (ωst) = cos (ωc − ωs)t .
This is the lower sideband signal. To obtain the upper sideband signal, subtract
instead of summing.

8. The power amplification is 1018, or 180 db. The output power will vary by 0.1%.
One searches for a source which is 0.1 K. The gain fluctuations affect the total power
output, receiver noise plus source noise. Thus, these fluctuations, 1 K, exceed the
source intensity. In order to detect a source, one must switch between signal and a
reference faster than once per minute to stabilize the output.

9. From Eq. (1.37) in ‘Tools’, we have
Ts(out) = T (signal)e−τ + T (cable)(1 − e−τ )
This is the signal phase. For the reference phase, have
Tr(out) = T (cable)(1 − e−τ ).
The difference is the signal, S,
S = Ts(out) − Tr(out) = T (signal)e−τ ,
while the noise is N = Tn = √

2 T (cable) × (1 − e−τ ),
where the factor of

√
2 is the result of subtracting two noisy quantities. The signal-

to-noise ratio will increase as
√

t if only random effects are present.

10. ΔTRMS/Tsys = 1/
√

Bτ = 0.001; solving this, τ = 0.045 s. For the instability

given, we have ΔTRMS/Tsys = 1/
√

2 × 10−9/τ + 10−6τ . The terms are equal
after 0.045 s. One should switch much faster than 22 Hz to reduce the effects of
gain instabilities.

11. For the cheaper receiver, the system noise temperature, including the including
sky noise contribution, will exceed 150 K, while for the more expensive receiver
the system noise temperature will exceed 110 K. For these systems, the ratio of the
integration times to reach the same signal-to-noise ratio is a factor 1.85 (i. e. the
square of the total receiver noise). If one can accept an extra factor of 1.85 in time,
use the cheaper receiver.

12. (a) Three equally spaced samples taken within one period of a wave are needed
to characterize a sine or cosine wave. In principle, two samples should characterize
such a wave, if one is at a maximum and the other at a minimum, but these could
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be at zero-crossing points, and would not lead to a unique characterization of the
spectrum.
(b) From the product of time and bandwidth, we have 108. Then

√
108 = 104,

we have ΔTRMS/Tsignal = 10−4, that is the signal-to-noise ratio is 10 000 or more
everywhere. We need samples every 13′, or 21 samples per square degree. For the
entire sky, this is (41,252)×(20) = 8.4 × 105 samples. At 10s per sample, this is
2.34 × 103 h, or 98 days.
(c) For the 5 GHz survey, ΔTRMS = 7.1 × 10−4, using a total power receiver.
Comparison switching is needed to obtain stability, so the noise is twice as large,
1.4×10−3 K. For three samples per beam, the spacing must be 0.8′, or 5625 samples
per square degree. Over the whole sky this is 2.34 × 108 samples, which requires
6.5 × 105 h of time, or 74.2 years. Clearly, the 5 GHz survey must be carried out
with a multi-beam receiver.



Chapter 22
Solutions for Chapter 6: Fundamentals
of Antenna Theory

1. Eq. (6.49) is

Ŝ = ΣN
n=0e i k n D sin (φ)

Set e i k n D sin (φ) = q . Then the difference Ŝ−q × Ŝ is 1−qN+1, since only the first

an last terms of the series do not cancel. Solving for Ŝ, we have: Ŝ = 1−qN+1

1−q
. Next

convert q to the quantity e− i k D sin (φ) Then use the relation for sin x = 1/2× (e i x−
e− i x), to convert to trigonometric terms. Then factor a term e− i (N/2) k D/2 sin (φ) out
of the sum to convert to: The sum is

Ŝ = e i k D sin (φ) × e− i N k D/2 sin (φ) ×
[

sin k ND
2 sin (φ)

sin k D
2 sin (φ)

]

Square this term to obtain the power pattern.

|Ŝ|2 =
[

sin ( k ND
2 sin (φ))

sin ( k D
2 sin (φ))

]2

Since the imaginary factors cancel in the square. To obtain Eq. (6.64), allow N

to increase, D to decrease, so that N × D = Lx the length of the aperture, is
constant. In addition, the sin φ term becomes a unit vector, l. Then |Ŝ|2 becomes
the normalized power pattern in the x direction, as given by a simplified form of
Eq. (6.64):

Pn(l) =
[

sin(πl Lx/λ)

πl Lx/λ

]2
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Fig. 22.1 This is Figure 6.10 from ‘Tools’. It is used for problem 2 of this chapter. It is the power
pattern for the unblocked, uniformly illuminated aperture, showing the main beam, and near and
far side lobes. The vertical axis is normalized power, the horizontal axis is the parameter u. The
first null occurs when u has the value 3.83. The full width between nulls is 2.44 rad, which is equal
to λ/D

2. Fig. 6.10 of ‘Tools’, shown here as figure 22.1, is the power pattern of an
unblocked, uniformly illuminated circular aperture. The sidelobes can be reduced
by underilluminating the aperture, but there will still be sidelobes at some level.
Thus, the report is false.

3. (a) The number of wavelengths is D/λ = (0.5 cm)/(5 × 10−5 cm)=10,000. For a
100 m radio telescope, the number of waves at λ = 2 m is 50, whereas at λ = 2 cm,
this is 5000. For the ALMA 12 m antenna at λ = 1 cm, the number is λ = 1200, at
λ = 3 mm, the number is 4000, and at λ = 0.3 mm, this is 40,000. The treatment
of all of these systems must follow diffraction, but if the value of D/λ is more than
1000, one can use ray tracing and then correct the results for diffraction. For D/λ

less than 1000, the treatment must follow diffraction strictly.

4. Eq. (6.53) gives the expression for the E field. This is:

Eϑ =
(

− i
I Δl

2λ

1

r

)
e i (k r−ωt) Ŝ

where Ŝ is given in problem 1 of this chapter. Setting l = sin φ = 0, the first order
expansion of the terms in the square brackets in Ŝ becomes: Ŝ = N , where N is the
number of dipoles. The power pattern is the square of the E field, so the power from
N dipoles is N2 that of a single dipole.

5. (a) θ = 1.02 × λ/D = (5 × 10−5 cm)/(0.3 cm) = 1.7 × 10−4 rad = 0.6′.
(b) Put all units in centimeters:
θ = 1.02 × (2 cm/(100) × 100 cm) = 2 × 10−4 rad = 0.7′. For the Very Large
Array, with = 27 km, this is
θ = 1.02 × (2 cm/(27) × 1000 × 100 cm) = 7.4 × 10−7rad = 0.15 arcsec.
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(c) This is a problem concerned with units. We start with θ = 1.02× λ/D, the units
of λ and D must match; choose meters. Then for λ in mm, need a factor of 10−3,
for D in km, need a factor of 103. So:

θ = 1.02 ×
[(

10−3 × λ
)]

/
[(

103 × D
)]

× 206, 265

so

θ = 0.206
λ(mm)

D(km)

6. (a) θ = (26 cm)/(2 m) = 0.13 rad = 7.4◦.

(b) R = c/3 (Δ l/λ)2 = 108 (0.003/0.20)2 = (108m) × (0.5 cm/20 cm)2 =
3.75 × 104 ohms.

(c) From Eq. (6.43) in ‘Tools’, in MKS units,
Ptotal = 2c/3[IΔ l/2λ]2 = (2 × 108 m s−1)[(0.5 A) × 0.003 m)/2(0.2 m)]2

= 7.8 × 103 W.

7. Total Energy = (10−16 W)× (40 telescopes)× (57 years × 3.14 × 107 s/year)=
7.2 10−6 Joules=7.2 ergs. The energy gained by 1 g in falling 2 cm is E=mgh or
E=(1 g)(980 cm s−2)(2 cm)=1960 ergs. So the radio telescopes have received much
less energy than gained by an ash falling 2 cm in the earth’s gravity.

8. (a) Figure 6.11 from ‘Tools’ is given in the statement of this problem as figure 6.1.
For this, a ray strikes the surface at an angle Φ and must be reflected at the same
angle. This ray must pass through the focus, f, by definition. Then
r cot 2Φ + y = f

and the distance A = H − y(r) and B2 = (f − y(r))2 + r2

So the path from the pupil plane to the focus is A + B.
(b) From Fig. 6.11, 2α+2Φ=180◦. In terms of the value in Fig. 6.11, Φ = 180◦ −α,
and α = dy/dr . In addition, the trig identity gives:
cot 2Φ = 1/2

(
(1 − tan Φ2)/ tan Φ

)
The focus is f = r cot 2Φ + y = r/2

(
1 − (dy/dr)2

)
/ (dy/dr) + y

For a surface y = r2/4f , the focus is a constant, as is A + B.
(c) No, you need an additional reflector. This is shown by the fact that the result
of a reflection from the surface of a sphere must form an isosceles triangle with a
hypotenuse of length equal to the radius of the sphere. Then the distance from the
point of the reflection to the focus is one half of the radius, R, times the cosine
of the angle of reflection. The distance to the center of the sphere from the lowest
point is the sum of the focus plus R/2× cos Φ. Then the focal point, f, is f =
R/2 × (1 − 0.5/ cosΦ). For very small angles, there is a unique focus, but not for
larger angles.
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9. Eq. (6.56) from ‘Tools’ is:

dEy(φ) = − i J0 g(x ′) 1

r
e− i (ωt−k r) dx ′ .

This is a one-dimensional expression. For Eq. (6.57), we have:

dEy = − i

2
λJ0 g(x′) Fe(n)

| x − x′ |e− i (ωt−k |x−x′|) dx ′

λ

dy ′

λ

using | x − x′ |= r and 1
2λFe = 1, then Eq. (6.57) is directly related to Eq. (6.56).

10. Place two isotropic emitters along the x axis. Assume these emit put sine waves.
Label these no. 1 and no. 2. Place no. 1 to the left of no. 2. These are separated by
λ/4 The emission from both has the same amplitude. If the phase of the emission
from no. 1 lags λ/4 behind that of no. 2, the emission from no. 1 is λ/2 at no. 2, so
cancels along the direction of the x axis to the right. To the left, these reinforce. In
other directions, the result is intermediate.

11. From problem 8 of chapter 3, or alternately, the theory of images, there is an
identical emitter, with the same phase, at a depth of λ/4 to cancel the incoming
radiation which is perpendicular to the surface. In other directions, the cancellation
is lower. The distance between the emitters is double that in problem 10, so the angle
at which the cancellation occurs will differ.

12. Eq. (6.78) in ‘Tools’ is

FWHP = 1.02
λ

D
rad � 58.4◦ λ

D

Convert degrees to arc seconds using the factor 3600. To use D in meters and λ in
millimeters requires a factor of 1/1000. So the terms are (3600/1000) × 58.4 ×
1.02 = 214.4. These units are appropriate for single dish millimeter telescopes such
as the IRAM 30-m or the 50-m Large Millimeter Telescope (LMT) in Mexico. This
is appropriate for a fully illuminated dish; usually there is some taper to reduce
sidelobes. Compare to figure 22.1.

13. Eq. (6.41) is: PS = c
3

(
IΔl
2λ

)2
If we require that

IΔl

2λ
= eV̇

c2

we have

PS = c

3

(
e2V̇ 2

c4

)2
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If

e2V̇ 2 = 64π4ν4μ2

This is the quantum mechanical expression for spontaneous emission:

Amn = 64π4

3 h c3 ν3
mn |μmn|2

given in Eq. (12.24) of ‘Tools’ and many other texts. In this expression, |μmn| is the
dipole moment which has units of charge times distance.

14. Eq. (6.32) is: Az = 1
c

IΔl
r

e− i (ωt−k r) inserting I (z) = I0 ·
(

1 − |z|
Δl/2

)
into

Eq. (6.40): | 〈S〉 |= c
4π

| Re (E × H∗) |= c
4π

(
IΔl
2λ

)2 sin2 ϑ
r2 The calculation of the

average current I (z) is

Î =
∫ Δl/2

0 (I (z)) dz

(Δ2)

The value of this average is I/2. Inserting this into Eq. (6.41), we obtain a radiated
power of

PS = c

3

(
IΔl

4λ

)2

Since the current is squared, this shows that 1/4 of the power radiated if the current
is a constant. The equation defining the Radiation Resistance is:

[P ] = 1
2R I 2

since the power, P , is 1/4, the value of R is:

RS = c

24

(
Δl

λ

)2



Chapter 23
Solutions for Chapter 7: Practical
Aspects of Filled Aperture Antennas

1. (a) Iν = 2kTB/λ2 and Sν = ∫
(2kTB/λ2)dΩ = (2kTB/λ2)ΔΩ .

We have W = 1
2 Ae (IνΩA) Δν = Ae (Sν) Δν.

Since W = kTA Δν = 1
2Ae SνΔν, we have

TA = 1
2k Ae Sν .

For brightness temperature, we need the relation of antenna beam and source size;
use Eq. (7.23) in ‘Tools’
TA = (∫

TB Pn dΩ
)
/
(∫

Pn dΩ
)
.

If the source is small, the integral in the numerator is
∫

TB Pn dΩ ≈
TB Pn(0)ΩMB = TBΩMB, while the denominator is

(∫
Pn dΩ

) = ΩA.
Since ΩMB/ΩA = ηB, we have
TA = ηBT

(b) As measured with a telescope beam large compared to the source, we have:
Sν = 2k

∫
(T /λ2) dΩ = (2kTB/λ2)

(
1.133

[
θ2

s + θ2
B

])
For a source very large compared to the telescope beam

Sν = (2kT /λ) dΩ = (2kT0/λ)
(
1.133

[
θ2

s

])
.

Setting these last two equations equal, we have
T0 = TB

[
θ2

s + θ2
B

]
/θ2

s .

2. TA = ηBT0 Ωs/ΩMB = ηBT0(θs/θB)2 = (0.6) × (600 K) × (0.667/8)2 = 2.5 K.

3. Use the symmetry about the center of the beam: P = 2I
∫ 2π

0

∫ 10◦
0 sin θ dθ =

4πI (1 − cos (10◦)) = 0.19 I . So S = I/(0.19) × (60 × 103 m)2) = 1.45 ×
10−4 W m−2. To receive 10−6 W, we need 7 × 10−2 m2, or an antenna with
dimensions of 8 cm on a side. The actual antenna must be larger, since there will
be losses and the efficiency will be less than 100%.

4. ΩA = Pmax
∫ 2π

0 dφ
∫ 1◦

0 sin θ dθ + ∫ 10◦
1◦ sin θ dθ + 0

From this, we have
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2π (1 − cos (1◦)) + 2π(cos (1◦) − cos (10◦)) = 2π(1.5 × 10−4 + 1.5 × 10−3) =
2π(1.52 × 10−3).
ΩMB = Pmax

∫ 2π

0 dφ
∫ 1◦

0 sin θ dθ = 2π
(
1.5 × 10−4

)
.

η = ΩMB/ΩA = 0.1.

5. Yes, but the antenna need not be special. From Problem 6, since TA =
T0 Ωs/ΩA = ηBT0Ωs/ΩMB. We assume that Ωs < ΩMB, so we always have
TA < T0.

6. No, since θ2
observed = θ2

beam + θ2
source. So the observed size is always larger than

the source size.

7. Set x2/2σ 2 = 4 ln 2x2/θ2
1/2. Solving for θ1/2 we obtain θ1/2 = √

8 ln 2σ =
2.355σ

8. (a) Make the ring flat:
Ageom = 2π

∫
rdr = π(R2

outer −R2
inner) = π ((305+15)2 − (305)2) = 2.95 104 m2

(b) Use Eq. (6.70), which is:

Pn(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∞∫

0

g(ρ) J0(2πuρ)ρ dρ

∞∫
0

g(ρ)ρ dρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

with a grading g(ρ)=1 for Rin < R < Router. Since the R’s are nearly equal,
one can extract the Bessel function from the integration. Then using a value
R̄=1/2(Rin + Router) for the argument of the Bessel function, we have a simpler
result.
We call the integral over the grading D, where D=

∫
ρdρ = 1/2

(
R2

outer − R2
inner

)
The far field pattern is then Pn=(N/D)2, with

N = D
(
J0(2π sin (θ R̄/λ))

)2

For small angles, sin (θ R̄/λ) = θ R̄/λ

Pn = 1
D

(
J0(2πθ R̄/λ)

)2

The amplitude of the first sidelobe is (0.4)2 = 0.16. This is at x = 3.9 =
2πθ (R̄/λ), or θ = 1.24 (λ/R̄)

The full width to half power of the main lobe is at x = 1.5, so using the relations
above, have x=1.5=2πθ (R̄/λ), or θ = 0.95 (λ/R̄)

(c) From the result of problem 1 of chapter 7, have
TA = ηASν Ag/2k=0.5·Sν(2.94 104 m2)/2(1.38·10−23) = 5.33 Sν .

9. You need a 50/1 signal-to-noise ratio. There is no contradiction. A wide beam
can still be pointed very accurately in a given direction, given a high signal-to-noise
ratio.
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10. The surface accuracy must be 0.02λ, from Fig. 7.7 in ‘Tools’, which is given in
the statement of this problem.
(a) The value of ηA = 0.72.
(b) From Fig. 7.7, need K/(K+1)=1, so ηA = 0.94. The beam efficiency is 0.82.
From Table 6.1 of ‘Tools’, A frequency of 28 GHz is equivalent to a wavelength of
1.06 cm. Then θ = 1.02 (λ/D)=1.02 (1.06 · 10−2/7) = 1.55 · 10−3 rad=5.3′. See
figure 22.1 for the far-field antenna power pattern.

11. Eq. (6.52) gives a definition of the quantity θgeom = λ/D, where θB is the
measured main beam Full Width to Half Power. In addition, we must use Eq. (7.5).
This is ηB = �MB/�A In addition, we need Eq. (7.9). This is Ae = ηA × Ageom
We also need Eq. (7.11). This is: Ae × �A = λ2 Combining all of these relations,
we have:

ηB = �MB × Ae/λ
2 = ηA �MBAgeom/λ2 = 1.133 × ηA θ2

Bπ/4 D2/λ2

This gives
ηB = 1.133 θ2

B ηA π/4 D2/λ2 = 1.133ηA π/4 θ2
B/θ2

geom.

12. As before, θgeom = λ
D ; we need Eq. (7.9) from problem 11, and the definition

of SEFD, Eq. (7.27) of ‘Tools’: SEFD = 2 η′ k Tsys
Aeff

. Then, from these definitions:

SEFD = 2 η′ k Tsys

ηAπ/4D2 = 2 η′ k Tsys

ηAπ/4D2 = 8η′ k Tsys× θgeom

πηA λ2

13. Eq. (6.40) is given in the solution of problem 14, chapter 6: This equation
describes the total radiated power. The angular distribution is P = P0 sin θ2 and
the normalized power pattern is Pn = P

P0
An important quantity is the beam solid

angle, ΩA This is defined as in Eq. (7.3), given in the statement of this problem.
From the evaluation of this, the value is ΩA = 8π/3. From Eq. (7.5) of ‘Tools’, the
main beam efficiency can be obtained.
Using this definition, the result is 4π/3. Then making use of ηB = ΩMB

ΩA
This is

ηB = 4π/3

8π/3
= 1/2

From Eq. (7.11), Ae × ΩA = λ2 The value of ΩA is 4π/3, so Ae = 3λ2/4π

14. The power from the tapered Hertz dipole is 1/4 of that from a Hertz dipole that
has a uniform current, since the integral along the dipole is

∫ Δl/2

0
I0 ×

(
1 − |z|

Δl/2

)
dz

The result of this integral is 1
2 I0

(
Δl
2

)
Since the power depends on the value of I 2

0 ,
this is 1/4 of the power emitted by a Hertz dipole with a constant current. The
direction of maximum power is independent of angles, so maximum gain will be 1/4
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of that from a Hertz dipole with a uniform current (see problem 14 of Chapter 6).
Thus, the value of Gmax is the same as for the dipole with a constant current. From
Eq. (7.6):

Gmax = 4π Ae

λ2

Since ΩA depends only on angles, not on the distribution of current, ΩA is the same
as for the dipole with a uniform current, so the result is 8π/3. From Eq. (7.11),
Ae ΩA = λ2

Thus, the effective area of this dipole antenna, A, must be the same as the uniform
current case.

15. This is the first term in Taylor series expansion of the difference between a wave
expanding from a point source (i.e. an expanding spherical wave) and a plane wave.
Putting the dimensions in meters:

k = 2d2

λ
= 2 × (100)2

0.03
= 6.7 × 105 m = 670 km

Thus the radiation is a plane wave at this distance. For the second example, for the
dimensions in meters

k = 2 × (10)2

0.007
= 29 km

16. Eq. (7.26) is Sν = 3520
T ′

A[K]
ηA[D/m]2 , where T ′

A is the antenna temperature
corrected for atmospheric attenuation. In most cases, in the centimeter wavelength

range, this correction is small. So, then: Sν = 3520
T ′

A

(0.5)× (305)2 = 7.6 × 10−2 T ′
A

For a 100 m aperture, the result is: Sν = 3520
(

T ′
A

(0.5)× (100)2

)
= 0.70 T ′

A.



Chapter 24
Solutions for Chapter 8: Single Dish
Observational Methods

1.(a) The noise from the atmosphere is 250 (1 − e−0.1) = 23.7 K.
The source intensity is reduced by a factor (e−0.1) = 0.90, so 10% of the source
intensity is lost.
(b) The results, obtained in the same way as in part (a), are given in Table 24.1.
(c) τ (30◦) = τz/ sin 30◦ = 2 τz
τ (20◦) = τz/ sin 20◦ = 2.92 τz
(d) τ (15◦) = τz/ sin 15◦ = 3.86 τz
τ (10◦) = τz/ sin 10◦ = 5.76 τz
There is a 32% increase in the absorption between 20◦ and 15◦, and a 200% increase
between 20◦ and 10◦.
(e) The emission from the atmosphere will raise the system noise. For τ = 0.2, have
an extra 36.2 K. This increases the receiver noise by 36%. However, one must also
correct the astronomical intensity for the absorption. This is a 22% effect. Overall,
both effects, absorption of the signal and emission from the atmosphere, must be
accounted for. This results in a much greater worsening of the receiver sensitivity.
For the system 100 K receiver noise, the effective system noise is 166 K, or a 66%
worsening of the sensitivity. For a receiver with a noise temperature of 20 K, have
the same increase from atmospheric emission, but the increase caused by the loss in
signal is less, so the final system noise is 69 K. However the increase is 343%.

2. The noise from the atmosphere is 200 (1−e−τ ). At 30◦, the τ is twice that at 90◦,
so at this elevation, the τ is
T = 200 (1 − e−τ ), or τ = 0.097. At 30◦, get τ = 0.194, which gives T = 35.2 K,
so the data are consistent. At 60◦, get 21.1 K, 20◦, get 49.4 K, so the temperature of
the atmosphere is perhaps 5% too large. Using a least squares fit, one could solve for
both τ and the temperature of the atmosphere assuming that a plane parallel model
is adequate (Table 24.2).
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Table 24.1 Data for atmospheric optical depth, emission and transmission as treated in problem
1(b)

Optical depth Emission from atmosphere (K) Percent transmission of signal (%)

0.5 118 61

0.7 151 50

1.0 190 37

1.5 233 22

Table 24.2 Atmospheric
optical depth relative to
225 GHz; results for
Problem 2

Frequency ν (GHz) Optical depth ratio τ(ν)/τ(225 GHz)

345 3.4 ± 0.5

460 11.2 ± 3.0

807 18 ± 7

3. Without snow in the dish, the sky radiates 30 K. Take the fraction of the dish
covered with snow as f . Then
f × (270) + (1 − f ) × (30) = 130. Solving for f , have f = 0.42.

4. At the maximum elevation, τ = 0.1/ sin 11◦ = 0.524
At the minimum elevation, τ = 0.1/ sin 8◦ = 0.718. The ratio is 1.37, so there
is a 37% increase in τ . So the comment is reasonable. The emission from our
atmosphere is 102.5 K at 8◦ and 81.5 K at 11◦ elevation. The reduction in the
intensity of the astronomical signal is
0.592 at 11◦ elevation, and
0.487 at 8◦ elevation.
At 8◦ elevation, ΔTRMS = 142.5/

√
40 × 106 = 0.022 K

At 11◦ elevation, ΔTRMS = 121.5/
√

40 × 106 = 0.019 K

5. For the solid angle, the relation to a Gaussian beam is ΔΩ = (1.06 θ1/2)
2. Where

θ1/2 is in radians. Converting from radians to arcmin, we have ΔΩ = 8.46 ×
10−8 (θ1/2)

2. Converting from meters to cm in the expression for λ, we use k=1.38
× 10−23 W K−1, and note that Jy is 10−26 in MKS units (10−26 W m−2 Hz−1). Then
we have:

S(Jy) = 2 × (1.38 × 10−23)T(8.46 × 10−8 θ1/2)
2/(104 λ(cm)2

The result is Eq. (8.19) in ‘Tools’: S(Jy) = 2.65 T × (
(θ1/2)

2/(λ2)
)

where θ is in units of arc minutes, and λ in centimeters.

6. (a) Taking the expression for flux density from the last problem, or from problem
10 of chapter 1, we have:

T(actual brightness) × (θ(actual angular size))2 = T(observed) × (θ(observed))2
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where the observed temperature is the Main Beam Brightness Temperature.
If we set T(actual brightness)=T(source) and T(observed)=T(Main Beam) and
θ(actual size) = θ(source), so we find that:

T(source) = T(main beam) ×
(

θ(observed)

θ(source)

)2

Since θ(observed) > θ(source), we must have T(source)>T(main beam)
For Gaussian source and beam shapes, from Eq. (8.47) or the results given in
problem 1 of chapter 7, we have

TA(x, y) =
∫

P(x − x ′, y − y ′) TB(x ′, y ′) dx ′ dy ′
∫

P(x ′, y ′) dx ′ dy ′

We will use Gaussians in the integrals, and restrict the integration to 1 dimension.

Then, we have: TA(x) =
(∫

e−(x−x ′)2/σ 2
1 T0 e−x ′2/σ 2

2 dx ′
)

/
(∫

P(x ′) dx ′).
We use the “brute force” first, and consider only the numerator, with the proper
normalization:
u(x0)=1/(2πσ1σ2)

∫ +∞
−∞ e−(x−x0)

2/2σ 2
1 e−x2/2σ 2

2 dx.
In the following, we concentrate on the exponential factors. Combining the two, we
have, (x2

0 −2x x0 +x2
0)/2σ 2

1 +1/2σ2x
2 = x2(1/2σ 2

1 +1/2σ 2
2 )−x x0/σ

2
1 +x2

0/2σ 2
1 .

We introduce an expression α = (1/2σ 2
1 + 1/2σ 2

2 ), obtaining:

αx2 − x x0/σ
2
1 + x2

0/2σ 2
1 = α

(
x − x0/2 (σ 2

1 α)
)2 − x2

0/(4 σ 4
1 α) + x2

0/(2 σ 2
1 ).

The last two terms do not involve the variable of integration, so can be factored
outside the integral:
x2

0
2σ 2

1

(
1 − 1

2σ 2
1 α

)
=

(
x2

0
2(σ 2

1 +σ 2
2 )

)
.

Then we have:
u(x0) = 1

2πσ1σ2
e−(x2

0/2(σ 2
1 +σ 2

2 )
∫ +∞
−∞ e−α(x−x0/2σ 2

1 α)2
dx.

The integral gives

u(x0) =
√

2π
2απσ1 σ2

e−x2
0/(2[σ 2

1 +σ 2
2 ]) =

√
2π

α σ1 σ2
e−x2

0/(2(σ 2
1 +σ 2

2 ))

The relation between the total σ and the two individual σ terms is
σ 2 = σ 2

1 + σ 2
2

The shorter method involves Fourier Transform (FT ) relations. Use Table 3 from
Appendix A of ‘Tools’. The convolution in x is the product of Fourier Transforms
in s space and

FT
(

e−x2/2σ 2
1

)
↔ e−2πσ 2

1 s2
.

The expression for σ2 is similar. Then, we have u = y ⊗ x ↔ e−2π(σ 2
1 +σ 2

2 ) s2 =
e−2π(σ 2) s2

. Transforming back to x space, we have FT
(

e−2π(σ 2) s2
)

↔ e−x2/2σ 2
.

Then σ 2 = σ 2
1 + σ 2

2 , as before. For the application in question, θ2
o = θ2

s + θ2
B.



124 24 Solutions for Chapter 8: Single Dish Observational Methods

7. P = S(Jy) × Ae × Δν/2 for a point source.
Ae = 3120 m2, so
P = 10−20 W m−2 Hz−1 × 3120 m2× 106 Hz/2 = 1.56 × 10−10 W.
Use the relation that (received maser power/m2/(Dangerous Power Level/m2)
× (source distance)2 is the square of the dangerous distance. D is the danger
distance, so
D = √

10−24/10−2 1.5 × 1021 cm = 1.5 × 1010 cm.
This is not very realistic, since H2O masers have sizes of about 1013 cm, so the ‘point
source’ assumption breaks down. However the example shows that astronomical
sources emit little power.

8. For Sun, take θmax = 15′, with T = 5800 K, so
S = 2kT

λ2

∫
sin θd θ

∫ 2π

0 dφ

S = 4πkT
λ2 (1 − cos θmax)

where θmax = 0.9999, so S = (1.01 × 10−18 W Hz−1) (104 m−2)(9.52 × 10−6) =
9.57 × 10−20 W m−2 Hz−1 = 9.57 × 106 Jy.

9. (a) Sν = 5.4 Jy=2.65 TMB (43′′/60′′)2/(1.3 cm)2 = 2.65 (0.3039) TMB, so TMB =
6.7 K. This is the Main Beam brightness temperature.

(b) The source has an actual temperature of Ts = TMB

(
43
10

)2
, so Ts = 124 K.

Set TMB = 124 K = 14 000(1 − e−τ ), so τ = 0.009.

10. The wavelength is 3 m, or 300 cm. Then

1 Jy = 2.65Ts
[
(10/60)2 / (300 cm)

]2 = 8.18 × 10−7 Ts.
The temperature is Ts = 1.22 × 106 K.
The observing wavelength is 30 cm. The source temperature is 100 times less. Ts =
1.22 × 104 K.

11. Use the definition of an Astronomical Unit, so D = (0.227)× (1.46 × 1013) =
4.04 × 1012 cm
The FWHP angle is:

θ = 2
6100 × 105 cm

4.04 × 1012 cm
= 1.51 × 10−4 rad = 62.2′′

Then TVenus = 8.5 ×
(

8.7×60′′
62.2′′

)2
,

so TVenus = 600 K. From a further analysis, it has been determined that the high
surface temperature of Venus is caused by the ‘greenhouse effect’.

12. This is an incomplete statement: the sky noise which dominates at or below
400 MHz is source or astronomical sky noise, which one wants to measure. The
sky noise in the sub-millimeter wavelength range is from the earth’s atmosphere.
Thus in the sub-millimeter wavelength range, sky noise has only a negative effect.
As shown in Problem 6 of this chapter, the sky absorbs signals and radiates, raising
the system noise. The latter effect is multiplicative, so a low system noise helps to
improve the signal-to-noise ratio in the measurements.
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13. (a) The transmission is equal to eτ = e−3 = 0.00498.
(b) Tsky = 200(1 − e−3) = 200(0.95) = 190 K.
(c) The system noise in the case of the ‘corrected antenna temperature’, that is, the
system noise outside the earth’s atmosphere and corrected for antenna efficiency, is
(50 K+190 K)/(0.0498) = 4820 K.
(d) For a 12 m telescope, the antenna temperature of a small diameter source is T ∗

A =
0.5(0.0196)Sν(Jy) = 9.810−4 K. ΔTRMS = 2×4820√

2 109×t
= 0.216/

√
t , so t = 13.5 h.

It is better to use a bolometer.

14. Solving for v/c yields v/c = [(1 + z)2 − 1]/[(1 + z)2 + 1]; then for z = 2.28,
v/c = 0.830, for z = 5, v/c = 0.946 and for z = 1000, v/c = 0.999998.

15. The effect is the correlation of incident and reflected voltages, Vi and Vr .
Thus Vi · Vr=10−3. Taking Vi = 1, have a power flux in the reflection of
(Vr)

2/377 W m−2. As a fraction of the incident power, must use the ratio of the
squares of the voltages. This is 10−6 of the incident power.

16. The average number of 1′ sources per unit area has the average value, P,
P=λ=125 1′×1′

15′×120′ =6.94 × 10−2. The assumption is that the sources do not overlap.
Thus about 6% of the cloud is filled with dense gas, so 94% is filled with low density
gas.
P(Poisson)= mn e−m/x!,
where x is the number of sources expected. For x = 1, have P=0.0647, for x = 2,
P=0.00225, for x = 3, P=5.2 × 10−5, for x = 4, then P=9.02 × 10−7.

17. (a) Take λ = 0.04, then for two sources in the same beam, P=7.7 × 10−4,
for three sources, P(3)=10−5

(b) If take 106 samples, have 780 cases where sources are confused. This is to be
compared to a total of 40,000 sources. So this is an unconfused survey.

18. Start with dn ∝ S−γ dS. Then have

n̄ =
∫

n(S) dΩ dS = k

∫
(f S)−γ f γ dΩ

d(f S)

f

Use x = f S, so that

n̄ = k

∫ ∫
x−γ (f γ−1) dΩ dx = kΩe

∫
x−γ dx

from the relation Ωe = ∫
f γ−1 dΩ then, n̄ = kΩe

∫
x−γ dx We need to calculate

σ 2. This is given by:

σ 2 =
∫ Dc

0
x2 dn̄ =

∫ Dc

0
k x−γ Ωe dx
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This is: σ 2 = k
∫ Dc

0 Ωe x−γ+2 dx which gives σ 2 = k Ωe

(
1

3−γ

)
× D

3−γ
c Since

D
3−γ
c = (q σ)3−γ , then the final result is

σ 2 =
(

k Ωe q

3 − γ

)1/(γ−1)

The term k Ωe can be factored out of the brackets to obtain the final result.

19. (a) Inserting the expression for a Gaussian beam in Eq. (8.59), we have, in 1
dimension (x), and with 4 ln 2 = 2.77:

Ωe =
∫ [

Ae2.77 x2/θ2
1/2

]γ−1
dx

where we have used the symbol x for the angle. Using

u =
√

2.77 (γ − 1)

θ1/2
× x

and noting that the integral of a Gaussian is
√

π , we have

Ωe =
(√

π Aγ−1 θ1/2

)
/
(√

4 ln 2 (γ − 1)
)

(b) From ‘Tools’, Eq. (8.58), we have dn̄ = k Ω
∫

x−γ dx, where is the number of
sources with flux densities between S and S + dS. Solving for k, the result is

k = n̄

Ωe x3−2γ (1 − γ )2 .

From the statement of the problem, k = γ Nc S
−γ
c = 1.5×105 × (10−2)−1.5, where

the units are per steradians × Janskys.

20. Assume that S = P0
4πR2

0
or R3

0 = (P0)
1.5 /

(
(4π)1.5 S1.5

0

)

S > S0 means R < R0, since all sources are intrinsically the same. Imagine the
universe as a sphere with a density of sources ρ. The total number of sources with a
flux density larger than a certain value S0 is

N(S > S0) = 4πR3
0 ρ

3 =
√

4πR3
0 ρ

3S1.5
0

= KS−1.5
0 .

Where K =
√

12π

R3
0 ρ

The number of sources varies inversely as the 1.5 power of flux

density, and the differential number varies inversely as the 2.5 power of flux density.
This is a ‘Euclidean universe’.
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21. The probability density for the number of sources per steradian with a flux
between S and S+ dS is p(S) that is, on the average we will observe ν̄ = Ω p(S) dS

sources with flux densities in the interval (S, S + dS) per beam Ω . The average
number of sources per beam is n̄. If the sources are distributed according to a Poisson
distribution (see “An Introduction to Error Analysis”, J. R. Taylor, University
Science Books) the probability of n sources in a beam is f (n) = ν̄n

n! e−ν̄ The first

moment is μ1 = ν̄. The second moment, μ2, is μ2 =
∞∑

ν=0
ν2f (ν) = ν̄(ν̄ + 1) Then

the dispersion is μ2 − μ1 σ 2
ν = ν̄ When applied to flux densities, this is σ 2

S = S2 ν̄ .

(b) The shape of the beam is a “pill-box” with perpendicular walls, so that the total
output of the antenna is the unweighted sum of the flux densities of all sources
within the beam and zero for sources outside. S = ∑

k

Sk . The average S̄ caused by

sources (S, S + dS) will be S̄ = S ν̄ .

The total signal is caused by sources with different flux densities, so the dispersions
add quadratically. Those sources with flux densities between Sc and SL and a
number density of p(S) then result in a dispersion for the total flux of σ 2

Sc
=

Ω
Sc∫

SL

S2 p(S) dS Then sources with a flux density cut-off Sc can be measured with

a signal to noise ratio, q , of q = Sc

σSc
where SL is a lower limit to the actual flux

density, where Sc is a cutoff. Rearranging terms, we have: q2 = Sc
2

Ω
1

Sc∫
SL

S2 p(S) dS

The

distribution of faint point sources is p(S) = nNc Sc
n S−n−1 for a wide range of S,

the observed value of n is 1.5, so:

q2 =
(

0.333
1

ΩNc

1

1 − (SL/Sc)0.5

)
;

(c) For the case SL = 0, we have:

lim
SL→0

q2 = 0.333
1

ΩNc
,

Taking SL = 0.666 Sc = 1.0, q is taken to be 5, and ΩNc is interpreted as the
number of sources per beam area, we have: Ω Nc = 7.7 × 10−3. This implies very
few sources per beam area.



Chapter 25
Solutions for Chapter 9: Interferometers
and Aperture Synthesis

1. Use coordinates x and u. Then I ′(x) = ∫
V (u)e−2π iuxdu for all parts of this

problem.
(a) I ′(x) = ∫ u0

0 V (u)e−2π iuxdu. So
I ′(x) = (1/2π ix)

(
1 − e−2π iu0x

)
= 2u0e−2π iu0x (sin (2πu0x)/2πu0x).

For large u0, the zero crossing is at small x values. These negative sidelobes will
distort the image in the x coordinate.
(b) I ′(x) = ∫ umax

umin
V (u)e−2πiuxdu

= ∫ umax
0 V (u)e−2π iuxdu − ∫ umin

0 V (u)e−2π iuxdu

= ∫ umax
0 V (u)e−2π iuxdu − [

2u0e−2π iu0x (sin (2πu0x)/2πu0x)
]
.

The second term gives rise to a ‘negative bowl’ in the x coordinate, which is the
image plane.

2. Eq. (9.6) is

R(B) =
∫ ∫

Ω

A(s)Iν(s)e
[

i 2πν

(
1

c
B · s − τi

)]
dΩ dν

In one dimension, the vectors become scalar quantities. The most important such
change is that B · s becomes B × s. Also, sin θ becomes θ , and the double integral
becomes a single integral. The resulting equation is:

R(B) =
∫

A(θ) Iν(θ) exp

[
i 2πν0

(
1

c
B · θ

)]
dθ
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This can be further simplified by noting that ν0
1
c
B is B

λ
, so that we obtain

Eq. (9.46):

R(u) =
∫

A(θ) Iν(θ) exp

[
i 2π

(
B

λ

)
· θ

]
dθ

Here, D = B is the baseline in number of wavelengths, B
λ

= u and R is the
response.

In the following, we set A(θ) = 1. From the definitions of Fourier Transform
(FT ) pairs, Eq. (9.46) is the expression of an FT in the image plane, whereas

I (θ) =
∫

R(u) exp

[
− i 2π

(
B

λ

)
· θ

]
du =

∫
R(u)e [− i 2π (u) · θ ] du

is the inverse transform, converting data in the u plane to an image. Thus, u and θ

are the variables that describe the quantities in the two Fourier planes.
In Fig. 9.4, In panel (a), on the top left, the phase and the amplitude are plotted
separately. So the expression for a ‘point source’ (i.e. a source whose angular size
is smaller than the highest resolution of the instrument), shown on the right, which
is offset from the origin is:

R(B) = A(θ) Iν(θ) exp

[
i 2π

(
B

λ
· θ0

)]

Thus there is a phase offset, but a constant amplitude. The phase offset is B
λ

× θ0 =
u × θ0. In the u plane on the left, the offset is the inverse of θ0 in radians. With
increasing u, the phase will increase. The product of u · θ0 will reach unity when u

equals 1
θ0

. The value of θ0 is given in radians; the conversion to arc seconds is given
in the caption of figure 9.1.
In panel (b), on the right, the source is offset from the origin and extended. The
phase offset is as in the topmost part of this figure. The source Full Width to Half
Power (FWHP) size is d . The shape is a Gaussian. Then the FT, needed to produce
the response, is another Gaussian of size proportional to 1

4 ln 2 d
.

In panel (c), There are two point sources, with intensities R and unity. The response
is

R(B) = R exp

[
i 2π

(
B

λ
· θ0

)]
+ exp

[
i 2π

(
B

λ
· θ1

)]

where θ0 − θ1 = S in the x direction. In the u plane, if u = 0, the response is 1 +R.
At a u value of k3/S, which corresponds to an angular distance of S = 1

2
′′
, the terms

subtract. The normalized response reaches a minimum at this location. The phase
offset reaches the value of 1

2 when the angular offset is 1
1+R

since the response is
proportional to the intensities.
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In panel (d), the situation is the same as in (c), but with two equally extended
sources. Thus the analysis is a combination of (b) and (c).

3. Use coordinates x (representing θ ) on the left, and u. Then
I (x) = ∫

V (u)e−2πiuxdu for all parts of this problem.
(a) I (x) = ∫ u0

0 V (u)e−2πiuxdu

I (x) = 1/(2πix)
(
1 − e−2πiu0x

)
= 2u0e−2πiu0x (sin 2πu0x/2πu0x)

For large u0, the zero crossing is at small x values. These negative sidelobes will
distort the image in the x coordinate.
Panel (b): I (x) = ∫ umax

umin
V (u)e−2πiuxdu=∫ umax

0 V (u)e−2πiuxdu − ∫ umin
0 V (u)e−2πiuxdu∫ umax

0 V (u)e−2πiuxdu − ∫ umin
0 V (u)e−2πiuxdu =∫ umax

0 V (u)e−2πiuxdu − [
2u0e−2πiu0x (sin (2πu0x)/2πu0x)

]
The second term gives rise to a ‘Negative Bowl’ in the x coordinate, which is the
image plane.
Panel (c): This is a convolution of the ‘picket fence’ found in problem 6 of chapter 4
of this volume, and a function which has a smaller correlated intensity at larger
spacings. From Table A.3 in Appendix A of ‘Tools’, the Fourier Transform of
the Picket Fence, III (x) is another Picket Fence, in which the spacings in the x

coordinate are inversely proportional to the spacings in the u coordinate. As shown
in problem 6 of chapter 4, the samples in the u coordinate must be fine enough so
that the ‘Grating Response’ in the x coordinate is clearly separated from the image.

4. (a) From Eq. (6.78), θ = 1.02λ/D = 1.02 × 3 cm/100 cm = 3.06 × 10−2rad =
1.76◦. Thus the antenna beam is much larger than the diameter of the Sun.
(b) Use the relation in Problem 1 of this chapter:

TA = ηBT0
θs

θs+θA
= (0.7) × (5800)

(
302

302+105.62

)
= 303 K,

TB = TA/ηB = 433 K.

(c) The fringe spacing is λ/B, where B is the baseline projection in the direction of
the source. At transit, this is 3 cm/10,000 cm = 3 × 10−4 rad = 61.9′′.
V (u) = ∫ −θs/2

θs/2 A I0e2π iuxdx. The antenna response A can be taken as a constant,
A0. Thus
V (u) = A0 I0

sin π u θs

π u
with u = B/λ, where B is the baseline projection in the

direction of the source.
For transit, we get u = 100×102 cm/3 cm = 3.33×103 rad. In addition, the source
size in radians is θs = 8.73 × 10−3. For these values, we get
V (u) = A0 I0

sin 91.33
10460 = −A0 I0

0.221
10460 .

Thus the source is heavily resolved out by this spacing.
(e) For a 2 m separation, Bθs = 66.67.

5. Parts (a) and (b) follow the analysis used in problem 4. For part (c), we have

V (u) = A I0

(∫ θ1−θ2/2
θ1+θ2/2 e2π iuxdx + ∫ −θ1−θ2/2

−θ1+θ2/2 e2π iuxdx
)

, or

V (u) = 2 A0 I0θ2

(
sin π u θ2

π uθ2

)
cos (2π u θ1).

With u is as in the previous problem, θ2 = 50′′, θ1 = 45′′.
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For these values,
(

sin π u θ2
π uθ2

)
= 0.228. The regions are somewhat resolved.

While cos 2π u θ1 = −0.158. As the source is tracked, the response will vary
with the projected baseline. This source is barely resolved into two regions. At the
shortest spacing, the source is unresolved.

6. Parts (a) and (b) follow the analysis in Problem 4 and 5. For part (c), we have

V (u) = A I0

(∫ ∞
0 e−4 ln 2 x2/θ2

e2π iuxdx
)

.

Use Tables A.3 (first entry) in ‘Tools’ to obtain the result
V (u) = A I0 e−θ2 u2/4 ln 2.
For θ = 2.5′ = 7.24 × 10−4 rad, at transit, the visibility is 0.121 of the maximum
value. So this source is rather resolved.
For an antenna spacing of 2 m, the visibility is determined by the value Bθs = 66.67,
so
V (u) = A I0 e−(7.24×10−4)2×(66.67)2/4 ln 2 = 0.9992. Thus, the source is unresolved.
When considered in one dimension, the analysis is very similar to that used for
Cygnus A, although the two-dimensional structures are quite different. Parts (a) and
(b) are the same. For part (c), we have

V (u) = 2 A0 I0θ2

(
sin π u θ2

π uθ2

)
cos 2π u θ1.

u = 3333.3, as in the previous problem. Now for Cas A, θ2 = 1′ = 2.9 × 10−4 rad,
and θ1 = 2.75′ = 7.97 × 10−4 rad.

For these values,
(

sin π u θ2
π uθ2

)
= 0.035. The regions are rather resolved.

The term cos 2π u θ1 has a value 0.944.
For the 2 m spacing, the source is unresolved.

7. We make use of Eq. (9.6) and note that all of the terms, especially I and A are
taken to be frequency independent. Then we have

R(B) =
∫ ∫

A(s)Iν(s)e2π iν [(B × s − τi)] dsdν .

We next integrate the frequency term from ν0 + ΔνIF to ν0 − ΔνIF and set Δτ =
τg − τi

R(B) = AI0ΔνIF
sin (πΔνIFΔτ)

(πΔνIFΔτ)
e2π iν0Δτ

∫
sin (π B × s − τi)

π B × s − τi
ds . (25.1)

Ignoring the IF frequency term, the value of R(B) will be largest if the term in
brackets in the integral is unity. This is the case for
2π iν (B × s) − τi = 0.
By adjusting τi, this can be so for the upper sideband, which has a phase of φ1 =
2π(νLO + νIF)τg
but not for the lower sideband, which has a phase of φ1 = 2π(νLO − νIF)τg.
Thus the interferometer can provide a natural way to separate sidebands.
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8. (a) The filters must be placed in each IF before the multiplication. After filtering,
each separate frequency channel is multiplied. The filters must be phase matched to
prevent decorrelation of the signal.
From the previous problem we want the term
sin (πΔνIFΔτ)/(πΔνIFΔτ) to be a maximum. This requires that ΔνIFΔτ � 1.
(b) Arrange the phases so that Δτ = 0, in the center channel. Then the first N/2
channels will have a negative delay, the last N/2 channels a positive delay. The
spectra from the phase center are symmetric, while those off the phase center are
asymmetric. The Fourier transform of this cross correlation gives N/2 spectral data
points, and N/2 phases.

9. Adding the voltages, (V1 + V2)
2 = V 2

1 + 2V1 V2 + V 2
2 .

Subtracting, (V1 − V2)
2 = V 2

1 − 2V1 V2 + V 2
2 .

Subtracting these two, we have 4V1 V2. One half of the time is spent on each phase,
so the noise is

√
2 larger than a multiplying interferometer. An additional factor of√

2 in noise arises from subtracting two noisy signals.

10. The one dimensional version of Eq. (9.46) is stated in problem 2. As a first order
approximation, we assume that the factor A is independent of angle, and take this
outside the integral, so:

R(B) = A

∫
Iν(θ) exp

[
i 2πν0

(
1

c
B · θ

)]
dθ

The limits on the integral are θ0 and 0. The result is

R(B) = A I0

(
e2π i (B/λ) θ0) − 1

)

Extracting factors eπ i (B/λ) θ0, and B
λ

= 1/
(
θgeom

)
, we have

R(B) = A I0 θ0 e i πθ0/θgeom × (
sin πθ0/θgeom

)
/
(
πθ0/θgeom

)

The one dimensional version of Eq. (9.46) does not include a frequency term.
Including this, and assuming that the source has no frequency dependence, we take
I outside the integral. Then we have:

∫
R(B) dν = A Iν(θ)

∫ νh

νl

e

[
i 2πν0

(
1
c B· θ

)]
dθ

This integral depends only on the exponential term, so deal with this and ignore the
rest of the equation. Evaluating the upper and lower limits, we have: (1) / (θ0 B c)×(
e2π i (θ0 B c νh) − e2π i (θ0 B c νl)

)
The term involving ν in the exponential determines

the phase offset for the position offset from the center of phase, Δφ. This is
e2π i (θ0 B (c/νh)) − e2π i (θ0 B (c/νl)) Setting 1/νh = 1/(νl + Δν) = (1/νl) ×
(1 − Δν/νl to first order, we have a difference in phase in these two terms of
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2π(θ0 B (c/νl Δν/νl) Using B/νl = 1/θgeom, we have: 2π
(
θ0/θgeom

)
(Δν/νl)

Since by assumption νl ≈ νh, so can set νl = ν.
From this, on axis there is no phase difference as a function of wavelength. This is
the ‘white fringe’ in optics.

11. Use equation (9.27), with M = 1:
ΔS = 2kTs

Ae λ2
√

n(n−1)Δντ
.

With n(n − 1) ≈ n2, Δν = (ν/c)ΔV , and S = 2.65 ΔTB θ2

λ2 , where λ is in cm and θ

is in arcmin, we have ΔS = 8 k
π

Tsysλ
0.5

n D2
√

ΔVτ
.

In addition, θ = λ/Bmax, so we have

ΔTB = 8 k

2.65 π

λ0.5 Tsys B2
max

nD2
√

ΔVτ

12∗. (a) For the single dish, Asd = π
4 D2, while each interferometer dish has Ai =

π
4 d2, and the number of telescopes is N = (D/d)2.
(b) For a single pointing, the image will have an angular size of λ/d . For a single
dish the beamsize is λ/D, so need to sample N = (2D/d)2 beams. Per position the
integration time is the total time divided by N , or the integration time available for
each position is reduced by (d/2D)2. This is not so for the interferometer since the
entire time is spent on all of the positions. The advantage for the interferometer is
due to the larger number of receivers.
(c) The angular resolution of the individual interferometer antennas is θ = λ/d .
Take the size of the extended region to be Θ � θ . To completely sample this region,
one must have N = (2Θ/θ)2 pointings. If there is a total time T allotted to image
the source, the time spent on each pointing is T (λ/(Θd)2. From the last problem,
the temperature sensitivity is ΔT ∼ 1/d2√t . Using the expression for total time,

the noise becomes ΔT ∼ 1/
(
d
√

T
)

, where T is the total integration time. Thus

the RMS noise is proportional to a factor 1/d rather than the factor 1/d2.

13. Use Eq. (9.29) in ‘Tools’, which is:

ΔTB = 838.0
M λ2 T ′

sys

Aeθ
2
B

√
N t Δν

set M = 1. The proposed measurement will use a 0.15 km s−1 = 57.68 kHz
resolution. The value of Ae is 113.6 m2. Assuming 0.7 for the antenna efficiency, ηe,
the value of Ae= 79.2 m2, N=49 × 50 /2, so that the time needed is 0.7 s. For a 10′′
beam, the antennas would have to have a maximum separation of only 50 meters.
So only 16 ALMA 12-m antennas could be fitted into a 50 m circular region. So this
is not practical. For a 1′′ resolution, the integration time is 100 times larger. There
are web sites for ALMA sensitivity which allow a check of this value.
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14. θ = λ/D = 6.0 cm/227 × 105 cm = 2.64 × 10−7rad = 0.0545′′.
S(Jy) = 2.65 T θ2

λ2 , where θ is in arcmin and λ is in cm. Converting to units of arc

sec and flux density in mJy, we have 1.36S[mJy] = T
θ(′′)2

λ2 . Applying this relation,
we find that the uncertainties are equivalent to a main beam brightness temperature
of T = 16.4 K. Thus, the emission could arise from a thermal source.

15. Use Eq. (9.29) as given in problem 13. For the JVLA, the values are ΔV=
0.1 km s−1, Δν=7.67 kHz, receiver noise is 100 K (including the emission from the
earth’s atmosphere), the area of each dish is 490 m2, and the efficient is assume to
be 0.5. So for a 1 s integration:

ΔTB = 838 × 132 × 100

240 × 32 × 52.32
× 1√

t
= 126

1√
t

The actual noise temperature in the D array is 56 K, since the beam size is 4.5′′, not
3′′.
For the 50 antenna ALMA at 115 GHz, for ΔV = 0.1 km s−1 = Δν =
38.4 kHz, the receiver noise is about 140 K (including the emission from the earth’s
atmosphere), the area of each dish is 113 m2, and the dish efficiency is 0.7. So for a
1 s integration:

ΔTB = 838 × 2.62 × 140

113 × 0.7 × 32 × 217
× 1√

t
= 5.2

1√
t

Thus, ALMA is more sensitive, due the higher antenna efficiency, shorter wave-
length and larger bandwidth in kHz for the same velocity resolution. In the context
of the astrophysics, however, the JVLA has advantages for the measurement of most
synchrotron sources, since these are more intense at lower frequencies. ALMA
has advantages for the measurement of dust emission and molecular lines, since
these more intense at higher frequencies. Such additional factors must be taken into
account.

The ALMA sensitivity calculator gives 5.6 K for this configuration. This calcu-
lator is to be found at:
https://almascience.eso.org/proposing/sensitivity-calculator.
The JVLA calculator is to be found at: https://obs.vla.nrao.edu/ect/.

https://almascience.eso.org/proposing/sensitivity-calculator
https://obs.vla.nrao.edu/ect/


Chapter 26
Solutions for Chapter 10: Emission
Mechanisms of Continuous Radiation

1. (a) The angular diameter is θ = 0.1/(1.46 × 106) = 6.84 × 10−8 rad =
2.4 × 10−4 arcmin = 1.4 × 10−2 arcsec. The corresponding solid angle is Ω =
3.67 × 10−15 steradians. The flux is given by S = 2kTBΩ/λ2 = 6.0 × 10−4 Jy. If
a Gaussian brightness distribution is assumed instead (doubtful for an asteroid), the
result is S = 2.65 TBθ [′]2/λ[cm]2 = 8.65 × 10−4 Jy.
(b) For a Gaussian-shaped source, we have TMB =θ2

source/(θ
2
source + θ2

beam) TB. Here,

θsource � θbeam, so TMB = 100 K
(

1.4×10−2

12

)2 = 1.4 × 10−4 K.

(c) We use a total power expression for the noise, combining NEP = 2kTnoise
√

Δν

(see problem 17 of chapter 8) with TRMS = Tnoise/
√

tint Δν to get TRMS =
NEP/(2k Δν

√
tint) = 2 × 10−15/(2 × 1.38 × 10−23 × 20 × 109 √

tint) This y
gives a result TRMS = 3.6 × 10−3/

√
tint K. The factor of 2 is explained by the

need for beam switching to remove the emission from the earth’s atmosphere. Also,
the source intensity must be halved because ηMB = 0.5. To get a S/N ratio of 5:1,
the integration time is

√
tint = (3.6 × 10−3)/(1.4 × 10−5) → tint = 6.6 × 104 s =

18.4 h.

2. (a) If the line-of-sight depth equals the diameter, it is 0.0242 pc = 7.5 × 1016 cm.
(b) The column density is N(H2) = (7.5×1016 cm)(107 cm−3) = 7.5×1023 cm−2.
(c) From the relation in the statement of this problem, we have Sν = 8.2 Jy.

(d) Application of TMB = 0.377 Sν λ2/θ2
o with θo =

√
θ2

source + θ2
beam = 14.1′′

gives TMB = 0.95 K, which is indeed � Tdust.
(e) We take θo = θsource = 10′′. Thus, T = 1.88 K and τ = 1.88/160 = 0.012.
(f) Calling x[μm] the wavelength where τ = 1, we have τ (1.3 mm)/τ (x) =
0.012 = x4/(1300)4. So, x = 430 μm.

3. (a) From Fig 10.1 ν0 ≈ 0.9 GHz.
(b) Using the given formula, we have 0.9 = 0.3045 × (8300)−0.643 (EM)0.476, so
EM = 1.92 × 106 cm−6 pc.
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Table 26.1 Optical depths and temperatures for free–free emission from Orion A (problem 5)

Frequency ν (GHz) Optical depth τff TB(K) TMB(K)

23 3.1×10−3 26 16

90 1.8×10−4 1.5 1.4

150 6.0×10−5 0.5 0.5

230 2.5×10−5 0.2 0.2

(c) The diameter for a (Gaussian) source is D = 0.364 pc = 1.12 × 1018 cm. given
by 〈nRMS〉 = √

EM/D = (1.92 × 106 cm−6 pc)/(0.364)0.5 = 2.3 × 103 cm−3.
Larger values of density are obtained from an analysis of optical measurements.
This is a sign for ‘source clumping’, this indicates that the source has small scale
structure.

4. (a) The actual source temperature is determined by TB = ((θ2
s + θ2

B)/θ2
s )

×TMB = 1.08 TMB = 25.9 K.
(b) We have 25.9 K = 8300 K τff, so that τff = 3.1 × 10−3.
(c) Solving τff = 3.1×10−3 = 0.08235×(8300)−1.35×(23)−2.1 EM, we find EM =
5.3 × 106 cm−6 pc, and (using the formula from the last problem) ν0 = 1.46 GHz.
The value for EM is about 2.8 times larger than the value obtained in Problem 3.
The present value is obtained without assumptions about source structure, which is
an advantage. However, at high frequencies (i.e. far beyond the turnover frequency
ν0), the emission becomes rather weak and noise can cause large errors.

5. (a) Use EM = 5.3 × 106 cm−6 pc in Eq. (10.37) in ‘Tools‘ (see Problem 4(c)), so
τff = 2.243 ν−2.1. The values are collected in Table 26.1.
(b) The results are listed in Table 26.1.
(c) TMB is obtained by TMB = (θ2

s /(θ2
s + θ2

b )) Teτff. See Table 26.1 for the results.
At 5 GHz, the 30 m telescope beam is 9′, at 10 GHz, 4.5′, at 23 GHz, 1.95′. At higher
frequencies, the source is much larger than the beam, so corrections for beam size
are small.

6. (a) One can obtain a solution by setting the results for the dust parameters of
Orion KL from Problem 2, namely, τdust = 7 × 10−21 b NH λ[μm]−2) equal to
those of the last problem. The parameters include beam filling factors and the dust
temperature and column density of the dense core as well as the optical depth,
electron temperature and free–free optical depth of the HII region. Therefore, the
result is specific to Orion A and Orion KL, as observed with a specific telescope.
The plot in Fig. 10.1 shows that significant dust emission occurs at frequencies larger
than ∼130 GHz. The simplest approach is to use numerical values between 130 GHz
and 230 GHz. For Orion KL, these temperatures are equal at about 180 GHz
(TMB(Orion A) = 0.34 K).
(b) Only the beam filling factors differ. A typical 10-m or 12-m radio telescope
has a beam size that is about three times larger than the IRAM 30-m beam. Since
the Orion KL nebula has a far smaller angular size than the Orion HII region,
the main beam temperature from dust emission will be much smaller than with



26 Solutions for Chapter 10: Emission Mechanisms of Continuous Radiation 139

the 30 m telescope. Thus, the frequency at which the temperatures are equal will
be higher. Since dust emission increases rapidly with frequency while free–free
emission decreases about as rapidly, the increase in frequency is modest, however.
Given the larger beam sizes of the 10-m or 12-m telescopes, the main factors are the
source sizes, EM and dust parameters. The results are in Table 26.2. temperatures
will be equal at ∼240 GHz, where they both reach about 0.17 K.

7. (a) The turn over frequency is Eq. (10.37) and is also given in the solution to
problem 3(b) of this chapter. The Emission Measure, EM for W3(OH) is EM =
1.8 × 109 cm−6 pc, for a size of 2′′ at 1.88 kpc, the linear size in pc is 1.84 × 10−2,
and the RMS electron density is 3 × 105 cm−3.
(b) The source sizes are the same, so we use the values of TB, which is the
temperature without taking the beam size into account. The dust and free-free
emission temperatures, as a function of frequency are in the following table. The
relevant equation for dust emission is Eq. (10.6), given in the statement of problem 2
of this chapter. As before, we set the value of Z=Z�, N(H)=1024 cm−2 and θ = 2′′.
The conversion from flux density to TB makes use of the result of problem 10 in
chapter 1. The results are given in Table 26.2.
(c) Even though the beam size of the 30-m is smaller, the beam sizes of both
telescopes are larger than the source sizes and their separation. Note we have
given the brightness temperatures. For an estimate of the observed temperatures, the

values given above must be multiplied by the factor θ2
s

θ2
s +θ2

B
, where θ2

s is the source

size and θ2
B is the beam size.

8. (a) The background photon energy is E = hν = hc/λ = 1.24 × 10−15 erg. The
5 keV electrons have E = (1.6 × 10−12 erg/eV) × 5 × 103 = 8 × 10−9 erg. Thus
the electrons have vastly more energy.
(b) With an energy density of 1.3 × 10−12 erg cm−3, the number of photons is ∼
400 cm−3, while the number of electrons is about 10−2 cm−3. So only a few photons
will be affected.
(c) The energy density of the hot electrons, before the interaction, is
∼8×10−11 erg cm−3, or more than 60 times the energy density of the background
radiation. If the result of the interaction is equipartition, the background radiation
gains energy and most photons are promoted to higher energies. So, longer-
wavelength photons are shifted to shorter wavelengths, resulting in a deficit
of photons below the peak of background radiation at 1.6 mm (decrease in
temperature), but in an excess shortward of 1.6 mm (increase in temperature).

Table 26.2 Temperatures for thermal dust and free-free emission from W3(OH) (problem 7)

Frequency ν (GHz) TB,dust(K) TB,HII Region (K)

200 54 94

230 72 70

250 85 59
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Table 26.3 The brightness temperatures of Cassiopeia A (problem 9)

Wavelength λ (m) Flux density S (Jy) TB(K)

3 1.9×104 2.4×107

0.3 3.4×103 4.2×104

0.03 750 8.1×101

0.003 ∼130 1.6×10−1

9. First, we must calculate the solid angle Ω : Ω = 2π
∫ 5.5′

4.5′ sin θ dθ =
2π

(
4.23 × 10−7

) = 2.66 × 10−6 steradians. Then, consistent units must be used in
S = 2k TBΩ/λ2. Flux densities are estimated from Fig. 10.1, given in the statement
of this problem. The results are given in the table below. See Kantharia et al. 1998,
ApJ 506, 758 for references (Table 26.3).

10. The power emitted by a single electron is Eq. (10.66), in ‘Tools’. In a
simplified form this is: Pe = C E2 B2, where C is a constant, E the energy of
the electron and B the magnetic field. With the given constant-energy distribution,
we obtain the integrated power of the ensemble as P = ∫ Emax

Emin
N0 C E2 B2dE =

1
3N0 C B2

(
E3

max − E3
min

)
.

In Eq. (10.91) of ‘Tools’, δ = 0, so n = −1/2. Thus from Eq. (10.96) in ‘Tools’,
the emissivity of this ensemble of electrons between energies Emin and Emax is
ε ∼ ν1/2, i.e. the spectral index is 1/2. [Research has shown that the most well-
known flat spectrum Synchrotron source, Sgr A∗, has a flat spectrum because the
emission is optically thick. For this source, the radiation becomes optically thin at
frequencies higher than 345 GHz. Very Long Baseline measurements of this source
must be carried out at frequencies above 230 GHz to probe the inner parts of this
source.]



Chapter 27
Solutions for Chapter 11: Some Examples
of Thermal and Nonthermal Radio
Sources

1. (a) The emission measure is defined as EM = ∫
n2

edr . Thus

EM = ∫ ∞
r0

[
1.55

(
r
r0

)−6 + 2.99
(

r
r0

)−16
]2

1016 dr = 1.65 × 108 cm−6 pc.

(b) Inserting the numbers, the optical depth is τ = 8.235 × 10−2 × (106)−1.35 ×
(1.65 × 108)ν−2.1. The brightness temperature is given by TB = 106 (1 − e−τ ).
Table 27.1 lists the results.

2. The average distance to the planet Jupiter is 5.2 Astronomical Units, or 7.8
× 1013 cm. The distance of 10 parsecs in cm is 3 × 1019 cm, so the ratio of distances,
squared, is 6.8 × 10−12. If the flux density from Jupiter is 105 Jy, we would receive
0.7 μJy from such a hot Jupiter.

3. (a) The maximum wavelength is λmax = (0.28978/2.73)cm = 0.106 cm. The
corresponding frequency is ν = 282 GHz.
(b) For the T − ν relation, we have νmax = 2.73 · 58.789 GHz = 160.5 GHz, or
λ = 0.19 cm. The difference is caused by the weighting of the Planck relation in
terms of λ and ν. Substituting values for 160.5 GHz, Bν at the maximum for the
cosmic background radiation is Bν,max(2.73K) = 6 × 10−14/(e2.82 − 1) = 3.8 ×
10−15 erg cm−2 s−1 steradian−1.
(c) The integrated intensity is I = ∫ ∞

0 Bν dν = σT 4 = 3.2 × 10−3 erg cm−2 s−1,
and the energy density follows to u = 4πI/c = 1.3 × 10−12 erg cm−3.
(d∗) The number density of photons < n > is given by < n >= 4π

c
< I(T)/(hν) >. For a black body, Iν is given by the Planck function, Bν .
Thus, inserting Eq. (1.13) from ‘Tools’ (also given in the statement of problem

14 of chapter 1) and integrating over ν results in < n >= 8π/c3
∫ ∞

0
ν2

ehν/kT−1
dν.
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Table 27.1 Optical depth and brightness temperature of the solar atmosphere (problem 1)

Frequency (GHz) Optical depth τ Brightness temperature (K)

0.1 13.5 106

0.6 0.32 2.7×105

1.0 0.11 1.0×105

10 8.6×10−4 8.6×102

Substituting x = hν/kT , this becomes

< n >= 8π

c3

(
kT

h

)3 ∫ ∞

0

x2

ex − 1
dx = 8π

c3 · 2.404 ·
(

kT

h

)3

= 20.3 T 3

For the 2.73 K background, this number density is < n >= 412 cm−3.
(e) To first order, the ratio of the expression for radiation in the Rayleigh-Jeans
regime to that in the Planck regime is 1 + 1

2
hν
kT

For 4.8 GHz, this term is 1.04, i.e.
the error is 4%. For 115 GHz, it is 101%, and for 180 GHz, it is 158%. Thus, above
∼70 GHz (error 60%), the Rayleigh-Jeans relation cannot be used to characterize
the 2.73 K background.

4. Use the dependence of T on redshift, z (z = λ0/λf ) − 1), where λ0 is the rest
wavelength of a spectral line. Then we have:
T = 2.73(1 + z), so for z = 2.28, T = 8.9 K, for z = 5, 16.4 K, and for z = 1000, T =
2733 K.
The gas ionized by the Big Bang recombines at a value z ≈ 1000.

5. (a) The maximum frequency, from the T − ν relation (Eq. (1.25)), is νmax =
2.73 × 58.789 GHz = 160.5 GHz, or λ = 0.19 cm.
(b) As stated in problem 3, the difference is the weighting.
(c) For this part and parts (d) and (e), the results are the same as in problem 3.

6. (a) The brightness temperature is TB = 6500(1 − e−τ ). So, the value of τ at
5 GHz is 7.7 × 10−5. Assuming that τ ∼ ν−2.1, we have τ (23 GHz) = 3.1 × 10−6.
Then the brightness temperature should be 2 × 10−2 K. This level of emission is
well below the sensitivity of a moderate sensitivity map.
(b) With the same scaling, we find ((ν(τ = 1))/5)−2.1 = 1/(7.7 × 10−5) and thus
ν(τ = 1) = 55 MHz.

7. Use the Rayleigh-Jeans relation to obtain the intensity, Iν in W m−2 Hz−1. This
is 1.75 × 10−14 W m−2 Hz−1. The solid angle of the surface of the star is Ω =(

π 7×1010

D

)2
. Setting this product inu × Ω equal to 10−32 W m−2 Hz−1, we have a

value of D=1.6 × 1020 cm or 55 pc.

8. (a) Inserting the numbers, we have Sν = 8.3
(

(1010)(3.6×1012)2

1036

)
× (10)0.6 ×

(1.6)0.1 · (3)−2 = 0.50 Jy.



27 Solutions for Chapter 11: Some Examples of Thermal and Nonthermal. . . 143

(b) A flux density of 0.5 Jy corresponds to TA = 0.65 K with the 100 m telescope at
10 GHz. The RMS noise, ignoring atmospheric contributions, is ΔTRMS = 2Ts√

B tint
=

(4.47 · 10−3)/
√

tint. For a 5ΔTRMS, detection, one needs less far less than 1 s
(nominally, ∼ 0.2 s). Thus, the star is easily visible, however, confusion may be
a significant effect.

(c) Using the given formula, we find Sν = 2.7 ·10−2 = 8.2

(
n r2

0
1036

)
× 230.6 ·2.00.1 ×

7−2. Thus, the result is n0 r2
0 = 5.9 × 1034 cm−1.

(d) Given the electron density, we find that r0 = 2.4 × 1012 cm or 0.16 AU. This
could be a supergiant star.

9∗. Evaluate the expression for ne(r) · r2 in CGS units. This expression is
( Ṁ

4π vw mH μ
), where μ is the molecular weight in atomic units. Inserting the

numerical values:

10−5 × (2 1033g)

(3.15 × 107 s) × (1.257 × 109 cms−1) × (1.67 × 10−24 μ g)
= 3.022 × 1035/μ

Substituting this value into Eq. (10.7), we have:

Sν = 8.2

(
3.022 × 1035

1036

)4/3

·
(

Ṁ[M� yr−1

vw[1000 km s−1) μ

)4/3

× (ν)0.6 × (Te)
0.1 × (D)−2

The final result is

Sν = 1.7

(
Ṁ[10−5 M� yr−1]
vw[1000 km s−1] μ

)4/3

× (ν)0.6 × (Te)
0.1 × (D)−2

Assuming that the outflow consists of hydrogen only, we set μ = 1. Then, we find
for the mass loss rate of the supergiant in problem 8(a):

Ṁ = 6.3 · 10−7 M� yr−1

10. Taking T = Te and vw = 100 km s−1, we find Sν = 1.70
(

0.1
0.1 1.0

)4/3 · 100.6 ·
3.10.1 · 7−2 = 0.15 Jy. This is a source that should be detectable with the 100 m
telescope and even more easily with the JVLA.

11. We must use the Rayleigh-Jeans relation of flux density and temperature, as
given in the statement of problem 10 of chapter 1 (or Eq. (8.20) in ‘Tools’) to
obtain the brightness temperatures of the Crab Nebula from the flux densities. Both
estimated Sν and Tb are given in Table 27.2. The Crab nebula is a non-thermal
source, a synchrotron emitter. From Table 27.2, this source varies with by a factor
of 4 over a frequency range of 100, so has a rather flat spectrum.
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Table 27.2 Flux densities and brightness temperatures of the Crab Nebula (problem 11)

Frequency (GHz) Flux density (Jy) Brightness temperature (K)

0.1 1.5 × 103 2.0 × 106

10 4 × 102 54

12. A diameter of 5.5′ at D = 3 kpc corresponds to 4.84 pc = 1.49×1019 cm. Use
1/2 of this for the distance travelled. The time elapsed is 332 yr ≈ 1010 s. Assume
R = vt . Thus the speed is 7 × 108 cm s−1, or 2.5% of the speed of light. The point
source moves at 0.5′′ per year, using the assumptions above. This should be easy to
measure with the JVLA, where motion should become visible after little more than
a month.

13. (a) The flux density of Cas A at 100 MHz today is ∼2×104 Jy. Solving the
equation given, we have Sν(t) = Sν(t0) (t/t0)

−4δ/5. Setting t0 = 332 yr, and
t = 100 yr, we have S100 MHz(100 yr) = 2 × 104 × (0.301)−2.032 = 2.29 × 105 Jy,
which is more than 11 times the present value. At that time, Cas A had a size of
D = 2 × 7 × 108 cm s−1 × 100 × 3.15 × 107 s = 4.4 × 1018 cm. This is equivalent
to an angular size of 1.64′ at 3 kpc.
(b) Use the Rayleigh–Jeans relation in problem 10 of chapter 1, with S = 2.29 ×
105 Jy and θ = 1.64′. Then at 100 MHz, we obtain T = 2.9 × 109 K.

14. EM=(0.03 cm−3)2·(3000 pc)=2.7 cm−6 pc. For this EM , τ is
τ = 0.08235 (Te)−1.35(0.01)−2.1(2.7)=5.6 × 104/(Te)1.35

If Te were 103 K or less, the absorption is large. If the free electrons have Te =
104 K, τ = 0.22, which is too small. There is a problem keeping a 103 K gas
ionized, so it would seem that the electron density must be larger than average.
EM=(0.03 cm−3)2·(3000 pc)=2.7 cm−6 pc. For this EM , τ is
τ = 0.08235 (Te)−1.35(0.01)−2.1(2.7)=5.6 × 104/(Te)1.35

If Te were 103 K or less, the absorption will be larger. If the free electrons have
Te = 104 K, τ = 0.22, which is too small. It seems unlikely that the Te = 103 K
for an ionized gas, so it is likely that the electron density must be larger than the
average.

15. (a) We must differentiate Wtot (given in Eq. (10.118) in ‘Tools’, and given in the
statement of this problem), then set B=Beq, and set the result to zero:

dWtot/dBeq = 0 = −3

2

G

H
R2 Sνν

n B
−5/2
eq + V

4π
Beq

Solving for Beq, we obtain the given expression.
(b) The major point is the evaluation of the ratio G

H
. This is

G

H
=

(
η

1 − 2n

)[
(e/m3c5)−0.5(ν0.5−n

max − ν0.5−n
min )

]
/
[
b (e3/mc2) (3/4π)n

]
= A

B
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where

A =
(

10

−0.5

)[
(4.8 × 10−10)/(9.1 × 10−28)3 (3 × 1010)5)−0.5

×((50 × 109)−0.25 − (107)−0.25)
)

simplifying, A = (−20) × [
(2.62 × 1019)−0.5(−0.01567)

]
and for the other

term, B = [
0.08 (4.8 × 10−10)3/((9.1 × 10−28)(3 × 1010)2)) (3/4π)0.75

]
This

becomes: B = [
0.08 (1.35 × 10−22) (3/4π)0.75

]
so the final result is:

A
B

= 1.65 × 1013

Converting Sν from CGS units to Jy, we use 1 Jy=10−23 in CGS units. For R we
have R(Mpc)=3 × 1024 R(kpc), and for V we have V (cm)=(3 × 1021)3V(kpc).
With these values, have:

Beq =
([

6π (1.65 × 1013)(3 × 1024)2 R2 Sν(Jy) ν(GHz)0.75
]

/
[
(3 × 1021)3 V (kpc)

])0.286

This gives: Beq = 1.2 × 10−5
([

R2 Sν(Jy) ν(GHz)0.75
]
/
[
V (kpc)

])0.286

16. Using the equations given in problem 15, we have

Beq = 1.2 × 10−5 ×
([

3.42 × (2.1) × (8.7)0.75
]
/
[
(4.19 × 103)

])0.286

or Beq = 1.2 10−5
(
2.93 × 10−2

)0.286
The result is Beq = 1.2 × 10−5 × (0.364) =

4.3 × 10−6Gauss
The relativistic particle energy is urel. particle = 1.33 umag = (1.33) × ( 1

8π
) ×

(4.310−6)2 = 9.8 × 10−13ergs cm−3

17. The power (in Watts) is:

P = 4π × (2.74 × 1049) × (104 × 10−26)/(0.01 GHz)0.75
∫ 50

0.001
ν−0.75 dν

This gives:

P = (1.1 × 1027) × (4) ×
(
(50)0.25 − (0.001)0.25

)

= 4.3 × 1027 (2.66 − 0.18) = 1.1 × 1028 W

This gives: P = 1.1 × 1035 erg s−1.
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The total energy is much larger than the energy radiated per second. Thus syn-
chrotron losses are small, the loss time is comparable to a Hubble time. The age of
the lobes is (7× 104pc)/(0.2c)=106 years.

18. (a). Using the simplest approach, namely, v = c z H0, we obtain a radial velocity
of v = z × c = (0.16) × (3 × 105 km s−1) = 4.8 × 104 km s−1 where H0 is
the Hubble constant of 70 km s−1 Mpc−1. From the Hubble constant given, get a
distance of 480 Mpc.
Using the non-relativistic time variability, get that 1 light-month is a linear
dimension of 0.28 pc. Then the source size in radians is
θ = (0.028pc)/(4.8 × 108 pc) = 5.8 × 10−11 rad, or 1.1 × 10−5 arcsec.
For the flux density given, the main beam brightness temperature at 1.5 cm in a 1′
beam is 16.9 K. Using our result for problem 6, chapter 5, have

TB = TMB

(
60 ′′

1.2 × 10−5 ′′

)2

= 4.3 × 1014K

This is much higher than the inverse Compton limit. This indicates that relativistic
beaming effects must be important.
(b) Differentiating Eq. (11.61) in ‘Tools’, which is given in the statement of this
problem and setting V = c, have

cos (θ) − V/c(cos (θ))2 = V/c sin (θ)2

or
cos (θ) = v/c. Thus as v → c, the apparent speed approaches c/γ . For an apparent
v/c=7, have an angle of 16◦. Thus, an apparent motion which is faster-than-light,
but in which the actual velocity does not exceed the speed of light, is possible and
likely.



Chapter 28
Solutions for Chapter 12: Spectral Line
Fundamentals

1. (a) Use Eq. (12.4):

n2

n1
== g2

g1
exp

(
−hν0

kTe

)

with g2 = g1. Then

hν0

kTe
= 0.00995

Thus the excitation temperature, Te, is positive. For the first value, n1 = 1.01 n2,
hν/Te = 0.00995. If hν/k=0.068 K as in the case of the 21 cm line of atomic
hydrogen, the value of Te = 6.8 K. For a population ratio of n1 = 1.1 n2,
hν/k = 0.0953, so for the hygrogen line, Te = 0.7 K. Given the presence of the
2.73 K microwave background, the value of Te should not be less than this value,
since atomic hydrogen is essentially a two level system (i.e. the next level above the
ground state is at the energy equivalent of 9 × 104 K.

2. Using n∗ = A21/〈σv〉 results in critical densities as follows:
neutral hydrogen: n∗ = 2.85 × 10−5 cm−3; HCO+: n∗ = 3 × 105 cm−3 and CO:
n∗ = 740 cm−3. The 21 cm transition is almost always thermalized (n > n∗), while
high densities are required to thermalize the HCO+ 1 → 0 line. CO is easier to
thermalize than HCO+, but still needs far higher densities than neutral hydrogen.
Solving the given equation for n

n = A21(Tb − Tex)

T0〈σv〉((Tex/Tk) − 1)
.

With ν = 89.186 GHz, T0 = 4.28 K. Assuming that the radiation temperature is
given by the cosmic background, Tb = 2.73 K, yields n = 6.53 × 104 cm−3.
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For ν(CO) = 115.271 GHz, T0 = 5.53 K. With the other parameters the same as
before, this gives Tex = 83 K, i.e. an excitation temperature that is already very close
to the kinetic temperature. See problems 13 and 14 of chapter 14 for a discussion of
negative excitation temperatures.

3.∗(a) Inserting the given ‘ansatz’ for x in the differential equation yields α2 +ω2
0 +

γα = 0. Solving for α gives α = (−γ /2)±
√

(γ 2/4) − ω2
0. Assuming γ 2/4 � ω2

0,

we have α = (−γ /2) ± iω0. Thus: x = x0 e−γ t/2 e−iω0t .
(b) The electric field E(t) is given by: E(t) = e−γ t/2 e−iω0t .
(c) According to the definition of the (inverse) Fourier transform (see e.g. ‘Tools’,
Appendix A), we have

E(ν) =
∫ ∞

−∞
e−γ t/2 e−iω0t ei2πνt dt .

Using ω = 2πν and defining u = (ω − ω0)t , we can solve this integral:

E(ν) = 2
∫ ∞

0
e−γ t/2 ei(ω−ω0)t dt

This gives:

E(ν) = 2
∫ ∞

0
e−γ u/(2(ω−ω0)) ei u du

ω − ω0

Then we have:

E(ν) = − 2

ω − ω0

∫ ∞

0
e−(γ u/(2(ω−ω0))−iu) du

= − 2

ω − ω0

1
γ

2(ω−ω0)
− i

e−(γ /(2(ω−ω0))−i)u

∣∣∣∣∣
∞

0

= 2

(γ /2) − i(ω − ω0)

(d) The line shape is given by I (ν), where the line intensity I is derived from

I (ν) = |E(ν)|2 = 4

(γ /2)2 + (ω − ω0)2

We need to normalize I (ν):
∫ ∞
−∞ I (ν) dν = 1. This is done by determining k so that

1 = k

∫ ∞

−∞
4

(γ /2)2 + (ω − ω0)2 dν = 4k

2π

∫ ∞

−∞
1

(γ /2)2 + (ω − ω0)2 dω

= 2k

π

2

γ
arc tan

(
ω − ω0

γ /2

)∣∣∣∣
∞

−∞
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Thus, the result is 4k
γ

and with

(ω − ω0)
2 = 4π2 (Δν)2

So the line shape is described by

I (ν) = γ

(γ /2)2 + 4π2 (Δν)2

(e) Using the Doppler relation to convert from f (v) to f (ν) results in

f (ν) =
( m

2kT

)3/2
exp(−m(Δν)2c2

2kT ν2
0

) .

Normalizing as before to f (ν):
∫ ∞
−∞ f (ν)dν = 1 and substituting u2 for the

exponent implies

1 = const ×
( m

2kT

)3/2
∫ ∞

−∞
e−u2

du

(√
m

2kT

c

ν0

)−1

Solving for the integral (
∫ ∞
−∞ e−u2

du = √
π ) lets us determine the constant as

const = (2kT c)/(
√

πν0m). Thus, the line shape for thermal motion is given by

f (ν) =
√

m

2πkT

c

ν0
exp

(
−m(Δν)2c2

2kT ν2
0

)
.

(f) For a Lorentzian line shape, we determine the linewidth at the half power
(HP) point by using I0(ν = ν0) = 4/γ . Thus, I1/2 = 2/γ and (ν1/2 − ν0) =
Δν(HP) = γ /(4π). This is half of the FWHM linewidth, Δν1/2 = γ /(2π). In the
same way, the HP linewidth for the Doppler profile is calculated as Δν(HP)2 =
(2 ln 2 kT ν2

0 )/(mc2). Normalizing the lines with respect to each other requires their
linewidths to be equal: (2 ln 2 kT ν2

0 )/(mc2) = γ 2/(16π2). We now express the
Doppler profile in terms of γ

f (ν) =
√

16π ln 2

γ 2 exp

(
− ln 2

16π2

γ 2 (Δν)2
)

.

the line wings are much more pronounced in the Lorentzian profile (fig. 28.1).
(g) For the Ly α line, we have ω0 = 2.06 × 1016 s−1. Approximating γ = A, we
find for the ‘natural’ (FWHM) linewidth Δν1/2 = A/(2π) = 8.59×108 Hz. For the
HI line (ω0 = 8.92 × 109 Hz), this linewidth is 2.06 × 10−16 Hz, extremely small.
If pressure broadening due to collisions dominates, the lineshape is also Lorentzian,
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Fig. 28.1 Problem 3 (f): a comparison between a Lorentzian and a Doppler line profile

but the linewidth is given by πΔν1/2p = 〈σv〉n. Taking 〈σv〉 = 10−10 cm3 s−1, we
find:

For n = 1 cm−3; Δν1/2p = 3.18 × 10−11 Hz;
for n = 105 cm−3; Δν1/2p = 3.18 × 10−6 Hz;
for n = 1019 cm−3; Δν1/2p = 3.18 × 108 Hz.

In all cases, this line is far broader than the natural linewidth for HI, but we get
a large linewidth only at very high densities. Thus, in the ISM, the linewidths of
several km s−1 (several kHz) that are typically observed are usually dominated by
thermal motion (Doppler broadening) and Gaussian shaped.

4.∗(a) The energy is given simply by the sum of the kinetic and electrostatic energy

E = 1

2
mv2 − e2

x
= p2

2m
− e2

x
.

(b) From the given relations, we obtain x = h̄/p. Inserting this into the energy
equation and differentiating yields for the minimum value of p

0 = dE

dp
= p

m
− e2

h̄
⇒ pmin = e2m

h̄
.

Thus, x0 = h̄2/(e2m) = 5.29 × 10−9 cm, which is the lowest Bohr orbit. The
total energy of an electron in this orbit is E0 = −e2/(2x0) = −2.18 × 10−11 erg
= −13.56 eV.
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Assuming xn = x0n
2, we have x1 = x0 and x2 = 4x0 = 2.12 × 10−8 cm. The

energy of the lowest orbit is E1 = E0, and for the second lowest orbit we have
E2 = −3.38 eV. With |E1 − E2| = 10.18 eV = hν, we find for the frequency
ν = 2.47 × 1015 Hz, corresponding to a wavelength of 1215 Å. This is in the UV, at
a wavelength about 33% longer than the Lyman α line (911 Å).

5. This is shown by inserting the constants into the given equation, dividing the
result by 1027 (Hz → GHz) and multiplying by 10−18 (esu → 10−18 esu = Debye).



Chapter 29
Solutions for Chapter 13: Line Radiation
of Neutral Hydrogen

1. Using the given Boltzmann relation and Ts = TK, we find for Nu/Nl:

TK = 3 K: 2.932
TK = 100 K: 2.998
TK = 104 K: 2.99998
TK = 106 K: 3.00

The difference in relative population between 3 and 106 K is only 2.3%.

2. (a) Substituting x2 = (mV 2)/(2kTK), we have, in one dimension,

∫ ∞

−∞
e
− mV 2

2kTK dV =
∫ ∞

−∞

√
2kTK

m
e−x2

dx =
√

2kTK

m

√
π .

Thus, in three dimensions, a factor of (m/2πkTK)3/2 is needed for normalization.
(b) With the expression for VRMS provided, we find

VRMS =
√∫ ∞

−∞
v2 f (v)dv =

√
3
kTK

m
.

Using ΔV1/2 = √
8 ln 2/3 VRMS, we find for atomic hydrogen

ΔV1/2[km s−1] =
√

8 ln 2 kTK

mH
= 0.217

√
TK .

Setting ΔV1/2 = 1 km s−1 yields TK = 21.2 K.
(c) Solving the result from part (b) for TK gives TK = (m/(8 ln 2 k))(ΔV1/2)

2 =
mH/(8 ln 2 k)(m/mH) (ΔV1/2)

2 = 21.2(m/mH) (ΔV1/2)
2.
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(d) First, we check the dimensions: [P ] = dyne cm−2 = g cm s−2 cm−2

= g s−2 cm−1. This gives
[√

P/ρ
] = √

g s−2 cm−1/g cm−3 = cm s−1, which
is indeed a velocity. For a perfect hydrogen gas, we find (n = number density):
c0[km s−1] = √

(nkTK)/(nmH) = 9.08 × 10−2√TK. For a temperature of 21 K,
this is c0 = 0.42 km s−1.

3∗. If the energy of the collision is too small (i.e. smaller than the energy separating
the two levels, E0), the upper state cannot be excited, so σ = 0. If the energy
is very large (E � E0), there is a problem satisfying both energy and momentum
conservation, so σ is small. The maximum σ lies in between in this case, since no
other levels are involved.

4∗. With the result of Problem 5(d) and equation (12.2), the interaction energy is

W = 4

3

4Z3

In3

μnμe

2
[F(F + 1) − I (I + 1) − J (J + 1)] .

For HI (I = 1/2; J = 1/2; Fu = 1; Fl = 0, Z = 1; n = 1) this becomes

ΔW(HI) = Wu − Wl = 4

3
× 16

μn,HIμe

2
= 32

3
μn,HIμe .

In the same way, we get for DI (I = 1; J = 1/2; Fu = 3/2; Fl = 1/2, Z = 1;
n = 1)

ΔW(DI) = Wu − Wl = 4

3
12

μn,DIμe

2
= 8μn,DIμe

Inserting the values for the nuclear magnetic moments of HI and DI results in
ΔW(HI)/ΔW(DI) = 4.341. Thus, ν(= 0.230ν(HI), or, with ν(HI) = 1.42 GHz,
ν(DI) = 327 MHz.

5. An analogous calculation to the previous problem results in

ΔW(3He+) = 4

3
(−128)

μnμe

2
= −256

3
μnμe .

Applying the nuclear magnetic moments gives for the ratio between HI and 3He+:
ΔW(HI)/ΔW(3He+) = 0.16. The frequency of the 3He+ hyperfine transition is
ν(3He+) = 6.10ν(HI) = 8.665 GHz.

6. For DI, a spin−1 system, we have: Aul(DI) = (ν(DI))3

(νHI))3
4
3Aul(HI) = 4.63 ×

10−17 s−1. In the same way, one finds for 3He+:

Aul(
3He+) = (ν(3He+))3

(νHI))3 3Aul(HI) = 1.95 × 1012 s−1.
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These results agree with the ones given in Table 13.1, given in the statement of this
problem and in ‘Tools’.

7.∗(a) For an estimate of the FWHP beamwidth, it is sufficient to assume that
the beamwidth scales inversely with frequency. Thus, we have: Θb(DI) =
ν(HI)
ν(DI)Θb(HI) = 39′. The peak continuum (main beam brightness) temperature

of Cas A at the DI frequency is given by TMB,cont = (λ2S)/(2.65 Θ2
o ), with λ in cm

and Θo =
√

Θ2
b + Θ2

s in arc minutes (for Gaussian-shaped sources and beams, see

Eq. (8.20) in ‘Tools’). Since the source (5.5′) is much smaller than the beam (39′),
Θo is dominated by the beam size: Θo = 39.4′. With the given spectral index of
0.7, the flux S at 92 cm is
S(DI) = (ν(DI)/ν(HI))0.7 S(HI) = 8384 Jy. This results in
TMB,cont(DI) = 17,150 K.
(b) The Doppler formula gives Δνl = νl (ΔV/c). A velocity width of 2 km s−1 thus
corresponds to a frequency width of 2.18 kHz at νl = 327 MHz.
(c) Simplifying the given formula by assuming hν � kTex, setting Tex = Ts and
inserting numerical values, yields

Nl = 1.95 × 103 glν
2[GHz]
guAul

Ts

∫
τ dV .

Evaluating this formula for the case of DI gives Nl(DI) = 2.25 × 1018 Ts
∫

τ dV.
The total column density is Ntot = Nl + Nu. In a very good approximation, the
ratio of the upper and lower level populations is given by the ratio of the statistical
weights: Nu/Nl = 2. The integral is (for a Gaussian line shape) equal to

∫
τ dV =

1.06 τpeakΔV1/2. Therefore, we have for the total column density Ntot(DI) = 3Nl =
7.16 × 1018 Ts τpeak ΔV1/2.
(d) From ‘Tools’, Eq. (12.17), we have:

κν = c2

8π

1

ν2
0

g2

g1
n1 A21

[
1 − exp

(
−hν0

k T

)]
ϕ(ν)

Replacing ϕ(ν) = Δν by ΔV requires use of the Doppler relation: �ν
ν0

= �V
c ,

where ‘c’ is the speed of light. In units of km s−1 and GHz, we have �ν = 3 ×
10−4/ν(GHz) × �V and h

k
= 4.8 × 10−2 K GHz−1. In addition, the integral over

path length converts κ into τ , the optical depth, and n1 into N1, the column density.
Then the relation is

τ�V = 1.07 × 10−2 A21 × N1 × g2

g1

[
1 − exp

(
−hν0

k T

)]

Solving for column density, we obtain the relation given in the statement of this
problem.
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(e) To determine the antenna temperature of the DI line, its (apparent) optical depth
is needed. This can be calculated from the known optical depth of the HI transition
by first obtaining a relation like the one for the DI column density (part c) for HI:
Nl(HI) = 4.84 × 1017 Ts τpeak ΔV1/2. Using Nu/Nl = gu/gl = 3 yields for
Ntot(HI) = 4Nl = 1.93 × 1018 Ts τpeak ΔV1/2. The optical depth is now given by
the ratio of the column densities of DI and HI, which is equal to the D/H abundance
ratio:

1.5 × 10−5 = 7.16 × 1018 Ts τpeak(DI) ΔV1/2

1.93 × 1018 Ts τpeak(HI) ΔV1/2
= 3.71

τpeak(DI)

τpeak(HI)
.

With τ (HI) = 2.5, this gives τ (DI) = 1.01 × 10−5, and Tline(DI) = 0.173 K
on a TMB scale. With a beam efficiency of ηb = 0.75, the antenna temperature is
T ∗

A(DI) = ηbTMB = 0.13 K. The system temperature is entirely dominated by the
strong continuum emission of Cas A: Tsys = 100 K + TMB,cont = 17,242 K on a
TMB scale, or 12,932 K on a T ∗

A scale. Finally, the integration time is given by the
radiometer formula (for On–Off observations)

ΔTRMS = 2Tsys√
B t

⇒ t = 4T 2
sys

ΔT 2
RMS B

,

where B is the bandwidth in Hz (for 1/2 the FWHP width of the DI line, 1090 Hz,
see part (b)). For a credible detection, we require a signal-to-noise ratio of 5σ , thus
ΔTRMS = 2.6 × 10−2 K. This results in an integration time of 9.08 × 108 s or
approximately 29 years, which is an integration time beyond anything possible with
a large radiotelescope. It is far longer than the—already very long—integration of
1253 hours (52 days) obtained by Heiles et al. 1993 (Ap. J. Suppl. 89, 271), which
resulted in a non-detection.

More recently Chengalur, Braun and Burton 1997 (A & A, 1997 318, L35) and
Rogers, Dudevoir and Bania (2007 A. J. 133, 1625) have carried out searches in
the outer galaxy. The first group reported a 3.9σ detection of the D I line with
the Westerbork array while the second group found a 9σ detection, with a dipole
array. The D I emission in the outer galaxy is more favorable since the continuum
background is lower, so the system noise is less. Also the D I is easily destroyed
by nuclear reactions, so should be more abundant in the outer galaxy where star
formation is lower. The detection by Rogers et al. (2007) required the equivalent of
many years of observations.

8. (a) The basic equation of radiative transfer that is valid here (in the Rayleigh–
Jeans limit) is

TL = Tconte−τ + Ts(1 − e−τ ) ,
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and

ΔTL = TL − Tcont = (Ts − Tcont) (1 − e−τ ) .

The only contribution to the continuum temperature is the 2.73 K cosmic
background radiation, thus Tcont = TBG = 2.73 K. We can assume that Ts = TK.
Thus, the temperatures cancel and we will see no line at all.

(b) If the (main beam) continuum background temperature exceeds the spin
temperature, TL < 0, i.e. the line will appear in absorption. For TBG,MB = 3 K
and τ = 1, we get TL = −0.17 K.
(c) Now, TK and thus Ts exceeds TBG and TL > 0, i.e. an emission line results.
Again assuming τ = 1, and TBG = 2.73 K, we find TL = +0.48 K.

9. We assume that all sources are Gaussian shaped. The continuum source fills a
fraction of the radio telescope beam. This is given by:

θ2
0

θ2
0 + θ2

a
≈ ΔΩ0

ΔΩa

(with ΔΩ denoting solid angles), since the beam size is taken to be much larger
than all source sizes. In analogy, the fraction of the HI cloud filling the beam
is f 2ΔΩ0/ΔΩa. Only this fraction of the continuum source contributes to the
absorption term in the relation for the line brightness temperature. Thus, the main
beam brightness temperature of the line is given by

ΔTL = f 2ΔΩ0

ΔΩa
(Tcl − T0) (1 − e−τ ) .

Since f 2,ΔΩ0 and ΔΩa are all positive, the criterion to obtain absorption is simply
Tcl < T0, which is very likely, since the actual brightness temperature of, e.g., an
HII region is high.
In many cases Tcl � T0. If, in addition, the optical depth is low, the relation for ΔTL
can be rewritten as

ΔTL = f 2ΔΩ0

ΔΩa
(Tcl − T0) (1 − e−τ ) ≈ −f 2ΔΩ0

ΔΩa
T0 τ .

Thus, |ΔTL/T0| = (f 2ΔΩ0/ΔΩa)τ = fclτ (with fcl being the (area) beam filling
factor of the cloud) is a good approximation in a number of realistic cases.

10. We assume that the larger HI cloud is in front of the continuum source; if it is
not, the absorption term in the equation for the main beam will vanish. In this case,
we will always see an emission line. Since both the HI- and the continuum source
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are much smaller than the beam, their (area) beam filling factors are

θ2
cl

θ2
cl + θ2

a
≈ ΔΩcl

ΔΩa
and

θ2
0

θ2
0 + θ2

a
≈ ΔΩ0

ΔΩa
.

The main beam brightness temperature is given by

ΔTL = (Tcl − T0)(1 − e−τ )
ΔΩ0

ΔΩa︸ ︷︷ ︸
absorption if Tcl < T0

+ Tcl(1 − e−τ )(
ΔΩcl

ΔΩa
− ΔΩ0

ΔΩa
)

︸ ︷︷ ︸
net emission

This gives:

ΔTL = −T0
ΔΩ0

ΔΩa
(1 − e−τ ) + Tcl

ΔΩcl

ΔΩa
(1 − e−τ ) .

Defining the ‘main beam temperatures’ T0,MB ≡ T0(ΔΩ0/ΔΩa) and Tcl,MB ≡
(ΔΩcl)/(ΔΩa), the main beam beam brightness temperature becomes

ΔTL = (Tcl,MB − T0,MB)(1 − e−τ ).

The criterion for absorption is thus Tcl,MB < T0,MB (the temperature of the HI cloud,
diluted by the beam, must be less than the beam diluted continuum temperature).

11. In this case, θ0, θcl � θa. Thus, all beam filling factors approach unity and the
main beam brightness temperature is simply determined by

ΔTL = (Tcl − T0)(1 − e−τ )

as in Problem 11. Thus, an absorption line is seen if Tcl < T0; the physical
temperature of the continuum source must exceed the physical temperature of the
line source, similar to the result obtained in Problem 13.



Chapter 30
Solutions for Chapter 14: Recombination
Lines

1∗. (a) The excitation parameter U is the radius of the HII region (in pc), multiplied
by the 2/3 power of the electron density. This quantity characterizes an HII
region; it is equivalent to [3R∗NLc/αt]1/3 (R∗: radius of the exciting star, NLc:
Lyman continuum photons per unit surface, αt: this is the effective recombination
probability). Thus, U relates the size and density of an HII region to parameters that
depend only on the properties of the exciting star.
(b) s0 = U/N

2/3
e yields a radius of 0.146 pc.

(c) The emission measure of this HII region is EM= 2.93 × 107 pc cm−6.
(d) The mass of the HII region (assuming pure hydrogen) is 6.36×1033 g or 3.2 M�.

2∗. Since Utot = ∑
i Ui , 2.8 ≈ 3 stars of spectral type B0 are needed to equal the

number of ionizing photons from one O7 star.

3∗. (a) The O7 star is ∼15.6 times more massive than the HII region that surrounds
it. The ratio of stellar mass to the mass of the HII region remains roughly the same
if an equivalent number of early B-type stars are considered instead of a single O
star.
(b) The mass of an HII region with the same EM as in Problem 1 but Ne = 3 ×
104 cm−3 is 0.013 M�. It has a radius that is nine times smaller than that in Problem
1 (0.016 pc), resulting in a volume that is smaller by a factor of 729, and a mass that
is smaller by a factor of 243, i.e. for the same EM, higher density HII regions have
smaller masses.
(c) For a density of Ne = 3 × 103 cm−3, U = 68 pc cm2/3 results in a radius
s0 = 0.327 pc and a mass of 10.8 M�. Thus, for the same U , lower density HII
regions have larger masses.

4. The line-of-sight depth follows from L = EM/N2
e as 0.04 pc. For the same EM,

the RMS density is 2.7×103 cm−3, and the clumping factor is f = Ne/ 〈Ne〉RMS =
3.67. It is a measure for the inhomogeneousness of the HII region.
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5. Integrating over the Salpeter distribution yields Mtot = 1.53N0

×M0.65|M(upper)
M(lower) . With Mlower = 0.08 M� and Mupper = 50 M�, this becomes

Mtot = 1.53N0(12.71−0.19) = 19.16N0. Drawing the line at 18 M� (spectral type
B0) we find Mtot(< 18 M�) = 9.72N0 and Mtot(> 18 M�) = 9.44N0.

Thus, the total mass in the lower mass stars (so-called later spectral types) is
equal to the mass in higher mass stars (so-called B0 and earlier spectral type stars).
However, the number of lower mass stars is much larger.

6∗. (a) The sharp drop corresponds to the ionization potential of the atom, since
it is assumed that one photon provides all the energy for the ionization. The
energy corresponding to ν0 is the ionization energy, Ei = hν0. For H, this is
2.18 × 10−11 erg or 13.6 eV, for He, it is 3.96 × 10−11 erg or 24.6 eV.
(b) If only higher energy photons reach the outer part of an HII region and are
absorbed, the kinetic temperature of the electrons released by these photons should
be higher. Thus, the electron temperature Te = TK should rise away from the center
of an HII region.

7. Inserting the atomic masses into the given formula yields
RM(D) = 3.288947 × 1015 Hz (deuterium) and
RM(3He) = 3.289244 × 1015 Hz (3-helium).

8. (a) To calculate the velocity difference between the 4He- and 3He-lines, we use

Δv = c
Δν

ν∞
= c

Z2( 1
n2 − 1

k2 )(RM(4He) − RM(3He))

Z2( 1
n2 − 1

k2 )R∞

= c
RM(4He) − RM(3He)

R∞
.

where R∞ is the Rydberg constant for a nucleus of infinite mass. Inserting the
appropriate constants yields Δv = 13.37 km s−1. Thus, the lines overlap close to
the half-power point, so the two profiles are blended, even if the linewidths are
20 km s−1.
(b∗) Again assuming low optical depth, the line temperature of the 3He transition
will be 2 × 10−4 K. A detection is constituted by a signal-to-noise ratio of 5, i.e. the
noise has to be 4 × 10−5 K. Using tint = (K2T 2

sys)/(BT 2
RMS) with K = 2

for position switching, Tsys the system noise, B the bandwidth and TRMS the
spectral noise to be reached, an observing time of 444 h or 18.5 days results (without
taking into account telescope overhead). Even after this time, structure in the
blended 4He line might hide the 3He line.
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Table 30.1 Parameters of selected radio recombination lines (problem 9)

Transition Exact frequency (MHz) Approximate frequency (MHz) Error (MHz)

100α 6478.659 6576.000 97.341

109α 5008.844 5077.878 69.035

126α 3248.656 3287.382 38.726

166α 1424.711 1437.598 12.887

9. (a) For k = n + 1 we have

ν = Z2RM

(
1

n2
− 1

(n + 1)2

)
= Z2RM

2n + 1

n2(n + 1)2
≈ Z2RM

2n

n4

= 2Z2RM

n3
.

(b∗) The exact and approximate frequencies along with the frequency error are listed
in the table below (for RM = 3.288 × 1015 Hz and Z = 1).
Even for the 166α transition, the error exceeds 10 MHz (Table 30.1).

10. The width of a Doppler-broadened (Gaussian-shaped) line is proportional to
1/

√
M, with M the atomic mass. Thus, the formula valid for hydrogen has to

modified to ΔV1/2 = √
0.04567Te/M (neglecting micro turbulence). Accordingly,

the linewidth for 4He (Te = 104 K, M = 4H) is 10.68 km s−1, and the linewidth
for 12C (Te = 100 K, M = 12H) is 0.616 km s−1. At the peak of the 12C line, the
4He line has fallen to a level of 1.22 × 10−8 of its peak intensity (using I (ΔV ) ∼
exp(−(ΔV )2/(2σ 2)) and ΔV1/2 = 2.354σ , i.e. Gaussian shaped lines). At the half-
power point of the 12C line, the contribution of the 4He line is 1.83 × 10−8. Thus,
there is no visible overlap and the lines are clearly separated. Adding a turbulent

width of vt = 20 km s−1 gives ΔV1/2 =
√

0.04567 Te/M + v2
t = 22.67 km s−1.

Now, the overlap (at the peak of the 12C line) is at the 1.75× 10−2 level, i.e. the lines
are still clearly separated. However, the actual separation in velocity for Orion A is
different, because 4He and 12C are not at the same vLSR. In the case of Orion A,
the carbon line is closer to the helium line, from observations, since the carbon line
arises in a partially ionized interface which may have a different radial velocity.

11.∗ (a) Using the approximation of Problem 9, we have Z = 1 for the
recombination of helium and Z = 2 for the recombination of the remaining
electron of singly ionized helium. The (approximate) frequency in the latter case
is νk, n(He+) = 8RM/n3. To obtain the same frequency, the requirement for the
principal quantum number is n(He+) = 1.587n(He).
(b) Substituting the Bohr radius into the expression for the dipole moment gives

μn+1,n = 1

2
e × 5.29 × 10−9 n2

Z2
.
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Inserting this and the approximate frequency into the general formula for the A

coefficient yields

Aul = 64π4

3hc3 ν3 |μ|2 = 1.165 × 10−2
(

2Z2RM

n3

)3 (
1.271 × 10−18 n2

Z2

)2

.

The evaluation of all constants confirms the result

Aul = 5.36 × 109 Z2

n5 .

Inserting this result into the general relation for the (velocity-integrated) intensity of
an optically thin line yields

TL Δv1/2 = 4.34 × 10−4 gu

gl

Aul

ν2[GHz] Nl = 2.32 × 106 gu

gl

Nl

ν2

Z2

n5 .

We are considering transitions at the same frequency, and assume the same
linewidth, thus:

TL ∼ gu

gl

Z2

n5
Nl .

Assuming gu/gl ∼ 1 for high n, the line intensity ratio for He and He+ is (using the
result from part (a))

T (He)

T (He+)
= [Z(He)]2 [n(He)]−5

[Z(He+)]2 [n(He+)]−5

Nl(He)

Nl(He+)
= 2.517

Nl(He)

Nl(He+)
.

The level population Nl is proportional to principal quantum number squared, that
is n2, so the density of the atom or ion in question is:

T (He)

T (He+)
= 2.517

[n(He)]2

[n(He+)]2
× N(He)

N(He+)
= 2.517

[n(He)]2

2.517 [n(He)]2 × N(He)

N(He+)

= N(He)

N(He+)
.

Thus, which line (at the same frequency) is stronger depends only on the ratios of
the relative column densities.

12. With τL � 1 the equation for the line intensity reduces to TL = Tee−τc τL.
Since e−τc � 1 for large τc, the line intensity is indeed reduced, possibly to the
point where the line becomes invisible, in the presence of optically thick continuum
radiation. If τc is assumed to be small, the Te that is determined is given by Te(1) =
TL/τL. If τc is large, this changes to Te(2) = (TL/τL)eτc . Since eτc � 1, it follows
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that TL(2) � TL(1): the Te determined for an unsuspected, large τc is (much) larger
than what is determined if τc is small.

13∗. Using the Boltzmann distribution, gn = 2n2 for the statistical weights, and the
line frequency from Problem 9, we determine for the ratio of the level populations
in case of LTE

N101

N100
(LTE) = g101

g100
exp

(
− hν

kTe

)
= 20 402

20,000
exp

(
− 0.311

10,000

)
= 1.020068 .

Applying the given ratio of the bn values yields

N101

N100
(actual) = 1.0201 exp (−0.311

Tex
)

→ exp (−0.311

Tex
) = 1.0010783 .

From this, the excitation temperature follows as

1.0777 × 10−3 = −0.311

Tex
→ Tex = −298 K .

Thus, the excitation temperature is negative, since the level populations are inverted.
Setting Te = ∞ and defining rb as the ratio of the bn, we get

N101

N100
(actual) = rb

g101

g100

= g101

g100
exp

(
−0.311

Tex

)
→ rb = exp

(
−0.311

Tex

)
.

If we, for example, require Tex > 104 K for superthermal populations, the limiting
rb is

rb = exp

(
− 0.311

10000

)
= 0.999969 .

Higher Tex requires rb to be even closer to (but smaller than) unity.

14. Following the same scheme as in the first part of Problem 13, we find

N41

N40
(actual) = 1.005

g41

g40
exp

(
− 4.94

10000

)
= g41

g40
exp

(
−4.94

Tex

)

→ 1.004504 = exp

(
−4.94

Tex

)
.
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From this, Tex follows as Tex = −4.94/0.0044935 = −1099 K. Note that higher
negative temperatures are an indication of level populations that are closer to LTE,
that is, are less inverted.

15∗ Evaluating the equation given in the problem yields β = −284. The measure
of the influence of NLTE effects follows to TL/T ∗

L = 0.9692(1+ 142τc). Clearly, it
rises as the continuum radiation becomes more optically thick.

16∗. First, we determine the optical depth of the continuum radiation by using
Eq. (10.37) in ‘Tools’ and the statement of problem 3 in chapter 10. This equation
is: τc = 8.235 × 10−2 T −1.35

e ν−2.1 EM = 3.12 × 10−5. The continuum radiation
is very optically thin, thus the continuum radiation has the strength Tc = Teτc =
3.12 × 10−3 K.
The strength of the line radiation is determined from Eq. (14.28) in ‘Tools’; which
is

TL = 1.92 × 103 T
−3/2
e EM Δν−1 = 0.16 K .

The line-to-continuum ratio is 51, i.e. large: small values for Te give large line-to-
continuum ratios.
To estimate the importance of non-LTE effects, we calculate, following Problem 17,
TL/T ∗

L = 0.75 × (1 + 3.5τc) = 0.75. Here, T ∗
L denotes the LTE line temperature.

Thus, the NLTE temperature is TL = 0.75T ∗
L = 0.12 K. That is, the difference

between LTE and NLTE is not very large.

17. The fundamental equation of radiative transfer (Eq. (1.9) in ‘Tools’) gives
dIν/ds = −κνIν + εν . If the source function S (equal to εν) can be neglected
compared to the background, this reduces to dIν/ds = −κνIν , or, equivalently,
dIν/dτ = Iν . Thus, Iν = I0eτ . The optical depth is defined as τν = κνl. Inserting
Eq. (14.38) from ‘Tools’ gives τν = κ∗

ν bβL, so Iν = I0eκ∗
ν bβl , which is the relation

that was to be shown. All quantities marked by ∗ denote the LTE case.
The measured line intensity is given by ΔIL = IL(l) − I0 = I0(eτL − 1). Using
temperatures, this is TL = TBG(eτL − 1) = TBG(eκ∗

Lbβl − 1). We use the result from
Problem 19 to obtain the optical depth of the line in the LTE case: τ ∗

L = TL/Te =
1.6 × 10−3 = κ∗

Ll. This yields τL = κLl = κ∗
Lbβl = 8.4 × 10−3. Finally, the

observed NLTE line temperature is TL = 2500(eτL − 1) = 21.1 K.

18. (a) For a collision rate given by t−1 = nσv, where n is the volume density (of
hydrogen, the collision partner), v is estimated from the linewidth in Fig. 14.2 in
‘Tools’ as 4 km s−1, and take σ as the collision cross section (σ = πa2

n, an the Bohr
radius). Inserting the numbers results in
n = 300: t−1

c = 103 × 7.1 × 10−7 × 4 × 104 = 28 s−1.
n = 100: t−1

c = 103 × 8.8 × 10−9 × 4 × 104 = 0.35 s−1.
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The radiative decay is given by Aul = 5.36 × 109 n−5 (for Z = 1, which is also
correct for ‘hydrogen-like’ carbon lines). Thus, we get
n = 300: t−1

r = 2.21 × 10−3 s−1.
n = 100: t−1

r = 0.54 s−1.
Collisions clearly dominate at n = 150 (then the population is close to LTE), while
radiative decay starts to have higher rates at n ≈ 100.
(b) Radiative transfer gives for a line temperature, ignoring filling factors, (e.g.
Eq. (12.20) in ‘Tools’) TL = (Tex − TBG)(1 − e−τ ). The second factor is always
positive. Thus, to see any line in emission, Tex has to exceed TBG, or be negative
(maser), as the observer correctly states for the C166α line.
(c) The equation is obtained as follows: the Doppler relation is used to convert the
units of linewidth from kHz to km s−1, as

(
Δν

kHz

)
= 3.33

( ν0

GHz

)
ΔV1/2 .

Then

TL = 1.92 × 103 T
3/2
e (EM) ×

(
Δν

kHz

)−1

becomes

TL = 576 T
3/2
e (EM)

(
ν0

GHz
× ΔV1/2

km s−1

)−1

.

(d)∗ Using the method in Problem 9, chap. 9, we obtain T (Cas A) = 9.9 × 103 K
at 1.425 GHz. For the C+ line region, from the values given in the problem, n(C+)
= 1.2 cm−3, so the emission measure, EM, is 0.42 cm−6 pc. The most crucial input
for an estimate of the peak line temperature is the value of Te. If this emission is not
caused by a maser amplification of the background continuum radiation, Te must be
> 0. In fact the value must exceed the maximum continuum brightness temperature
∼9.9×103 K, in order to have a C166α line is in emission. The predicted integrated
line intensity is 1.7 × 10−4 K km s−1. This is far smaller than the observed value.
Thus, large non-LTE effects, namely line masering, must be present.



Chapter 31
Solutions for Chapter 15: Overview
of Molecular Basics

1. (a) For an ideal gas, we have PV = NkT . With N/V = n, the pressure becomes
P = nkT . For standard laboratory conditions, the density is: n = 2.65×1019 cm−3.
For a molecular cloud with pressure 1.32 × 10−9 dyne cm−2, n = 9.56 × 105 cm−3.
(b) Laboratory conditions: λ = 1/(σn) = 3.77 × 10−4 cm; τ = 1/(σnv) = 1.26 ×
10−8 s; molecular cloud: λ = 1.05 × 1010 cm; τ = 5.23 × 105 s.
(c) Under laboratory conditions, there are 7.9 × 1012 collisions before a decay, in a
molecular cloud there are 0.19 collisions before a decay. In the first case, collisions
dominate over radiative decay, while in the second case, radiative decay is slightly
faster.
(d) For the molecular cloud, the number of H atoms is twice the number density of
molecules so λ = 1015 cm, while for the laboratory, λ = 38 cm. Quite a remarkable
difference!

2. (a) For m = 28mH, we have for the thermal linewidth: ΔVt = 4×10×10−2√TK .

TK = 10 K: ΔVt = 0.13 km s−1.
TK = 100 K: ΔVt = 0.41 km s−1.
TK = 200 K: ΔVt = 0.58 km s−1.

(b) With ΔVturb = √
ΔV1/2 − ΔVt, ΔVturb = 2.997 km s−1, i.e. turbulence is the

dominating line broadening process.

3. Inserting the parameters (of the CO molecule) into the given equation yields
Aul = 5.948 × 10−8 s−1.

4. Using n∗ = Aul〈σv〉 = 1010 Aul , we find:

n∗ = 1.8 × 104 cm−3 for CS J = 1 → 0.
n∗ = 2.2 × 105 cm−3 for CS J = 2 → 1.
n∗ = 740 cm−3 for CO J = 1 → 0.
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5. (a) For a rigid rotor (centrifugal stretching constant D = 0), the frequency of
a transition is given by ν = 2Be(J + 1), where the rotational constant Be =
h̄/(4πΘe). This gives Be = 4.18 × 1010 Hz. The resulting frequencies and energies
above ground are

J = 1 → 0: 83.6 GHz; energy of level J = 1: 4.01 K.
J = 2 → 1: 167.1 GHz; energy of level J = 2: 12.03 K.
J = 3 → 2: 250.7 GHz; energy of level J = 3: 24.06 K.
J = 4 → 3: 334.4 GHz; energy of level J = 4: 40.10 K.

(b) For HD, we find Be = 1.348 × 1012 Hz. This gives

J = 1 → 0: 2696 GHz (or 111 μ) ; energy of level J = 1: 129 K.
J = 2 → 1: 5392 GHz (or 56 μ); energy of level J = 2: 388 K.
J = 3 → 2: 8088 GHz (or 37 μ); energy of level J = 3: 775 K.
J = 4 → 3: 1.08 × 104 GHz (or 28 μ); energy of level J = 4: 1291 K.

(c) J = 1 → 0 : Aul = 7.61 × 10−10 s−1; critical density n∗ = 7.6 cm−3.
J = 2 → 1 : Aul = 7.30 × 10−9 s−1; critical density n∗ = 73 cm−3.

6. To determine the frequency, we use

ν = E(J + 1) − E(J )

h

= Be((J + 1)(J + 2) − J (J + 1)) − D((J + 1)2(J + 2)2 − J 2(J + 1)2) .

This reduces to ν = 2Be(J + 1) − 4D(J + 1)3, which is Eq. (14.26) in ‘Tools’. We
find for the 12C16O molecule

J = 1: frequency: 115.273 GHz; energy: 7.638 × 10−16 erg or 5.53 K.
J = 2: frequency: 230.538 GHz; energy: 2.291 × 10−15 erg or 16.59 K.
J = 3: frequency: 345.796 GHz; energy: 4.583 × 10−15 erg or 33.19 K.
J = 4: frequency: 461.040 GHz; energy: 7.637 × 10−15 erg or 55.31 K.
J = 5: frequency: 576.267 GHz; energy: 1.146 × 10−14 erg or 82.98 K.

7. Using the same formulae as in Problem 6 of this chapter, we find

J = 0: energy: 0 erg
J = 1: frequency: 338.125 MHz; energy: 2.240 × 10−18 erg or 0.016 K.

To find an appropriate J for ν ≈ 20 GHz, we neglect the second term in the formula
for the frequency (which contributes only ∼2% even for J ≈ 100), and set 20 GHz
= 2Be(J + 1). This gives J = 59. We confirm our result by calculating the exact
frequency and find: ν(J = 59) = 20.0802 GHz.
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8. Differentiating equation (14.49) gives

d(n(J ))

dJ
= 2ntot

Z
e−hBeJ (J+1)/kT − ntot

Z
e−hBeJ (J+1)/kT hBe(2J + 1)

kT

= ntot

Z
e−hBeJ (J+1)/kT

(
2 − hBe(2J + 1)2

kT

)
.

Setting this to 0 to find the maximum yields

0 = 2 − hBe(2J + 1)2

kT
⇒ Jmax =

√
kT

2hBe
− 1

2
= 3.227

√
T

Be(GHz)
− 1

2
.

Applying this relation to selected diatomic molecules, we find:

CO; 10 K: Jmax = 0.84 (J = 1 level); 100 K: Jmax = 3.75 (J = 4 level).
CS; 10 K: Jmax = 1.56 (J = 2 level); 100 K: Jmax = 6.01 (J = 6 level).
HC11N; 10 K: Jmax = 24.32 (J = 24 level).

In the latter two cases, the required densities for LTE may be too large to be fulfilled.

9. (a) This is shown most simply by inserting the given quantities. We use 1 −
e−0.048ν/Tex ≈ 0.048 ν/Tex and

∫
τ dv = τ Δv.

(b) Since TMB = Texτ ∼ νn(J ) and ν ∼ J , Jmax will be higher.

10. We use the result established in Problem 9(a) and a level population following
the Boltzmann relation. Applying g0 = 1; g1 = 3; ν2−1 = 2ν1−0; TL = Texτ and
(1/3)e−E(K)/Tex = 1/3 for high Tex results in

N0

N1
= 1

3e−E(K)/Tex
= 4T1−0

3T2−1
⇒ T2−1 = 4T1−0 .

For high optical depth, TL = Tex, so for a constant Tex, the line intensities are equal:
T2−1 = T1−0.

11. (a) The partition function for ammonia is: Z = 4.118 × 10−2 T 3/2. This gives:
T = 50 K : Z = 14.6; T = 100 K : Z = 41.2; T = 200 K : Z = 116.5;
T = 300 K : Z = 214.0. The approximation is valid as long as the temperature
is large compared to the spacing of the rotational energy levels; for the ammonia
molecule, so this must be T � 14 K.
(b) Inserting the relation for Z into the given formula, taking into account that there
are 2 J = (3, 3) levels, results in

ntot

n3,3
= Z

2(2J + 1)e−120/T
= 2.941 × 10−3 T 3/2 e120/T .

The ratios are: T = 50 K: 11.46; T = 100 K: 9.76; T = 200 K: 15.15; T = 300 K:
22.80.



170 31 Solutions for Chapter 15: Overview of Molecular Basics

(c) The given formula can be rewritten as

ntot

n3,3
= Z

2(2J + 1)e−124.5/T
= n0,0

14e−124.5/T
+ n1,1

14e−124.5/T

+ n2,2

14e−124.5/T
+ 1 + n4,4

14e−124.5/T
+ . . . .

We insert n(J = K) = (2J + 1) exp((h(BJ (J + 1) + (C − B)J 2)/(kT ))),
keeping in mind that for the (J,K) = (3, 3) and (9,9) transitions the factor (2J +1)

has to be replaced by 2(2J +1). Taking into account metastable levels with J ≤ 10,
we find:

T = 50 K: ntot/n3,3 = 4.82;
T = 100 K: ntot/n3,3 = 3.05;
T = 200 K: ntot/n3,3 = 3.45;
T = 300 K: ntot/n3,3 = 4.23.

Even for T = 300 K, the (10,10) level contributes only 0.069 to the sum, so the
approximation is justified.

12. (a) The symmetry of the total wavefunction is the product of the symmetries of
the spin wavefunction times that of the spatial wavefunction. For formaldehyde or
deuterated formaldehyde, the dipole moment is along the ‘a’ axis of the molecule.
The quantum numbers of the rotation about the ‘b’ and ‘c’ axes determine the
symmetry of the spatial wavefunction. Transitions between rotational states are
characterized by KaKc. Since the deuterium spins are unity, these are bosons, so an
exchange of these spin wave functions is symmetric. Since the total wavefunction
must be symmetric, the para-D2O (i.e. anti-parallel nuclear spins), these must be
multiplied by an anti-symmetric spatial wavefunction. Since the dipole moment is
along the ‘a’ direction, it must be symmetric, so for this species, transitions are
between states with KaKc even-even and/or odd-odd odd-even. For ortho-D2CO
(i.e. parallel nuclear spins), these must be multiplied by an symmetric spatial
wavefunction. Since the dipole moment is along the ‘a’ direction, it must be
symmetric, so for this species, transitions are between states with KaKc

∗ odd-odd
and/or even-even (see, e. g. Butner et al. 2007 ApJ 659, L137).



Chapter 32
Solutions for Chapter 16: Molecules
in Interstellar Space

1. (a) We use

Δν = ΔE

h
= E(J + 1) − E(J )

h
= 2B(J + 1) + (C − B)K2(K + 1)2

= 596 GHz (J + 1) − 109 GHz K2(K + 1)2 .

For the (1, 0) → (0, 0) transition, this results in ν = 596 GHz, and for the (2, 0) →
(1, 0) transition, we get ν = 1192 GHz.
Inserting into the formula for Aul given in Problem 3, the Einstein A coefficients
are: A((1, 0)− (0, 0)) = 1.78×10−3 s−1 and A((2, 0)− (1, 0)) = 1.71×10−2 s−1.
Compared to the inversion transitions with A ≈ 10−7 s−1, the rotational transitions
are fast and the populations decay to the ground state quickly.

2. (a) Solving the Boltzmann equation for Tex gives Tex = −1.14/ ln(nu/nl).
We obtain:
(b) Inserting into the formula from Problem 13 and solving for τ gives: τ1−0 =
−6.98 × 10−16 N(J = 0).
(c) Inserting into the equation for TMB gives TMB = −100τ = 6.98 × 10−14 N0.
Thus, a measurement of TMB allows the determination of N0. For example, for
TMB = 1 K, N0 = 1.43 × 1013 cm−2. Since the background is not amplified in
this case, optically thin masers indeed ‘do not mase’.
(d) The condition TBG � Tex lets us write: TMB = TBG(e−τ − 1). Since τ is nega-
tive, the exponent is positive. For the optically thin case, there is amplification, for
high optical depth, the background is very strongly amplified, since (e−τ − 1) � 1
(Table 32.1).
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Table 32.1 Excitation
temperatures as a function of
ratios of populations
(problem 2)

nu/nl Tex

0.5 1.64

0.6 2.23

0.7 3.20

0.8 5.11

0.9 10.82

1.0 ∞
1.1 −11.96

1.2 −6.25

1.3 −4.35

1.4 −3.39

1.5 −2.81

3. The conditions A � C and (Aji)/(3Cjiτij ) require τ � 1. Applying this and
TK/T0 � 1, the given equation simplifies to

T

T0
= 1

ln
(
1 + (Aji)/(3Cjiτij )

) .

For example, (Aji)/(3Cjiτij ) = 0.1 results in TL = 10.5 T0, so, even though the
transition is subthermal (radiation dominates collisions), the line intensity is high,
due to line trapping caused by the high optical depth, even though the gas density
may be low.

4. The same equation used in Problem 3 holds. Since (Aji)/(3Cjiτij )

� 1, this can be further reduced (by approximating the logarithm: ln(1 + x) ≈ x)
to TL = 3Cτ/A T0. The condition C � A indicates that collisions dominate
and the gas is thermalized. The line intensity is high (e.g. TL = 10 T0 for
(Aji)/(3Cjiτij ) = 0.1), but now also the density is high enough to allow collisions
to be the most important process.

5∗. (a) Let V be the uniform expansion velocity, v⊥ its line-of-sight component, i.e.
the radial velocity. For spatial coordinates, we choose p and z, with z aligned with
v⊥ and p the projection of r on the plane of the sky, so that for the radius r we have
r2 = z2 + p2. Using v⊥ = V (z/r), we can express z as

z = v⊥
V

r = v⊥
V

√
z2 + p2 ⇒ z2 = p2( v⊥

V
)2

1 − ( v⊥
V

)2 ⇒ z = p
(

v⊥
V

)
√

1 − ( v⊥
V

)2
.

Differentiating gives

dz

dv⊥
=

P
V√

1 − ( v⊥
V

)2
−

1
2p

(
v⊥
V

)
( 2v⊥

V
)

(
1 − ( v⊥

V
)2
)3/2 =

p
V(

1 − ( v⊥
V

)2
)3/2 .
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We define a ‘correlation length’ δz(p, v⊥) over which the radial velocity is v⊥, with
ΔV the local linewidth due to turbulence and thermal broadening, which is small
compared to the expansion velocity V

δz = ΔV

dv⊥/dz
= p ΔV

V

(
1 −

(v⊥
V

)2
)−3/2

.

(b) To express τ as a function of p and (v⊥/V ), we use the result of Problem 13 as
the optical depth (per unit distance) and get

τ (p, v⊥) =
(

NJ (r)

Tex

μ2
0ν(J + 1)

1.67 × 1014 (2J + 1)

)
1

ΔV
δz

The result is

τ (p, v⊥) = C
NJ (r)

ΔV
δz

= C
NJ (r)p

V

1

(1 − ( v⊥
V

)2)3/2
.

(c) Here, the assumption of ΔV � V is important, since then all molecules
contributing to τ (p, v⊥) are at the same radius. The line intensity T (v⊥) (i.e. the
line profile) is given by

T (v⊥) = 2π

∫ p(v⊥)

0
T0(p, v⊥)(1 − e−τ (p,v⊥)) p dp .

(d) In the optically thin case, this becomes
T (v⊥) = 2π

∫ p(v⊥)

0 T0(p, v⊥)τ (p, v⊥) p dp. Changing the integration variable to
r , we use p dp = (1 − (v⊥/V )2)r dr and obtain

T (v⊥) = 2π

∫ R0

0
T0(r)C

NJ (r)p

V

1

(1 − ( v⊥
V

)2)3/2 (1 − (v⊥/V )2)r dr

= 2π
C

V

∫ R0

0
T0(r)NJ (r)r2dr .

Because the integral is independent of v⊥, the line profile will be flat out to the
maximum velocity.
In the optically thick case, the profile function does not depend on τ and reduces to

T (v⊥) = 2π

∫ p(v⊥)

0
T0(p, v⊥) p dp = 2π

∫ R0

0
T0(r)

(
1 −

(v⊥
V

)2
)

r dr

= 2π

(
1 −

(v⊥
V

)2
)∫ R0

0
T0(r) r dr .
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This is a parabolic line shape. In both cases, this analysis is only valid if the
circumstellar envelope is much smaller than the beam of the telescope (see Morris
1975, ApJ 197, 603).

6∗. (a) If the true length of the outflow is l and the true width w, the volume is
given by V = π(w/2)2 l = (1/4)πlw2. For a constant density n(H2), the mass
(neglecting helium and heavier elements) is M = nV = (1/4)π n(H2) lw2.
(b) The age (assuming expansion at a constant rate) is given by age = l/(2v) (v:
true velocity). Using v = v0/ cos i and l = l0/ sin i, we get age = l0/(2v0 tan i),
where v0 and l0 are the observed quantities.
(c) The total kinetic energy is E = (1/2)Mv2 = (1/2)Mv2

0/ cos2 i.
(d) For Ė we find
E/age = [

(Mv2
0)/(2 cos2 i) (2v0 sin i)/(l0 cos i)

] = (Mv3
0 sin i)/(l0 cos3 i).

7∗. Using the equations from the statements of problems 3, 4 and 9 of chapter 15,
we find

J = 30 → 29: ν = 3.438 × 103 GHz; λ = 0.087 mm; Aul = 2.81 × 10−3;
n∗ = 2.81 × 107 cm−3.
J = 16 → 15: ν = 1.841 × 103 GHz; λ = 0.163 mm; Aul = 2.22 × 10−3;
n∗ = 2.22 × 106 cm−3.
J = 6 → 5: ν = 691.47 GHz; λ = 0.434 mm; Aul = 1.86 × 10−5;
n∗ = 1.86 × 105 cm−3.

For comparison: J = 2 → 1: ν = 230.542 GHz; λ = 1.3 mm; Aul = 6.9 × 10−7;
n∗ = 6.9 × 103 cm−3.
(b) To determine the energies, the formula given in Problem 10 is used: J = 30:
E = 2566 K; J = 16: E = 752 K; J = 6: E = 116 K. Assuming a
Boltzmann distribution, we have N(30)/N(6) = (61/13)e−2450/2000 = 1.38. Since
C ≈ 10−4 cm−3, the J = 30 → 29 transition will be subthermal, while the
J = 6 → 5 transition is thermalized. Thus, non-LTE (e.g. LVG) calculations are
needed to determine the population ratio.

8. With tgas−grain = 1022

nHV1/2
and for Tk = 10 K, we get

tgas−grain = 7.69 × 1017 s

nH
= 2.4 × 1010 yr

nH
= 1.2 × 1010 yr

nH2

.

9. Set tff equal to tgas−grain: 5×107 yr√
n(H2)

= 1.2×1010 yr
nH2

.

This gives n(H2) = 5.8 × 104 cm−3.

10 (a) M = (4π/3)R3 × 1.36ρH2 = (4π/3)[R(pc)]3(3.09 × 1018 cm)3 × 1.36 ×
2 × 1.67 × 10−24g = 5.61 × 1032g[R(pc)]3n(H2(cm−3)).
1.36 is the ‘helium correction’: 1.36 × 2 mp = 4.54 × 10−24g.
(b) Reformulate the above relation for M in solar masses:
M(M�) = 0.282[R(pc)]3n(H2).
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Thus, n(H2) = (3.54M(M�))/([R(pc)]3) = 1.05 × 103 cm−3.
(c) ΔV1/2 = √

(M(M�)/(250R(pc)) yields ΔV1/2 = 16.3 km s−1.
(d) For 1000 GMCs, MGMC = 109M�, so 33% of the mass of the ISM is in GMCs.
The volume of the galaxy between 2 kpc and 8.5 kpc is
Vg = π(R2

2 − R2
1)D = 1.15×1066 cm3 = 4.29×1010 (pc)3. The volume of 1000

GMCs is VGMCs = 103 × 4π/3R3 = 1.41 × 107 (pc)3. Thus, the GMCs occupy
about 0.03% of the total volume.
(e) Column density: N = Dn = 9.73 × 1022 cm2 ≈ 1023 cm2.
Visual extinction: Av = 100m.

11. From the equation in ‘Tools’,

HD

H2
= D+

H+ eΔE/kT

with ΔE/kT = 500 K. Then for T =100 K, the abundance of HD is e5 = 148
times larger than the actual abundance. For the analogous reaction of CO and 13CO,
the energy difference is ΔE/kT = 35 K, so at 100 K, the enrichment is 1.4. This
is much less but still significant. There are effects that balance this enrichment,

called ‘fractionation’, so that the measured and actual
13CO
12CO

abundances from many
different species agree rather well.
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Antenna
Frauenhofer Distance, 35
Rayleigh Distance, 35
South Pole, 33
wave zone, 35
antenna and brightness temperatures, 32
Arecibo, 32
baseline ripple, 39
beamsizes, 28
Gaussian observed and actual source sizes,

32
Heinrich Hertz, 52
Hertz, 28
Hertz dipole, 28
Hertz dipole beamsize and efficiency, 34
IRAM 30-meter, 52
observed and actual source sizes, 32
parabolic, 29
pointing, 33
relation of beam and antenna efficiency, 31
relation of source sizes, 31
sidelobes, 28
television reception, 32

Atmosphere
noise, 37, 38
optical depth, submillimeter, 37

Atoms
carbon recombination lines, 73
collision cross section, 64
departure coefficients, 72
deuterium, 65
doubly ionized, 71
helium3, 71
helium-3, 64

hydrogen, 63
non-LTE effects, 72
photoionization cross sections, 70
recombination lines, 71, 72
Rydberg constant, 71

Attenuation
cable, 4

Autocorrelation, 100
sinusoidal signal, 16

Bandwidth
predetector, 22

Beam
efficiency, 119
pill-box, 40, 127

Beamsize
full width to half power, 28

Big Bang, 54
Bipolar Outflows, 80
Black Body

2.73 K background, 53
Sunyaev-Zeldovich, 52

Bolometer, 23
Boltzmann

velocity distribution, 63

Circular polarization, 13
Convolution

graphical, 16
relation of beam and source, 31
source, beam, 38
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Decibel
Receiver Noise, 23

Departure Coefficients, 72

energy density, 54

Faraday rotation
solar system, 13

Filter
smoothing, 21, 22

Fourier Transform
Gaussian wave packet, 7
modulation property, 16
shift property, 16

Free Fall Time, 81
Frequency

atomic lines, 64
carbon monoxide lines, 77

Gaussian
noise statistics, 15
probability, 15
standard deviation, 17
weighting, 18

H II regions
clumping, 70
non-LTE effects, 72
optical depths, 72
temperature gradients, 70

Hertz Dipole, 119
HII regions

Emission Measure, 69
excitation parameter, 69
stars, 69

Images
All sky, 26

Interferometer
double sideband, 47
imaging speed, 48
mosaicing, 48
multiplying, 47
noise, 47, 48

spectral line, 48
spectral cross correlator, 47
spectral line, 47
two element, 43, 46
u-v plane distributions, 44

Ionosphere
Faraday rotation, 13

Ions
carbon, 73
departure coefficients, 73
helium, 71
masering, 74
non-LTE effects, 73

ISM
average electron density, 1
extinction, 75
mean free path, 75

large velocity gradient model, 80
Lines

Rydberg Calculations, 161
Lineshape

Doppler, 60
Gaussian, 63
Lorentzian, 60

Maser
noise statistics, 15

Masers
water vapor, 38

Mixer
double sideband, 24
sideband line smearing, 25

Molecules
ammonia, 78
bipolar outflows, 80
carbon monoxide, 77, 81
centrifugal distortion, 77
CH3C2H, 79
CH3CN, 79
circumstellar envelopes, 80
critical density, 76
CS, 76
Einstein A coefficient, 76
excitation temperatures, 79
fractionation, 82
free fall time, 81
galaxy GMC census, 82
Giant Molecular Clouds, 81
GMC’s, 81
HD, 77
ion-molecule chemistry, 82
large velocity gradient model, 80
level populations, 77, 81
line ratios, 78
linewidth, 75
masers, 79
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moment of inertia, 76
virial equilibrium, 82

Noise
atmosphere, 37, 38
excess, from snow, 38
sky, submillimeter, 39

Noise Equivalent Power, 23

photon number density, 54
Planck, 54

relation in IR, 3
Plasma

ionosphere, 1
Polarization

masers, 12
Stokes parameters, 11

Power
equivalent temperature, 5
received in radio range, 28
sun, 2
telephone, 7

Power Spectral Density
PSD, 100

Pulsar
pulse smearing, 7

Radar
automobile, 2
Cloudsat, 1
power, 1

Radiation
atomic, 60
coherent, 7
dust, 50
Einstein A coefficient, 60, 61
free-free, 50
lineshapes, 60
redshift, 54
relativistic source expansion, 58
special relativity, 39
sun, 53
Sunyaev-Zeldovich, 52
synchrotron, 52
synchrotron minimum energy theorem, 57

Rayleigh-Jeans, 38, 54
Receiver

single sideband, 25
stability, 25, 26
synchronous detection, 26

Receiver Noise

linear detector, 19
second stage contribution, 23
sky noise, 26
y-factor, 20

Reciever Noise
NEP, 23

Signal
detectable, 21

Source
3C273, 58
asteroid, 49
Cassiopeia A, 46, 52, 56, 65
Crab Nebula, 56
Cygnus A, 46, 58
detection with bolometer, 49
discrete, Gaussian, temperature, 38
excitation parameter, 69
flux density, 1
free-fall time, 81
galactic center, 8
line absorption, 65
NGC 253, 57
Orion A, 46, 50, 55
Orion A, free-free, 51
Orion KL, 49, 81
relativistic expansion, 58
stellar, 55, 56
stellar mass loss, 56
survey

3C, 51
GB6, 51
NVSS, 51
VLSS, 51

Venus, 39
Stars

Salpeter stellar mass distribution, 70
Statistics

Gaussian, 15
Poisson, 39

Submillimeter
optical depth, 37

Sunyaev-Zeldovich, 52
Surveys

time estimates, 26
Synchrotron

flat spectrum, 52
minimum energy theorem, 57

Temperature
brightness, discrete, 2, 38
brightness, flux density, 38
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excitation, 59
kinetic, 63, 81
spin, 63, 66
thermal, sun, 38

Temperature, main-beam, Gaussian, 38

Units
Jansky, 1
power equivalent, 5

virial equilibrium, 82

Wave packets, 7

Y-factor
Receiver Noise, 23
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