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Chapter 3
Adenosine Receptors: Structure, 
Distribution, and Signal Transduction

Stefania Merighi, Stefania Gessi, and Pier Andrea Borea

Abstract Adenosine receptors A1, A2A, A2B, and A3 are effector proteins triggered 
by the endogenous nucleoside adenosine to exert its numerous vital physiological 
effects, behaving like a guardian angel. This chapter offers an overview of the 
updated knowledge concerning the structure, distribution, and signal transduction 
of adenosine receptors. They are a family of G protein-coupled receptors widely 
distributed through the body, from central nervous system to peripheral organs, 
important and ubiquitous regulators of numerous cellular signaling. Their pres-
ence on every cell renders them an attractive opportunity for the pharmacological 
research and development of new drugs but also a challenge in the difficulty to 
produce tissue- selective ligands avoided of side effects. To aid this process, sev-
eral efforts have been invested to reveal the molecular structure and the conse-
quent mechanism of ligand binding of these receptors, and until now more than 
30 structures have been published for the human A2A subtype. Finally, the princi-
pal adenosine receptor signaling pathways including adenylyl cyclase, phospho-
lipase C, inositol triphosphate, diacylglycerol, phosphatidylinositol 3-kinase, and 
mitogen-activated protein kinases determining their effects on several transcrip-
tion factors, such as hypoxia- inducible factor 1, cyclic AMP (cAMP)-responsive 
elements, nuclear factor-kB, and exchange protein directly activated by cAMP as 
the most relevant, are presented.
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3.1  Introduction

Adenosine is a purine nucleoside released by almost all cells mediating its effects 
through activation of four G protein-coupled adenosine receptors, classified as A1, 
A2A, A2B, and A3 (Borea et al. 2016). The first demonstration of their existence has 
been offered more than 40 years ago by the observation that methylxanthines such 
as caffeine and theophylline were able to antagonize the cardiac and cerebral effects 
of adenosine. These receptors are characterized by different affinity for adenosine, 
G protein coupling, as well as intracellular signal transduction inside cells. In gen-
eral adenosine interacts with A1, A2A, or A3 subtypes with an EC50 in the range 
10 nM–1 μM, while activation of the A2B subtype needs concentrations higher than 
10 μM, rarely obtained in physiological conditions but present in hypoxic/injured 
tissues (Eltzschig 2009). Anyway, the affinity of adenosine to its receptors may also 
depend on the effect investigated, e.g., cAMP level determination versus MAPK 
activation or the number of receptors expressed (Chen et al. 2013). Specifically, on 
the one hand, A1 and A3 adenosine receptors show high and low affinity for adenos-
ine, respectively, and are able to reduce adenylyl cyclase activity. On the other 
hand, A2A and A2B subtypes display high and low affinity for the nucleoside, respec-
tively, and activate adenylyl cyclase, thus stimulating cyclic AMP (cAMP) levels 
(Fredholm et al. 2011; Borea et al. 2017). Adenosine receptors are present in every 
organ, tissue, and cell of the body rendering them attractive targets for the research 
and development of new drugs in many pathological conditions related with raised 
adenosine levels (Gessi et al. 2011). Anyway this wide distribution implies the lack 
of specificity of a given receptor subtype that may be present in both tissues 
involved in disease but also in healthy organs with consequent side effects, render-
ing difficult the development of drugs for specific medical needs. In this chapter 
updated informations concerning the molecular structure, distribution, and signal 
transduction of adenosine receptors are provided.

3.2  Molecular Structures of Adenosine Receptors

Adenosine receptors have been cloned in the beginning of the 1990s and deeply 
pharmacologically characterized and consist of a similar structure represented by 
a core domain crossing the plasma membrane seven times, with an extracellular 
N-terminus, an intracellular C-terminus, and three intracellular and three extra-
cellular loops (IL and EL, respectively) of different lengths and functions among 
the four adenosine receptor subtypes (Fredholm et al. 2000). These domains give 
specific characteristics important for receptor-ligand interactions. Specifically, 
the EL1, EL2, and EL3 of GPCRs contribute significantly to receptor function as 
evidenced by crystal structures, and cysteine amino acids forming disulfide 
bonds in the EL domains of GPCRs are important not only in ligand binding but 
also in receptor stability and function (Avlani et al. 2007; Schiedel et al. 2011). 
The N-terminus presents one or more glycosylation sites, while the C-terminus 
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possesses phosphorylation and palmitoylation loci, which are important for 
receptor desensitization and internalization. Specifically, mutation studies 
revealed that glycosylation is relevant for the recruitment of receptors to the 
plasma membrane, while palmitoylation sites, located at the end of helix 8 and 
absent in A2A adenosine receptors, influence receptor degradation. 
Depalmitoylation of A3 adenosine receptors, in contrast to what happens for A1 
subtype, induces a fast receptor desensitization through GPCR kinase phosphor-
ylation induction (Piirainen et al. 2011). Adenosine receptors are characterized 
by a high homology sequence among them, ranging from 41% to 58% of sequence 
identity for the human species, with the most conserved region being in the extra-
cellular region of the receptor reaching 71%.

3.2.1  A1 Adenosine Receptors

A1 adenosine receptors are 326 amino acid long distributed among 7 transmem-
brane domains (TM) of which TM3 and TM7 result strictly conserved sequences for 
ligand interaction with the receptor, as reported from mutagenesis studies (Jespers 
et al. 2018). The A1AR orthosteric site is found inside the TM packet, but also EL2 
has been implicated in the ligand affinity and signal transduction (Peeters et  al. 
2012; Nguyen et al. 2016a, b). In addition, in the A1 adenosine receptor EL2, the 
presence of an allosteric site has been reported through molecular modeling charac-
terization (Narlawar et  al. 2010). Recently, the crystal structure of A1 adenosine 
receptors bound to a selective covalent antagonist has been revealed (Glukhova 
et al. 2017). Interestingly, significant differences with respect to already presented 
A2A adenosine receptor structure indicate a different conformation of EL2 and a big-
ger extracellular cavity presenting an alternative binding pocket accepting both 
orthosteric and allosteric molecules. It has been suggested that this configuration 
confers ligand selectivity instead of the simple amino acid sequence. From this 
knowledge more selective drugs could be projected with both agonist and allosteric 
properties, useful for the therapy of neuropathic pain, ischemia-reperfusion dam-
age, and renal pathologies (Glukhova et al. 2017; Cheng et al. 2017).

As for allosteric sites located on the EL region, a crystal structure with an allo-
steric modulator has not been provided but through mutagenesis studies the amino 
acid sequence responsible for these ligands involved in the binding site of A1AR 
allosteric modulators (Jespers et al. 2018) has been reported.

3.2.2  A2A Adenosine Receptors

A2A adenosine receptors in human species are 412 amino acid long, but this number 
may slightly change from 409 to 412 in other species (de Lera Ruiz et al. 2014). At 
variance with other adenosine subtypes, it presents a long carboxy-terminal 
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domain, responsible for a major molecular weight (45 kDa) with respect to the 
other adenosine subtypes (Preti et al. 2015). A2A adenosine receptors are formed by 
7 TM of 20–27 amino acids with TM3 and EL2 containing cysteine residues giving 
a disulfide bond. In addition an extra short TM8 domain is present toward the mem-
brane cytoplasmic surface (Jaakola and IJzerman 2010; de Lera Ruiz et al. 2014). 
Interestingly, two new cholesterol-binding sites have been described on it, one of 
which interacts with cholesterol only when bound to an inverse agonist, as demon-
strated through numerous high-resolution crystal structure studies (Rouviere et al. 
2017). Indeed, the last 10 years have seen a huge development of novel crystalliza-
tion strategies that have introduced enormous changes in the knowledge of struc-
tural biology of GPCRs. Specifically, the A2A adenosine receptor has been one of 
the best studied and characterized by a structural point of view, having more than 
30 structures been described (Carpenter and Lebon 2017). In particular, crystal 
structures of A2A adenosine receptors have been solved in complex with both ago-
nists and antagonists, which provide informations concerning the binding sites and 
the conformational changes occurring following ligand-receptor interactions 
(Jaakola et al. 2008; Xu et al. 2011; Lebon et al. 2011, 2015; Doré et al. 2011; Hino 
et al. 2012; Congreve et al. 2012; Liu et al. 2012; Carpenter et al. 2016; Jazayeri 
et al. 2017; Carpenter and Lebon 2017). Specifically, the most observed phenom-
enon taking place after binding of the agonist is a contraction of the binding site 
due to TM3, 5, 6, and 7 rearrangements (Jespers et al. 2018). In addition an out-
ward rotation of TM6 on the cytoplasmic side, consequent to receptor activation, 
allows G protein activation and signal transduction propagation. In addition it has 
been revealed that the ribose moiety is a key component of A2A receptor agonists 
that helps to stabilize the intermediate-active state before the occurrence of the 
fully active receptor conformation, following G protein coupling (Carpenter and 
Lebon 2017). Numerous mutagenesis studies investigating the ligand binding of 
A2A adenosine receptors have been performed. Interestingly, from them, the rele-
vance of a glutamic acid and a histidine in TM1 and TM7, respectively, has been 
found taking part into the agonist binding process. In addition a relevant role for H 
bonds in ligand binding affinity has been revealed following the observation that 
loss of interactions between ligand and water is reflected in worsen affinity of both 
agonists and antagonists (Jespers et al. 2018). Overall from the data emerging by 
complementary techniques such as crystal structures as well as X-rays and muta-
genesis studies, it is possible today to address a structure-based rationale design of 
new ligands interacting with A2A adenosine receptors (Jespers et al. 2017).

3.2.3  A2B Adenosine Receptors

A2B adenosine receptors in human species are 328 amino acid long, organized fol-
lowing the typical GPCR architecture consisting of 7 TM domains presenting the 
highest homology between A2B and the other adenosine receptors. This core is 
formed by hydrophobic amino acids linked by three EL and three IL and terminates 
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with an extracellular N-terminus and an intracellular C-terminus. Combination of 
homology modeling of rhodopsin GPCR structure and mutational studies of the A2B 
adenosine receptors leads to the knowledge of its binding site, where TM regions 3, 
5, 6, and 7 are involved in agonist and antagonist recognition (Beukers et al. 2000, 
2004; Aherne et al. 2011). Interestingly, the EL2 of A2B receptor, the longest of all 
the other adenosine receptor subtypes, presents four cysteine amino acids (C154, 
C166, C167, C171) responsible for disulfide bonds connecting EL and TM domains. 
Interestingly, only disulfide bond occurring between C171 in EL2 and C78 present 
in TM3 is essential for A2B adenosine receptor-ligand binding and function, and it 
may also play a role in the transport of the receptors toward the membrane. As for 
the other cysteine residues in the ECL2 of the A2B receptor, they may have different 
functions in comparison to the role that they play in the A2A receptor (Schiedel et al. 
2011). In addition subsequent site-directed mutagenesis studies have reported that 
introducing ECL2 of A2A adenosine receptors in the structure of A2B adenosine 
receptors provides a mutant A2B receptor that displays higher affinity for both ago-
nist and antagonists, thus suggesting that ECL2 is crucial for ligand binding. 
Therefore the major length of ECL2 in the A2B adenosine subtype is responsible for 
the lower affinity of ligands to it in comparison to A2A receptors, because it may 
hamper the ligand interaction to the binding site (Schiedel et al. 2011; Seibt et al. 
2013; da Rocha Lapa et  al. 2014). Other mutational studies have discovered the 
amino acids involved in ligand binding of three different classes of molecules 
including xanthine, adenosine, and aminopyridine derivatives. In particular, the 
amino acids Asn282 and His280 by forming H bond stabilize the binding site as 
occurs in the A2A adenosine receptor. Trp247, Val250, and especially Ser279 are 
crucial for adenosine binding. Leu81, Asn186, and Val250 are important for binding 
of the xanthine antagonists (Thimm et al. 2013).

3.2.4  A3 Adenosine Receptors

A3 adenosine receptors in human species are 318 amino acid long. As with the other 
adenosine receptors, the A3 is constituted by seven TM domains with an intracellu-
lar C-terminal sequence containing six Ser and Thr amino acids undergoing phos-
phorylation by GPCR kinases during rapid receptor desensitization occurring in the 
order of minutes. Specifically, this process triggered following agonist binding to 
the A3 adenosine receptors causes subsequent internalization through clathrin- 
coated pits in rat A3 adenosine receptors (Palmer and Stiles 2000; Trincavelli et al. 
2002a, b; Madi et al. 2003; Pugliese et al. 2007; Jacobson et al. 2018). However, the 
fast desensitization has not been observed in A1, A2A, and A2B receptor subtypes 
where this process takes place after hours. The reason for this discrepance has been 
attributed to the lack of Ser and Thr residues in the C-terminus, for example, of the 
A1 subtype. Another reason explaining the rapid desensitization of A3 receptors 
resides in the presence of Cys amino acids in its C-terminus tail, crucial for GRK 
activation. As the sequence identity between rat and human A3 receptors is only 
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72%, this point has been recently addressed. Specifically, it has been shown that the 
C-terminus of the human subtype is not involved in βarr2 recruitment, receptor 
desensitization, and internalization, suggesting that other different regions of the 
human A3 adenosine receptors, either cytosolic or exposed upon receptor activation, 
are involved in this process. It has been observed that C-terminal truncation, in 
combination with mutation of the “DRY” motif located at the boundary between 
TM3 and IL-2, significantly decreased βarr2 recruitment (Storme et  al. 2018). 
Interestingly, mutational studies demonstrated that the active shape of the human A3 
receptor needs the highly conserved Trp (W6.48) in TM6, important to activate 
signal transduction pathways, to interact with β-arrestin2, and to undergo receptor 
internalization (Gao et al. 2002; Stoddart et al. 2014). Furthermore, use of a novel 
fluorescent A3 agonist has allowed for the observation of co-localization with inter-
nalized receptor βarr3 complexes (Stoddart et al. 2015).

3.2.5  Adenosine Receptor Heteromers

Homomer, oligomer, and heteromer formation has been recently recognized as a 
common phenomenon affecting numerous GPCRs including adenosine receptors 
(Ferré et al. 2010a, b; Navarro et al. 2010a, b, 2016b; Brugarolas et al. 2014). The 
possibility of homo- or hetero-oligomer formation lies on, at least in part, high 
receptor levels (Fredholm et al. 2011). Specifically, GPCR heteromers are new enti-
ties for signal transduction with different functions if compared to homomers. In the 
field of adenosine receptors, A1-A2A oligomers are present in neural tissue, compris-
ing two different receptors coupled to two different G proteins (Brugarolas et al. 
2014; Navarro et al. 2016b). In particular the A1 component, through Gi and the A2A 
part via Gs, confers to the heteromer the possibility to signal in an opposite way on 
cyclic adenosine monophosphate (cAMP) intracellular pathway. Therefore, this 
complex constitutes a cell surface sensor of adenosine concentration, distinguishing 
between low and high nucleoside concentration (Navarro et al. 2016b). Indeed the 
A1 unit of this complex interacts with Gi/o protein, thus decreasing cAMP levels, 
PKA, and GABA uptake, when adenosine levels are low. The A2A monomer of the 
heteromer takes place in cAMP signaling when adenosine levels increase, due to its 
inhibition of A1 component and activation of Gs proteins, thus obtaining GABA 
uptake increase (Cristóvão-Ferreira et al. 2013). In addition various physiological 
process, such as glutamate release, may be regulated on the basis of adenosine con-
centration (Ciruela et al. 2006). Heteromerization has been described as a general 
process involving other receptors inside adenosine receptor family including A3ARs, 
forming homodimers and A1-A3 heterodimers (Kim and Jacobson 2006; Hill et al. 
2014). In addition, heteromerization involves also the interaction of adenosine 
receptors with other GPCRs. For example, A1 may form oligomers with P2Y1 
(Yoshioka et al. 2001), D1 dopamine (Ginés et al. 2000), and mGlu1αR receptors 
(Ciruela et al. 2001). As for A2A receptors, the most studied combination in this field 
is represented by the A2A-D2 dopamine complex, detected in the striatum, and a 
viable therapeutic target in PD (Fuxe et al. 2005, 2007; Ferré et al. 2010b; Navarro 
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et  al. 2016a). In addition they may oligomerize with mGlu5 (Ferré et  al. 2002), 
P2Y1 (Arellano et al. 2009), and cannabinoid CB1 receptors (Carriba et al. 2007).

3.3  Distribution of Adenosine Receptors

Adenosine receptors are widely distributed throughout the body spanning from the 
central nervous system, cardiovascular apparatus, respiratory tract, gastrointestinal 
tissue, and immune system to different organs or tissues including the kidney, bone, 
joints, eyes, and skin, suggesting a wide influence of adenosine in almost all physi-
ological processes (Peleli et al. 2017). This distribution reflects a significative func-
tion of adenosine in the neurons, heart, and kidney.

3.3.1  A1 Adenosine Receptors

In the brain A1 adenosine receptors are highly distributed in different regions, 
including the cortex, hippocampus, cerebellum and spinal cord, autonomic nerve 
terminals, and glial cells (Chen et al. 2013; Ballesteros-Yáñez et al. 2018). In the 
heart, A1 adenosine receptor expression has been detected with higher levels in 
atria and less in the ventricular myocardium (Varani et al. 2017). At vascular level 
A1 adenosine receptors are present on coronary smooth muscle arteries and endo-
thelial cells (Headrick et al. 2013). Furthermore, A1 adenosine receptors are found 
in the lung endothelial cells, in smooth muscle cells of airway, in alveolar epithe-
lial cells, and in macrophages (Sun et al. 2005). In the kidney, A1 adenosine recep-
tors are located in the collecting ducts of the papilla, inner medulla, and cells of 
the juxtaglomerular apparatus (Varani et al. 2017; Soni et al. 2017). A1 adenosine 
receptors are expressed in pancreas tissues and adipocytes (Meriño et al. 2017). 
As for immune system, A1 adenosine receptors are present on different immune 
cells, such as neutrophils, eosinophils, macrophages, and monocytes (Sachdeva 
and Gupta 2013; Boros et al. 2016). A1 adenosine receptors have also been local-
ized in the retina, intestine, skeletal muscle, and vascular cells of skeletal muscle 
(Varani et al. 2017).

3.3.2  A2A Adenosine Receptors

A2A adenosine receptors are mostly expressed in selected areas of the central ner-
vous system as well as in peripheral immune cells. Specifically, concerning brain 
regions A2A adenosine receptors are expressed at high level in striatal neurons, while 
lower presence has been detected in extra-striatal and in glial cells (Fredholm et al. 
2011; Boison et al. 2012; Borea et al. 2017). In particular, they are numerous in the 
caudate and putamen, in the nucleus accumbens, as well as in the olfactory tubercle. 
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The presence of A2A adenosine receptors has been demonstrated in the heart, in both 
atria and ventricle and in coronary vessels, but also in the lung and liver. Finally, 
high expression of A2A adenosine receptors has been reported in platelets, lympho-
cytes, neutrophils, monocytes, macrophages, dendritic cells, vascular smooth 
 muscle, and endothelial cells (Gessi et al. 2000).

3.3.3  A2B Adenosine Receptors

At the central level, the A2B adenosine receptors are expressed in astrocytes, neu-
rons, and microglia (Koupenova et al. 2012; Merighi et al. 2015; Pedata et al. 2016). 
As for the periphery, they are found in the bowel, bladder, lung, vas deferens, and 
different cell types including fibroblasts; smooth muscle, endothelial, alveolar epi-
thelial, chromaffin, and taste cells; platelets; myocardial cells; and retinal, intestinal 
and pulmonary epithelial, and endothelial cells. A2B adenosine receptors are 
expressed in several immune cells including mast cells, macrophages, lymphocytes, 
neutrophils, and dendritic cells (Aherne et al. 2011).

3.3.4  A3 Adenosine Receptors

A3 adenosine receptors are present in several cells and tissues with a different degree 
of expression at central and peripheral level. In the brain tissue, they are present in 
low amount in the thalamus, hypothalamus, and hippocampus. At cellular level they 
are expressed in motor nerve terminals, microglia, astrocytes, cortex, and retinal 
ganglion cells while at cerebral vascular level in the pial and intercerebral arteries 
(Janes et al. 2014; Borea et al. 2016). A3 adenosine receptors are present in the coro-
nary and carotid artery and in the heart but only at low level. At the periphery A3 
adenosine receptors have been demonstrated in lung parenchyma and bronchi, 
enteric neurons and colonic mucosa, and epithelial cells. Finally, A3 adenosine 
receptors have a wide distribution in immune and inflammatory cells including lym-
phocytes, neutrophils, eosinophils, monocytes, macrophages, dendritic cells, foam 
cells, mast cells, splenocytes, bone marrow cells, lymph nodes, synoviocytes, chon-
drocytes, and osteoblasts. Interestingly, A3 adenosine receptors are overexpressed in 
different cancer tissues such as the colon, liver, lung, melanoma, and glioblastoma 
(Borea et al. 2015).

3.4  Signal Transduction of Adenosine Receptors

All adenosine receptors are coupled to G proteins and trigger several transduc-
tion pathways that may differ depending on the specific cell activated (Fredholm 
et al. 2001).
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3.4.1  A1 Adenosine Receptors

The Gi-coupled A1 adenosine receptor inhibits adenylyl cyclase (AC) activity thus 
decreasing cAMP levels. This leads to the inhibition of cAMP-dependent protein 
kinase A (PKA) activation and cAMP-responsive element-binding protein 1 
(CREB- 1) phosphorylation, resulting in the reduction of CREB transcriptional 
activation. In addition it also induces phospholipase C (PLC)-β stimulation, by link 
to Gq proteins, thus rising diacylglycerol (DAG) and inositol 1,4,5-triphosphate 
(IP3) that, through interaction with its cytoplasmic receptor, rises intracellular Ca2+ 
concentrations, which activate calcium-dependent protein kinases (PKC) and/or 
other calcium- binding proteins. PKC may be phosphorylated also by DAG.  In 
addition, βγ subunits of Gi/o protein are involved by A1 adenosine receptor to 
induce PLC activation (Biber et al. 1997). In addition A1 adenosine receptor enrolls 
pertussis- toxin- sensitive potassium (K) and KATP channels, expressed in neurons 
and myocardium, while reduces Ca2+ channels of Q, P, and N type. Recently, it has 
been reported that it increases PC12 cell damage following intermittent hypoxia 
through PKC and KATP mediators (Mei et al. 2018). Furthermore, the first report 
describing the link between A1 adenosine receptor and the family of mitogen-acti-
vated protein kinase (MAPK) indicated the stimulation by it of extracellular signal-
regulated kinase (ERK) (Schulte and Fredholm 2000) (Fig. 3.1). Since then many 
studies have found different effects on MAPK modulation depending on the cell 
investigated. For example, it has been reported that A1 adenosine receptor in brain 
neurons increases p38 to reduce apoptosis in a rat model of brain injury (Zhai et al. 
2016). Accordingly, it activates p38 and also c-Jun N-terminal kinase (JNK) in hip-
pocampal neurons, thus inducing clathrin-mediated internalization of GluA2 and 
GluA1 subunits responsible for synaptic depression that caused hippocampal neu-
rodegeneration after hypoxia/cerebral ischemia (Brust et  al. 2006; Liang et  al. 
2008; Chen et al. 2014). Previous data in the hippocampus demonstrated that the 
increase in p38 phosphorylation induced by A1 receptor was involved in brain-
derived neurotrophic factor (BDNF) generation (Katoh-Semba et  al. 2009). In 
astrocytes, A1 adenosine receptor reduces ERK and AKT, thus provoking the inhi-
bition of LPS-induced hypoxia-inducible factor (HIF)-1α activation with reduction 
of genes involved in inflammation and hypoxic injury (Gessi et al. 2013). In ear 
cochlea, it inhibits p38, ERK, and JNK activation and decreases cisplatin-induced 
signal transducer and activator of transcription (STAT-1) phosphorylation, thus 
reducing apoptosis and inflammation. This mechanism may be relevant to provide 
otoprotection against ototoxicity induced by this chemotherapeutic drug (Kaur 
et al. 2016). In cardiomyocytes, A1 adenosine receptor phosphorylates p38, present 
downstream the mitochondrial K(ATP) channel, protecting cells from hypoxia 
injury (Leshem-Lev et al. 2010). Accordingly, in these cells it activates p38, ERK, 
and JNK phosphorylation, producing an increase of tissue transglutaminase (TG2) 
and cytoprotection (Vyas et al. 2016). An increase of p38 was also discovered in 
the reduction by A1 adenosine receptor of beta-adrenergic-induced contractile 
function as a mechanism of adenoprotection (Fenton et al. 2010). In mouse coro-
nary artery smooth muscle cells, it activates the PKC-alpha transduction pathway, 
causing ERK phosphorylation (Ansari et  al. 2009). In foam cells, A1 adenosine 
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receptor contributed to atherosclerosis by inducing HIF-1 accumulation through an 
increase of p38 and AKT phosphorylation (Gessi et al. 2010a). In contrast in neu-
trophils, it reduces p38 thus decreasing chemotaxis (Xu et  al. 2017). Together, 
these data indicate that modulation of MAPK signaling, especially the one related 
to p38 phosphorylation, by A1 adenosine receptor occurs in different organs and 
tissues thus affecting numerous pathological processes.

3.4.2  A2A Adenosine Receptors

The Gs-coupled A2A adenosine receptor stimulates AC activity, thereby increasing 
cAMP levels, with consequent PKA phosphorylation that causes activation of 
numerous proteins, including receptors, phosphodiesterases, cAMP-responsive 
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Fig. 3.1 Schematic picture of A1 adenosine receptor signaling cascade. Adenosine activates A1R 
to reduce AC activity and cAMP levels thus blocking PKA and CREB while stimulates PLC-β and 
Ca2+. In addition adenosine triggers K+ channels and inhibits Q, P, N, and Ca2+ channels. p38, 
ERK1/2, and JNK1/2 phosphorylation is determined by A1R stimulation
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element- binding protein (CREB), and dopamine- and cAMP-regulated  
phosphoprotein (DARPP-32) (Preti et al. 2015). Interestingly, in hepatocyte mem-
branes two different cAMP-responsive macrocomplexes activated by adenosine 
have been demonstrated that contain their own sequestered cAMP pools to gener-
ate their selective effects. One of these complexes responds to A2A adenosine 
receptor that activates AC6, linked to A-kinase-anchoring proteins (AKAP)79/150, 
to produce cAMP available for AKAP79/150-tethered proteins, named protein 
kinase A (PKA) and phosphodiesterase 3A (PDE3A). The other complex responds 
to A2B adenosine receptor, and the novel generated cAMP does not diffuse between 
these “signalosomes,” thus suggesting that a spatiotemporal regulation of cAMP 
exists in the cell to obtain receptor-specific responses (Guinzberg et al. 2017). In 
addition, in the brain, A2A adenosine receptor regulates a specific neuron type of 
Gs protein named Golf, which is also related to AC (Kull et al. 2000). In the rat 
tail artery, it promotes noradrenaline release through both PKC and PKA recruit-
ment (Fresco et al. 2004). A2A adenosine receptor may also bind, through its long 
C-terminus, to various accessory proteins including D2 dopamine receptors, 
α-actinin, ADP ribosylation factor nucleotide site opener (ARNO), ubiquitin-spe-
cific protease (USP4), and translin-associated protein X (TRAX) (Baraldi et al. 
2008). Importantly, A2A adenosine receptor plays a role in the regulation of MAPK 
affecting the transduction pathway of several cells from different organs and tis-
sues (Baraldi et al. 2008; Chen et al. 2013) (Fig. 3.2). In neutrophils, A2A adenos-
ine receptor by increasing cAMP decreases phosphorylation of p38, ERK, PI3K/
AKT, Hck, and Syk, thus inducing inhibition of their functions (Giambelluca and 
Pouliot 2017). Accordingly, in the same cells, the agonist ATL313 was able to 
suppress selectin-mediated activation of Src kinases (SFKs) and p38, thus reduc-
ing cell adhesion (Yago et al. 2015). In contrast, an increase in ERK, nuclear fac-
tor (NF)-κB, and pSTAT was involved in the reduction of inflammatory cytokines 
produced by methotrexate through A2A receptor activation in T cells (Ma et  al. 
2018). In dermal fibroblasts the A2A receptor increases collagen (col) 1 and 3 pro-
duction via cAMP, PKA, ERK, p38, and AKT pathways, confirming data obtained 
in hepatic stellate cells where collagen 1 production was influenced also by A2A 
receptor-mediated ERK activity (Chan et al. 2006; Che et al. 2007; Shaikh and 
Cronstein 2016). It is known that also Wnt signaling is important in fibrosis where 
cAMP and Wnt pathways may converge. In this context it has been found that A2A 
receptor increases synthesis of collagen 3 through the activation of β-catenin, sug-
gesting a role for this subtype in dermal fibrosis and scarring (Shaikh and Cronstein 
2016). In normal skin col1 is more expressed than col3 that increases in immature 
scars and is then replaced by col1  in mature scars, a process regulated by A2A 
receptor and Epac2. At nanomolar levels of adenosine, the receptor via PKA 
induces col1 and reduces col3 production, respectively. At higher levels, the raised 
cAMP levels promote Epac2 signaling producing col3 (Perez-Aso et  al. 2012, 
2014). In mice adipose tissue, A2A receptor stimulation induces an increase in p38 
phosphorylation, thus resulting in improvements in glucose homeostasis and adi-
pose tissue inflammation (DeOliveira et al. 2017). In the brain, following isch-
emia-reperfusion (IR) damage, a huge increase of adenosine stimulates A2A 
receptor to potentiate neuronal injury by increasing ERK and consequently 
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stimulating microglial activation, glial tumor necrosis factor-alpha (TNF-α) and 
BDNF, glutamate, inducible nitric oxide synthase (iNOS), as well as apoptosis 
(Mohamed et  al. 2016). In an vitro model of osteoclast, differentiation occurs 
through activation of A2A receptor activation of PKA and ERK1/2, thus inhibiting 
NF-κB nuclear translocation (Mediero et al. 2013). In cancer cells, A2A receptor 
activation stimulates proliferation phospholipase C (PLC), protein kinase C-delta 
(PKC-δ), ERK, JNK, and AKT (Gessi et al. 2017). Accordingly, the same effect 
was reached by combination of TLR2 and adenosine receptor agonists, through 
ERK stimulation, in oral squamous carcinoma cells (Palani et al. 2018).

3.4.3  A2B Adenosine Receptors

The Gs-coupled A2B adenosine receptor activates AC, causing phosphorylation of 
PKA and recruitment of various effectors like guanine nucleotide exchange factor 
2 (Epac), directly stimulated by cAMP. However it has been recently reported that 
a complex constituted by A2B receptor stimulates AC5 bound to D-AKAP2 to gen-
erate cAMP, activating two other tethered proteins named Epac2 and PDE3B 
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(Guinzberg et  al. 2017). Epac activation by A2B receptor stimulation has been  
previously reported to affect cell proliferation in human umbilical vascular endo-
thelial cells and to induce early gene expression decreasing cell proliferation in 
human coronary artery smooth muscle cells (Fang and Olah 2007; Mayer et  al. 
2011). In addition, by enrolling Gq proteins, it triggers PLC activation, thus deter-
mining Ca2+ increase, and through βγ subunits modulates ion channels. Furthermore, 
A2B adenosine receptor presents numerous binding actors that influence its 
responses and effects such as netrin-1, E3KARP-ezrin-PKA, SNARE, NF-κB 1/
P105, and α-actinin-1. Specifically, netrin-1 is a neuron protein hypoxia-depen-
dent, which by binding to A2B adenosine receptor reduces neutrophil migration and 
consequent inflammation (Rosenberger et al. 2009). SNARE protein is responsible 
for the translocation of the receptor from the cytoplasm to the cell membrane in the 
presence of an agonist through a mechanism involving (Wang et al. 2004) a struc-
ture composed by E3KARP (NHERF2) and ezrin which fixes A2B adenosine recep-
tor at cell surface (Sitaraman et  al. 2002). In particular, A2A and A2B receptor 
dimerization is induced by α-actinin-1 promoting expression of the A2B subtype on 
the cell surface (Moriyama and Sitkovsky 2010). In addition, it interacts with P105 
then blocking NF-kB inflammatory effects (Sun et al. 2012). MAPK and AKT are 
target also for A2B receptor in different cells thus regulating numerous pathophysi-
ological functions (Sun and Huang 2016) (Fig. 3.3). In cardiac fibroblasts its stim-
ulation reduced fibroblast proliferation and α-SMA expression generated by 
endothelin or angiotensin II, through a pathway dependent on cAMP, Epac, PI3K, 
and AKT signaling, thus contrasting cardiac fibrosis (Phosri et al. 2017, 2018). In 
bone A2B subtype stimulation decreases ERK1/2, p38, and NF-κB induced by 
RANKL, thus contributing to the reduction of osteoclastogenesis (Kim et al. 2017). 
In human coronary artery smooth muscle cells, the A2B adenosine receptor, cAMP, 
and PKA signaling decrease cell growth by inhibiting ERK1/2, AKT, and Skp2 
stimulators of the cell cycle regulator cyclin D (Dubey et al. 2015). In the placenta 
A2B receptor activation depresses trophoblast migration through MAPK signaling 
inhibition and lower proMMP-2 levels, suggesting a role for it in placenta forma-
tion and preeclampsia (Darashchonak et al. 2014). In glioblastoma cells prostatic 
acid phosphatase increases proliferation in a HIF-2α-dependent manner, requiring 
activation of A2B receptors AKT and ERK pathways, suggesting this receptor sub-
type as a target for antiglioblastoma therapies (Liu et al. 2014). In microglia A2B 
receptor increases IL-10 through p38 phosphorylation as well as IL-6 secretion and 
cell proliferation, through PLC, PKC-ε, PKC-δ, and p38 pathways, thus indicating 
their role in microglial activation and neuroinflammation (Koscso et  al. 2012; 
Merighi et  al. 2017). In enterochromaffin cells this subtype increases serotonin 
hypoxic synthesis and release through MAPK, CREB, and tryptophan hydroxy-
lase-1 stimulation, a signaling having relevance in inflammatory bowel disease 
(Chin et al. 2012; Dammen et al. 2013). In HEK293 cells and in cardiomyocytes, 
A2B receptor inhibited superoxide generation from mitochondrial complex I via 
Gi/o protein, ERK, PI3K, and NOS signaling having a role in ischemic precondi-
tioning (Yang et al. 2011). In foam cells it accumulates HIF-1α through involve-
ment of ERK, p38, and AKT and induces VEGF and IL-8 secretion, playing a role 
in atherosclerosis development (Gessi et al. 2010a).
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3.4.4  A3 Adenosine Receptors

The Gi-coupled A3 adenosine receptor inhibits AC, thus reducing cAMP accumula-
tion, while through Gq coupling stimulates PLC, thereby increasing Ca2+ release 
from intracellular stores in different cellular models (Gessi et al. 2008; Borea et al. 
2015). Other signal transductors coupled to this receptor subtype include the mono-
meric G protein RhoA and phospholipase D as well as sarcolemmal KATP channels, 
to produce cardioprotection (Borea et al. 2015). In addition a role for PKC has been 
reported in both early and delayed preconditioning (Borea et al. 2016). Specifically, 
in cardiac mast cells, A2B/A3 receptor stimulation leads to activation of aldehyde 
dehydrogenase type 2, via PKC-ɛ, thus reducing renin release and the activation of 
renin-angiotensin system (Koda et al. 2010). Concerning delayed preconditioning, 
A3 receptor activation exerts a protective role through PKC-δ (Zhao and Kukreja 
2003). A pro-survival intracellular cascade involving ERK, PI3K, and AKT is 
enrolled by it to decrease caspase-3 activity and apoptosis (Hussain et al. 2014). 
Another relevant effect induced by A3 receptor activation is neuroprotection through 
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PLC, PKC, or intracellular Ca2+ sequestration giving synaptic depression following 
oxygen-glucose deprivation as well as a reduction in AMPA receptors on hippo-
campal neurons (Dennis et al. 2011). It is well known that A3 receptor intracellular 
transduction occurs through modulation of MAPKs in numerous cellular models 
(Merighi et al. 2010; Jacobson et al. 2018) (Fig. 3.4). This receptor induced ERK1/2 
and cell proliferation in human fetal astrocytes, CHO cells expressing the human 
A3AR (CHO-hA3), microglia, colon carcinoma, glioblastoma, melanoma, and foam 
cells (Neary et  al. 1998; Schulte and Fredholm 2000, 2002; Hammarberg et  al. 
2003; Merighi et al. 2006, 2007a, b, Gessi et al. 2010a, b; Soares et al. 2014). In 
contrast, a decrease of ERK activation has been reported in melanoma, prostate 
cancer, and glioma cells, reducing proliferation as well as decreasing TNF-α release 
in RAW 264.7 cells (Madi et al. 2003; Martin et al. 2006; Jajoo et al. 2009; Kim 
et al. 2012). A3 receptor activation modulates also p38 in several cell types such as 
CHO-hA3, human synoviocytes, melanoma, glioblastoma, and colon carcinoma 
(Merighi et  al. 2005b, 2006, 2007b; Varani et  al. 2010). In addition it regulates 
JNK, in microglia and glioblastoma cells, to increase cell migration and matrix 
metalloproteinase- 9 (MMP-9) secretion, respectively (Gessi et al. 2010b; Ohsawa 
et al. 2012). Interestingly, A3 receptor increases chemoresistance induced by mul-
tiple resistance-associated protein-1 (MRP1) transporter through a pathway involv-
ing PI3K/AKT and MEK/ERK1/2 (Torres et al. 2016; Uribe et al. 2017). Another 
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effect induced by this subtype through AKT phosphorylation was protection from 
apoptosis in RBL-2H3 and stimulation of MMP-9 in glioblastoma cells (Gao et al. 
2001; Merighi et al. 2005a, 2007a; Gessi et al. 2010b). In melanoma the same path-
way modulated by A3 receptor decreased proliferation and increased pigmentation 
(Madi et al. 2013). Anti-inflammatory effects are produced by its modulation of 
PI3K/AKT and NF-κB transduction systems in BV2 microglial cells, monocytes, 
arthritis, and mesothelioma (Haskó et al. 1998; la Sala et al. 2005; Fishman et al. 
2006; Lee et al. 2006, 2011; Madi et al. 2007; Varani et al. 2011). Instead reduction 
of AKT has been reported in murine astrocytes to decrease HIF-1α accumulation 
(Gessi et al. 2013). Accordingly, A3 receptor inhibits angiogenesis in endothelial 
cells through PI3K/AKT/mammalian target of rapamycin (mTOR) signaling 
decrease (Kim et al. 2013). Finally, the inhibition of PKA mediated by A3 receptor 
stimulation raised glycogen synthase kinase-3β (GSK-3β), inducing beta-catenin 
reduction; decrease of its transcriptional gene products, such as cyclin D1 and 
c-Myc; as well as reduction of NF-κB DNA-binding capacity in melanoma, hepa-
tocellular carcinoma, and synoviocytes from RA patients and in adjuvant-induced 
arthritis rats (Fishman et al. 2002, 2004; Bar-Yehuda et al. 2008; Ochaion et al. 
2008). Accordingly, following a reduction of A3 receptor expression in colon cells 
after ulcerative colitis due to miR-206 activity, increased NF-κB, and related cyto-
kines in the mouse colon, has been observed resulting in a proinflammatory event 
(Wu et al. 2016).

3.5  Conclusion

Adenosine receptors are important targets for drug development in several patholo-
gies spanning from ischemic brain and heart injury, pain, neurodegenerative dis-
eases, cancer, and inflammation, and for this reason there is a big interest in the 
development of novel selective and potent molecules targeting this system. This 
issue today may be better afforded, thanks to the improvement in the knowledge 
about the structure of receptor subtypes, which are the targets of new drugs. During 
the last 10 years, the crystallization approach has dramatically revealed the biologi-
cal structure of GPCRs, and the A2A receptor has been the pioneer in this process, 
followed by the A1 subtype. In the next future, continued energy to reveal the struc-
tures of all four adenosine receptor subtypes in the three distinct activation states is 
fundamental to better improve the rational drug design process to develop novel 
molecules. From the extensive literature mentioned in this chapter, it is evident that 
adenosine modulates different intracellular signaling pathways involving MAPK 
and AKT to produce its pathophysiological effects. The regulation of these cascades 
is not univocal meaning that stimulation or inhibition of specific kinases may occur 
differentially depending on the receptor subtype involved and the cell system inves-
tigated. It is auspicable that future drugs coming from the adenosinergic field could 
exploit separated signaling pathway linked to a specific adenosine subtype, thus 
avoiding or limiting side effects.
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