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Chapter 15
The Adenosine Receptor: A Homeostatic 
Neuromodulator for Fine-Tuning Control 
of Cognition

Jiang-Fan Chen

Abstract  There is a convergence of neurochemical studies showing the dual roles 
of neuromodulation and homeostatic function by adenosine receptors (AR), with 
animal studies demonstrating the strong pro-cognitive impact upon AR antagonism 
in healthy and diseased brains, with the epidemiological evidence in support of 
caffeine and AR drugs used for the therapeutic modulation of cognition. This 
perspective led to the proposal that the adenosine and AR may uniquely position to 
modulate cognitive behaviors in normal and disease conditions. This review first 
describes the ability of AR to integrate dopamine and glutamate signaling and to 
modulate synaptic plasticity by acting through the inhibitory A1 and facilitating 
A2A receptors (A2AR). It is followed by the discussion on the animal studies 
demonstrating the strong pro-cognitive effects of AR (mainly the A2A receptor) 
antagonism on a variety of cognitive behaviors. These studies reveal several novel 
insights into the mechanism underlying AR control of cognition: temporally 
precise interaction of adenosine with dopamine and glutamate signaling at the 
striatum, striatopallidal A2ARs function as a common “break” mechanism to 
constrain cognition, and selective modulation of distinct phases of working 
memory information processing. We further describe the evidence for the aberrantly 
increased adenosine-AR signaling under pathological conditions. Accordingly, 
blocking the aberrant AR signaling reverses cognitive impairments in animal 
models of neurodegenerative disorders. AR modification of neurodegenerative 
proteins (including α-synuclein, β-amyloid, and phosphorylation of Tau) and 
neuroprotection against synaptic loss are discussed as the potential mechanisms 
underlying AR control of cognitive deficits. Last, translational potential of A2AR 
antagonists and caffeine for cognitive improvement is highlighted with non-human 
primate studies and epidemiological findings. As caffeine is regularly consumed 
by >50% world population and A2AR antagonists are in phase III clinical trials for 
Parkinson’s disease with noted safety profiles, this convergence of molecular, 
animal, and epidemiological evidence supporting AR control of cognition will 
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stimulate necessary clinical investigations to explore AR-targeting drugs as a novel 
strategy to ameliorate cognitive deficits in neuropsychiatric disorders.

Keywords  Adenosine receptors · Cognition modulation · A1R antagonism · A2AR 
antagonism · Neuropsychiatric disorders · Caffeine

15.1  �Adenosine Acts as a Dual Controller of Homeostatic 
Metabolism and Neuromodulatory Function 
in the Brain

Adenosine has been postulated as a homeostatic regulator of metabolism in cells 
throughout the body. The basal level of adenosine is driven mainly by metabolic 
homeostasis and is apparently mostly independent of nerve activity. Under 
physiological conditions, the constant presence of a finite concentration of ade-
nosine (in the range of ~30–300  nM) inside the cell (Ballarin et  al. 1991) is 
ensured by the bidirectional enzyme activities of adenosine kinase and 
S-adenosylhomocysteine hydrolase (for generating adenosine by hydrolysis of 
adenosine monophosphate (AMP) or S-adenosylhomocysteine, respectively) 
(Fredholm 2007). Because of the presence of the efficient equilibrative purine 
transporters in all cells, the finite concentration of intracellular adenosine 
ensures that there is also a substantial extracellular concentration of adenosine 
(King et al. 2006), which is sufficient to active evolutionarily conserved adenos-
ine receptors that are present on most, if not all, cells. In addition, extracellular 
adenosine is also formed by a series of ectoenzymes on the cell surface by the 
conversion of ATP to ADP and then to AMP (via many different ectoenzymes, 
especially CD39) (Yegutkin 2008) and then from AMP to adenosine (only via 
ecto-5′ nucleotidase CD73 in the brain) (Resta et al. 1998). Extracellular ATP 
can be generated not only by controlled co-release from the storage vesicles 
together with other neurotransmitters from the nerve terminals and uncontrolled 
leakage from necrotic cells (Eltzschig 2009) but also from the inflammatory 
cells or vascular endothelium through connexin hemichannels and channels 
such as P2X7 receptors (Chen et al. 2006;  Linden 2006; Faigle et al. 2008) and 
also from various cells by a “kiss-and-run” mechanism (MacDonald et al. 2006), 
and lysosome exocytosis (Zhang et  al. 2007). Thus, adenosine acts as a dual 
controller of a homeostatic regulator of metabolic activity by its paracrine sig-
naling ability in all eukaryotic cells and of a specific neuromodulator in the 
brain by controlling neuronal excitability, the release of various neurotransmit-
ters, and modulation of synaptic plasticity, neuroinflammation and cell death 
(Sebastiao and Ribeiro 1996). The adenosine control of neuronal function is 
thus intrinsically linked with its coordinate metabolic activity in the neuron, 
making it difficult to disentangle the dual roles of adenosine in the brain.

Extracellular adenosine reacts with one of the four adenosine receptors, namely, 
A1, A2A, A2B, and A3 (Fredholm et al. 2011). When they are expressed at the same 
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level (~200,000 receptors/cell), adenosine, under basal physiologic conditions, is 
sufficient and equally potent at A1, A2A, and A3 receptors, whereas A2B receptor is 
activated at higher levels of adenosine. Brain expression of the A1 and A2A receptors 
is significantly higher than the other two receptors (Fredholm et  al. 2011), and 
adenosine mainly acts through inhibitory A1R and facilitatory A2AR to fine-tune the 
brain neurotransmission (Fredholm et al. 2005a).

Adenosine A1 receptor (A1R): The A1R is a Gi-protein-coupled receptor (van 
Calker et  al. 1978; Londos et  al. 1980) that is widely and abundantly expressed 
throughout the brain (Reppert et  al. 1991; Dixon et  al. 1996). The A1R controls 
synaptic transmission by the presynaptic inhibition of a variety of neurotransmitters 
(particularly excitatory neurotransmitters such as glutamate) (Dunwiddie and 
Fredholm 1997; Dunwiddie and Masino 2001; Ribeiro et al. 2002) and by postsyn-
aptic suppression of N-type calcium channels and NMDA receptors (Dunwiddie 
and Masino 2001; Ribeiro et al. 2002; Scanziani et al. 1992) and by nonsynaptic 
activation of inwardly rectifying K+ channels (GIRKs) (Kim and Johnston 2015) 
and hyperpolarization of the resting membrane potential (Kirsch et al. 1990). Thus, 
the neuronal excitability and control of the “basal” synaptic transmission are pri-
marily regulated by the A1R activation presynaptically and postsynaptically as well 
as nonsynaptically (Wan et al. 1999).

Adenosine A2A receptor (A2AR): A2ARs are highly enriched in the striatum where 
the expression is mostly localized to striatopallidal medium spiny neurons of the 
striatopallidal pathway (Fink et al. 1992; Schiffmann and Vanderhaeghen 1993). In 
the striatopallidal neurons, A2ARs co-localize and interact with striatal dopamine D2 
receptors (D2Rs) (Canals et  al. 2003; Hillion et  al. 2002; Fuxe et  al. 2003) or 
N-methyl-D-aspartate receptors (NMDARs) (Gerevich et al. 2002; Wirkner et al. 
2000) in an antagonistic manner, as well as with metabotropic glutamate 5 receptors 
(mGlu5Rs) (Ferre et  al. 2002; Coccurello et  al. 2004; Kachroo et  al. 2005), or 
cannabinoid CB1 receptors (CB1Rs) (Lerner et  al. 2010; Ferre et  al. 2010) in a 
synergistic manner. In particular, activation of the striatopallidal A2ARs, likely 
through the A2AR-D2R heterodimer, inhibits the D2R binding and antagonizes the 
D2R-mediated inhibition of GABA release (Mori and Shindou 2003), DARPP-32 
phosphorylation (Shen et  al. 2013), and c-Fos expression and inhibits NMDA 
current in the striatal neurons (Gerevich et al. 2002; Wirkner et al. 2000) as well as 
D2R-mediated behaviors (Ferre et al. 1997; Ongini and Fredholm 1996). A2ARs also 
modulate brain-derived neurotrophic factor (BDNF) function in the striatum by pro-
viding a permissive effect on BDNF release and by the intracellular transactivation 
of TrkB receptor (Sebastiao and Ribeiro 1996, 2000; Tebano et al. 2008). In CA1 
region of the hippocampus, A2AR activity also exerts a permissive effect on the theta 
burst stimulation (TBS)-induced long-term potentiation with a concurrent increase 
in ERK1/2 activation, suggesting a possible tripartite A2A, mGlu5, and NMDAR 
complex (Krania et al. 2018). Cortical A2ARs located at corticostriatal projections 
(47, 48) modulate glutamate release (Rosin et  al. 2003; Rebola et  al. 2005a) to 
excite this synaptic transmission in the striatal neurons by locally shutting down the 
A1R-mediated inhibition (Ciruela et al. 2006; Lopes et al. 1999a). Thus, while A1R 
activation plays a prominent inhibitory role in the control of “basal” synaptic 
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transmission, A2ARs exert a limited effect on this but may have a facilitating role in 
controlling local synaptic plasticity (Gomes et al. 2011) (see below).

15.2  �Coordinated Glial-Derived Adenosine for A1R Global 
Inhibition and Neuronal-Derived Adenosine for Local 
A2AR Activation

In the brain, extracellular adenosine might originate from neurons (both from nerve 
terminals and postsynaptic components) and surrounding non-neuronal cells such 
as glial cells (Halassa et al. 2007, 2009). As a neuromodulator, adenosine generated 
from different sources may preferentially act at different ARs to exert different 
control of synaptic plasticity. Indeed, early findings indicate that different sources 
of adenosine activate A1R and A2AR (Cunha et al. 1996) and that A2ARs are selectively 
activated upon extracellular catabolism by ecto-nucleotidases of ATP (Cunha et al. 
1996; Rebola et al. 2008). Several studies have recently demonstrated a selective 
association of CD73-mediated formation of ATP-derived adenosine with the 
activation of facilitatory A2AR in the brain (Fredholm et al. 2005a, b). This view is 
supported by our recent finding that CD73 and A2AR co-localize (Ena et al. 2013) 
and are physically associated (Augusto et al. 2013) in the striatopallidal neurons and 
that CD73 provides the particular pool of extracellular adenosine selectively 
responsible for activating striatal A2AR (Cunha 2001). This functional association 
between CD73 activity and the activation of striatal A2AR is validated by the 
abolishment of ex  vivo effect (i.e., cAMP formation) as well as in  vivo effect 
(hypolocomotor) of a prodrug for A2AR agonism either by CD73 knockout or by 
A2AR knockout (Augusto et al. 2013). On the other hand, A1R activation depends on 
the tissue workload (Cunha 2001), and the activity-dependent metabolic control of 
adenosine kinase is postulated to produce a direct outflow of adenosine for the 
activation of A1R (Boison 2011; Diogenes et al. 2014; Brundege and Dunwiddie 
1998). However, both astrocytes (Halassa et  al. 2009; Schmitt et  al. 2012) and 
postsynaptic neuronal components involve the vesicular nucleotide transport 
(VNUT) (Larsson et al. 2012; Lovatt et al. 2012) and may also be coupled to the 
activation of A1R.

This selective activation of the A2AR by ATP-derived, CD73-mediated adenosine 
and activation of the A1R by the activity-dependent metabolic control of adenosine 
kinase led to the proposal of a nonsynaptic transmission of adenosine to understand 
the differential activation of the inhibitory A1R and facilitatory A2AR according to 
the functional needs of neuronal circuits (Cunha 2008a). In this proposal, astrocyte-
derived adenosine acts at the A1R to produce global hetero-synaptic inhibition 
through astrocytic-driven volume transmission, while neuron-derived adenosine – 
via ATP conversion to adenosine by CD73 – acts at the A2AR to exert local facilitation 
of plasticity (Gomes et al. 2011), leading to the local increase of a signal to noise 
ratio for the information processing in the brain (Gomes et  al. 2011). As such, 
adenosine is critical for balancing inhibition and excitation toward homeostasis and 
in setting the stage for adenosine-mediated meta-plasticity (Dias et al. 2013). The 
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homeostatic and neuromodulatory control of neuronal processes underlies the 
ability of adenosine to regulate cognition because adenosine kinase (ADK)-
mediated adenosine homeostatic function is necessary and permissive to synaptic 
actions of adenosine (Diogenes et  al. 2014). Hence, mice with a conditional 
knockout or a brain-specific deletion of Adk (AdkΔbrain) develop seizures and 
cognitive deficits with increased basal synaptic transmission and enhanced A2AR-
dependent synaptic plasticity (Sandau et al. 2016).

15.3  �A1 and A2A Receptor Modulation of Synaptic Plasticity 
Underlies Cognitive Control

Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP) and 
long-term depression (LTD), are fundamental to associated learning and thought to 
form the cellular correlates of learning and memory. The homeostatic function of 
adenosine may provide the permissive condition to set the stage for Hebbian forms 
of plasticity (Dias et al. 2013). By the control of multiple neurotransmitter release 
and glutamate, dopamine, and BDNF signaling and by controlling neuronal 
excitability in the brain (Ribeiro 1999), ARs play a critical role in modulation of 
Hebbian plasticity in various brain regions (de Mendonca and Ribeiro 1997), 
including thalamocortical project (Blundon et  al. 2011), somatosensory cortex 
(Marquez-Ruiz et al. 2012), hippocampus (CA3-CA1 synapse) (Rebola et al. 2008), 
corticostriatal projections (Shen et al. 2008b), hypothalamus (Xia et al. 2009), and 
neuronal muscle junction (Todd et  al. 2010) (for review see Dias et  al. 2013). 
Adenosine action at inhibitory A1Rs and excitatory A2ARs to modulate synaptic 
plasticity (e.g., LTP and LTD) in the brain underlies AR control of learning and 
memory. The precise contribution of A1Rs and A2ARs to adenosine regulation of 
synaptic plasticity in different brain regions, however, remains to be established.

15.3.1  �A1 Receptor Modulation of Synaptic Plasticity 
in Different Brain Regions

Despite the consistent inhibitory effect of the A1R on glutamatergic transmission in 
the brain, studies with pharmacological and genetic manipulations of the A1R have 
not produced consistent results on the A1R control of synaptic plasticity in various 
brain regions. In the hippocampus, inactivation of A1Rs can selectively augment 
mossy fiber basal transmission but attenuate both short-term plasticity (e.g., 
frequency facilitation and paired pulse facilitation) and LTP at this synapse (Moore 
et al. 2003). The A1R activation via G protein-activated inwardly rectifying K(+) 
(GIRK) current in the hippocampus contributes to depotentiation of the previously 
potentiated LTP at Schaffer collateral synapses (Chung et al. 2009). However, local 
activation of A1Rs impairs paired pulse facilitation but is not critical neither to the 
basal release probability and plasticity at mossy fiber synapses (Kukley et al. 2005) 
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nor LTD at the Schaffer collateral-CA1 pathway (Gimenez-Llort et al. 2005). In the 
striatum, A1R inactivation has been shown to either abolish NMDAR-triggered LTD 
(Schotanus et al. 2006) and block short-term depression or have no effect on LTD at 
these synapses (Lovinger and Choi 1995). In cerebellar Purkinje cells, A1Rs 
co-localize and form a heterodimeric complex with type-1 metabotropic glutamate 
receptor (mGluR1), and activation of the A1R blocks mGluR1-mediated LTD (glu-
LTD) (Kamikubo et  al. 2013). In developing neocortex, local activation of A1Rs 
presynaptically is critical to development shift in the release probability at synapses 
and potentially in long-term synaptic plasticity (Kerr et al. 2013). Additional studies 
are required to clarify the exact role of A1R modulation of synaptic plasticity in 
various brain regions relevant to cognition.

15.3.2  �Brain A2A Receptors Modulate Synaptic Plasticity 
by Integrating Dopamine and Glutamate Signaling

The A2AR, a G protein-coupled receptor, is highly enriched in striatopallidal neu-
rons (Scanziani et al. 1992; Kim and Johnston 2015) where A2ARs interact (possibly 
through heterodimerization) antagonistically with D2Rs (Canals et al. 2003; Hillion 
et al. 2002; Fuxe et al. 2003) and NMDA receptors (Gerevich et al. 2002; Higley 
and Sabatini 2010) and synergistically with metabotropic glutamate receptor 5 
(mGluR5) (Ferre et  al. 2002; Coccurello et  al. 2004; Kachroo et  al. 2005) and 
cannabinoid CB1 receptors (Lerner et al. 2010; Ferre et al. 2010). A2ARs are also 
present at corticostriatal projections, mostly located at synapses (Rosin et al. 2003; 
Rebola et  al. 2005a), where they modulate glutamate release that drives striatal 
neurons (Rebola et  al. 2005a; Ciruela et  al. 2006). Accordingly, striatal A2AR 
activation has been documented to promote LTP at the cortico-accumbal synapses 
(D’Alcantara et al. 2001) and spike-timing-dependent LTP at glutamatergic synapses 
onto the striatopallidal neurons (Shen et  al. 2008a, b) and LTP at the cortico-
striatopallidal synapses with FGFR co-activation (Flajolet et al. 2008). Thus A2ARs 
at the corticostriatal pathway modulate synaptic plasticity underlying cognition by 
uniquely integrating dopamine and glutamate signaling in the striatum.

A2AR-dopamine interaction: This A2AR facilitation of LTP process by a kinase 
A (PKA)-dependent mechanism of Ca2+ entry through NMDA receptors at the 
corticostriatal terminal counters the D2R-mediated inhibitory effect on this syn-
apse (Higley and Sabatini 2010). The intracellular cAMP levels in the striatopal-
lidal neurons dictate bidirectional synaptic plasticity in the striatopallidal neurons 
in response to the corticostriatal afferent activity (Ferre et  al. 2010). Through 
Gs-coupled A2AR (Mori and Shindou 2003) and Gi-coupled D2R bidirectional 
regulation of cAMP signaling, concurrent activation of A2ARs and D2Rs in the 
striatopallidal neurons allow the integration of cAMP signaling and modification 
of synaptic plasticity in the striatopallidal neurons for behavioral adaptation. The 
postsynaptic striatal A2AR activation converts striatal LTD, the predominant form 
of long-term plasticity in the striatum, into LTP by countering D2R effect (Ferre 
et al. 1997; Ongini and Fredholm 1996). Because phasic dopamine neuron firing 
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acts as a “prediction error” signal that causes learning (Kachroo et  al. 2005; 
Lerner et al. 2010), striatopallidal A2ARs can modify dopamine signal to influ-
ence learning and memory through the A2AR-D2R interaction.

A2AR-glutamate interaction: Glutamate (sensorimotor) signal at the corticostria-
tal pathway is crucial to striatal synaptic plasticity (such as spike time-dependent 
plasticity, STDP (Sebastiao and Ribeiro 2000) and the “gain” control of cortical 
incoming information. A2ARs may regulate glutamate signaling through its presyn-
aptic control of glutamate release and postsynaptic interaction with NMDA recep-
tors and mGluR5. The A2AR is postulated to selectively engage in the implementation 
of synaptic changes in this excitatory synapses (Cunha 2008b). This facilitating role 
of A2AR activation is accomplished by increasing glutamate release (Rodrigues 
et al. 2005), by facilitating NMDA receptor-mediated responses (Rebola et al. 2008) 
and by desensitizing presynaptic inhibition of A1R (Lopes et al. 2002; Ciruela et al. 
2006) or cannabinoid CB1R (Martire et al. 2011).

By those distinct mechanisms, A2ARs at the corticostriatal pathway are critically 
important for the integration of incoming information (glutamate sensorimotor 
signal) and neuronal sensitivity to this incoming information (dopamine 
reinforcement signal) to control Hebbian synaptic plasticity, learning, and memory 
(Cunha 2008a, b; Schiffmann et al. 2007; Chen 2014).

Hippocampal A2ARs are localized postsynaptically at synapses between mossy 
fibers and CA3 pyramidal cells, and activation of hippocampal A2ARs modulates syn-
aptic plasticity through multiple mechanisms, involving a postsynaptic NMDA-
dependent LTP induced by short bursts of mossy fiber stimulation (Rebola et al. 2008), 
or AMPA-evoked LTP at the CA3-CA1 synapse by a PKA-dependent GluR1 phos-
phorylation at the Ser845 (Dias et al. 2012), or the kainate receptor-mediated LTD 
(KAR LTD) induced by high-frequency mossy fiber stimulation, natural spike patterns 
(Chamberlain et al. 2013), and BDNF-mediated LTP (Fontinha et al. 2008). In a trace 
eyeblink conditioning paradigm, A2AR blockade inhibits experimentally evoked LTP 
at the CA3-CA1 synapses in the hippocampus and conditioned response behaviors 
(Fontinha et al. 2009). In another eyeblink conditioning paradigm from the turtle, in 
which the cranial nerves are directly stimulated in place of using a tone or air puff, 
phosphorylated 3-phosphoinositide-dependent kinase-1 (p-PDK1) has been found to 
increase and decrease, respectively, to paired and unpaired nerve stimulation, with the 
opposing actions of neurotrophin receptors TrkB and p75 (NTR). Both of these effects 
are blocked by the A2AR antagonist. It is attributed to unique actions of A2AR to acti-
vate Gs signaling and to transactivate TrkB for convergent activation of PDK1 and 
protein kinase A to initiate classical conditioning during paired stimulation.

15.4  �The Tools for Studying Adenosine Receptor Control 
of Cognition in Behaving Animals

Various pharmacological, genetic, and optogenetic approaches have been used to 
provide a comprehensive assessment of the impact of each AR subtype in distinct 
brain regions (e.g., hippocampus, cortex, striatum) on various information processes 
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(e.g., encoding, storage, consolidation, retrieval) using different behavioral tasks. 
Earlier studies on the AR control of cognition mostly exploited AR antagonists and 
agonists to reveal the role of adenosine and its receptor targets in learning and mem-
ory. However, these pharmacological studies are limited by their partial specificity 
of AR drugs. Coupling pharmacological studies with complementary AR knockouts 
(KO) can overcome this limitation to provide some clarifications of the impact of 
A2AR and A1R signaling on various tasks of learning and memory. These global 
genetic KO studies may, however, be confounded with potential developmental 
effects. Importantly, using pharmacological tools or even a global AR KO strategy, 
it is difficult to dissect out the specific contributions of the different AR subtypes in 
distinct brain regions. To address this issue, conditional KO of A2AR and A1R genes 
in defined brain regions (e.g., cerebral cortex versus striatum versus hippocampus) 
and cell types (e.g., neurons versus astrocytes) has been achieved using the Cre-loxP 
system (for review see Wei et al. 2011a). Region-specific deletion of A2ARs has been 
achieved in the forebrain (i.e., striatum, cerebral cortex, hippocampus) (Bastia et al. 
2005; Yu et al. 2008), striatum (Shen et al. 2008a, b), and astrocytes (Matos et al. 
2015). In addition, development of adeno-associated virus (AAV) vector carrying 
short-hairpin RNA targeted to produce site-specific silencing of the A2AR gene 
(Lazarus et al. 2011; Simoes et al. 2016) and local injection of AAV vectors contain-
ing the cre transgene into the brains of mice carrying loxP-flanked A1R or A2AR 
genes (Scammell et al. 2003; Lazarus et al. 2011) have been used to achieve a tem-
poral and regional specificity. This allow us to the previously uncover underappreci-
ated functions of adenosine receptors in these brain regions, including focal 
knockdown of the A1R in hippocampal CA1 or CA3 neurons (Scammell et al. 2003) 
and A2ARs in the nucleus accumbens (Lazarus et al. 2011), dorsomedial striatum (Li 
et al. 2018), dorsolateral striatum (Li et al. 2016), hippocampus (Wei et al. 2014), 
and amygdala (Simoes et al. 2016). Finally, recent development of optogenetics by 
light control of neuronal activity with genetically engineered optical proteins (e.g., 
channelrhodopsin-2 and Arch) (Boyden et al. 2005; Deisseroth 2014; Yizhar et al. 
2011) or chemicogenetic control of G-protein signaling by the directed molecular 
evolution of designer receptors exclusively activated by designer drugs (DREADD) 
(Farrell et al. 2013; Giguere et al. 2014) has potentiated dissection of specific brain 
circuits underlying cognition. To study cognitive behaviors such as working mem-
ory at the time scale of seconds, we have developed the novel opto-A2AR method to 
optogenetically control A2AR signaling in defined brain circuits of behaving animals, 
which enables us to interrogate the causal involvement of A2AR signaling in cogni-
tion with unparalleled spatiotemporal resolution (Li et al. 2015a, 2018).

15.5  �Adenosine Receptor Modulates Learning and Memory 
in Normal Animals

Over the last two decades, neurochemical, pharmacological, and genetic knockout 
studies coupled with diverse sets of behavioral paradigms have begun to reveal the 
complexities and vastness of AR functions in cognition. Consistent with the ability 
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of the A2AR to integrate dopamine and glutamate signaling and to modulate synaptic 
plasticity (LTP in the hippocampus and LTP/LTD in the striatum) (D’Alcantara 
et al. 2001; Rebola et al. 2008), increasing evidence supports that brain A2AR activity 
contributes to modulation of learning and memory (Cunha et  al. 2008; Cunha 
2008b; Shen et al. 2008a, b; Ferre et al. 2008). Under physiological conditions, the 
A2AR exerts control over a variety of cognitive behaviors: (i) short-term recognition 
memory, as assessed using olfactory discrimination and social recognition memory 
(Prediger et al. 2005a, b; Prediger and Takahashi 2005), spatial recognition memory, 
and novelty exploration in Y-maze testing (Wang et al. 2006); (ii) spatial working 
memory (SWM) by radial maze tests (Gimenez-Llort et al. 2007) repeated trials of 
the Morris water maze and T-maze-based delay-non-match-to-place test (Li et al. 
2018; Zhou et al. 2009); (iii) reversal learning as assessed by spatial reversal learn-
ing paradigm (Wei et al. 2011b); (iv) goal-directed vs habitual behaviors by satiety-
based instrumental paradigm (Li et al. 2016; Hikida et al. 2013); (v) Pavlovian fear 
conditioning by eyeblink conditioning and context and tone fear conditioning (Wei 
et al. 2014; Hikida et al. 2013); (vi) aversive learning by conditioned taste aversion, 
avoidance behavior using an aversive paradigm, a one-trial inhibitory avoidance 
task (Pereira et al. 2005; Singer et al. 2013; Kopf et al. 1999); (vii) effort-related 
decision-making and effort expenditure (O’Neill and Brown 2007; Pardo et  al. 
2012; Pereira et al. 2011; Mott et al. 2009; Mingote et al. 2008); and (viii) condi-
tional temporal probability by a task to dissociate the effect of elapsing time in the 
foreperiod and conditional temporal probability of the imperative stimulus (O’Neill 
and Brown 2007). Recent studies with refined conditional cell-specific A2AR KO, 
AAV-based shRNAi interference, and especially optogenetic control of A2AR sig-
naling with unparalleled spatiotemporal resolution have offered several new insights 
into A2AR ability to fine-tune cognition under physiological conditions. Dissecting 
the impact of the A2AR on some forms of learning and memory is now leading to the 
new insights and better understanding of the mechanism underlying the A2AR con-
trol of cognition.

15.5.1  �Striatopallidal A2A Receptors Function as a Common 
“Break” Mechanism to Constrain Learning 
and Memory

Over the last several years, genetic KO studies have shown that the genetic deletion 
of A2AR or CD73 improves SWM, as gauged from the analysis of repeated 
acquisition paradigm in the Morris water maze or the 8-arm radial maze (Wei et al. 
2011a; Zhou et al. 2009). Moreover, an improved WM is achieved by genetic dele-
tion of A2AR either globally (i.e., global-A2AR-KO) or by a selective deletion in the 
entire forebrain neuron (i.e., cerebral cortex, hippocampus, and striatum; fb-A2AR-
KO). Genetic deletion of A2AR selectively in the striatal neurons (st-A2AR-KO) is 
sufficient to bolster SWM (Wei et al. 2011a; Zhou et al. 2009), Pavlovian fear con-
ditioning (Wei et al. 2014), reversal learning (Wei et al. 2011b), and goal-directed 
behavior (Yu et al. 2009). Furthermore, bidirectional manipulations of the striato-
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pallidal A2ARs by optogenetic activation of A2AR signaling and  
Cre-mediated knockdown of A2ARs in the DMS unambiguously demonstrated that 
A2ARs in the DMS exert an inhibitory control of goal-directed behavior (Li et al. 
2016). These findings are consistent with the fact that pharmacological reduction of 
A2AR-mediated PKA-pCREB signaling in the DMS enhances acquisition of goal-
directed ethanol drinking behaviors (Nam et al. 2013) and that A2AR antagonists 
counter the D2R antagonist effect and enhance effort-related decision-making in 
several behavioral paradigms including T-maze cost/benefit procedure and choosing 
voluntary exercise over sucrose consumption (Pardo et al. 2012; Pereira et al. 2011; 
Mott et al. 2009; Mingote et al. 2008; Correa et al. 2016). Notably, a recent study 
has demonstrated that A2AR antagonism promoted impulsive responses during 
Pavlovian conditioning and the 5-choice serial reaction time task (5-CSRTT), with 
the reduced ERK1 and ERK2 phosphorylation in the dorsal hippocampus (dHip) 
(Oliveros et al. 2017). Collectively, these findings from diverse learning paradigms 
led us to propose that striatopallidal A2ARs function as a common “break” mechanism 
to constrain cognition (Chen 2014).

Although the striato-cortical interaction is mostly conceived as supporting the 
control of actions and procedural memory, there is an increasing recognition that 
striatal circuits are also actively involved in the control of declarative and episodic 
memory (Wei et al. 2011a, b; Simpson et al. 2010; Kellendonk et al. 2006; Li et al. 
2011; Ito et  al. 2008; Ferretti et  al. 2010). In fact, the connectivity between the 
ventral striatum and the hippocampus (van Groen and Wyss 1990; Matthews et al. 
2004; MacAskill et al. 2012) is involved in the retrieval of cue contingencies based 
on spatial locations and in the control of spatial behavior (Ito et al. 2008; Ferretti 
et  al. 2010; Seamans and Phillips 1994; Maldonado-Irizarry and Kelley 1995; 
Floresco et al. 1997; Gengler et al. 2005; McDonald et al. 2006). With the increasing 
acceptance that the ventral striatum acts as an integrative unit associated with the 
adaptive encoding of working memory (Simpson et al. 2010; Scimeca and Badre 
2012; Hallock et al. 2013) and reinforcement learning (Johnson et al. 2007; Piray 
2011; Pennartz et al. 2011; van der Meer and Redish 2011; Liljeholm and O’Doherty 
2012), it is possible to propose the striatopallidal pathway in the ventral striatum as 
a global inhibitory control system for declarative and episodic memory: this concept 
is based on the emerging evidence that the activity of the striatopallidal pathway 
provides inhibitory control for novel object recognition test (Durieux et al. 2012), 
amphetamine sensitization (Bateup et  al. 2010), instrumental learning (Yu et  al. 
2009; Lobo et  al. 2007), addiction (Durieux et  al. 2009; Lobo et  al. 2010), and 
probably goal-oriented behavior (Yu et al. 2009) and biases during decision-making 
(Tai et al. 2012). In this context, the proposed “a common break mechanism” by 
striatopallidal A2AR activation provides a framework for a pharmacological strategy 
to improve cognitive deficits in aging and neuropsychiatric disorders by blocking 
striatopallidal A2AR activity.

Notably, shA2AR-mediated focal knockdown of the A2AR in the brain regions 
outside the striatum, including the basolateral complex of the amygdala (Simoes 
et al. 2016), the ventral hippocampus (Wei et al. 2014), and the prefrontal cortex 
(Li et  al. 2016), produced a facilitating effect of the A2AR on Pavlovian fear 
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conditioning (Simoes et  al. 2016; Wei et  al. 2014) and SWM (Li et  al. 2018). 
Together, these findings showed the brain-region-specific modulation of cognition 
by the A2AR activity.

15.5.2  �Temporally Precise Integration of A2AR Signaling 
with Dopamine and Glutamate Signaling 
on the Striatopallidal Neurons for Cognitive Behavioral 
Control

The contemporary reinforcement learning theory postulates the “three-factor rule” 
of striatal plasticity underlying striatum-dependent learning: synaptic strength is 
regulated by spatiotemporally precise integration of nigra-striatal dopamine signal 
(the reinforcement signaling from the environment) and corticostriatal glutamate 
signaling (value coding from the reward history) to converge on the striatopallidal 
neurons for coding of the action and outcome/reward relationship (Yagishita et al. 
2014; Augustin et al. 2014; Aquili et al. 2014). Consistent with this view, neurons in 
the prefrontal cortex fired selectively to rewarded (but not unrewarded) lever presses 
and precisely at the time of the reward delivery (Burgos-Robles et  al. 2013). 
Furthermore, time-locked optogenetic stimulation of nigral dopamine and cortical 
glutamate (within 0.3–2 s) is critical to the modulation of striatal synaptic plasticity 
(Yagishita et al. 2014). The significance of the temporal relationship of dopamine, 
glutamate, and striatal signaling is demonstrated by optogenetic control of behav-
iors (such as stimulus-reward contingency) with the concurrent optogenetic stimu-
lation of the striatal neurons with the onset of cue (within 5 ms but not 150 ms) (Tai 
et  al. 2012) and by optogenetic inhibition of ventral striatal neurons in the time 
segment (1.5 s) between action selection and outcome (but not other time segments) 
(Aquili et al. 2014). According to this working hypothesis, concurrent activation of 
dopamine signal triggered by a motivationally significant event such as reward 
delivery with a postsynaptic striatal signal such as striatopallidal A2AR activity is 
critical to the striatum-dependent reinforcement learning (Schultz et  al. 1997; 
Reynolds et al. 2001). Striatopallidal A2ARs may modulate instrumental learning by 
acting precisely at the time of the reward to interact with the reward-triggered dopa-
mine and glutamate signaling. Alternatively, striatopallidal A2ARs may control 
instrumental learning, by modulating the vigor of actions without affecting the ani-
mal’s action decision (Desmurget and Turner 2010), by modulating the “off-line” 
processing of incoming signaling (glutamate) for instrumental behavior (Pomata 
et al. 2008), or by providing a permissive role in learning association (Brainard and 
Doupe 2000). In these schemes of the vigor of action, “off-line” coding, or permis-
sive effect, the temporal relationship between the A2AR activity and the reward is not 
essential. Due to the lack of methods to control A2AR signaling in freely behaving 
animals with required spatiotemporal resolution, the temporal relationship between 
A2AR signal and the reward-triggered dopamine and glutamate signaling in the con-
trol of instrumental behaviors was unknown until recently. Using our “opto-A2AR” 
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method to optogenetically control the A2AR signaling at the millisecond resolution 
(Li et al. 2015a), we demonstrated that “time-locked” (but not “random”) optoge-
netic activation of the striatopallidal A2AR signaling at the time of the reward is 
sufficient to affect instrumental behavioral modes (Li et al. 2015a). These studies 
define the effective temporal window whereby the striatopallidal neuronal activity 
(and striatopallidal A2AR activity) modulates learning and memory in the close tem-
poral relationship with dopamine and glutamate signaling associated with cue and 
reward (Schultz et al. 1997; Reynolds et al. 2001). This integration may affect the 
intracellular cAMP level by concurrent activation of the D2 receptor, NMDA recep-
tors, and A2AR in the striatopallidal neurons, dictating bidirectional synaptic plastic-
ity in the striatopallidal neurons for coding of the mode of instrumental learning 
behavior (Augustin et al. 2014). Interestingly, in the CA1 region of the hippocam-
pus, enhanced NMDAR-dependent neuronal excitability by co-activation of 
mGluR5 and NMDARs is permitted by the A2AR activation, temporally coinciding 
with the robust increase in Src kinase-dependent NR2B (Tyr1472) phosphorylation 
(Sarantis et al. 2015). These studies provide new molecular insights into the tempo-
ral integration of adenosine-glutamate signaling in the hippocampus.

15.5.3  �Dissecting AR Control of Distinct Information 
Processing Phases

Cognitive control of SWM involves multiple executive processes including encod-
ing, maintenance, and retrieval of information, but the AR modulation of these 
SWM processes remains undefined due to lack of the methods to control AR signal-
ing with the temporal resolution of seconds. The recent development of optogenetic 
control of A2AR signaling has provided a unique opportunity to address this issue. 
The specificity of opto-A2AR signaling (Li et al. 2015a) and the temporal resolution 
of the opto-A2AR are validated by the rapid electrophysiological response (within 
3–18  s) (Li et  al. 2018) and biochemical detection of opto-A2AR-induced cAMP 
accumulation within 30 s (Li et al. 2015a) after opto-A2AR activation by light, which 
is consistent with the temporal resolution (within seconds) of opto-dopamine D1 
receptor and opto-adrenergic α1 and ß2 receptors (Airan et al. 2009; Gunaydin et al. 
2014). The opto-A2AR approach allowed us to demonstrate that optogenetic activa-
tion of striatopallidal A2AR signaling selectively during the delay or retrieval (but 
not encoding) phase impairs SWM performance (Li et al. 2018). Similarly, opto-
A2AR activation in mPFC precisely during the delay phase (but not the encoding and 
retrieval phase) affects SWM performance (Li et al. 2018). This suggests that the 
cortico-striatopallidal A2AR signaling is critical to the maintenance (striatal and 
mPFC A2ARs) and retrieval (striatal A2ARs) processes of SWM. Lack of the effect 
of the striatopallidal A2AR activity on the coding of sensory information of SWM is 
apparently consistent with the previous finding that genetic KO or optogenetic acti-
vation of striatopallidal A2AR activity did not affect the acquisition or omission/
extinction phases of instrumental learning (Yu et al. 2009; Li et al. 2016). These 
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findings of the distinct modulation of the three phases of SWM (i.e. encoding, main-
tenance, and retrieval) by optogenetic A2AR signaling in mPFC and striatum com-
plement the recent ChR2-based optogenetic studies uncovering the vHPC-mPFC 
projections in the encoding of SWM (Spellman et al. 2015), the mPFC in the main-
tenance (Liu et al. 2014), and the medial entorhinal cortex (MEC)-hippocampal-
thalamus nucleus circuit in the retrieval of SWM (Yamamoto et  al. 2014). 
Collectively, these findings provide the potential circuit framework for passaging 
SWM information flow from the encoding (vHPC→mPFC projection) to the main-
tenance (mPFC, striatum, and thalamus) to the retrieval (MEC → HPC → ST → TH 
loop).

15.5.4  �A1 Receptors and Learning and Memory

For its wide and abundant expression patterns in various brain regions associated 
with learning and memory, and for its profound effect on neurotransmission, A1Rs 
are traditionally thought to execute adenosine’s potential modulatory effects on 
cognition. In line with the evidence of the A1R control of mainly “basal” synaptic 
transmission, earlier pharmacological studies support the role of the A1R control of 
learning and memory. For example, hippocampal A1Rs influence working memory 
(Ohno and Watanabe 1996), prevent scopolamine-induced working memory deficits 
(Hooper et al. 1996), and prevent morphine-induced impairment in the retrieval of 
a spatial reference memory (Lu et al. 2010). However, studies from A1R-KO mice 
suggest that A1Rs may not be critical to some mnemonic effects of adenosine 
because A1R-KO mice showed normal performance in the water maze, normal 
acquisition and retention of a spatial reference memory, normal SWM performance, 
and normal ability to learn the new position of a fixed platform during reversal 
learning in two different A1R-KO mouse lines (Gimenez-Llort et al. 2002, 2005; 
Lang et al. 2003). Thus, under physiologic conditions, the A1R may not be crucial 
for the expression of normal spatial reference memory or SWM. It should be noted 
that an altered emotional status (Gimenez-Llort et al. 2002; Johansson et al. 2001) 
and a possible confounding developmental effect of A1R KO in mice on A1R control 
of cognition cannot be ruled out.

15.6  �A2A Receptor Antagonism Reverses Memory 
Impairments Under Various Pathological Conditions

Cognitive impairment is prevalent on aging and is accelerated in a pathognomonic 
manner in such neurodegenerative disorders as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD), with the greatest socioeconomic impact in the Western 
world (Murray and Lopez 1997; Olesen et al. 2012; Wimo et al. 2013). Currently, 
there is no disease-modifying treatment to slow down or hold the disease progression. 
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The early symptoms associated with mild cognitive impairment (MCI), often 
evolving to AD (Landau et al. 2010; Ewers et al. 2012; Weintraub et al. 2012), are 
the emergence of short-term memory (STM) impairments with working memory 
(WM) deficit at its core (Baddeley et al. 1991; Baddeley 2003; Albert 1996; Grady 
et al. 2001; Belleville et al. 2008; Sperling et al. 2010; Koppel et al. 2014). Since 
1993, FDA has approved three acetylcholinesterase inhibitors and an NMDA 
receptor antagonist memantine for improving cognition at early-moderate (AChE 
inhibitors) and moderate-later stage (memantine) of the AD (Aisen et  al. 2012). 
However, these treatments do not have disease-modifying properties, and their use 
is limited by the poor efficacy (only 25% patients responded to the treatment) (Aisen 
et al. 2012; Amanzio et al. 2012; Jones 2010; Chaudhuri and Schapira 2009). The 
use of cholinesterase inhibitors to manage early cognitive impairments in PD 
patients may worsen their motor deficits (Chaudhuri and Schapira 2009; Richard 
et al. 2002; van Laar et al. 2011). Thus, identification and intervention at the earliest 
stage of AD/PD-MCI is a crucial unmet need for the overall care of AD/PD patients. 
In this context, experimental evidence suggests that pathological brain conditions 
associated with memory impairment (such as AD, stress, and inflammation) are 
accompanied by a local increase of the extracellular levels of adenosine (Cunha 
et  al. 2001) and an upregulation and aberrant signaling of the brain A2AR (Chen 
et al. 2013; Cunha and Agostinho 2010). This led to the demonstration that blocking 
the “abnormal” activation of A2AR in specific brain regions (e.g., the hippocampus) 
confers protection against memory impairments under pathological conditions. 
Accordingly, under various pathological conditions, A2AR blockade prevents or 
reverses memory impairments caused by Aβ peptides via p38 MAPK pathway 
(Canas et al. 2009a; Dall’igna et al. 2007) and in transgenic hAPP AD model (Orr 
et al. 2015), in R6/2 transgenic model of HD (Li et al. 2015b), in the PD model with 
focal dopamine depletion in the cortex (Kadowaki Horita et al. 2013) or local injec-
tion of A53T α-Syn fibrils (Hu et al. 2016), and in the controlled cortical impact 
model and blast-induced traumatic brain injury (Ning et al. 2013; Zhao et al. 2017a, 
b) or caused by acute cannabinoid CB1 receptor activation (Mouro et al. 2017) and 
sporadic dementia (Espinosa et  al. 2013). The involvement of the A2AR in 
pathological cognitive impairment is further supported by targeted neurogenesis 
gene-based association analysis in cognitively normal and impaired participants, 
leading to identification of A2AR gene (ADORA2A) as significantly associated with 
hippocampal volume (Horgusluoglu-Moloch et al. 2017).

15.6.1  �The Aberrantly Increased A2AR Signaling in Cognition-
Relevant Regions Is Sufficient to Trigger Memory 
Impairment

Under pathologic conditions, such as trauma and seizure, the activation of postsyn-
aptic neurons can lead to the adenosine release, contributing to adenosine-mediated 
synaptic depression, an autonomic feedback mechanism to suppress excitatory 
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transmission during prolonged activity (Lovatt et  al. 2012; Klyuch et  al. 2012). 
Noxious brain conditions enhance the extracellular levels of ATP and the extracel-
lular conversion of AMP into adenosine via CD73 enzyme (Zimmermann 2000). 
Furthermore, the density of hippocampal A2ARs, localized abundantly in hippocam-
pal synapses (Rebola et al. 2005a), in particular in glutamatergic synapses (Rebola 
et  al. 2005a), increases in aged animals (Canas et  al. 2009b; Cunha et  al. 1995; 
Lopes et al. 1999b; Rebola et al. 2003) and human AD (Albasanz et al. 2008), in 
transgenic mice displaying memory impairments (Espinosa et al. 2013; Cunha et al. 
2006; Cognato et al. 2010), in the frontal cortex (mainly A2ARs in astrocytes) of AD 
brains (Orr et al. 2015), in the putamen of early (Braak PD stage 1–2) stage of PD 
(Villar-Menendez et  al. 2014), and in the caudate of dyskinetic PD brains 
(Ramlackhansingh et al. 2011; Mishina et al. 2011). Interestingly, a recent study 
shows that the upregulation of astrocytic A2AR in the hippocampus and neocortex of 
aging mice is induced by elevated levels of Aβ, C-terminal fragments of the amyloid 
precursor protein (APP), or amyloid plaques, but not overexpression of APP per se 
(Orr et al. 2018). This view of aberrantly increased A2AR signaling is supported by 
the striking induction of the A2AR in the hippocampus after A53T α-Syn fibril 
injection (Hu et al. 2016). Thus, the upregulated A2ARs may serve as a biomarker for 
PD and AD. Because several positron emission tomography (PET) ligands for the 
A2AR, such as the A2AR antagonist ligand [11C]-SCH442416 and [11C]-KW6002, 
have been developed and successfully employed to measure the level of striatal 
A2ARs of PD patients (Ramlackhansingh et al. 2011; Mishina et al. 2011; Khanapur 
et al. 2014), it would be essential to investigate whether these A2AR antagonistic 
PET ligands can be used as an early diagnostic biomarker for AD and PD.

Is the aberrantly increased adenosine-A2AR signaling a maladaptive conse-
quence of aging, PD and AD pathologies, or a causal factor in the emergence of 
memory deficits? The finding that light activation of opto-A2AR signaling in hip-
pocampal neurons is sufficient (in the absence of neurodegeneration) to trigger 
memory impairment (Li et al. 2015a) argues that the marked upregulation of A2AR 
expression in the hippocampus may be responsible (at least partially) for the devel-
opment of A53T α-Syn-induced cognitive impairments. Similarly, the activation of 
A2ARs with CGS 21680 before the training session is also sufficient to trigger 
memory impairment in the object recognition task, inhibitory avoidance, and mod-
ified Y-maze in naive mice (Pagnussat et al. 2015). Transgenic overexpression of 
the A2AR in the cortex amplified the synaptic plasticity and memory deficits trig-
gered by GR in the hippocampus, which was reversed by A2AR antagonism (Batalha 
et al. 2016). This is in line with the “common break” mechanism by activation of 
the striatopallidal A2ARs to constrain a variety of cognitive behaviors under physi-
ological conditions (Li et  al. 2016). This insight is validated by the reversal of 
A53T α-Syn fibril-induced working memory deficit by genetic deletion of A2ARs. 
In agreement with this view, A2AR blockade can prevent memory dysfunction 
caused by Aβ peptides via p38 MAPK pathway (Canas et al. 2009a; Dall’igna et al. 
2007) and in transgenic hAPP AD model (Orr et al. 2015, 2018) and R6/2 trans-
genic model of HD (by A2AR antagonists alone or in combination with D1R 
antagonists) (Li et al. 2015a, b; Tyebji et al. 2015), by the PD model with focal 
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dopamine depletion in the cortex (Kadowaki Horita et al. 2013), by controlled cor-
tical impact model of traumatic brain injury (Ning et al. 2013, Zhao et al. 2017a, 
b), by chronic unpredictable stress (Kaster et al. 2015), and by sporadic dementia 
(Espinosa et al. 2013). Demonstration of the hippocampal A2AR upregulation by 
A53T α-Syn fibrils and the reversal of α-Syn-induced cognitive impairments, 
together with the demonstration of the sufficiency of optogenetic activation of 
A2AR signaling to induce cognitive impairments (Li et al. 2015a), suggest a plau-
sible mechanism linking α-Syn to cognitive impairments in the absence of neuro-
degeneration. In the stress model induced by maternal separation, the A2AR 
blockade effectively reverted the behavior and electrophysiological and morpho-
logical impairments, with the restoration of the hypothalamic-pituitary-adrenal 
axis (HPA-axis) activity (Batalha et al. 2016).

On the other hand, the role of astrocytic A2ARs in the development of cognitive 
impairment is not clear: selective deletion of astrocytic A2ARs exhibited enhanced 
MK-801 psychomotor response and decreased working memory, accompanied by a 
disruption of glutamate homeostasis characterized by increased GLT-I activity and 
internalization of AMPA-R (Matos et al. 2015). In a mouse hAPP model of AD, 
chemogenetic activation of astrocytic Gs-coupled signaling (mimicking upregulation 
of astrocytic A2ARs in human AD cortex) impaired long-term memory, while 
conditional genetic removal of these receptors enhanced memory (Orr et al. 2015). 
This justifies a need for additional studies to clarify the exact role of astrocytic ARs 
in cognitive control under normal and pathological conditions.

15.6.2  �A2AR Inactivation Reverses Cognitive Impairments 
in Neurodegenerative Disorders by Modifying 
Aggregate Protein Processing and Countering 
Synaptopathy

MCI and early AD and PD are often associated with the changes in the brain levels 
of different forms of β-amyloid peptides, amyloid plaques, neurofibrillary tangles 
with phosphorylated Tau proteins for AD (Galasko et al. 1998; Andreasen et al. 
2001; Riemenschneider et al. 2002; Mattsson et al. 2009), and α-synuclein aggre-
gates for PD (Brundin and Melki 2017; Goedert et  al. 2017; Masuda-Suzukake 
et al. 2013), argued to be major culprits of AD and PD (Hardy and Selkoe 2002; 
Walsh and Selkoe 2004). Increasing evidence points to the novel mechanism that 
A2AR inactivation protects against pathological cognitive impairments by modifi-
cation of proteins that trigger neurodegeneration, including β-amyloid synaptopa-
thy (Canas et al. 2009a; Cao et al. 2009), α-synuclein (Laurent et al. 2016; Ferreira 
et al. 2017), and Tau protein (Laurent et al. 2016). (I) Studies of aged AD trans-
genic (APPsw, Swedish mutation) mice found that caffeine (nonselective adenos-
ine antagonist) treatment (1.5 mg daily dose, equivalent to 500 mg in human) to 
APPsw mice reduced brain Aβ levels with reduced presenilin 1 (PS1) and beta-
secretase (BACE) expression, leading to protection against certain cognitive 
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impairments (Cao et al. 2009; Arendash et al. 2006, 2009). (II) Three recent stud-
ies (including ours) strongly support the A2AR modulation of α-synuclein aggrega-
tion by showing decreased α-Syn aggregation in the hippocampal neuron with 
reduced number of pSer129 α-Syn-rich and p62-positive inclusions in A2AR-KO 
mice (Hu et al. 2016), decreased the percentage of cells displaying α-Syn inclu-
sions in cultured cells after A2AR antagonist treatment (Ferreira et al. 2017), and 
attenuated toxicity of α-Syn aggregates in vitro and in a yeast proteotoxicity model 
of PD after caffeine treatment (Kardani and Roy 2015). These findings are in line 
with the previous study showing that the A2AR KO prevents loss of dopaminergic 
neurons caused by the transgenic overexpression of intracellular human α-Syn 
containing both A53T and A30P mutations (Kachroo and Schwarzschild 2012). 
(III) In a THY-Tau22 model of AD, genetic deletion of the A2AR protects from Tau 
pathology-induced deficits in terms of spatial memory and hippocampal long-term 
depression, with a concomitant decrease in Tau hyperphosphorylation, normaliza-
tion of the hippocampal glutamate/GABA ratio, and a global reduction in neuro-
inflammatory markers (Laurent et  al. 2016). The A2AR antagonist MSX-3 also 
improved memory and reduced Tau hyperphosphorylation in THY-Tau22 mice 
(Laurent et al. 2016). In the controlled cortical impact model of traumatic brain 
injury (TBI), genetic deletion of the A2AR or treatment with the A2AR antagonist 
ZM241385 or caffeine reduced the level of Tau phosphorylation at Ser404 and 
alleviated spatial memory dysfunction (Zhao et al. 2017b). Interestingly, 14-month-
old proaggregant-Tau-transgenic mice developed neuronal and astrocytic hypoac-
tivity and presynaptic dysfunction, which were reversed by treatment with A1R 
rolofylline (KW-3902) (Dennissen et  al. 2016). (IV) On the other hand, in HD 
model, A2AR activation enhanced proteasome activity and reduced mutant hunting-
tin aggregations through the PKA-dependent pathway (Huang et al. 2011; Chiang 
et  al. 2009). Collectively, these findings support that AR antagonists including 
caffeine may attenuate PD and PD pathology by a mechanism other than protea-
some pathway.

Furthermore, MCI and early AD and PD are also associated with the loss of syn-
apses in defined brain cortical regions, most evident in the hippocampus in MCI and 
early phases of AD (Scheff et al. 2007; Coleman et al. 2004; Selkoe 2002) and dur-
ing aging (Burke and Barnes 2010; Morrison and Baxter 2012). In fact, a synapse is 
the primary target of toxic Aβ oligomers (Hardy and Selkoe 2002), and the loss of 
synapses in the hippocampus is probably the earliest morphological trait and the 
best correlated with initial memory impairment in AD (Coleman et  al. 2004). 
Indeed, A2ARs are most abundant in hippocampal synapses (Rebola et al. 2005b), in 
particular in glutamatergic synapses (Rebola et al. 2005b). The density of hippo-
campal A2AR increases in aged animals (Canas et  al. 2009b; Cunha et  al. 1995; 
Lopes et al. 1999b; Rebola et al. 2003) and human AD (Albasanz et al. 2008) as 
well as in transgenic mice displaying memory impairments (Espinosa et al. 2013; 
Cunha et al. 2006; Cognato et al. 2010). In AD model with the intracerebral admin-
istration of soluble Aβ(1–42) (2 nmol) in rats or mice, memory impairment and a 
loss of nerve terminal markers without overt neuronal loss, astrogliosis, or microg-
liosis were observed, whereas the A2AR antagonist SCH58261 (50 nm) prevented 
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the initial synaptotoxicity (loss of MAP-2, synaptophysin, and SNAP-25 immuno-
reactivity), through the p38-dependent and cAMP/PKA-independent pathways 
(Canas et al. 2009a). Similarly, pharmacological and genetic blockade of A2AR and 
caffeine treatment efficiently prevented chronic unpredictable stress-induced mem-
ory deficits and the associated loss of synapses, typified by a decrease in synaptic 
plasticity and a reduced density of synaptic proteins (synaptosomal-associated pro-
tein 25, syntaxin, and vesicular glutamate transporter type 1) (Kaster et al. 2015). 
Altogether, these evidences indicate that the A2AR plays an effective role in modify-
ing aggregated protein processing and counteracting synaptopathy, both of which 
contribute to memory function preservation.

15.6.3  �A2AR Antagonist Control of Cognition in Nonhuman 
Primates

Higher cognitive disorders in humans involve the association cortex, which is regu-
lated in a fundamentally different manner from the older sensory-motor cortical and 
subcortical circuits and thus is not suitable to study in rodent models, whose brains 
have a very small association cortex (Goldman-Rakic 1987). For the complex nature 
of higher cognition functions in human, developing the effective pharmacological 
strategy to improve cognition would require preclinical data from nonhuman pri-
mates because higher cognitive functions involve the association cortices, which are 
evolutionally poorly developed in rodents and thus cannot be adequately addressed 
by standard pharmacological and genetic studies in rodent models (Goldman-Rakic 
1987). In recent clinical trials of A2AR antagonists and caffeine for motor benefits in 
PD, the possible cognitive effects of A2AR antagonists and caffeine were not evalu-
ated (Aarsland et al. 2010), in part due to the lack of cognitive behavior data from 
nonhuman primate model of PD. Besides increasing evidence from rodent models 
of PD supporting that pharmacological and genetic inactivation of A2ARs can pre-
vent WM dysfunction under multiple pathological conditions (for a review see Chen 
2014), two studies have addressed this knowledge gap by testing A2AR antagonists 
(such as istradefylline in a clinical trial) in nonhuman primate models of PD (Li 
et al. 2018). In the MPTP-treated macaque model of parkinsonian and dyskinetic 
motor symptoms, the A2AR antagonist istradefylline reduced the attentional and 
working memory deficits caused by l-DOPA (Ko et  al. 2016). In MPTP-treated 
cynomolgus monkeys coupled with delay-non-match-to-sample/place (DMTS/
DMTP) paradigm, we showed that the A2AR antagonist KW6002 ameliorated spa-
tial working memory deficits (Li et al. 2018). Identification of the proper dose and 
the treatment paradigm of the A2AR antagonist KW6002 to enhance SWM may 
provide required preclinical data to facilitate the design of a clinical trial of A2AR 
antagonists for cognitive benefit in PD patients. Last, in squirrel monkeys trained to 
self-administer cannabinoids intravenously, the A2AR antagonists SCH-442416 and 
KW6002 produced a significant shift to the right and left, respectively, of the 
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cannabinoid self-administration dose-response curves (Justinova et al. 2014), pav-
ing the way for the development of A2AR-based treatment for drug addiction.

15.7  �Epidemiological and Animal Studies Support Pro-
cognitive Effects of the Adenosine Receptor Antagonist 
Caffeine in Aging and Alzheimer’s Disease

In the absence of an effective disease-modifying treatment to slow down or stop 
AD, epidemiological and experimental investigations of the potential risk factors 
(including dietary factors) that may allow individuals to decrease their risk for AD 
and improve cognitive symptoms have become compelling. Caffeine is doubtless 
the most widely consumed psychoactive substance by >50% of the world’s adult 
population, largely for its psychostimulant (and cognitive enhancement) effect. At 
least seven longitudinal studies support an inverse relationship between caffeine 
consumption and decreased memory impairments associated with aging as well as 
a reduced risk of developing AD (for a review see Chen 2014), including the 
Maastricht Aging Study (van Boxtel et  al. 2003; Hameleers et  al. 2000), the 
Canadian Study of Health and Aging (CSHA) (Lindsay et al. 2002), the FINE study 
(van Gelder et  al. 2007), the French Three-City Study (Ritchie et  al. 2007), the 
Cardiovascular Risk Factors, Aging, and Dementia (CAIDE) Study (Eskelinen et al. 
2009), and the Honolulu-Asia Aging Study (Gelber et al. 2011). For example, the 
Honolulu-Asia Aging Study involved 3494 men with a mean age 52 at cohort entry 
in 1965–1968 and found that the men in the highest quartile of caffeine intake were 
less likely than men in the lowest quartile to have any neuropathologic lesions at 
death in the 226 men with dementia and the 347 men with cognitive impairment 
who underwent brain autopsy (Gelber et al. 2011).

In further support of this inverse correlation between caffeine consumption and 
cognitive decline, animal studies show a causal role of caffeine in neuroprotection 
in animal models of AD: I) caffeine treatment reduced Aβ peptide-induced 
aggregation in cultured cerebellum granular cells and protected against loss of 
learning and memory induced by intracerebroventricular infusion of Aβ peptide 
(Canas et al. 2009a; Dall’igna et al. 2007; Espinosa et al. 2013) (210, 211, 220). II) 
Studies with aged AD transgenic (APPsw, Swedish mutation) mice found that long-
term administration of a 1.5 mg daily dose of caffeine (equivalent to 500 mg in 
human) reduced brain Aβ levels and protected against certain cognitive impairments 
in 4–9-month-old APPsw mice; furthermore, in aged (18–19 months old) APPsw 
mice, which already exhibit decreased cognitive function, caffeine treatment 
enhanced working memory compared to non-treated APPsw mice (Cao et al. 2009; 
Arendash et  al. 2006, 2009). III) Long-term oral caffeine treatment not only 
sustainably reduced plasma Aβ but also decreased both soluble and deposited Aβ in 
the hippocampus and cortex of aged AD mice (Cao et  al. 2009). Intriguingly, 
caffeine’s ability to improve cognitive performance in individual aged AD mice did 
not correlate with reduced plasma Aβ levels but was closely associated with the 
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reduced inflammatory cytokine levels in the hippocampus (Cao et al. 2009). In addi-
tion, caffeine acts at the neuronal A2AR to reverse cognitive impairments and associ-
ated synaptic dysfunction induced by chronic unpredictable stress (Kaster et  al. 
2015) and by depression-prone, hopeless mice (Machado et al. 2017).

This convergence of the epidemiological and animal evidence led to the proposal 
that caffeine might be a novel prophylactic agent to alleviate the burden of AD. The 
recent case-control study involving 124 total individuals provides the first direct 
evidence that caffeine/coffee intake is associated with a reduced risk of dementia 
(Cao et al. 2012). The study found that subjects with plasma caffeine levels greater 
than 1200 ng/ml at study onset were associated with stable MCI → MCI and no 
conversion to dementia during the 2–4-year follow-up examination (Cao et  al. 
2012). However, a very recent randomized control clinical trial of caffeine in PD 
has failed to confirm motor benefits with apparently exacerbated cognitive 
impairments (Postuma et  al. 2017). Additional clinical studies are warranted to 
clarify this controversy and to test decisively the putative neuroprotective effects of 
caffeine in clinical trials in patients with AD.

15.8  �Translational Potential of the Adenosine Receptor-
Based Drugs for Controlling Cognitive Deficits 
in Neuropsychiatric Disorders

The convergence of clinical, epidemiological, and experimental evidence led to the 
proposal to translate the cognitive enhancement in rodents and nonhuman primates, 
and the safety profile of adenosine receptor, the A2AR antagonists, in particular, 
documented in clinical phase III trials in Parkinson’s disease patients, to demon-
strate the crucial ability of brain adenosine receptors (such as the A2AR) to control 
cognitive deficits in neuropsychiatric disorders. Over the last 8 years, a total of 25 
clinical trials have been conducted (for review see Chen et al. 2013). Six double-
blind placebo-controlled clinical phase IIb and III trials of istradefylline (KW-6002) 
involving >2500 advanced PD patients and one phase IIb trial with preladenant 
(SCH420814) involving 253 PD patients were reported (Hauser et al. 2011). These 
clinical IIb and III trials have shown a modest but significant motor benefit: a reduc-
tion of the average “OFF” time by ~1.7 h compared to the “optimal” L-dopa dose 
regimen (Jenner et al. 2009); however, in 2008, the FDA found that efficacy results 
for motor benefits in these PD clinical trials were not sufficient, considered that this 
modest motor benefit was not sufficient to support the clinical utility of istradefyl-
line. Additional PD clinical trials with istradefylline in Japan were undertaken to 
show consistent motor benefits, leading to the approval of istradefylline for treat-
ment of PD in Japan in March 2013 (Dungo and Deeks 2013). Unfortunately, the 
effects of A2AR antagonists on cognition were not evaluated in these clinical trials. 
This is mostly due to the insufficient preclinical data on the ability of A2AR to con-
trol cognition – a knowledge gap that needs to be filled by future studies. Relevant 
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to drug discovery for cognitive improvement, these clinical IIb and III trials with the 
A2AR antagonists showed a very consistent and excellent safety profile in >3000 
advanced PD patients (Hauser et al. 2011; Jenner et al. 2009). This safety profile of 
A2AR antagonists is entirely consistent with the widespread use of the nonselective 
adenosine receptor antagonist caffeine in 70% human population. Importantly, this 
provides an opportunity to translate rapidly A2AR antagonists to achieve cognitive 
improvement in neuropsychiatric disorders.

15.9  �Summary

There is a convergence of molecular, animal, and epidemiological evidence sug-
gesting that the A2AR and caffeine represent novel therapeutic strategies to improve 
cognitive impairments associated with neuropsychiatric disorders. The validity of 
this novel target is supported by the finding that A2AR antagonists and caffeine not 
only selectively enhance SWM, recognition memory, reversal learning, goal-
directed behavior, Pavlovian conditioning, and effort-related behaviors in normal 
animals but also reverse SWM impairments in animal models of traumatic brain 
injury, PD, AD, schizophrenia, and HD. Pharmacological, genetic, and optogenetic 
studies coupled with well-controlled behavioral paradigms have revealed new 
insights into the mechanisms underlying AR control of cognition under physiologi-
cal conditions (e.g., spatiotemporally precise integration of adenosine with dopa-
mine and glutamate signaling, a common “break” mechanism by the striatopallidal 
A2AR to constrain cognition). Furthermore, A2AR inactivation reverses cognitive 
impairments in neurodegenerative disorders by blocking aberrantly increased A2AR 
signaling, by modifying aggregate protein processing, and by countering synap-
topathy. Despite the converging animal and epidemiological evidence and the noted 
safety profiles of A2AR antagonists and caffeine, the therapeutic potential as well as 
the mechanism of A2AR antagonist effect on cognition in neuropsychiatric disorders 
remains to be established. Due to the insufficient preclinical data on this aspect, the 
effect of A2AR antagonists on cognition was not considered in these clinical PD tri-
als. This may justify additional animal studies to better understand the mechanism 
underlying the A2AR-mediated control of cognition in healthy brains (e.g., the per-
missive effect of AR, the spatiotemporal integration of adenosine/dopamine/gluta-
mate signaling, and the selective control of distinct information processing phase). 
Further exploration of the molecular pathways whereby the adenosine receptor 
modifies degenerative proteins (such as phosphorylated Tau, α-synuclein, and 
β-amyloid) and prevents the early synaptic loss is critically needed. These studies 
may reveal the cellular and circuit mechanisms underlying the AR control of cogni-
tion and provide the required rationale to stimulate the necessary clinical investiga-
tion to translate rapidly A2AR antagonists and caffeine as novel strategies to control 
memory impairment associated with neuropsychiatry disorders.
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