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Chapter 10
Adenosine Receptors as a Paradigm 
to Identify Dimer/Oligomers of G-Protein-
Coupled Receptors and as Targets 
in Parkinson’s Disease and Schizophrenia

Gemma Navarro, Dasiel O. Borroto-Escuela, Kiell Fuxe, and Rafael Franco

Abstract  While adrenergic receptors were instrumental to start to understand the 
role of GPCRs, other receptors are taking the lead to understand why GPCR homo−/
heteromers are needed and to address their physiological consequences in both 
healthy/homeostatic conditions and disease. Adenosine and dopamine receptors in 
the CNS are instrumental to understand pathogenic mechanisms in Parkinson’s 
disease and to know the role of receptor heteromers. We here provide the account of 
the heteroreceptor complexes formed by adenosine receptors (A1, A2A, A2B, and A3), 
and their potential as therapeutic targets. Both adenosine (A1 or A2A)-dopamine (D1 
or D2) and adenosine A1A2A heteroreceptor complexes are therapeutic targets in 
Parkinson’s disease and may be altered after chronic levodopa treatment. A short 
account on the potential of adenosine receptors as targets in schizophrenia is also 
provided. Apart from potential in combating symptoms, adenosine receptors have 
potential as targets for neuroprotection. However, the design of neuroprotective 
drugs requires to understand how adenosine affects microglia and which adenosine-
receptor-containing heteromers may be targeted.
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10.1  �Introduction

Adenosine and dopamine receptors have been instrumental in identifying com-
plexes with other members of the Class A G-protein-coupled receptor (GPCR) 
superfamily. For review on dopamine receptor homo−/heteromerization and its rel-
evance, see Rashid et  al. (2007), Fuxe et  al. (2014a, b), George et  al. (2014), 
Perreault et  al. (2014), Borroto-Escuela et  al. (2016), Borroto-Escuela and Fuxe 
(2017) and references therein. Dimers were first identified using coimmunoprecipi-
tation and other biochemical approaches. Later, biophysical techniques were imple-
mented to detect dimers (even trimers) in heterologous expression systems. The 
existence of receptor-receptor interactions between different GPCRs in the plasma 
membrane in brain tissue was first indicated in biochemical binding studies on neu-
ropeptide modulation of the affinity and density of monoamine receptor subtypes 
using monoamine radioligands and membrane preparations from different brain 
regions (Fuxe et al. 1981, 1983, 1987; Agnati et al. 1982; Fuxe and Agnati 1985). 
The results gave rise to the concept of direct interactions in the plasma membrane 
of subtype-specific neuropeptide receptor and monoamine receptors. In 1993, it was 
proposed that the molecular mechanism for these GPCR receptor-receptor 
interactions was represented by the formation of a heterodimer in balance with the 
corresponding homodimers/monomers (Zoli et al. 1993).

Franco et al. (2016) reviewed the strategies that may lead to demonstrate that 
heteroreceptor complexes formed by GPCR are present in natural sources; in 
particular, the two that have provided more benefit in our experience are (i) the 
heteromer print (something that is particular to the complex and does not happen in 
individually expressed receptors) and (ii) in situ proximity ligation assays, a tech-
nique developed for assessing cancer types in samples from patients and that allows 
to detect GPCR clusters in cells, in samples from animal models, in samples from 
patients, or in samples from necropsies. The central nervous system (CNS) has been 
by far the substrate for identifying the complexes formed by adenosine receptors. 
Actually, the periphery lacks behind the CNS  in  identifying and addressing the 
physiological role of GPCRs. Exceptions do occur, and the most straightforward 
example in the periphery is likely provided by chemokine receptors, which may 
form homo- and heterodimers that provide pharmacological and signaling diversity 
to cells of the immunological system (see (Springael et al. 2005; Muñoz et al. 2009, 
2011, 2012) and references therein). Indeed, there is consensus in that a receptor 
heteromer (Het) cannot be considered as such in the absence of any particular 
property, i.e., a given complex in a natural context should display a particular 
heteromer print (Het) (Ferré et al. 2009a).
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10.2  �Adenosine Receptors in the Formation of Heteromers 
with Non-purinergic GPCRs

Except for error, omission, or very recent discovery, the direct interactions reported 
for adenosine receptors with other members of the GPCR superfamily are those 
described below.

The first Het identified for receptors having different endogenous agonists was 
that constituted by adenosine A1 (A1R) and dopamine D1 (Gines et al. 2000; Torvinen 
et  al. 2002; Cao et  al. 2006). In parallel, the Het for two different subtypes of 
receptors for the same endogenous agonist (mu and delta opioid receptors) was 
discovered by Gomes et  al. (2000). In brain regions related to motor control, 
functional adenosine-dopamine receptor interactions were known. Also known was 
the segregation of striatal D1 and D2 receptors in, respectively, the so-called direct 
and indirect pathways of motor control. It turns out that whereas D1 and A1 colocalize 
in striatonigral GABAergic neurons, adenosine A2A (A2AR) and dopamine D2 
receptors colocalize in striatopallidal GABAergic neurons. Accordingly, we 
hypothesized, and later demonstrated, that A2A-D2 heteromerization in the indirect 
pathway paralleled the A1-D1 heteromerization in the direct pathway (Hillion et al. 
2002; Canals et al. 2003, 2004; Fuxe et al. 2003, 2007; Ciruela et al. 2004). The 
highest A2AR expression in a mammalian body is found in the striatum, a fact whose 
extent is not fully known. Hence, interactions with other dopamine receptors, which 
are also expressed in motor control brain areas or with receptors widely distributed 
in the CNS, have been reported. On the one hand, the effect of activation of A2AR on 
in vivo actions mediated by dopamine D3 (Hillefors et  al. 1999) prompted us to 
investigate and identify A2A-D3 Hets (Torvinen et al. 2005). In vivo activation of 
A2ARs in the basal ganglia causes alterations in the pharmacological characteristics 
of dopamine D3 receptors that may underlie the atypical neuroleptic-like effect of 
A2AR receptor agonists (Rimondini et al. 1997; Hillefors et al. 1999); as a matter of 
speculation, those in  vivo effects may be a consequence of the particular 
pharmacological and functional properties of A2A-D3Hets. On the other hand, striatal 
adenosine A2ARs form functional heteromeric complexes with cannabinoid CB1 
receptors (Carriba et al. 2007) or with histamine H3 (Márquez-Gómez et al. 2018) 
receptors; these Hets may, respectively, mediate the motor effects of cannabinoids 
and deserve attention on assessing the potential of antihistamines in the therapy of 
CNS diseases. Due to the intrinsic structural and conformational properties of the 
Class C GPCR subfamily, they can form a myriad of homo- and heteroreceptor 
complexes (Doumazane et al. 2011; Borroto-Escuela et al. 2014). Interestingly, the 
A2AR may form functional but also molecular complexes with Class C metabotropic 
mGlu5 receptors (Ferré et al. 2002, 2003; Nishi et al. 2003; Kachroo 2005; Borroto-
Escuela et  al. 2017b). Ultrastructural studies have shown that the two receptors 
colocalize in the nonhuman primate striatum (Bogenpohl et al. 2012). Finally, the 
adenosine receptor is also able to interact with the orphan GPR37 receptor (Dunham 
et al. 2009). Pioneering evidence on functional interactions in rat caudate putamen 
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suggests that the adenosine receptors may also interact with some of the opioid 
receptor subtypes (Noble and Cox 1995; Borroto-Escuela et al. 2014).

A2AR may form homodimers (Canals et al. 2004) that likely interact with other 
GPCRs to form high-order heteroreceptor complexes. One example is the Het 
formed by A2A, cannabinoid CB1, and dopamine D2 (Carriba et al. 2007; Navarro 
et al. 2008; Bonaventura et al. 2014; Pinna et al. 2014a, b). Another is the complex 
formed by A2A, D2, and mGlu5 receptors (Cabello et al. 2009).

Consistent with the intense research on potential heteromerization of adenosine 
receptors, it has been shown that β1- and β2-adrenergic receptors may directly 
interact with the A1R and that the resulting Het displays particular properties in 
terms of differential pharmacology and coupling to the signaling machinery 
(Chandrasekera et al. 2013). Finally, it has been confirmed that prostanoid receptors, 
namely, the thromboxane A2 TP receptor, may form hetero-oligomers with the A1R 
whose functional properties are conditioned by the presence and concentration of 
the  endogenous agonist of the two receptors (Mizuno et  al. 2012, 2013a). 
Heteromerization has been also reported for A1R and class C metabotropic glutamate 
1 alpha (Ciruela et al. 2001; Franco et al. 2001).

For reasons that are out of the scope of the present chapter, the two most studied 
adenosine receptors, in terms of receptor-receptor interaction research, are the A1 
and the A2A. The other two types of adenosine receptors (A3 and A2B) are lacking 
behind, but, interestingly, the first identified Hets containing A3 or A2B are between 
adenosine receptors themselves (see next Sect. 10.3).

10.3  �Adenosine Receptors May Interact with Other P1 (to 
Form Adenosine Isoreceptor Complexes) and with P2 
Purinergic Receptors

Soon after the experimental confirmation of GPCR heteromerization and the exten-
sive work made with A1 and A2A receptors, it was tempting to search for interaction 
between adenosine, i.e., P1 purinergic receptors, and “ATP” P2 purinergic receptors 
that are also GPCR members (metabotropic P2Y receptors). Pioneering studies to 
prove the hypothesis led to the discovery of interactions between A1 and P2Y1 
receptors to form a functional unit with a particular pharmacological print (Yoshioka 
et al. 2001). Interestingly, A1 and D2 receptors were used as negative controls thus 
confirming previous results and the specificity of the interactions. Discovery of 
more P1-P2 receptor complexes (e.g., A1-P2Y2Hets), and/or their physiological 
roles (especially in the brain), were further reported (Yoshioka et al. 2001, 2002a, b; 
Suzuki et al. 2006; Tonazzini et al. 2007). The interplay between P1 and P2 recep-
tors opens interesting avenues due, inter alia, to the fact that extracellular ATP act-
ing on P2 receptors is degraded into adenosine, which activates P1 receptors 
(homoreceptors/monomers or forming Hets).
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The interest of the P1/P2 receptor interplay prompted (Schicker et al. 2009) the 
performance of an ambitious project to discover mixed P1/P2 receptor-receptor 
interactions. The authors tested A1, A2A, P2Y1, P2Y2, P2Y12, and P2Y13 receptors 
and the P2X2 (ligand-gated ion channel) ionotropic receptors. They provided 
evidence for the formation of heterooligomers among each other. P2Y1, P2Y12, 
P2Y13, A1, A2A, and P2X2 receptors are also able to exist as homomers (Schicker 
et al. 2009). Reviews on the role of P1/P2 receptor-receptor interactions may be 
found in Nakata et al. (2010) and Suzuki et al. (2013). Of further interest for the 
present article, these results confirmed the occurrence of A1R homodimers (Ciruela 
et al. 1995), A2AR homodimers (Canals et al. 2004), and of A1A2AHets for which a 
structural basis has recently been provided (see next Sect. 10.4).

After prediction by computational means of homodimerization of A3 receptors 
(Kim and Jacobson 2006), Hill and colleagues detected both A3homodimers and 
heterodimers with A1 receptors (May et al. 2011; Hill et al. 2014). We also have 
evidence of A1A3 Het expression in the CNS (data in preparation). It is likely that 
more A3-receptor-containing Hets exist, but they have not yet (to our knowledge) 
been identified.

Although some indirect evidence suggested that A2B receptors (A2BR) could be 
interacting with other GPCRs (Moriyama and Sitkovsky 2010), the direct proof is 
given in a recent publication (Hinz et al. 2018). As a matter of fact, the A2B is an 
atypical receptor as the affinity for adenosine is very low, but its activation in 
lymphocytes may lead to calcium mobilization (Mirabet et al. 1997). In summary, it 
is assumed that A2B receptors are activated is reservoirs with elevated adenosine 
levels or when hypoxic conditions lead to very high concentrations of the nucleoside. 
Also, there has been a lack of pharmacological tools that has been progressively 
solved. Intriguingly the A2B protein has also been described in the CNS as a receptor 
for netrin-1, involved in axon guidance (Corset et al. 2000; Shewan et al. 2002). The 
discovery of heteromers formed by A2B and A2A receptors has led to a significant 
finding, namely, that the activation of the first alters the pharmacology and signaling 
of the latter. In a heteromeric context, the affinity of A2AR selective ligands is 
markedly reduced, i.e., the activation of the receptor demands higher concentrations 
of A2A receptor agonists. Accordingly, the efficacy of ligands targeting the A2AR 
would be dependent on the heteromeric context, especially in the case of A2AA2BHet 
occurrence (Hinz et al. 2018).

10.4  �The A1-A2A Receptor Heteromer (A1A2A Het): A Unique 
Functional Unit

A1A2A Het is in itself a paradigm to understand a fact that was inscrutable for 
decades, namely, the co-expression of one receptor for adenosine coupled to Gs and 
another receptor for adenosine coupled to Gi. In such cells, adenosine would lead to 
a “contradictory” output as, on the one hand, it would increase adenylate cyclase 
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activity (via Gs), and, on the other hand, it would decrease adenylate cyclase activity 
(via Gi). Co-expression of different receptors for a given neurotransmitter in the 
same cell is quite common, for instance  for serotonin receptors (Santana et  al. 
2004). One of the possibilities (especially in neurons) was to assume that one of the 
receptors was expressed in a specific location of the cell, whereas the second 
receptor was located in a different location (always in the cell membrane but far 
away in spatial terms). In the case of the A1 and A2A receptors, the explanation is 
totally different, and, furthermore, it constitutes a clear paradigm of the need of 
GPCR Hets. In brief, the A1A2AHet is a device to sense the adenosine concentration 
to act accordingly, i.e., decreasing cAMP levels when [adenosine] is low and to 
increase cAMP levels when [adenosine] is high. Adenosine not only increases in 
hypoxia but its level varies with the metabolic status. Again, this is especially 
important in regions where neurons are very active and the adenosine/ATP ratio is 
high. The A1A2AHet was discovered by Ciruela et  al. (2006), and the results on 
heteromerization of those receptors were later validated by Schicker et al. (2009).

There are different cell types in which the two receptors are co-expressed and 
where they may likely form A1A2AHets. The physiological role of the A1A2AHet has 
however shown in the CNS and in relationship to control of neurotransmitter 
transport by adenosine and, importantly, in both neurons and glial cells. Our results 
centered in the striatum showed that the levels of co-expression of the two receptors 
in glutamatergic terminals reaching the striatum were markedly high and that low or 
high concentrations of adenosine led to opposite effects on glutamate release 
(Ciruela et al. 2006). This finding in 2006 did not provide any molecular mechanism 
but suggested that the coupling was different, to either Gs or Gi, depending on the 
concentration of the nucleoside. Furthermore, it seemed that the heteromeric context 
was the substrate to block A1R-mediated signaling when the A2AR was activated. In 
summary at relatively low adenosine concentrations, the Het was providing A1R-
dependent signaling, whereas at relatively high concentrations it was providing 
A2AR-dependent signaling.

Fairly similar results were obtained in astrocytes and the control of the transport 
of one of the main inhibitory neurotransmitters in the CNS, gamma-aminobutyric 
acid (GABA). First, colocalization of the two receptors and occurrence of A1A2AHet 
was demonstrated. Second, the regulation of GABA uptake by cultures of astroglia 
depended on the concentration of adenosine. Indeed, the regulation of GAT-1 and 
GAT-3 transporters was via Gi or via Gs depending on whether the receptor activated 
within the A1A2AHet was, respectively, A1R or A2AR (Cristóvão-Ferreira et al. 2013). 
The molecular basis of such a phenomenon was recently elucidated and described 
in the next Sect. 10.5.
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10.5  �The A1-A2A Receptor Heterotetramer: A Reliable 
Structural Model

On the one hand, the quaternary structure is crucial for Het function (Navarro et al. 
2010). On the other hand, three-dimensional structures of GPCRs are difficult to 
decipher due to the technical difficulties in obtaining crystals of membrane proteins. 
Protein engineering and complementary technological advances have led to the 
elucidation of several GPCR structures and, also, to key structural elements of the 
GPCR-G protein interactions (see (Cordomí et al. 2015) and references therein). 
Those advances have served to understand that the most abundant G-protein-
coupled signaling unit in the plasma membrane is a GPCR dimer. Exceptions may 
occur, i.e., a monomer GPCR may eventually couple to a G protein and be able to 
convey signal toward the inside of the cell. Indeed, this is not the case of the 
A1A2AHet whose minimal structure is likely constituted by one A1R homodimer and 
one A2AR homodimer, i.e., a heterotetramer. Identification of GPCR oligomers 
combined with structural data and with modeling and other in silico approaches has 
provided relevant information concerning the structure of heteroreceptor complexes 
and their coupled G proteins. Also relevant is the fact that a substantial movement 
occurs within a GPCR and a G protein when  the receptor becomes activated by 
agonists. Overall, membrane-attached GPCRs, which contain seven transmembrane 
domains and a tightly coupled alpha G protein subunit, likely form homodimers in 
a head-to-head fashion. Even allowing to increase the size of the heteroreceptor 
complex by considering four GPCRs and two coupled G proteins, the number of 
possible structures for the macromolecular complex is very few, as reported in the 
quite revealing work by Cordomí et al. (2015)

Using such in silico information, interfering peptides containing transmembrane 
sequences and, also, data from resonance energy transfer (using both receptors and 
G protein subunits as probes) and complementation assays, the first reliable structure 
for a GPCR Hets in complex with one Gs and one Gi protein was provided (Navarro 
et al. 2016b). The rhombus-shaped structure that contains alpha subunits of Gs or Gi 
bound to the outer protomers (in both A1R and A2AR homodimers) would allow 
signaling via A1R and via A2AR. We mean that such a symmetrical structure cannot 
provide an asymmetrical signaling as that involved in the control (by adenosine) of 
glutamate or GABA transport regulation. The clue that explains the uniqueness and 
the functional properties of the A1A2AHet is a recent finding involving the C-terminal 
tail of the A2AR (Navarro et al. 2018). Different GPCRs display a wide range of 
lengths in their C-terminal domain. Whereas A1R has a short C-terminal end, the tail 
of the A2AR is quite long. Then we hypothesized that a long C-terminal tail would, 
upon activation of the receptor, block the G-protein-mediated signaling arising from 
a closely located receptor. Exhaustive experimental and in silico work has provided 
reliable data showing that removal of the C-terminal domain of the A2AR leads to the 
disappearance of the Het fingerprint, i.e., activation of a truncated A2AR does not 
result in impairment of A1R activation and Gi-mediated signaling. The huge diversity 
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in the length and structure of C-terminal domains deserves a closer look and is a 
challenge in future work in the GPCR field.

10.6  �Adenosine-Receptor-Containing Heteromers 
and Schizophrenia

Although the evidence is higher in Parkinson’s disease and the success is already 
evident by the approval of an A2AR antagonist in the therapy of Parkinson’s (see 
below), we would like to make a brief account of data showing that adenosine 
receptors have also potential in the therapy of schizophrenia. Fuxe et  al. (2005) 
reviewed possibilities of the heteromer as target for schizophrenia. Moreover, the 
dopamine D3 receptor is one of the proposed therapeutic targets for treatment of the 
disease and, accordingly, the discovery of the A2AD3Het receptor (Torvinen et al. 
2005) place A2AR ligands as potential therapeutic drugs. Also along this line of 
reasoning is the above-described occurrence of occurrence of A2AmGlu5Hets. 
Reviews  on the cumulative data that, based on adenosine-receptor-containing 
heteromers, open new perspectives in antischizophrenia therapy were provided by 
Fuxe et al. (2008, 2010) and Wardas (2008).

10.7  �Adenosine-Receptor-Containing Heteromers 
and Parkinson’s Disease (PD) and Levodopa-Induced 
Dyskinesia

In this section, we will first focus on the antiparkinsonian efficacy of adenosine 
receptor ligands to then take into consideration that any drug used by patients is – 
mostly  – targeting Hets. Afterward, we will focus on the adenosine-receptor-
containing heteromers that have been studied in both healthy and parkinsonian 
conditions. Hets constituted by adenosine receptor themselves and by adenosine 
and dopamine receptors fulfill these rules. The main objective in translational 
research is to identify suitable targets and efficacious drugs. To this respect dual 
adenosine-dopamine receptor ligands and bivalent compounds have been developed. 
The former (dual compounds) (Vendrell et al. 2007) may constitute the basis for the 
development of novel antiparkinsonian drugs. Instead, the latter (bivalent ligands), 
being unable to cross the blood-brain barrier and susceptible of being hydrolyzed 
soon after intake, have been instrumental to confirm the occurrence of adenosine-
dopamine Hets in the striatum (A2A-D2 bivalents in Soriano et al. (2009) and A1-D1 
bivalents in Shen et al. (2013). Hence, such heteromers are demonstrable targets of 
antiparkinsonian drugs.
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10.7.1  �Efficacious Antiparkinsonian A2AR Antagonists

Levodopa-based dopamine replacement therapy started decades ago and is still 
regarded as being of highest benefit for today’s patients (Birkmayer and 
Hornykiewicz 1962, 1964; Olanow et al. 2004; Hornykiewicz 2006). Based on the 
early work of Fuxe and Ungerstedt (1974), on translational research and on data 
from clinical trials (Mizuno et al. 2013b; Saki et al. 2013; Kondo et al. 2015), a 
selective A2AR antagonist, istradefylline (Nouriast™), was approved in Japan for 
adjunctive antiparkinsonian therapy. The underlying idea was to reduce the dose of 
levodopa (or the dopamine-receptor-related medication) to diminish the side effects. 
In fact, long-term treatment with levodopa may lead to uncontrolled movements.

Cumulative evidence along decades, in different laboratories and under a variety 
of experimental setups, led to find a dopamine-adenosine antagonism in striatum. 
Even assuming that receptors are expressed individually (and not as heteromers), 
activation of adenosine A1 and dopamine D1 receptors in the direct pathway (or A2A 
and D2 in the indirect pathway) would lead to opposite effects as one of the receptors 
is coupled to Gi and another to Gs. Solid reviews describing the molecular basis of 
the antagonism may be found in the literature. As the complete list of reviews is 
quite notable, we here suggest the following ones that arise from different 
laboratories and/or present different but complementary perspectives (Bibbiani 
et al. 2003; Tanganelli et al. 2004; Schwarzschild et al. 2006; Ferré et al. 2007a, 
2009b, 2010a, Fuxe et al. 2007, 2010, 2015; Simola et al. 2008; Armentero et al. 
2011; Beggiato et al. 2014; Navarro et al. 2016a; Borroto-Escuela et al. 2017b).

In vivo experimental data on the potential of A2AR ligands to i) affect striatal 
dopaminergic neurotransmission and striatal plasticity and ii)  to be efficacious in 
the unilateral 6-hydroxydopamine rat model of Parkinson’s disease were provided by 
inter alia Pinna et al. (1997, 2007), Strömberg et al. (2000), Agnati et al. (2004). 
A2AR knockout (KO) mice have been used to ensure that a lack of A2AR-mediated 
signaling (and of any A2AHet-mediated signaling) provides data that reinforces the 
antiparkinsonian potential of receptor blockade (Kachroo 2005).

Reviews on the role of Hets in the pathogenesis of Parkinson’s disease and their 
potential as therapeutic targets of the disease appeared soon after the discovery of 
GPCR heteromers. Reviews with titles reflecting the relevance of purinergic 
signaling and/or receptor heteromerization were provided by Maggio et al. (2010), 
Navarro et al. (2016a, 2017), Borroto-Escuela et al. (2017a). However, the list of 
relevant reviews on the subject is quite broad. From such list we would recommend 
the following reviews (and references therein): (Schwarzschild et al. 2002; Morelli 
et al. 2007; Ferre et al. 2008; Fuxe et al. 2008, 2015; Ferré et al. 2009b).

We also believe that the paper by Short et al. (2006) provides a solid account on 
an interdependence between dopamine and adenosine receptors disclosed from 
characterizing receptor expression in adenosine and dopamine receptor KO mice 
(single KOs, i.e., only one receptor gene knocked out in each of the transgenic 
lines). This supports the early work of Fuxe and Ungerstedt (1974). Authors 
concluded that “the existence of functional interactions between dopaminergic and 
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purinergic systems in these reward and motor-related brain regions” (Short et al. 
2006).

Therefore, antagonists of adenosine receptors were soon proposed to increase 
dopamine action in Parkinson’s disease, which consists of the depletion of dopamine 
in striatum due to nigral neurodegeneration. In summary, the conceptual approach 
was to use adenosine receptor antagonists to increase the dopaminergic action in 
striatal GABAergic neurons.

10.7.2  �Heteromers as Targets of Antiparkinsonian Drugs

Soon after identification of A1D1Het and of A2AD2Het, these heteromers were pro-
posed as targets or Parkinson’s disease (Fuxe et al. 2003). Despite forgotten due to 
the usual way to develop novel drugs, i.e., by screening cells expressing individual 
receptors, it is evident that any antiparkinsonian medication is acting on receptors in 
heteromeric contexts. Thus, levodopa does not act on isolated dopaminergic 
receptors but on receptors forming Hets. In the case of Nouriast™, the drug is acting 
on those Hets identified as of today, namely, A2AD2Hets with or without CB1 or 
mGlu5 receptors. The potential of cannabinoids or mGlu5 receptor ligands has been 
suggested (Ferré et  al. 2009b, 2010a), but the underlying reasons are out of the 
scope of the present article. In terms of adenosine receptors, it was suggested that 
A1 receptor agonists acting on A1R, which are expressed in the direct pathway, 
reduce D1 receptor and levodopa-induced dyskinesia (see (Ferré et al. 1994; Florán 
et al. 2002; Franco et al. 2005; Mango et al. 2014) and references therein). It should 
be noted that in dyskinesia the level of the D3 receptor and of D1D3Hets increase 
(Marcellino et al. 2008; Farré et al. 2015). These results suggest that also D3 receptor 
ligands may be useful in the therapy of dyskinesia and that Hets may be considered 
targets for drugs able to counteract this side effect of chronic medication of levodopa 
and dopamine receptor agonists.

In what concerns the A1A2AHet, which is presynaptic (unlike A1D1 or A2AD2 Hets 
that are postsynaptic), it is not known how istradefylline (Nouriast™) is affecting its 
function in striatal glutamatergic terminals of patients. In healthy conditions, 
blockade of A2AR does not seem to produce any evident effect via those heteromers. 
In fact, A2AR antagonists are very safe, and this fits with a general rule (surely with 
exceptions) that receptors antagonists may be taken in chronic regimes by patients 
of diverse illnesses. A deeper look into the differential pharmacology of Hets has 
led to find that different drugs may have different “potencies” for the same receptor 
but in different heteromeric contexts. In brief, there is data showing that the affinity 
of an antagonist for A2AR, or of caffeine for A1R or A2AR, is different when tested in 
different Hets. With data using different (pre- and postsynaptic) Hets and different 
antagonists, Orru et al. (2011) have suggested that “on the basis of their preferential 
pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead 
compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, 
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respectively.” SCH-442416 is a broadly studied A2AR selective antagonist, whereas 
KW-6002 is another one (also known as istradefylline).

Interestingly, a recent report has linked early-onset Parkinson’s disease cases to 
a point mutation in the gene of the A1R (ADORA1). The mutation leads to the 
substitution of a conserved amino acid in transmembrane 7 (Jaberi et  al. 2016). 
Based on current data and in the proposed models for receptor Hets, this mutation 
would not affect interacting interfaces of homo- or heteromers; then alternative 
explanations include altered binding of adenosine or altered signaling.

Taking into account the successful case of Nouriast™, one wonders why it is 
relevant to consider A2AHets as targets. On the one hand, the adenosine-dopamine 
antagonism is evidenced at the Het level, i.e., it is a significant print of the adenosine-
dopamine Hets. Therefore, the “intracellular” antagonism due to counterbalancing 
second messenger cAMP levels is complemented with antagonism at the receptor 
level within the A2A-D2Het context. The added value of having those Hets in a very 
precise location, the striatal spine module, also plays a role, as pointed out by Fuxe 
et  al. (1998, 2007), Tanganelli et  al. (2004), Ferré et  al. (2007a, 2009b, 2010a), 
Beggiato et al. (2014) and as deduced by its role in controlling striatal glutamatergic 
neurotransmission (Ferré et al. 2007b).

Unlike for the A1-A2AHet, no detailed structural model exists for adenosine-
dopamine Hets. Allosteric interactions within the quaternary structure are essential 
for Het function, i.e., for integrating the dopamine and adenosine inputs (Fuxe et al. 
2010). Remarkably, the A2AD2Het has been a paradigm to detect electrostatic 
interactions that are key for the functional activity of the signaling unit. Apart from 
the consensus on the involvement of transmembrane domains in Het formation, it 
was demonstrated that strings of amino acid residues with opposite charges do 
interact, do it tightly, and are important for quaternary structure and function 
(Borroto-Escuela et  al. 2010). One example is provided by the epitope-epitope 
interactions involving arginine residues in the N-terminal part of the third 
intracellular loop of the D2R and acidic residues in the C-terminal end of the A2AR 
(Ciruela et  al. 2004). Complexes formed by synthetic peptides mimicking the 
interaction are even resistant to mass spectrometry processing thus demonstrating 
the  strength  of the epitope-epitope intraction. Finally, it should be noted that 
structure may be affected by  phosphorylation, i.e., whereas serine would not 
participate on epitope-epitope interactions, a negatively charged phosphorylated 
serine would. One of the properties of Hets is a differential traffic respect to  
individually expressed  receptors; apart from co-internalization and particular 
processing of internalized receptors that may be target to degradation or recycled 
back to the cell surface, there is involvement of both ß-arrestin/clathrin- and 
caveolin-dependent pathways (Escriche et al. 2003; Genedani et al. 2005; Franco 
et al. 2007; Borroto-Escuela et al. 2011)

Finally, it is worth mentioning the role of Ca2+ in heteromer-mediated signaling. 
It is likely that changes in the concentration of the ion may alter the quaternary 
structure of Hets in which electrostatic interactions are relevant. In fact, Ca2+ and/or 
calcium-binding proteins (e.g., calmodulin) modulate structure and function of 
A2AD2Hets (Ferré et al. 2010b; Woods et al. 2008; Navarro et al. 2009). These results 
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explain, at least in part, the elusive relationship between dopaminergic transmission 
and calcium ions.

10.7.3  �How Levodopa-Induced Dyskinesia Affects 
Heteromerization

Parkinson’s disease and adenosine-receptor-containing Hets constitute another par-
adigm due to the fact that their relationships have been investigated in healthy con-
ditions and in the disease before and after chronic medication. On the one hand, the 
presence of A2AD2Hets and of Hets also including CB1 receptors was demonstrated 
in rodent models of the disease (Pinna et al. 2014a, b). In our opinion, these results 
are important, as they show that these Hets are indeed targets  of the dopamine 
replacement therapy. On the other hand, A2A-CB1-D2 receptor heteromerization is 
disrupted after chronic levodopa administration (Pinna et al. 2014a, b). Remarkably, 
these results obtained in a rodent model were confirmed in a non-human primate 
model (Bonaventura et al. 2014), thus pointing to their validity for patients. Also 
consistent with those findings are the results showing in A2AR knockout animals a 
reduction in levodopa-induced dyskinesia as reported by Xiao et  al. (2011). 
Interestingly, similar results were obtained upon deletion of the A1R (Xiao et al. 
2011). While it is not known whether heteromer disruption is cause or consequence 
of chronic medication, these results show that the target of the antiparkinsonian 
medication changes with time. To our understanding, these results may provide the 
basis for the design of optimal therapeutic approaches, i.e., varying the medication 
and/or the dose at different stages of the disease may reduce the side effects that for 
Parkinson’s are not only dyskinesias but cognition deficits.

10.7.4  �Adenosine Receptor and Adenosine-Receptor-
Containing Heteromers and Neuroprotection

The success of approval of istradefylline for the therapy of Parkinson’s disease pro-
vides further hopes for other neurodegenerative diseases. In vivo assays in animal 
models demonstrate the usefulness of A2AR antagonists in acute neural damage, for 
instance, in hypoxia (Chen and Pedata 2008; Melani et al. 2015; Boia et al. 2017). 
In the case of (chronic) neurodegenerative diseases (Parkinson’s, Alzheimer’s, etc.), 
the real issue is to know whether A2AR antagonists are addressing symptoms or are 
also affecting disease progression. Animals lacking expression of A2AR are more 
resistant to neuronal death in an α-synuclein model of Parkinson’s disease (see 
(Kachroo and Schwarzschild 2012) and references therein). Surely one of today’s 
challenges is to demonstrate whether A2AR antagonists are neuroprotective, i.e., 
they prevent neuronal death (see Franco and Navarra 2018 and references therein). 
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Apart from the issue of demonstrating whether a given compound is neuroprotec-
tive in humans (Kieburtz and Olanow 2015; Olanow et al. 2017), there is evidence 
of microglia involvement in both promoting neuroinflammation, neuronal death and 
the release of factors that prevent neuronal death. In fact, after an insult and microg-
lia cell recruitment and activation, there are two possible phenotypes: M1 or proin-
flammatory and M2 or neuroprotective (see (Franco and Fernández-Suárez 2015) 
and references therein). Due to the expression of adenosine receptors in resting and 
reactive microglia, it is suggested that adenosine receptor ligands may be protective 
(Corriden and Insel 2012; Koizumi et al. 2013; Beamer et al. 2016; Pedata et al. 
2016; Woods et al. 2016). However, data is missing on how ligands acting on ade-
nosine receptors may produce M2-skewed cells and on how adenosine-receptor-
containing heteromers may contribute to the inflammatory/neuroprotective 
balance.
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