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From Subtypes to Taxons: Identifying
Distinctive Profiles of Reading
Development in Children

Adrian P. Burgess, Caroline Witton, Laura Shapiro, and Joel B. Talcott

Abstract The longstanding debate between dimensional and categorical
approaches to reading difficulties has recently been rekindled by new empirical
evidence and developments in theory. At the heart of the categorical perspective
is the tenet that dyslexia is a taxon, a grouping of cases that can account for both
intra-group similarities and inter-group differences. As developmental dyslexia is
characterized by a diverse constellation of symptoms with multiple underlying
risk and protective factors, the key question in dyslexia research has shifted from
“What is dyslexia?” to “How many taxons or subtypes of dyslexia are there?”
The primary objective of this chapter is to consider methods that can be used to
objectively define these groupings, starting with the current practice of defining
subtypes of readers using normative scores with pragmatically dened cut-offs,
the “Quadrant Analysis” approach, and progressing towards more theoretically
sound and statistically rigorous procedures. We review and test several candidate
approaches that can be readily adapted to realistic conditions that are problematic
for Quadrant Analysis. Specifically we propose a method that can be used to identify
subgroups in the bivariate case when the two indicator variables are correlated. We
conclude by evaluating the strengths and weaknesses of this and other methods and
include implications for their future application toward identifying and validating
putative dyslexia taxons.
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12.1 Introduction: Categories or Dimensions?

That some children are poorer readers than others is beyond dispute and that some
are poorer than might be expected given their overall cognitive ability is also certain.
However, it remains unclear whether poor readers are simply statistical outliers
(as is inevitable in any norm-based measurement system) or whether they form a
subgroup that differs from typical readers in certain key characteristics (see e.g.,
S. E. Shaywitz, Escobar, Shaywitz, Fletcher, & Makuch 1992). This debate, between
dimensional and categorical approaches to children with reading difficulties, is
longstanding but has recently been revived by the decision to replace the term
“dyslexia” in DSM-5 with “specific learning disability (reading)” (Diagnostic and
statistical manual of mental disorders: DSM-5, American Psychiatric Association
2013) and by resurgent claims that dyslexia is an unscientific construct that does not
really exist (Elliott & Grigorenko 2014). This is no arcane debate because the true
nature of specific reading difficulties has powerful implications for the diagnosis,
intervention and service provision for those affected and their families.

The heart of the categorical perspective on reading difficulties is that dyslexia
forms a taxon. That is, dyslexia constitutes a grouping of cases that share underlying
commonalities that not only account for the similarities between group members but
also explain how and why group members differ from non-group members. Sex is
an example of a taxon; males and females share many common features but differ
in certain fundamental characteristics that justify considering sex as a categorical
construct. More formally, a taxon is a fundamental, objective, non-arbitrary and
reasonably enduring latent structure (Ruscio & Ruscio 2004). To justify dyslexia
as a taxon therefore, children with reading difficulties should either show some
characteristics that are qualitatively distinctive, or the distribution of their latent
abilities should be discontinuous from those of typical readers.

In fact, given that developmental dyslexia is characterized by a diverse constella-
tion of symptoms with multiple underlying risk and protective factors (Pennington
2006) the question often raised is not “Does dyslexia constitute a taxon” but
“How many taxons or subtypes of dyslexia are there?” (Pennington 2006; Peterson,
Pennington, Olson, & Wadsworth 2014) and this is currently an active area of
research. To date, this pursuit has been most successful in identifying individuals
with presumed dissociations between cognitive skills closely linked to reading
achievement, for example phonological and orthographic skills consistent with
that predicted by the dual route model (Castles & Coltheart 1993), or separable
dimensions of phonological decoding and articulatory naming speed (i.e., rapid
automatized naming (RAN)) as consistent with the double deficit hypothesis
(Bowers & Wolf 1993). Both models predict the occurrence of discrete subtypes
of individuals, with relatively isolated deficits in a single component process and
comparatively normal functioning in the other and each approach has reported
subtypes of dyslexia that are largely consistent with its own theoretical perspective.

The definition of subtypes of dyslexia primarily derives from normative per-
formance and membership is assigned to those who score below a specified level
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of performance on one or more theoretically relevant cognitive tasks. Defined in
this way, any continuous bivariate distribution will necessarily divide the whole
sample into quadrants: those who score above the threshold on both dimensions,
those who score below the threshold on both dimensions and those who score above
the threshold on one dimension and below the threshold on the other. The choice
of threshold is at least semi-arbitrary and may be determined pragmatically by non-
theoretical considerations. For example, the threshold might be set to ensure that
there are sufficient cases in each group to allow statistical analysis or to equate to a
round number of stanines, z-scores or percentiles. Of course, the arbitrary nature of
such thresholds precludes these subtypes from being considered as taxons.

It is not that there is anything fundamentally wrong with using cut-off scores with
continuous variables (categorization of continuous data is commonplace and often
useful) but we should be clear that is what we are doing, if that is what we are doing.
If reading ability is dimensional, then we should be clear that the subtypes identified
are not fundamental and are comparable to groups like the “tall” or the “rich” which
can be defined in many different ways. If, on the other hand, reading profiles are
taxonic, we should be explicit about how the subtypes differ and set cut-off scores
at a level that optimally separate the groups.

The primary objective of this chapter is to consider ways in which we can
progress from defining subtypes of readers using normative scores with pragmat-
ically defined cut-offs and move towards a more rigorous approach to identifying
reading taxons, if they exist. In the first part, we address the use of normative scores
with cut-offs to identify subtypes of readers, a method we refer to as “Quadrant
Analysis”. Specifically, we show how to estimate the proportion of children in each
subtype and argue that deviations between the observed and expected numbers of
children in each quadrant might provide useful information about where cut-off
scores should be set. In the second part, we develop this idea and propose a method
that makes the choice of thresholds less arbitrary and illustrate its use with data
from a previously published study (Talcott et al. 2002). Finally, we briefly consider
alternative approaches to answering the “dimension or category?” question.

12.2 Using Normative Scores to Define Subtypes: Quadrant
Analysis

The identification of one or more subtypes of children who show qualitatively
different profiles of reading ability from typical developing children has grown into
an area of considerable research interest, if little consensus. There is, currently,
no agreed definition or characterization of these subtypes and this absence has
encouraged the emergence of multiple arbitrary and ad-hoc definitions of subgroups
of children based on performance on one or more measures of reading ability (Boder
1973; Castles & Coltheart 1993) or other cognitive dimensions (Bosse, Tainturier,
& Valdois 2007; Bowers & Wolf 1993) For example, there is evidence to suggest
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that the ability to read phonetically regular non-words such as “tegwog” is at least
partially dissociated from the ability to read phonetically irregular real words such
as “yacht” in learner readers. To develop this example, one can define subgroups
from these two measures (non-words vs. exception words) by defining some criteria
for good and bad performance on each of these tests (Sprenger-Charolles, Siegel,
Jiménez, & Ziegler 2011). This defines four groups: (i) those who are good at
reading both non-words and exception words, (ii) those who are bad at reading both
types, (iii) those who are good at reading non-words but poor at exception words and
(iv) those who are good at reading exception words but poor at reading non-words.
The term “Quadrant Analysis” derives from the fact that this approach inevitably
creates four groups, but the groups are not normally equal in size and the cut-offs
may be used to define two groups (one quadrant vs. the other three). It should be
obvious that procedures of this type will inevitably identify a subset of children
regardless of whether dyslexia exists or not and so is of no use in identifying taxons.

The choice of cognitive skills to measure (e.g., non-word reading vs exception
word reading) is at least driven by theoretical considerations. In contrast, the choice
of threshold of determining “good” and “bad” performance is almost completely
open. The threshold is typically defined such that any score less than a certain
number of standard deviations below the mean is considered to indicate poor
performance. In the absence of any good evidence as to how such a cut-off should be
defined, it is usual to select a non-arbitrary seeming number of standard deviations
below the mean (1/2, 1, 1 1/2), a whole number of stanines (1, 2, 3 or 4) or a
round number percentile (10%, 20%, etc.). Such cut-off scores are chosen to appear
principled and may allay the suspicion that the definition is opportunistic (imagine
your response to reading that a definition of 0.6745 standard deviations below the
mean was used1) but these cut-offs are essentially arbitrary and are at least as
much determined by convenience and an affection for round numbers as they are
by empirical evidence.

More sophisticated, multivariate methods, such as identifying poor readers based
on a discrepancy between their actual reading ability and their predicted reading
ability (for example, that based on a regression of reading achievement on cognitive
ability) may have some advantages but every method that uses normative scores and
performance cut-offs to define subtypes of dyslexia, shares the same limitations.
First, they will always identify subtypes of poor readers whether or not any
distinctive taxon, such as dyslexia, exists. Second, they are fundamentally arbitrary
and are not based on the distinctive characteristics of the taxon (assuming the taxon
exists at all).

The absence of any objectively defined criterion or cut-off scores means that
individual researchers are at liberty to define reading subtypes in whatever way suits
them and it is a liberty freely exercised. Worse still, they can change their criteria
from study to study at their own convenience. Unsurprisingly, the consequence of
this approach is that reading subtypes are inconsistently defined in the scientific

1Actually 0.6745 is the 25th percentile so perhaps not as arbitrary as it first appears.
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literature and the justification for the cut-off scores used is not explained. It seems
likely that many of the inconsistencies that have been reported, and the controversies
they inspire, result at least in part from such failures of definition. None of this
should be a cause for surprise because Quadrant Analysis is not designed to identify
subtypes, let alone taxons. Indeed, the use of Quadrant Analysis to define reading
subtypes can only be defended because the current state of knowledge makes it
difficult to know what else to do and, although there are alternative approaches
(e.g., Cluster Analysis, Finite Mixture Modeling, and Taxometric Methods – see
Sect. 12.5), these too have their problems. Nevertheless, as Quadrant Analysis is
widely used, it is worth exploring how the method might be improved.

In one wished to argue that these Quadrant Analysis “subtypes” are taxonic, it
would be necessary to provide some principled justification for the choice of cut-
off. For example, the subtypes should show some characteristic that would not
be predicted by assuming the observed scores came from a continuous bivariate
distribution. One such characteristic might be that the proportion of individuals
in each quadrant differs from what would be expected if the data derived from
a continuous bivariate distribution and this is the case we consider here. This is
of interest because if learner readers consist of one or more subtypes, then the
scores will not be normally distributed because each of the subtypes will have
their own mean, standard deviation and covariance. In extreme cases, this will
result in a bimodal distribution of scores although this is relatively uncommon in
human performance data. More generally, a unimodal distribution will be seen but
the number of individuals in each quadrant (defined by cut-offs determined by the
mean and standard deviation of the whole sample) will differ from what would
be seen if the data were normally distributed. This means that the proportion of
individuals observed in each quadrant, compared to the expected number may offer
some information on whether a subtype exists or not and where the cut-offs should
be positioned. To this end, in the following section we show how to estimate the
observed and expected proportions of cases in each quadrant.

12.3 How Many Individuals in Each Quadrant?

Let’s consider the example of reading non-words and exception words, and consider
the case where we wish to know the proportion of individuals that score below
a given cut-off score on these two measures and compare that to the proportion of
cases that would be expected if the data came from bivariate normal distribution with
no subtypes. If the scores on the two tests are independent (i.e., not correlated) then
the problem is quite straightforward. To start, let’s use the mean as the cut-off score
(i.e., 0 standard deviations below the mean). If the data are normally distributed, we
would expect to find half the sample scoring below the mean on each of our tests and
half above. That is, the probability of scoring below the mean on either test is 0.5.
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Fig. 12.1 Showing the PDF of the bivariate normal distribution with correlations from 0.0 to 0.9
and standard deviation = 1. The rings indicate the regions containing (from inner to outer) 25%,
50%, 90% and 95% of the population. The shaded area indicates the proportion of the population
that is more than 1/2 standard deviation below the mean on both measures which increases from
9.5% when r = 0 to 24.5% when r = 0.9

If the test scores are uncorrelated then, by the multiplication rule,2 the proportion of
individuals scoring below the mean on both tests will be 0.5 × 0.5 = 0.25. For other
cut-offs, we need to know the probability density function (PDF) of the normal
distribution which is given by:

P(x) = 1

σ
√

2π
exp

[
−(x − μ)2/(2σ 2)

]
(12.1)

Where μ is the population mean and σ 2 is the population variance. In order
to find the proportion of the population expected to score below any given cut-
off, xcut , we need to calculate the cumulative probability from −∞ to xcut , which,
can be estimated through numerical integration of Eq. 12.1 and is readily available
in Tables. For example, if we use a cut-off score of 1/2 standard deviation below
the mean, we know from the cumulative PDF of the normal distribution that
approximately 31% of individuals fall below this level. It follows that about 9.5%
of individuals would be expected to score 1/2 standard deviation or more below the
mean on two tests (0.31 × 0.31 = 0.095).

If the scores on the tests are correlated (as they usually will be), the situation
becomes more complicated and the proportion of participants expected to score
below any given cut-off of two tests will increase with the correlation (Fig. 12.1).
For example, the proportion of individuals scoring 1/2 standard deviation or more
below the mean on both tests ranges from 0.095 when the correlation is 0 to 0.31,

2The multiplication rule, p(A ∩ B) = p(A) · p(B/A) which is p(B/A) = p(B) when A and B

are independent.
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when the correlation is +1 (Fig. 12.1). To estimate this proportion for any given
correlation, we need to know the PDF of the bivariate normal distribution which is
given by:

P(x, y) = 1

2πσxσy

√
1 − ρ2

exp

⎡
⎢⎢⎣

(
(x−μx)2

σ 2
x

− 2ρ(x−μx)(y−μy)

σxσy
+ (y−μy)2

σ 2
y

)

2(1 − ρ2)

⎤
⎥⎥⎦

(12.2)

Where ρ is the correlation between x and y. To estimate the proportion of the
population expected to score below a specified cut-off, xcut , on test x and below
a specified cut-off, ycut , on test y, we simply have to estimate the cumulative
probability of Eq. 12.2 −∞ to xcut and −∞ to ycut . For the convenience of the
reader Table 12.2 was produced which shows the proportion of the population
expected to score below a given cut-off score (ranging from 0 to −2 standard
deviations below the mean) on two tests for correlations between 0 and 0.9 and
a summary of the same data is represented graphically in Fig. 12.2. As can be
seen from Fig. 12.2, the proportion of participants scoring below both cut-offs tends
towards zero as the correlation, ρ, approaches −1 and tends towards the univariate
marginal probability defined by the cut-off as ρ, approaches +1.

It would also be useful to have confidence intervals for these proportions for
use with empirical data and this can estimated assuming the binomial distribution.
It follows that if p is the proportion of the population that will score below a
specified cut-off, xcut , on test x and below a specified cut-off, ycut , on test y, then
the expected value of sampling from the population is np where n is the sample
size and the variance of the estimate will be np(1 − p). From these values, it is
straightforward to estimate confidence intervals for and desired combination of cut-
off score, correlation and sample size.

To illustrate the process, we show how to estimate the proportion of participants
in each quadrant and illustrate the method using data from the Oxford Primary
School Study (Talcott et al. 2002). This sample comprised 353 children (183 girls,
170 boys) between the ages of 83 and 150 months (mean 112.8, s.d. 14.9). All of the
children attended mainstream primary schools within the local education authority.
Children who did not have English as a first language were not included in the study,
but no other selection criterion was applied.

Whichever approach is used to identify latent taxonic structure, it is necessary
to select appropriate indicator variables that measure the construct in question.
In the case of reading, a very large number of indicators have been used that
purport to discriminate between typical and dyslexic readers but, influenced by dual-
route models of reading (Coltheart, Rastle, Perry, Langdon, & Ziegler 2001), we
elected to use two distinct measures of reading ability. Specifically, we chose non-
word reading as the putative measure of phonological processing and exception
word reading as the putative measure of orthographic processing. In languages
with opaque orthographies as English, the inconsistency of the mapping between
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Fig. 12.2 Contour plot of the proportion of participants expected to score below a given cut-off
score both of two tests by the correlation between the tests. The cut-off scores are defined as the
number of standard deviations below the mean. Labels on contours are percentiles

letters and sounds poses a difficult task for the beginning reader, and ultimately
requires a development of a reading system that is flexible, with lexical access
facilitated by both the phonological and orthographic characteristics of words
(Coltheart 1978). Although the strongest determinant of reading aptitude in typically
developing children, and of reading impairments, is the competency to which
phonological decoding skills are acquired and employed (Coltheart 1978). Lexical
access in simple reading tasks (Rack, Snowling, & Olson 1992; Wagner & Torgesen
1987), impairments of other reading sub-skills, such as in orthographic coding,
also explain variance in literacy skill in some individuals with developmental
dyslexia (Badian 2005; Castles & Coltheart 1993). There is also strong evidence
that phonological and orthographic impairments contribute independently to the
heritable and presumed genetic component of risk for specific reading difficulties
(Castles, Datta, Gayan, & Olson 1999). Evidence that subtypes of dyslexia based on
dual route models may have different developmental trajectories, with implications
for assessment and intervention (Manis, Seidenberg, Doi, McBride-Chang, &
Petersen 1996; Talcott, Witton, & Stein 2013).

Children were assessed on a wide range of measures (Table 12.1) but the
indicator variables we chose for the following examples was the Castles and
Coltheart Reading Test (1993) which provides reading scores for exception words
and non-words in the range 0–30.
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Table 12.1 Cognitive
Performance on selected tests
for the Oxford Primary
School Study (Talcott et al.
2002)

Cognitive test Mean (s.d.), skew

BASa verbal IQ 58.8 (9.0), −0.28

BAS matrices 56.1 (8.8), −0.20

BAS reading 54.8 (10.9), −0.16

BAS spelling 52.4 (8.9), 0.02

C&Cb regular word reading 24.8 ( 6.8), −1.70

C&C non-word reading 19.4 (8.0), −0.65

C&C exception word reading 16.4 (6.1), −0.71
aBAS = British Ability Scales (Elliot, Murray, & Pear-
son 1983)
bC&C = Castles and Coltheart Reading Test

The mean score for non-words was 19.4 (s.d. = 8.0) and for Exception words was
16.4 (s.d. = 6.1) and the correlation between the two was 0.76. A scatterplot for the
observed scores from this sample is shown in Fig. 12.3a along with the estimated
marginal PDF, estimated using kernel smoothing, for non-words (Fig. 12.3b) and
exception-words (Fig. 12.3c). Each of the marginal PDFs is shown with a normal
PDF with the same mean and standard deviation as the observed PDF. PDFs were
obtained using Kernel Density Estimation (also known as the ParzenRosenblatt
window method) which is a non-parametric method for estimating the PDF of a
random variable that provides more robust and reliable estimates of the true PDF
than traditional histogram methods.

Seventy children out of 353 obtained a score of less than 1/2 standard deviations
below the mean on both tests which is 19.8% of the whole sample. The question
we address here is whether this proportion is higher than would be expected if
the data followed a bivariate normal distribution? To begin, it is worth noting that
neither marginal distribution appears to be normally distributed and this suspicion
is supported by the Shapiro-Wilk test which shows that both distributions deviate
significantly from normal (Non-words: W = 0.915, p < 0.01; Exception Words:
W = 0.954, p < 0.01) and that, in consequence, the data cannot be bivariate normal.
For both tests, the data were truncated by the range of possible scores and there
is evidence for a ceiling effect on nonword word reading. In addition, the scores
can only take integer values and are not truly continuous as would be expected in
a normal distribution. Nevertheless, the PDFs of the marginal distributions are not
so abnormal that the idea of using conventional parametric statistical analysis with
them (e.g., t-tests, analysis of variance (ANOVA), etc.) would cause much concern
(Fig. 12.4).

We can compare the proportion of participants in the observed sample who score
below the cut-off of −1/2 standard deviations on both tests with the proportions
expected from a bivariate normal distribution using the data in Table 12.2. The
closest entries to a cut-off of −1/2 and a correlation of 0.76 are 0.198 and 0.219
for r = 0.7 and 0.8 respectively. By linear interpolation this gives 0.211 for r = 0.76
which is close to the observed proportion of 0.198 but it remains to be determined
whether a difference of this size is likely to be real or simply due to chance
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Fig. 12.3 Oxford Primary School Study cohort showing (a) the scatterplots of non-word reading
by exception word reading for, (b) the marginal distribution of non-word reading (thick line) with
the best fitting normal distribution (thin line), (c) the marginal distribution of exception-word
reading (thick line) with the best fitting normal distribution (thin line) and (d) the 2-dimensional
PDF of non-word reading by exception word reading (darker colours indicate higher density)

variation. Using binomial theory, and assuming we were sampling from a bivariate
normal distribution, the mean expected number of people we should expect to see
scoring below cut-off on both tests is np i.e. 353 × 0.211 = 74.5 and the variance is
np(1−p) which is 353 × 0.211 × (1 − 0.211) = 58.8 giving a standard deviation of√

58.8 = 7.7. To get the 95% confidence intervals we calculated the mean score ±2
standard deviations which gives 74.5 ± 2 × 7.7 giving 59–90 (rounding down and up
to the nearest integer respectively). As the observed number of cases (n = 70) was
within this interval, we can conclude that the number of cases observed is within
the bounds that would be expected if we were sampling from a bivariate normal
distribution.

The illustration here is used to examine individuals who scored below the
cut-off on both tests but the same ideas can be applied to each of the other
quadrants if desired. We know from the cumulative probability function of the
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Fig. 12.4 Oxford Primary School Study cohort showing the classification of cases by the Quadrant
method using cut-off scores based on the point of maximum difference between the observed and
expected PDFs. Dotted lines indicate the borders of the lower-left hand quadrant

normal distribution that the probability of a score less than −1/2 standard deviations
below the mean is 0.309. From the example above, we know that the proportion of
participants who would be expected to score less than −1/2 on both tests was 0.211
so it follows that those who scored below −1/2 on Test 1 and above −1/2 on Test
2 is 0.309−0.211 = 0.098. By symmetry, the proportion who scored above −1/2 on
Test 1 and below −1/2 on Test 2 is the same, 0.098. Knowing the proportion of
cases in three of the four quadrants, the fourth quadrant is not hard to find.

The finding that the proportion of participants in each quadrant is within the
bounds of what would be expected with a bivariate normal distribution with the same
correlation is consistent with data from other studies. Using the same procedure with
published data on dyslexia subtypes (Castles & Coltheart 1993; Genard, Mousty,
Content, Alegria, Leybaert, & Morais 1998; Jimenez, Rodriguez, & Ramirez 2009;
Manis et al. 1996; Sprenger-Charolles, Colé, Lacert, & Serniclaes 2000; Ziegler
2008) suggests that the frequencies observed in each group in empirical studies
often fail to differ significantly from what would be expected if the data had been
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drawn from a bivariate normal distribution and, by definition, a bivariate normal
distribution suggests a single population with no subtypes or taxons. This provides a
challenge to the use of this simple dissociation logic to define subgroups of dyslexia
in this context and suggests that stronger evidence is required in order to reify the
existence of distinct diagnostic entities from such data.

12.4 An Improved Method for Choosing Cut-Off Scores

In the case of the Oxford Primary School Study (Talcott et al. 2002), the proportion
of cases in each quadrant is very close to what might be expected had the data been
drawn from a bivariate normal distribution but that does not completely exclude
the possibility that subtypes exist. Indeed, the distribution of performance on the
non-word reading test appears to show a bimodal distribution (Fig. 12.3b) and the
two-dimensional-PDF (Fig. 12.3d) shows two distinct regions of high density. This
suggests that if the cut-off scores had been better placed, they might have provided
a subdivision of the sample into the clusters that visual inspection seems to suggest
exist. It is obvious that the optimal location for the cut-off scores is where the
difference between the observed and expected numbers of cases is greatest and this
can be found by extending the logic of the above example in which the difference
between the observed and expected number of cases are calculated with cut-offs of
−1/2 standard deviations to all possible cut-offs. To do this, it is only necessary to
estimate the observed and expected PDFs.

By assuming a bivariate normal distribution with the same means, standard
deviations and correlation as the observed data, it is straightforward to estimate the
expected PDF and this is shown in Fig. 12.3c. Estimation of the observed PDF can
be done in a number of different ways but we used a 2D kernel estimator (Botev,
Grotowski, & Kroese 2010) using their MatLab function “kde2d.m”, available from
Botev (2015). The estimated observed PDF is shown in Fig. 12.3e. Figure 12.3f
shows the difference between the observed and expected PDFs. The difference
between observed and expected values represents the greatest difference and shows
a minimum at non-words = 15.6 and exception Words = 12.9, which corresponds to
z-scores of −0.473 and −0.583 respectively. Assuming bivariate normality with
r = 0.76, the probability of scoring below both cut-off scores, estimated, using
numerical integration, was 0.201. This gives the expected number of cases as
71 ± 15 (i.e., 56–86). The first group was defined as those individuals who scored
below the cut-off score on both measures and this amounted to 63 individuals
making up 17.8% of the sample which did not differ significantly from what was
expected. The second group consisted of all those individuals not in the first group
and, by definition, scored higher on both measures.

One indicator of the validity of this classification comes from the characteristics
of the two samples. Whilst it is inevitable that one group will score higher on
both tests than the other, it need not be the case that they show the same relative
performance on the two measures. In this example, the higher scoring group
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were significantly better at non-word reading than exception word reading (Non-
words = 22.1, s.d. = 5.9; Exception Words = 18.6, s.d. = 4.0, t = −11.14, p < 0.001)
but there was no such advantage for the lower scoring (Non-words = 6.7, s.d. = 3.9;
Exception Words = 18.6, s.d. = 4.0, t = 11.14, p < 0.001). Such a discrepancy in
performance suggests that the groups showed a qualitatively different pattern of
performance and did not simply differ in overall level of ability. Although this
evidence falls short of what would be required to demonstrate that the groups form
taxons (Ruscio & Ruscio 2004), it is the sort of difference that might be expected
if they did. This difference is also readily interpretable. The high scoring group
were significantly stronger at reading non-words than exception words. The natural
interpretation of this is that the high scoring group includes those who are well on
their way to mastering phonics whereas the lower scoring group has not.

It is notable that although the lower scoring group represents those who are less
successful in reading than their peers, the group does not readily map onto dyslexia
as generally conceived. First, the proportion of the sample in the lower-scoring
group (17.8%) is much higher than the typical prevalence estimates of dyslexia
of 5–10% (Rodgers 1983; B. A. Shaywitz, Fletcher, Holahan, & Shaywitz 1992).
However, as this was a cross-sectional study, we do not know, whether the reading
difficulties seen endured or whether some of the children went on to read well so
only some of those identified may have been dyslexic.

In addition, the poor readers form a homogeneous group and there no evidence
of the subtypes of dyslexia expected by theory but this, of course, depends upon the
sample studied. Quadrant analysis will split the groups into 4 regardless of whether
such grouping exist or not and this split will occur at the point of maximal difference
between the observed and expected PDFs. In a representative sample of readers, the
maximal difference split might well be between skilled and less-skilled. In a sample
of dyslexic children, Quadrant Analysis would identify subtypes of dyslexia.

The estimation of the expected PDF was based on the assumption of bivari-
ate normality but, as the marginal distributions of the data were not normally
distributed, the joint distribution cannot have been truly bivariate normal, so the
assumption was wrong. For this reason, one should not take the attribution of p-
values in this case too seriously. The assumption of bivariate normality places
a major limitation on this approach to selecting optimal cut-off scores because
test data is frequently not normally distributed. Only rarely is test data strictly
continuous (the possible test scores used here were restricted to integer values from
0 to 30) and there are often floor or ceiling effects (there is a clear ceiling effect
on the non-word reading test used here) and both of these are deviations from a
strictly normal distribution. As it stands, this means the method described above
for choosing cut-off scores is of limited value but it could be revived if a more
realistic method for estimating the expected PDF, taking into account deviations of
the marginal distributions from the normal, could be devised.

In summary, Quadrant Analysis involves a procrustean imposition of the individ-
ual researcher’s will on the data and, unsurprisingly, this fails to achieve consensus
or validity. For the same reasons, it has no value in identifying taxons. Quadrant
Analysis could be improved if there were some explicit, non-arbitrary rationale
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for setting the value of threshold used and we propose that the location of the
greatest difference between the observed and expected PDFs could be used for this
purpose. However, the specific method illustrated here depends upon assumptions of
normality that are often unrealistic with cognitive test scores. Despite this limitation,
the method does provide an explicit rationale for choosing thresholds and we believe
it has heuristic value. Any variant of Quadrant Analysis, however, will share two
other serious limitations. First, the method will only be able to identify subtypes
that lie within a quadrant; other shaped clusters may be missed. Second, the method
is difficult to generalize to more than two or three variables. In short, Quadrant
Analysis does not meet the needs of the task in hand and cannot easily be fixed to
do so. What is needed is a more objective and rigorous way of identifying subtypes
or taxons.

12.5 Alternative Approaches

There are several alternative approaches for identifying latent taxonic structure
that offer the prospect of being able to define more objective criteria for iden-
tifying distinctive profiles of reading development in children and these include
Cluster Analysis (Bonafina, Newcorn, McKay, Koda, & Halperin 2000; King,
Giess, & Lombardino 2007; Morris et al. 1998), Finite Mixture Modelling (FMM,
McLachlan & Basford 1988; McLachlan & Peel 2000) and Taxometric Analysis
(Beauchaine 2003; Meehl 1995). In some senses, each of the methods can be
considered as cluster analyses, and Finite Mixture Models often are often classified
as such. However, there seems to us to be an important distinction between methods
that rely on the pairwise measures of similarity or distance between observations
(which we call cluster analysis) and those which generate an explicit parametric
model of the data (FMM). The Taxometric approach has its own distinctive history
and philosophy of use and, in consequence, deserves separate consideration. One
thing that each of these methods has in common, however, and which gives them
a considerable advantage over Quadrant Analysis, is that they are all readily
generalizable to cases where the subtypes are distinguished by more than two
observed variables.

12.5.1 Cluster Analysis

Cluster analysis is a disparate family of methods that identifies groupings in
multivariate data sets based on some statistical measure of distance or similarity
between observations. There are three main families of cluster analysis: hierarchical
clustering, k-means clustering and density based clustering and each of these comes
in multiple variations. Hierarchical cluster analysis is particularly fecund and offers
a wide choice of similarity (or distance) measures and methods of agglomeration.
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For example, SPSS (ver21) offers 37 measures of distance and 7 methods of
agglomeration giving 259 possible combinations. Although the choice of distance
measure is usually constrained by the type of data being analysed, choosing the
appropriate method of agglomeration is more challenging. This abundance would
not matter if the methods tended to converge on a consistent result but this is
frequently not the case, which makes the decision about which clustering method to
use critical.

Both hierarchical and k-means cluster analysis share a common problem. That is,
how many clusters should there be? There are multiple methods to help one chose
the correct number of clusters including the Akaike Information, Bayes Information,
the Calinski-Harabasz and the Davies-Bouldin criteria, and the Silhouette and Gap
tests. Unfortunately, these methods often disagree and the question of how many
clusters to extract remains unresolved. The third approach to cluster analysis is
density-based clustering and unlike the other clustering methods, the number of
clusters emerges from the analysis and is not directly pre-determined by the user.
However, the user is required to specify other values (critical distance and the
minimum cluster size) which, effectively determine the number of clusters so there
is no avoiding the issue.

Perhaps surprisingly, cluster analysis has been little been used in dyslexia and
reading research (Bonafina et al. 2000; King et al. 2007; Morris et al. 1998). Each
of these studies primarily addressed the issue of subtypes of children with reading
disability and so, unlike Talcott et al. (2002), they did not use a representative sample
of all children and only King et al. (2007) compared children with and without
reading disability. Each of these studies used k-means clustering (or a variant of
it) either alone or with other clustering methods but in other ways (the cognitive
measures used and the populations sampled) the studies were very different.
Consequently, the character and number of clusters identified were inconsistent.
The most sophisticated of these studies King et al. (2007) used cognitive measures
derived from theory, state-of-the art criteria for selecting the correct number of
clusters and bootstrap sampling to ensure the reliability of the clusters. They found
that children without reading disability did not form clusters but that those with
reading disability clustered into four groups, consistent with the double deficit
hypothesis. As this conclusion was derived from a relatively small sample of 93
children with reading disability, driven by a particular theoretical perspective, the
conclusions cannot be considered definitive. Nevertheless, this study, makes a very
important contribution to the literature and shows the potential value of cluster
analysis in this field of research.

12.5.2 Finite Mixture Modeling

Finite Mixture Modeling (FMM) is a parametric method for identifying clusters
in a data set and aims to find the k multivariate PDFs that best account for the
observed data. Typically, the PDFs are Gaussian, hence the alternative name for this
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approach, Gaussian Mixture Modelling, but other probability distributions can be
used if desired. One specific method of note is Latent Class Analysis (LCA) which
is a special case of FMM in which the observed variables within each class are
uncorrelated.

In conventional FMM, the best fitting combination of PDFs are identified using
an expectation maximization algorithm which is equivalent to a maximum likeli-
hood estimate of the parameters of the model. More recently, Bayesian approaches
have been introduced that have advantages in robustness and stability of the models
and which produce probability distributions of the parameters of the model. In both
cases, and like Hierarchical and k-means clustering, the user needs to specify the
number of clusters in advance. Unlike hierarchical and k-means clustering, which
allocate each observation to a single cluster (“hard” clustering), each individual
observation will have a given probability of belong to each of the k clusters defined
by the cluster’s PDF (“soft” clustering). Individual observations are allocated to the
cluster that has the maximum probability for that case.

As far as we are aware, FMM has not been used to identify subtypes of reading
disability or to separate typical from atypical readers. As FMM has some advantages
over other forms of cluster analysis, this is an omission that should be corrected.

12.5.3 Taxometric Analysis

The final approach to identifying subtypes in dyslexia that we will consider here
is taxometric analysis. Taxometrics is a term used to describe a family of methods
developed by Paul Meehl and colleagues for determining whether a multivariate
data set consists of a latent taxonic structure or not (Beauchaine 2007; Meehl 1995;
Ruscio, Haslam, & Ruscio 2006). Taxometrics consists of several distinct methods
known as “coherent cut kinetics”, that each seek to identify abrupt discontinuities in
what appear to be continuous parameters of the measures that distinguish putative
members of the taxon in question from non-taxon members. These key measures
are referred to as “indicator” variables and the existence of a discontinuity between
taxon and non-taxon group members on the indicator variables is taken as evidence
for taxonic structure. There are five distinct methods known as MAXSLOPE,
MAMBAC, L-Mode, MAXCOV AND MAXEIG that each look for a discontinuity
in a different parameter (local regression slope, local mean, latent factor, covariance
and eigenvalues, respectively). Taxometrics places a strong emphasis on converging
evidence from across these different methods.

Taxometrics has many advantages over other approaches in that it is objective,
quantifiable and uses convergent evidence to establish taxonic structure. However,
large sample sizes (average size ∼600) and large effect sizes (Cohen’s d > 2) are
needed. Taxometric methods are insensitive in cases where the taxon makes up only
a small proportion of the total sample (<15%) and are susceptible to sampling bias
and distributional skew in the indicator variables. In addition, the methods do not
work well when there are substantial within-group correlations (r>0.4) between
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the indicator variables. Despite these limitations, taxometric methods have made
significant contributions to the classification of many adult mental health disorders
and have been notably successful in delineating the relationship between personality
and adult psychopathology (see Chap. 10, Ruscio et al. 2006).

Only one study has used this approach with dyslexia (O’Brien, Wolf, & Lovett
2012). Using a large sample of 671 children with severe reading disorders aged 6–
8 years old assessed on a range MAMBAX, MAXEIG and L-mode (Ruscio et al.
2006). They concluded that there was evidence of two taxa of dyslexia, those with
and without phonological deficits. This approach appears most promising and merits
replication and extension.

12.6 Discussion

There are two important and related questions that we address here. First, do
children with dyslexia show fundamental and enduring non-arbitrary and objective
differences from children with typical reading profiles? Second, is dyslexia a single
condition or does it consist of multiple subtypes, each differing in some fundamental
and enduring, non-arbitrary way from the others. In the language of taxometrics,
these questions are whether the variation in developmental reading profiles can best
be considered as dimensional or taxonic. Our objective was not to answer these
questions, but to consider ways in which these question might be answered.

We showed that the common practice of performance thresholds on one or more
measures of cognitive ability to delineate dyslexics from the typical readers, a
method we refer to as Quadrant Analysis, can never hope to answer this question.
Quadrant Analysis, as the research literature attests, is essentially arbitrary and will
identify subtypes of readers regardless of whether they exist in any fundamental
or objective sense. As such, it simply will not serve to answer the question as to
whether we are dealing with dimensions or taxons.

Despite this, the temptations of simplicity of concept and ease of use make it
likely that Quadrant Analysis will continue to be used. Acknowledging this, we
proposed a modification to Quadrant Analysis that makes the choice of threshold
less arbitrary and which might prove useful on occasion. We do not claim, however,
that this will overcome all the problems of Quadrant Analysis, let alone resolve the
“category or dimension?” issue.

Instead, we believe that alternative approaches, including cluster analysis, FMM
and taxometrics will prove more useful. Unlike Quadrant Analysis, each of these
approaches can be readily adapted to more than two observed variables, and
are probably more powerful when used this way. However, these methods are
not panaceas and each has limitations and presents the potential user with their
own unique challenges. With all such methods, the output depends upon the
input. The choice of observed measures, indicator measures in the parlance of
taxometrics, is particularly critical. Measures that show some ability to discriminate
between the putative subtypes should be preferred and the inclusion of too many
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irrelevant measures can obscure real differences. Contrariwise, too many highly
correlated variables, whether they discriminate individually or not, simply increases
redundancy in the model and can impair the ability of the statistical algorithms
to reach a stable solution. The sampling strategy is also critical. Choosing a
representative sample of learner readers might be useful for answering the “Is
dyslexia a taxon?” question, but would be of little use in identifying subtypes of
dyslexia as too few individuals of each subtype would be present in the sample. To
address this question, a representative sample of problem readers would be more
useful. Whichever question is addressed, large samples sizes of several hundred
cases will be required to give reliable results.

To date, attempts to use these methods with reading profiles have been few and
far between with a mere handful of studies available in the published literature
(Bonafina et al. 2000; King et al. 2007; Morris et al. 1998; O’Brien et al. 2012). This
is a shame but one that could be corrected quite easily. There are multiple databases
of problem readers and representative samples of learner readers that could be used.
There are also multiple theories about the nature of dyslexia to guide the choice
of indicator variables. This being so, the application of cluster analysis, FMM and
taxometrics to these important questions should be straightforward.

No matter what methods we use, however, we should not expect a rapid resolu-
tion to the taxonomy of dyslexia question. The much-delayed publication of DSM-V
(American Psychiatric Association 2013), where the “category or dimension?”
issue was the focus of debate around several mental disorders, does not provide
grounds for optimism. In none of these cases can the issue be considered closed,
including those where the evidence base from cluster analysis and taxometrics is
much better established than it is with dyslexia (e.g., schizophrenia). As for dyslexia
itself, the wide range of disparate views, strongly held opinions and absence
of evidence one way or the other makes consensus seem a distant destination.
Nevertheless, the accumulation of evidence derived from statistical tools specifically
designed to address the “category or dimension?” question seems to us to be a good
place to start.
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