
Chapter 6
Foundations of Textual Concrete Syntax

AVRAM NOAM CHOMSKY.1

Abstract In this chapter, we consider the notion of concrete syntax of software
languages thereby complementing the earlier discussion of abstract syntax (Chap-
ters 3and 4). Concrete syntax is tailored towards processing (reading, writing, edit-
ing) by humans who are language users, while abstract syntax is tailored towards
processing by programs that are authored by language implementers. In this chap-
ter, we focus on the concrete syntax of string languages as defined by context-free
grammars (CFGs). In fact, we cover only textual concrete syntax; we do not cover
visual concrete syntax. We introduce the algorithmic notion of acceptance for a
membership test for a language. We also introduce the algorithmic notion of parsing
for recovering the grammar-based structure of input. We defer the implementation
aspects of concrete syntax, including actual parsing approaches, to the next chapter.

1 There is clearly nothing wrong with the notion of a Turing machine – after all it is Turing-
complete, but the way it is described and discussed is clearly very reminiscent of how we think
of actual (early) computing machines working operationally, if not mechanically. Personally, I
have always felt more attracted to the lambda calculus, with its high level of abstraction, much
more focused on computation than on operation. Likewise, I admire the Chomsky hierarchy [4],
as it defines grammars in a fundamental manner, including a semantics that makes no operational
concessions. There is a need for well-engineered grammar forms, such as parsing expression gram-
mars [5], but all such work stands on the shoulders of Chomsky.
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA
4.0. This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This
work also quotes https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_
Google_Art_Project.jpg, subject to the attribution “Vincent van Gogh: The Starry Night (1889) [Public do-
main], via Wikimedia Commons.” This work artistically morphes an image, https://en.wikipedia.org/
wiki/Noam_Chomsky, showing the person honored, subject to the attribution “By culturaargentinai - This file has
been extracted from another file: Noam Chomsky .jpg, CC BY-SA 2.0, https://commons.wikimedia.org/w/
index.php?curid=48394900.”

177© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_6

http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Noam_Chomsky
https://commons.wikimedia.org/w/index.php?curid=48394900
https://commons.wikimedia.org/w/index.php?curid=48394900
https://doi.org/10.1007/978-3-319-90800-7_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_6&domain=pdf

178 6 Foundations of Textual Concrete Syntax

6.1 Textual Concrete Syntax

A grammar is a collection of rules defining the syntax of a language’s syntactic cat-
egories such as statements and expressions. We introduce a basic grammar notation
and a convenient extension here. We also show that a grammar can be understood
in a “generative” sense, i.e., a grammar derives (“generates”) language elements as
strings.

6.1.1 A Basic Grammar Notation

Let us study the concrete syntax of BNL (Binary Number Language). This is the lan-
guage of unsigned binary numbers, possibly with decimal places, for example, “10”
(2 as a decimal number) and “101.01” (5.25 as a decimal number). Let us define the
concrete syntax of BNL. To this end, we use “fabricated” grammar notation: BGL
(Basic Grammar Language).

Illustration 6.1 (Concrete syntax of BNL)

BGL resource languages/BNL/cs.bgl

[number] number : bits rest ; // A binary number
[single] bits : bit ; // A single bit
[many] bits : bit bits ; // More than one bit
[zero] bit : '0' ; // The zero bit
[one] bit : '1' ; // The nonzero bit
[integer] rest : ; // An integer number
[rational] rest : '.' bits ; // A rational number

BGL is really just a notational variation on the classic Backus-Naur form
(BNF) [1]. A grammar is a collection of rules (say, productions). Each rule con-
sists of a label such as [number] for better reference, a left-hand side which is a
grammar symbol such as number in the first rule, and a right-hand side which is a
sequence of grammar symbols. There are two kinds of grammar symbols:

Terminals These are quoted symbols such as “0” and “1”; they must not appear
on the left-hand side of context-free rules. The terminals constitute the “alphabet”
from which to build strings.

Nonterminals These are alphabetic symbols such as number, bits, and rest; they
may appear on both the left- and the right-hand side of rules. In fact, the left-hand
side of a context-free rule is a single nonterminal. Nonterminals correspond to
syntactic categories.

http://github.com/softlang/yas/tree/springer/languages/BGL
http://github.com/softlang/yas/tree/springer/languages/BNL/cs.bgl

6.1 Textual Concrete Syntax 179

6.1.2 Derivation of Strings

The intended meaning of a grammar is that rules can be applied from left to right
to derive (say, “generate”) strings composed of terminals such that nonterminals
are replaced by right-hand sides of rules and terminals remain. We often assume
that a grammar identifies a distinguished nonterminal – the start symbol – from
which to start derivation. We may also just assume that the left-hand side of the first
production is simply the start symbol. Derivation is illustrated below for a binary
number.

Illustration 6.2 (Derivation of a string)
The following sequence of steps derives the terminal string “10” from the nonter-
minal number:

• number Apply rule [number]
• bits rest Apply rule [integer] to rest
• bits Apply rule [many] to bits
• bit bits Apply rule [zero] to bit
• ‘1’ bits Apply rule [single] to bits
• ‘1’ bit Apply rule [zero] to bit
• ‘1’ ‘0’

We assume that a “well-formed” grammar must permit derivation of terminal se-
quences for each of its nonterminals and that each nonterminal should be exercised
by some of the derivations, starting from the start symbol. Such well-formedness is
meant to rule out “nonsensical” grammars.

Exercise 6.1 (An alternative derivation) [Basic level]
There is actually more than one way to derive the terminal sequence in Illustra-
tion 6.2. Identify an alternative derivation.

Exercise 6.2 (Derivation of a string) [Basic level]
Present the derivation sequence for “101.01” in the style of Illustration 6.2.

Exercise 6.3 (BNL with signed numbers) [Basic level]
Extend the grammar in Illustration 6.1 to enable signed binary numbers.

180 6 Foundations of Textual Concrete Syntax

6.1.3 An Extended Grammar Notation

Consider again the grammar in Illustration 6.1. Optionality of the fractional part is
encoded by the rules [integer] and [rational], subject to an “auxiliary” nonterminal
rest. Sequences of bits are encoded by the rules [single] and [many], subject to
an “auxiliary” nonterminal bits. These are recurring idioms which can be expressed
more concisely in the extended Backus-Naur form [7] (EBNF). We propose a related
grammar notation here: EGL (Extended Grammar Language). Let us illustrate EGL
here with a concise syntax definition for BNL.

Illustration 6.3 (EBNF-like concrete syntax of BNL)

EGL resource languages/BNL/EGL/cs.egl

[number] number : { bit }+ { '.' { bit }+ }? ;
[zero] bit : '0' ;
[one] bit : '1' ;

Optionality of a phrase is expressed by the form “{ . . .}?”. Repetition zero, one,
or more times is expressed by the form “{ . . .}∗”. Repetition one or more times is
expressed by the form “{ . . .}+”. Rule labels are optional in EGL. In particular, we
tend to leave out labels for nonterminals with only one alternative.

The extended notation (EGL) can be easily reduced (“desugared”) to the basic
notation (BGL) by modeling the EGL-specific phrases through additional rules, also
subject to extra (fresh) nonterminals. There are these cases:

• Given one or more occurrences of a phrase {s1 · · · sn}? with grammar symbols
s1, . . . , sn and a fresh nonterminal x, each occurrence is replaced by x and two
rules are added:

– x : ;
– x : s1 · · · sn ;

• Given one or more occurrences of a phrase {s1 · · · sn}∗ and a fresh nonterminal
x, each such occurrence is replaced by x and two rules are added:

– x : ;
– x : s1 · · · sn x ;

• Given one or more occurrences of a phrase {s1 · · · sn}+ and a fresh nonterminal
x, each such occurrence is replaced by x and two rules are added:

– x : s1 · · · sn ;
– x : s1 · · · sn x ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BNL/EGL/cs.egl

6.1 Textual Concrete Syntax 181

Exercise 6.4 (Grammar notation translation) [Intermediate level]
The full EBNF notation [7] supports nested groups of alternatives. If such grouping
was expressible in (an extended) EGL, then we could use grammar rules such as
“s : a { b | c }? d ;” where the group of alternatives is “b | c”. Reduce (“desugar”)
this group form to the basic notation.

6.1.4 Illustrative Examples of Grammars

We define the concrete syntax of a few more languages here. We revisit (“fabri-
cated”) languages for which we already defined the abstract syntax in Chapter 3.

6.1.4.1 Syntax of Simple Expressions

Let us define the concrete syntax of the expression language BTL.

Illustration 6.4 (Concrete syntax of BTL)

BGL resource languages/BTL/cs.bgl

[true] expr : "true" ;
[false] expr : "false" ;
[zero] expr : "zero" ;
[succ] expr : "succ" expr ;
[pred] expr : "pred" expr ;
[iszero] expr : "iszero" expr ;
[if] expr : "if" expr "then" expr "else" expr ;

That is, we assume “curried” notation (juxtaposition) for function application,
i.e., for applying the operators 'pred', 'succ', and 'iszero'. That is, we write succ zero
instead of succ(zero). Curried notation is also used, for example, in the functional
programming language Haskell.

6.1.4.2 Syntax of Simple Imperative Programs

Let us define the concrete syntax of the imperative programming language BIPL.

http://github.com/softlang/yas/tree/springer/languages/BGL
http://github.com/softlang/yas/tree/springer/languages/BTL/cs.bgl

182 6 Foundations of Textual Concrete Syntax

Illustration 6.5 (Concrete syntax of BIPL)

EGL resource languages/BIPL/cs.egl

// Statements
[skip] stmt : ';' ;
[assign] stmt : name '=' expr ';' ;
[block] stmt : '{' { stmt }* '}' ;
[if] stmt : 'if' '(' expr ')' stmt { 'else' stmt }? ;
[while] stmt : 'while' '(' expr ')' stmt ;

// Expressions
[or] expr : bexpr { '||' expr }? ;
[and] bexpr : cexpr { '&&' bexpr }? ;
[lt] cexpr : aexpr { '<' aexpr }? ;
[leq] cexpr : aexpr { '<=' aexpr }? ;
[eq] cexpr : aexpr { '==' aexpr }? ;
[geq] cexpr : aexpr { '>=' aexpr }? ;
[gt] cexpr : aexpr { '>' aexpr }? ;
[add] aexpr : term { '+' aexpr }? ;
[sub] aexpr : term { '−' aexpr }? ;
[mul] term : factor { '*' term }? ;
[negate] factor : '−' factor ;
[not] factor : '!' factor ;
[intconst] factor : integer ;
[var] factor : name ;
[brackets] factor : '(' expr ')' ;

There are several different statement and expression forms. For instance, the first
rule ([skip]) defines the syntax of an empty statement; the second rule ([assign]) de-
fines the syntax of assignment with a variable to the left of “=” and an expression
to the right of “=”. The rule for if-statements makes the ’else’ branch optional, as in
the C and Java languages.

The rules for expression forms are layered with extra nonterminals bexpr (for
“Boolean expressions”), cexpr (for “comparison expressions”), etc. to model opera-
tor priorities such as that “*” to bind more strongly than “+”. We note that the syntax
of names and integers is left unspecified here.

Exercise 6.5 (Priorities of alternatives) [Intermediate level]
Practical grammar notations and the corresponding parsing approaches support a
more concise approach to the modeling of priorities, not just of operators but pos-
sibly of alternatives (rules) in general. Study some grammar notation, for example,
YACC [8], SDF [12], or ANTLR [11], with regard to priorities and sketch a possible
extension of EGL, illustrated with a revision of the BIPL grammar.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BIPL/cs.egl

6.1 Textual Concrete Syntax 183

6.1.4.3 Syntax of Simple Functional Programs

Let us define the concrete syntax of the functional programming language BFPL.

Illustration 6.6 (Concrete syntax of BFPL)

EGL resource languages/BFPL/cs.egl

// Program = functions + main expression
program : { function }* main ;
function : funsig fundef ;
funsig : name '::' funtype ;
fundef : name { name }* '=' expr ;
funtype : simpletype { '−>' simpletype }* ;
main : 'main' '=' 'print' '$' expr ;

// Simple types
[inttype] simpletype : 'Int' ;
[booltype] simpletype : 'Bool' ;

// Expressions
[unary] expr : uop subexpr ;
[binary] expr : '(' bop ')' subexpr subexpr ;
[subexpr] expr : subexpr ;
[apply] expr : name { subexpr }+ ;
[intconst] subexpr : integer ;
[brackets] subexpr : '(' expr ')' ;
[if] subexpr : 'if' expr 'then' expr 'else' expr ;
[arg] subexpr : name ;

// Unary and binary operators
[negate] uop : '−' ;
[not] uop : 'not' ;
[add] bop : '+' ;
. . .

The syntax of BFPL is focused on expression forms. There are further syntactic
categories for programs (as lists of functions combined with a “main” expression)
and function signatures. The central expression form is that of function application.
Curried notation is assumed. Operators are applied in (curried) prefix notation too.
Thus, operator priorities are not modeled. We note that the syntax of names and
integers is left unspecified here.

6.1.4.4 Syntax of Finite State Machines

Let us define the concrete syntax of the DSML FSML.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BFPL/cs.egl

184 6 Foundations of Textual Concrete Syntax

Illustration 6.7 (Concrete syntax of FSML)

EGL resource languages/FSML/cs.egl

fsm : {state}* ;
state : {'initial'}? 'state' stateid '{' {transition}* '}' ;
transition : event {'/' action}? {'−>' stateid}? ';' ;
stateid : name ;
event : name ;
action : name ;

That is, an FSM is a collection of state declarations, each of which groups state
transitions together. Each transition identifies an event (say, an input symbol), an
optional action (say, an output symbol), and an optional target stateid. An omitted
target state is taken to mean that the target state equals the source state. We note that
the syntax of names is left unspecified here.

Exercise 6.6 (EGL to BGL reduction) [Basic level]
Apply the EGL-to-BGL reduction to the definition of the syntax of FSML in Illustra-
tion 6.7.

6.2 Concrete versus Abstract Syntax

The definitions of concrete and abstract syntax differ in that they model text-based
versus tree- or graph-based languages. In addition, concrete and abstract syntax also
differ in terms of intention – they are targeted towards the language user and the
language implementer, respectively. This difference in intention affects the level of
abstraction in the definitions. Abstraction potential arises from constructs that have a
rich concrete syntax, but where fewer details or variations are sufficient to ultimately
assign meaning to the constructs. We look at such differences in the sequel.

At the most basic level, concrete and abstract syntax differ just in terms of repre-
sentation or notation. Here are some definition fragments of the expression language
BTL:

−− Concrete syntax of BTL
[zero] expr : "zero" ;
[succ] expr : "succ" expr ;

−− Abstract syntax of BTL
symbol zero : → expr ;
symbol succ : expr → expr ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/FSML/cs.egl

6.2 Concrete versus Abstract Syntax 185

In the concrete syntax, "succ" is modeled as a prefix symbol because it precedes
its operand in the grammar rule. In the abstract syntax, succ is a prefix symbol sim-
ply because all symbols are prefix symbols in such a basic, signature-based abstract
syntax. In the concrete syntax, we have full control over the notation. For instance,
the rule [succ] favors curried notation for function application, i.e., using juxtapo-
sition instead of parentheses and commas. Again, however, in the abstract syntax,
uncurried notation is cemented into the formalism as the assumed representation of
terms (trees).

Exercise 6.7 (Uncurried notation for BTL expressions) [Basic level]
Revise the concrete syntax of BTL to use uncurried notation instead.

Let us also consider the differences between concrete and abstract syntax for the
imperative language BIPL. We have already pointed out earlier (Section 6.1.4.2)
that the grammar of BIPL models expression forms with a dedicated nonterminal
for each operator priority. Such layering makes no sense in the tree-based abstract
syntax and it is indeed missing from the earlier signature (Section 3.1.5.2). Another
difference concerns the if-statement:

−− Concrete syntax of BIPL
[if] stmt : 'if' '(' expr ')' stmt { 'else' stmt }? ;

−− Abstract syntax of BIPL
symbol if : expr×stmt×stmt → stmt ;

That is, the else-part is optional in the concrete syntax, whereas it is mandatory
in the abstract syntax. An optional else-part is convenient for the language user
because no empty statement (“skip”) needs to be filled in to express the absence
of an else-part. A mandatory else-part is convenient for the language implementer
because only one pattern of the if-statement needs to be handled.

There is another major difference we should point out:

−− Concrete syntax of BIPL
[block] stmt : '{' { stmt }* '}' ;

−− Abstract syntax of BIPL
symbol seq : stmt×stmt → stmt ;

That is, in the concrete syntax, sequences of statements are formed as statement
blocks with enclosing braces. This notation was chosen to resemble the syntax of
C and Java. In the abstract syntax, there is a binary combinator for sequential com-
position. This simple model is convenient for the language implementer. For this
correspondence between concrete and abstract syntax to be sound, we must assume
that statement blocks have here no meaning other than sequential composition. By
contrast, in C and Java, statement blocks actually define scopes with regard to local
variables.

186 6 Foundations of Textual Concrete Syntax

Exercise 6.8 (Abstraction for FSML) [Basic level]
Identify the differences between the concrete and the abstract syntax of FSML.

Exercise 6.9 (Abstraction for BFPL) [Basic level]
Identify the differences between the concrete and the abstract syntax of BFPL.

We mention in passing that some metaprogramming systems, for example, Ras-
cal [10, 9] and Stratego XT [13, 3], advertise the view that, under certain conditions,
there may not even be an abstract syntax for a language; all language processing is
implemented on top of the concrete syntax, subject to suitable support for concrete
object syntax, as we will discuss later (Section 7.5). The assumption is here that a
metaprogrammer may prefer using the familiar, concrete syntactical patterns of the
object language as opposed to the more artificial patterns according to an abstract
syntax definition.

6.3 Languages as Sets of Strings

Let us complement the informal explanations of concrete syntax definitions given
so far with formal definitions drawn from formal language theory [6]. In particular,
we will define the meaning of grammars in a set-theoretic sense, i.e., a grammar
“generates” a language as a set of strings.

6.3.1 Context-Free Grammars

BGL (or BNF) and EGL (or EBNF) are grammar notations for the fundamental
formalism of context-free grammars (CFGs).

Definition 6.1 (Context-free grammar) A CFG G is a quadruple 〈N,T,P,s〉 where
N is a finite set of nonterminals, T is a finite set of terminals, with N∩T = /0, P is a
finite set of rules (or productions) as a subset of N× (N∪T)∗, and s ∈ N is referred
to as the start symbol.

As noted before, in the BGL and EGL grammar notations, we use the convention
that the left-hand side of a grammar’s first rule is considered the start symbol. Also,
we note that BGL and EGL rules may be labeled whereas no labels are mentioned
in the formal definition. Labels are simply to identify rules concisely.

6.3 Languages as Sets of Strings 187

6.3.2 The Language Generated by a Grammar

Rules can be applied in a “generative” sense: replace a nonterminal by a correspond-
ing right-hand side. By many such replacements, one may eventually derive terminal
strings. This is the foundation for interpreting a grammar as the definition of a lan-
guage, namely the set of all terminal strings that are derivable from the grammar’s
start symbol.

Definition 6.2 (Context-free derivation) Given a CFG G = 〈N,T,P,s〉 and a se-
quence p n q with n ∈ N, p,q ∈ (N ∪T)∗, the sequence p r q with r ∈ (N ∪T)∗ is
called a derivation, as denoted by p n q⇒ p r q, if there is a production 〈n,r〉 ∈ P.

The transitive closure of “⇒” is denoted by “⇒+”. The reflexive closure of
“⇒+” is denoted by “⇒∗”.

Definition 6.3 (Language generated by a CFG) Given a CFG G = 〈N,T,P,s〉, the
language L(G) generated by G is defined as the set of all the terminal sequences
that are derivable from s. That is:

L(G) =
{

w ∈ T ∗ | s⇒+ w
}

6.3.3 Well-Formed Grammars

Well-formedness constraints on grammars for ruling out nonsensical grammars are
defined formally as follows.

Definition 6.4 (Well-formed CFG)
A CFG G = 〈N,T,P,s〉 is called well-formed if the following two conditions hold
for each n ∈ N:

Productivity There exists w ∈ T ∗ such that n⇒+ w.
Reachability There exist p,q ∈ (N∪T)∗ such that s⇒∗ p n q.

Exercise 6.10 (Productivity of CFG) [Basic level]
Give a simple grammar that violates productivity defined in Definition 6.4.

188 6 Foundations of Textual Concrete Syntax

Exercise 6.11 (Reachability of CFG) [Basic level]
Give a simple grammar that violates reachability defined in Definition 6.4.

Exercise 6.12 (Well-formed signature) [Intermediate level]
Consider again Definition 6.4 for well-formed CFGs. Transpose this definition, with
its components for productivity and reachability, to signatures as used in abstract
syntax definition (Chapter 3).

6.3.4 The Notion of Acceptance

Suppose we want to decide whether a given terminal string is an element of L(G).
We cannot perform a direct membership test because the set L(G) is infinite for any
nontrivial syntax definition. We need a computable kind of membership test instead.
To this end, we introduce the algorithmic notion of acceptance. The term “recogni-
tion” is also used instead. Further, we may speak of an “acceptor” or “recognizer”
instead, when we want to refer to the actual functionality for acceptance.

Definition 6.5 (Acceptor) Given a CFG G = 〈N,T,P,s〉, an acceptor for G is a
computable predicate aG on T ∗ such that for all w ∈ T ∗, aG(w) holds iff s⇒+ w.

The process of applying an acceptor is referred to as acceptance. In practice, we
are interested in “descriptions” of such predicates. For instance, the grammar itself
may serve as a description and the predicate may be obtained by “interpreting” the
grammar. It is known from formal language theory that the membership problem for
CFGs is decidable and, thus, a computable predicate such as the one in the definition
can be assumed to exist. We will discuss some options later (Section 7.2).

6.4 Languages as Sets of Trees

An acceptor only answers the question whether a given string w is an element of
the language generated by some grammar G. A parser, in addition, reports on the
structure of w based on the rules of G. The structure is represented as a concrete
syntax tree (CST). We may also say “parse tree” instead of “CST”. Success of pars-
ing means that at least one CST is returned. Failure of parsing means that no CST is
returned. In this manner, we assign meaning to grammars in a second manner.

6.4 Languages as Sets of Trees 189

[number] number : bits rest ;

[many] bits : bit bits ; [integer] rest : ;

[one] bit : '1' ; [single] bits : bit ;

[zero] bit : '0' ;

‘1’ ‘0’

Fig. 6.1 CST for the binary number “10”.

number

many integer

one single

zero

‘1’ ‘0’

Fig. 6.2 Alternative CST representation.

6.4.1 Concrete Syntax Trees

A CST for a terminal string w contains the terminals of w as leaf nodes in the same
order. Each CST node with its subtrees represents the application of a grammar rule
except for some leaf nodes that simply represent terminals. The root node corre-
sponds to a rule application for the start symbol. Before formalizing this intuition,
let us look at some examples.

CSTs can be represented or visualized in different ways. The representation in
Fig. 6.1 uses rules as node infos. In the figure, we circled right-hand side grammar
symbols to better emphasize the correspondence between them and the subtrees.
The visualization in Fig. 6.2 is more concise. BGL’s rule labels are used as node
infos here.

190 6 Foundations of Textual Concrete Syntax

We are ready to define the CST notion formally.

Definition 6.6 (Concrete syntax tree) Given a CFG G = 〈N,T,P,s〉 and a string
w ∈ T ∗, a CST for w according to G is a tree as follows:

• Nodes hold a rule or a terminal as info.
• The root holds a rule with s on the left-hand side as info.
• If a node holds a terminal as info, then it is a leaf.
• If a node holds rule n→ v1 · · · vm with n ∈ N, v1, . . . ,vm ∈ N∪T as info, then the

node has m branches with subtrees ti for i = 1, . . . ,m as follows:

– If vi is a terminal, then ti is a leaf with terminal vi as info.
– If vi is a nonterminal, then ti is a tree with a rule as info such that vi is the

left-hand side of the rule.

• The concatenated terminals at the leaf nodes equal w.

6.4.2 The Notion of Parsing

Let us make the transition from acceptance to parsing.

Definition 6.7 (Parser) Given a CFG G = 〈N,T,P,s〉, a parser for G is a partial
function pG from T ∗ to CSTs such that for all w ∈ L(G), pG(w) returns a CST of w
and for all w /∈ L(G), pG(w) is not defined.

The process of applying a parser is referred to as parsing. A parser returns no
CST for a given input exactly in the same cases as when an acceptor fails.

6.4.3 Ambiguous Grammars

If a parser has a choice of what CST to return, then this means that the grammar is
ambiguous, as formalized by the following definition.

Definition 6.8 (Ambiguous grammar) A CFG G = 〈N,T,P,s〉 is called ambiguous,
if there exists a terminal string w ∈ T ∗ with multiple CSTs.

6.4 Languages as Sets of Trees 191

binary

binary const

const

‘2’

const

‘3’ ‘4’

add

‘+’ ‘*’

mul

binary

binaryconst

const

‘2’

const

‘3’ ‘4’

mul

‘+’ ‘*’

add

Fig. 6.3 Alternative CSTs for an arithmetic expression.

Let us consider a simple example for ambiguities.

Illustration 6.8 (Ambiguous grammar for arithmetic expressions)

EGL resource languages/EGL/samples/ambiguity.egl

[binary] expr : expr bop expr ;
[const] expr : integer ;
[add] bop : '+' ;
[mul] bop : '*' ;

In the grammar shown above, the syntax of binary expression is defined am-
biguously. This is demonstrated in Fig. 6.3 by showing two CSTs for the expres-
sion “2+ 3 ∗ 4”. The tree on the right meets our expectation that “*” binds more
strongly than “+”. The grammar for BIPL (Illustration 6.5) addresses this problem
by describing layers of expressions with dedicated nonterminals for the different
priorities.

We mention in passing that Definition 6.7 could be revised to make a parser
possibly return a collection of CSTs, i.e., a parse-tree forest. This may be useful
in practice and may require an extra phase of filtering to identify a preferred tree
eventually [2].

Exercise 6.13 (Ambiguous grammar) [Basic level]
Consider the rule for if-statements taken from Illustration 6.5:

[if] stmt : 'if' '(' expr ')' stmt { 'else' stmt }? ;

Demonstrate that this rule implies an ambiguous grammar.

While both concrete and abstract syntax, as discussed thus far, provide a tree-
based definition of a software language, there is an important difference. In the case
of concrete syntax, the trees arise as a secondary means: to represent the derivation
of language elements, which are strings. In the case of abstract syntax, the trees
correspond to the language elements themselves.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/EGL/samples/ambiguity.egl

192 6 Foundations of Textual Concrete Syntax

[number] number : { bit }+ { '.' { bit }+ }? ;

[one] bit : '1' ; [zero] bit : '0' ;

{ bit }+

bit

{ '.' { bit }+ }?

bit

‘1’ ‘0’

Fig. 6.4 A CST with extra nodes due to EGL expressiveness.

Definition 6.6 (CST) applies to the basic grammar notation of BGL only. CSTs
for the extended grammar notation of EGL require extra nodes:

• Each occurrence of “?”, “*”, and “+” within a rule is subject to an extra node
with 0, 1, or more branches.

• Each branch of these extra nodes is rooted in an extra node with the list of sym-
bols that are optional or to be repeated.

These extra nodes are visualized by ellipses in Fig. 6.4. The example in the figure
is a variation on Fig. 6.1.

6.5 Lexical Syntax

In the illustrative grammars presented earlier, we left out some details: the syntax
of names (FSML, BIPL, and BFPL) and integers (BIPL and BFPL). Such details are
usually considered to be part of what is called the lexical syntax. That is, the lexical
syntax covers the syntactic categories that correspond to syntactical units without
any “interesting” tree-based structure. The approach of defining a separate lexical
syntax is something of a dogma, but we give in on this dogma for now.

Let us define the lexical syntax of FSML. The earlier grammar contained rules
for redirecting several nonterminals for different kinds of names or symbols to the
nonterminal name. Thus:

6.5 Lexical Syntax 193

stateid : name ;
event : name ;
action : name ;

The nonterminal name can be defined by a rule as follows:

name : { alpha }+ ;

Here, alpha is a predefined nonterminal for uppercase and lowercase letters2.
Thus, FSML’s name is defined as nonempty sequences of letters. Generally, the lex-
ical syntax of a language can be defined by grammar rules too. In practice, different
grammar notations of varying expressiveness are used for this purpose.

There is a pragmatic reason for not having included the above rule in the earlier
grammar. In one way (by separation, as done here) or another, we need to describe
the indivisible lexical units of the language as opposed to divisible syntactical units
that may contain white space (space, tab, newline, line feed) or comments. In the
case of FSML, we want to admit white space everywhere – except, of course, within
names or the terminals such as 'state' and '−>'. Further, we may also want to declare
the lexical syntax of white space and comments. To this end, we define a special
nonterminal layout, which, by convention, defines the lexical syntax of strings to be
skipped anywhere in the input between (but not within) lexical units. Let us provide
the complete lexical syntax of FSML.

Illustration 6.9 (Lexical syntax of finite state machines (FSML))

EGL resource languages/FSML/ls.egl

name : { alpha }+ ;
layout : { space }+ ;

Here, space is a “predefined” nonterminal which subsumes “white space”, i.e.,
space, tab, newline, and line feed. Thus, FSML’s layout is defined as a non-empty
sequence of such white space characters.

Let us consider another example.

Illustration 6.10 (Lexical syntax of imperative programs (BIPL))

EGL resource languages/BIPL/ls.egl

1 name : { alpha }+ ;
2 integer : { digit }+ ;
3 layout : { space }+ ;
4 layout : '//' { { end_of_line }~ }* end_of_line ;

2 In the rules for the lexical syntax, we assume predefined nonterminals for common character
classes such as alpha, space, digit, and end_of _line.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/FSML/ls.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BIPL/ls.egl

194 6 Foundations of Textual Concrete Syntax

BIPL’s name is defined in the same way as in FSML (line 1). BIPL’s integer is
defined as nonempty sequence of digits (line 2). There are two rules for layout. The
first one models white space in the same way as in FSML (line 3); the second one
models C/Java-style line comments (line 4). In the last rule, we use negation “’̃’ to
express that no “end-of line” character is admitted in a given position.

Let us consider yet another example.

Illustration 6.11 (Lexical syntax of functional programs (BFPL))

EGL resource languages/BFPL/ls.egl

name : lower { alpha }* ;
integer : { digit }+ ;
layout : { space }+ ;
layout : '−−' { { end_of_line }~ }* end_of_line ;

BFPL’s name is defined as non-empty sequence of letters starting in lowercase.
BFPL’s integer is defined in the same way as in BIPL. There are two rules for layout.
The first one captures white space in the same way as before; the second one models
Haskell-style line comments.

Exercise 6.14 (Primitive types in syntax definitions) [Intermediate level]
Provide a convincing hypothesis that explains why the extended signature notation
(ESL) features primitive types such as string and integer whereas EGL does not.

6.6 The Metametalevel

The grammar notations BGL and EGL correspond to proper software languages in
themselves. In this section, the concrete and abstract syntaxes of these syntax def-
inition languages are defined. Accordingly, we operate at the metametalevel. This
development enables, for example, a systematic treatment of acceptance and pars-
ing. We also revisit the abstract syntax definition languages BSL, ESL, and MML
and define their concrete syntaxes, as we have only defined their abstract syntaxes
previously (Section 3.4).

6.6.1 The Signature of Grammars

Let us define the abstract syntax of concrete syntaxes. In this manner, concrete syn-
taxes can be processed programmatically, for example, when implementing (“gen-
erating”) parsers. To make the presentation more approachable, the basic grammar
notation (BGL) is covered first.

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BFPL/ls.egl

6.6 The Metametalevel 195

Specification 6.1 (The ESL signature of BGL grammars)

ESL resource languages/BGL/as.esl

type grammar = rule* ;
type rule = label×nonterminal×gsymbols ;
type gsymbols = gsymbol* ;
symbol t : terminal → gsymbol ;
symbol n : nonterminal → gsymbol ;
type label = string ;
type terminal = string ;
type nonterminal = string ;

The abstract syntactical representation of grammars can be illustrated as follows.

Illustration 6.12 (BNL’s grammar in abstract syntax)

Term resource languages/BNL/cs.term

[
(number,number,[n(bits),n(rest)]),
(single,bits,[n(bit)]),
(many,bits,[n(bit),n(bits)]),
(zero,bit,[t('0')]),
(one,bit,[t('1')]),
(integer,rest,[]),
(rational,rest,[t('.'),n(bits)])

].

Let us now provide the signature for the extended grammar notation.

Specification 6.2 (The ESL signature of EGL grammars)

ESL resource languages/EGL/as.esl

type grammar = rule* ;
type rule = label?×nonterminal×symbols ;
type symbols = symbol* ;
symbol t : terminal → symbol ;
symbol n : nonterminal → symbol ;
symbol star : symbols → symbol ;
symbol plus : symbols → symbol ;
symbol option : symbols → symbol ;
symbol not : symbols → symbol ;
type label = string ;
type terminal = string ;
type nonterminal = string ;

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BGL/as.esl
http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BNL/cs.term
http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/EGL/as.esl

196 6 Foundations of Textual Concrete Syntax

We should impose constraints on the language of grammars, such as that the rule
labels are distinct and that the conditions of productivity and reachability (Defini-
tion 6.4) are met, but we omit a discussion of these routine details.

6.6.2 The Signature of Concrete Syntax Trees

On top of the signature of grammars, we can also define a signature for CSTs, which
is useful, for example, as a fundamental representation format for parsing results.
We cover only the basic grammar notation (BGL) here. We introduce a correspond-
ing language: BCL (BGL CST Language).

Specification 6.3 (Signature of BGL-based CSTs)

ESL resource languages/BCL/as.esl

symbol leaf : terminal → ptree ;
symbol fork : rule×ptree* → ptree ;
// Rules as in BGL
...

Thus, there is a leaf symbol for a terminal, and there is a fork symbol which
combines a rule and a list of subtrees for the nonterminals on the right-hand side of
the rule. An actual CST, which conforms to the signature, is shown below.

Illustration 6.13 (CST for the binary number “10”)

Term resource languages/BNL/samples/10.tree

fork(
(number,number,[n(bits),n(rest)]), % rule
[% list of branches

fork(% 1st branch
(many,bits,[n(bit),n(bits)]), % rule
[% list of branches

fork(% 1st branch
(one,bit,[t('1')]), % rule
[leaf('1')]), % leaf

fork(% 2nd branch
(single,bits,[n(bit)]), % rule
[% list of branches

fork(% 1st branch % rule
(zero,bit,[t('0')]),
[leaf('0')])])]), % leaf

fork(% 2nd branch
(integer,rest,[]), % rule
[])]). % empty list of branches

http://github.com/softlang/yas/tree/springer/languages/ESL
http://github.com/softlang/yas/tree/springer/languages/BCL/as.esl
http://github.com/softlang/yas/tree/springer/languages/Term
http://github.com/softlang/yas/tree/springer/languages/BNL/samples/10.tree

6.6 The Metametalevel 197

Exercise 6.15 (CSTs for EGL) [Basic level]
Devise a signature for CSTs for the extended grammar notation EGL.

The signature as stated above is underspecified. For a CST to be well-formed, it
must use only rules from the underlying grammar and it must combine them in a
correct manner, as constrained by Definition 6.6.

6.6.3 The Grammar of Grammars

We can also devise a grammar of grammars, which is useful, for example, for pars-
ing grammars. To make the presentation more approachable, the basic grammar
notation (BGL) is covered first.

Specification 6.4 (The EGL grammar of BGL grammars)

EGL resource languages/BGL/cs.egl

grammar : {rule}* ;
rule : '[' label ']' nonterminal ':' gsymbols ';' ;
gsymbols : {gsymbol}* ;
[t] gsymbol : terminal ;
[n] gsymbol : nonterminal ;
label : name ;
terminal : qstring ;
nonterminal : name ;

Let us now provide the grammar for the extended grammar notation.

Specification 6.5 (The EGL grammar of EGL grammars)

EGL resource languages/EGL/cs.egl

grammar : {rule}* ;
rule : {'[' label ']'}? nonterminal ':' gsymbols ';' ;
gsymbols : {gsymbol}* ;
[t] gsymbol : terminal ;
[n] gsymbol : nonterminal ;
[star] gsymbol : '{' gsymbols '}' '*' ;
[plus] gsymbol : '{' gsymbols '}' '+' ;
[option] gsymbol : '{' gsymbols '}' '?' ;
[not] gsymbol : '{' gsymbols '}' '~' ;
label : name ;
terminal : qstring ;
nonterminal : name ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BGL/cs.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/EGL/cs.egl

198 6 Foundations of Textual Concrete Syntax

We also provide a separate grammar for the lexical syntax.

Illustration 6.14 (Lexical syntax of EGL)

EGL resource languages/EGL/ls.egl

qstring : quote { { quote }~ }+ quote ;
name : { csymf }+ ;
layout : { space }+ ;
layout : '//' { { end_of_line }~ }* end_of_line ;

6.6.4 The Grammar of Signatures

Let us also define the concrete syntax of tree-based abstract syntaxes, as useful, for
example, for parsing signatures. The basic signature notation (BSL) is covered first.

Specification 6.6 (The EGL grammar of BSL signatures)

EGL resource languages/BSL/cs.egl

signature : { symbol ';' }* ;
symbol : 'symbol' name ':' args '−>' name ;
args : { name { '#' name }* }? ;

Let us now provide the grammar for the extended signature notation.

Specification 6.7 (The EGL grammar of ESL signatures)

EGL resource languages/ESL/cs.egl

signature : { decl ';' }* ;
[type] decl : 'type' name '=' typeexprs ;
[symbol] decl : 'symbol' name ':' { typeexprs }? '−>' name ;
typeexprs : typeexpr { '#' typeexpr }* ;
typeexpr : factor cardinality ;
[boolean] factor : 'boolean' ;
[integer] factor : 'integer' ;
[float] factor : 'float' ;
[string] factor : 'string' ;
[term] factor : 'term' ;
[tuple] factor : '(' typeexpr { '#' typeexpr }+ ')' ;
[sort] factor : name ;
[star] cardinality : '*' cardinality ;
[plus] cardinality : '+' cardinality ;
[option] cardinality : '?' cardinality ;
[none] cardinality : ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/EGL/ls.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/BSL/cs.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/ESL/cs.egl

6.6 The Metametalevel 199

We also provide a separate grammar for the lexical syntax.

Illustration 6.15 (Lexical syntax of ESL)

EGL resource languages/ESL/ls.egl

name : { csymf }+ ;
layout : { space }+ ;
layout : '//' { { end_of_line }~ }* end_of_line ;

6.6.5 The Grammar of Metamodels

It remains to provide the grammar of metamodels (MML) which is useful, for ex-
ample, for parsing metamodels.

Specification 6.8 (The EGL grammar of MML metamodels)

EGL resource languages/MML/cs.egl

metamodel : { classifier }* ;
[datatype] classifier : 'datatype' name ';' ;
[enum] classifier : 'enum' name '{' name {',' name}* '}' ;
[class] classifier : abstract 'class' name super members ;
super : { 'extends' name }? ;
[abstract] abstract : 'abstract' ;
[concrete] abstract : ;
members : '{' { member }* '}' ;
member : kind name ':' type ';' ;
[value] kind : 'value' ;
[part] kind : 'part' ;
[reference] kind : 'reference' ;
type : name cardinality ;
[plus] cardinality : '+' ;
[star] cardinality : '*' ;
[option] cardinality : '?' ;
[one] cardinality : ;

We also provide a separate grammar for the lexical syntax.

Illustration 6.16 (Lexical syntax of MML)

EGL resource languages/MML/ls.egl

name : { csymf }+ ;
layout : { space }+ ;
layout : '//' { { end_of_line }~ }* end_of_line ;

http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/ESL/ls.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/MML/cs.egl
http://github.com/softlang/yas/tree/springer/languages/EGL
http://github.com/softlang/yas/tree/springer/languages/MML/ls.egl

200 6 Foundations of Textual Concrete Syntax

Summary and Outline

We have explained how (context-free) grammars (or different notations for them)
may serve for modeling string-based concrete syntax. We have defined two differ-
ent semantics of grammars: (i) a set-theoretic semantics, defining a software lan-
guage as a set of strings; and (ii) a tree-oriented semantics, defining the structure
of language elements in terms of the productions of a grammar. Further, we have
defined the fundamental notions of acceptance and parsing, which ultimately have
to be complemented by algorithms for parsing.

In the next chapter, we will discuss the implementation of concrete syntax, in-
cluding basic parsing algorithms and practical approaches to parsing, formatting,
and mapping between concrete and abstract syntax, as well as the use of concrete
syntax in metaprograms.

References

1. Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Perlis, A.J., Rutishauser, H.,
Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaarden, A., Woodger, M.: Revised re-
port on the Algorithm Language ALGOL 60. Commun. ACM 6(1), 1–17 (1963)

2. van den Brand, M., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters for scannerless
generalized LR parsers. In: Proc. CC 2002, LNCS, vol. 2304, pp. 143–158. Springer (2002)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language and
toolset for program transformation. Sci. Comput. Program. 72(1-2), 52–70 (2008)

4. Chomsky, N.: Three models for the description of language. IRE Transactions on Information
Theory 2(3), 113–124 (1956)

5. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation. In: Proc.
POPL, pp. 111–122. ACM (2004)

6. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Pearson (2013). 3rd edition

7. ISO/IEC: ISO/IEC 14977:1996(E). Information Technology. Syntactic Metalanguage.
Extended BNF. (1996). Available at http://www.cl.cam.ac.uk/~mgk25/
iso-14977.pdf

8. Johnson, S.C.: YACC—Yet Another Compiler Compiler. Computer Science Technical Report
32, AT&T Bell Laboratories (1975)

9. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language for source code
analysis and manipulation. In: Proc. SCAM, pp. 168–177. IEEE (2009)

10. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming with Rascal. In: GTTSE
2009, Revised Papers, LNCS, vol. 6491, pp. 222–289. Springer (2011)

11. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013). 2nd edition
12. Visser, E.: Syntax definition for language prototyping. Ph.D. thesis, University of Amsterdam

(1997)
13. Visser, E.: Stratego: A language for program transformation based on rewriting strategies. In:

Proc. RTA, LNCS, vol. 2051, pp. 357–362. Springer (2001)

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

	Chapter 6: Foundations of Textual Concrete Syntax
	6.1 Textual Concrete Syntax
	6.1.1 A Basic Grammar Notation
	6.1.2 Derivation of Strings
	6.1.3 An Extended Grammar Notation
	6.1.4 Illustrative Examples of Grammars
	6.1.4.1 Syntax of Simple Expressions
	6.1.4.2 Syntax of Simple Imperative Programs
	6.1.4.3 Syntax of Simple Functional Programs
	6.1.4.4 Syntax of Finite State Machines

	6.2 Concrete versus Abstract Syntax
	6.3 Languages as Sets of Strings
	6.3.1 Context-Free Grammars
	6.3.2 The Language Generated by a Grammar
	6.3.3 Well-Formed Grammars
	6.3.4 The Notion of Acceptance

	6.4 Languages as Sets of Trees
	6.4.1 Concrete Syntax Trees
	6.4.2 The Notion of Parsing
	6.4.3 Ambiguous Grammars

	6.5 Lexical Syntax
	6.6 The Metametalevel
	6.6.1 The Signature of Grammars
	6.6.2 The Signature of Concrete Syntax Trees
	6.6.3 The Grammar of Grammars
	6.6.4 The Grammar of Signatures
	6.6.5 The Grammar of Metamodels

	Summary and outline
	References

