
Chapter 2
A Story of a Domain-Specific Language

MARTIN FOWLER.1

Abstract In this chapter, several fundamental concepts and engineering techniques
for software languages are explained by means of an illustrative domain-specific
language. In particular, we exercise the internal and external styles of DSL im-
plementation, textual and visual syntax, parsing, interpretation, and code genera-
tion. As a running example, we deal with a DSL for finite state machines FSML
(FSM Language). In addition to implementing FSML with mainstream languages
and technologies, we discuss design and implementation options and concerns over-
all and we describe a number of “recipes” for DSL development.

1 There is no “Greek” in Martin Fowler’s textbooks on refactoring [4] and DSLs [5], both ad-
dressing important topics in software language engineering. These accessible textbooks triggered
research on these topics and connected research better with “mainstream” software development.
Martin Fowler was again visionary when he asked in 2005 “Language Workbenches: The Killer-
App for Domain Specific Languages?” (https://www.martinfowler.com/articles/
languageWorkbench.html), thereby fueling the development of and research on language
workbenches [2, 3, 9, 8, 16, 15, 17, 13].
Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA
4.0. This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission.
This work also quotes https://en.wikipedia.org/wiki/Wheat_Field_with_Cypresses#/media/
File:Wheat-Field-with-Cypresses-(1889)-Vincent-van-Gogh-Met.jpg, subject to the attribu-
tion “Vincent van Gogh: Wheat Field with Cypresses (1889) [Public domain], via Wikipedia.” This work artistically
morphes an image, https://en.wikipedia.org/wiki/Martin_Fowler, showing the person honored, sub-
ject to the attribution “By Webysther Nunes - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/
w/index.php?curid=39594469.”

51© Springer International Publishing AG, part of Springer Nature 2018
R. Lämmel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_2

https://www.martinfowler.com/articles/languageWorkbench.html
https://www.martinfowler.com/articles/languageWorkbench.html
http://www.softlang.org/book-art
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.facebook.com/MattSheehyArt/
https://en.wikipedia.org/wiki/Wheat_Field_with_Cypresses#/media/File:Wheat-Field-with-Cypresses-(1889)-Vincent-van-Gogh-Met.jpg
https://en.wikipedia.org/wiki/Wheat_Field_with_Cypresses#/media/File:Wheat-Field-with-Cypresses-(1889)-Vincent-van-Gogh-Met.jpg
https://en.wikipedia.org/wiki/Martin_Fowler
https://commons.wikimedia.org/w/index.php?curid=39594469
https://commons.wikimedia.org/w/index.php?curid=39594469
https://doi.org/10.1007/978-3-319-90800-7_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90800-7_2&domain=pdf

52 2 A Story of a Domain-Specific Language

Fig. 2.1 A turnstile FSM in visual notation on the whiteboard.

2.1 Language Concepts

We assume an imaginary business context: a company Acme2, which develops em-
bedded systems.3 Acme is an international leader in embedded systems development.
Over the last 50 years, Acme has matured a number of development techniques that
are specifically tailored to the area of embedded systems development. For instance,
Acme uses FSMs4 in the development of embedded systems. In this chapter, we
discuss a corresponding language for FSMs, FSML (FSM Language). FSML is a
domain-specific language that was grown at Acme over many years; the language
and its implementation have emerged and evolved in various ways, as described
below.

FSML is introduced here by means of an example. In an ongoing project, Acme
is developing a turnstile component, as part of a bigger contract to modernize the
metro system in an undisclosed city. Metro passengers need to pass through the
turnstile (a hub or spider) and insert a valid ticket into the turnstile’s card reader
when they want to reach the platform in a legal manner. The Acme architects and
the customer agree on the basic functionality for turnstiles in a meeting, where they
draw an FSM on the whiteboard as shown in Fig. 2.1.

2 http://en.wikipedia.org/wiki/Acme_Corporation
3 http://en.wikipedia.org/wiki/Embedded_system
4 http://en.wikipedia.org/wiki/Finite-state_machine

http://en.wikipedia.org/wiki/Acme_Corporation
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Finite-state_machine

2.1 Language Concepts 53

FSML is quickly explained in terms of its visual notation with the example at
hand. FSMs comprise states (nodes) and transitions (directed edges). The initial
state of the machine is indicated by a bolder border. These are these states in the
turnstile FSM:

• locked: The turnstile is locked. No passenger is allowed to pass.
• unlocked: The turnstile is unlocked. A passenger may pass.
• exception: A problem has occurred and metro personnel need to intervene.

Each transition connects two states and is annotated by two parts, e/a, an event
e and an action a, where the latter is optional. The event may be triggered by the
user; this may involve sensors in an embedded system. An event causes a transition.
An action corresponds to functionality to be performed upon a transition; this may
involve actors in an embedded system. The source of a transition is the source state;
the target of a transition is the target state. The turnstile FSM involves these events:

• ticket: A passenger inserts a ticket into the card reader.
• pass: A passenger passes through the turnstile as noticed by a sensor.
• mute: Metro personnel turn off the alarm after an exception.
• release: Metro personnel turn on normal operation again.

The turnstile FSM involves these actions:

• collect: The ticket is collected by the card reader.
• eject: The ticket is ejected by the card reader.
• alarm: An alarm is turned on, thereby requesting metro personnel.

Based on such an understanding of states, events, and actions, the meaning of the
different transitions in Fig. 2.1 should be obvious by now. Consider, for example,
the transition from the source state “locked” to the target state ‘unlocked’, which is
annotated by “ticket/collect” to mean that the transition is triggered by the event of
inserting a ticket and the transition causes the action of collecting the ticket.

The idea is now that architects and customers can validate their intuitions about
turnstiles by starting from some input (a sequence of events) and determine the
corresponding output (a sequence of actions), as illustrated below.

Illustration 2.1 (Sample input for the turnstile FSM)
The input is a sequence of the following events:

ticket A ticket is inserted. (The turnstile is thus unlocked.)
ticket Another ticket is inserted. (The superfluous ticket is ejected.)
pass Someone passes through the turnstile. (This is OK.)
pass Someone else passes through the turnstile. (This triggers an alarm.)
ticket A ticket is inserted. (The ticket is ejected in the exceptional state.)
mute The alarm is muted.
release Metro personnel switch back to normal.

54 2 A Story of a Domain-Specific Language

Illustration 2.2 (Sample output for the sample input of Illustration 2.1)
The output is a sequence of the following actions:

collect The inserted ticket is collected.
eject A ticket inserted in the unlocked state is ejected.
alarm An attempt to pass in the locked state triggers an alarm.
eject A ticket inserted in the exceptional state is ejected.

2.2 Internal DSL

Over the years, the Acme engineers increasingly appreciated the FSM notation.
There was growing interest in handling FSMs as proper software engineering ar-
tifacts, as opposed to simply passing down whiteboard drawings from architects to
developers.

DSL implementation efforts were sparked off within the company. One engineer
implemented FSML as an internal DSL [5, 14, 1, 12] in Java. In this manner, a
machine-checked and executable notation for FSMs was obtained without much
effort, and also without the need for special tools.

In the internal style of DSL implementation, DSL programs are represented and
their behavior is implemented in a host language. The idea is that the language con-
cepts of the DSL are implemented as a library and the DSL programmer is provided
with an API for manipulating DSL programs. We demonstrate the use of Java and
Python as host languages for FSML here. We should mention that the details of in-
ternal DSL style depend significantly on the host language. If we were using C++,
Scheme, Haskell, Scala, or some other language as the host language, additional or
different techniques could be leveraged, for example, operator overloading, macros,
or templates.

2.2.1 Baseline Object Model

Let us begin with a very simple object model for FSML. We assume classes
Fsm, State, and Transition for the representation of FSMs, states, and transitions.
Setter/getter-based Java code for FSM construction may take the form as shown
below.

2.2 Internal DSL 55

Note: Most “code snippets” (from Chapter 2 onwards) in this book are enclosed into
“Illustration” blocks and contain a clickable URL so that the corresponding source
file can be looked up in the underlying online repository. Many source files are
shown with elisions and, thus, by following the link, one can inspect the complete
file and also observe the context of the file in the repository. The following illustra-
tion contains the URL above the actual source code; see the underlined string.

Illustration 2.3 (Imperative style of constructing FSML objects)

Java source code org/softlang/fsml/ImperativeSample.java

turnstile = new Fsm();
State s = new State();
s.setStateid("locked");
s.setInitial(true);
turnstile.getStates().add(s);
s = new State();
s.setStateid("unlocked");
turnstile.getStates().add(s);
s = new State();
s.setStateid("exception");
turnstile.getStates().add(s);
Transition t = new Transition();
t.setSource("locked");
t.setEvent("ticket");
t.setAction("collect");
t.setTarget("unlocked");
turnstile.getTransitions().add(t);
t = new Transition();
. . . // add more transitions

That is, various objects are to be constructed and initialized with setters and other
accessors. This style may be slightly improved if functional constructors are put to
work as shown below.

Illustration 2.4 (Functional construction of FSML objects)

Java source code org/softlang/fsml/FunctionalSample.java

turnstile = new Fsm();
turnstile.getStates().add(new State("locked", true));
turnstile.getStates().add(new State("unlocked"));
turnstile.getStates().add(new State("exception"));
turnstile.getTransitions().add(new Transition("locked", "ticket", "collect", "unlocked"));
turnstile.getTransitions().add(new Transition("locked", "pass", "alarm", "exception"));
. . . // add more transitions

The code is still littered with object construction, container manipulation, and
the repetition of source states for transitions. We will discuss below a more “fluent”
API. As a baseline, we implement a simple baseline as follows.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/ImperativeSample.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/FunctionalSample.java

56 2 A Story of a Domain-Specific Language

Illustration 2.5 (Object model with functional constructors)

Java source code org/softlang/fsml/Fsm.java

public class Fsm {
private List<State> states = new LinkedList<>();
private List<Transition> transitions = new LinkedList<>();
public List<State> getStates() { return states; }
public List<Transition> getTransitions() { return transitions; }

}

Java source code org/softlang/fsml/State.java

public class State {
private String id;
private boolean initial;
public String getStateid() { return id; }
public void setStateid(String state) { this.id = state; }
public boolean isInitial() { return initial; }
public void setInitial(boolean initial) { this.initial = initial; }
public State() { }
public State(String id) { this.id = id; }
public State(String id, boolean initial) { this.id = id; this.initial = initial; }

}

Java source code org/softlang/fsml/Transition.java

public class Transition {
private String source;
private String event;
private String action;
private String target;
. . . // getters and setters omitted
public Transition() { }
public Transition(String source, String event, String action, String target) {

this.source = source;
this.event = event;
this.action = action;
this.target = target;

}
}

Exercise 2.1 (Object model with references) [Basic level]
Implement an alternative object model where the target state of a transition is mod-
eled as a proper object reference to a state object, as opposed to the use of strings
in the baseline model.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/Fsm.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/State.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/Transition.java

2.2 Internal DSL 57

2.2.2 Fluent API

Let us aim at a more “fluent” API, which is focused on language concepts, elimi-
nates sources of redundancy, and hides the object-oriented representation, as shown
for the host languages Java and Python below.

Illustration 2.6 (Fluent style of representing an FSM in Java)

Java source code org/softlang/fsml/fluent/Sample.java

turnstile = fsm()
.addState("locked")

.addTransition("ticket", "collect", "unlocked")

.addTransition("pass", "alarm", "exception")
.addState("unlocked")

.addTransition("ticket", "eject", "unlocked")

.addTransition("pass", null, "locked")
.addState("exception")

.addTransition("ticket", "eject", "exception")

.addTransition("pass", null, "exception")

.addTransition("mute", null, "exception")

.addTransition("release", null, "locked");

Illustration 2.7 (Fluent style of representing an FSM in Python)

Python module FsmlSample

turnstile = \
Fsm() \

.addState("locked") \
.addTransition("ticket", "collect", "unlocked") \
.addTransition("pass", "alarm", "exception") \

.addState("unlocked") \
.addTransition("ticket", "eject", "unlocked") \
.addTransition("pass", None, "locked") \

.addState("exception") \
.addTransition("ticket", "eject", "exception") \
.addTransition("pass", None, "exception") \
.addTransition("mute", None, "exception") \
.addTransition("release", None, "locked")

The construction of the FSM is expressed in a relatively concise and readable
manner. The choice of Java or Python as a host language does not influence the no-
tation much. The fluent API style is achieved by applying a few simple techniques:

Factory methods Rather than invoking regular constructors, any sort of DSL pro-
gram fragment is constructed by appropriate factory methods. In this manner, we
effectively abstract from the low-level representation of DSL programs. Also,
the DSL concepts map more systematically to API members and the verbosity of
constructor invocation is avoided.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/Sample.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlSample.py

58 2 A Story of a Domain-Specific Language

Method chaining A DSL program is represented as a chain of object mutations
such that each step returns a suitable object on which to perform the next step. For
the simple DSL at hand, the returned object is the FSM to add transitions. In this
manner, DSL programs can be represented as expressions instead of statement
sequences on local variables.

Implicit parameters The API for DSL program construction may maintain im-
plicit parameters so that they do not need to be repeated explicitly. For FSML, it
is natural to group all transitions by source state and, thus, the API maintains a
“current” state.

Conventions (defaults) Some details may be omitted by the programmer if rea-
sonable defaults can be assumed, subject to conventions. For FSML, it makes
sense to assume that the first state is the initial state and, thus, the flag “initial”
can be omitted universally.

Let us illustrate the fluent API in Java.

Illustration 2.8 (A fluent Java API for FSMs)

Java source code org/softlang/fsml/fluent/Fsm.java

public interface Fsm {
public Fsm addState(String state);
public Fsm addTransition(String event, String action, String target);
public String getInitial();
public ActionStatePair makeTransition(String state, String event);

}

Java source code org/softlang/fsml/fluent/ActionStatePair.java

// Helper class for "makeTransition"
public class ActionStatePair {

public String action;
public String state;

}

The API does not just feature members for construction; it also provides access
to the initial state and the transitions, thereby preparing for the ‘interpretation’ of
FSMs, as discussed later in detail (Section 2.2.3). Let us illustrate one option of
implementing the fluent API such that we use a cascaded map to maintain states
and transitions as shown below.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/Fsm.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/ActionStatePair.java

2.2 Internal DSL 59

Illustration 2.9 (A fluent API implementation for FSML in Java)

Java source code org/softlang/fsml/fluent/FsmImpl.java

public class FsmImpl implements Fsm {
private String initial; // the initial state
private String current; // the "current" state
// A cascaded map for maintaining states and transitions
private HashMap<String, HashMap<String, ActionStatePair>> fsm =

new HashMap<>();
private FsmImpl() { }
// Construct FSM object
public static Fsm fsm() { return new FsmImpl(); }
// Add state and set it as current state
public Fsm addState(String id) {

// First state is initial state
if (initial == null) initial = id;
// Remember state for subsequent transitions
this.current = id;
if (fsm.containsKey(id)) throw new FsmlDistinctIdsException();
fsm.put(id, new HashMap<String, ActionStatePair>());
return this;

}
// Add transition for current state
public Fsm addTransition(String event, String action, String target) {

if (fsm.get(current).containsKey(event)) throw new FsmlDeterministismException();
ActionStatePair pair = new ActionStatePair();
pair.action = action;
pair.state = target;
fsm.get(current).put(event, pair);
return this;

}
// Getter for initial state
public String getInitial() {

return initial;
}
// Make transition
public ActionStatePair makeTransition(String state, String event) {

if (!fsm.containsKey(state)) throw new FsmlResolutionException();
if (!fsm.get(state).containsKey(event)) throw new FsmlInfeasibleEventException();
return fsm.get(state).get(event);

}
}

The implementation makes the assumption that the first state corresponds to the
initial state. Also, when a transition is added, the most recently added state (current)
serves as the source state. The implementation also shields against some program-
ming errors when describing an FSM; see the exceptions raised. We will discuss the
related constraints later on (Section 2.2.4).

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/FsmImpl.java

60 2 A Story of a Domain-Specific Language

Exercise 2.2 (Fluent API on baseline object model) [Basic level]
Provide an alternative implementation of the fluent API such that the API is realized
on top of the baseline object model of Section 2.2.1.

We also exercise Python as the host language for API implementation as follows.

Illustration 2.10 (A fluent API implementation for FSML in Python)

Python module FsmlModel

class Fsm():
def __init__(self):

self.fsm = defaultdict(list)
self.current = None

def addState(self, id):
return self.addStateNoDefault(self.current is None, id)

def addStateNoDefault(self, initial, id):
if id in self.fsm[id]: raise FsmlDistinctIdsException;
self.stateObject = dict()
self.stateObject['transitions'] = defaultdict(list)
self.stateObject['initial'] = initial
self.fsm[id] += [self.stateObject]
self.current = id
return self

def addTransition(self, event, action, target):
if event in self.stateObject['transitions']: raise FsmlDeterminismException;
self.stateObject['transitions'][event] += \

[(action, self.current if target is None else target)]
return self

When comparing the Python implementation with the earlier Java implementa-
tion, we note that the Python class does not feature members for “observation”; re-
member the methods getInitial and makeTransition in Illustration 2.9. This is a matter
of choice; we assume here that the programmer can simply access the dictionary-
based representation of FSMs in the case of Python.

Note: We summarize some important workflows in this book by means of “recipes”
such as the one below. The frontmatter of the book features a list of recipes.

http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlModel.py

2.2 Internal DSL 61

Recipe 2.1 (Development of a fluent API).

Samples Pick some sample DSL “programs” and represent them as expres-
sions in the host language. Strive for fluency by adopting techniques such
as method chaining.

API Extract the fluent API from the samples. You may represent the API
literally as an interface or capture the API by starting the implementation
of an object model with empty method bodies.

Implementation Identify suitable representation types for the DSL “pro-
grams” (e.g., objects with suitable attributes or data structures such as
maps). Implement the fluent API in terms of the representation types.

2.2.3 Interpretation

An obvious aspect of implementing a DSL for FSMs is the simulation of FSMs in
the sense of processing some input (a sequence of events) to experience the resulting
state transitions and to derive the corresponding output (a sequence of actions). At
Acme, engineers appreciated the possibility of simulation because it would allow
them to “play” with the FSMs and to document and verify traces of expected system
behavior without yet implementing the FSMs proper on the target platform.

FSM simulation is an instance of what is generally referred to as interpretation.
An interpreter processes a “program” (i.e., an FSM in the running example), it takes
possibly additional input (namely a sequence of events in the running example), and
it returns an output (namely a sequence of actions in the running example). We may
also use streams to enable “interactive” as opposed to “batch-oriented” simulation.

Let us capture an expected “run” of the turnstile FSM as a (JUnit) testcase.

Illustration 2.11 (Test case for simulation of turnstile execution)

Java source code org/softlang/fsml/tests/FluentTest.java

public class FluentTest {

private static final String[] input =
{"ticket", "ticket", "pass", "pass", "ticket", "mute", "release"};

private static final String[] output =
{"collect", "eject", "alarm", "eject"};

@Test
public void runSample() {

assertArrayEquals(output, run(Sample.turnstile, input));
}

}

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/tests/FluentTest.java

62 2 A Story of a Domain-Specific Language

In this test case, we invoke a run method with a sequence of events as input (i.e.,
as a method argument) and with a sequence of actions as output (i.e., as the method
result). Both actual input and expected output are set up as string arrays accordingly.
The run method (i.e., the FSML interpreter) can be implemented in Java as follows.

Illustration 2.12 (An interpreter for FSML hosted by Java)

Java source code org/softlang/fsml/fluent/FsmlInterpreter.java

public class FsmlInterpreter {
public static String[] run(Fsm fsm, String[] input) {

ArrayList<String> output = new ArrayList<>();
String state = fsm.getInitial();
for (String event : input) {

ActionStatePair pair = fsm.makeTransition(state, event);
if (pair.action != null) output.add(pair.action);
state = pair.state;

}
return output.toArray(new String[output.size()]);

}
}

That is, the semantics of an FSM is essentially modeled by the API members
getInitial and makeTransition so that it just remains to loop over the input and accu-
mulate the output.

Let us implement an interpreter in Python.

Illustration 2.13 (An interpreter for FSML hosted by Python)

Python module FsmlInterpreter

def run(fsm, input):
Determine initial state
for id, [decl] in fsm.iteritems():

if decl["initial"]:
current = decl
break

Consume input; produce output
output = []
while input:

event = input.pop(0)
if event not in current["transitions"]: raise FsmlInfeasibleEventException
else:

[(action, target)] = current["transitions"][event]
if action is not None: output.append(action)
if target not in fsm: raise FsmlResolutionException
[current] = fsm[target]

return output

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/fluent/FsmlInterpreter.java
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlInterpreter.py

2.2 Internal DSL 63

In this implementation, the underlying data structure is accessed directly; this
also entails an extra loop to identify the initial state.

The present section is summarized by means of a recipe.

Recipe 2.2 (Development of an interpreter).

Program representation Set up representation types for the programs to be
interpreted. For instance, you may rely on the representation types used by
a more or less fluent API (Recipe 2.1).

Arguments Identify types of interpretation arguments. In the case of FSML,
the interpreter takes a sequence of events, i.e., strings.

Results Identify types of interpretation results. In the case of FSML, the in-
terpreter returns a sequence of actions, i.e., strings. The interpreter could
also expose intermediate states encountered during the transitions – even
though this was not demonstrated earlier.

Test cases Set up test cases for the interpreter. A positive test case consists
of a program to be interpreted, additional arguments, and the expected re-
sult(s). A negative test case does not provide an expected result; instead it
is marked with the expectation that interpretation terminates abnormally.

Case discrimination Implement interpretation as case discrimination on the
syntactic constructs. The interpretation of compound constructs commences
recursively or by list processing.

Testing Test the interpreter in terms of the test cases.

We will refine the interpreter recipe in Chapter 5.

Exercise 2.3 (Irregular interpreter completion for FSML) [Basic level]
Implement a test case which illustrates irregular completion. Hint: Design an event
sequence such that simulation ends up in a state where a given event cannot be
handled.

2.2.4 Well-Formedness

An FSM should meet certain well-formedness constraints to “make sense”, i.e., so
that we can expect interpretation of the FSM to be feasible. For instance, each tar-
get state mentioned in a transition of an FSM should also be declared in the FSM.
Clearly, it is important that language users at Acme have a good understanding of
these constraints so that they use the language correctly. New Acme employees at-
tend an FSML seminar, where they are trained according to the principle “language
by example”, i.e., understanding the language by means of complementary, illustra-
tive examples. This includes both well-formed (useful) examples and simple illus-
trations of constraint violation.

64 2 A Story of a Domain-Specific Language

Here is a list of some conceivable constraints; we assign names to the constraints
for later reference:

• distinctStateIds: The state ids of the state declarations must be distinct.
• singleInitialState: An FSM must have exactly one initial state.
• deterministicTransitions: The events must be distinct per state.
• resolvableTargetStates: The target state of each transition must be declared.
• reachableStates: All states must be reachable from the initial state.

Yet more constraints could be identified. For instance, we could require that all
states offer transitions for all possible events; this constraint is not met by the turn-
stile FSM. Let us demonstrate violation of a constraint with an FSM. In the follow-
ing code, we use the fluent Python API (Section 2.2.2).

Illustration 2.14 (A violation of the resolvableTargetStates constraint)

Python module FsmlResolutionNotOk

resolutionNotOk = \
Fsm() \

.addState("stateA") \
.addTransition("eventI", "actionI", "stateB") \
.addTransition("eventII", "actionII", "stateC") \

.addState("stateB")

Exercise 2.4 (Violation of constraints) [Basic level]
Construct an FSM which violates the distinctStateIds constraint. Construct another
FSM which violates the reachableStates constraint.

FSMs exercising constraint violation can be turned into negative test cases for
the implementation of the DSL. In implementing the fluent API (Section 2.2.2), we
have already shielded against some problems related to the aforementioned con-
straints. That is, the addState method throws if the given state id has been added
before, thereby addressing the constraint distinctStateIds. Also, the addTransition
method throws if the given event has already occurred in another transition for the
current state, thereby addressing the constraint deterministicTransitions. The con-
straints may be implemented by predicates as shown below.

Illustration 2.15 (Constraint checking for FSMs)

Python module FsmlConstraints

def ok(fsm):
for fun in [

distinctStateIds,
singleInitialState,
deterministicTransitions,
resolvableTargetStates,

http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlResolutionNotOk.py
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlConstraints.py

2.2 Internal DSL 65

reachableStates] : fun(fsm)

def distinctStateIds(fsm):
for state, decls in fsm.iteritems():

if not len(decls) == 1: raise FsmlDistinctIdsException()

def singleInitialState(fsm):
initials = [initial for initial, [decl] in fsm.iteritems() if decl["initial"]]
if not len(initials) == 1: raise FsmlSingleInitialException()

def deterministicTransitions(fsm):
for state, [decl] in fsm.iteritems():

for event, transitions in decl["transitions"].iteritems():
if not len(transitions) == 1: raise FsmlDeterminismException()

def resolvableTargetStates(fsm):
for _, [decl] in fsm.iteritems():

for _, transitions in decl["transitions"].iteritems():
for (_, target) in transitions:

if not target in fsm: raise FsmlResolutionException()

def reachableStates(fsm):
for initial, [decl] in fsm.iteritems():

if decl["initial"]:
reachables = set([initial])
chaseStates(initial, fsm, reachables)

if not reachables == set(fsm.keys()): raise FsmlReachabilityException()

Helper for recursive closure of reachable states
def chaseStates(source, fsm, states): . . .

Arguably, some constraints do not need to be checked if we assume a fluent
API implementation as discussed before, because some constraint violations may
be caught during construction. However, we do not assume necessarily that all DSL
samples are constructed by means of the fluent API. For instance, DSL samples
may also be represented in interchange formats, thereby calling for well-formedness
checking atop serialization.

We mention in passing that additional constraints apply, when all arguments are
considered for interpretation. In the case of FSML, we must require that the events
in the input can always be handled in the corresponding transition. This sort of
problem is caught by the interpreter.

66 2 A Story of a Domain-Specific Language

The present section is summarized by means of a recipe.

Recipe 2.3 (Development of a constraint checker).

Negative test cases Designate one negative test case for each constraint that
should be checked. Ideally, each such test case should violate just one con-
straint and not several at once.

Reporting Choose an approach to “reporting”. The result of constraint vi-
olation may be communicated either as a Boolean value, as a list of error
messages, or by throwing an exception.

Modularity Implement each constraint in a separate function, thereby sup-
porting modularity and testing.

Testing The constraint violations must be correctly detected for the negative
test cases. The positive test cases, for example, those for the interpreter
(Recipe 2.2), must pass.

2.3 External DSL

The developers at Acme were happy with the internal DSL implementation, as it
helped them to experiment with FSMs in a familiar programming language. How-
ever, the programming-language notation implied a communication barrier between
developers and other stakeholders, who could not discuss matters in terms of pro-
grams or did not want to.

An Acme developer with competence in language implementation therefore pro-
posed a concise and machine-checkable domain-specific textual syntax for FSMs as
exercised below.

Illustration 2.16 (Turnstile FSM in textual syntax)

FSML resource languages/FSML/sample.fsml

initial state locked {
ticket/collect −> unlocked;
pass/alarm −> exception;

}
state unlocked {

ticket/eject;
pass −> locked;

}
state exception {

ticket/eject;
pass;
mute;
release −> locked;

}

http://github.com/softlang/yas/tree/springer/languages/FSML
http://github.com/softlang/yas/tree/springer/languages/FSML/sample.fsml

2.3 External DSL 67

In the textual notation, all state declarations group together the transitions with
the given state as the source state. The target state of a transition appears to the right
of the arrow “−>”. If the arrow is missing, this is taken to mean that the target state
equals the source state.

2.3.1 Syntax Definition

An Acme developer with competence in software language engineering suggested a
grammar-based syntax definition as follows.

fsm : state+ EOF ;
state : 'initial'? 'state' stateid '{' transition* '}' ;
transition : event ('/' action)? ('−>' target=stateid)? ';' ;
stateid : NAME ;
event : NAME ;
action : NAME ;
NAME : ('a'..'z'|'A'..'Z')+ ;

A variation of the EBNF [7] notation for context-free grammars [6] is used here.
The grammar rules define the syntactic categories (“nonterminals”): state machines
(fsm), state declarations (state), transitions (transition), and more basic categories for
state ids, events, and actions. Each rule consists of the name of the being defined
(on the left), a separator (“:”), and the actual definition (on the right) in terms of
other grammar symbols. For instance, the rule defining fsm models the fact that an
FSM consists of a non-empty sequence of state declarations followed by the EOF
(end-of-file) character. The rule defining state models the fact that a state declaration
starts with the optional keyword ‘initial’, followed by the keyword “state”, followed
by a state id, followed by a sequence of transitions enclosed in braces.

Let us provide a general recipe for authoring a grammar.

Recipe 2.4 (Authoring a grammar).

Samples Sketch the intended language in terms of a few simple samples (i.e.,
strings) without trying to design a grammar at the same time. If you have
carried out a domain analysis (Section 1.3), then your samples should cover
the concepts identified by the analysis.

Categories Identify the syntactic categories exercised in your samples (and
possibly suggested by your domain analysis), for example, state declara-
tions and transitions in the case of FSML. Assign names to these categories.
These names are referred to as nonterminals, to be defined by the grammar;
they show up on the left-hand sides of grammar rules.

Alternatives Identify the alternatives for each category. (Again, a domain
analysis may readily provide such details.) FSML is so simple that there is

68 2 A Story of a Domain-Specific Language

only a single alternative per category, but think of different expression forms
in a language with arithmetic and comparison expressions. Assign names
to these alternatives; these names may be used to label grammar rules.

Structure Describe the structure of each alternative in terms of nontermi-
nals, terminals (keywords and special characters), sequential composition
(juxtaposition), repetition (“*” or “+”), and optionality (“?”).

Validation Ultimately, check that the language samples comply with the au-
thored grammar, as discussed later (Recipe 2.5).

2.3.2 Syntax Checking

A grammar can be used directly for implementing a syntax checker so that everyone
can easily check conformance of given text to the rules of the textual syntax. By im-
plementing such a checker, the Acme engineers started a transition from an internal
to an external DSL. That is, there was a dedicated frontend for FSML to permit the
representation of FSMs in a language-specific notation without making any conces-
sions to an existing programming language. The Acme developer in charge chose
the popular technology ANTLR5 [11] for implementing the syntax checker. That
is, ANTLR includes a parser generator which generates code for syntax checking
(or parsing) from a given syntax definition (a grammar). The grammar, which was
shown above, can be trivially completed into actual ANTLR input so that most of
the code for a syntax checker can be generated by ANTLR, as shown below.

Illustration 2.17 (An ANTLR input for FSML)

ANTLR resource languages/FSML/Java/Fsml.g4

1 grammar Fsml;
2 @header {package org.softlang.fsml;}
3 fsm : state+ EOF ;
4 state : 'initial'? 'state' stateid '{' transition* '}' ;
5 transition : event ('/' action)? ('−>' target=stateid)? ';' ;
6 stateid : NAME ;
7 event : NAME ;
8 action : NAME ;
9 NAME : ('a'..'z'|'A'..'Z')+ ;

10 WS : [\t\n\r]+ −> skip ;

The earlier grammar appears in lines 3–9. Otherwise, the ANTLR input features
the following details.

• The grammar is given a name: Fsml (line 1). This name is used in names of
generated Java classes such as FsmlParser and FsmlLexer.

5 http://www.antlr.org/

http://github.com/softlang/yas/tree/springer/languages/ANTLR
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/Fsml.g4
http://www.antlr.org/

2.3 External DSL 69

• By means of a header pragma, a Java package name is specified: org.softlang.fsml
(line 2). The generated Java classes are put into this package.

• A special grammar symbol for white space is declared: WS (line 10). Such white
space is to be skipped in the input, as controlled by the skip action.

• Two of the nonterminals use uppercase identifiers: NAME and WS (lines 9–10).
This is a hint to ANTLR that these nonterminals model lexical syntax. That is,
the input text is first converted into a sequence NAME and WS tokens as well as
keywords or special tokens from the other rules, before parsing commences.

The present section is summarized by means of a recipe.

Recipe 2.5 (Development of a syntax checker).

Grammar It is assumed that you have authored a grammar and samples
according to Recipe 2.4.

Approach Choose an approach to grammar implementation. In this section,
we favored the use of a parser generator (ANTLR). In Chapter 7, we will
also discuss programmatic implementation (recursive descent and parser
combinators).

Driver Develop driver code for applying the implemented grammar to input.
Testing Apply the syntax checker to language samples to confirm their con-

formance to the grammar. One should also author samples with syntax er-
rors to test that the syntax checker catches the errors and communicates
them appropriately.

In the running example, we still need the driver code for applying the ANTLR-
based checker to samples, as shown below.

Illustration 2.18 (Driver code for the generated syntax checker (parser))

Java source code org/softlang/fsml/FsmlSyntaxChecker.java

public class FsmlSyntaxChecker {
public static void main(String[] args) throws IOException {

FsmlParser parser =
new FsmlParser(

new CommonTokenStream(
new FsmlLexer(

new ANTLRFileStream(args[0]))));
parser.fsm();
System.exit(parser.getNumberOfSyntaxErrors()−Integer.parseInt(args[1]));

}
}

The code is idiosyncratic to ANTLR; it entails the following steps:

• An ANTLRFileStream object is constructed and applied to a filename; this is es-
sentially an input stream to process a text file.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/FsmlSyntaxChecker.java

70 2 A Story of a Domain-Specific Language

• An FsmlLexer object is wrapped around the stream; this is a lexer (scanner) object
as an instance of a class that was generated from the grammar.

• A CommonTokenStream object is wrapped around the lexer; thereby allowing the
lexer to communicate with the parser in a standardized manner.

• An FsmlParser object is wrapped around the token stream; this is a parser object
as an instance of a class that was generated from the grammar.

• The parser is invoked; in fact, the nonterminal (the method) fsm is selected. As
a side effect, a parse tree (CST) is associated with the parser object and parse
errors, if any, can be retrieved from the same object.

• Finally, there is an assertion to check for parse errors.

The driver code shown is used by a test suite. We have set up the main method in
such a way that we can check positive and negative examples through a command-
line interface. That is, two arguments are expected: the name of the input file and
the expected number of syntax errors. The main method exits with “0”, if the ac-
tual number of syntax errors equals the expected number, otherwise it exits with a
nonzero code. Let us provide a sample for which syntax checking should fail.

Illustration 2.19 (A syntactically incorrect FSML sample)

FSML resource languages/FSML/tests/syntaxError.fsml

initial state stateA {

The ANTLR-based parser should report a syntax error as follows:

..line 2:0 missing '}' at '<EOF>'

For the sake of completeness, let us describe the build process of the ANTLR-
and Java-based syntax checker, as it combines code generation and compilation. We
may capture the involved steps by means of a Makefile6, as shown below.

Illustration 2.20 (Makefile for the FSML syntax checker)

Makefile resource languages/FSML/Java/Makefile

1 cp = −cp .:../../../lib/Java/antlr−4.5.3−complete.jar
2 antlr = java ${cp} org.antlr.v4.Tool −o org/softlang/fsml
3 fsmlSyntaxChecker = java ${cp} org.softlang.fsml.FsmlSyntaxChecker
4

5 all:
6 make generate
7 make compile
8 make test
9

10 generate:
11 ${antlr} Fsml.g4

6 http://en.wikipedia.org/wiki/Makefile

http://github.com/softlang/yas/tree/springer/languages/FSML
http://github.com/softlang/yas/tree/springer/languages/FSML/tests/syntaxError.fsml
http://github.com/softlang/yas/tree/springer/languages/Makefile
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/Makefile
http://en.wikipedia.org/wiki/Makefile

2.3 External DSL 71

12

13 compile:
14 javac ${cp} org/softlang/fsml/*.java
15

16 test:
17 ${fsmlSyntaxChecker} ../sample.fsml 0
18 ${fsmlSyntaxChecker} ../tests/syntaxError.fsml 1

That is:

• Java’s classpath is adjusted to incorporate the ANTLR tool and runtime (line 1).
• The invocation of the ANTLR tool for parser generation boils down to running

the main method of the Java class org.antlr.v4.Tool from the ANTLR jar with some
option (“-o”) for the output directory (line 2 for the command line and line 11
for the actual application).

• The invocation of the syntax checker for FSML boils down to running the main
method of the Java class org.softlang.fsml.FsmlSyntaxChecker (line 3 for the com-
mand line and lines 17–18 for the actual application). Each invocation involves
the input file to be checked and the number of expected syntax errors.

By performing syntax checking at Acme, some level of quality assurance regard-
ing the DSL for FSMs was supported. Language users could make sure that their
samples conformed to the intended syntax.

2.3.3 Parsing

Now let us suppose that we want to process the textual input on the basis of its
grammar-based structure. Thus, we need to make a transition from syntax check-
ing (or “acceptance”) to parsing. Classically, the output of parsing is a parse tree
or concrete syntax tree (CST), the structure of which is aligned with the underly-
ing grammar. A parser may also perform abstraction to eliminate details that are
not relevant for assigning semantics to the input. In this case, the output of parsing
is an abstract syntax tree (AST) or an abstract syntax graph (ASG), if the parser
additionally performs resolution to discover references in the otherwise tree-based
syntactical structure. The output of parsing is also referred to as a “model” in the
context of model-driven engineering (MDE). The term “text-to-model” (transfor-
mation) may be used instead of “parsing” in the MDE context.

At Acme, it was decided that the parser should construct ASTs such that an exist-
ing object model for FSMs was used for the representation of ASTs. In this manner,
one would be able also to apply well-formedness checking and interpretation (indi-
rectly) to FSMs that are represented as text. This gives rise to the notion of “text-to-
objects”. The grammar of the ANTLR-based syntax checker was reused. ANTLR
support for so-called parse-tree listeners was leveraged to attach functionality to the
grammar for the construction of suitable objects.

72 2 A Story of a Domain-Specific Language

An ANTLR listener is a collection of programmer-definable handler methods
that are invoked by the parsing process at well-defined points. There are, basically,
methods for entering and exiting parse-tree nodes for any nonterminal of the gram-
mar. In fact, the methods are invoked during a generic walk over a parse tree that
ANTLR constructs during its generic parsing process. Given a grammar, ANTLR
generates a suitable listener class (FsmlBaseListener in the present example) with
empty handler methods. A programmer may extend the base listener by implement-
ing handler methods that perform object construction. Let us present a listener which
facilitates parsing FSMs into objects according to the baseline object model for
FSML (Section 2.2.1). The corresponding Java code follows.

Illustration 2.21 (A parse-tree listener for text-to-objects)

Java source code org/softlang/fsml/FsmlToObjects.java

public class FsmlToObjects extends FsmlBaseListener {
private Fsm fsm;
private State current;
public Fsm getFsm() { return fsm; }
@Override public void enterFsm(FsmlParser.FsmContext ctx) {

fsm = new Fsm();
}
@Override public void enterState(FsmlParser.StateContext ctx) {

current = new State();
current.setStateid(ctx.stateid().getText());
fsm.getStates().add(current);

}
@Override public void enterTransition(FsmlParser.TransitionContext ctx) {

Transition t = new Transition();
fsm.getTransitions().add(t);
t.setSource(current.getStateid());
t.setEvent(ctx.event().getText());
if (ctx.action() != null) t.setAction(ctx.action().getText());
t.setTarget(ctx.target != null ? ctx.target.getText() : current.getStateid());

}
}

Thus, the listener extends FsmlBaseListener and it overrides enterFsm, enterState,
and enterTransition – these are the events of entering parse-tree nodes rooted in the
rules for the nonterminals fsm, state, and transition. The methods construct an FSM
object, which is stored in the attribute fsm of the listener.

We also need driver code to compose syntax checking, parse-tree construction
(done transparently by the ANTLR runtime), and parse-tree walking with the lis-
tener at hand, as shown below.

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/FsmlToObjects.java

2.3 External DSL 73

Illustration 2.22 (Parsing with an ANTLR listener)

Java source code org/softlang/fsml/tests/FsmlToObjectsTest.java

1 public Fsm textToObjects(String filename) throws IOException {
2 FsmlParser parser = new FsmlParser(
3 new CommonTokenStream(
4 new FsmlLexer(
5 new ANTLRFileStream(filename))));
6 ParseTree tree = parser.fsm();
7 assertEquals(0, parser.getNumberOfSyntaxErrors());
8 FsmlToObjects listener = new FsmlToObjects();
9 ParseTreeWalker walker = new ParseTreeWalker();

10 walker.walk(listener, tree);
11 return listener.getFsm();
12 }

This process consists of these phases:

• We construct an FsmlParser object and thus also objects for a file stream, a lexer,
and a token stream (lines 2–5). We use the same ANTLR grammar and the same
generated code as for the syntax checker.

• We invoke the parser (line 6). During parsing the parse tree is constructed and is
returned as the result of the method call parser.fsm().

• We check that parsing has completed without errors (line 7), as it would not be
sound to access the parse tree otherwise.

• We construct an FsmlToObjects object for listening (line 8), as explained earlier.
• We construct a ParseTreeWalker object (line 9) and we invoke the walker’s walk

method while passing the listener and the parse tree as arguments (line 10).
• Ultimately, we can extract the constructed AST from the listener object (line 11).

Let us summarize the development steps for obtaining a parser (i.e., a text-to-
model or text-to-objects transformation); the recipe given below mentions ANTLR
and its listener-based approach while it characterizes the underlying steps also more
generally.

Recipe 2.6 (Development of a parser).

Syntax checker Develop a syntax checker for the language according to
Recipe 2.5.

Representation Design a representation for parse trees, unless a suitable
representation is readily provided by the underlying technology such as a
parser generator. The representation may be defined, for example, in terms
of an object model, by means of JSON, or by other means of abstract syntax
implementation (Recipe 4.1).

Parse trees Implement functionality for the construction of parse trees, un-
less a suitable representation is readily constructed by the underlying tech-

http://github.com/softlang/yas/tree/springer/languages/FSML/Java/org/softlang/fsml/tests/FsmlToObjectsTest.java

74 2 A Story of a Domain-Specific Language

nology. For instance, in the case where ANTLR is used, you may implement
a listener for mapping generic ANTLR-specific parse trees to a designated
object model.

Driver Generalize the driver code of the underlying syntax checker to per-
form parsing, i.e., mapping text to parse trees.

Testing Generalize the test suite of the underlying syntax checker to perform
parsing, including the validation of the returned parse trees by comparison
with baselines.

Exercise 2.5 (Validation of text-to-objects) [Intermediate level]
How would you validate that the parser obtained according to Recipe 2.6 constructs
reasonable ASTs? To this end, assume that there are a large number of valid textual
inputs available. You need to find a scalable approach that takes into account all
these inputs.

2.4 DSL Services

Arguably, we have reached the “minimum” of a language implementation: represen-
tation (internal style and grammar-based textual syntax), parsing, interpretation, and
well-formedness checking. In practice, a DSL is likely to call for yet other language-
based components or “services”. For the running example, we are going to discuss
briefly an interchange format for serializing FSMs, a visual syntax for FSML, and
(C) code generation to represent FSMs directly as executable code. Examples of yet
other language services, which, however, are not discussed here, include these: a
refactoring tool for FSMs (e.g., for renaming state ids), a generator tool for FSMs
that could be used to test language services, a language-specific editor, other IDE
services, and a verification tool that could be used to prove equivalence or subsump-
tion for FSMs.

2.4.1 Interchange Format

At Acme, the developers wanted to implement language-based components in dif-
ferent programming languages while permitting integration of the services on the
basis of an interchange format for serialization. For instance, it should be possible
to use the output of a Java-based parser in a Python-based well-formedness checker.
An interchange format would also make it possible to distribute the language im-
plementation, for example, in a web application. The Acme developers agreed on a
JSON7-based representation as follows.

7 http://json.org/

http://json.org/

2.4 DSL Services 75

Illustration 2.23 (A JSON-based model of the turnstile FSM)

JSON resource languages/FSML/Python/tests/baselines/sample.json

{"exception": [{
"initial": false,
"transitions": {

"release": [[null, "locked"]],
"ticket": [["eject", "exception"]],

"mute": [[null, "exception"]],
"pass": [[null, "exception"]]}}],

"locked": [{
"initial": true,
"transitions": {

"ticket": [["collect", "unlocked"]],
"pass": [["alarm", "exception"]]}}],

"unlocked": [{
"initial": false,
"transitions": {

"ticket": [["eject", "unlocked"]],
"pass": [[null, "locked"]]}}]}

JSON is suitable for language-agnostic representation of (nested) dictionary-like
data with support for lists and some data types. JSON-based serialization is sup-
ported for most, if not all, popular programming languages. In the JSON-based rep-
resentation of an FSM, as shown above, an FSM is a nested dictionary with the state
ids as keys at the top, with keys “initial” and “transitions” per state, and with the
events as keys per transition. For each event, a pair consisting of an action (“null”
when missing) and a target state is maintained. In fact, each event is mapped to a
list of action-state pairs; see the following exercise.

Exercise 2.6 (Lists of action-state pairs) [Basic level]
What “expressiveness” is gained by mapping events to lists of action-state pairs?
Hint: Think of the separation of parsing and well-formedness checking.

The rules underlying the JSON format may be understood as defining the abstract
syntax of FSML. The engineers at Acme did not bother to define the format explicitly
by means of a schema, but this would be possible; see the following exercise.

Exercise 2.7 (A JSON schema for FSML) [Intermediate level]
Using the example model in Illustration 2.23 and the informal explanations of the
format, define a schema in JSON Schema8 for FSML. Perform schema-based vali-
dation on the example.

8 http://json-schema.org/

http://github.com/softlang/yas/tree/springer/languages/JSON
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/tests/baselines/sample.json
http://json-schema.org/

76 2 A Story of a Domain-Specific Language

Exercise 2.8 (A JSON exporter for Java objects) [Intermediate level]
Implement an object-to-JSON mapping in Java. Start from the baseline object model
for FSML (Section 2.2.1). Check that the mapping results in the expected JSON
output for the turnstile example.

Exercise 2.9 (Integrating Java and Python components) [Intermediate level]
Use the Java-based parser of Illustration 2.22 to parse text into objects. Use the
Java-based JSON exporter of Exercise 2.8 to serialize objects as JSON. It turns out
that the JSON format, when deserialized into Python with the “standard” load func-
tion, fits exactly the representation type of the fluent API implementation in Illustra-
tion 2.7. Validate the suitability of the Python objects, thus obtained, by applying
the Python-based components for interpretation and well-formedness checking, as
discussed earlier.

There are various alternatives to a JSON-based interchange format. Other possi-
ble options include XML9 and ASN.1.10

2.4.2 Code Generation

In the recent past, Acme engineers discovered that they could use FSMs for gen-
erating part of the ultimate implementation. In fact, as FSMs are used at Acme for
many different purposes and on many different devices and platforms, several code
generators were developed over time. Prior to using code generation, FSMs were
manually implemented in a more or less idiomatic manner.

In principle, one could “execute” FSMs on the target platform by means of some
form of (interactive) interpretation. However, code generation complements inter-
pretation in several ways:

Efficiency The generated code may potentially be more efficient than interpreta-
tion, just in the same way as compiled code typically runs faster than interpreted
code. The execution of the compiled code may also require less runtime resources
than interpretation. In particular, the interpreter itself, including its data structures
would not be needed for running the generated code.

Pluggability Developers may need to plug actual functionality into FSM execu-
tion. For instance, events and actions are merely “symbols” in FSML, but actual
functionality needs to be executed on the target platform so that FSM execution
interacts with sensors and actors. Such pluggability is also feasible with interpre-
tation, but perhaps even more straightforward with generated code.

9 http://www.w3.org/XML/
10 http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

2.4 DSL Services 77

Customizability The actual implementation of behavior, as specified by the
FSM, may need customization in some way. For instance, specific conditions
may need to be added on transitions and extra housekeeping may need to be ar-
ranged to this end. By representing FSMs within a programming language, the
programmers may customize functionality in a familiar manner.

Let us develop a simple code generator. Let us assume here that neither Python
nor Java is supported on the target platform, which may be a lower-level platform for
embedded systems, but there exists a C compiler emitting code for the target plat-
form. Thus, our code generator must generate target code in the C language (rather
than in Java or Python). Before looking at the implementation of the generator, let
us agree on a baseline for the generated code, as shown below.

Illustration 2.24 (Generated code for the turnstile FSM)

C resource languages/FSML/Python/generated/Turnstile.c

1 enum State { EXCEPTION, LOCKED, UNDEFINED, UNLOCKED };
2 enum State initial = LOCKED;
3 enum Event { RELEASE, TICKET, MUTE, PASS };
4 void collect() { }
5 void alarm() { }
6 void eject() { }
7 enum State next(enum State s, enum Event e) {
8 switch(s) {
9 case EXCEPTION:

10 switch(e) {
11 case RELEASE: return LOCKED;
12 case TICKET: eject(); return EXCEPTION;
13 case PASS: return EXCEPTION;
14 case MUTE: return EXCEPTION;
15 default: return UNDEFINED;
16 }
17 case LOCKED:
18 switch(e) {
19 case TICKET: collect(); return UNLOCKED;
20 case PASS: alarm(); return EXCEPTION;
21 default: return UNDEFINED;
22 }
23 case UNLOCKED:
24 switch(e) {
25 case TICKET: eject(); return UNLOCKED;
26 case PASS: return LOCKED;
27 default: return UNDEFINED;
28 }
29 default: return UNDEFINED;
30 }
31 }

http://github.com/softlang/yas/tree/springer/languages/C
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/generated/Turnstile.c

78 2 A Story of a Domain-Specific Language

The C code contains these elements:

• An enumeration type for the state ids (line 1).
• A declaration for the initial state (line 2).
• An enumeration type for the events (line 3).
• Functions for the actions with empty bodies (lines 4–6).
• A function next (lines 7–31) which takes the current state s and an event e, per-

forms the corresponding action, if any, and returns the new state. This function
is defined by a nested switch-statement that dispatches on s and e.

It is up to the developer of the embedded system to wire up the generated code
to the functionality for accessing sensors (to observe events) and actors (to perform
actions).

Exercise 2.10 (Representation options) [Intermediate level]
There are several options for code-level representations of FSM transitions: (i) a
cascaded switch-statement, as in Illustration 2.24; (ii) a data structure using ap-
propriate data types for collections, as used in the Java-based implementation of
the fluent API in Illustration 2.9; and (iii) an OO approach with an abstract base
type for states and one concrete subtype per state so that a polymorphic method for
state transitions takes the current event and selects an action as well as the target
state. What are the tradeoffs of these options, when using the following dimensions
for comparison: runtime efficiency, runtime adaptiveness, type safety for generated
code, and simplicity of the code generator? (You may need to actually experiment
with code generators for the options.)

Let us leverage template processing to generate the required C code. The pattern
of the code to be generated is represented by a template. Template processing boils
down to instantiation of templates, i.e., parameterized text, in a program.

One Acme developer decided to exercise template processing in Python and to
leverage the template engine Jinja211. The template is shown below.

Illustration 2.25 (Jinja2-based template for C code for FSM)

Jinja2/C resource languages/FSML/Python/templates/Fsm.jinja2

1 enum State { {{states|join(', ')|upper()}} };
2 enum State initial = {{initial|upper}};
3 enum Event { {{events|join(', ')|upper()}} };
4 {% for a in actions %}void {{a}}() { }
5 {% endfor %}
6 enum State next(enum State s, enum Event e) {
7 switch(s) {
8 {% for (s, ts) in transitions %}
9 case {{s|upper()}}:

11 http://jinja.pocoo.org/

http://github.com/softlang/yas/tree/springer/languages/Jinja2/C
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/templates/Fsm.jinja2
http://jinja.pocoo.org/

2.4 DSL Services 79

10 switch(e) {
11 {% for (e, a, t) in ts %}
12 case {{e|upper()}}: {% if a %}{{a}}(); {% endif %}return {{t|upper()}};
13 {% endfor %}
14 default: return UNDEFINED;
15 }
16 {% endfor %}
17 default: return UNDEFINED;
18 }
19 }

It is best to compare the template with an instance; see again Illustration 2.24.
The following concepts are used:

• For as long as the template does not involve templating-specific constructs, the
template’s text is literally copied to the output. For instance, the header of the
method next (line 6) is directly copied from the template to the output.

• A template is parameterized by (Python) data structures that the template may
refer to. For instance, there are Jinja2-level for-loops (lines 8 and 11) in the tem-
plate which loop over parameters such as actions and transitions to generate simi-
lar code for all elements of these collection-typed parameters.

• The text content of a parameter, say x, can be inlined by using the notation
“{{x}} where x” is a parameter. Parameters either are directly passed to the
template or are extracted from other parameters, for example, within for-loops.

• Some parameters are processed by so-called filters; see the occurrences of upper
and join. In this manner, the raw text of parameters is manipulated. That is, join
composes a list of strings by interspersing another string (here, a comma); upper
turns a string into uppercase.

There is more expressiveness for template processing, but we omit a detailed
discussion here. The only missing part of the code generator is the functionality for
template instantiation as shown below.

Illustration 2.26 (Template instantiation)

Python module FsmlCGenerator

def generateC(fsm):
Initialize data structures
states = set()
states.add("UNDEFINED")
events = set()
actions = set()
transitions = list()
Aggregate data structures
for source, [statedecl] in fsm.iteritems():

ts = list()
transitions.append((source, ts))
states.add(source)
if statedecl["initial"]:

http://github.com/softlang/yas/tree/springer/languages/fsml/Python/FsmlCGenerator.py

80 2 A Story of a Domain-Specific Language

initial = source
for event, [(action, target)] in statedecl["transitions"].iteritems():

events.add(event)
if action is not None: actions.add(action)
ts.append((event, action, target))

Look up template
env = Environment(loader=FileSystemLoader('templates'), trim_blocks=True)
fsmTemplate = env.get_template('Fsm.jinja2')
Instantiate template
return fsmTemplate.render(\

states = states,\
initial = initial,\
events = events,\
actions = actions,\
transitions = transitions)

Thus, the template parameters states, events, actions, and transitions are trivially
synthesized from the Python objects. Other than that, the code for template instan-
tiation loads the template and renders it.

Another Acme developer decided to exercise template processing in Java and to
leverage the template engine StringTemplate12 [10]. StringTemplate encourages the
use of template groups, that is, templates that invoke each other, as shown for FSML
below.

Illustration 2.27 (StringTemplate-based templates for C code for FSM)

StringTemplate/C resource languages/FSML/Java/templates/Fsm.stg

1 main(states, initial, events, actions, tgroups) ::= <<
2 enum State { <states; format="upper", separator=", "> };
3 enum State initial = <initial; format="upper">;
4 enum Event { <events; format="upper", separator=", "> };
5 <actions:action(); format="lower", separator="\n">
6 enum State next(enum State s, enum Event e) {
7 switch(s) {
8 <tgroups:tgroup(); separator="\n">
9 default: return UNDEFINED;

10 }
11 }>>
12

13 action(a) ::= "void <a>() { }"
14

15 tgroup(g) ::= <<
16 case <g.stateid; format="upper">:
17 switch(e) {
18 <g.ts:transition(); separator="\n">
19 default: return UNDEFINED;
20 }>>
21

22 transition(t) ::= <%

12 http://www.stringtemplate.org/

http://github.com/softlang/yas/tree/springer/languages/StringTemplate/C
http://github.com/softlang/yas/tree/springer/languages/FSML/Java/templates/Fsm.stg
http://www.stringtemplate.org/

2.4 DSL Services 81

23 case <t.event; format="upper">:
24 <if(t.action)><t.action; format="lower">(); <endif>
25 return <t.target; format="upper">;%>

Let us explain the StringTemplate notation.

• We use a definition form templ(p) ::= ” . . .” to define named templates with pa-
rameters (such as p) that can invoke each other, just like possibly recursive func-
tions. There is a main template (lines 1–11) to start template processing with.
There is an action template (line 13) for the C code for each action function.
There is a tgroup template (lines 15–20) for the transitions grouped by source
state. There is also a transition template (lines 22–25) for the code for a single
transition.

• We use < %. . . .% > instead of ” . . .” to define multi-line instead of single-line
templates.

• We use << ... >> instead to define multi-line templates. Compared to <
%. . . .% >, indentation and line breaks are transported from the template to the
output.

• We use the form < p > to refer to a parameter p, i.e., to inline it as text. We use
the form p : templ() to invoke a template templ and to pass the parameter p. We
use the form < p.x > to refer to the property x of p.

• There are also format and separator controls that are similar to the filters of
Jinja2. There is also expressiveness (if . . . endif) for conditional parts, just as in
the case of Jinja2.

We omit the Java code for template instantiation; it is very similar to the Python
code discussed earlier.

Exercise 2.11 (A more advanced code generator) [Basic level]
Revise the code generator so that the generated methods for the FSM actions get
access to the initiating event, the source state, and the target state. The idea here
is that the plugged code for actions may use these additional parameters for richer
behavior. This context should be passed by regular arguments to the methods for the
actions.

Exercise 2.12 (An object model for C code) [Intermediate level]
Set up an object model for the subset of C needed in the FSML example. Implement
a template-processing component for rendering C code. Implement a mapping be-
tween the object models of FSML and C. In this manner, you could implement the
code generator in an alternative manner.

82 2 A Story of a Domain-Specific Language

The present section is summarized by means of a recipe.

Recipe 2.7 (Development of a code generator).

Test cases Develop code samples to be generated and complete them into
test cases by also listing the corresponding inputs (programs) from which
the code samples are to be generated. Strive for simplicity – certainly in
the beginning so that code generation is more easily set up. Test that the
samples compile and run on the target platform.

Templates Parameterize the code samples to obtain templates with appro-
priate parameters, loops, etc.

Data structure Design the data structure for the template parameters. The
basic assumption is that some existing representation types (e.g., an object
model) may be appropriate.

Instantiation Implement the template instantiation functionality such that
the data structure for the template parameters is synthesized, templates are
loaded, template parameters are assigned, and rendering is done.

Testing Test the code generator to return the expected code according to the
test cases. Some fine tuning of the templates or the expected output may be
required, for example, if spaces, line breaks, and indentation are taken into
account.

2.4.3 Visualization

While the Acme engineers agreed on using textual notation for maintaining FSMs
throughout the development cycle, some Acme employees insisted that a visual no-
tation would still be needed. In particular, several architects made the point that the
visual notation was more suitable for meetings with customers. Accordingly, it was
decided to provide visualization functionality such that FSMs could be rendered ac-
cording to a visual syntax; see Fig. 2.2. The notation is inspired by the whiteboard
notation of Section 2.1 (Fig. 2.1). It was also decided that no graphical editor was
required, because just rendering FSMs would be sufficient. We mention in passing
that some competitors of Acme use graphical editors for FSMs, as visual syntax is
favored in those companies.

The Acme engineer in charge decided that the visualization should be based on
the popular technology Graphviz.13 Graphviz processes input which conforms to
the so-called DOT language, with language elements for describing graphs in terms
of nodes and edges, as well as various attributes that control details of appearance,
as shown below.

13 http://www.graphviz.org/

http://www.graphviz.org/

2.4 DSL Services 83

exception

ticket/eject

pass

mute

lockedrelease
pass/alarm

unlockedticket/collect
pass

ticket/eject

Fig. 2.2 A turnstile FSM in visual notation.

Illustration 2.28 (DOT representation of turnstile FSM)

DOT resource languages/FSML/Python/dot/sample.dot

digraph {
graph [nodesep=0.5,

rankdir=LR,
title="Sample FSM"

];
exception [shape=ellipse];
exception −> exception [label="ticket/eject"];
exception −> exception [label=pass];
exception −> exception [label=mute];
locked [shape=ellipse,

style=filled];
exception −> locked [label=release];
locked −> exception [label="pass/alarm"];
unlocked [shape=ellipse];
locked −> unlocked [label="ticket/collect"];
unlocked −> locked [label=pass];
unlocked −> unlocked [label="ticket/eject"];

}

As FSMs are essentially also just node- and edge-labeled graphs, the visualiza-
tion functionality should be straightforward. Nevertheless, this functionality is in-
teresting in that it allows us to revisit some of the DSL concepts discussed earlier.

Different techniques may be employed for generating the Graphviz input for
FSMs. An obvious option is to leverage templates (Section 2.4.2) such that the DOT
graph is obtained by instantiating a template that represents the relevant DOT pat-
terns. Another option is to leverage a DOT API, in fact, an implementation of DOT
as an internal DSL such that the DOT graph is constructed by a sequence of API
calls. Some pros (“+”) and cons (“-”) may be identified:

http://github.com/softlang/yas/tree/springer/languages/DOT
http://github.com/softlang/yas/tree/springer/languages/FSML/Python/dot/sample.dot

84 2 A Story of a Domain-Specific Language

• Use template processing for DOT-graph construction:

+ Relevant DOT constructs are clearly depicted in the template.
− DOT’s syntax may be violated by the template or the instantiation.

• Use a DOT API instead:

+ The resulting DOT graphs are syntactically correct by construction.
− One needs to understand a specific API.

The following code illustrates the API option. The functionality is straightfor-
ward in that it simply traverses the FSM representation and adds nodes and edges to
a graph object.

Illustration 2.29 (A visualizer for FSML)

Python module FsmlVisualizer

import pygraphviz

def draw(fsm):
Create graph
graph = pygraphviz.AGraph(title="Sample FSM", directed=True, strict=False, rankdir

='LR', nodesep=.5)
Create nodes
for fromState, [stateDeclaration] in fsm.iteritems():

if stateDeclaration["initial"]:
graph.add_node(n=fromState, shape='ellipse', style='filled')

else:
graph.add_node(n=fromState, shape='ellipse')

Create edges
for fromState, [stateDeclaration] in fsm.iteritems():

for symbol, [(action, toState)] in stateDeclaration["transitions"].iteritems():
graph.add_edge(fromState, toState, label=symbol + ("" if action is None else

"/"+action))
return graph

Exercise 2.13 (Template-based visualization) [Basic level]
Reimplement the visualizer in Illustration 2.29 with template processing instead of
using an API for DOT graphs.

Summary and Outline

We have developed the domain-specific language FSML for modeling, simulat-
ing, and otherwise supporting finite state machines. Several aspects of language
design and implementation were motivated by reference to language users and im-
plementers whom we envisaged, as well as possible changes to requirements over

http://github.com/softlang/yas/tree/springer/languages/FSML/Python/FsmlVisualizer.py

References 85

time. The implementation leveraged the programming languages Java, Python, and
C as well as additional tools, namely the parser generator ANTLR, the template
processors Jinja2 and StringTemplate, and Graphviz with its DOT language.

Clearly, FSML, or any other DSL for that matter, could be implemented in
many other ways, within different technological spaces, leveraging different kinds
of metaprogramming systems. The online resources of the book come with several
alternative implementations. FSML is going to serve as a running example for the
remainder of the book.

FSML’s language design could be modified and enhanced in many ways. For
instance, FSML is clearly related to statecharts in the widely adopted modeling lan-
guage UML. The statecharts of UML are much more expressive. There is also ex-
isting support for statecharts, for example, in terms of code generators in the MDE
context. This may suggest a critical discussion to identify possibly additional ex-
pressiveness that would also be useful at Acme. Also, perhaps, existing UML tooling
could provide a more standardized replacement for Acme’s proprietary DSL.

In the remaining chapters of this book, we will study the foundations and engi-
neering of syntax, semantics, types, and metaprogramming for software languages.
FSML will show up as an example time and again, but we will also discuss other
software languages.

References

1. Erdweg, S.: Extensible languages for flexible and principled domain abstraction. Ph.D. thesis,
Philipps-Universität Marburg (2013)

2. Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W.R., Gerritsen,
A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: The state of the art in language workbenches – conclusions from the
language workbench challenge. In: Proc. SLE, LNCS, vol. 8225, pp. 197–217. Springer (2013)

3. Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W.R., Gerritsen, A.,
Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: Evaluating and comparing language workbenches: Existing results and
benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47 (2015)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley (1999)
5. Fowler, M.: Domain-Specific Languages. Addison-Wesley (2010)
6. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Com-

putation. Pearson (2013). 3rd edition
7. ISO/IEC: ISO/IEC 14977:1996(E). Information Technology. Syntactic Metalanguage.

Extended BNF. (1996). Available at http://www.cl.cam.ac.uk/~mgk25/
iso-14977.pdf

8. Kats, L.C.L., Visser, E.: The Spoofax language workbench. In: Companion SPLASH/OOP-
SLA, pp. 237–238. ACM (2010)

9. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative specification
of languages and IDEs. In: Proc. OOPSLA, pp. 444–463. ACM (2010)

10. Parr, T.: A functional language for generating structured text (2006). Draft. http://www.
stringtemplate.org/articles.html

11. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013). 2nd edition

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.stringtemplate.org/articles.html
http://www.stringtemplate.org/articles.html

86 2 A Story of a Domain-Specific Language

12. Renggli, L.: Dynamic language embedding with homogeneous tool support. Ph.D. thesis,
Universität Bern (2010)

13. Visser, E., Wachsmuth, G., Tolmach, A.P., Neron, P., Vergu, V.A., Passalaqua, A., Konat, G.:
A language designer’s workbench: A one-stop-shop for implementation and verification of
language designs. In: Proc. SPLASH, Onward!, pp. 95–111. ACM (2014)

14. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,
Wachsmuth, G.: DSL Engineering – Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013)

15. Voelter, M., Ratiu, D., Kolb, B., Schätz, B.: mbeddr: instantiating a language workbench in
the embedded software domain. Autom. Softw. Eng. 20(3), 339–390 (2013)

16. Völter, M., Visser, E.: Language extension and composition with language workbenches. In:
Companion SPLASH/OOPSLA, pp. 301–304. ACM (2010)

17. Wachsmuth, G., Konat, G.D.P., Visser, E.: Language design with the Spoofax language work-
bench. IEEE Softw. 31(5), 35–43 (2014)

	Chapter 2: A Story of a Domain-Specific Language
	2.1 Language Concepts
	2.2 Internal DSL
	2.2.1 Baseline Object Model
	2.2.2 Fluent API
	2.2.3 Interpretation
	2.2.4 Well-Formedness

	2.3 External DSL
	2.3.1 Syntax Definition
	2.3.2 Syntax Checking
	2.3.3 Parsing

	2.4 DSL Services
	2.4.1 Interchange Format
	2.4.2 Code Generation
	2.4.3 Visualization

	Summary and outline
	References

